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We show theoretically that, in the presence of persistent productivity shocks, the reliance on self-

enforcing contracts due to limited legal enforcement may provide a possible rationale why countries

with the worse rule of law might exhibit: (i) higher aggregate TFP volatilities, (ii) larger dispersion

of firm-level productivity, and (iii) greater wage inequality. We also provide suggestive empirical

evidence consistent with the model’s aggregate implications. Finally, we relate the model’s firm-level
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1. Introduction

Many, if not most, economic interactions are carried out with very incomplete or no formal contracts

at all. In their absence, to overcome the possible hold-up problems, economic agents often rely on

the repeated nature of their interactions to establish relational or self-enforcing contracts. In this

paper, we show how limited external enforceability coupled with persistent productivity shocks can

generate several interesting empirical predictions. We show these predictions are consistent with both

micro and macro data, and further establish a new link between a country’s legal environment and

its aggregate-level TFP volatility as well as its wage inequality.

Concretely, we build on the model of relational contracts à la Levin (2003) by allowing for persistence

in productivity and show the enforceability constraint, which captures the temptation of the principal

to renege on the promised bonus, generates a multiplier effect amplifying the exogenous productivity

shocks. This has three implications for economic environments where enforceability constraints are

more binding:

(a) aggregate shocks are amplified, resulting in higher TFP volatilities;

(b) idiosyncratic shocks induce a larger dispersion of measured firm productivity levels;

(c) wages would be less evenly distributed.

If common persistent shocks impact all firms in economies, our model predicts that the aggregate

volatility of economies with poorer legal enforcement would be greater. Consistent with our pre-

dictions, for a large sample of countries, we find a negative relationship between the dispersion of

aggregate TFP growth rates and quality of law enforcement. We further address potential endo-

geneity concerns by exploiting exogenous variations in early settler mortality rates (Acemoglu et al.,

2001) to instrument for the quality of law enforcement. The identification strategy suggests that the

relationship between the legal environment and aggregate volatility is causal. Our baseline regression

without any covariate suggests that one standard deviation increase in the Average Rule of Law is

associated with a 0.847 percentage point decrease in the volatility of TFP growth rates.

Alternatively, if persistent idiosyncratic shocks affect firm-level productivity, our model predicts that

the spread in firm-level TFP in economies with poorer legal enforcement would be wider. In line with

our predictions, we document a negative relationship between the spread in firm-level TFP within a

given country and the quality of the legal system in that country. These results also relate to Syverson

(2011) who empirically shows large productivity differences within a given industry. Particularly, he

highlights that these differences vary dramatically across countries.4 While in the US a plant in the

4See references therein in particular Syverson (2004) and Hsieh and Klenow (2009).
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90th percentile within a given industry can be twice as productive as one in the 10th percentile, for

India and China differences are fivefold.

There are many possible reasons as to why these cross country differences may arise; our explanation

is that it is partly driven by the fact that the US has an effective legal system that facilitates the

enforceability of contracts while these institutions are much weaker in developing countries.5 Thus,

a larger fraction of business relationships in India and China are governed by relational contracts.

As a result, when two firms in the US and two firms in India experience a pair of low and high

exogenous productivity shocks, the spread in measured productivity in India would be larger than in

the US. To see why this is the case, suppose the productivity shock does not affect the optimal level

of effort. With complete contracts, there are no differences in worker effort between the two firms. As

a result, the measured productivity differences in the US firms would be just given by the spread of

the exogenous shocks. Instead, with imperfect enforceability, the optimal effort that can be elicited

from the workers depends on the shock realization. When the shock is high, the firm can credibly

promise high bonuses and, as a result, can demand high effort and become more productive. The

opposite effect takes place when the shock is negative. This implies there is an extra wedge in the

measured productivity of Indian firms given by the fact that the equilibrium effort also varies with the

exogenous shock. Consistent with this prediction, our empirical analysis suggests that India (China)

might decrease its TFP dispersion by roughly 55% (65%) if the country could improve the quality of

its legal system to that of the United States.6

This highlights the role of persistence in productivity during bad times. When the current state

is bad, the future value from maintaining the relationship is low, and the principal cannot credibly

promise to make large payments. Thus, in bad times the firm cannot motivate the agent to exert

high effort. This “low morale effect” is consistent with the evidence that labor productivity levels are

pro-cyclical (Baily et al., 2001). We can alternatively recast the model as in Fuchs (2015) where every

period the agent receives a stochastic outside option and must decide whether to leave the firm and

take the outside option. In such a reformulation, when the future of the firm looks bleak, the agent

would be willing to accept lower outside options. This is consistent with the findings presented by

Baghai et al. (2016) which show that Swedish firms tend to lose their key talents when their financial

health deteriorates. Similarly, using an online search platform, Brown and Matsa (2016) show that

job applicants avoid companies with poor financial conditions.

5See Syverson (2011) and references therein for a rich discussion of other possible factors influencing firm productivity.
Collard-Wexler et al. (2011), for example, argue that these differences arise due to non-convex adjustment costs and
persistence of shocks to factors of production.

6Since the ORBIS dataset does not contain China. India, and the US in the sample, we compute these values with
the following formula:
1−exp(Regression Coefficient in Table 4.×The difference in the Average Rule of Law Between the US and the country).
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In his review on the determinants of productivity Syverson (2011) highlights:

“... robust finding in the literature ... is that higher productivity producers are more

likely to survive than their less efficient industry competitors. Productivity is quite literally

a matter of survival for businesses.”

Our model’s predictions are consistent with this finding, and further suggest that causality can go

both ways. In particular, if a firm is more likely to survive, then it will be able to become more

productive.

Our model also has implications for wage inequality in countries with limited legal enforcement.

Under imperfect enforcement, the bonus payment that the principal can credibly commit to make to

the agent depends on the future value of the relationship, which in turn is shaped by productivity.

Persistence in productivity therefore implies that the agent’s compensation becomes more sensitive

to changes in productivity relative to a contractual environment with better enforcement. Hence, our

model predicts that wages would be more evenly distributed within a country as the quality of legal

enforcement improves. We use the Theil index in the UTIP-UNIDO database (Galbraith et al., 2014)

to proxy for wage inequality and use Acemoglu et al. (2001)’s instrumental variable. Our baseline

IV estimate suggests that one standard deviation increase in the average rule of law is predicted to

decrease the Theil index by 0.49 in the logarithmic scale.

A related implication is that contracts would exhibit “rewards for luck.” We say luck is rewarded

since the bonuses are dependent on the realization of the shocks. Yet, the exogenous productivity

shocks are perfectly observable and independent of the agent’s effort. This stands in contrast to

the “Informativeness Principle” (see Hölmstrom (1979)), according to which a performance measure

should only affect compensation if it provides information about the agent’s hidden effort. The

empirical literature has documented several cases in which contracts seem to be rewarding luck.

Bertrand and Mullainathan (2001) document that in the oil industry of the US, the compensation

of executives in major companies positively correlates with the price of oil, an element arguably

outside the executive’s control.7 Finally, DeVaro et al. (2018) (which we discuss further below)

show empirically that persistence of the state is important for “reward for luck.” They also provide

evidence against the capture of boards by CEOs being the main driver of the observed compensation

patterns.

There is certainly additional heterogeneity and richness that is not captured by our simple model. Yet,

we believe our model provides a very useful lens through which we can start to uncover how seemingly

unrelated findings at the firm, industry and aggregate economy level can actually be manifestations

7For more recent works, see also Garvey and Milbourn (2006) and Ma (2019).
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of a natural friction economic agents must constantly deal with: namely, how to realize the gains from

trade without falling prey to the hold-up problem.

Literature Review

Our model belongs to the rich literature on relational incentive contracts that builds on Bull (1987),

MacLeod and Malcomson (1989), and Levin (2003). Most of the papers in this literature have focused

on implications at the firm level. There has been less work looking at aggregate implications.8 Our

main contribution relative to the literature is to show that a very parsimonious model can be used to

simultaneously explain both micro and macro phenomena.

From a technical perspective the most closely related work to ours within this literature are Kwon

(2016) and DeVaro et al. (2018). We complement Kwon (2016) and go beyond her analysis by

characterizing the optimal relational contracts and analyze comparative statics, which our empirical

analysis takes to the data. Similar to ours, DeVaro et al. (2018) offers a theoretical rationale for

rewarding luck. In addition, as mentioned earlier, they complement their theoretical analysis with

some corroborating evidence on CEO compensation. Although our main argument for rewarding

luck is similar in spirit, our model uses a different timing of shocks vis-a-vis theirs. In our model we

could have reward for luck without it implying the presence of the morale effect, while the morale

effect and the reward for luck effect must always coexist in DeVaro et al. (2018) and Kwon (2016)’s

settings.9 While this distinction is of independent theoretical interest, it is also relevant for policy

debates on bonus caps. In particular, under their setting, caps on executive bonuses always decrease

efficiency when reward for luck is present. By contrast, in our model, the existence of reward for luck

does not necessarily imply inefficiencies when caps are introduced. Thus, the introduction of caps on

bonuses might be less detrimental than what prior literature suggests. In addition to this, our main

contribution relative to their work is on highlighting the “morale effect” and the related amplification

of shocks that is induced by the lack of enforceability.

Three other different theoretical explanations have been put forward for the well-documented “reward

for luck” phenomenon. First, Oyer (2004) argues that the shocks identified in some of the empirical

studies might affect the agent’s options and thus compensation must rise in good states. The second

explanation was put forward by Hoffmann and Pfeil (2010) and is also present in DeMarzo et al.

(2012). Their models have no enforceability constraints. Instead, the principal needs to finance up-

front an agent protected by limited liability. When productivity is high, the potential cash flows are

large. Thus, the principal has stronger incentives to avoid reducing the size of the firm or triggering

termination (which is the main way of providing incentives within their model). Hence, the principal

must give more rents to the agent, and the “reward for luck” effect arises. A third explanation, put

8Some exceptions are Powell (2017) and Board and Meyer-ter Vehn (2014) which we discuss below.
9For more details, see Remark 1 in section 4.2.
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forward by DeMarzo and Kaniel (2017), hinges on agents having a very strong catching up with the

Joneses component in their preferences. In such a case, optimal compensation must adjust to favorable

shocks to others in a way that looks like luck. None of these models allow for a “morale effect” nor

can they be used to study the correlation between enforceability and output volatility.

When considering the “morale effect,” Barron et al. (2018) is closely related. They study the problem

of an entrepreneur which needs both: (i) to take an initial loan to finance its venture and (ii) to hire

an agent to work on it. The contract between the entrepreneur and the worker is not enforceable.

Thus the continuation value of the entrepreneur plays an important role in determining the extent to

which the enforceability constraint binds. A highly levered entrepreneur is similar to the principal in

our model that experiences a low productivity shock. In both cases, their equity value is low and thus

there is a limit on how large a bonus they can credibly promise to the agent. Thus, when the firm

is in poor financial shape, it cannot induce the worker to work hard. This is similar to the “morale

effect.” Their paper also provides empirical evidence supporting the mechanism in their model.

Our results on enforceability and dispersion of firm’s productivity within industries are related to

Powell (2017).10 His paper focuses solely on this fact. He shows theoretically that limited enforcement

combined with pecuniary effects amplify underlying permanent productivity differences and provides

empirical evidence of the positive and meaningful correlation between productivity dispersion and

contract enforceability. Our model, although similarly reliant on limited enforcement, allows us to look

at several other implications of the theory, such as aggregate volatility and wage inequality. Also, we

conduct empirical tests on these additional implications and supplement his empirical analysis with an

alternative measure of productivity dispersion based on Ackerberg et al. (2015)’s estimation method.

This technique overcomes functional dependence problems raised in the literature on productivity

function estimation and allows for a more precise estimation of TFP’s.

Our results about macroeconomic volatility in productivity are related to Ramey and Watson (1997),

Den Haan et al. (2000) and Cooley et al. (2004). Ramey and Watson (1997) develop a theory of labor

contracting in which negative productivity shocks lead to costly job loss due to limited enforceability.

Their model is used in Den Haan et al. (2000)’s dynamic general equilibrium analysis to illustrate a

propagation effect through which cyclical fluctuations in the job-destruction rate magnify the shocks

to output and make them persistent. In a dynamic general equilibrium framework, Cooley et al.

(2004) characterizes the optimal long-term contracts offered by a competitive financial intermediary

to an entrepreneur for investments in innovation. In this model with one-sided commitment, the

entrepreneur can repudiate on the contract and this form of limited enforceability amplifies in an

endogenous manner the impact of technological innovations on aggregate output. In contrast, we use

10Board and Meyer-ter Vehn (2014) also argue that limited enforcement in a model with on-the-job search can explain
the emergence of productivity dispersion across ex-ante identical firms.
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a model in which neither the principal nor the agent is able to credibly commit to long-term contracts.

Furthermore, an amplification mechanism obtains in our framework without any general equilibrium

effects, which plays a key role in the amplification mechanism in Cooley et al. (2004)’s model.

Finally, our wage inequality result is also related to Gradstein (2007). Similar to our paper, his

model studies the relationship between income inequality and various governance measures (e.g.,

rule of law, the protection of property rights). The main difference is that his paper mostly focuses

on ‘appropriation by the state’ in the tradition of Acemoglu and Robinson (2000), while our paper

studies ‘appropriation’ between private entities. He also documents an empirical relationship between

income inequality and rule of law, whereas we provide a correlation between wage inequality and rule

of law.

We see our main contribution relative to the literature, not in being the first to point out a particular

effect, but rather providing a unified model capturing multiple relevant phenomena. The existing

literature so far provides distinct explanations for these facts. Instead, we offer a parsimonious

rationale for all: time-varying limits to contract enforceability.

2. Setup

A principal (“she”) and an agent (“he”) interact repeatedly over time. Time is discrete and indexed

via t ∈ {1, 2, ...}. At the beginning of every period, the principal makes the agent an offer consisting of

an enforceable wage payment wt, a schedule of non-enforceable bonus payments {bt} and recommends

the agent take an action at. If the agent rejects, the game ends and both receive their outside options,

which we normalize to be zero. If the agent accepts, the agent privately chooses his action ãt ∈ [0, 1]

incurring a cost c (·). We assume c (·) is continuously differentiable, strictly increasing and strictly

convex, with c (0) = c′ (0) = 0 and 1 < c′(1) ≤ ∞.

The firm’s publicly observable output is composed of two additively separable components πt = yt+θt.

The first component takes on binary values y ∈ {0, 1} and is partially under the control of the agent.

Specifically, the agent’s unobservable action at determines the probability that yt = 1. On the other

hand, the distribution over publicly observable state θt ∈ {L,H} is independent of the agent’s actions.

We assume H > L > 0 and it is worth noting that one can show that the value to the firm is weakly

decreasing on the spread of the shock H−L. Thus, to the extent possible, firms would want to hedge

this shock, our underlying assumption is that hedging cannot be done perfectly.11 The process for θt

follows a first-order Markov chain with a symmetric persistence parameter λ := Prob (θt = θt−1|θt−1) >

11Even if θt is contractible, firms cannot fully hedge θt as long as the court (or any outside third party) cannot verify
whether one party has reneged. Assume that the principal and agent write a long-term contract based on θt. The
long-term contract would always be in effect regardless of whether a player has reneged or not. Hence, the long-term
contract does not affect any party’s decision to renege.

7



1/2 for both θt−1 = H,L. The model could be extended to richer stochastic processes. For instance,

the additive separability assumption on output can be relaxed. Yet, the additive structure provides

a very clear benchmark since it implies the first best action is independent of the state.12

Figure 1: Timeline

t t+1

the principal offers a

relational contract

(wt, bt)

the agent

accepts

(/rejects)

the principal

pays wage wt

the agent

chooses ãt

outcome yt and

state θt realizes

the principal

pays bonus bt

See Figure 1 for the order of play. We assume that there is a sufficiently high utility cost of continuing

the relationship with the party that has reneged before,13 and therefore the relationship terminates

the first time a party reneges on payments, or the first-time the agent rejects a contract. Let τ denote

the time when the contracting relation terminates. After termination, both players receive the value

of outside option, normalized to 0.

To account for heterogeneity in contract enforcement in our empirical analysis we introduce in our

model a parameter α that measures the strength of contract enforcement institutions. In particular,

we assume that whenever the principal reneges on her promised payments, she can walk away with

only a fraction (1− α) of the bonus.

Both players are risk-neutral, have a common discount factor δ, and have deep pockets. The principal

maximizes the present value of the expected discounted output streams minus her payments to the

agent:14

Πt = (1− δ)Et

τ∑
s=t

δs−t (πs − ws − bs) .

The agent maximizes the expected discounted payments received minus his cost of effort:

vt = (1− δ)Et

τ∑
s=t

δs−t (ws − c(ãs) + bs) .

Given any public history ht = {θ0, θ1, ...θt−1, y1, ...yt−1, b1, ...bt−1, w1, ...wt−1} ∈ Ht, a contract specifies

12If the output is additively separable, the first-best effort level aFB satisfies: ∂
∂ãt

(
E(πt|ãt, θt−1) − c(ãt)

)∣∣∣∣∣
ãt=aFB

=

1− c′(aFB) = 0.
13Alternatively, we may assume that outside options are higher conditional than when the agent exerts zero effort.

However, the current formulation is more convenient for analytic purposes.
14More precisely, the players’ payoffs should also reflect the disutility from staying in the relationship with the party

that has reneged before. Yet, since the disutility is only incurred off paths, we shall drop the disutility from the payoffs.
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the compensation mix the principal offers; whether or not the agent accepts it; and the effort and

discretionary bonus payment decisions. The compensation is given by the functions of the following

form: wt : Ht → R, bt : Ht × ({L,H} × {0, 1}) → R+.15

A contract is self-enforcing if it is a perfect public equilibrium of the repeated game. There are a

large number of such equilibria, but we are interested in characterizing the efficient self-enforcing

arrangements that would govern this relationship. As a first step, applying the methods used by

Spear and Srivastava (1987) and Abreu et al. (1990) we can conveniently summarize a given public

history of the game ht, into a pair of a continuation value for the agent v and a past state θt−1. The

principal chooses the optimal current actions (a, w, b, v′) based on the public history (v, θt−1). This

method allows us to set up the principal’s problem recursively as follows:

Π (v, θ−1;α) = max
a,w,b,v′

E [(1− δ) (π − w(θ−1, v;α)− b (y, θ−1, θ, v;α)) + δΠ(v′ (y, θ−1, θ, v;α) , θ;α) |a, θ−1]

s.t.

v = E [(1− δ) (w + b− c (a)) + δv′|a, θ−1] ; [PK]

a ∈ arg max
ã∈[0,1]

E [(1− δ) (w + b− c (ã)) + δv′|ã, θ−1] ; [IC]

δΠ(v′, θ;α) ≥ (1− δ) (1− α)b (y, θ−1, θ, v;α) ; [DEP]

Π(v′, θ;α) ≥ 0; [PCP]

v′ ≥ 0, [PCA]

where [PK] is the promise keeping constraint, [IC] the incentive compatibility constraint for the agent

to follow the recommended action a, [DEP] the dynamic enforceability constraint guaranteeing that

the principal prefers to pay the promised bonus rather than to renege and effectively terminate the

relationship, and [PC]’s the participation constraints that each party needs to be at least as well off as

the outside option every period. Dependence of the solution on the strength of contract enforcement

α in the economic environment is noted.

3. Basic Properties of Optimal Markovian Contracts

We start with formally defining Markovian contracts in this environment, and turn to show that it

is without loss of generality to focus on this class of contracts. This definition is similar to Kwon

(2016)’s history-independent contract, but the two definitions are not equivalent due to differences in

timing of the shocks.

