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Abstract

We study settings in which, prior to playing an incomplete information game,
players observe many draws of private signals about the state from some infor-
mation structure. Signals are i.i.d. across draws, but may display arbitrary
correlation across players. For each information structure, we define a simple
learning efficiency index, which only considers the statistical distance between
the worst-informed player’s marginal signal distributions in different states. We
show, first, that this index characterizes the speed of common learning (Cripps,
Ely, Mailath, and Samuelson, 2008): In particular, the speed at which players
achieve approximate common knowledge of the state coincides with the slowest
player’s speed of individual learning, and does not depend on the correlation
across players’ signals. Second, we build on this characterization to provide
a ranking over information structures: We show that, with sufficiently many
signal draws, information structures with a higher learning efficiency index lead
to better equilibrium outcomes, robustly for a rich class of games and objec-
tive functions that are “aligned at certainty.” We discuss implications of our
results for constrained information design in games and for the question when
information structures are complements vs. substitutes.
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1 Introduction

1.1 Overview

Suppose a group of players (e.g., firms) are about to engage in an incomplete in-
formation game (e.g., joint investment in a project of unknown profitability). Prior
to choosing their actions in the game, players have access to many draws of private
signals about the unknown state from some information structure (capturing, for in-
stance, that data is “cheap” or abundant). While signals are assumed i.i.d. across
draws, we allow them to be arbitrarily correlated across players.

This paper studies comparisons of information structures in such a setting, ad-
dressing two related questions. First, which information structures induce faster
learning? In strategic settings, learning not only concerns each agent’s beliefs about
the state, but also agents’ higher-order uncertainty about other agents’ beliefs. Thus,
for each information structure, we quantify the speed of common learning (Cripps, Ely,
Mailath, and Samuelson, 2008), i.e., the speed at which repeated signal draws allow
agents to achieve approximate common knowledge of the state. Second, when agents
observe a large number of signal draws prior to playing a game, which information
structures induce “better” equilibrium outcomes? Based on our characterization of the
speed of learning, we obtain a ranking over information structures that answers this
question. The ranking applies for a rich class of games and objective functions that
are “aligned at certainty,” permitting a robust comparison of information structures
that does not require an understanding of the full details of the strategic environment.

To address both these questions, we introduce a learning efficiency index for
multi-agent information structures. An information structure maps each state to
a joint distribution over all agents’ private signals, where both states and signals
are assumed finite. Our index reduces each information structure to a simple one-
dimensional measure, which only quantifies how difficult the worst-informed agent
finds it to distinguish the two states that are hardest to tell apart based on her
private signal observations. Here, each agent i’s difficulty of distinguishing any two
states is measured by the (Chernoff) statistical distance between i’s marginal signal
distributions in each state. Notably, since the learning efficiency index is derived
only from agents’ marginal signal distributions, it does not depend on the correlation
across agents’ signals.

Our first main result is that this index characterizes agents’ speed of common
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learning. More precisely, for any information structure I, we consider the probability
that agents have approximate common knowledge (in the sense of common p-belief)
of the true state after t i.i.d. signal draws from I. Theorem 1 shows that, as t grows
large, this probability converges to one at an exponential rate given by the learning
efficiency index of I. Approximate common knowledge is a much more demanding
notion than individual knowledge, as it imposes confidence not only on agents’ first-
order beliefs about the state, but on their infinite hierarchy of higher-order beliefs.
However, the fact that our learning efficiency index does not depend on the correlation
across agents’ signals has the following important implication: Common learning and
individual learning occur at the same rate. Thus, with many signal observations,
agents’ higher-order belief uncertainty vanishes at least as fast as their first-order
uncertainty. The proof of Theorem 1 relies on a key lemma that uses the “second
law of thermodynamics” for Markov chains to relate agents’ observations and their
higher-order beliefs via Kullback-Leibler divergence (Lemma 1).

Second, building on Theorem 1, we use the learning efficiency index to provide
a large-sample ranking over information structures in games. With any game, we
associate an objective function over outcomes in each state, capturing, for instance,
agents’ welfare or a designer’s preferences. Theorems 2–3 identify a class of games and
objectives for which information structures with a higher learning efficiency index in-
duce better (Bayes-Nash) equilibrium outcomes whenever agents observe sufficiently
many signal draws. The substantive assumption imposed on the game and objective
function is that, under common knowledge of the state, the first-best outcome (ac-
cording to the objective) can be achieved by some strict Nash equilibrium of the game.
As this assumption only requires the objective and agents’ incentives to be aligned at
certainty, it allows for rich strategic externalities. For instance, if the objective is to
maximize utilitarian welfare, this assumption captures many important coordination
games in the literature, such as the illustrative example below.

Based on the structure of the learning efficiency index, this ranking has impli-
cations for the design of information structures in games: In particular, if agents
have access to many signal draws, then the way to achieve better equilibrium out-
comes is by improving the worst-informed agent’s information about the state. In
contrast, providing signals about other agents’ signals that do not contain additional
information about the state is not effective. Thus, whereas a central insight in the
literature on incomplete information games is that higher-order belief uncertainty
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can be a significant source of inefficiency, our results suggest that, when agents have
access to large samples of signals, reducing higher-order belief uncertainty becomes a
second-order concern.

Section 5 discusses further implications of our results for constrained informa-
tion design in games, the question when information structures are complements vs.
substitutes, and the informativeness of agents’ higher-order expectations.

Illustrative example: Joint investment. Consider two players i = 1, 2, with
symmetric action sets Ai = {−1, 1, 0}, where action 1 (resp., −1) represents investing
in project 1 (resp., project −1) and 0 represents no investment. The state of the world
θ ∈ {−1, 1} captures which of the two projects will succeed and is drawn according
to some non-degenerate prior p0. Each player i’s utility takes the form

ui(a1, a2, θ) = 1{a1=a2=θ} − c|ai|;

that is, if i chooses to invest in either project, she incurs an investment cost of
c ∈ (0, 1), and she receives a payoff of 1 if and only if she invests in the successful
project and her opponent also invests in this project. Under utilitarian welfare,
1
2

(u1(a, θ) + u2(a, θ)), the efficient outcome is to play (θ, θ) in state θ. This is a strict
Nash equilibrium of the game under common knowledge of θ, but is not achievable
as a Bayes-Nash equilibrium under incomplete information.

Now suppose that, prior to playing the game, players learn about state θ from
repeated i.i.d. signal draws. Our learning efficiency index yields a generically complete
ranking over information structures that makes it possible to compare how fast players
achieve approximate common knowledge of θ, and hence how close the induced (best-
case) equilibrium play is to the efficient outcome after sufficiently many signal draws.
For example, consider a simple class of binary information structures, where each
player i’s private signal realizations xi are either −1 or 1, and the joint probabilities
of players’ signals conditional on state θ are as follows:

x1 = θ x1 6= θ
x2 = θ γρ+ γ2(1− ρ) γ(1− γ)(1− ρ)
x2 6= θ γ(1− γ)(1− ρ) (1− γ)ρ+ (1− γ)2(1− ρ)

Each information structure is summarized by two parameters: The individual
precision parameter γ ∈ (1/2, 1) captures the probability with which each player’s
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signal matches the state; the parameter ρ ∈ [0, 1] captures the extent of correlation
across players’ signals (signals are independent if ρ = 0 and perfectly correlated if
ρ = 1). Higher values of γ improve each player’s individual learning about state
θ, while higher values of ρ facilitate more accurate predictions of the opponent’s
signals (and hence their beliefs and actions). Thus, in comparing two information
structures parametrized by (γ, ρ) and (γ̃, ρ̃), it might not be clear how to trade off
these two considerations. Indeed, if players observe only a small number of signal
draws, whether (γ, ρ) or (γ̃, ρ̃) induces better equilibrium play can vary across different
priors p0 and investment costs c.1

However, we will show that our learning efficiency index depends only on γ. Thus,
for any p0 and c, higher levels of individual precision γ guarantee better equilibrium
welfare whenever players observe sufficiently many signal draws; in contrast, the effect
of correlation ρ becomes negligible as the number of signals grows large. As we will
see, this is due to the fact that the speed of common learning is the same as the speed
of individual learning, because uncertainty about opponents’ signals vanishes faster
than uncertainty about the state.

1.2 Related Literature

Our paper bridges the literatures on higher-order beliefs and the speed of learning.
Within the former, we relate most closely to Cripps, Ely, Mailath, and Samuelson
(2008), henceforth CEMS. Their main result establishes that, in the current setting
(with finite states and signals), every information structure leads to common learning
as the number of signal observations goes to infinity.2 We derive a simple learning effi-
ciency index that characterizes the speed of common learning under each information
structure. Characterizing the speed of learning is also essential for our second contri-
bution of comparing how different information structures affect equilibrium outcomes
after a large but finite number of signal draws. As we discuss (Remark 2), our proof
of Theorem 1 uses Markov chain arguments that are related to CEMS’ approach, but

1For example, suppose players observe only one signal draw. Then the best equilibrium (under
utilitarian welfare) varies across different parameters (p0, c) (e.g., it might involve each player i
always investing in project xi, or i investing in project 1 when xi = 1 and not investing when
xi = −1), and each of these possibilities induces a different ranking over (γ, ρ).

2Several papers (e.g., Steiner and Stewart, 2011; Cripps, Ely, Mailath, and Samuelson, 2013)
study common learning when signals are correlated across draws. Liang (2019) considers non-
Bayesian agents who learn from public signals. Acemoglu, Chernozhukov, and Yildiz (2016) consider
a setting that features identification problems due to uncertainty about the information structure.
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is based on a different construction.
Moscarini and Smith (2002) derive an efficiency index that characterizes the speed

of single-agent learning.3 As we discuss (Remark 1), our multi-agent index can be
seen to reduce to theirs in the single-agent case. The main novelty of our analysis
is to show that higher-order belief uncertainty vanishes at least as fast as first-order
uncertainty; thus, the multi-agent index corresponds to the slowest individual agent’s
learning index, while the correlation across agents’ signals plays no role.

The speed of learning has also been analyzed in various social learning environ-
ments, but most work has not focused on the role of higher-order beliefs.4 A notable
exception is Harel, Mossel, Strack, and Tamuz (2021), who consider a setting in which
long-lived agents repeatedly observe both private signals and other agents’ actions, so
that higher-order beliefs matter for agents’ inferences. They derive an upper bound
on the speed of first-order learning that holds uniformly across all population sizes.
We study learning from exogenous signals rather than from others’ actions, but pro-
vide an exact characterization of the convergence speed of both higher-order and
first-order beliefs.

Theorems 2–3 relate to the literature on comparisons of information structures.
Blackwell’s (1951) order compares single-agent information structures in terms of
their induced payoffs in all decision problems, assuming that the agent observes a
single signal draw. Moscarini and Smith’s (2002) aforementioned efficiency index
extends this order to single-agent settings with a large number of i.i.d. signal draws.
Mu, Pomatto, Strack, and Tamuz (2021) (see also Azrieli, 2014) consider a more
demanding order than Moscarini and Smith (2002), by requiring the number of signal
observations to be uniform across decision problems.

Several papers extend the Blackwell order to multi-agent settings, focusing on the
single signal draw case. Gossner (2000) compares (Bayes-Nash) equilibrium outcomes
for general games and objective functions. He shows that this yields a very conserva-
tive order, where no two information structures that induce different (higher-order)
beliefs can be compared. Thus, one needs to restrict the class of games and objectives
to obtain less degenerate rankings.5 In particular, Lehrer, Rosenberg, and Shmaya

3See also Frick, Iijima, and Ishii (2021) and Fudenberg, Lanzani, and Strack (2021) in the context
of misspecified single-agent learning.

4See, e.g., Vives (1993); Duffie and Manso (2007); Hann-Caruthers, Martynov, and Tamuz (2018);
Rosenberg and Vieille (2019); Liang and Mu (2020); Dasaratha and He (2019).

5Bergemann and Morris (2016) study general games using a different approach. They consider
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(2010) focus on common interest games with utilitarian welfare, and characterize the
order based on a generalization of Blackwell’s garbling condition, while Pęski (2008)
compares min-max values in zero-sum games. Our exercise is most comparable to
Lehrer, Rosenberg, and Shmaya (2010), in that we also impose a form of alignment
on agents’ incentives and the objective function. However, as we discuss in Sec-
tion 4.2, by assuming that agents observe many signal draws, we obtain a ranking
that is a completion of Lehrer, Rosenberg, and Shmaya’s (2010) order and applies
to a richer class of games and objective functions beyond the common-interest (i.e.,
full-alignment) case.

2 Setting

Throughout the paper, we fix a finite set of agents I, a finite set of states Θ, and a
full-support (common) prior belief p0 ∈ ∆(Θ).