15Equivalently, we could instead impose a dynamic enforceability constraint on the agent’s part to guarantee that
the agent prefers to pay the promised bonus rather than reneging and effectively terminating the relationship. This
alternative formulation is more consistent with Levin (2003), but our formulation is also standard in the literature as
well (see e.g., Fuchs (2007)).
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Definition 1 (Markovian Relational Contracts). A Markovian relational contract consists of the

non-output-contingent wage wt = w(θt−1;α), the output-contingent bonus bt = b(y, θt−1, θt;α), and

recommended action at = a(θt−1;α).

According to this definition, in a Markovian relational contract at any given period t the bonus scheme

upon receiving the output y depends on the current state θt−1 and the state θt in the next period

but beyond this it does not depend on the period. As noted previously, the contract in this setting

depends on the strength of contract enforcement α.

The general problem can be significantly simplified by restricting our analysis to Markovian contracts.

This is analogous to the main contribution in Levin (2003) showing that it is without loss to focus

on stationary contracts when shocks are i.i.d. over time, and its extension to Markovian productivity

states in Kwon (2016). As we show next, this implies the Pareto frontier is linear. For notational

convenience, we proceed as if the initial value of the agent is 0. Yet, if the initial value of the agent is

greater than 0, it can always be delivered with a transfer in the initial period. Furthermore, we give

a characterization of the optimal contract.

Proposition 1 (Optimality of Markovian Relational Contracts). There exists a Markovian relational

contract such that

(R-1) it attains maximum surplus state-by-state and it is without loss to set v′∗ = 0; and

(R-2) it is without loss to set b∗ (y = 0, θ−1, θ) = 0.

This result holds for any given strength α of contract enforcement. It says that for any contract

that maximizes the expected total surplus we can find a Markovian relational contract that does the

job. The surplus-maximizing Markovian contract also maximizes the principal’s profit, because the

principal can pay base wages to deliver the promised utility to the agent without affecting the total

surplus. Without loss of generality, the offered base wages and bonuses are only functions of the last

and current realization θ. Importantly, since beyond participation, continuation values don’t play a

role, we can simply focus on maximizing the current total surplus generated by the pair to characterize

the optimal arrangements.

Since we have established that bonuses are only paid after success, we simplify our notation and

denote the bonus payment upon success simply as b(θ−1, θ;α). The only role for the base wage is to

ensure that the contract delivers the right promised value to the agent. We can thus solve the problem

of figuring out the effort and bonus choices that maximize surplus, which we denote by Π(θ−1;α),

first and then divide it between the principal and the agent by adjusting the base wages. Also note

that we can drop the participation constraints since a contract that implements zero effort is always

10



available and generates strictly positive surplus. Thus, the problem simplifies to:

Π(θ−1;α) = max
a(·),b(·)

(1− δ) (a(θt−1;α) + E(θt|θt−1)− c(a(θt−1;α))) + δE(Π(θt;α)|θt−1) (1)

subject to:

[IC] a(θt−1;α) = argmax
ã

E(b(θt−1, θt)|θt−1)ã− c(ã);

[DEP]′ δΠ(θt;α) ≥ (1− δ)(1− α)b(θt−1, θt;α).

Denote the optimal effort and bonus payment by a∗(θ−1;α) and b∗(θ−1, θ;α), respectively, and resulting

profit Π∗(θ−1;α). The optimal bonus scheme b∗(θ−1, θ;α) and the optimal effort a∗(θ−1;α) that solves

the reduced problem (1) are related as follows:

Lemma 1. In any optimal Markovian relational contract, the optimal effort satisfies the following

properties:

(E-1) (Monotonicity in effort) a∗(L;α) ≤ a∗(H;α) ≤ (c′)−1(1) = aFB, where aFB denotes the first-best

level of effort; and

(E-2) If the optimal effort a∗(θ−1;α) is strictly less than the first best level aFB, the dynamic enforce-

ability constraints bind for both θ = H,L: b∗(θ−1, θ;α) =
δ

1−δ
Π∗(θ;α)
1−α

.

The first part of Lemma 1 establishes that if there is a distortion in the effort level with respect

to first best it is due only to a possible under-provision of effort. This arises due to the principal’s

dynamic enforceability constraint, i.e., the temptation of the principal to default on the promised

bonus. As shown in the second part of the Lemma 1, when the effort is distorted the enforceability

constraint must bind. Hence the principal must fully pledge the principal’s future surplus (which is

the maximum amount the principal can credibly commit to pay) as the bonus.16 Since there is more

surplus in high states than in low states the equilibrium effort must always be weakly lower in the

low state.

Denote by ΠFB(θ) the maximum surplus that can be obtained without the dynamic enforceability

for the state θ. As illustrated in Lemma 1 the dynamic enforceability constraint is the only friction

precluding the first-best outcome, and the following monotonicity result obtains:

Lemma 2. (Monotonicity in profits) In any optimal Markovian relational contract, the principal’s

profits satisfy Π∗(L;α) < Π∗(H;α) and Π∗(θ;α) ≤ ΠFB(θ) for both θ = L,H.

16To see this, suppose that b∗(θ−1, θ;α) <
δ

1−δΠ
∗(θ;α) for some θ. The principal could then increase b(θ−1, θ;α) and

simultaneously request that the agent exert more effort. Since there is under-provision of effort that would improve
efficiency.
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4. Firm Level Implications

We start with presenting below in the subsections 4.1 and 4.2, the firm level implications of our

model (the reward-for-luck effect and morale effect) and connect them to existing strands of empirical

literature. In the subsequent section 5, we will then show aggregate implications.

4.1. Rewarding Luck

There are numerous papers (see for example Bertrand and Mullainathan (2001), Garvey and Milbourn

(2006), DeVaro et al. (2018), and Ma (2019)) documenting empirically that variables outside of the

agent’s control influence compensation. Consistent with this evidence, our next result shows that

when designing the optimal structure of bonus payments an observable and contemporaneous shock

would not be filtered out, even when the realization of the shock contains no information about

possible deviations by the agent in his choice of effort. Hence, it would appear as if employees are

partially rewarded for luck.

Proposition 2 (Rewarding Luck). For any contract enforcement level α there exists a threshold

discount factor δ̄(α) := 1−α
1−α+aFB−c(aFB)+H

such that, for all δ < δ̄(α), the optimal bonus increases in

θ: b∗ (θ−1, L;α) < b∗ (θ−1, H;α) for all θ−1 ∈ Θ.

The principal can credibly promise to pay out larger amounts when the current shock is revealed to be

favorable. This is the case because shocks are persistent. After a good realization the future prospects

of the firm are better, hence the enforceability constraint of the firm is relaxed and thus the firm can

credibly promise to pay more in such a state. Importantly, even though the size of the bonus varies

with the persistent state θ, an element outside the agent’s control or influence and with no information

content, incentives are only really provided by the expected bonus. Additionally, the bonus is still

only paid if the agent delivers on his part of the output. Thus, although luck determines the size

of the reward these rewards are still fully driven by incentive motives. Furthermore, in economic

environments with poorer contract enforcement, higher importance of future values, as measured by

higher discount rates, are needed to maintain contracting relationship.

4.2. Morale Effect

Our next main result shows that the dynamic enforcement constraint is more binding in the low

state.

Proposition 3 (Morale Effect). For any contract enforcement level α there exists a threshold discount

factor δ̄(α) ∈ (0, 1) as given in Proposition 2 such that for all 0 < δ < δ̄(α), the optimal contract

satisfies

(i) E(b∗ (L, θ;α) |θ−1 = L) < E(b∗ (H, θ;α) |θ−1 = H);
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(ii) a∗(L;α) < a∗(H;α).

There is an intuitive explanation for this result that highlights the effect of persistent productivity

during bad times. When the current state is bad, the future value of the relationship is low and the

principal can no longer credibly promise to make large payments. Thus, she can no longer motivate

the agent to exert very high effort.

Our model thus rationalizes the “low morale effect” during firm distress, once the profitability is

interpreted as a driver of financial distress. In our model, firms reduce the expected bonus payments

during difficult times, to which workers respond by exerting less effort. Thus, firms’ productivity is

further depressed due to de-moralization of the workforce.

This mechanism resonates well with multiple labor concession episodes in the domestic steel industry

during 1980s (DeAngelo and DeAngelo, 1991). DeAngelo and DeAngelo (1991) illustrates this effect

with the labor problems experienced by the US steel plants in the 1980s. This was a challenging time

for US steel producers as they faced stiff competition from more productive Japanese counterparts

coupled with a decline in global demand.

The paper by Barron et al. (2018) has a similar mechanism at play. Although the shocks in their

model are transient, their firms have different levels of leverage which generates persistence. An

increase in leverage in the previous period in their model is similar to having experienced a negative

persistent shock in our model and leads to a lower labor productivity. They use data on a large

sample of European firms to show that indeed, an increase in leverage in year t − 1 is followed by a

decrease in year t productivity. They report that one standard deviation increase in contemporary

leverage is correlated with a decrease in TFP-R equal to 9-15% of the median within firm standard

deviation.

Furthermore, we can recast our model as in Fuchs (2015) to rationalize why distressed firms are

more likely to lose, or less likely to attract workers. This is consistent with the empirical findings in

Baghai et al. (2016), and Brown and Matsa (2016). When a negative productivity shock hits the firm,

workers with high outside values would leave the company, because firms cannot promise sufficiently

high bonuses to retain them.

Remark 1. Importantly, unlike related papers (Kwon, 2016; DeVaro et al., 2018), the reward-for-luck

in our setup is distinct from the morale effect. In our setup, the morale effect necessarily leads to the

reward-for-luck effect, but not vice versa.

To understand this observation, it is important to recall that the enforceability constraint will always

be more binding when θt = L than when θt = H (see Lemma 1). When the enforceability constraint

first becomes binding it implies that the principal must promise a lower bonus when θt = L is
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realized. Absent any other adjustments to the compensation, the expected bonus would decrease and

thus effort would inefficiently decrease. To try to avoid this inefficiency, the principal can raise the

bonus conditional on θt = H being realized. If the enforceability constraint does not bind in the high

state, that means that the principal can fully offset the decrease in expected payments and thus keep

the agent at the efficient effort level regardless of the state θt−1. This is a situation in which we have

reward for luck but no morale effect. The morale effect only arises when the enforceability constraint

also starts binding for θt = H and, as a result, the expected bonus is no longer sufficient to induce

high effort. Note, that in particular, this would imply lower effort when the last period shock was

low. This follows because, due to persistence, the low state is more likely to be realized again and

thus the expected bonuses must be lower.

5. Amplification and Aggregate Implications

We are now ready to focus on the main contributions of the paper which is to show that this simple

yet natural environment also has numerous implications that match well several empirical findings at

the country level.

We provide the main theoretical results first. Weaker contractual enforcement implies:

(a) aggregate shocks result in higher TFP volatilities;

(b) idiosyncratic shocks induce a larger dispersion of measured firm; productivity levels within a

country or industry.

(c) wages would be less evenly distributed within a country or industry.

We then empirically study each of these implications in turn.

5.1. Theory and Main Predictions

In this section, we study an economy populated by a unit mass of firms indexed by i ∈ [0, 1]. Firm i is

subject to some persistent shock θi,t. Let us introduce some auxiliary random variables ωi,t
iid∼ U [0, 1]

for each i ∈ [0, 1] and t ∈ {0, 1, 2, ...} and consider two possible stochastic structures regarding the

evolution of θi,t:

Assumption 1 (Pure aggregate volatility without idiosyncratic volatility).

1. ∀t, θi,t = θj,t = θ1,t;

2. ∀t ≥ 1, θ1,t = (H − L)× [1({ω1,t ≤ λ, θ1,t−1 = H}) + 1({ω1,t ≤ 1− λ, θ1,t−1 = L})] + L;

3. θ1,0 = (H − L)1({ω1,0 ≤ 1
2
}) + L.

14



Assumption 2 (Pure idiosyncratic volatility without aggregate volatility).

1. ∀t ≥ 1, θi,t = (H − L)× [1({ωi,t ≤ λ, θi,t−1 = H}) + 1({ωi,t ≤ 1− λ, θi,t−1 = L})] + L;

2. θi,0 = (H − L)1({ω1,0 ≤ 1
2
}) + L.

For tractability, we specialize on the quadratic cost of effort function c(x) = 1
2
cx2.

We use the optimal relational contracting problem in (1) for each firm i and determine the optimal

effort and the bonus scheme a∗(θi,t−1;α) and b∗(θi,t−1, θi,t;α). respectively. Using the optimal contract

we denote by I∗(θi,t−1;α) the agent’s expected compensation. By an argument similar to the one used

in Proposition 3, the agent breaks even every period. Hence, the agent’s expected compensation

I∗(θi,t−1;α) is equal to the cost of effort c(a∗(θi,t−1;α)).

Theorem 1 is the main result of our paper. It shows that weak contractual enforcement amplifies the

volatility of outputs and the degree of wage inequality, mainly because weak institutions constrain

the value promises the principal credibly makes.

Theorem 1.

(a) Under Assumption 1, aggregate volatility
E(

∫ 1
0 yi,tdi|

∫ 1
0 θi,t−1di=H)

E(
∫ 1
0 yi,tdi|

∫ 1
0 θi,t−1di=L)

decreases in α.

(b) Under Assumption 2, dispersion in firm-level productivity
E(yi,t|θi,t−1=H)

E(yj,t|θj,t−1=L)
decreases in α.

(c) Under Assumption 2, wage inequality
I∗(θi,t−1=H;α)

I∗(θj,t−1=L;α)
decreases in α.

To illustrate the intuition behind the parts (a) and (b) of Theorem 1, for simplicity consider two

extremes: (1) α = 1, which corresponds to formal contracting which would arguably be as in the

US and (2) α = 0, which corresponds to self-enforcing contracting arguably in India or China. Since

dynamic enforceability conditions do not bind in an environment with formal contracting, the optimal

effort recommendation in such an environment is always constant at the first-best level a∗(L; 1) =

a∗(H; 1) = aFB. Hence, the volatility of US aggregate outputs is given by that of the exogenous

component in aggregate productivity shocks. Furthermore, the productivity gap between two US

firms is equal to the difference in idiosyncratic productivity shocks. By contrast, when business

relationships are governed via self-enforcing contracts, the effort level increases in the past profitability

shock due to the morale effect (Proposition 3 and the part (E-1) of Lemma 1). As a result, the dynamic

enforceability generates a multiplier effect and makes the aggregate output a∗(θ−1;α)+E(θ|θ−1) more

volatile. Also, in India or China, the morale effect would further amplify the idiosyncratic productivity

shocks, which leads to a wider dispersion in TFP’s between two firms in the same country.

The intuition behind part (c) of Theorem 1 is also similar. The agent’s expected compensation
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I∗(θi,t−1;α) is equal to his cost of effort c(a
∗(θi,t−1;α)). The effort, and hence expected compensations,

stays the same when α = 1, whereas it increases in the past profitability shock θi,t−1 when α = 0.

Hence, the expected compensation becomes more dispersed when α = 0. Hence, wages in India and

China would be less evenly distributed to those in more developed countries.

Remark 2. An alternative way to obtain the amplification at the aggregate level is to assume that

a proportion α ∈ [0, 1] of firms rely on the formal court of law and thus can fully enforce their

commitments, while the rest rely on relational contracts with no recovery. Then, as above, the

volatility of outputs as measured by
E(

∫ 1
0 yi,tdi|

∫ 1
0 θi,t−1di=H)

E(
∫ 1
0 yi,tdi|

∫ 1
0 θi,t−1di=L)

decreases in α.

5.2. Empirical Evidence

To show that the predictions from Theorem 1 are consistent with the data, we need to proxy for the

quality of legal enforcement α. There are several well-established indicators to measure the strength

of contracting institutions at the country level. In particular, we use the ‘Rule of Law’ indicators from

the Worldwide Governance Index (Kaufmann et al., 2011) in the results presented below. The Rule

of Law variable measures the agents’ confidence in contract enforceability, property rights, police,

courts and the protection from crime and violence and has been used in the literature on incomplete

contracting (Antràs and Yeaple, 2014; Nunn, 2007) as a proxy variable for the quality of contractual

enforcement at the country level.

A potential concern is that the Rule of Law measure also includes confidence in police and protection

from crime and violence, which do not have a clear connection with our theoretical model.17 We

address this issue in two ways. First, we obtain the intentional homicide rate per 100,000 people in a

country from theWorld Bank’s World Development Indicators (WDI) database in order to proxy for its

overall crime rate and use it as a co-variate in many of our regressions. In addition, we also conduct

robustness checks with an alternative “Rule of Law” variable from IHS Markit World Economic

Service, which is available from 1996 to 2013. Despite similarity in names, this variable is only based

on the level of risk associated with expropriation and contract alteration by the state and failure to

enforce contracts between private entities. Hence, it measures the quality of contractual enforcement

in both private and public sectors. Since the principal in our model may also be interpreted as the

state and the agent as a private entity (e.g., a government procurement contractor), we believe that

this measure captures the spirit of our model well. As illustrated in later sections, our results remain

robust even when the crime rate is controlled for, and also when the alternative measure is used.

While, as we show below, our empirical analyses are consistent with our model, we are aware that there

may be other factors at play. Unfortunately, it is difficult to entirely rule out alternative explanations.

17We thank the referee for bringing up this point.
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Indeed, literature discusses other channels through which rule of law affects economic outcomes at

the macroeconomic level (Haggard and Tiede, 2011). While we address some of these endogeneity

concerns in subsections 5.2.1 and 5.2.3 by adopting the instrumental variable pioneered by Acemoglu

et al. (2001), we were not able to use a similar identification strategy in subsection 5.2.2 because there

is no overlap between Acemoglu et al. (2001)’s and databases. We are hopeful that future research

can utilize more granular datasets to overcome these challenges.18

Furthermore, since we consider stationary environments in our model, one can be naturally concerned

about the set of countries used for the empirical analysis, including non-stationary countries. To

address this concern, we re-conduct our empirical analyses after excluding low-income countries (as

defined by the World Bank) from the sample. Our results are qualitatively similar in the restricted

sample.

5.2.1. Aggregate TFP Volatility and Rule of Law

The first part of our main theoretical result, the part (a) of Theorem 1, implies that aggregate

productivity shocks can be further amplified in poor legal environments, resulting in higher aggregate

TFP volatility. To test this implication, we use the latest version of the Penn World Table (PWT

10.0) to obtain aggregate TFP growth rates and merge it with WGI, WDI, and Acemoglu et al.

(2001)’s databases. After these procedures, we obtain a sample consisting of 108 countries from 1996

to 2018. Based on this sample, we measure a country’s TFP volatility as the standard deviation of

its annual TFP growth rates.

Table 1 reports our summary statistics. The “world” column is for the sample obtained above,

whereas the “base” column is for the base sample à la Acemoglu et al. (2001), which contains 44

former European colonies with non-missing values of the European settler mortality rate, homicide

rate, and TFP volatility. We use the “world” sample in our OLS regressions, and the “base” sample

in our IV regressions. Despite differences in data construction procedures, these statistics are quite

comparable to those in Acemoglu et al. (2001)’s Table 1. In Table 7 of the Internet Appendix, we

also show that Acemoglu et al. (2001)’s results hold in our samples as well.

We first estimate:

V OLc = α + βOLSAV G RLc + Controls+ ϵc, (2)

where V OLc denotes country c’s TFP volatility and AV G RLc country c’s Average Rule of Law

variable. Our co-variates include the absolute values of latitudes (divided by 100), continent fixed

effects,19 and average homicide rates over the sample period.

18Ponticelli and Alencar (2016) show a promising avenue toward this direction. They use Brazilian census-level data,
together with court congestion data, to establish the effect of improved legal enforcement on economic outcomes.

19In continent fixed effect specifications, Acemoglu et al. (2001) also use the “Other continent dummy” variable,
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Table 1: Summary Statistics for Volatility Sample

Variable World Base By Quartiles of Mortality
(1) (2) (3) (4)

SD of TFP Growth Rates (in Percentage Points) 3.058 2.772 1.896 2.533 2.64 4.315
(2.474) (1.909)

Log GDP Per Capita (PPP) in 1995 8.335 8.092 8.826 8.435 7.847 7.254
( 1.105) (1.046)

Average Rule of Law (WGI) -.032 -.255 .653 -.437 -.446 -.747
(.982) (.871)

Average Rule of Law (IHS) .582 .521 .708 .482 .476 .430
(.217) (.192)

Average Protection Against Expropriation Risk 7.155 6.594 7.829 6.451 6.127 5.997
(1.758) (1.42)

Average Homicide Rate 7.873 12.494 6.209 21.232 12.158 6.987
(11.59) (15.637)

Constraints On Executives in 1900 1.918 2.293 3.923 3.059 1.154 1
(1.872) (2.136)

Constraints On Executives in 1990 3.573 3.431 4.846 2.529 3.385 3.267
(2.409) (2.414)

Democracy in 1900 1.222 1.702 4.154 2.5 .231 0
(2.655) (3.041)

European Settlers 1900 31.355 16.58 29.464 27.059 9.35 .5
(42.56) (25.847)

Log European Settler Mortality 1900 n.a. 4.63 3.09 4.287 4.824 6.271
(1.269)

Number of Observations 108 44
The “world” column is for the sample used in the OLS regressions. The “base” column is for the sample used in the

IV regressions, which consists of former European colonies with non-missing values of European settler mortality

rates. Data sources are described at the beginning of 5.2 and 5.2.1. Standard deviations are in parentheses.

We report the OLS results in Panel A of Table 2 and graphically illustrate the baseline regression

result in Panel (a) of Figure 2 as well. As predicted by our model, the more a country relies on formal

contracts (i.e., the better the legal environment is) the lower the TFP volatility it has experienced

over the sample period. In particular, the baseline regression without any control variable shows that

one standard deviation increase in the Average Rule of Law is associated with a 1.166 percentage

point decrease in TFP volatility. Given that the volatility of TFP growth rates averages around 3.058

percentage points in our world sample, we believe that the quality of contractual enforcement has a

quantitatively significant effect on TFP volatility.

which takes the value of 1 when the country is either Australia, Fiji, New Zealand, or Malta, and takes the value of 0
otherwise. Since we believe that this particular set of countries is somewhat arbitrary, we deviate from their approach
and exclude this dummy variable in our fixed effect specifications.
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Table 2: Volatility Results

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -1.188*** -1.284*** -1.125*** -1.191*** -1.395*** -1.397***
(0.300) (0.342) (0.319) (0.354) (0.409) (0.420)

Average Homicide -0.021 -0.011 -0.001
(0.019) (0.019) (0.018)

Latitude 3.012* 3.004*
(1.562) (1.560)

Continent FE No No Yes Yes Yes Yes
Observations 108 108 108 108 108 108
R2 0.232 0.239 0.252 0.254 0.285 0.285

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -0.973** -1.023** -1.131*** -1.232** -1.450** -1.490**
(0.469) (0.517) (0.385) (0.484) (0.655) (0.681)

Average Homicide -0.016 -0.017 -0.018
(0.027) (0.026) (0.026)

Latitude 2.399 1.897
(2.875) (2.484)

Continent FE No No Yes Yes Yes Yes
Observations 44 44 44 44 44 44
Anderson-Rubin statistics 4.20** 3.59* 7.57** 5.47** 5.04** 4.41**

Panel C: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.637*** -0.601*** -0.633*** -0.557*** -0.429*** -0.414***
(0.095) (0.096) (0.114) (0.101) (0.130) (0.133)

Average Homicide -0.018*** -0.0200*** -0.016**
(0.006) (0.007) (0.006)

Latitude 2.417*** 1.888**
(0.794) (0.857)

Continent FE No No Yes Yes Yes Yes
Observations 44 44 44 44 44 44
R2 0.562 0.638 0.568 0.645 0.643 0.687
F-statistics 45.17*** 39.07*** 30.85*** 30.45*** 10.85*** 9.66***

Panel A reports OLS coefficients of equation (2). Panel B and Panel C report IV and first-stage estimates

(respectively) of equations (3). Data sources are described in section 5.2 and 5.2.1. Standard deviations are multiplied

by 100, so that coefficients can be interpreted in percentage terms. Robust Standard errors are in parentheses.

Asterisks *, **, and *** denote statistical significance at 10%, 5%, and 1%, respectively.
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This, of course, is just a correlation. It is well documented in existing literature (Aguiar and Gopinath,

2007; Koren and Tenreyro, 2007) that developing countries’ outputs are more volatile. Since contracts

are more difficult to enforce in poor countries, even when controlling for continent fixed effects, climate,

and crime rates, the OLS approach in Panel A of Table 2 cannot tease out the effects of contractual

enforcement from other determinants of a country’s TFP volatility.

In order to mitigate the endogeneity concern, we exploit exogenous variations in early European

settler’s (log) mortality rates Sc from Acemoglu et al. (2001). Specifically, we estimate the following

instrumental variable and first-stage regressions in our base sample:

V OLc = α + βIVAV G RLc + Controls+ ϵc,

AV G RLc = µ+ γFSSc + Controls+ ηc,
(3)

where we use the same set of control variables as in the OLS analogues (2).

Panel B of Table 2 shows our IV regression results. In particular, our baseline IV regression without

any control variable shows that one standard deviation increase in the Average Rule of Law measure

is associated with roughly a .847 percentage point decrease in TFP volatility. Other IV estimates

are also quite comparable to the results from OLS regressions. In untabulated regressions, we also

find that Durbin-Wu-Hausman F-tests fail to reject the null hypotheses that the IV estimates are

significantly different from the OLS estimates. These results suggest that endogeneity bias may not

be as severe as it seems at first.

Also, we report our first-stage results in Panel C of Table 2. Consistent with prior findings from the

literature on weak instruments (Chernozhukov and Hansen, 2005, 2008), we also find that the first-

stage F-statistics based on Acemoglu et al. (2001)’s IV sometimes fall short of Stock and Yogo (2005)’s

suggested threshold of 10 and the strength of our instrumental variable depends on the specification.

To address the concern that the instrument may be too weak, we follow the recommendations from this

literature and report the Anderson-Rubin statistics (Anderson and Rubin, 1949) in Panel B of Table

2. The evidence suggests that the effect of contractual enforcement remains significant (albeit to a

statistically lesser extent) even when the strength of the instrument is taken into consideration.

We also graphically illustrate the reduced-form and first-stage relationships in Panel (b) and (c) of

Figure 2. From these figures, the reader may be concerned that our results may be driven by a few

outliers. In untabulated regressions, we also conduct empirical analyses without outlier countries

whose TFP volatility exceeds 10 and find qualitatively similar results.

In the Internet Appendix, we also conduct additional robustness checks to further validate our results.

First, we use the alternative measure from IHS and report the results in Table 10. Second, we drop

low-income countries from the sample and re-conduct the empirical analyses in Table 11 and 12.
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Figure 2: OLS, IV, First-Stage Relationships for TFP Volatility

(a) (b) (c)

Panel (a) illustrates the OLS relationship between TFP volatility (on the y-axis) and the Average Rule of
Law measure (on the x-axis). Panel (b) shows the reduced-form relationship between TFP volatility (on the
y-axis) and the settler mortality rates (on the x-axis). Panel (c) shows the first-stage relationship between
the Average Rule of Law measure (on the y-axis) and settler mortality rates (on the x-axis). In each panel,
we also show the line of best fit in red.

These robustness checks yield qualitatively similar results.

5.2.2. TFP Dispersion and Rule of Law

In the presence of idiosyncratic shocks, the same mechanism has implications for the cross-sectional

distribution for firm-level TFP’s. Namely, the amplification effect implies that firms in countries

with poor contract enforcement have a larger dispersion of TFP’s at any given point in time as well.

The comparison between the findings by Syverson (2004) for the US and Hsieh and Klenow (2009)

for India and China are clearly in line with our predictions. While, for the US, there is a twofold

difference in productivity between the 10th and 90th percentile firm, in China and India there is a

fivefold difference.

To obtain firm-level TFP estimates, we download firm-level financial statements from the ORBIS

database through the WRDS platform. We closely follow Gopinath et al. (2017)’s data construc-

tion procedure and use the STATA code prodest (Manjón and Mañez, 2016) to apply Ackerberg

et al. (2015)’s methodology to estimate firm-level TFPs. We refer the interested readers to our data

appendix for a more detailed account.

Based on these procedures, we obtain 4, 786, 856 firm-level TFP’s. For each country c and year t, we

compute TFP9010c,t as the TFP difference (in the logarithmic scale) between the firm with the top

10% productivity and the bottom 10% firm in a country c and retain only a single observation per one

country-year. Then, we merge the data with the WGI and WDI databases, and require a country-

year to have non-missing values of homicide rates and the rule of law measure, so that regression

coefficients can be interpreted as between-estimates. Our final sample consists of 26 countries and

spans from 1996 to 2016. We report the summary statistics for this sample in Table 3. In Table 8 of

the Internet Appendix, we also find that Acemoglu et al. (2001)’s original OLS results hold in this
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sample.

Table 3: Summary Statistics for TFP Dispersion Sample

Variable Mean S.D.
Average TFP Dispersion 1.194 .463
Log GDP Per Capita (PPP) in 1995 9.294 .75
Average Rule of Law (WGI) .973 .774
Average Rule of Law (IHS) .793 .162
Average Protection Against Expropriation Risk 9.38 .607
Average Homicide Rate 1.793 1.58
Log European Settler Mortality 1900 92 27.689

Number of Observations 26

Average TFP Dispersion is a country’s average level of TFP dispersion.

We are interested in estimating:

TFP9010c = α + βOLSAV G RLc + Controlc + ϵc, (4)

where TFP9010c denotes the average level of the (logged) TFP difference TFP9010c,t, and AV G RLc

the average rule of law of country c. Since countries in our sample belong either to Asia or Europe,

we only use a dummy variable “Europe” instead of continent-fixed effects. Other co-variates include

the average level of a country’s homicide rates and the absolute value of its latitude (divided by

100).

We report our regression coefficients in Table 4. The basic OLS relationship without any control

variable is also graphically illustrated in Figure 3. Our results show that the relationship implied by

the part (b) of Theorem 1 is indeed consistent with what can be observed in the data. In particular, we

find that one standard deviation increase in the Average Rule of Law would decrease the productivity

gap between the top 10% most productive firm and the bottom 10% firm by 0.407 in a logarithm

scale. This translates into a reduction in the productivity gap by 33.4%.

As in the previous analysis on TFP volatility, we conduct various robustness checks in Table 13. First,

we report the results based on the IHS measure in Panel A. Second, in Panel B and C, we exclude

low-income countries from the sample and repeat the empirical analyses. These robustness checks

yield qualitatively similar outcomes.

We could not conduct IV regressions in this subsection because there are zero overlaps between

countries in the ORBIS database and those in Acemoglu et al. (2001)’s data set. In the ORBIS

universe, only European countries and a small group of Asian countries contain financial statement

information required to estimate firm-level TFP’s, but none of these countries are former European

colonies. We are hopeful that future research can utilize higher-quality datasets to overcome this
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issue.

Table 4: TFP Dispersion OLS Results

(1) (2) (3) (4) (5) (6)

Average Rule of Law -0.527*** -0.511*** -0.534*** -0.508*** -0.583*** -0.577***
(0.0530) (0.0510) (0.0542) (0.0552) (0.0543) (0.0727)

Average Homicide 0.018 0.0303 0.004
(0.026) (0.023) (0.030)

Europe -0.288 -0.321 -0.442 -0.438
(0.307) (0.316) (0.331) (0.339)

Latitude 1.001** 0.948
(0.421) (0.565)

Constant 1.706*** 1.660*** 1.979*** 1.930*** 1.630*** 1.642***
(0.0714) (0.105) (0.311) (0.320) (0.357) (0.373)

Observations 26 26 26 26 26 26
R2 0.776 0.779 0.804 0.812 0.823 0.823

In all regressions, the outcome variable is a country’s average level of TFP dispersion. Robust Standard errors are in

parentheses. Asterisks *, **, and *** denote statistical significance at 10%, 5%, and 1%, respectively.

Figure 3: Rule of Law and Average TFP Dispersion

Figure 3 illustrates the OLS relationship between log-TFP differences between the firm with the top 10% productivity

and the bottom 10% firm (on the y-axis) and the Average Rule of Law measure (on the x-axis) for 26 sample

countries. Above the plot is the line of best fit in red.

5.2.3. Wage Inequality and Rule of Law

In the last part of our empirical analyses, we relate the amplification mechanism to pay inequality.

To proxy for wage inequality, we use the (logged) Theil index for industrial wage-inequality from

the UTIP-UNIDO database (Galbraith et al., 2014).20 After merging the database with WDI, WGI,

20To the best of our knowledge, other popular inequality indices (e.g., Gini indices) are only available for total income,
but not for labor income. Since we believe our model is more relevant for labor income, we use Theil indices from the
UTIP-UNIDO database.
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and Acemoglu et al. (2001)’s databases, we only retain observations with non-missing values of the

Theil indices, Rule of Law, and homicide rates so that we can use between-estimators in our empirical

analyses. The sample period is between 1996 and 2015. The summary statistics for this sample are

reported in Table 5. In Table 9 of the Internet Appendix, we also replicate Acemoglu et al. (2001)’s

main results in this sample and find similar results.

Table 5: Summary Statistics (Inequality Sample)

Variable World Base By Quartiles of Mortality
(1) (2) (3) (4)

Average Pay Inequality -3.126 -2.921 -3.581 -2.749 -2.749 -2.605
(.896) (.732)

Log GDP Per Capita (PPP) in 1995 8.645 8.467 9.696 8.197 8.464 7.658
(1.051) (1.051)

Average Rule of Law (WGI) .247 .041 1.344 -.395 -.222 -.466
(.982) (.871)

Average Rule of Law (IHS) .648 .595 .841 .528 .529 .446
(.982) (.871)

Average Protection Against Expropriation Risk 7.765 7.097 8.697 6.635 6.568 6.449
(1.529) (1.338)

Average Homicide Rate 7.324 12.791 5.859 12.964 34.109 9.979
(13.584) (20.109)

Constraints On Executives in 1900 2.333 2.765 4.714 2.714 3.5 1
(2.216) (2.4)

Constraints On Executives in 1990 3.778 3.588 6.429 2.286 2 4.111
(2.619) (2.583)

Democracy in 1900 1.841 2.583 6 1.786 4 0
(3.256) (3.596)

European Settlers 1900 42.119 23.097 50.938 19.857 15.25 6.878
(46.17) (30.866)

Log European Settler Mortality 1900 n.a. 4.027 2.64 4.102 4.358 5.152
(.963)

Number of Observations 99 36
The “world” column is for the sample used in the OLS regressions. The “base” column is for the sample used in the

IV regressions, which consists of former European colonies with non-missing values of European settler mortality

rates. “Average Pay inequality” is a country’s average level of the (logged) Theil indices. Other data sources are

described at the beginning of 5.2 and 5.2.1. Standard deviations are in parentheses.

We first estimate:

AV G Log Theilc = α + βOLSAV G RLc + Controlc + ϵc,

where AV G Log Theilc denotes the average level of our wage inequality measure (i.e., logged Theil

index) for country c. We also use the same set of control variables as previous analyses.
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Table 6: Wage Inequality Results

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -0.499*** -0.493*** -0.391*** -0.359*** -0.311*** -0.299***
(0.0770) (0.0829) (0.0864) (0.0975) (0.0924) (0.0988)

Average Homicide 0.001 0.005 0.003
(0.004) (0.004) (0.004)

Latitude -1.032** -0.989**
(0.468) (0.485)

Continent FE No No Yes Yes Yes Yes
Observations 99 99 99 99 99 99
R2 0.299 0.300 0.369 0.375 0.403 0.404

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -0.504*** -0.521*** -0.465*** -0.495*** -0.490** -0.499**
(0.113) (0.122) (0.129) (0.145) (0.194) (0.201)

Average Homicide -0.004 -0.006 -0.006
(0.00375) (0.005) (0.005)

Latitude 0.188 0.0286
(0.937) (0.918)

Continent FE No No Yes Yes Yes Yes
Observations 36 36 36 36 36 36
Anderson-Rubin statistics 16.44*** 15.36*** 12.08*** 11.00*** 8.33*** 8.30***

Panel C: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.727*** -0.696*** -0.707*** -0.657*** -0.608*** -0.596***
(0.100) (0.0904) (0.111) (0.0930) (0.145) (0.133)

Average Homicide -0.011*** -0.014*** -0.013**
(0.004) (0.005) (0.005)

Latitude 1.056 0.688
(0.888) (0.907)

Continent FE No No Yes Yes Yes Yes
Observations 36 36 36 36 36 36
R2 0.584 0.638 0.591 0.666 0.612 0.675
F-statistics 52.62*** 59.20*** 40.75*** 49.91*** 17.62*** 20.13***

Panel A reports OLS coefficients of equation (2). Panel B and Panel C report IV and first-stage estimates

(respectively) of the sytem of equations (3). The outcome variable in Panel A and Panel B is “Average Pay

inequality,” which can be obtained from the UT-UNIDO database. Other data sources are described in section 5.2

and 5.2.1. Robust Standard errors are in parentheses. Asterisks *, **, and *** denote statistical significance at 10%,

5%, and 1%, respectively.
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Figure 4: OLS, Reduced-Form, and First-Stage Relationships for Wage Inequality

(a) (b) (c)

Panel (a) shows the OLS relationship between wage inequality (on the y-axis) and Average Rule of Law (on the

x-axis). Panel (b) shows the reduced-form relationship between the standard deviations of country-level TFP growth

rates (on the y-axis) and the logged morality rates of early European settlers (on the x-axis). Panel (c) shows the

first-stage relationship between the Average Rule of Law measure (on the y-axis) and the mortality rates (on the

x-axis). In each panel, we also show the line of best fit in red.

We report the OLS estimates in Panel A of Table 6 and also graphically illustrate the OLS relationship

in Panel (a) of Figure 4. We find that the relationship implied by the part (c) of Theorem 1 is indeed

consistent with the data: countries with better contract enforcement have, on average, less dispersed

wages than those with weaker contract enforcement. One standard deviation increase in the average

rule of law is predicted to decrease the average level of the wage inequality measure by 0.49. We

believe that this is quantitatively large, given that the standard deviation of the wage inequality

measure is about 0.896. Furthermore, the R-squared value suggests that variations in the average

rule of law would account for 29.9% of variations in country-level dispersion in wage inequality.

As in subsection 5.2.1, we adopt Acemoglu et al. (2001)’s instrumental variable approach and estimate:

V OLc = α + βIVAV G RLc + Controls+ ϵc,

AV G RLc = µ+ γFSSc + Controls+ ηc,
(5)

where we use the same set of control variables as in previous analyses.

We report the IV estimates in Panel B of Table 6 and the first-stage estimates in Panel C of Table 6.

Also, we show the reduced-form and first-stage relationships graphically in Figure 4. The IV estimates

are quite comparable to the OLS estimates, and the first-stage statistics suggest that the inclusion

restriction is likely to be satisfied.

As in previous empirical analyses, we report the results of various robustness checks in the Internet

Appendix. First, we use the IHS measure and repeat the empirical analyses in Table 14. Second, we

report the results after excluding low-income countries in Table 15 and Table 16. These robustness
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checks yield qualitatively similar outcomes.