An information structure I consists of a finite set of private signals Xi for
each agent i, with corresponding set of signal profiles X :=

∏
i∈I Xi, as well as a

distribution µθ ∈ ∆(X) over signal profiles conditional on each state θ ∈ Θ. Let
µθi ∈ ∆(Xi) denote the marginal distribution over agent i’s private signals in state θ.
We assume that, for all agents i and states θ, µθi has full support and µθi 6= µθ

′
i for all

θ′ 6= θ. Note that the joint distribution µθ may display arbitrary correlation.
A basic game G consists of a finite set of actions Ai for each agent i, with

corresponding set of action profiles A :=
∏

i∈I Ai, as well as a utility function ui :

A×Θ→ R over action profiles and states for each agent i.
We consider settings where prior to playing a basic game G, agents observe re-

peated i.i.d. signal draws from an information structure I. Formally, for each infor-
mation structure I and t ∈ N, let PIt ∈ ∆(Θ×X t) denote the probability distribution
over states and sequences of signal profiles that results when the state θ is drawn ac-
cording to prior p0 and, conditional on each state θ, a sequence xt = (xτ )τ=1,...,t of
signal profiles is generated according to t independent draws from µθ. For each basic
game G, we consider the incomplete information game Gt(I), where states and
signal sequences are drawn according to PIt and a strategy σit : (Xi)

t → ∆(Ai) for
agent i maps i’s observed sequence of private signals xti = (xiτ )τ=1,...,t to a mixed

Bayes correlated equilibria, which are equivalent to Bayes-Nash equilibria in a setting with a mediator
who commits to sending action recommendations after observing the state and signals.
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action in Ai. Note that each agent i only observes her own sequence of private signals
xti and that the game is played once at the end of the entire sequence of t signal draws.

Let BNEt(G, I) denote the set of Bayes-Nash equilibria (BNE) of Gt(I). That is,
a strategy profile σt = (σit)i∈I is in BNEt(G, I) if for each i ∈ I, xti ∈ X t

i , and ai with
σit(ai | xti) > 0,

ai ∈ argmax
a′i∈Ai

∑
θ∈Θ,xt−i∈Xt

−i

PIt (θ, xt−i | xti)
∑

a−i∈A−i

σ−i(a−i | xt−i)ui(a′i, a−i, θ).

3 Multi-Agent Learning Efficiency

3.1 Common Learning

Our first goal is to characterize the learning efficiency of each information structure I.
To formalize learning, we employ CEMS’ notion of common learning. This captures
that, in multi-agent settings, learning not only concerns agents’ beliefs about the state
θ, but also their higher-order uncertainty about other agents’ beliefs.

Fix an information structure I. For any t ∈ N, p ∈ (0, 1), and event E ⊆ Θ×X t,
let Bp

t (E) denote the event that E is p-believed at t, i.e., that all agents assign
probability at least p to E after t draws from I. Formally,

Bp
t (E) :=

⋂
i∈I

Bp
it(E), where Bp

it(E) := Θ× {xti ∈ X t
i : PIt (E | xti) ≥ p} ×

∏
j 6=i

X t
j .

Since µθi 6= µθ
′
i for all i and θ 6= θ′, standard arguments imply that all players indi-

vidually learn the true state; that is, for all p ∈ (0, 1) and θ ∈ Θ, we have

lim
t→∞

PIt (Bp
t (θ) | θ) = 1,

where, slightly abusing notation, we also use θ to denote the event {θ} ×X t.
While individual learning only requires all agents’ first-order beliefs to eventually

assign probability arbitrarily close to 1 to the true state, CEMS’ notion of common
learning additionally considers agents’ higher-order beliefs. Let

Cp
t (E) :=

⋂
k∈N

(Bp
t )
k(E)
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denote the event that E is commonly p-believed at t. Thus, at Cp
t (E), the event E

is p-believed, the event Bp
t (E) is p-believed, and so on. Common learning obtains

if the true state is eventually commonly p-believed for p arbitrarily close to 1; that
is, for all p ∈ (0, 1) and θ ∈ Θ,

lim
t→∞

PIt (Cp
t (θ) | θ) = 1. (1)

The event Cp
t (θ) for p close to 1 captures that players have approximate common

knowledge of state θ. Conditional on this event, for any basic game G, equilibria
in BNEt(G, I) approximate equilibria of G under common knowledge of θ (as made
precise by Monderer and Samet, 1989).

The main result in CEMS is that when states and signals are finite, as in our
setting, then common learning always obtains:6

Proposition 0 (CEMS). For any information structure I, common learning obtains.

3.2 Characterization of Learning Efficiency

Proposition 0 shows that all information structures eventually lead to approximate
common knowledge of the state. However, it says nothing about the rate at which the
convergence in (1) is achieved, and hence about how different information structures
I affect equilibrium play in game Gt(I) at finite t. To measure the learning efficiency
of each information structure, we derive a simple index that characterizes this rate
for each I.

First, define the Chernoff distance between any two distributions µ, µ′ ∈ ∆(Y )

over a finite set Y by

d(µ, µ′) := min
ν∈∆(Y )

max{KL(ν, µ),KL(ν, µ′)}. (2)

Here, KL(ν, µ) :=
∑

y∈Y ν(y) log ν(y)
µ(y)

denotes the Kullback-Leibler (henceforth, KL)
divergence of ν relative to µ.7 Smaller values of KL(ν, µ) quantify that an empirical
distribution ν is better explained by the theoretical distribution µ, in the sense that
(a large number of) repeated i.i.d. draws from µ are more likely to generate empirical
distributions ν with a smaller KL-divergence relative to µ. The Chernoff distance is a

6See Section 5.4 for a discussion of more general settings.
7We use the convention that 0 log 0 = 0

0 = 0 and log 1
0 =∞.
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common statistical measure of the dissimilarity of distributions µ and µ′ (e.g., Cover
and Thomas, 1999). To understand this definition, observe that any minimizer ν of
(2) must satisfy KL(ν, µ) = KL(ν, µ′), so d(µ, µ′) is the distance from µ and µ′ to
their KL-midpoint. Thus, the smaller d(µ, µ′), the more difficult it is to statistically
distinguish µ and µ′, because repeated draws from either distribution are more likely
to generate an empirical distribution ν that is explained equally well by µ and µ′.
Note that d(µ, µ′) is symmetric and that d(µ, µ′) > 0 whenever µ 6= µ′.

Using the Chernoff distance, we introduce the following learning efficiency index:

Definition 1. For any information structure I, define the learning efficiency in-
dex in state θ by

λθ(I) := min
i∈I,θ′∈Θ\{θ}

d(µθi , µ
θ′

i ). (3)

In each state θ, Definition 1 reduces each information structure I to a simple one-
dimensional measure. For each agent i, the Chernoff distance d(µθi , µ

θ′
i ) between i’s

marginal signal distribution in state θ and in any other state θ′ captures how difficult
i finds it to distinguish θ′ from θ. The index λθ(I) is the minimum of d(µθi , µ

θ′
i ) across

all agents i and states θ′ 6= θ. Thus, it focuses only on the worst-informed agent i
and the state θ′ that i finds most difficult to distinguish from the true state θ.

Notably, since the learning efficiency indices depend only on agents’ marginal
signal distributions, the correlation across different agents’ signals plays no role. For
instance, in the illustrative example (Section 1.1), where I is summarized by an
individual precision parameter γ and a correlation parameter ρ, λθ(I) is strictly
increasing in γ but does not depend on ρ. More generally, if each agent i’s marginal
signal distributions under I Blackwell-dominate those under Ĩ, then λθ(I) ≥ λθ(Ĩ)

for all θ.
Our first main result is that λθ(I) captures the rate of common learning under

information structure I. Moreover, this coincides with the rate of individual learning:

Theorem 1. Fix any information structure I, θ ∈ Θ, and p ∈ (0, 1). As t→∞,

PIt (Bp
t (θ) | θ) = 1− exp[−λθ(I)t+ o(t)]; (4)

PIt (Cp
t (θ) | θ) = 1− exp[−λθ(I)t+ o(t)]. (5)

As highlighted by a rich literature (going back to, e.g., Rubinstein, 1989), com-
mon p-belief is a much more demanding requirement than individual p-belief: Cp

t (θ)
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imposes confidence not only on agents’ first-order beliefs about the state, but on their
entire infinite hierarchy of higher-order beliefs. Based on this, it might be natural
to expect common learning to occur more slowly than individual learning. However,
Theorem 1 shows that, as t→∞, the probability of common p-belief and the proba-
bility of individual p-belief of the true state θ both tend to 1 at the same exponential
rate, which is given by the learning efficiency index λθ(I).8

That is, when agents observe large samples of signals, higher-order belief uncer-
tainty vanishes at least as fast as first-order uncertainty. This point is also reflected
by the fact that the learning efficiency index λθ(I) = mini∈I,θ′ 6=θ d(µθi , µ

θ′
i ) depends

only on the worst-informed agent’s marginal signal distributions, while correlation
across agents’ signals plays no role. When players observe a small sample of signals,
increasing individual signal precision and increasing correlation of signals can both
improve the probability of common p-belief of the correct state. However, under large
samples, the effect of correlation becomes second-order.

The proof of Theorem 1 is in Appendices B and D. We sketch the argument in the
next section. The key step is a lemma relating higher-order beliefs to KL-divergence
(Lemma 1), which we use to show that higher-order uncertainty vanishes at least as
fast as first-order uncertainty.

Remark 1 (Single-agent learning efficiency). Applied to the single-agent case,
I = {i}, Theorem 1 yields that each agent i’s individual rate of learning (i.e., the
rate at which PIt (Bp

it(θ) | θ) → 1) is given by λθi (I) := minθ′∈Θ\{θ} d(µθi , µ
θ′
i ). This is

equivalent to the single-agent learning efficiency index introduced by Moscarini and
Smith (2002), which is based on the Hellinger transform:

λθi,MS(I) = min
θ′∈Θ\{θ}

max
κ∈[0,1]

− log
∑
xi∈Xi

µθi (xi)
κµθ

′

i (xi)
1−κ. (6)

Indeed, the variational formula (e.g., Dupuis and Ellis, 2011, Lemma 6.2.3.f) ensures
that d(µθi , µ

θ′
i ) = maxκ∈[0,1]− log

∑
xi∈Xi µ

θ
i (xi)

κµθ
′
i (xi)

1−κ for any distinct θ, θ′.
Thus, our efficiency index can be viewed as a multi-player generalization of Moscarini

and Smith (2002), and Theorem 1 shows that the rate of common learning, λθ(I) =

mini∈I λ
θ
i (I), corresponds to the slowest agent’s rate of individual learning. N

8The o(t) terms can differ across (4) and (5) and can depend on p0, p, and features of I other
than λθ(I), but these terms become negligible as t→∞.
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3.3 Proof Sketch of Theorem 1

Speed of individual learning. We first show that each agent i’s rate of individual
learning in state θ is λθi (I) = minθ′∈Θ\{θ} d(µθi , µ

θ′
i ), i.e., as t→∞,

PIt (Bp
it(θ) | θ) = 1− exp[−λθi (I)t+ o(t)]. (7)

This can be seen by showing that λθi (I) is equivalent to Moscarini and Smith’s (2002)
single-agent efficiency index (see Remark 1). However, for clarity, we sketch a direct
proof on which we will build below to characterize the speed of common learning.

Let νit ∈ ∆(Xi) denote the empirical distribution of i’s signals up to t, which
is a sufficient statistic for i’s beliefs. By standard arguments, as t → ∞, i’s beliefs
concentrate on the state whose signal distribution minimizes KL-divergence relative
to νit. Thus, for any ε > 0, we have that, for all large enough t,{

KL(νit, µ
θ
i ) ≤ min

θ′∈Θ\{θ}
KL(νit, µ

θ′

i )− ε
}
⊆ Bp

it(θ)

⊆
{

KL(νit, µ
θ
i ) ≤ min

θ′∈Θ\{θ}
KL(νit, µ

θ′

i ) + ε

}
. (8)

Moreover, by Sanov’s theorem from large deviation theory, for any closed Di ⊆ ∆(Xi)

with non-empty interior,

PIt (νit ∈ Di | θ) = 1− exp[− inf
ν /∈Di

KL(ν, µθi )t+ o(t)], as t→∞.

For Di := {νi ∈ ∆(Xi) : KL(νi, µ
θ
i ) ≤ minθ′∈Θ\{θ}KL(νi, µ

θ′
i )}, it can be seen that

infνi /∈Di KL(νi, µ
θ
i ) = λθi (I).9 Thus, applying Sanov’s theorem to the upper and lower

bounds in (8) and letting ε→ 0 yields the desired conclusion.
Finally, (7) implies (4): Since Bp

t (θ) =
⋂
i∈I B

p
it(θ), the speed of convergence of

PIt (Bp
t (θ) | θ) is governed by the slowest individual learning rate, λθ(I) = mini∈I λ

θ
i (I).

Speed of common learning. Since Cp
t (θ) ⊆ Bp

t (θ), the speed of common learning
9Indeed, note that

inf
νi /∈Di

KL(νi, µ
θ
i ) = inf

{
KL(νi, µ

θ
i ) : KL(νi, µ

θ
i ) > KL(νi, µ

θ′

i ) for some θ′ 6= θ
}

= min
θ′∈Θ\{θ}

{
KL(νi, µ

θ
i ) : KL(νi, µ

θ
i ) = KL(νi, µ

θ′

i )
}

= min
θ′∈Θ\{θ}

d(µθi , µ
θ′

i ) = λθi (I).
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at θ cannot exceed the speed of individual learning and thus, by the first part, is
at most λθ(I). The main step of the proof establishes that the speed of common
learning at θ is at least λθ(I), i.e., as t→∞,

PIt (Cp
t (θ) | θ) ≥ 1− exp[−λθ(I)t+ o(t)].

Below we illustrate the argument, assuming for simplicity that each joint distribution
µθ ∈ ∆(X) has full support. Fix any d < λθ(I). For each t, we consider the event

Ft(θ, d) :=
⋂
i∈I

Fit(θ, d), where Fit(θ, d) :=
{

KL(νit, µ
θ
i ) ≤ d

}
.