6. Conclusion

We have presented a parsimonious model combining two very natural premises: limited enforcement

and persistent productivity. Despite its simplicity, time-varying limits to contract enforceability

generate a rich set of testable implications both at the micro and macro levels. The empirical findings

(both by others and our own) are consistent with our model. In particular, we provided a new set of

empirical results showing that cross country differences in contract enforceability can have important

implications for aggregate TFP volatility, cross-sectional dispersion in firm-level TFP’s and wage

inequality.
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Internet Appendix

Appendix for Proofs

Proof of Proposition 1. Throughout we fix a given level of contract enforcement α. We prove this

proposition in four steps.

Step 1: In the contracting game, the set of value in the Pareto frontier of Perfect Public Equilibrium

(PPE) satisfies: any pair of values v1, v2 promised to the agent satisfy v1+Π∗(v1, θ−1) = v2+Π∗(v2, θ−1)

for each θ−1 ∈ Θ.

Suppose, to the contrary, that there exists a pair v1, v2 and a state θ−1 such that v1 + Π∗(v1, θ−1) <

v2 +Π∗(v2, θ−1). Let (a
∗, w∗, b∗, v′∗) be an optimal contract that yields value v1 to the agent. We will

construct a contract (ã, w̃, b̃, ṽ′) when v = v1 that strictly improves upon the contract (a∗, w∗, b∗, v′∗),

contradicting the optimality of the latter.

We start with defining a contract (ã, w̃, b̃, ṽ′) when v = v1 by:

ã(v1, θ−1) = a∗(v2, θ−1), w̃(v1, θ−1) := w∗(v2, θ−1) +
v1 − v2
1− δ

,

b̃(y, θ, θ−1, v1) := b∗(y, θ, θ−1, v2), ṽ′(y, θ, θ−1, v1) := v′∗(y, θ, θ−1, v2).
(6)

The contract defined here replicates the allocation in the contract (a∗, w∗, b∗, v′∗) when v = v2 while
it ensures to the agent a value at least v = v1. This follows because shifting the compensation scheme
by a constant simply redistributes the values between the parties. To see this rigorously:

E
[
(1− δ)

(
w̃(v1, θ−1)︸ ︷︷ ︸

=w(v2,θ−1)+
v1−v2
1−δ

+b̃(y, θ, θ−1, v1)− c
(
ã(v1, θ−1)

))
+ δṽ′(y, θ, θ−1, v1)| ã(v1, θ−1)︸ ︷︷ ︸

=a∗(v2,θ−1)

, θ−1

]

= (v1 − v2)+E
[
(1− δ) (w∗(v2, θ−1) + b∗(y, θ, θ−1, v2)− c (a∗(v2, θ−1))) + δv′∗(y, θ, θ−1, v2)|a∗(v2, θ−1), θ−1

]
︸ ︷︷ ︸

=v2

= v1.

Moreover, by the appropriate shift in the fixed wage so chosen, the principal’s continuation profits

Π̃(ṽ′(y, θ, θ−1, v1), θ) from the contract (ã, w̃, b̃, ṽ′) are equal to Π∗(v′∗(y, θ, θ−1, v2), θ) for all y, θ.

Now, the contract (ã, w̃, b̃, ṽ′) satisfies [DEP]’, because substituting b∗ with b̃ and Π∗ with Π̃ implies:

δΠ̃(ṽ′(y, θ−1, θ, v1), θ) = δΠ∗(v′∗(y, θ−1, θ, v2), θ) ≥ (1− δ)(1− α)b∗(y, θ−1, θ, v2)︸ ︷︷ ︸
[DEP ]′ when v=v2

= (1−δ)(1−α)̃b(y, θ−1, θ, v1).

Similarly, it is easy to check that [PCP], and [PCA] are also satisfied. [IC] is also satisfied, because the
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change only in the base wage from w̃(v1, θ−1) to w∗(v2, θ−1) does not affect the agent’s effort choice.

Hence, the contract (ã, w̃, b̃, ṽ′) satisfies all constraints and yields the following profit for the principal:

E
[
(1− δ)

(
π − w̃(v1, θ−1)− b̃ (y, θ−1, θ, v1)

)
+ δΠ̃ (ṽ′ (y, θ−1, θ, v1) , θ) |ã(v1, θ−1), θ−1

]
= (v2 − v1)+E [(1− δ) (π − w∗(v2, θ−1)− b∗ (y, θ−1, θ, v2)) + δΠ∗ (v′∗ (y, θ−1, θ, v2) , θ) |a∗(v2, θ−1), θ−1]︸ ︷︷ ︸

=Π∗(v2,θ−1)

.

Here the equality follows by the construction of (ã, w̃, b̃, ṽ′) in (6), which implements ã(v1, θ−1) =

a∗(v2, θ−1). The last equation implies that the alternative contract (ã, w̃, b̃, ṽ′) yields v2 − v1 +

Π∗(v2, θ−1) for the principal. By the initial hypothesis that v1 + Π∗(v1, θ−1) < v2 + Π∗(v2, θ−1),

the alternative contract (which may not be optimal) strictly improves upon the principal’s profit

Π∗(v1, θ−1) under the optimal contract (a∗, w∗, b∗, v′∗) that ensures to the agent payoff at least v1.

This contradicts the optimality of the latter contract.

Step 2: It is without loss of generality to consider v′∗ = 0 in any optimal contract.

Given any optimal contract that ensures a non-negative continuation value to the agent, we construct

an alternative contract that delivers zero continuation value to the agent and yields the principal

the same payoff. For any quadruple (y, θ, θ−1, v), define the compensation scheme (ŵ, b̂, v̂′) from an

optimal contract yielding value v to the agent as follows:

ŵ(v, θ−1) := w∗(v, θ−1), b̂(y, θ, θ−1, v) := b∗(y, θ, θ−1, v) +
δ

1− δ
v′∗(y, θ, θ−1, v), v̂′ = 0.

Since v′∗, b∗ ∈ R+, b̂ = b∗ + δ
1−δ

v′∗ ∈ R+ as well. Moreover, the compensation scheme (ŵ, b̂, v̂′) yields

the continuation profit of Π∗(0, θ) for the principal.

Here the equality v̂′ = 0 follows because the difference is absorbed (after appropriately accounting

for discounting) in bonus payments, so it does not affect incentives. To see this, (1 − δ)̂b + δv̂′ =

(1− δ)b∗ + δv∗ by definition. Hence, the maximand in [IC] is:

E
[
(1− δ)

(
ŵ + b̂− c (ã)

)
+ δv̂′|ã, θ−1

]
= E [(1− δ) (w∗ + b∗ − c (ã)) + δv′∗|ã, θ−1] .

Since the agent faces the same optimization problem under both (ŵ, b̂, v̂) and (w∗, b∗, v∗), the effort

recommendation â under (ŵ, b̂, v̂) would coincide with the effort recommendation a∗ under (w∗, b∗, v∗).

By Step 1, Π∗(v̂′, θ) + v̂′ = Π∗(v′∗, θ) + v′∗. Together with (1 − δ)̂b + δv̂′ = (1 − δ)b∗ + δv∗, we can
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check whether (â, ŵ, b̂, v̂) satisfies [DEP]’ using this fact:

δΠ∗(v̂′, θ) = δ(v′∗ − v̂′) + δΠ(v′∗, θ) ≥ (1− δ) (1− α)b∗ (y, θ−1, θ, v)︸ ︷︷ ︸
[DEP ]′ for (w∗,b∗,v∗)

+ δ(v′∗ − v̂′) = (1− δ) (1− α)̂b (y, θ−1, θ, v)︸ ︷︷ ︸
(1−δ)̂b+δv̂′=(1−δ)b∗+δv∗

.

Other constraints can be verified in a similar manner. Moreover, the principal’s profit under (â, ŵ, b̂, v̂)

is:

E
[
(1− δ) (π − ŵ(v, θ−1)− b̂ (y, θ−1, θ, v)︸ ︷︷ ︸

(1−δ)̂b=(1−δ)b∗+δv∗

) + δΠ∗(v̂′ (y, θ−1, θ, v)︸ ︷︷ ︸
=0

, θ)| â︸︷︷︸
=a∗

, θ−1

]
=E
[
(1− δ) (π − w∗(v, θ−1)− b∗ (y, θ−1, θ, v))−δv′∗ (y, θ−1, θ, v) + δΠ∗ (0, θ)︸ ︷︷ ︸

=δΠ∗(v′∗(y,θ−1,θ,v),θ)

|a∗, θ−1

]
=E
[
(1− δ) (π − w∗(v, θ−1)− b∗ (y, θ−1, θ, v)) + δΠ∗ (v′∗ (y, θ−1, θ, v) , θ) |a∗, θ−1

]
.

Thus, the principal earns the same profit under the contract (â, ŵ, b̂, v̂) as that under (a∗, w∗, b∗, v∗).

Step 3: It is without loss of generality to consider b∗(0, θ−1, θ, v) = 0 in an optimal contract.

Given any optimal contract with a non-negative bonus to the agent upon failure, we construct an

alternative contract that delivers zero bonuses to the agent upon failure and yields the principal the

same payoff. By Step 2, we may consider any optimal contract (w∗, b∗, v′∗) such that v′∗ = 0 without

loss of generality. For any quadruple (y, θ, θ−1, v), define an alternative compensation scheme (ŵ, b̂, v̂′)

from the optimal contract as follows:

ŵ(v, θ−1) := w∗(v, θ−1) + E [b∗(0, θ−1, θ, v)|θ−1], b̂(1, θ, θ−1, v) := b∗(1, θ, θ−1, v)− b∗(0, θ, θ−1, v),

b̂′(0, θ, θ−1, v) = 0, v̂′ = 0.

One can show that b̂(1, θ, θ−1, v) ∈ R+.21 Moreover, the compensation scheme (ŵ, b̂, v̂′) yields the

continuation profit of Π∗(0, θ) for the principal.

We show that the effort recommendation â under (ŵ, b̂, v̂) would coincide with the effort recommen-

dation a∗ under (w∗, b∗, v∗). To see this, the agent’s payoff under (ŵ, b̂, v̂) becomes:

E
[(

ŵ + b̂− c (ã)
)
|ã, θ−1

]
= ã

[
b̂ (1, θ, θ−1, v)− b̂ (0, θ, θ−1, v)

]
+ ŵ (v, θ−1)− c (ã)

=ãb∗ (1, θ, θ−1, v) + (1− ã)b∗ (0, θ, θ−1, v) + w∗ (v, θ−1)− c (ã) = E [(w∗ + b∗ − c (ã)) |ã, θ−1] .

21We provide a sketch here (details are available upon request). Assume to the contrary that b∗(1, θ, θ−1, v) <
b∗(0, θ, θ−1, v) for some (θ, θ−1, v). For this (θ, θ−1, v), the agent would exert zero efforts a∗(v, θ−1) = 0. However, the
principal can strictly do better by proposing an alternative contract that recommends â(v, θ−1) = ϵ > 0 and delivers v
to the agent, which is a contradiction.
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Since the agent faces the same optimization problem under both (ŵ, b̂, v̂) and (w∗, b∗, v∗), the effort

recommendation â under (ŵ, b̂, v̂) would coincide with the effort recommendation a∗ under (w∗, b∗, v∗).

It remains to verify that the contract (â, ŵ, b̂, v̂) satisfies the dynamic enforceability constraint [DEP].

Notice that for any triplet (θ−1, θ, v):

δΠ∗( v̂′︸︷︷︸
=0

, θ) = δΠ∗( v′∗︸︷︷︸
=0

, θ) ≥︸︷︷︸
[DEP] for (w∗,b∗,v∗)

(1− δ)(1− α)b∗(1, θ−1, θ, v) ≥︸︷︷︸
b∗(0,θ−1,θ,v)≥0

(1− δ)(1− α)̂b(1, θ−1, θ, v).

Since b̂(0, θ−1, θ, v) = 0, (â, ŵ, b̂, v̂) satisfies [DEP]. Other constraints can be verified in a similar

manner. Moreover, the principal’s profit under (â, ŵ, b̂, v̂) is:

E
[
(1− δ) (π − ŵ(v, θ−1)− b̂ (y, θ−1, θ, v)) + δΠ∗(v̂′ (y, θ−1, θ, v)︸ ︷︷ ︸

=0

, θ)| â︸︷︷︸
=a∗

, θ−1

]
=E
[
(1− δ) (π−w∗(v, θ−1)− b∗ (y, θ−1, θ, v)︸ ︷︷ ︸

∀ã, E[ŵ+b̂|ã,θ−1]=E[w∗+b∗|ã,θ−1]

) + δΠ∗(v′∗ (y, θ−1, θ, v)︸ ︷︷ ︸
=0

, θ)|a∗, θ−1

]
.

Thus, the principal earns the same profit under the contract (â, ŵ, b̂, v̂) as that under (a∗, w∗, b∗, v∗).

Step 4: An optimal contract such that b∗(0, θ−1, θ, v) = 0 and v′ = 0 is a Markovian contract.

Consider any optimal contract (a∗, w∗, b∗, v∗) such that b∗(0, θ−1, θ, v) = 0 and v′∗ = 0. To show that

this is a Markovian contract, we first show that the effort recommendation a∗(v, θ−1) is independent

of v. Fix any θ−1 ∈ Θ, and also fix any value to the agent v on the Pareto frontier.

Π∗(v, θ−1) =E
[
(1− δ) (π −w∗(v, θ−1)− b∗ (y, θ−1, θ, v)︸ ︷︷ ︸

v=(1−δ)(E[w∗+b∗|a∗,θ−1]−c(a∗)) by [PK]

) + δΠ∗(v′∗ (y, θ−1, θ, v)︸ ︷︷ ︸
=0

, θ)|a∗, θ−1

]
=E
[
(1− δ) (π − c(a∗(v, θ−1)) + δΠ∗(0, θ)|a∗, θ−1

]
− v.

Moving v and δE
[
Π∗(0, θ)|a∗, θ−1

]
to the left hand side, we have:

Π∗(v, θ−1) + v︸ ︷︷ ︸
=Π∗(0,θ−1) by Step 1

−δE
[
Π∗(0, θ)|a∗, θ−1

]
= E

[
(1− δ) (π − c(a∗(v, θ−1))|a∗, θ−1

]
⇐⇒ Π∗(0, θ−1)− δE

[
Π∗(0, θ)|a∗, θ−1

]
= (1− δ) (a∗(v, θ−1)− c(a∗(v, θ−1) + E

[
θ|θ−1

]
).

Since the left hand side is independent of v, the surplus from the agent’s effort a∗(v, θ−1)−c(a∗(v, θ−1))
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must be also independent of v. From this, a∗(v, θ−1) is independent of v as well.22

Since a∗(v, θ−1) is independent of v, the bonus upon success b∗(1, θ−1, θ, v) must also be independent

of v, because the marginal cost of effort must be equal to the spread in the bonus b∗(1, θ−1, θ, v) −
b∗(0, θ−1, θ, v) using [IC]. The latter in turn is equal to b∗(1, θ−1, θ, v) as b∗(0, θ−1, θ, v) = 0. This

show that the bonus scheme b∗(0, θ−1, θ, v) = 0 is also independent of v, so the optimal contract is a

Markovian contract. This establishes the Proposition 1.

Proof of Lemma 1. As in the proof of Proposition 1], throughout this proof we fix a given level of con-

tract enforcement α. To establish the part (E-1) of Lemma 1, we first show that max{a∗(H;α), a∗(L;α)} ≤
aFB under the optimal Markovian contract {b∗, a∗,Π∗}. Suppose to the contrary that there exists a

state θ0 with a∗(θ0;α) > aFB. Now, consider an alternative bonus system b̂(θ−1, θ;α) = b∗(θ−1, θ;α)−
ϵ × 1(θ−1 = θ0) for an arbitrarily small ϵ > 0. The IC condition a(θ−1;α) = g[E(b(θ, θ−1;α)|θ−1)]

implies that the bonus scheme b̂ induces an effort â(θ0;α) that is higher than aFB but strictly less

than a∗(θ0;α). From the system of Bellman equations, the following relationship holds:[
Π(H;α)

Π(L;α)

]
=

[
γ 1− γ

1− γ γ

][
a(H;α)− c(a(H;α)) + Ĥ

a(L;α)− c(a(L;α)) + L̂

]
, (7)

where γ := δ(1−λ)+λ(1−δ)
1+δ−δλ

∈ (1
2
, 1). Since the function x − c(x) is concave, by (7), a strict increase in

a − c(a) strictly increases all of principal’s surpluses Π. We simplify the notation and denote by Π̂

the principal’s payoff from the bonus scheme b̂.

Notice that the bonus scheme b̂ is weakly smaller than the bonus scheme under the original contract,

and hence

(1− δ)(1− α)b̂(θ−1, θ;α) ≤ (1− δ)(1− α)b∗(θ−1, θ;α) ≤︸︷︷︸
DEP

δΠ∗(θ;α) < δΠ̂(θ;α).

Yet, this new contract obtains strictly higher joint payoffs in both states compared to initial optimal

contract without violating dynamic enforceability conditions, which contradicts the optimality of the

initial contract. This therefore shows that max{a∗} ≤ aFB.

Next, we show that a∗(H;α) ≥ a∗(L;α) under the optimal contract {b∗, a∗,Π∗}. Suppose to the

contrary that a∗(H;α) < a∗(L;α). Moreover, as we have showed in the previous part of the current

proof that max{a∗} ≤ aFB, it must be the case that a∗(H;α) < a∗(L;α) ≤ aFB.

22One can show that (1) the surplus a − c(a) strictly increases on [0, aFB ] where aFB = (c′)−1(1) denotes the first
best effort level and (2) a∗(v, θ−1) ∈ [0, aFB ] (the proof for (2) is almost identical to our Lemma (E-1)). Hence, there
is a one-to-one and onto mapping between the surplus a− c(a) and a in the domain of interest.
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By the incentive-compatibility condition, the expected bonus payments is equal to the marginal cost

of effort. Thus,

E(b∗(L, θ;α)|θ−1 = L) = c′(a∗(L;α)) > c′(a∗(H;α)) = E(b∗(H, θ;α)|θ−1 = H).

Here the inequality holds by the assumption that a∗(L;α) > a∗(H;α) and c′′ > 0.

Now, we construct a new payment scheme b̂ as follows:

b̂(H,H;α) = b∗(L,L;α)− 1− λ

λ

(
δ

1− δ
Π∗(L;α)− b∗(L,H;α)

)
b̂(H,L;α) =

δ

1− δ
Π∗(L;α)

b̂(L, θ;α) = b∗(L, θ;α) ∀θ ∈ Θ.

Notice that E(b̂(θ, θ−1;α)|θ−1) = E(b∗(L, θ;α)|θ−1 = L) for ∀θ−1 ∈ Θ. Denote by â the action

recommendation under the bonus scheme b̂ as â and by Π̂ the principal’s payoff the (b̂, â). Recall that

x − c(x) is concave and attains the maximum value at aFB. As the effort recommendation satisfies

â(H;α) = a∗(L;α) ≤ aFB, the contract (b̂, â) incentivizes a higher effort a(H;α) in the high state

than the original contract. By (7), this in turn implies that the principal obtains a higher payoff

from the bonus scheme b̂ than the original scheme one b. Summarizing, for any given α the following

relationships hold:

Π̂(H;α) > Π̂(L;α) > Π∗(L;α), Π̂(H;α) > Π∗(H;α).

Now, it remains to verify that dynamic enforceability constraints are satisfied under the new contract.

To see this, notice that

δΠ̂(H;α) > δΠ∗(H;α) ≥ (1− δ)(1− α)b∗(L,H;α) = (1− δ)(1− α)b̂(L,H;α)

δΠ̂(L;α) > δΠ∗(L;α) ≥ (1− δ)(1− α)b∗(L,L;α) = (1− δ)(1− α)b̂(L,L;α)

δΠ̂(L;α) > δΠ∗(L;α) = (1− δ)(1− α)b̂(H,L;α),

which follow from the definition of b̂, the system of equations at the beginning of the proof, or DEP
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of the initial optimal contract. Now,

δΠ̂(H;α) > (2− 1

λ
)δΠ∗(L;α) + (

1

λ
− 1)δΠ∗(H;α)

≥ (2− 1

λ
)δΠ∗(L) + (

1

λ
− 1)(1− δ)(1− α)b∗(L,H;α)

= δΠ∗(L;α) + (1− 1

λ
)δΠ∗(L;α) + (

1

λ
− 1)(1− δ)(1− α)b∗(L,H;α)

≥ (1− δ)(1− α)b∗(L,L;α) + (1− 1

λ
)δΠ∗(L;α) + (

1

λ
− 1)(1− δ)(1− α)b∗(L,H;α)

= (1− δ)(1− α)b̂(H,H;α),

where the first inequality follows from the observation Π̂(H;α) > max{Π∗} and 2 > 1
λ
, the second and

the third inequality from the dynamic enforceability constraints of the original contract. Finally, the

last equality follows from the definition of b̂(H,H;α). As in the first part of the proof max{a∗} ≤ aFB,

and hence the existence of such a contract {b̂, â, Π̂} contradicts the optimality of the original contract.

These two contradictions together establish the part (E-1) of Lemma 1.

We next turn to establish the part (E-2) of Lemma 1 and start with denoting g := (c′)−1 the inverse

of the marginal cost and θ̂ = E(θ+1|θ) for convenience. Suppose to the contrary. Denote {b∗, a∗,Π∗}
an optimal Markovian contract in which a∗(θ′) < g(1) = aFB with (1 − δ)b∗(θ′, θ′′) < δΠ∗(θ′′) for

some (θ′, θ′′) ∈ Θ2. Fix such θ′, θ′′ and let ϵ := 1
2
min{ δ

1−δ
Π∗(θ′′) − b∗(θ′, θ′′), 1−E(b∗(θ′,θ|θ−1=θ′))

λ
} > 0.

Consider the alternative bonus system by b̂(θ−1, θ) = b∗(θ−1, θ) + ϵ× 1((θ−1, θ) = (θ′, θ′′)). Under this

new bonus system {b̂}:

E(b̂(θ′, θ;α)|θ−1 = θ′) ≤ E(b∗(θ′, θ;α)|θ−1 = θ′) + λϵ < 1

E(b̂(θ′, θ;α)|θ−1 = θ′) ≥ E(b∗(θ′, θ;α)|θ−1 = θ′) + (1− λ)ϵ > E(b∗(θ′, θ;α)|θ−1 = θ′).

To establish the part (E-2) of Lemma 1, denote the principal’s surpluses induced from b̂ as Π̂, and

the new recommended effort levels â. From the representation in (7), Π̂(θ;α) > Π∗(θ;α) ∀θ, because
â(θ′;α)−c(â(θ′;α)) > a∗(θ′;α)−c(a∗(θ′;α)) from â∗(θ′;α) ∈ (a∗(θ′;α), aFB) and â(θ;α) ≥ a∗(θ;α) ∀θ.
Now, we arrive at a contradiction if the new contract {b̂, â, Π̂} satisfies the dynamic enforceability

condition, because the new contract strictly does better than the optimal contract. For the states

such that (θ−1, θ) ̸= (θ′, θ′′),

(1− δ)(1− α)b̂(θ−1, θ;α) = (1− δ)(1− α)b∗(θ−1, θ;α) ≤ δΠ∗(θ;α) < δΠ̂(θ;α).
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Moreover, for the state (θ−1, θ) = (θ′, θ′′),

(1− δ)(1− α)b̂(θ′, θ′′;α) = (1− δ)(1− α)[b∗(θ′, θ′′;α) + ϵ] ≤︸︷︷︸
Def’n of ϵ

1

2
[δΠ∗(θ′′;α) + (1− δ)(1− α)b∗(θ′, θ′′;α)]

≤ δΠ∗(θ′′;α) < δΠ̂(θ′′;α).

This therefore shows that the bonus scheme b̂ satisfies the dynamic enforceability conditions and hence

completes the proof.

Proof of Lemma 2. Applying the part (E-1) of Lemma 1 yields a∗(H;α)−c(a∗(H;α))+Ĥ > a∗(L;α)−
c(a∗(L;α)) + L̂. By the representation (7), this in turn implies that under the high state H both the

principal and the agent obtain higher payoffs and hence establishes Lemma 2.

Proof of Proposition 2. We start with denoting by δ̄(α) = 1−α
1−α+ΠFB(H)

so that δ̄πFB(H)

(1−δ̄)(1−α)
= 1. We next

fix any δ < δ̃. By incentive compatibility condition,

c′(a∗(H)) = E(b∗(H, θ)|θ−1 = H) ≤ δ

1− δ

ΠFB(H)

1− α
< 1,

where the second inequality holds by the dynamic enforceability condition, and the last strict inequal-

ity by δ < δ̃.

Now, due to weak monotonicity in the effort level implied by the part (E-1) of Lemma 1 and the

observation above, the optimal efforts in both states are strictly smaller the first-best effort (c′)−1(1).

This in turn implies that the bonus scheme satisfies b∗(θ−1, θ) =
δ

1−δ
Π∗(θ;α)
1−α

∀ θ−1, θ ∈ Θ by Lemma 1.

Now applying the Lemma 1 yields:

b∗(θ−1, L;α) =
δ

1− δ

Π∗(L;α)

1− α
<

δ

1− δ

Π∗(H;α)

1− α
= b∗(θ−1, H;α).

Notice that the threshold discount rate δ̄(α) := 1−α
1−α+aFB−c(aFB)+H

must be decreasing in α.

Proof of Proposition 3. For any given level α of contract enforcement, the existence of the threshold

δ̄(α) follows using the arguments analogous to those used in the proof of Proposition 2. Moreover, by

the incentive compatibility condition,

c′(a∗(H;α)) = E(b∗(H, θ;α)|H) =
δ

1− δ

E(Π∗(θ;α)|H)

1− α

>
δ

1− δ

E(Π∗(θ;α)|L)
1− α

= E(b∗(L, θ;α)|L) = c′(a∗(L;α)).

38



where the strict inequality in the middle follows from the strict monotonicity in payoffs, establishing

the part (i) of Proposition 3. Finally, convexity of effort cost function c′′ > 0 implies that a∗(H;α) >

a∗(L;α), establishing the part (ii) of Proposition 3.

Proof of Theorem 1

We first prove together the parts (a) and (b) of Theorem 1 and refer to them together as ‘Amplification

Effect’ and then turn to prove the part (c) of the theorem referred to as ‘Inequality Effect.’

Proofs of the parts (a) and (b) of Theorem 1

The proofs of the parts (a) and (b) of Theorem 1 are almost identical because: (1) the parties es-

sentially face the same maximization problem under two stochastic structures (i.e., Assumption 1,

2) and (2) both statements in the part (a) and in the part (b) of Theorem 1 pertain to the disper-

sion measure
a∗(H;α)+E(θi,t|θi,t−1=H)

a∗(L;α)+E(θi,t|θi,t−1=L)
. Henceforth, we suppress indices i, t and write yi,t as Y (θ−1;α) =

a∗(θ−1;α)+E(θ|θ−1). Moreover, we only use the fact that the quadratic function c(x) = 1
2
cx2 satisfies

log-concavity and c′′′(x) ≥ 0.

Outline of the proof of the parts (a) and (b) of Theorem 1

We first sketch the outline of the proof strategy. We provide in Figure 5 a graphical illustration of the

proof strategy. In Step 1, we can divide [0, 1] into two distinct segments: I1 = {α ∈ [0, 1] : a∗(H;α) <

aFB}, and I2 = {α ∈ [0, 1] : a∗(H;α) = aFB}. Next, we show that I1 = [0, α0) and I2 = [α0, 1]

for some α0. In step 2, we show that Y (H;α)
Y (L;α)

is decreasing in α in the closed interval I2. According

to one of our auxiliary claims presented below, a∗(θ;α) is weakly increasing in α. Hence, the logic

is that Y (H;α) = a∗(H;α) + E(θ|θ−1 = H) = aFB + E(θ|θ−1 = H) has no more room for further

increase because it already reached the maximal possible level, whereas the denominator Y (L;α) can

potentially increase when α increases. Step 3 is a preliminary step before implicit differentiation in

Step 4, to check whether we can indeed implicitly differentiate Y (H;α)
Y (L;α)

w.r.t. α’s in I1. It turns out

that we can implicitly differentiate everywhere on I1, except at most one α ∈ I1. We shall denote

such point as α̂0, the region on the left side of α̂0 as I
L
1 = [0, α̂0), the region on the right side of α̂0 as

IR1 = (α̂0, α0). So even when α̂0 does exist, we can still use implicit differentiation to analyze Y (H;α)
Y (L;α)

in IL1 ∪ IR1 . In Step 4, we implicitly differentiate the ratio Y (H;α)
Y (L;α)

in the region IL1 ∪ IR1 (or I1 if α̂0 does

not exist), and show that the ratio ∂
∂α

Y (H;α)
Y (L;α)

≤ 0 whenever implicit differentiation is possible. After

we establish Step 4, we know that Y (H;α)
Y (L;α)

is decreasing in each of region IL1 , I
R
1 (or I1 if α̂ does not

exist) and I2, but we still do not know what might happen around α0 and α̂ due to jumps. Step 5,

the last step, turns to analyze local behaviors around α0 and α̂0 with “pasting” argument. Thanks

to the continuity of Y (H;α)
Y (L;α)

, irregular jumps are ruled out. Hence, we finish the proof by showing that
Y (H;α)
Y (L;α)

is decreasing in for all α ∈ [0, 1].
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Figure 5: Illustration of the proof strategy to establish the parts (a) and (b) of Thm. 1

Auxiliary Results

To streamline the proof of Theorem 1, in this subsection we begin with listing the auxiliary results

that are used in the proof of the theorem. We will then prove the theorem using these auxiliary

results. After that, we will turn and provide the proofs of the auxiliary results.

The auxiliary results that we use to prove Theorem 1 are the following three lemmas.

Lemma 3 (Monotonicity and Continuity in α). In any optimal Markovian relational contract, the

optimal action and the profit functions satisfy

(I-1) a∗(H;α) and a∗(L;α) are weakly increasing and continuous with respect to α everywhere in
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α ∈ [0, 1].

(I-2) Π∗(H;α) and Π∗(L;α) are weakly increasing and continuous with respect to α everywhere in

α ∈ [0, 1].

Lemma 4. In any optimal Markovian relational contract with a∗(H;α) < aFB, (1−δ)
δ

(1−α)c′′(a∗(θ))−
γ̂(1− c′(a∗(θ))) ≥ 0 for both θ = L,H.

Lemma 5. In any optimal Markovian relational contract with a∗(H;α) < aFB, c′(a∗(H;α))

a∗(H;α)+Ĥ
≤ c′(a∗(L;α))

a∗(L;α)+L̂
.

The proof strategy to establish the parts (a) and (b) of Theorem 1 (Amplification Effect) consists of

the following five steps.

Step 1) Consider the two sets defined by I1 := {α ∈ [0, 1] : a∗(H;α) < aFB}, and I2 := {α ∈ [0, 1] :

a∗(H;α) = aFB}. Then, there exists a unique α0 ≥ 0 such that I1 = [0, α0) and I2 = [α0, 1], where

the set I1 can be empty if α0 = 0.

We first show that 1 ∈ I2, and hence I2 is non-empty. Notice that if α = 1, DEP does not bind at the

optimal relational contract. It therefore implements the first-best allocation and hence 1 ∈ I2.

By continuity of a∗(H;α) from the part (I-1) of Lemma 3, I2 = [α ∈ [0, 1] : a∗(H;α) = 1] is

a closed set. This implies that inf I2 ∈ I2. Let α0 := inf I2. Now, fix any α ∈ [α0, 1]. Since

a∗(H;α) is weakly increasing in α, aFB = a∗(H,α0) ≤ a∗(H;α). Now, applying the part (E-1) of

Lemma 1, a∗(H;α) ≤ aFB. Combining two conclusions, we have that aFB ≤ a∗(H,α0) ≤ aFB, or

a∗(H,α0) = aFB. This implies that α ∈ I2. Thus, [α0, 1] ⊂ I2. By definition of infinimum and

supremum, I2 ⊂ [inf I2, sup I2] ⊂ [α0, 1]. Hence, I2 = [α0, 1]. Moreover, by monotonicity shown in

the part (E-1) of Lemma 1, a∗(H;α) > aFB is impossible. Hence, from the definition, I1 = [0, 1] \ I2.
Thus, I2 = [0, α0).

Step 2) The ratio Y (H;α)
Y (L;α)

is weakly decreasing function of α in I2.

By definition of the set I2 := {α ∈ [0, 1] : a∗(H;α) = aFB}, Y (H) = aFB + Ĥ is independent of α in

I2. In contrast, by the part (I-1) of Lemma 3, Y (L) = a∗(L;α) + L̂ is a weakly increasing function

of α. Moreover, a∗(L;α) + L̂ > 0, so that 1

a∗(L;α)+L̂
is always weakly decreasing in α. Hence, when

α ∈ I2,
Y (H;α)
Y (L;α)

= aFB+Ĥ

a∗(L;α)+L̂
is a weakly decreasing function. This completes Step 2.

Step 3) The optimal effort a∗(θ;α) is differentiable everywhere in (0, α0) except at most one point.

By the monotonicity result in the part (E-1) of Lemma 1, a∗(L;α) ≤ a∗(H;α). Moreover, by as-

sumption α ∈ (0, α0), a
∗(H;α) < aFB. Hence, the recommended effort level for both states H,L are
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strictly less than the first best effort level aFB. This implies that dynamic enforceability conditions

for all possible past and contemporaneous shocks bind by the part (E-2) of Lemma 1:

(1− δ)

δ
(1− α)b∗(H,H;α) = Π∗(H;α),

(1− δ)

δ
(1− α)b∗(H,L;α) = Π∗(L;α),

(1− δ)

δ
(1− α)b∗(L,H;α) = Π∗(H;α),

(1− δ)

δ
(1− α)b∗(L,L;α) = Π∗(L;α).

Notice that E(b∗(H, θ;α)|θ−1 = H) = λb∗(H,H;α) + (1 − λ)b∗(H,L;α) and E(b∗(L, θ;α)|θ−1 =

L) = λb∗(L,L;α) + (1 − λ)b∗(L,H;α). Thus, using the last set of equation and taking the convex

combinations of the optimal bonus scheme b∗ state by state now imply

(1− δ)

δ
(1− α)[λb∗(H,H;α) + (1− λ)b∗(H,L;α)] = [λΠ∗(H;α) + (1− λ)Π∗(L;α)]

(1− δ)

δ
(1− α)[λb∗(H,H;α) + (1− λ)b∗(H,L;α)] = [λΠ∗(L;α) + (1− λ)Π∗(H;α)].

Using the incentive compatibility condition c′(a∗(θ−1;α)) = E(b∗(θ−1, θ;α)|θ−1) we re-write the last

two equations above:[
(1−δ)

δ
(1− α)c′(a∗(H;α))

(1−δ)
δ

(1− α)c′(a∗(L;α))

]
=

[
λ 1− λ

1− λ λ

][
Π∗(H;α)

Π∗(L;α)

]
.

Moreover, using the equation (7) in the proof of Lemma 1 for any Markovian relational contract

yields [
Π∗(H;α)

Π∗(L;α)

]
=

[
γ 1− γ

1− γ γ

][
a∗(H;α)− c(a∗(H;α)) + Ĥ

a∗(L;α)− c(a∗(L;α)) + L̂

]
.

Let γ̂ := γλ + (1 − γ)(1 − λ) ∈ (1
2
, 1).23 The two systems of equations above can be combined as

follows: [
(1−δ)

δ
(1− α)c′(a∗(H;α))

(1−δ)
δ

(1− α)c′(a∗(L;α))

]
=

[
γ̂ 1− γ̂

1− γ̂ γ̂

][
a∗(H;α)− c(a∗(H;α)) + Ĥ

a∗(L;α)− c(a∗(L;α)) + L̂

]
. (DE2)

23This can be established using the following algebraic manipulations:

γ̂ = γλ+ (1− γ)(1− λ) <︸︷︷︸
λ> 1

2

γλ+ (1− γ)λ = λ < 1

γ̂ − (1− γ̂) =︸︷︷︸
1−γ̂=(1−γ)λ+λ(1−γ)

γλ+ (1− γ)(1− λ)− [(1− γ)λ+ γ(1− λ)] = (2λ− 1)(2γ − 1) >︸︷︷︸
γ> 1

2 ,λ>
1
2

0
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This system of equations forms a necessary condition for the optimal effort choices a∗(H;α), a∗(L;α).

Now, we totally differentiate the system of equations above with respect to α, while treating a∗(H;α)

and a∗(L;α) as endogenous variables.[
(1−δ)

δ
(1− α)c′′(a∗(H;α)) ∂

∂α
a∗(H;α)

(1−δ)
δ

(1− α)c′′(a∗(L;α)) ∂
∂α
a∗(L;α)

]
−

[
(1−δ)

δ
c′(a∗(H;α))

(1−δ)
δ

c′(a∗(L;α))

]

=

[
γ̂ 1− γ̂

1− γ̂ γ̂

][
(1− c′(a∗(H;α))) ∂

∂α
a∗(H;α)

(1− c′(a∗(L;α))) ∂
∂α
a∗(L;α)

]
.

Rearranging the last equation yields

−

[
(1−δ)

δ
c′(a∗(H;α))

(1−δ)
δ

c′(a∗(L;α))

]
=

[
γ̂ 1− γ̂

1− γ̂ γ̂

][
(1− c′(a∗(H;α))) ∂

∂α
a∗(H;α)

(1− c′(a∗(L;α))) ∂
∂α
a∗(L;α)

]

−

[
(1−δ)

δ
(1− α)c′′(a∗(H;α)) ∂

∂α
a∗(H;α)

(1−δ)
δ

(1− α)c′′(a∗(L;α)) ∂
∂α
a∗(L;α)

]
.

(8)

Now, the first row of the right-hand side of the equation (8) can be re-written as:

γ̂(1− c′(a∗(H;α)))
∂

∂α
a∗(H;α) + (1− γ̂)(1− c′(a∗(L;α)))

∂

∂α
a∗(L;α)− (1− δ)

δ
(1− α)c′′(a∗(H;α))

∂

∂α
a∗(H;α)

=[γ̂(1− c′(a∗(H;α)))− (1− δ)

δ
(1− α)c′′(a∗(H;α))]

∂

∂α
a∗(H;α) + (1− γ̂)(1− c′(a∗(L;α)))

∂

∂α
a∗(L;α)

=
[
γ̂(1− c′(a∗(H;α)))− (1−δ)

δ
(1− α)c′′(a∗(H;α)) (1− γ̂)(1− c′(a∗(L;α)))

] [ ∂
∂α
a∗(H;α)

∂
∂α
a∗(L;α)

]
.

Similarly, the second row of the right-hand side the equation (8) is equal to:

[
(1− γ̂)(1− c′(a∗(H;α))) γ̂(1− c′(a∗(L;α)))− (1−δ)

δ
(1− α)c′′(a∗(L;α))

] [ ∂
∂α
a∗(H;α)

∂
∂α
a∗(L;α)

]
.
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Thus, the system of equations (8) is equivalent to:

−

[
(1−δ)

δ
c′(a∗(H;α))

(1−δ)
δ

c′(a∗(L;α))

]

=

A(α):=︷ ︸︸ ︷[
γ̂(1− c′(a∗(H;α)))− (1−δ)

δ
(1− α)c′′(a∗(H;α)) (1− γ̂)(1− c′(a∗(L;α)))

(1− γ̂)(1− c′(a∗(H;α))) γ̂(1− c′(a∗(L;α)))− (1−δ)
δ

(1− α)c′′(a∗(L;α))

][
∂
∂α
a∗(H;α)

∂
∂α
a∗(L;α)

]
.