Observe that d < λθ(I) together with (8) implies that, for all large enough t,

Ft(θ, d) ⊆ Bp
t (θ). (9)

We now show more strongly that, for all large enough t,

Ft(θ, d) ⊆ Cp
t (θ). (10)

Given this, Sanov’s theorem implies that

PIt (Cp
t (θ) | θ) ≥ PIt (Ft(θ, d) | θ) = 1− exp[−td+ o(t)], as t→∞.

This yields the desired conclusion since d can be chosen arbitrarily close to λθ(I).
By Monderer and Samet (1989), to show (10) it is enough (given (9)) to prove

that event Ft(θ, d) is p-evident. That is, we want to show that, for all large enough
t,

Ft(θ, d) ⊆ Bp
t (Ft(θ, d)). (11)

For this, we establish the following key lemma that uses KL-divergence to relate
i’s own observations νit to i’s beliefs about others’ observations. For any two agents i
and j, let M θ

ij ∈ RXi×Xj denote the matrix whose (xi, xj)-th element is M θ
ij(xi, xj) =

µθ(xj | xi). As CEMS observed, if agent i’s empirical signal distribution at t is νit,
then conditional on state θ, i’s expectation of j’s empirical distribution is given by
νitM

θ
ij ∈ ∆(Xj) (treating νit ∈ ∆(Xi) ⊆ R1×Xi as a vector). Moreover, µθiM θ

ij = µθj .

13



Lemma 1. For each θ ∈ Θ, distinct i, j ∈ I, and νi ∈ ∆(Xi), we have KL(νi, µ
θ
i ) ≥

KL(νiM
θ
ij, µ

θ
j). Moreover, the inequality is strict whenever µθ has full support and

νi 6= µθi .

To understand the result, suppose that i observes an empirical signal distribution
νit at any t. Then KL(νit, µ

θ
i ) quantifies how much i’s observations deviate from i’s

theoretical signal distribution µθi in state θ. Likewise, KL(νitM
θ
ij, µ

θ
j) quantifies how

much i’s expectation of j’s observations deviates from j’s theoretical signal distribu-
tion µθj . Thus, Lemma 1 says that when i forms an estimate of j’s signal observations
based on i’s own signal observations, then (conditional on any state θ) this estimate
cannot be more “atypical” than i’s own signal observations. For example, if i and
j’s signals are independent, then regardless of her own observations, i’s estimate of
j’s observations is always the theoretical distribution (i.e., KL(νitM

θ
ij, µ

θ
j) = 0). At

the opposite extreme, if i and j’s signals are perfectly correlated, then i expects j
to observe the same signals as herself, so her estimate of j’s observations is just as
atypical as her own observations (i.e., KL(νitM

θ
ij, µ

θ
j) = KL(νit, µ

θ
i )).

Finally, to see how Lemma 1 implies (11), consider agent i’s reasoning conditional
on the event that KL(νit, µ

θ
i ) ≤ d when t is large enough. By (9), i assigns high

probability to state θ. Hence, by a law of large numbers argument, i assigns high
probability to every other agent j’s realized empirical distribution νjt being close to
i’s expectation νitM θ

ij conditional on state θ. But then, Lemma 1 together with the
fact that KL(νit, µ

θ
i ) ≤ d implies that i also assigns high probability to the event that

KL(νjt, µ
θ
j) ≤ d for all j. Thus, event Ft(θ, d) is p-evident at all large t.

Remark 2. Second law of thermodynamics. The weak inequality in Lemma 1 is
an implication of the “second law of thermodynamics” for Markov chains, which says
that the KL-divergence between any two initial distributions shrinks under iterated
application of the transition matrix (see, e.g., Section 4.4 in Cover and Thomas, 1999).
Indeed, consider the Markov chain defined on the state spaceXi∪Xj, whose transition
matrix is given by M θ

ij if the current state is in Xi and by M θ
ji if the current state is

in Xj. Then the second law applied to the initial distributions νi and µθi implies that
KL(νi, µ

θ
i ) ≥ KL(νiM

θ
ij, µ

θ
iM

θ
ij), which yields the desired inequality as µθiM θ

ij = µθj .
Relationship with CEMS. In proving Proposition 0, CEMS consider a different

Markov chain, which is defined on the space Xi and has transition matrix M θ
ijM

θ
ji.

They show that (an iteration of) this transition matrix is a sup-norm contraction
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on ∆(Xi) (see their Lemma 4), and based on this construct a different sequence of
p-evident events Ft (that are defined using the sup-norm rather than KL-divergence).
While the probability of these events Ft also converges to 1, the rate of convergence
is less than λθ(I). Thus, this construction cannot be used to provide a tight bound
on the speed of common learning.10

Convergence of belief hierarchies. Theorem 1 characterizes the speed at which
players achieve approximate common knowledge in the sense of common p-belief of
the true state. Analogous results hold if proximity to common knowledge is instead
formalized in terms of commonly used topologies over belief hierarchies. See Online
Appendix E for details. N

4 Ranking Information Structures in Games

So far, we have analyzed learning efficiency under each information structure I. We
now return to the setting where, following t draws of signals from I, agents play a
game, and we apply our learning efficiency index to rank information structures in
terms of their induced equilibrium outcomes.

4.1 Objective Functions

Given any basic game G, we introduce an objective function W : A×Θ→ R, which
assigns a value to each action profile and state. We assume that in each state θ, W
is maximized by a unique action profile, {aθ,W} = argmaxa∈AW (a, θ). The objective
function can be interpreted as capturing a designer’s preferences over outcomes in the
game. A benevolent designer might seek to maximize agents’ welfare, for example,
via utilitarian aggregation, W = 1

I

∑
i∈I ui. However, we also allow for objective

functions that do not relate to agents’ utilities in any particular way.
For any information structure I and number t of signal draws, we use W to

evaluate expected equilibrium outcomes in the incomplete-information game Gt(I).
Specifically, for any strategy profile σt = (σit)i∈I in game Gt(I), let

Wt(σt, I) :=
∑

θ∈Θ,xt∈Xt

PI(θ, xt)
∑
a∈A

σt(a | xt)W (a, θ)

10Sugaya (2021); Fong, Gossner, Hörner, and Sannikov (2010); Chan and Zhang (2018) use argu-
ments related to CEMS’ contraction result in the context of repeated games with private monitoring.
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denote the ex-ante expected value of the objective when signal sequences xt are drawn
from information structure I in each state and each agent then chooses their action
according to strategy σit(· | xti). Define the objective value

Wt(G, I) := sup
σt∈BNEt(G,I)

Wt(σt, I) (12)

to be the ex-ante expected value of the objective under the best BNE of Gt(I).
For any two information structures I and Ĩ, we seek to compare their objective

values Wt(G, I) and Wt(G, Ĩ) when the number t of signal draws is large. We will see
that, using our learning efficiency index, this comparison can be carried out robustly
for a rich class of games G and objective functions W .

The one substantive restriction we impose is the following joint assumption on
G and W . Let SNE(G, θ) ⊆ A denote the set of strict Nash equilibria of G under
common knowledge of θ.

Assumption 1 (Alignment at certainty). For each θ ∈ Θ, aθ,W ∈ SNE(G, θ).

Assumption 1 requires that under common knowledge of each state θ, the W -first
best outcome aθ,W is achievable as a strict Nash equilibrium of G. Note that the
condition does not require aθ,W to be the only strict Nash of G at θ.

One simple environment that satisfies Assumption 1 is when G is a common-
interest game and W represents utilitarian welfare, i.e., ui = uj = W for all i, j.11 In
this case, agents’ incentives in G are fully aligned with W : Indeed, for any I and t,
any strategy profile σt that maximizes the expected objective Wt(σt, I) is a BNE of
Gt(I).

However, Assumption 1 is substantially more permissive than imposing full align-
ment on G and W : We only require maximization of W to be an equilibrium of G
under certainty, i.e., when players have common knowledge of the state. Except for
this requirement, there is no restriction on players’ incentives in game G or the rela-
tionship with W .12 Beyond common interest games, this allows for rich patterns of
strategic externalities. For instance, under utilitarian welfare, Assumption 1 is satis-
fied by many important coordination games (e.g., bank runs, currency attack games,

11Generically, any common interest game G admits a strict Nash equilibrium that uniquely maxi-
mizes utilitarian welfare.

12In particular, Assumption 1 allows for environments where, away from the common knowledge
limit, improving players’ information can lead to worse equilibrium outcomes; see the discussion of
Lehrer, Rosenberg, and Shmaya (2010) on p. 18-19.
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etc.): For example, in the joint investment game in Section 1.1, the efficient action
profile at θ is (θ, θ), which is a strict Nash equilibrium under common knowledge
of θ (another strict Nash is (0, 0)). At the same time, Assumption 1 rules out set-
tings where agents’ incentives and the objective are misaligned even under complete
information (e.g., a prisoner’s dilemma game under utilitarian welfare).

Finally, an objective function W might also serve to quantify how close play
after t signal draws comes to any particular common knowledge equilibrium. Indeed,
given any basic game G and any selection aθ ∈ SNE(G, θ) of a common knowledge
equilibrium at each state θ, define W by

W (a, θ) =

1 if a = aθ

0 otherwise.

Then G and W trivially satisfy Assumption 1. In this case, the objective value
Wt(G, I) measures the ex-ante probability that, after t draws of signals from I, agents
are able to play the common knowledge equilibrium aθ in each state θ.

4.2 Ranking under Full Separation

Under Assumption 1, we now proceed to rank information structures I and Ĩ in
terms of their objective values Wt(I,G) and Wt(Ĩ,G) at large t. In this section, we
additionally assume that all agents must distinguish all states in order to maximize
W :

Assumption 2 (Full separation). For all i ∈ I and distinct θ, θ′ ∈ Θ, aθ,Wi 6= aθ
′,W
i .

Assumption 2 is satisfied, for instance, in the joint investment game in Section 1.1,
where aθ,Wi = θ for all i, θ. Section 4.3 will drop this assumption.

Define the (ex-ante) learning efficiency index by

λ(I) := min
θ∈Θ

λθ(I) = min
i∈I,θ,θ′∈Θ,θ′ 6=θ

d(µθi , µ
θ′

i ). (13)

That is, λ(I) considers the worst-case across all states of the conditional learning
efficiency indices λθ(I).

Theorem 2. Take any information structures I, Ĩ with λ(I) 6= λ(Ĩ). The following
are equivalent:
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1. λ(I) > λ(Ĩ).

2. For every basic game G and objective function W satisfying Assumptions 1–2,
there exists T such that Wt(G, I) > Wt(G, Ĩ) for all t > T .

Theorem 2 shows that, for all games G and objectivesW satisfying Assumptions 1–
2, the learning efficiency index eventually permits a generically complete ranking over
information structures: Except when the efficiency indices λ(I) and λ(Ĩ) are exactly
tied, I and Ĩ can be ranked, and the information structure with the higher effi-
ciency index strictly outperforms that with the lower index whenever agents observe
sufficiently many signals.

Based on the structure of λ(I), Theorem 2 suggests some general implications for
the design of information structures in games. In particular, recall that λ(I) depends
only on the worst-informed agent’s marginal signal distributions, while the correlation
across agents’ signals is irrelevant. Thus, under Assumptions 1–2, Theorem 2 implies
that, if agents have access to many signal draws, then a designer should be “egalitar-
ian” and focus on improving the worst-informed agent’s information about the state.
At the same time, providing signals about other agents’ signals that do not convey
any additional information about the state is not effective under large samples. This
contrasts with the central insight (e.g., Rubinstein, 1989; Carlsson and Van Damme,
1993; Kajii and Morris, 1997; Weinstein and Yildiz, 2007) that (even small amounts
of) uncertainty about other agents’ signals can be a significant source of inefficiency
in incomplete information games (including environments satisfying Assumptions 1–
2). The reason for this difference is that, as captured by Theorem 1, higher-order
belief uncertainty vanishes at least as fast as first-order uncertainty as t→∞. Thus,
when agents have access to sufficiently many signal draws, interventions that reduce
uncertainty about other agents’ signals have a negligible effect relative to ones that
directly improve agents’ information about the state.

Theorem 2 can also be contrasted with Lehrer, Rosenberg, and Shmaya (2010).
They consider the case in which agents observe a single signal draw from each informa-
tion structure and show that a generalization of Blackwell’s single-agent garbling con-
dition characterizes when W1(G, I) exceeds W1(G, Ĩ) for any common-interest game
G and utilitarian welfare criterion W . When agents observe many signal draws, The-
orem 2 yields a ranking that (i) is a completion of Lehrer, Rosenberg, and Shmaya’s
(2010) order, and (ii) applies to a richer class of environments that allows for misalign-
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ment between agents’ incentives and the objective under incomplete information.13

Both (i) and (ii) rely on the assumption that agents observe sufficiently many signal
draws: When t = 1, many information structures are incomparable even when re-
stricting attention to common-interest games. Moreover, when t = 1, then even if I
is more informative than Ĩ in the sense of Lehrer, Rosenberg, and Shmaya (2010), I
can be strictly worse than Ĩ in some environments that satisfy Assumptions 1–2 but
feature misaligned incentives.