(IFT1)

Given this representation, to show the optimal effort a∗(θ;α) is differentiable, by the Implicit Func-

tion Theorem (see, for instance, Sundaram (1996, Thm. 1.77)) it is sufficient to establish that the

determinant of the matrix A(α) in the above equation is invertible. The latter is equivalent to showing

that det(A(α)) ̸= 0 for at most one point in (0, α0) (see, for instance, (Sundaram, 1996, Thm. 1.47)).

Computing the determinant yields

det(A(α)) =

[
γ̂(1− c′(a∗(H;α)))− (1− δ)

δ
(1− α)c′′(a∗(H;α))

] [
γ̂(1− c′(a∗(L;α)))− (1− δ)

δ
(1− α)c′′(a∗(L;α))

]
− (1− γ̂)(1− c′(a∗(L;α)))× (1− γ̂)(1− c′(a∗(H;α)))

= (1− γ̂)2(1− c′(a∗(L;α)))(1− c′(a∗(H;α)))

×
[(

γ̂

1− γ̂
− (1− δ)

δ

1− α

1− γ̂

c′′(a∗(H;α))

(1− c′(a∗(H;α)))

)(
γ̂

1− γ̂
− (1− δ)

δ

1− α

1− γ̂

c′′(a∗(L;α))

(1− c′(a∗(L;α)))

)
− 1

]
.

In the last expression, if α ∈ (0, α0), both a∗(L;α) ≤ a∗(H;α) < aFB = (c′)−1(1). Hence, c′(a∗(L;α)) <

1, c′(a∗(H;α)) < 1 by strict monotonicity of c′. Hence, (1−γ̂)2 (1− c′(a∗(L;α))) (1−c′(a∗(H;α))) ̸= 0.

The latter in turn implies

det(A(α)) = 0 ↔
[
γ̂ − (1− δ)

δ
(1− α)

c′′(a∗(H;α))

(1− c′(a∗(H;α)))

] [
γ̂ − (1− δ)

δ
(1− α)

c′′(a∗(L;α))

(1− c′(a∗(L;α)))

]
= (1− γ̂)2.

Now, we simplify the notation and denote by h(x) := (1−δ)
δ

(1 − α) c′′(x)
1−c′(x)

− γ̂. Choose any α1, α2 ∈
(0, α0), with detA(α1) = detA(α2) = 0. The latter together with the equivalence relationship in

the last equation above imply that h(a∗(H,α1))h(a
∗(L, α1)) = h(a∗(H,α2))h(a

∗(L, α2)) = (1 − γ)2.

Moreover, by Lemma 4, (1−δ)
δ

(1 − α)c′′(a∗(θ;α)) − γ̂(1 − c′(a∗(θ;α))) ≥ 0 if α ∈ (0, α0). Since

h(x) = [ (1−δ)
δ

(1 − α)c′′(x) − γ̂(1 − c′(x))] × 1
1−c′(x)

and c′(a(θ;α)) < 1 in the region (0, α0), all four

h(a∗(H,α1)), h(a
∗(L, α1)), h(a

∗(H,α2)), h(a
∗(L, α2)) are strictly increasing.

h(a∗(H,α1))h(a
∗(L, α1))− h(a∗(H,α2))h(a

∗(L, α2))

=[h(a∗(H,α1))− h(a∗(H,α2))]h(a
∗(L, α1)) + h(a∗(H,α2))[h(a

∗(L, α1))− h(a∗(L, α2))].

44



One can see here that h(a∗(θ;α)) is a strictly increasing function with respect to α in (0, α0), because

both a∗(θ, ·) h(·) are strictly increasing functions in the region (0, α0). Since h(a
∗(L, α1)), h(a

∗(H,α2)) >

0, the expression above is strictly negative or positive if α1 ̸= α2. However, as h(a
∗(H,α1))h(a

∗(L, α1)) =

h(a∗(H,α2))h(a
∗(L, α2)) = (1− γ)2 , for the case detA(α1) = detA(α2) = 0 to hold, it must be that

α1 = α2. This therefore shows that there can be at most one point α with det(A(α)) ̸= 0.

Step 4) If α ∈ {α̃ ∈ (0, α0) : det(A(α̃)) ̸= 0}, then ∂
∂α

Y (H;α)
Y (L;α)

≤ 0.

Recall that the system of equations that characterize the ∂
∂α
a∗(H;α), ∂

∂α
a∗(L;α) in I1 is:

−

[
(1−δ)

δ
c′(a∗(H;α))

(1−δ)
δ

c′(a∗(L;α))

]

=

A(α):=︷ ︸︸ ︷[
γ̂(1− c′(a∗(H;α)))− (1−δ)

δ
(1− α)c′′(a∗(H;α)) (1− γ̂)(1− c′(a∗(L;α)))

(1− γ̂)(1− c′(a∗(H;α))) γ̂(1− c′(a∗(L;α)))− (1−δ)
δ

(1− α)c′′(a∗(L;α))

]
[

∂
∂α
a∗(H;α)

∂
∂α
a∗(L;α).

]

If α ∈ {α̃ ∈ I1 : det(A(α̃)) ̸= 0}, we can post-multiply 1−δ
δ

and the inverse matrix A(α)−1 on both

sides:[
∂
∂α
a∗(H;α)

∂
∂α
a∗(L;α)

]
=

(1− δ)

δ

1

det(A(α))[
(1−δ)

δ
(1− α)c′′(a∗(L;α))− γ̂(1− c′(a∗(L;α))) (1− γ̂)(1− c′(a∗(L;α)))

(1− γ̂)(1− c′(a∗(H;α))) (1−δ)
δ

(1− α)c′′(a∗(H;α))− γ̂(1− c′(a∗(H;α)))

]
[
c′(a∗(H;α))

c′(a∗(L;α)).

]
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By the matrix multiplication on the right-hand side, notice that:

∂

∂α
a∗(H;α) =

1

det(A(α))

(1− δ)

δ︸ ︷︷ ︸
>0

[
(1− δ)

δ
(1− α)c′′(a∗(L;α))− γ̂(1− c′(a∗(L;α)))c′(a∗(H;α))︸ ︷︷ ︸

≥0 by Lemma 4

+(1− γ̂)(1− c′(a∗(L;α)))︸ ︷︷ ︸
>0 by α∈I1

c′(a∗(L;α))︸ ︷︷ ︸
>0

]

∂

∂α
a∗(L;α) =

1

det(A(α))

(1− δ)

δ︸ ︷︷ ︸
>0

[
(1− δ)

δ
(1− α)c′′(a∗(H;α))− γ̂(1− c′(a∗(L;α)))c′(a∗(L;α))︸ ︷︷ ︸

≥0 by Lemma 4

+(1− γ̂)(1− c′(a∗(H;α)))︸ ︷︷ ︸
>0 by α∈I1

c′(a∗(H;α))︸ ︷︷ ︸
>0

].

(IFT2)

Using the part (I-1) of Lemma 3 now implies that the optimal efforts a∗(H;α) and a∗(L;α) are strictly

increasing with respect to α in I1. Hence, the latter implies that det(A(α)) > 0.

Now, Y (θ;α) = a∗(θ;α) + θ̂ > 0. Thus, we first take the logarithm of the ratio Y (H;α)
Y (L;α)

and then

differentiate it with respect to α. This yields

∂

∂α

Y (H;α)

Y (L;α)
≤ 0 ↔

∂
∂α
Y (H;α)

Y (H;α)
≤

∂
∂α
Y (L;α)

Y (L;α)

↔

(
∂
∂α
a∗(H;α)

a∗(H;α) + E(θ|θ−1 = H)

)
≤

(
∂
∂α
a∗(L;α)

a∗(L;α) + E(θ|θ−1 = L)

)
.

We shall plug in the expressions from (IFT2) to show the last inequality above. Since 1
det(A)

(1−δ)
δ

is a

common term in (IFT2) for both terms ∂
∂α
a∗(H;α) and ∂

∂α
a∗(L;α) and it is strictly positive, the last

inequality is equivalent to:

[( (1−δ)
δ

(1− α)c′′(a∗(L;α))− γ̂(1− c′(a∗(L;α))))c′(a∗(H;α)) + (1− γ̂)(1− c′(a∗(L;α)))c′(a∗(L;α))]

a∗(H;α) + Ĥ

≤
[( (1−δ)

δ
(1− α)c′′(a∗(H;α))− γ̂(1− c′(a∗(H;α))))c′(a∗(L;α)) + (1− γ̂)(1− c′(a∗(H;α)))c′(a∗(H;α))]

a∗(L;α) + L̂
.

(V1)

Similarly, we obtain a weak inequality by collecting the terms with 1− c′(a∗(L;α)) inside the brackets
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[ ] on the left-hand side and 1− c′(a∗(H;α)) inside the brackets on the right-hand side:

[( (1−δ)
δ

(1− α)c′′(a∗(L;α))c′(a∗(H;α))− (1− c′(a∗(L;α)))(γ̂c′(a∗(H;α))− (1− γ̂)c′(a∗(L;α)))]

a∗(H;α) + Ĥ

≤
[( (1−δ)

δ
(1− α)c′′(a∗(H;α))c′(a∗(L;α))− (1− c′(a∗(H;α)))(γ̂c′(a∗(L;α))− (1− γ̂)c′(a∗(H;α)))]

a∗(L;α) + L̂
.

(V2)

Now, we will further divide into two possible cases: (A) 1−c′(a∗(L;α))
a∗(H;α)+H

< 1−c′(a∗(H;α))
a∗(L;α)+L

, and (B) 1−c′(a∗(L;α))
a∗(H;α)+H

≥
1−c′(a∗(H;α))
a∗(L;α)+L

. The two inequalities in (V1) and (V2) hold if and only if ∂
∂α

Y (H;α)
Y (L;α)

≤ 0.

Case A) 1−c′(a∗(L;α))

a∗(H;α)+Ĥ
< 1−c′(a∗(H;α))

a∗(L;α)+L̂
.

First, note that:

0 ≤
(
(1− δ)

δ
(1− α)c′′(a∗(L;α))− γ̂(1− c′(a∗(L;α)))

)
<(

(1− δ)

δ
(1− α)c′′(a∗(H;α))− γ̂(1− c′(a∗(H;α)))

)
.

whereas the first inequality follows from the first part of Lemma 4, and the second step from the

convexity of c′, c, and monotonicity in the effort. This implies that the left hand side of (V1) is:

[
(

(1−δ)
δ

(1− α)c′′(a∗(L;α))− γ̂(1− c′(a∗(L;α)))
)
c′(a∗(H;α)) + (1− γ̂)(1− c′(a∗(L;α)))c′(a∗(L;α))]

a∗(H;α) + Ĥ

=

[
(1− δ)

δ
(1− α)c′′(a∗(L;α))− γ̂(1− c′(a∗(L;α)))

]
c′(a∗(H;α))

a∗(H;α) + Ĥ
+ (1− γ̂)

(1− c′(a∗(L;α)))

a∗(H;α) + Ĥ
c′(a∗(L;α))

< [

(
(1− δ)

δ
(1− α)c′′(a∗(H;α))− γ̂(1− c′(a∗(H;α)))

)
]︸ ︷︷ ︸

>
(1−δ)

δ
(1−α)c′′(a∗(L;α))−γ̂(1−c′(a∗(L;α)))

c′(a∗(H;α))

a∗(H;α) + Ĥ︸ ︷︷ ︸
>0

+(1− γ̂)
1− c′(a∗(H;α))

a∗(L;α) + L̂︸ ︷︷ ︸
>

(1−c′(a∗(L;α)))

a∗(H;α)+Ĥ
; Case A

c′(a∗(L;α))︸ ︷︷ ︸
>0

≤ [

(
(1− δ)

δ
(1− α)c′′(a∗(H;α))− γ̂(1− c′(a∗(H;α)))

)
]︸ ︷︷ ︸

>0

c′(a∗(L;α))

a∗(L;α) + L̂︸ ︷︷ ︸
by Lemma 5

+(1− γ̂)
1− c′(a∗(H;α))

a∗(L;α) + L̂︸ ︷︷ ︸
>0

c′(a∗(H;α))︸ ︷︷ ︸
>c′(a∗(L;α))

.

The last expression coincides with the right-hand side of inequality (V1), as required.

Case B) 1−c′(a∗(L;α))
a∗(H;α)+H

≥ 1−c′(a∗(H;α))
a∗(L;α)+L

.
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To see this, we start with showing that

γ̂c′(a∗(H;α))− (1− γ)c′(a∗(L;α)) >︸︷︷︸
c′(a∗(H;α))>c′(a∗(L;α))

γ̂c′(a∗(L;α))− (1− γ̂)c′(a∗(H;α)) > 0.

The first inequality follows from the part (I-1) of Lemma 3. The second inequality is equivalent to
γ̂

(1−γ̂)
> c′(a∗(H;α))

c′(a∗(L;α))
. We now use (DE2) to rewrite c′(a∗(H;α))

c′(a∗(L;α))
:

c′(a∗(H;α))

c′(a∗(L;α)))
=︸︷︷︸
DE2

γ̂Π∗(H;α) + (1− γ̂)Π∗(L;α)

γ̂Π∗(L;α) + (1− γ̂)Π∗(H;α)
=

Π∗(L;α) + γ̂(Π∗(H;α)− Π∗(L;α))

Π∗(L;α) + (1− γ̂)(Π∗(H;α)− Π∗(L;α))

=
1 + γ̂

(
Π∗(H;α)
Π∗(L;α)

− 1
)

1 + (1− γ̂)
(

Π∗(H;α)
Π∗(L;α)

− 1
) .

Note that γ̂
1−γ̂

> 1 as γ̂ > 1
2
, and Π∗(H;α) > Π∗(L;α). This in turn implies that

1+γ̂
(

Π∗(H;α)
Π∗(L;α)

−1
)

1+(1−γ̂)(Π∗(H;α)
Π∗(L;α)

−1)
is

between 1 and γ̂
1−γ̂

, so that c′(a∗(H;α))
c′(a∗(L;α))

< γ̂
1−γ̂

.

Now, the left-hand side of V2 is:

(1−δ)
δ

(1− α)c′′(a∗(L;α))c′(a∗(H;α))− (1− c′(a∗(L;α)))(γ̂c′(a∗(H;α))− (1− γ̂)c′(a∗(L;α)))

a∗(H;α) + Ĥ

=
(1− δ)

δ
(1− α)c′′(a∗(L;α))

c′(a∗(H;α))

a∗(H;α) + Ĥ
− (1− c′(a∗(L;α))

a∗(H;α) + Ĥ
(γ̂c′(a∗(H;α))− (1− γ̂)c′(a∗(L;α)))

≤ (1− δ)

δ
(1− α)c′′(a∗(L;α))︸ ︷︷ ︸

>0

c′(a∗(L;α))

a∗(L;α) + L̂︸ ︷︷ ︸
by Lemma 5

− (1− c′(a∗(H;α))

a∗(L;α) + L̂︸ ︷︷ ︸
≤ 1−c′(a∗(L;α))

a∗(H;α)+Ĥ
; Case B

(γ̂c′(a∗(H;α))− (1− γ̂)c′(a∗(L;α)))︸ ︷︷ ︸
>0

<
(1− δ)

δ
(1− α)c′′(a∗(H;α))︸ ︷︷ ︸

≥c′′(a∗(L;α)) from convexity of c′

c′(a∗(L;α))

a∗(L;α) + L̂︸ ︷︷ ︸
>0

− (1− c′(a∗(H;α))

a∗(L;α) + L̂︸ ︷︷ ︸
>0

(γ̂c′(a∗(L;α))− (1− γ̂)c′(a∗(H;α)))︸ ︷︷ ︸
<(γ̂c′(a∗(H;α))−(1−γ̂)c′(a∗(L;α)))

.

We have therefore showed that the equation (V2) holds under Case B. Hence, Y (H;α)
Y (L;α)

is locally de-

creasing in α when α ∈ {α̃ ∈ I1 : det(A(α̃)) ̸= 0}.

Step 5: The ratio Y (H;α)
Y (L;α)

is decreasing everywhere on [0, 1].

Y (H;α)
Y (L;α)

= a∗(H;α)+Ĥ

a∗(L;α)+L̂
is continuous in [0, 1], because a∗(θ;α) ≥ 0 is continuous by the part (I-1) of

Lemma 3. Recall that α0 = inf{α : a∗(H;α) = aFB} and α̂0 ∈ (0, α0) in which detA(α) = 0}. If

α̂0 does not exist, Step 2 and Step 4 in the current proof imply that Y (H;α)
Y (L;α)

is piece-wise decreasing

in each region (0, α̂0), (α̂0, α0), (α0, 1]. If α̂0 exists, Step 2 and Step 4 imply that Y (H;α)
Y (L;α)

is piece-
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wise decreasing in each region (0, α0), (α0, 1]. Since Y (H;α)
Y (L;α)

is everywhere continuous, the piece-wise

monotonicity implies the ratio Y (H;α)
Y (L;α)

is a decreasing function everywhere. This completes the proof

of the parts (a) and (b) of Theorem 1.

Proof of the part (c) of Theorem 1 (Inequality Effect)

As the ex-ante promised utility to the agent is zero and the agent’s continuation utility in each state

is zero, the agent’s expected per-period utility is also zero at each period t and at each state θt.

Therefore, in any Markovian relational contract {b∗(θ−1, θ;α), w
∗(θ−1;α), a

∗(θ−1;α)}, the expected

per-period compensation is equal to the agent’s cost of efforts:

w∗(θ−1;α) + E(b∗(θ−1, θ;α)|θ−1)− c(a∗(θ−1;α))︸ ︷︷ ︸
Agent’s per-period utility given θ−1

= 0 ⇐⇒ c(a∗(θ−1;α)) = w∗(θ−1;α)+E(b∗(θ−1, θ;α)|θ−1)

(9)

The rest of the proof of the part (c) of Theorem 1 follows from using the arguments analogous to

those used above in the proof of the parts (a) and (b) of the theorem. In particular, by replacing the

expected output measure Y (θ−1;α) in the proofs of these earlier parts with the expected payments

to the agent w∗(θ−1;α) + E(b∗(θ−1, θ;α)|θ−1)
(

= c(a∗(θ−1;α)) given by the equation (9)
)
, we can

establish the statements analogous to Step 1, Step 2, Step 3, and Step 5 given in the previous section.

Therefore, the proof is complete if we establish the remaining step, which plays an analogous role to

Step 4 above.

Step 4)’ If α ∈ {α̃ ∈ (0, α0) : det(A(α̃)) ̸= 0}, then it is the case that ∂
∂α

(
w∗(H)+E(b∗(H,θ)|θ−1=H)
w∗(L)+E(b∗(L,θ)|θ−1=L)

)
≤

0.

To see this we start with noticing that by the equation (9), the inequality measure is equal to
w∗(H)+E(b∗(H,θ)|θ−1=H)
w∗(L)+E(b∗(L,θ)|θ−1=L)

= c(a∗(H;α))
c(a∗(L;α))

. Differentiating the ratio c(a∗(H;α))
c(a∗(L;α))

w.r.t. α yields:

∂

∂α

(c(a∗(H;α))

c(a∗(L;α))

)
≤ 0 ↔

(
∂
∂α
a∗(H;α)c′(a∗(H;α))

c(a∗(H;α))

)
≤

(
∂
∂α
a∗(L;α)c′(a∗(L;α))

c(a∗(L;α))

)
.