To illustrate the proof of Theorem 2 (Appendix C–D), suppose G and W satisfy
Assumptions 1–2. We show that, for any sequence of equilibria σt ∈ BNEt(G, I),∑

θ∈Θ,xt∈Xt

PIt (θ, xt)σt(a
θ,W | xt) ≤ 1− exp[−tλ(I) + o(t)], as t→∞, (14)

and that (14) holds with equality for some BNE sequence (σt). That is, under in-
formation structure I, λ(I) is the maximal rate at which ex-post inefficient behavior
(i.e., not choosing aθ,W at θ) vanishes in some equilibrium. Thus, if λ(I) > λ(Ĩ),
then Wt(G, I) > Wt(G, Ĩ) for all large enough t, because Wt(G, I) approaches the
first-best payoff

∑
θ p0(θ)W (aθ,W , θ) faster than does Wt(G, Ĩ).

The argument for inequality (14) is purely statistical and does not consider agents’
incentives. Indeed, in Lemma C.1, we show that (14) holds for any sequence of strategy
profiles (σt), regardless of whether or not (σt) are equilibria. The basic idea is that,
for each agent i, the question whether i’s action under σit matches the correct efficient
action aθ,Wi in each state θ can be recast as a hypothesis test. Given this, the Neyman-
Pearson lemma implies that no σit can achieve a lower ex-ante error probability than a
likelihood ratio test, where agent i chooses action aθ,Wi whenever her empirical signal
frequency νit is best explained by µθi (i.e., KL(νit, µ

θ
i ) < KL(νit, µ

θ′
i ) for all θ′ 6= θ).

By Sanov’s theorem and Assumption 2, the error probability of the latter test decays
at rate minθ 6=θ′ d(µθi , µ

θ′
i ) as t→∞. Taking the minimum over all agents yields (14).

Finally, the existence of a sequence of equilibria for which (14) holds with equality
follows from the characterization of the speed of common learning in Theorem 1. By
Assumption 1, each aθ,W is a strict Nash equilibrium under common knowledge of θ.
Given this, for any sufficiently large p ∈ (0, 1) and any t, there exists a BNE σ∗t under

13The former can be seen by noting that when I % Ĩ in the sense of Lehrer, Rosenberg, and
Shmaya (2010), then each agent i’s marginal signal distributions under I Blackwell-dominate those
under Ĩ, which implies that λ(I) ≥ λ(Ĩ).
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which each agent i plays action aθ,Wi in the event that θ is common p-belief at t.14

Thus, conditional on state θ, the probability that aθ,W is played under σ∗t is at least
PIt (Cp

t (θ) | θ). By Theorem 1, the latter probability goes to 1 at rate λθ(I) as t→∞.
Thus, the ex-ante probability of efficient play under sequence (σ∗t ) approaches 1 at
least at rate λ(I). Since, by the previous paragraph, the rate of convergence cannot
exceed λ(I), (14) must hold with equality under (σ∗t ).

Remark 3. Comparison across different sample sizes. The same arguments
as in Theorem 2 can be used to obtain a ranking of information structures under
different sample sizes: Suppose λ(I) > kλ(Ĩ) for some k > 0. Then for every
basic game G and objective W satisfying Assumptions 1–2, there exists T such that
Wt(G, I) > Wkt(G, Ĩ) for all t > T with kt ∈ N.

Beyond best-case equilibrium. In defining the objective value Wt(G, I), (12)
considered the best-case BNE. If one focuses instead on the worst-case objective value
and replaces Assumption 1 with the assumption that each W (·, θ) is strictly mini-
mized by some action profile in SNE(G, θ), then Theorem 2 (applied to the objective
−W ) implies that information structures with a higher learning efficiency index in-
duce a lower worst-case objective value at all large t, because equilibrium play can
approximate the worst-case common knowledge equilibrium faster. Relatedly, in On-
line Appendix G, we use the learning efficiency index to characterize the speed at
which the entire equilibrium set BNEt(G, I) approaches the set of common knowl-
edge equilibria in each state. N

4.3 Ranking without Full Separation

In Theorem 2, the ranking over information structures reduces to comparing their
speed of common learning, because Assumption 2 requires all agents to distinguish
all states in order to play the efficient action profile. We now drop Assumption 2,
so that some players need not distinguish some pairs of states in order to maximize
W . Maintaining Assumption 1, we generalize Theorem 2 by constructing learning
efficiency indices that account for the presence of “equivalent” states for some players.

Formally, given any objective function W , define a partition ΠW
i over Θ for each

14The reason that aθ,W is required to be a strict Nash equilibrium in Assumption 1 is to ensure
that it can be played in a BNE even when players only have approximate common knowledge of θ.
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agent i, whose cells are given by

ΠW
i (θ) := {θ′ ∈ Θ : aθ,Wi = aθ

′,W
i } for each θ;

that is, ΠW
i divides Θ into equivalence classes of states in which theW -optimal action

profile features the same action for agent i. Let ΠW := (ΠW
i )i∈I denote the collection

of all agents’ partitions.
Given any collection of partitions Π = (Πi)i∈I over Θ, we define the learning

efficiency index
λ(I,Π) := min

i∈I,θ,θ′∈Θ,θ′ 6∈Πi(θ)
d(µθi , µ

θ′

i ).15

That is, in identifying the worst-informed agent and hardest to distinguish states, we
do not consider all agents and pairs of states as in (13). Instead, for each agent i, we
restrict attention to pairs of states at which i’s W -optimal actions are different.

In the following result, we restrict attention to information structures that are
either fully private , in the sense that each joint distribution µθ has full support on
X, or public, in the sense that signals are perfectly correlated across agents.16

Theorem 3. Fix any collection Π = (Πi)i∈I of partitions over Θ. Take any informa-
tion structures I and Ĩ, each of which is either fully private or public, and suppose
that λ(I,Π) 6= λ(Ĩ,Π). The following are equivalent:

1. λ(I,Π) > λ(Ĩ,Π).

2. For every (G,W ) satisfying Assumption 1 and ΠW = Π, there exists T such
that Wt(I,G) > Wt(Ĩ,G) for all t > T .

Theorem 3 extends Theorem 2 by dropping Assumption 2. Based on the gen-
eralized learning efficiency indices λ(·,Π), we again obtain a (generically complete)
ranking over the equilibrium outcomes induced by different information structures at
large enough t: This ranking applies for all games and objective functions that are
aligned at certainty and give rise to the same partitions Π of equivalent states.

15Slightly abusing notation, we set the index to be ∞ when Π is degenerate (i.e., Πi(θ) = Θ for
all i).

16Formally, signals are perfectly correlated if Xi = Xj for all i, j, and for each x ∈ X and θ,

µθ(x) =

{
µθi (xi) if xi = xj for all i, j,
0 otherwise

.
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Theorem 3 also immediately implies the following partial order over information
structures that applies in all environments (G,W ) satisfying Assumption 1:

Corollary 1. Take any information structures I and Ĩ, each of which is either
fully private or public, and suppose that λ(I,Π) 6= λ(Ĩ,Π) for all non-degenerate
collections of partitions Π. The following are equivalent:

1. λ(I,Π) > λ(Ĩ,Π) for all non-degenerate Π.

2. For every (G,W ) satisfying Assumption 1, there exists T such that Wt(I,G) >

Wt(Ĩ,G) for all t > T .

The proof of Theorem 3 generalizes the argument in Theorem 2. That is, as in
(14), we show that, for any sequence of strategy profiles (σt),∑

θ∈Θ,xt∈Xt

PIt (θ, xt)σt(a
θ,W | xt) ≤ 1− exp[−tλ(I,ΠW ) + o(t)], (15)

with equality for some BNE sequence (σt). Note that in general λ(I,ΠW ) ≥ λ(I).
Thus, unlike in the full-separation case, to show that (15) holds with equality for some
BNE sequence (σt), it is not enough to invoke the fact that the speed of common
learning in each state is λθ(I). Nevertheless, we show based on Lemma 1 that a
similar equilibrium construction as in Theorem 2 remains valid.

Remark 4 (Monotone information structures). Many economic environments
involve information structures that satisfy the monotone-likelihood ratio property
with respect to some linear order over states and signals. Online Appendix F considers
such environments. We show that, in this case, the condition in Corollary 1 (i.e.,
λ(I,Π) > λ(Ĩ,Π) for all Π) can be relaxed to one that is easier to verify. This
exercise can be viewed as an analog of the relaxation of the Blackwell order considered
by Lehmann (1988); Persico (2000); Athey and Levin (2018) in settings with a single
agent and single signal draw. N

5 Discussion

5.1 Information Design in Games

The preceding analysis has implications for the design of information structures in
games. Beyond the general design implications highlighted following Theorem 2,
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the learning efficiency index can be used to solve constrained design problems where
information is relatively “cheap.”

Concretely, given any game G and objective W , consider the optimal choice of an
information structure from some set I subject to a budget constraint:

max
I∈I,t∈N

Wt(I,G) s.t. tc(I) ≤ κ.

That is, the designer optimally selects both an information structure I ∈ I and the
number t of signal draws from I, subject to a marginal cost of c(I) > 0 per draw
from I and an overall budget of κ > 0.

Then, for any G and W satisfying Assumptions 1–2 and any finite set I, our
analysis implies that, whenever the budget κ is sufficiently large (i.e., information is
sufficiently cheap), the designer’s problem simplifies to17

max
I∈I

λ(I)

c(I)
.

Thus, the optimal information structure can be determined solely based on the learn-
ing efficiency index and per-sample cost, and the solution is robust across all games
and objectives satisfying Assumptions 1–2. Based on this observation, future work
might explore properties of the optimal information structure under multi-agent gen-
eralizations of information cost functions c in the literature (e.g., Pomatto, Strack,
and Tamuz, 2020).

5.2 Information Structures as Complements vs. Substitutes

Our learning efficiency index also suggests a novel formalization of when two infor-
mation structures I and Ĩ are complements or substitutes.18 To this end, we extend
our baseline setting with repeated draws from a single information structure I by

17Indeed, as κ → ∞, the analysis in Section 4.2 implies that it is optimal to exhaust the budget
and that the difference between the first-best payoff

∑
θ p0(θ)W (aθ,W , θ) and the best equilibrium

payoff under information structure I takes the form exp[−κλ(I)
c(I) + o(κ)].

18Börgers, Hernando-Veciana, and Krähmer (2013) formalize notions of complements/substitutes
for single-agent information structures with a single signal observation. Under Gaussian priors
and signal distributions, Liang and Mu (2020) study a form of complementarity, where combining
multiple information structures allows for identification of the state while each information structure
alone leads to non-identification. Complementing these papers, our approach applies to multi-agent
information structures and is based on the speed of learning.
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considering the effect of combining signal observations from I = (X, (µθ)θ∈Θ) and
Ĩ = (X̃, (µ̃θ)θ∈Θ). Let I × Ĩ := (X × X̃, (µθ × µ̃θ)θ∈Θ) denote the combined informa-
tion structure under which the signal distribution in each state θ is the product of µθ

and µ̃θ.

Definition 2. We say that information structures I and Ĩ are complements if
λ(I × Ĩ) ≥ λ(I) + λ(Ĩ) and substitutes if λ(I × Ĩ) ≤ λ(I) + λ(Ĩ).

To interpret this definition, consider the case in which λ(I) = λ(Ĩ) and I and Ĩ
are strict complements, i.e., λ(I × Ĩ) > λ(I) + λ(Ĩ) = 2λ(I). Then, by Theorem 1,
the speed of common learning under the combined information structure I×Ĩ is more
than twice as fast as the speed of common learning under I or Ĩ alone.19 Likewise,
Theorem 2 implies that for any basic game G and objective function W satisfying
Assumptions 1–2 and any large enough t,

Wt(I × Ĩ,G) > max{W2t(I,G),W2t(Ĩ,G)}.

That is, holding fixed any (large enough) total number of signal observations, better
equilibrium outcomes are achieved if players observe a mix of signals from I and Ĩ
than if they specialize in only I or Ĩ.

The structure of our efficiency index suggests two conflicting channels that deter-
mine whether I and Ĩ are complements or substitutes. On the one hand, a “force
for substitutes” is that the Chernoff distance is subadditive, i.e., for all agents i and
states θ, θ′,

d(µθi × µ̃θi , µθ
′

i × µ̃θ
′

i ) ≤ d(µθi , µ
θ′

i ) + d(µ̃θi , µ̃
θ′

i ). (16)

Intuitively, this captures that combining multiple information sources creates more
scope for “confusing” signal realizations that do not allow an agent to distinguish
some states. For example, if observed in isolation, a particular sequence of signal
realizations from I might be indicative of state θ and a sequence of signal realizations
from Ĩ might be indicative of state θ′, but if the two sequences are observed jointly,
these two effects might cancel out and render θ and θ′ indistinguishable.20

19That is, for all p ∈ (0, 1) and large enough t, the (ex-ante) probability of common p-belief of the
true state is strictly greater if agents observe t signal draws from I × Ĩ than if agents observe 2t
signal draws from I or Ĩ alone. An analogous result holds for the speed of learning conditional on
any state θ if complementarity is defined using the conditional learning efficiency index λθ.

20Formally, observe that d(µθi , µ
θ′

i ) = minνi∈∆(Xi) KL(νi, µ
θ
i ) s.t. KL(νi, µ

θ
i ) = KL(νi, µ

θ′

i ). Com-
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On the other hand, the efficiency index is defined by considering the worst-case
Chernoff distance across all agents and states. When the worst agent or pair of states
differ across I and Ĩ this creates a hedging value to combining I and Ĩ, which acts
as a “force for complements.” The following example illustrates both possibilities:

Example 1. Suppose states are binary, Θ = {θ, θ′}.
Suppose first that signals under either I or Ĩ are perfectly correlated. Then I and

Ĩ have in common a worst-informed agent. Thus, only the first channel is relevant
and I and Ĩ are substitutes. In particular, (under binary states) this is always the
case if there is only one agent.