Using (IFT2) in the above expression we show that it holds with inequality. In particular, using c(x) =
1
2
cx2 and noticing that the expression 1

det(A)
(1−δ)

δ
is a common term in both ∂

∂α
a∗(H;α), ∂

∂α
a∗(L;α)

and in (IFT2), which is strictly positive, the last inequality yields:[
( (1−δ)

δ
(1− α)c− γ̂(1− ca∗(L;α)))ca∗(H;α) + (1− γ̂)(1− ca∗(L;α))ca∗(L;α)

]
1
2
ca∗(H;α)2

× ca∗(H;α)

≤

[
( (1−δ)

δ
(1− α)c− γ̂(1− ca∗(H;α)))ca∗(L;α) + (1− γ̂)(1− ca∗(H;α))ca∗(H;α)

]
1
2
ca∗(L;α)2

× ca∗(L;α).

(V1’)
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Dividing the both sides of the last expression by 2, the inequality above is equivalent to:(
(1− δ)

δ
(1− α)c− γ̂(1− ca∗(L;α))

)
c+ (1− γ̂)

(1− ca∗(L;α))ca∗(L;α)

a∗(H;α)

≤
(
(1− δ)

δ
(1− α)c− γ̂(1− ca∗(H;α))

)
c+ (1− γ̂)

(1− ca∗(H;α))ca∗(H;α)

a∗(L;α)
.

Adding to the both sides of the last expression
(

(1−δ)
δ

(1− α)c− γ̂
)
c and dividing by c > 0 yield:

γ̂ca∗(L;α) + (1− γ̂)
(1− ca∗(L;α))a∗(L;α)

a∗(H;α)
≤ γ̂ca∗(H;α) + (1− γ̂)

(1− ca∗(H;α))a∗(H;α)

a∗(L;α)
.

Subtracting ca∗(L;α) + (1− γ̂) (1−ca∗(H;α))a∗(H;α)
a∗(L;α)

from the both sides of the inequality above, it takes

the following form:

(1− γ̂)
((1− ca∗(L;α))a∗(L;α)

a∗(H;α)
− (1− ca∗(H;α))a∗(H;α)

a∗(L;α)

)
≤ γ̂c

(
a∗(H;α)− a∗(L;α)

)
.

Rearranging the left-hand side of this inequality yields:

(1− γ̂)
(
(1− ca∗(L;α))︸ ︷︷ ︸

≥0

a∗(L;α)

a∗(H;α)︸ ︷︷ ︸
≤1

− (1− ca∗(H;α))︸ ︷︷ ︸
≥0

a∗(H;α)

a∗(L;α)︸ ︷︷ ︸
≥1

)

≤ (1− γ̂)
(
(1− ca∗(L;α))× 1− (1− ca∗(H;α))× 1

)
= (1− γ̂) (ca∗(H;α)− ca∗(L;α))︸ ︷︷ ︸

≥0 by (E-1)

≤︸︷︷︸
γ̂> 1

2

γ̂(ca∗(H;α)− ca∗(L;α)),

which establishes the required inequality and completes the proof of the part (c) of Theorem 1.

Proofs of the Auxiliary Results

Proof of the part (I-1) of Lemma 3. To show that the continuity property holds, we start with ob-

serving that in the optimization programme (1) the constraint set is linear in α and hence as a

correspondence is continuous in α. By the Theorem of Maximum the unique solution for optimal

effort α∗ is a continuous function of α. We next turn to monotonicity.

Suppose to the contrary, so that there exists a triple (θ0, α1, α2) with α1 < α2 such that the optimal

effort a∗(θ′, α2) < a∗(θ′, α1). Fix α1, α2 and let Θ̂ = {θ′ ∈ Θ : α1 < α2, a∗(θ′, α2) < a∗(θ′, α1)}. Now,
define a new bonus system under α2 as following: for all θ−1 ∈ Θ̂, b̂(θ−1, θ, α2) := b∗(θ−1, θ, α1); for all

other θ−1 /∈ Θ̂, let b̂(θ−1, θ, α2) := b∗(θ−1, θ, α2).
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If θ′ ∈ Θ̂ so that a∗(θ′, α2) < a∗(θ′, α1), the effort â∗(θ′, α2) satisfies:

â∗(θ′, α2) =︸︷︷︸
IC

(c′)−1(E(b̂(θ−1, θ, α2)|θ−1 = θ′)) = (c′)−1(E(b∗(θ−1, θ, α1)|θ−1 = θ′))

=︸︷︷︸
IC

(c′)−1(c′(a∗(θ′, α1))) = a∗(θ′, α1) = max
α1,α2

a∗(θ′;α).

Similarly, if θ′ /∈ Θ̂ so that a∗(θ′, α2) ≥ a∗(θ′, α1), the effort â∗(θ′, α2) satisfies:

â∗(θ′, α2) =︸︷︷︸
IC

(c′)−1(E(b̂∗(θ−1, θ, α2)|θ−1 = θ′)) = (c′)−1(E(b(θ−1, θ, α2)|θ−1 = θ′))

=︸︷︷︸
IC

(c′)−1(c′(a∗(θ′, α2))) = a∗(θ′, α2) = max
α1,α2

a∗(θ′;α).

In other words, the bonus scheme {b̂(·, ·, α2)} induces the effort max
α1,α2

a∗(θ;α) for each θ. Furthermore,

we observe that for all θ′ ∈ Θ̂, a∗(θ′, α1) < a∗(θ′, α2) ≤ aFB by monotonicity given in the part (E-1)

of Lemma 1. Therefore, a∗(θ′, α1)− c(a∗(θ′, α1)) < â∗(θ′, α2)− c(â∗(θ′, α2)).

Now, by the system of equations (7) in the proof of Lemma 1, for any stationary contract,[
Π∗(H;α)

Π∗(L;α)

]
=

[
γ 1− γ

1− γ γ

][
a∗(H;α)− c(a∗(H;α)) + Ĥ

a∗(L;α)− c(a∗(L;α)) + L̂.

]

Similarly, we now use an analogous representation of the continuation values under the bonus system

{b̂(·, ·, α2)} for Π̂(·, α2). Since the bonus scheme b̂ induces higher efforts max
α1,α2

a∗(θ;α), the system of

equations above shows that Π̂(θ, α2) ≥ max{Π∗(θ, α2),Π
∗(θ, α1)}. Now, for all θ−1 ∈ Θ̂,

(1− δ)(1− α2)b̂(θ−1, θ, α2) = (1− δ)(1− α2)b
∗(θ−1, θ, α1)

<(1− δ)(1− α1)b
∗(θ−1, θ, α1) ≤︸︷︷︸

DE-P for (θ−1,θ,α1)

δΠ∗(θ−1, α1) ≤ δΠ̂(θ−1, α2).

Now, for all θ−1 /∈ Θ̂,

(1− δ)(1− α2)b̂(θ−1, θ, α2) = (1− δ)(1− α2)b
∗(θ−1, θ, α2)

≤︸︷︷︸
DE-P for (θ−1,θ,α2)

δΠ∗(θ−1, α2) ≤ δΠ̂(θ−1, α2).
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Since Θ̂ ̸= ∅ and a∗(θ′, α2)− c(a∗(θ′, α2)) < â∗(θ′, α2)− c(â∗(θ′, α2)), Π
∗(θ, α2) < Π̂(θ, α2). This con-

tradicts the optimality of the bonus scheme {b(·, ·, α2)}, because we obtained strictly higher continu-

ation values without violating the dynamic enforceability conditions. This contradiction establishes

the part (I-1) of Lemma 3.

Proof of the part (I-2)of Lemma 3. We start with showing continuity of the value functions in α. By

the argument analogous to that made in the proof of the part (I-1) of Lemma 3, in the optimization

the value of the objective function at the optimum is a continuous function of α. We next turn to

monotonicity.

Note that x− c(x) is a strictly increasing function on [0, aFB]. By monotonicity shown in the part (E-

1) of Lemma 1, the optimal efforts satisfy a∗(L;α) ≤ a∗(H;α) ≤ aFB. Hence a∗(H;α)− c(a∗(H;α))

and a∗(L;α) − c(a∗(L;α)) are both increasing in α ∈ [0, 1] as well. By the equation (7) in the proof

of Lemma 1, for any stationary contract[
Π(H;α)

Π(L;α)

]
=

[
γ 1− γ

1− γ γ

][
a∗(H;α)− c(a∗(H;α)) + Ĥ

a∗(L;α)− c(a∗(L;α)) + L̂

]
.

Hence, Π∗(H;α) and Π∗(L;α) are both strictly increasing in α.

Proof of Lemma 4. Suppose to the contrary. We will first assume so that (1−δ)
δ

(1− α)c′′(a∗(H;α))−
γ̂(1 − c′(a∗(H;α))) < 0 for some α ∈ I1. Our goal is to show that we can increase the continua-

tion values without violating dynamic enforceability conditions by increasing the bonuses by small

amounts, which contradicts the optimality of the bonus scheme and the recommended effort. Denote

the bonus system {b∗(·, ·;α)}, the current recommended efforts {a∗(·;α)} and continuation values

{Π∗(·;α)} under which (1−δ)
δ

(1− α)c′′(a∗(H;α))− γ̂(1− c′(a∗(H;α))) < 0 is true.

For any ϵ ∈
(
0, 1−c′(a∗(H;α))

2

)
, we now define a new bonus scheme {b̂(·, ·, α)}, and new recommended

effort policies {â∗(·;α)} as:

b̂(H,H;α) = b∗(H,H;α) +
γ

γ̂
ϵ, b̂(H,L;α) = b∗(H,L;α) +

1− γ

γ̂
ϵ, b̂(L,L;α) = b∗(L,L;α), b̂(L,H;α) = b∗(L,H;α)

â∗(H;α) = (c′)−1(λb̂(H,H;α) + (1− λ)b̂(H,L;α)) =︸︷︷︸
γ̂=γλ+(1−λ)(1−γ)

(c′)−1(λb(H,H;α) + (1− λ)b(H,L;α)︸ ︷︷ ︸
=c′(a∗(H;α))

+ϵ)

= (c′)−1(c′(a∗(H;α)) + ϵ)

â∗(L;α) = (c′)−1(λb̂(L,L;α) + (1− λ)b̂(L,H;α)︸ ︷︷ ︸
=c′(a∗(L;α))

= a∗(L;α).
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Given the range ϵ ∈
(
0, 1−c′(a∗(H;α))

2

)
, c′(â∗(H;α)) = c′(a∗(H;α))+ϵ < 1. Since a∗(H;α) < â∗(H;α) <

aFB, a∗(H;α)− c(a∗(H;α)) < â∗(H;α)− c(â∗(H;α)). Using the equation (7) in the proof of Lemma

1, new continuation values {Π̂(·;α)} are also pinned down. Also, it must be that Π̂(H;α) > Π(H;α)

and Π̂(L;α) > Π(L;α). Our next task is show that the new bonus system {b̂(·, ·, α)} satisfies the

dynamic enforceability condition.

To simplify the notation we denote the increment in the new recommended level by â∗(H;α) relative

to the effort level a∗(H;α) by η(ϵ) := â∗(H;α)− a∗(H;α). Next, we observe that:

δ

1− δ
Π̂(H;α)− (1− α)b̂(H,H;α)

=︸︷︷︸
by (7)

δ

1− δ

[
γ(a∗(H;α)− c(a∗(H;α) + η(ϵ)) + Ĥ) + (1− γ)(a∗(L;α)− c(a∗(L;α)) + L̂)

]
− (1− α)(b∗(H,H;α)

+
δ

1− δ
γη(ϵ)− (1− α)

γ

γ̂
ϵ

=
δ

1− δ

[
γ(a∗(H;α)− c(a∗(H;α)) + Ĥ) + (1− γ)(a∗(L;α)− c(a∗(L;α)) + L̂)

]
− (1− α)(b∗(H,H;α)︸ ︷︷ ︸

=0 ∵ Π∗(H;α)=
(1−δ)

δ
b∗(H,H;α) from a∗(H;α)<aFB

+
δ

1− δ
γ (η(ϵ)− [c(a∗(H;α) + η(ϵ))− c(a∗(H;α))])− (1− α)

γ

γ̂
ϵ

=
δ

1− δ
γ (η(ϵ)− [c(a∗(H;α) + η(ϵ))− c(a∗(H;α))])− (1− α)

γ

γ̂
ϵ =: f(ϵ).

Clearly, f(0) = 0. Since dη(ϵ)
dϵ

|ϵ=0 =
1

c′′(a∗(H;α))
,

f ′(0) = γ
δ

1− δ

1− c′(a∗(H;α))

c′′(a∗(H;α))
− γ

γ̂
(1− α).

By the current assumption that (1−δ)
δ

(1 − α)c′′(a∗(θ−1)) − γ̂(1 − c′(a∗(θ−1))) < 0, f ′(0) > 0. This in

turn implies that the f(ϵ) > 0 for ϵ > 0 small. This implies that δ
1−δ

Π̂(H;α)− (1− α)b̂(H,H;α) > 0

if our choice of ϵ > 0 was small enough. Similarly, an analogous argument yields that δ
1−δ

Π̂(L;α) −
(1 − α)b̂(H,L;α) > 0 if ϵ is small enough. Hence, {b̂(·, ·, α), â∗(·;α), Π̂(·;α)} satisfies the dynamic

enforceability conditions for small enough ϵ > 0, but attains higher continuation values by the

equation (7) in the proof of Lemma 1. However, this contradicts the optimality of the initial con-

tract {b∗(·, ·;α), a∗(·;α),Π∗(·;α)}. This contradiction implies that (1−δ)
δ

(1 − α)c′′(a∗(H;α)) − γ̂(1 −
c′(a∗(H;α))) ≥ 0.

We can derive a similar contradiction if we assume (1−δ)
δ

(1− α)c′′(a∗(L;α))− γ̂(1− c′(a∗(L;α))) < 0

by increasing the b(L, ·;α) incrementally instead of b(H, ·;α). Hence, it must be that (1−δ)
δ

(1 −
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α)c′′(a∗(θ;α))− γ̂(1− c′(a∗(θ;α))) ≥ 0 for both θ = H,L.

Proof of Lemma 5. Rearranging the expression in the statement, it suffices to show that

c′(a∗(H;α))

c′(a∗(L;α))
≤ a∗(H;α) +H

a∗(L;α) + L
.

By the assumption that the cost function c(·) is log-concave, and hence the derivative d
dx
log[c(x)] =

c′(x)
c(x)

is a decreasing function. Since a∗(H;α) ≥ a∗(L;α), the part (E-1) of Lemma 1 implies:

c′(a∗(H;α))

c(a∗(H;α))
≤ c′(a∗(L;α))

c(a∗(L;α))
↔ c′(a∗(H;α))

c′(a∗(L;α))
≤ c(a∗(H;α))

c(a∗(L;α))
.

Moreover, using the equation (7) in the proof of Lemma 1 yields

c′(a∗(H;α))

c′(a∗(L;α))
=

γ̂(a∗(H;α)− c(a∗(H;α)) + Ĥ) + (1− γ̂)(a∗(L;α)− c(a∗(L;α)) + L̂)

γ̂(a∗(L;α)− c(a∗(L;α)) + L̂) + (1− γ̂)(a∗(H;α)− c(a∗(H;α)) + Ĥ)

<
a∗(H;α)− c(a∗(H;α)) + Ĥ

a∗(L;α)− c(a∗(L;α)) + L̂
.

Since x − c(x) is a strictly increasing function on [0, (c′)−1(1)], a∗(L;α) − c(a∗(L;α)) ≤ a∗(H;α) −
c(a∗(H;α)) holds from the assumption that a∗(H;α) < aFB = (c′)−1(1) and the monotonicity in effort

a∗(L;α) ≤ a∗(H;α). Hence, it must be that a∗(H;α)− c(a∗(H;α)) + Ĥ ≥ a∗(L;α)− c(a∗(L;α)) + L̂,

which shows the inequality above.

Now, since a∗(H;α)+Ĥ

a∗(L;α)+L̂
lies between a∗(H;α)−c(a∗(H;α))+Ĥ

a∗(L;α)−c(a∗(L;α))+L̂
and c(a∗(H;α))

c(a∗(L;α))
,24 it follows that:

c′(a∗(H;α))

c′(a∗(L;α))
≤ min

{
a∗(H;α)− c(a∗(H;α)) + Ĥ

a∗(L;α)− c(a∗(L;α)) + L̂
,
c(a∗(H;α))

c(a∗(L;α))

}
≤ a∗(H;α) +H

a∗(L;α) + L
,

which completes the proof.

24This follows from the following fact: assume a1, a2, b1, b2 > 0 and a1

a2
≤ b1

b2
, then a1

a2
≤ a1+b1

a2+b2
≤ b1

b2
. These inequalities

are strict if a1

a2
< b1

b2
.
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Appendix for Empirics

Data Appendix

Sources and Sample Construction

A. Rule of Law Measure

We obtain this measure directly from the Worldwide Governance Indicators (WGI) project website

(Kaufmann et al., 2011). The database covers 216 countries from 1996 to 2020.

B. Country-Level TFP Growth Rates

We use country-level TFP growth rates from the latest version of the Penn World Tables (PWT 10.0).

After we merge this database with WGI database, our sample covers 123 countries over 1996-2019.

For each country c, the variable V OLc denotes the volatility of the country c’s TFP growth rates

from 1996 to 2016.

C. Firm-Level TFP Dispersion

We closely follow data construction procedures in Gopinath et al. (2017). We download all uncon-

solidated financial statements of all manufacturing firms (2-digit NACE code from C.10-C.33) with

from the entire ORBIS universe. Then, we drop the entire history of a firm if the firm has any basic

accounting errors in any year (e.g. negative total assets, employment, sales). After removing observa-

tions that indicate basic accounting errors, we focus on ones that has non-missing data on total assets,

tangible fixed assets, sales, operating revenues, employment, and country information. We also keep

a firm-year only if value added, defined as the difference between the operating revenue and material

costs, is positive. Also, we drop countries with less than one hundred observations (firm-years). After

these procedures, we have 4,786,856 firm-years with 27 countries. Nominal values are deflated via

Producer Price Indices (PPI) obtained from the Datastream database.

We adopt a standard methodology for TFP estimation in the literature. For each country c, we use

the methodology from Ackerberg et al. (2015) to separately estimate parameters βl,c and βk,c:

log(yi,c,t) = log(Zi,c,t) + βl,clog(li,c,t) + βk,clog(ki,c,t) + ϵi,c,t

log(yi,c,t) denotes the nominal value added deflated by PPI for the domestic manufacturing firms,

log(li,c,t) the nominal wage bill deflated by the same PPI, and log(ki,c,t) the value of the sum of

tangible and intangible fixed assets deflated by PPI for the investment good.25 We use intermediate

25We deflate all variables by economy-wide PPI’s for following countries, because other PPI’s were are not available:
Bosnia and Herzegovina, Montenegro, the Republic of Macedonia, Romania, Serbia, and Ukraine.
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goods as a control variable. To do this, we use the STATA code prodest from Manjón and Mañez

(2016).

For each country c and year t, LN TFP9010c,t denotes the TFP difference (in the logarithmic scale)

between the firm with the top 10% productivity and the bottom 10% firm in a country c in a year.

As samples above, AV G RLc denotes the average rule of law of the country c over the corresponding

sample period. After merging the ORBIS sample with the WGI and WDI data, we obtain a sample

of 26 countries.
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Table 7: Replication of Acemoglu et al. (2001)’s Main Results (Volatility Sample)

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Protection Against 0.538*** 0.554*** 0.434*** 0.429*** 0.407*** 0.407***
Expropriation Risk (0.0330) (0.0374) (0.0313) (0.0426) (0.0562) (0.0573)

Average Homicide 0.007 -0.001 -0.000
(0.004) (0.005) (0.00566)

Latitude 0.356 0.356
(0.484) (0.535)

Continent FE No No Yes Yes Yes Yes
Observations 101 101 101 101 101 101
R2 0.609 0.614 0.700 0.700 0.702 0.702

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Protection Against 0.854*** 0.882*** 0.817*** 0.843*** 0.957*** 0.963***
Expropriation Risk (0.118) (0.122) (0.152) (0.158) (0.253) (0.251)

Average Homicide 0.012** 0.005 0.004
(0.006) (0.007) (0.008)

Latitude -1.283 -1.168
(1.429) (1.448)

Continent FE No No Yes Yes Yes Yes
Observations 44 44 44 44 44 44
Anderson-Rubin statistics 14.16 14.91 15.53 10.12 13.29 12.61

Panel C: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.888*** -0.875*** -0.774*** -0.738*** -0.581*** -0.576***
(0.154) (0.157) (0.184) (0.172) (0.199) (0.200)

Average Homicide -0.007 -0.010 -0.005
(0.011) (0.012) (0.012)

Latitude 2.294* 2.132
(1.216) (1.312)

Continent FE No No Yes Yes Yes Yes
Observations 44 44 44 44 44 44
R2 0.503 0.508 0.529 0.537 0.560 0.562
F-statistics 33.16 31.22 17.71 18.31 8.51 8.27

We replicate Acemoglu et al. (2001)’s main results in the volatility sample. Panel A reports the OLS coefficients of

equation (2) in the main text. Panel B and Panel C report IV and first-stage estimates (respectively) of the sytem of

equations (3) in the main text. Data sources are described in section 5.2 and 5.2.1 of the main text. Standard

deviations are in percentage terms. Robust Standard errors are in parentheses. Asterisks *, **, and *** denote

statistical significance at 10%, 5%, and 1%, respectively. 57



Table 8: Replication of Acemoglu et al. (2012)’s OLS Results (TFP Dispersion Sample)

(1) (2) (3) (4) (5) (6)
Average Protection Against 0.734*** 0.687*** 0.754*** 0.694*** 0.735*** 0.672***
Expropriation Risk (0.132) (0.0984) (0.148) (0.109) (0.135) (0.0940)

Average Homicide -0.329* -0.309 -0.316
(0.172) (0.205) (0.190)

Europe -0.296** -0.0671 -0.420* -0.197
(0.132) (0.158) (0.197) (0.157)

Latitude 0.867 0.945
(0.761) (0.693)

Constant 2.728* 3.579*** 2.803* 3.545*** 2.626* 3.369***
(1.289) (0.960) (1.361) (1.035) (1.299) (0.906)

Observations 17 17 17 17 17 17
R2 0.691 0.794 0.725 0.795 0.741 0.815

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 9: Replication of Acemoglu et al. (2012)’s Main Results (Inequality Sample)

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Protection Against 0.519*** 0.539*** 0.417*** 0.417*** 0.397*** 0.398***
Expropriation Risk (0.0493) (0.0574) (0.0429) (0.0605) (0.0725) (0.0792)

Average Homicide 0.005 0.000 0.000
(0.003) (0.005) (0.005)

Latitude 0.254 0.258
(0.525) (0.543)

Continent FE No No Yes Yes Yes Yes
Observations 76 76 76 76 76 76
R2 0.561 0.566 0.643 0.643 0.644 0.644

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Protection Against 0.775*** 0.821*** 0.710*** 0.743*** 0.752*** 0.762***
Expropriation Risk (0.155) (0.161) (0.168) (0.181) (0.230) (0.227)

Average Homicide 0.014*** 0.007 0.008
(0.005) (0.006) (0.006)

Latitude -0.374 -0.166
(0.977) (0.900)

Continent FE No No Yes Yes Yes Yes
Observations 36 36 36 36 36 36
Anderson-Rubin statistics 33.88*** 33.71*** 23.17*** 18.65*** 7.23*** 6.95***

Panel C: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.916*** -0.867*** -0.841*** -0.765*** -0.705*** -0.687***
(0.185) (0.175) (0.194) (0.172) (0.224) (0.210)

Average Homicide -0.017*** -0.021*** -0.020***
(0.005) (0.005) (0.005)

Latitude 1.450 0.873
(1.328) (1.343)

Continent FE No No Yes Yes Yes Yes
Observations 36 36 36 36 36 36
R2 0.434 0.496 0.464 0.549 0.483 0.556
F-statistics 24.53*** 24.58*** 18.73*** 19.85*** 9.95*** 10.70***

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 10: Volatility Results Based on IHS Measure

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -5.197*** -5.860*** -5.030*** -5.538*** -6.437*** -6.630***
(1.373) (1.638) (1.499) (1.730) (1.949) (2.067)

Average Homicide -0.0280 -0.0174 -0.00793
(0.0222) (0.0211) (0.0202)

Latitude 3.312** 3.222**
(1.638) (1.602)

Continent FE No No Yes Yes Yes Yes
Observations 108 108 108 108 108 108
R2 0.154 0.186 0.210 0.225 0.238 0.247

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -4.529** -4.839** -5.271*** -5.975** -7.692** -8.047**
(2.161) (2.406) (1.816) (2.322) (3.637) (3.706)

Average Homicide -0.0216 -0.0252 -0.0296
(0.0302) (0.0291) (0.0317)

Latitude 3.903 3.141
(3.585) (2.887)

Continent FE No No Yes Yes Yes Yes
Observations 44 44 44 44 44 44
Anderson-Rubin statistics 4.38** 3.75* 7.57*** 6.44** 5.36** 4.78**

Panel B: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.137*** -0.127*** -0.136*** -0.115*** -0.0809*** -0.0766***
(0.0206) (0.0212) (0.0265) (0.0220) (0.0272) (0.0262)

Average Homicide -0.005*** -0.006*** -0.004***
(0.001) (0.001) (0.001)

Latitude 0.651*** 0.504***
(0.141) (0.150)

Continent FE No No Yes Yes Yes Yes
Observations 44 44 44 44 44 44
R2 0.556 0.680 0.565 0.691 0.682 0.756
F-statistics 44.23 *** 35.83*** 26.28*** 27.12*** 8.86*** 8.59***

We report the empirical results based on IHS Markit’s Rule of Law measure. Panel A reports OLS coefficients of

equation (2). Panel B and Panel C report IV and first-stage estimates (respectively) of the sytem of equations (3).

Data sources are described in section 5.2 and 5.2.1. Standard deviations are in percentage terms. Robust Standard

errors are in parentheses. Asterisks *, **, and *** denote statistical significance at 10%, 5%, and 1%, respectively.
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Table 11: Volatility Results (Without Low-income Countries)

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -1.054*** -1.160*** -1.025*** -1.075*** -1.326*** -1.300***
(0.334) (0.402) (0.337) (0.388) (0.446) (0.461)

Average Homicide -0.0196 -0.00806 0.00538
(0.0207) (0.0193) (0.0175)

Latitude 3.265* 3.349**
(1.681) (1.653)

Continent FE No No Yes Yes Yes Yes
Observations 98 98 98 98 98 98
R2 0.203 0.211 0.236 0.237 0.282 0.282

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -0.529** -0.497** -0.740*** -0.698*** -0.805** -0.782**
(0.208) (0.251) (0.187) (0.212) (0.350) (0.384)

Average Homicide 0.00606 0.00632 0.00628
(0.0214) (0.0198) (0.0197)

Latitude 0.521 0.674
(2.322) (2.026)

Continent FE No No Yes Yes Yes Yes
Observations 40 40 40 40 40 40
Anderson-Rubin statistics 6.26** 3.58 * 6.77*** 9.84*** 5.36** 3.76*

Panel C: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.706*** -0.646*** -0.678*** -0.594*** -0.470*** -0.446***
(0.127) (0.130) (0.135) (0.128) (0.150) (0.158)

Average Homicide -0.0162*** -0.0185*** -0.0140**
(0.00565) (0.00662) (0.00648)

Latitude 2.457*** 1.990**
(0.819) (0.887)

Continent FE No No Yes Yes Yes Yes
Observations 40 40 40 40 40 40
R2 0.578 0.638 0.585 0.650 0.663 0.698
F-statistics 30.83*** 24.71*** 25.43*** 21.47*** 9.80 *** 7.98 ***

We report the empirical results after dropping low-income countries (as defined by World Bank). Panel A reports

OLS coefficients of equation (2). Panel B and Panel C report IV and first-stage estimates (respectively) of the sytem

of equations (3). Data sources are described in section 5.2 and 5.2.1. Standard deviations are multiplied by 100, so

that coefficients can be interpreted in percentage terms. Robust Standard errors are in parentheses. Asterisks *, **,

and *** denote statistical significance at 10%, 5%, and 1%, respectively.
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Table 12: Volatility Results Based on IHS Measure (Without Low-income Countries)

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -4.585*** -5.354*** -4.576*** -5.023** -6.122*** -6.185***
(1.559) (2.010) (1.614) (1.969) (2.162) (2.340)

Average Homicide -0.0271 -0.0143 -0.00247
(0.0250) (0.0228) (0.0202)

Latitude 3.513* 3.482**
(1.785) (1.711)

Continent FE No No Yes Yes Yes Yes
Observations 98 98 98 98 98 98
R2 0.185 0.197 0.231 0.234 0.282 0.282

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -2.440** -2.360** -3.434*** -3.383*** -4.213** -4.205**
(0.951) (1.192) (0.875) (1.041) (1.855) (2.132)

Average Homicide 0.00330 0.00165 0.000434
(0.0231) (0.0216) (0.0228)

Latitude 1.341 1.350
(2.682) (2.356)

Continent FE No No Yes Yes Yes Yes
Observations 40 40 40 40 40 40
Anderson-Rubin statistics 6.26** 3.58* 14.18*** 9.84*** 5.36** 3.76 *

Panel C: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.153*** -0.136*** -0.146*** -0.123*** -0.0898*** -0.0829**
(0.0275) (0.0286) (0.0303) (0.0280) (0.0303) (0.0314)

Average Homicide -0.00459*** -0.00520*** -0.00400***
(0.00103) (0.00118) (0.00111)

Latitude 0.664*** 0.531***
(0.146) (0.157)

Continent FE No No Yes Yes Yes Yes
Observations 40 40 40 40 40 40
R2 0.580 0.683 0.590 0.701 0.713 0.774
F-statistics 31.06*** 22.42*** 23.34*** 19.31*** 8.79*** 6.98**

We report the empirical results after dropping low-income countries (as defined by World Bank) and the IHS Markit’s

Rule of Law measure. Panel A reports OLS coefficients of equation (2) in the main text. Panel B and Panel C report

IV and first-stage estimates (respectively) of the sytem of equations (3). Data sources are described in section 5.2 and

5.2.1 of the main text. Standard deviations are multiplied by 100, so that coefficients can be interpreted in percentage

terms. Robust Standard errors are in parentheses. Asterisks *, **, and *** denote statistical significance at 10%, 5%,

and 1%, respectively.
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Table 13: Average TFP Dispersion Robustness Checks

Panel A: Regressions Based on IHS Measure

(1) (2) (3) (4) (5) (6)

Average Rule of Law -2.467*** -2.663*** -2.538*** -2.655*** -2.514*** -2.707***
(0.252) (0.249) (0.216) (0.258) (0.233) (0.323)

Average Homicide -0.0345 -0.0214 -0.0263
(0.0286) (0.0269) (0.0346)

Latitude -0.143 0.147
(0.453) (0.524)

Europe FE No No Yes Yes Yes Yes
Observations 26 26 26 26 26 26
R2 0.743 0.752 0.787 0.790 0.787 0.790

Panel B: Regressions Without Low-income Countries

(1) (2) (3) (4) (5) (6)

Average Rule of Law -0.488*** -0.490*** -0.494*** -0.490*** -0.543*** -0.562***
(0.0600) (0.0602) (0.0621) (0.0641) (0.0688) (0.0787)

Average Homicide -0.00523 0.0104 -0.0185
(0.0254) (0.0167) (0.0248)

Latitude 0.799* 0.996*
(0.403) (0.534)

Europe FE No No Yes Yes Yes Yes
Observations 25 25 25 25 25 25
R2 0.713 0.714 0.754 0.755 0.769 0.771

Panel C: Regressions Based on IHS Measure, Without Low-income Countries

(1) (2) (3) (4) (5) (6)

Average Rule of Law -2.319*** -2.533*** -2.391*** -2.543*** -2.329*** -2.634***
(0.320) (0.286) (0.286) (0.291) (0.299) (0.349)

Average Homicide -0.0629** -0.0470*** -0.0567**
(0.0235) (0.0134) (0.0226)

Latitude -0.276 0.268
(0.419) (0.470)

Europe FE No No Yes Yes Yes Yes
Observations 25 25 25 25 25 25
R2 0.658 0.691 0.718 0.735 0.720 0.736

Panel A reports OLS coefficients of equation (4). Panel B estimates the same equation (4), but instead uses the IHS

Markit’s Rule of Law measure as the outcome variable. Panel C reports the results after low-income countries (as

defined by World Bank) are dropped from the sample. Other data sources are described in section 5.2 and 5.2.1.

Robust Standard errors are in parentheses. Asterisks *, **, and *** denote statistical significance at 10%, 5%, and

1%, respectively.
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Table 14: Pay Inequality Results Based on IHS Measure

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -1.999*** -1.975*** -1.392*** -1.242** -1.081** -0.993*
(0.409) (0.459) (0.468) (0.540) (0.483) (0.540)

Average Homicide 0.001 0.008 0.005
(0.011) (0.009) (0.010)

Latitude -1.034* -1.003*
(0.529) (0.532)

Continent FE No No Yes Yes Yes Yes
Observations 94 94 94 94 94 94
R2 0.230 0.230 0.323 0.327 0.355 0.356

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -2.471*** -2.645*** -2.384*** -2.660*** -2.707** -2.733**
(0.602) (0.677) (0.703) (0.844) (1.075) (1.123)

Average Homicide -0.015 -0.020 -0.021
(0.010) (0.013) (0.013)

Latitude 0.536 0.117
(1.141) (1.008)

Continent FE No No Yes Yes Yes Yes
Observations 32 32 32 32 32 32
Anderson-Rubin statistics 14.57*** 13.42*** 11.51*** 10.82*** 8.70*** 8.51***

Panel C: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.155*** -0.144*** -0.145*** -0.130*** -0.116*** -0.115***
(0.0234) (0.0201) (0.0242) (0.0198) (0.0297) (0.0257)

Average Homicide -0.006*** -0.007*** -0.007***
(0.001) (0.001) (0.001)

Latitude 0.334 0.192
(0.200) (0.190)

Continent FE No No Yes Yes Yes Yes
Observations 32 32 32 32 32 32
R2 0.549 0.666 0.588 0.744 0.635 0.759
F-statistics 43.96*** 35.74*** 35.74*** 43.35*** 15.19*** 19.93***

We report the empirical results based on the IHS Markit’s Rule of Law measure. Panel A reports OLS coefficients of

equation (2). Panel B and Panel C report IV and first-stage estimates (respectively) of the sytem of equations (3).

The outcome variable in Panel A and Panel B is “Average Pay inequality,” which can be obtained from the

UT-UNIDO database. Other data sources are described in section 5.2 and 5.2.1. Robust Standard errors are in

parentheses. Asterisks *, **, and *** denote statistical significance at 10%, 5%, and 1%, respectively.
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Table 15: Wage Inequality Results (Without Low-income Countries)

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -0.539*** -0.538*** -0.445*** -0.419*** -0.371*** -0.364***
(0.0705) (0.0762) (0.0782) (0.0897) (0.0816) (0.0885)

Average Homicide 0.000 0.004 0.001
(0.004) (0.004) (0.004)

Latitude -0.939** -0.915*
(0.461) (0.486)

Continent FE No No Yes Yes Yes Yes
Observations 90 90 90 90 90 90
R2 0.329 0.329 0.401 0.404 0.429 0.430

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -0.483*** -0.503*** -0.437*** -0.464*** -0.397*** -0.405***
(0.120) (0.132) (0.116) (0.129) (0.147) (0.151)

Average Homicide -0.004 -0.005 -0.005
(0.00402) (0.005) (0.005)

Latitude -0.339 -0.492
(0.820) (0.830)

Continent FE No No Yes Yes Yes Yes
Observations 33 33 33 33 33 33
Anderson-Rubin statistics 13.66*** 12.20*** 12.45*** 11.17 *** 7.03*** 6.98***

Panel C: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.841*** -0.801*** -0.830*** -0.776*** -0.751*** -0.737***
(0.0914) (0.0823) (0.0984) (0.0785) (0.133) (0.114)

Average Homicide -0.010** -0.013** -0.012**
(0.004) (0.005) (0.005)

Latitude 0.794 0.420
(0.868) (0.882)

Continent FE No No Yes Yes Yes Yes
Observations 33 33 33 33 33 33
R2 0.666 0.714 0.672 0.738 0.683 0.741
F-statistics 84.71*** 94.73*** 71.03*** 97.69*** 32.04*** 41.84***

We report the empirical results after dropping low-income countries (as defined by World Bank). Panel A reports

OLS coefficients of equation (2). Panel B and Panel C report IV and first-stage estimates (respectively) of the sytem

of equations (3). The outcome variable in Panel A and Panel B is “Average Pay inequality,” which can be obtained

from the UT-UNIDO database. Other data sources are described in section 5.2 and 5.2.1. Robust Standard errors are

in parentheses. Asterisks *, **, and *** denote statistical significance at 10%, 5%, and 1%, respectively.
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Table 16: Pay Inequality Results Based on IHS Measure (Without Low-income Countries)

Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -2.191*** -2.209*** -1.677*** -1.560*** -1.394*** -1.345***
(0.386) (0.422) (0.429) (0.505) (0.432) (0.497)

Average Homicide -0.000846 0.00519 0.00241
(0.0105) (0.00910) (0.00984)

Latitude -0.901* -0.884*
(0.519) (0.527)

Continent FE No No Yes Yes Yes Yes
Observations 86 86 86 86 86 86
R2 0.252 0.252 0.348 0.350 0.373 0.373

Panel B: IV Regressions

(1) (2) (3) (4) (5) (6)

Average Rule of Law -2.318*** -2.483*** -2.137*** -2.373*** -2.084*** -2.097***
(0.595) (0.670) (0.621) (0.704) (0.784) (0.805)

Average Homicide -0.013 -0.018 -0.017
(0.010) (0.011) (0.011)

Latitude -0.091 -0.469
(0.942) (0.867)

Continent FE No No Yes Yes Yes Yes
Observations 30 30 30 30 30 30
Anderson-Rubin statistics 12.60*** 11.42*** 10.90*** 10.32*** 6.93*** 6.74***

Panel C: First-Stage Regressions

(1) (2) (3) (4) (5) (6)

Logged Settler Mortality -0.174*** -0.162*** -0.167*** -0.151*** -0.142*** -0.141***
(0.0208) (0.0171) (0.0215) (0.0131) (0.0277) (0.0198)

Average Homicide -0.006*** -0.00707*** -0.007***
(0.001) (0.001) (0.001)

Latitude 0.260 0.110
(0.201) (0.183)

Continent FE No No Yes Yes Yes Yes
Observations 30 30 30 30 30 30
R2 0.641 0.755 0.663 0.812 0.690 0.817
F-statistics 70.16*** 89.07*** 60.09*** 133.10*** 26.27*** 51.12***

We report the empirical results after dropping low-income countries (as defined by World Bank). Panel A reports

OLS coefficients of equation (2). Panel B and Panel C report IV and first-stage estimates (respectively) of the sytem

of equations (3). The outcome variable in Panel A and Panel B is “Average Pay inequality,” which can be obtained

from the UT-UNIDO database. Other data sources are described in section 5.2 and 5.2.1. Robust Standard errors are

in parentheses. Asterisks *, **, and *** denote statistical significance at 10%, 5%, and 1%, respectively.
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