Suppose next that signals are binary, Xi = {xi, x′i}, and each i’s signal distribu-
tions are symmetric, i.e., µθi (xi) = µθ

′
i (x′i), µ̃θi (xi) = µ̃θ

′
i (x′i). Then (16) holds with

equality. Thus, only the second channel is relevant and I and Ĩ are complements. N

5.3 Higher-Order Expectations

Beyond its use in the proofs of Theorems 1–3, Lemma 1 can shed light on agents’
higher-order beliefs more broadly. In particular, it can be used to analyze the “infor-
mativeness” of agents’ higher-order expectations, which plays an important role, for
instance, in beauty-contest games (e.g., Morris and Shin, 2002; Golub and Morris,
2017).

Consider a finite set of types Ti for each agent i, with T :=
∏

i∈I Ti. Let π ∈ ∆(T )

be a (full-support) common prior over type profiles, with marginals πi ∈ ∆(Ti). Each
type ti ∈ Ti of player i induces a conditional distribution π(· | ti) ∈ ∆(T ) over type
profiles. By identifying each tj ∈ Tj with the point-mass distribution δtj ∈ ∆(Tj),
we can associate with π(· | ti) a sequence of higher-order expectations about other
agents’ types. In particular, Eti [tj] :=

∑
tj∈Tj π(tj | ti)δtj ∈ ∆(Tj) is ti’s expectation

of j’s type, EtiEtj [tk] :=
∑

tj∈Tj ,tk∈Tk π(tj | ti)π(tk | tj)δtk ∈ ∆(Tk) is ti’s expectation
of j’s expectation of k’s type, and so on.

bined with the fact that KL-divergence is additive across independent distributions, this yields

d(µθi × µ̃θi , µθ
′

i × µ̃θ
′

i ) = min
νi∈∆(Xi),ν̃i∈∆(X̃i)

KL(νi, µ
θ
i ) + KL(ν̃i, µ̃

θ
i )

s.t. KL(νi, µ
θ
i ) + KL(ν̃i, µ̃

θ
i ) = KL(νi, µ

θ′

i ) + KL(ν̃i, µ̃
θ′

i ).

This implies (16), because KL(νi, µ
θ
i ) + KL(ν̃i, µ̃

θ
i ) = KL(νi, µ

θ′

i ) + KL(ν̃i, µ̃
θ′

i ) is possible even if
KL(νi, µ

θ
i ) 6= KL(νi, µ

θ′

i ) and KL(ν̃i, µ̃
θ
i ) 6= KL(ν̃i, µ̃

θ′

i ).
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A seminal result due to Samet (1998) is that any such sequence of higher-order
expectations converges to the prior distribution as the number of iterations grows
large. Formally, consider any sequence of agents i0, i1, . . . ∈ I in which all i ∈ I

appear infinitely often and any initial type ti0 ∈ Ti0 . Then his result adapted to the
current setting implies that21

∥∥∥Eti0Eti1 · · ·Etik−1
[tik ]− πik

∥∥∥→ 0 as k →∞.

By applying Lemma 1 to this setting, we can formalize a sense in which agents’
higher-order expectations grow closer to the prior distribution at each step of the
iteration. In particular, Lemma 1 implies that

KL(Eti0 [ti1 ], πi1) ≥ KL(Eti0Eti1 [ti2 ], πi2),

and iteratively, for each k,

KL(Eti0Eti1 · · ·Etik−1
[tik ], πik) ≥ KL(Eti0Eti1 · · ·Etik [tik+1

], πik+1
).

Thus, complementing Samet’s asymptotic result, this clarifies that the informative-
ness of agents’ higher-order expectations, as measured by their KL-divergence relative
to the prior distribution, decreases monotonically along any sequence.

5.4 More General Information Structures

This paper has characterized the speed of common learning in settings where signal
spaces are finite and signals are generated i.i.d. across draws. One challenge in moving
beyond these settings is that it is not known under which general conditions common
learning obtains.

With infinite signals, CEMS exhibit a setting in which common learning fails even
though individual learning is successful (see their Section 4); at the same time, there
are other natural infinite-signal settings, in particular Gaussian signal structures,
that do give rise to common learning.22 In Online Appendix H, we analyze the latter
Gaussian environment. We again show that common learning and individual learning

21See the proof of his Proposition 6.
22In contrast, Dogan (2018) shows that with (uncountably) infinite states, common learning fails

under mild conditions (even if signals are finite).
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occur at the same exponential rate, which depends only on the worst-informed agent’s
signal precision.

When signals are correlated across draws, it is also known that common learn-
ing can fail even when individual learning is successful (e.g., Steiner and Stewart,
2011), while Cripps, Ely, Mailath, and Samuelson (2013) exhibit some settings with
intertemporally correlated signals that give rise to common learning. We leave the
analysis of such settings for future work, in particular, the question whether there
are environments in which common learning is successful but occurs at a slower rate
than individual learning.

Finally, farther afield, one might consider settings in which players engage in
basic game G not only once, at t, but repeatedly following each signal draw. In this
case, players’ past actions can reveal information about their private signals. Basu,
Chatterjee, Hoshino, and Tamuz (2020) and Sugaya and Yamamoto (2020) study
such settings and construct equilibria that lead to common learning. An interesting
open question is to analyze the speed of common learning and how this is affected by
players’ strategic incentives.

Appendix: Proofs

A Preliminaries

Let the transition matrixM θ
ij and events Fit(θ, d), Ft(θ, d) be as defined in Section 3.3.

A.1 Proof of Lemma 1

Fix θ ∈ Θ, distinct i, j ∈ I, and νi ∈ ∆(Xi). Define m,m′ ∈ ∆(Xi ×Xj) by

m(xi, xj) := νi(xi)M
θ
ij(xi, xj), m′(xi, xj) := µθi (xi)M

θ
ij(xi, xj)

for each xi ∈ Xi, xj ∈ Xj. Note that supp(m) ⊆ supp(m′) and that the marginals of
m,m′ on Xi are νi, µθi , and the marginals on Xj are νiM θ

ij, µ
θ
j , respectively.

Let m(· | xi), m(· | xj), m′(· | xi), m′(· | xj) denote the corresponding conditional
distributions; conditional on a zero-probability signal, we specify these distributions
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arbitrarily. By the chain rule for KL-divergence, we have

KL(m,m′) = KL(νi, µ
θ
i ) +

∑
xi∈supp(νi)

νi(xi)KL(m(· | xi),m′(· | xi))

= KL(νiM
θ
ij, µ

θ
j) +

∑
xj∈supp(νiMθ

ij)

(νiM
θ
ij)(xj)KL(m(· | xj),m′(· | xj)).

Since m(· | xi) = m′(· | xi) = M θ
ij(xi, ·) for every xi ∈ supp(νi), we have∑

xi∈supp(νi)

νi(xi)KL (m(· | xi),m′(· | xi)) = 0,

which implies the weak inequality KL(νi, µ
θ
i ) ≥ KL(νiM

θ
ij, µ

θ
j).

To show the strict inequality, suppose that νi 6= µθi and µθ has full support on
X. Then there exist xi, x′i such that νi(xi) > µθi (xi) and νi(x

′
i) < µθi (x

′
i). For any

xj ∈ supp(νiM
θ
ij),

m(xi | xj)
m(x′i | xj)

=
νi(xi)M

θ
ij(xi, xj)

νi(x′i)M
θ
ij(x

′
i, xj)

6=
µθi (xi)M

θ
ij(xi, xj)

µθi (x
′
i)M

θ
ij(x

′
i, xj)

=
m′(xi | xj)
m′(x′i | xj)

,

where the inequality holds since M θ
ij(xi, xj),M

θ
ij(x

′
i, xj) > 0 by the full-support as-

sumption on µθ. By Gibbs’ inequality, this guarantees∑
xj∈supp(νiMθ

ij)

(νiM
θ
ij)(xj)KL(m(· | xj),m′(· | xj)) > 0,

and hence KL(νi, µ
θ
i ) > KL(νiM

θ
ij, µ

θ
j).

A.2 Other Preliminary Lemmas

Let ‖ · ‖ denote the sup norm for finite-dimensional real vectors. The following result
is proved by CEMS (Lemma 3) based on a concentration inequality:

Lemma A.1. For any ε > 0 and q < 1, there is T such that for all t ≥ T , θ ∈ Θ,
i ∈ I, and xti,

PIt ({‖νitM θ
ij − νjt‖ < ε,∀j 6= i} | xti, θ) > q.

Let F−it(θ, d) :=
⋂
j 6=i Fjt(θ, d). The following result follows from Lemma 1 and

Lemma A.1 and plays a key role in the proofs of Theorems 1–3:
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Lemma A.2. Take any collection of partitions (Πi)i∈I over Θ, θ ∈ Θ, p ∈ (0, 1),
and d ∈ (0,mini∈I,θ′ 6∈Πi(θ) d(µθi , µ

θ′
i )). Assume that µθ has full support. There exists T

such that for all i ∈ I and t ≥ T ,

KL(νit, µ
θ
i ) ≤ d =⇒ PIt

 ⋃
θ′∈Πi(θ)

({θ′} ∩ F−it(θ′, d)) | xti

 ≥ p. (17)

Proof. Claim 1. There exist κ ∈
(
0,mini∈I,θ′ 6∈Πi(θ) d(µθi , µ

θ′
i )− d

)
and T ′ > 0 such

that for all t ≥ T ′ and θ′ ∈ Θ,

KL(νit, µ
θ′

i ) ≤ d+ κ =⇒ PIt (F−it(θ
′, d) | xti, θ′) ≥

√
p.

Proof of Claim 1. Lemma 1 implies that for all j 6= i, νi ∈ ∆(Xi), and θ′ ∈ Θ,

KL(νi, µ
θ′

i ) ≤ d =⇒ KL(νiM
θ′

ij , µ
θ′

j ) ≤ KL(νi, µ
θ′

i ) ≤ d.

Moreover, the first inequality on the RHS is strict when νi 6= µθ
′
i (by Lemma 1),

and the second inequality on the RHS is strict when νi = µθ
′
i . Note that KL(·, µi)

is continuous for each full-support µi ∈ ∆(Xi). Thus, since ∆(Xi) is compact, there
exists η > 0 such that for all j 6= i, νi ∈ ∆(Xi), and θ′ ∈ Θ,

KL(νi, µ
θ′

i ) ≤ d =⇒ KL(νiM
θ′

i , µ
θ′

j ) ≤ d− η.

Given this, there exists κ ∈ (0,mini∈I,θ′ 6∈Πi(θ) d(µθi , µ
θ′
i ) − d) such that for all j 6= i,

νi ∈ ∆(Xi), and θ′ ∈ Θ,

KL(νi, µ
θ′

i ) ≤ d+ κ =⇒ KL(νiM
θ′

i , µ
θ′

j ) ≤ d− η/2.

Moreover, there exists ε > 0 such that for all j 6= i, νi ∈ ∆(Xi), and θ′ ∈ Θ,[
KL(νi, µ

θ′

i ) ≤ d+ κ and ‖νiM θ′

ij − νj‖ ≤ ε
]

=⇒ KL(νj, µ
θ′

j ) ≤ d.

Combined with Lemma A.1, this yields the desired conclusion.

Claim 2. Consider any κ as found in Claim 1. There exists T ′′ such that for all
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t ≥ T ′′ and i ∈ I,

KL(νit, µ
θ
i ) ≤ d =⇒ PIt ({θ′ ∈ Πi(θ) : KL(νit, µ

θ′

i ) ≤ d+ κ} | xti) ≥
√
p.

Proof of Claim 2. Take any t ≥ 1 and xti such that KL(νit, µ
θ
i ) ≤ d. Then for each

θ′ 6∈ Πi(θ), we have KL(νit, µ
θ′
i ) > d+ κ. Indeed, otherwise KL(νit, µ

θ
i ),KL(νit, µ

θ′
i ) ≤

d+ κ < d(µθi , µ
θ′
i ), contradicting the definition of d(µθi , µ

θ′
i ).

Thus, whenever KL(νit, µ
θ
i ) ≤ d, then for any θ′ such that either θ′ 6∈ Πi(θ) or

KL(νit, µ
θ′
i ) > d+ κ, we have

logPIt (θ′ | xti) ≤ log
PIt (θ′|xti)
PIt (θ|xti)

= log
p0(θ′)

p0(θ)
+ t

∑
xi∈Xi

νit(xi) log
µθ
′
i (xi)

µθi (xi)

= log
p0(θ′)

p0(θ)
+ t(KL(νit, µ

θ
i )−KL(νit, µ

θ′

i ))

≤ log
p0(θ′)

p0(θ)
− tκ.

Hence, by choosing T ′′ > 0 large enough, we have that for all t ≥ T ′′ and all θ′ such
that either θ′ 6∈ Πi(θ) or KL(νit, µ

θ′) > d+ κ,

KL(νit, µ
θ
i ) ≤ d =⇒ PIt (θ′|xti) <

1−√p
|Θ|

,

proving Claim 2.

Finally, to prove Lemma A.2, let T = max{T ′, T ′′}, with T ′ and T ′′ as found in
Claims 1–2. Then, whenever t ≥ T and KL(νit, µ

θ
i ) ≤ d, we have

PIt (
⋃

θ′∈Πi(θ)

({θ′} ∩ F−it(θ′, d)) | xti) ≥
∑

θ′∈Πi(θ) s.t. KL(νit,µθ
′ )≤d+κ

PIt ({θ′} ∩ F−it(θ′, d) | xti)

=
∑

θ′∈Πi(θ) s.t. KL(νit,µθ
′ )≤d+κ

PIt (F−it(θ
′, d) | xti, θ′)PIt (θ′ | xti)

≥
∑

θ′∈Πi(θ) s.t. KL(νit,µθ
′ )≤d+κ

√
p× PIt (θ′ | xti) ≥ p,

where the second inequality uses Claim 1 and the last inequality uses Claim 2.
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B Proof of Theorem 1 (Fully Private Case)

This appendix proves Theorem 1, assuming for ease of exposition that information
structure I is fully private, i.e., the joint distribution µθ has full support on X for
each θ. Appendix D extends the proof to general information structures.

Fix any θ ∈ Θ and p ∈ (0, 1). We first establish that

lim sup
t→∞

1

t
log
(
1− PIt (Cp

t (θ) | θ)
)
≤ −λθ(I). (18)

Take any d ∈ (0, λθ(I)). Applying Lemma A.2 to the case with Πi(θ) = {θ}
for each i ∈ I, there exists T > 0 such that, for all t ≥ T , (i) Ft(θ, d) ⊆ Bp

t (θ),
and (ii) Ft(θ, d) ⊆ Bp

t (F (θ, d)). Thus, by Monderer and Samet (1989), we have
Ft(θ, d) ⊆ Cp

t (θ) for all t ≥ T . Therefore,

lim sup
t→∞

1

t
log
(
1− PIt (Cp

t (θ) | θ)
)
≤ lim sup

t→∞

1

t
log
(
1− PIt (Ft(θ, d) | θ)

)
≤ lim sup

t→∞

1

t
log

(∑
i

PIt ({KL(νit, µ
θ
i ) > d} | θ)

)
= max

i
lim sup
t→∞

1

t
logPIt ({KL(νit, µ

θ
i ) > d} | θ)

= −d,

where the last equality follows from Sanov’s theorem. Since this holds for all d <
λθ(I), this establishes (18).

We next establish that

lim inf
t→∞

1

t
log
(
1− PIt (Bq

t (θ) | θ)
)
≥ −λθ(I). (19)

Take i ∈ I and θ′ 6= θ such that d(µθi , µ
θ′
i ) = λθ(I). Take any d > d(µθi , µ

θ′
i ). Then

there is νi ∈ ∆(Xi) with KL(νi, µ
θ
i ) = KL(νi, µ

θ′
i ) < d. Hence, for some ν ′i close to νi,

KL(ν ′i, µ
θ′

i ) < KL(ν ′i, µ
θ
i ) < d.

Thus, there exist ε > 0 and an open set Ki 3 ν ′i of signal distributions such that for
all ν ′′i ∈ Ki,

KL(ν ′′i , µ
θ′

i ) + ε < KL(ν ′′i , µ
θ
i ) < d.
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Then, for all large enough t, Bp
it(θ)∩{νit ∈ Ki} = ∅, because by standard arguments,

i’s beliefs at large t concentrate on states whose signal distributions minimize KL-
divergence relative to νit. Thus,

lim inf
t→∞

1

t
log
(
1− PIt (Bp

it(θ) | θ)
)
≥ lim inf

t→∞

1

t
logPIt ({νit ∈ Ki} | θ) ≥ −d,

where the final inequality holds by Sanov’s theorem. Since this is true for all d >
λθ(I), this establishes (19).

C Proof of Theorem 2 (Fully Private Case) and The-

orem 3

Below we prove Theorem 3. When I and Ĩ are either fully private or public, Theo-
rem 2 then follows as the special case in which Πi(θ) = {θ} for all θ and i. Appendix D
proves Theorem 2 for general information structures. To simplify notation, we drop
the superscript W from aθ,W when there is no risk of confusion.

C.1 Bounds on Inefficiency

For any I, G, and W , we first derive bounds on the probability of inefficient play
(i.e., not playing aθ in state θ) as t grows large. The following result provides a lower
bound on this probability for arbitrary sequences of strategy profiles (σt):

Lemma C.1. Fix any I, G, and W . For any sequence of strategy profiles (σt) of
Gt(I),

lim inf
t→∞

max
θ

1

t
log

(
1−

∑
xt∈Xt

PIt (xt | θ)σt(aθ | xt)

)
≥ −λ(I,ΠW ).

Proof. Pick i, θ, and θ′ 6∈ ΠW
i (θ) such that λ(I,ΠW ) = d(µθi , µ

θ′
i ). Consider any

sequence of strategy profiles (σt) of Gt(I). Consider modified strategies (σ̃it) for
player i such that, for each xti,

1. σ̃it(aθi | xti) ≥ σit(a
θ
i | xti) and σ̃it(aθ

′
i | xti) ≥ σit(a

θ′
i | xti)

2. σ̃it(aθi | xti) + σ̃it(a
θ′
i | xti) = 1.
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That is, (σ̃it) is obtained by shifting all weight (σit) puts on actions other than aθi , aθ
′
i

to aθi , aθ
′
i at all signal realizations.

We also consider the sequence of strategies (σ∗it) given byσ∗it(aθi | xti) = 1 if KL(νit, µ
θ
i ) ≤ KL(νit, µ

θ′
i )

σ∗it(a
θ′
i | xti) = 1 if KL(νit, µ

θ
i ) > KL(νit, µ

θ′
i ),

where νit is the empirical signal distribution associated with xti. Note that σ∗it can be
seen as a likelihood ratio test (with threshold 1). Thus, the Neyman-Pearson lemma
for randomized tests (Theorem 3.2.1 in Lehmann and Romano, 2006) implies that,
for each t, ∑

xti∈Xt
i

PIt (xti | θ)σ̃it(aθi |xti) ≤
∑
xti∈Xt

i

PIt (xti | θ)σ∗it(aθi |xti)

or
∑
xti∈Xt

i

PIt (xti | θ′)σ̃it(aθ
′

i |xti) ≤
∑
xti∈Xt

i

PIt (xti | θ′)σ∗it(aθ
′

i |xti).
(20)

Hence,

lim inf
t→∞

1

t
log

max

1−
∑
xti∈Xt

i

PIt (xti | θ)σit(aθi |xti), 1−
∑
xti∈Xt

i

PIt (xti | θ′)σit(aθ
′

i |xti)




≥ lim inf
t→∞

1

t
log

max

1−
∑
xti∈Xt

i

PIt (xti | θ)σ̃it(aθi |xti), 1−
∑
xti∈Xt

i

PIt (xti | θ′)σ̃it(aθ
′

i |xti)




≥ lim inf
t→∞

1

t
log

min

1−
∑
xti∈Xt

i

PIt (xti | θ)σ∗it(aθi |xti), 1−
∑
xti∈Xt

i

PIt (xti | θ′)σ∗it(aθ
′

i |xti)




= min
θ′′∈{θ,θ′}

lim inf
t→∞

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ′′)σ∗it(aθ
′′

i |xti)

 ,

where the first inequality follows from the construction of (σ̃it) and the second in-
equality uses (20). The last line is equal to −d(µθi , µ

θ′
i ) = −λ(I,ΠW ), because the

asymptotic error rate under a likelihood-ratio test with threshold 1 is given by Cher-
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noff information (Theorem 3.4.3 in Dembo and Zeitouni, 2010),23 i.e.,

lim
t→∞

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ)σ∗it(aθi |xti)

 = lim
t→∞

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ′)σ∗it(aθ
′

i |xti)


= −d(µθi , µ

θ′

i ).

This implies that

lim inf
t→∞

max
θ′′∈Θ

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ′′)σit(aθ
′′

i |xti)

 ≥ −λ(I,ΠW ),

as claimed.

Under Assumption 1, the following result provides an upper bound on the proba-
bility of inefficient play under some equilibrium sequence (σt):

Lemma C.2. Fix any I that is either fully private or public and any (G,W ) satisfying
Assumption 1. There exists a sequence of BNE strategy profiles (σt) ∈ BNEt(G, I)

such that, for all θ ∈ Θ,

lim sup
t→∞

1

t
log

(
1−

∑
xt∈Xt

PIt (xt | θ)σt(aθ | xt)

)
≤ −λ(I,ΠW ).

Proof. Take p ∈ (0, 1) sufficiently close to 1 such that, for all i and θ, choosing aθi is ui-
optimal whenever i’s belief about the state and opponents’ actions assigns probability
at least p to {(θ′, aθ′−i) : θ′ ∈ ΠW

i (θ)}. Such a p exists because, by Assumption 1, aθi is
the unique maximizer of ui(·, aθ

′
−i, θ

′) for each θ′ ∈ ΠW
i (θ).

Fix any d < λ(I,ΠW ) := mini∈I,θ∈Θ,θ′ 6∈Πi(θ) d(µθi , µ
θ′
i ). Let Σit(d) denote the

set of i’s strategies at t such that σit(aθi | xti) = 1 whenever KL(νit, µ
θ
i ) ≤ d.

This set is well-defined by the choice of d, i.e., there is no νi ∈ ∆(Xi) such that
KL(νi, µ

θ
i ),KL(νi, µ

θ′
i ) ≤ d for some θ and θ′ 6∈ ΠW

i (θ).
We show that there exists T such that for any t > T , there is a BNE σt of Gt(I)

with σit ∈ Σit(d) for every i. To see this, first consider the case in which I is fully
private. Then, by Lemma A.2 with p as chosen above, there is T such that (17) holds
for all i, θ, and t ≥ T . Thus, for all t ≥ T , each agent i’s best response against any

23This in turn follows from a simple application of Sanov’s theorem.
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strategy profile in
∏

j 6=i Σjt(d) must be in Σit(d), because whenever KL(νit, µ
θ
i ) ≤ d,

then i assigns probability at least p to {(θ′, aθ′−i) : θ′ ∈ ΠW
i (θ)}. Thus, for every

t ≥ T , applying Kakutani’s fixed point theorem to the best-response correspondences
defined on the restricted strategy space

∏
i Σit(d), we obtain a BNE σt of Gt(I)

such that σit ∈ Σit(d) for every i. Next, suppose I is public. In this case, all
players’ posteriors coincide, i.e., PIt (·|xit) = PIt (·|xjt) for all i, j, and t. Moreover,
KL(νit, µ

θ
i ) ≤ d ⇐⇒ KL(νjt, µ

θ
j) ≤ d for all i, j, t. Thus, if we choose T large

enough, the same argument as in Claim 2 in the proof of Lemma A.2 ensures that

KL(νit, µ
θ
i ) ≤ d =⇒ PIt ({θ′ ∈

⋂
j

Πj(θ)} | xti) ≥ p

for all t ≥ T . Based on this observation, the same argument as in the fully private
case yields a sequence of BNE σt ∈

∏
i Σit(d) for all t ≥ T .

The above implies that there is a sequence of BNEs (σt) such that for all θ, we
have that, as t→∞,

1−
∑
xt∈Xt

PIt (xt|θ)σt(aθ | xt) ≤
∑
i

PIt ({KL(νit, µ
θ
i ) > d} | θ) = exp[−td+ o(t)],

where the equality follows from Sanov’s theorem. Since this holds for all d <

λ(I,ΠW ), this yields the desired conclusion.

C.2 Remaining Proof

We prove that 1. implies 2. The converse is then immediate from the assumption that
λ(I,Π) 6= λ(Ĩ,Π).

Fix any information structures I and Ĩ, each of which is either fully private or
public, and any (G,W ) satisfying Assumption 1 and ΠW = Π. Suppose λ(I,Π) >

λ(Ĩ,Π). Since A is finite and {aθ} = arg maxaW (a, θ) for each θ ∈ Θ, there exist
constants c ≥ c̃ > 0 such that for all t, strategy profiles σt of Gt(I) and σ̃t of Gt(Ĩ),
and all θ ∈ Θ,

W (aθ, θ)−
∑
xt,a

PIt (xt | θ)σt(a | xt)W (a, θ) ≤ c

(
1−

∑
xt

PIt (xt | θ)σt(aθ | xt)

)
, (21)
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W (aθ, θ)−
∑
x̃t,a

PĨt (x̃t | θ)σ̃t(a|x̃t)W (a, θ) ≥ c̃

(
1−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ|x̃t)

)
. (22)

By Lemma C.2, there exists a sequence of BNE σt ∈ BNEt(G, I) such that

−λ(I,Π) ≥ max
θ

lim sup
t→∞

1

t
log

(
1−

∑
xt

PIt (xt | θ)σt(aθ|xt)

)

= lim sup
t→∞

1

t
log
∑
θ

p0(θ)

(
1−

∑
xt

PIt (xt | θ)σt(aθ|xt)

)
,

which by (21) implies

lim sup
t→∞

1

t
log
∑
θ

p0(θ)

(
W (aθ, θ)−

∑
xt

PIt (xt | θ)σt(aθ | xt)W (a, θ)

)
≤ −λ(I,Π).

(23)
Let σ̃t denote a strategy profile that maximizes Wt(·, Ĩ). By Lemma C.1,

−λ(Ĩ,Π) ≤ lim inf
t→∞

max
θ

1

t
log

(
1−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ | x̃t)

)

≤ lim inf
t→∞

1

t
log
∑
θ

p0(θ)

(
1−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ | x̃t)

)
,

which by (22) implies

lim inf
t→∞

1

t
log
∑
θ

p0(θ)

(
W (aθ, θ)−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ | x̃t)W (a, θ)

)
≥ −λ(Ĩ,Π).

(24)
Thus, for all large enough t, we have Wt(G, I) ≥ Wt(σt, I) > Wt(σ̃t, Ĩ) ≥ Wt(G, Ĩ),
where the strict inequality follows from (23) and (24) and the assumption that
λ(I,Π) > λ(Ĩ,Π).

D Proofs of Theorems 1–2 (General Case)

In this section, we extend the proofs of Theorems 1–2 to general information structures
that need not be fully private. The main complication stems from the fact that the
strict inequality part of Lemma 1 need not hold when µθ does not have full support.
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We handle this issue by modifying the events Ft(θ, d) appropriately.
Fix any information structure I and state θ. Let Xθ ⊆ X denote the support

of µθ. Conditional on state θ, define Hθ
i = (hθi (x))x∈Xθ to be agent i’s information

partition of Xθ based on observing her own private signal; that is

hθi (x) := {x′ ∈ Xθ : x′i = xi}, for all x ∈ Xθ.

For any distribution ν ∈ ∆(Xθ) and any partition H of Xθ, let νH ∈ ∆(H) denote the
induced distribution over the cells in H; that is, νH(h) :=

∑
x∈h ν(x) for all h ∈ H.

Letting νt ∈ ∆(Xθ) denote the joint empirical distribution of signals up to t, note
that (νt)Hθ

i
can be identified with i’s empirical distribution νit. For each subset of

agents S ⊆ I, define Hθ
S :=

∧
i∈S H

θ
i to be the finest common coarsening of all the

partitions Hθ
i with i ∈ S. For any joint empirical signal distribution νt, distribution

(νt)Hθ
S
is commonly known among all agents in S.

Finally, for any d > 0 and ε1, . . . , ε|I| ∈ [0, d), define the following event:

Ft(θ, d, ε1, . . . , ε|I|) :=
{
xt ∈ (Xθ)t : KL

(
(νt)Hθ

S
, µθHθ

S

)
≤ d− ε|S|, ∀S ⊆ I

}
.

Note that, for any i ∈ S, KL
(
νit, µ

θ
i

)
≥ KL

(
(νt)Hθ

S
, µθ

Hθ
S

)
. Thus, Ft(θ, d, 0, . . . , 0) =

Ft(θ, d). Observe also that if µθ has full support, then Hθ
S = {X} for all non-singleton

S, so Ft(θ, d, ε1, . . . , ε|I|) = Ft(θ, d− ε1).
The main step in extending the proofs of Theorems 1–2 is the following result,

which we prove in Appendix D.1.

Proposition D.1. Take any d ∈ (0, λθ(I)) and ε ∈ (0, d). There exists a sequence
ε = εn > · · · > ε2 > ε1 = 0 such that, for all p ∈ (0, 1), there exists T such that

PIt
(
{θ} ∩ Ft(θ, d, ε1, . . . , ε|I|) | xti

)
≥ p

holds for every i ∈ I, t ≥ T , and signal sequence xt ∈ Ft(θ, d, ε1, . . . , ε|I|).

Using Proposition D.1, the proof of Theorem 1 extends as follows. It suffices to
prove (18) for general I, as the argument for (19) in Appendix B did not rely on
the full-support assumption. To prove (18), take any d ∈ (0, λθ(I)) and ε ∈ (0, d).
Then for all p ∈ (0, 1) and large enough t, the events Ft(θ, d, ε1, . . . , ε|I|) constructed
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in Proposition D.1 satisfy

Ft(θ, d, ε1, . . . , ε|I|) ⊆ Cp
t (θ),

since Proposition D.1 ensures that these events are p-evident and Ft(θ, d, ε1, . . . , ε|I|) ⊆
Bp
t (θ) at large t by the usual argument. Moreover, by Sanov’s theorem and the fact

that Ft(θ, d, 0, . . . , 0) = Ft(θ, d),

lim
εk→0∀k

lim
t→∞

1

t
log
(
1− PIt

(
Ft(θ, d, ε1, . . . , ε|I|) | θ

))
= lim

t→∞

1

t
log
(
1− PIt (Ft(θ, d) | θ)

)
= −d.

Since this holds for all d < λθ(I), (18) follows.
To extend the proof of Theorem 2, it is sufficient to establish Lemma C.2 for

general I under Assumption 2, as the remaining steps of the proof in Appendix C did
not rely on the full-support assumption. To this end, fix p ∈ (0, 1) and d ∈ (0, λ(I)) as
in the original proof of Lemma C.2, and take any ε ∈ (0, d). Applying Proposition D.1
and following the same steps as in the original proof of Lemma C.2, we construct a
BNE sequence (σt) such that for all large enough t and each θ, we have σt(aθ|xt) = 1

at all signal sequences xt ∈ Ft(θ, d, ε1, . . . , ε|I|). Thus,

lim
t→∞

1

t
log

(
1−

∑
xt∈Xt

PIt (xt|θ)σt(aθ | xt)

)
≤ lim

t→∞

1

t
log
(
1− PIt

(
Ft(θ, d, ε1, . . . , ε|I|) | θ

))
.

As above, the right-hand side tends to −d as εk → 0 for each k. Since this holds for
all d < λ(I), we obtain the desired conclusion.

D.1 Proof of Proposition D.1

D.1.1 Generalization of Lemma 1

The key step in proving Proposition D.1 is the following generalization of Lemma 1.
For each i ∈ I and ν ∈ ∆(Xθ) with νi = margXiν, define distribution νM θ

i ∈ ∆(Xθ)

by
(νM θ

i )(xi, x−i) := νi(xi)µ
θ(x−i|xi), for all (xi, x−i) ∈ Xθ. (25)
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When the joint empirical signal distribution is νt, then νtM θ
i is i’s expectation of this

joint distribution conditional on state θ and on observing νit.

Lemma D.1. Take any ν ∈ ∆(Xθ), i ∈ I, and S ⊆ I. Then KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
≤

KL
(
νHθ

i
, µθ

Hθ
i

)
. Moreover, the inequality is an equality only if νHθ

i
(·|h) = µθ

Hθ
i
(·|h) for

every h ∈ Hθ
i ∧Hθ

S with νHθ
i ∧Hθ

S
(h) > 0.

Proof. To show the inequality, first note that

KL
(
νM θ

i , µ
θ
)

= KL
(

(νM θ
i )Hθ

i
, µθHθ

i

)
+
∑
h∈Hθ

i

(νM θ
i )Hθ

i
(h)KL((νM θ

i )(·|h), µθ(·|h))

= KL
(
νHθ

i
, µθHθ

i

)
, (26)

where the first equality uses the chain rule for KL-divergence and the second one
holds because νHθ

i
= (νM θ

i )Hθ
i
and (νM θ

i )(·|h) = µθ(·|h) for each h ∈ Hθ
i by (25).

The chain rule also implies that

KL
(
νM θ

i , µ
θ
)

= KL
(

(νM θ
i )Hθ

S
, µθHθ

S

)
+
∑
h∈Hθ

S

(νM θ
i )Hθ

S
(h)KL

(
(νM θ

i )(·|h) | µθ(·|h)
)

≥ KL
(

(νM θ
i )Hθ

S
, µθHθ

S

)
. (27)

Combining (26)–(27) yields KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
≤ KL

(
νHθ

i
, µθ

Hθ
i

)
.

For the “moreover” part, suppose that KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
= KL

(
νHθ

i
, µθ

Hθ
i

)
.

Then, by (26)-(27), for every h ∈ Hθ
S such that (νM θ

i )Hθ
S
(h) > 0, we have (νM θ

i )(·|h) =

µθ(·|h). In addition, for any h ∈ Hθ
i such that (νM θ

i )Hθ
i
(h) > 0, (25) implies

(νM θ
i )(·|h) = µθ(·|h). These two observations yield that for any h ∈ Hθ

i ∧ Hθ
S

with (νM θ
i )Hθ

i ∧Hθ
S
(h) > 0, we have (νM θ

i )(·|h) = µθ(·|h), and hence (νM θ
i )Hθ

i
(·|h) =

µθ
Hθ
i
(·|h). But by (25), (νM θ

i )Hθ
i

= νHθ
i
and (νM θ

i )Hθ
i ∧Hθ

S
= νHθ

i ∧Hθ
S
. Thus, νHθ

i
(·|h) =

µθ
Hθ
i
(·|h) for all h ∈ Hθ

i ∧Hθ
S with νHθ

i ∧Hθ
S
(h) > 0.

Lemma D.1 yields the following corollary:

Corollary D.1. Take any d > 0 and ε ∈ (0, d). There exists ρ ∈ (0, ε) such that for
all S ⊆ I, i /∈ S, and ν ∈ ∆(Xθ) with

KL(νHθ
i
, µθHθ

i
) ≤ d and max

|S′|=|S|+1
KL(νHθ

S′
, µθHθ

S′
) ≤ d− ε,
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we have KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d− ρ.

Proof. Consider any S ⊆ I, i 6∈ S, and ν ∈ ∆(Xθ) with KL(νHθ
i
, µθ

Hθ
i
) ≤ d and

max|S′|=|S|+1 KL(νHθ
S′
, µθ

Hθ
S′

) ≤ d−ε. It suffices to prove that KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d,

as the left-hand side of this inequality is continuous in ν and ∆(Xθ) is compact.
To show the latter inequality, note that Lemma D.1 implies KL

(
(νM θ

i )Hθ
S
, µθ

Hθ
S

)
≤

KL(νHθ
i
, µθ

Hθ
i
) ≤ d. Thus, we can focus on the case in which KL

(
(νM θ

i )Hθ
S
, µθ

Hθ
S

)
=

KL(νHθ
i
, µθ

Hθ
i
). In this case,

KL(νHθ
i
, µθHθ

i
) = KL

(
νHθ

i ∧Hθ
S
, µθHθ

i ∧Hθ
S

)
+

∑
h∈Hθ

i ∧Hθ
S

νHθ
i ∧Hθ

S
(h)KL

(
νHθ

i
(·|h), µθHθ

i
(·|h)

)
= KL

(
νHθ

i ∧Hθ
S
, µθHθ

i ∧Hθ
S

)
≤ d− ε,

where the first equality uses the chain rule and the second one holds by the “moreover”
part of Lemma D.1.

D.1.2 Completing the Proof

To prove Proposition D.1, we first set ε|I| = ε. By Corollary D.1, there exists ρ|I|−1 ∈
(0, ε|I|) such that for all i ∈ I and S = I \ {i}, whenever

KL(νHθ
i
, µθHθ

i
) ≤ d and KL(νHθ

I
, µθHθ

I
) ≤ d− ε,

we have KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d− ρ|I|−1.

Next, choose some ε|I|−1 ∈ (0, ρ|I|−1), and proceed inductively in the same manner.
In particular, once we have constructed εk+1, use Corollary D.1 to find ρk ∈ (0, εk+1)

such that for all i ∈ I and S ⊆ I with |S| = k and i /∈ S, whenever

KL(νHθ
i
, µθHθ

i
) ≤ d and max

|S′|=k+1
KL(νHθ

S′
, µθHθ

S′
) ≤ d− εk+1,

we have KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d− ρk.

This yields a sequence

ε = ε|I| > ρ|I|−1 > ε|I|−1 > · · · > ε2 > ρ1 > ε1 = 0
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with the property that whenever

KL(νHθ
S
, µθHθ

S
) ≤ d− ε|S| for all S ⊆ I,

we have KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d− ρ|S| for all S ⊆ I and i 6∈ S.

We now show that this sequence is as required by Proposition D.1. As noted, for
any p ∈ (0, 1) and sufficiently large t, we have Ft(θ, d, ε1, . . . , ε|I|) ⊆ Bp

t (θ). Thus, it
suffices to show that, for any p ∈ (0, 1), i ∈ I, and S ⊆ I, there exists T such that

PIt
({

KL
(

(νt)Hθ
S
, µθHθ

S

)
≤ d− ε|S|

}
| xti, θ

)
≥ p (28)

holds for every t ≥ T and signal sequence xt ∈ Ft(θ, d, ε1, . . . , ε|I|).
To show (28), fix any p ∈ (0, 1). First, consider i ∈ I and S ⊆ I with i ∈ S.

Then Hθ
S is coarser than Hθ

i . Hence, for any t ≥ 1 and signal sequence xt with
corresponding empirical distribution ν̃t ∈ ∆(Xθ), we have

PIt
({
νt ∈ ∆(Xθ) : (νt)Hθ

S
= (ν̃t)Hθ

S

}
| xti, θ

)
= 1.

Thus, if xt ∈ Ft(θ, d, ε1, . . . , ε|I|), then

PIt
({

KL
(

(νt)Hθ
S
, µθHθ

S

)
≤ d− ε|S|

}
|xti, θ

)
= 1 > p,

as required.
Next, consider i ∈ I and S ⊆ I with i /∈ S. Then the way in which sequence

(εk, ρk)k=1,...,|I| was constructed ensures that, for any t ≥ 1 and xt ∈ Ft(θ, d, ε1, . . . , ε|I|)

with corresponding empirical frequency ν̃t, we have

KL
(

(ν̃tM
θ
i )Hθ

S
, µθHθ

S

)
≤ d− ρ|S|. (29)

Since ρ|S| > ε|S| and ∆(Xθ) is compact, there exists κ > 0 such that, for all ν, ν ′ ∈
∆(Xθ),

KL
(
ν ′Hθ

S
, µθHθ

S

)
≤ d− ρ|S| and ‖ν ′ − ν‖ < κ =⇒ KL

(
νHθ

S
, µθHθ

S

)
≤ d− ε|S|. (30)

By the same law of large numbers argument as in the full-support case, there
exists T such that, for all t ≥ T and signal sequences xt with empirical distribution
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ν̃t, we have
PIt
({∥∥νt − ν̃tM θ

i

∥∥ < κ
}
| xti, θ

)
≥ p.

Combined with (29)–(30), this implies that (28) holds for every t ≥ T and signal
sequence xt ∈ Ft(θ, d, ε1, . . . , ε|I|).
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Online Appendix to “Learning Efficiency of
Multi-Agent Information Structures”

Mira Frick, Ryota Iijima, and Yuhta Ishii

E Convergence of Belief Hierarchies
Theorem 1 showed that the learning efficiency index λθ(I) characterizes the speed at
which players achieve approximate common knowledge of the true state in the sense
of common p-belief. An analogous result holds if proximity to common knowledge is
instead formalized in terms of commonly used topologies over belief hierarchies.

Recall that a belief hierarchy for player i is a sequence τi := (τ 1
i , τ

2
i , . . .) ∈ Zi =

(Z1
i , Z

2
i , . . .), where Z1

i := ∆(Θ) and Zk
i := ∆(Θ ×

∏
j 6=i Z

k−1
j ) denotes the space of

player i’s kth order beliefs, subject to standard coherency requirements across the
kth order beliefs τ ki for different k (e.g., Brandenburger and Dekel, 1993).24 Fix an
information structure I. Each observation of a signal sequence xti induces a belief
hierarchy τi(xti) ∈ Zi for player i. We let τi(θ) ∈ Zi denote the belief hierarchy for
player i when there is common certainty of state θ.

Let ρproduct
i denote a metric on Zi that induces the product topology over player

i’s belief hierarchies. For example, define ρproduct
i (τi, τ̃i) :=

∑
k β

kρk(τ ki , τ̃
k
i ), where β ∈

(0, 1) and ρk denotes the Prokhorov metric over kth order beliefs. Since the product
topology may in general be too coarse (e.g., Lipman, 2003; Weinstein and Yildiz,
2007), the literature has proposed several alternative metrics that refine this topology.
In particular, consider the metric for the uniform-weak topology (Chen, Di Tillio,
Faingold, and Xiong, 2010), which is given by ρuniform

i (τi, τ̃i) := supk ρ
k(τ ki , τ̃

k
i ). Then

for all θ ∈ Θ and sufficiently small ε > 0, Theorem 1 implies that, as t→∞,25

PIt ({max
i
ρproduct
i (τi(x

t
i), τi(θ)) < ε} | θ) = 1− exp[−λθ(I)t+ o(t)],

PIt ({max
i
ρuniform
i (τi(x

t
i), τi(θ)) < ε} | θ) = 1− exp[−λθ(I)t+ o(t)].

That is, the speed of convergence to common certainty is the same under both these
topologies and is again given by the exponential rate λθ(I).26 While differences

24For any topological space Y , we let ∆(Y ) denote the space of Borel probability measures over
Y and endow it with the topology of weak convergence.

25To see the latter equality, note that the proof of Proposition 6 in Chen, Di Tillio, Faingold, and
Xiong (2010) implies that the ε-ball around τi(θ) consists of all belief hierarchies for player i that
have common (1− ε)-belief on θ.

26Analogous results hold under other metrics considered in the literature, for example, the metric
for the strategic topology (Dekel, Fudenberg, and Morris, 2006), which is coarser than the product
topology but finer than the uniform-weak topology.
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between these topologies play a significant role in one-shot signal observation settings,
our finding shows that these differences do not matter for the speed of convergence
in the current large-sample setting.

F Monotone Information Structures
Suppose states are linearly ordered; without loss of generality, write Θ = {1, . . . , n}.
An information structure I is monotone if, for each agent i ∈ I, Xi is linearly
ordered in such a way that the signal distributions (µθi )θ∈Θ satisfy the monotone
likelihood-ratio property with respect to the orders over states and signals.

The following result shows that, for monotone information structures, the condi-
tion in Corollary 1 can be relaxed to one that is easier to verify:

Corollary F.1. Let Θ = {1, . . . , n}. Take any monotone information structures I
and Ĩ, each of which is either fully private or public, and suppose that mini∈I d(µθi , µ

θ+1
i ) 6=

mini∈I d(µ̃θi , µ̃
θ+1
i ) for all θ = 1, . . . , n− 1. The following are equivalent:

(i). For any basic game G and objective W satisfying Assumption 1, there exists T
such that Wt(I,G) > Wt(Ĩ,G) for all t > T .

(ii). We have mini∈I d(µθi , µ
θ+1
i ) > mini∈I d(µ̃θi , µ̃

θ+1
i ) for all θ = 1, . . . , n− 1.

In Corollary 1, one has to calculate index λ(I,Π) for every partition Π of Θ, where
the number of partitions grows exponentially as |Θ| becomes large. In contrast, for
monotone structures, Corollary F.1 shows that it suffices to consider the Chernoff
distance between each consecutive pair of signal distributions µθi , µ

θ+1
i , whose number

grows only linearly as |Θ| becomes large.
The proof of Corollary 1 uses the following property of Chernoff distances under

monotone information structures:

Lemma F.1. Let Θ = {1, ..., n}. Take any monotone information structure I. For
any θ < θ′ < θ′′ and i ∈ I, we have max{d(µθi , µ

θ′
i ), d(µθ

′
i , µ

θ′′
i )} ≤ d(µθi , µ

θ′′
i ).

Proof. We establish that d(µθi , µ
θ′
i ) ≤ d(µθi , µ

θ′′
i ). The proof of the remaining inequal-

ity is analogous. By the equivalent expression for Chernoff distance based on the
Hellinger transform (Remark 1), we have that d(µθi , µ

θ′
i ) ≤ d(µθi , µ

θ′′
i ) if and only if

min
p∈[0,1]

∑
xi

µθi (xi)

(
µθ
′
i (xi)

µθi (xi)

)p
≥ min

p∈[0,1]

∑
xi

µθi (xi)

(
µθ
′′
i (xi)

µθi (xi)

)p
.

By the concavity of z 7→ zp for each p ∈ [0, 1] and because µθ′i 6= µθ
′′
i , this inequality

is satisfied if the distribution of µ
θ′′
i (xi)

µθi (xi)
is a mean-preserving spread of the distribution

of µθ
′
i (xi)

µθi (xi)
, when xi is drawn according to µθi .
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To show the latter, let ≥i denote the linear order on Xi. By the monotone
likelihood-ratio property, both µθ

′
i (xi)

µθi (xi)
and µθ

′′
i (xi)

µθi (xi)
are increasing in xi. Moreover, µθ′′i

first-order stochastically dominates µθ′i . Thus, for all xi ∈ Xi,∑
xi∈Xi s.t. xi≥ixi

µθi (xi)
µθ
′
i (xi)

µθi (xi)
=

∑
xi∈Xi s.t. xi≥ixi

µθ
′

i (xi) ≥
∑

xi∈Xi s.t. xi≥ixi

µθ
′′

i (xi)

=
∑

xi∈Xi s.t. xi≥ixi

µθi (xi)
µθ
′′
i (xi)

µθi (xi)
,

with equality if xi is ≥i-maximal. This implies the desired mean-preserving spread
relationship (e.g., Theorem 3.A.5. in Shaked and Shanthikumar, 2007).

Proof of Corollary F.1. First, take any non-degenerate collection of partitions Π
and any θ ∈ Θ, i ∈ I, and θ′ 6∈ Πi(θ) such that d(µθi , µ

θ′
i ) = λ(I,Π). Note that we can

assume that |θ − θ′| = 1. Indeed, otherwise, Lemma F.1 yields a state θ′′ in between
θ and θ′ such that max{d(µθi , µ

θ′′
i ), d(µθ

′′
i , µ

θ′
i )} ≤ d(µθi , µ

θ′
i ), where either θ′′ 6∈ Πi(θ)

or θ′′ 6∈ Πi(θ
′) holds. The same argument applies to Ĩ.

To show that (ii) implies (i), note that if mini∈I d(µθi , µ
θ+1
i ) > mini∈I d(µ̃θi , µ̃

θ+1
i )

holds for all θ = 1, . . . , n− 1, then λ(I,Π) > λ(Ĩ,Π) holds for all partitions Π by the
observation in the previous paragraph. Thus, the conclusion follows from Corollary 1.

To show that (i) implies (ii), we prove the contrapositive. Suppose that we have
mini∈I d(µθi , µ

θ+1
i ) ≤ mini∈I d(µ̃θi , µ̃

θ+1
i ) for some θ, where the inequality must be strict

by the assumption that mini∈I d(µθi , µ
θ+1
i ) 6= mini∈I d(µ̃θi , µ̃

θ+1
i ). Then take any basic

game G and objective function W such that, for all i, ΠW
i (θ′) = {1, . . . , θ} for each

θ′ ≤ θ and ΠW
i (θ′) = {θ + 1, . . . , n} for each θ′ > θ. By the observation in the first

paragraph, we have λ(I,ΠW ) = mini∈I d(µθi , µ
θ+1
i ) and λ(Ĩ,ΠW ) = mini∈I d(µ̃θi , µ̃

θ+1
i ).

Thus, by Theorem 3, there exists T such that Wt(Ĩ,G) > Wt(I,G) for all t > T .

G Convergence of Equilibrium Sets
In Section 4, we focused on equilibria of Gt(I) that maximize the expected objective.
In this section, we show that the learning efficiency index also captures how fast the
whole equilibrium set of Gt(I) converges to the set of common knowledge equilibria.

Formally, given any basic game G, m ∈ ∆(A) is an ε-correlated equilibrium at
θ if, for each i,

m(ai) > 0 =⇒
∑
a−i

m(a−i|ai) (ui(ai, a−i, θ)− ui(a′i, a−i, θ)) ≥ −ε,∀a′i ∈ Ai.

Let CEθ,ε(G) denote the set of ε-correlated equilibria at θ, and CEε(G) the set of joint
distributions over states and actions induced by ε-correlated equilibria at each state,
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i.e.,

CEε(G) := {m ∈ ∆(Θ× A) : m(θ) = p0(θ),m(·|θ) ∈ CEθ,ε(G), ∀θ ∈ Θ}.

We also denote by NE(G) the set of joint distributions over states and actions induced
by Nash equilibria at each state, defined in the usual manner.

Define the set of ε-Bayes Nash equilibria of Gt(I) analogously. Finally, abusing
notation relative to the main text, let BNEε

t(G, I) ⊆ ∆(Θ×A) denote the set of joint
distributions over states and actions induced by ε-Bayes Nash equilibria of Gt(I).

Corollary G.1. Take any information structure I and any ε > 0. For any basic
game G, as t→∞,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt −m‖ ≤ exp[−tλ(I) + o(t)], (31)

sup
m∈NE(G)

inf
mt∈BNEεt (G,I)

‖mt −m‖ ≤ exp[−tλ(I) + o(t)]. (32)

Moreover, for some basic game G, both inequalities hold with equality.

By (31), the ex-ante learning efficiency index λ(I) lower-bounds the speed at which
every BNE outcome at large t can be approximated by some ε-correlated equilibrium
in the complete information limit. Note that we employ ε-correlated equilibria in
the limit instead of ε-Nash equilibria; this is because, even though players achieve
approximate common knowledge at large t, signal distributions in general introduce
correlation into their action choices. By (32), λ(I) also lower-bounds the speed at
which every Nash equilibrium outcome in the complete information limit can be
approximated by some ε-BNE outcome at large t. Finally, both bounds are tight.

Proof of Corollary G.1. For simplicity, we focus on the case where each joint dis-
tribution µθ ∈ ∆(X) has full support; the extension to general information structures
I follows similar arguments as in Appendix D. Fix any ε > 0 and basic game G.

Inequality (31): Pick p ∈ (0, 1) large enough that

pε ≥ (1− p) max
i,ai,a′i,a−i,θ

|ui(ai, a−i, θ)− ui(a′i, a−i, θ)| .

Take any d < λ(I). By Lemma A.2, there exists T such that for all t ≥ T , i ∈ I,
and θ ∈ Θ, whenever KL(νit, µ

θ
i ) ≤ d, then

PIt
(
{θ} ∩ Ft(θ, d) | xti

)
≥ p. (33)

Take any t ≥ T , BNE σt of Gt(I), i ∈ I, θ ∈ Θ, and xti ∈ X t
i such that KL(νit, µ

θ
i ) ≤

d. Then for any ai with σit(ai|xti) > 0, the fact that σt is a BNE implies that, for all
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a′i ∈ Ai, ∑
θ′∈Θ,xt−i∈Xt

−i

PIt (θ′, xt−i|xti)
(
ui(ai, σ−i(x

t
−i), θ

′)− ui(a′i, σ−i(xt−i), θ′)
)
≥ 0,

which, by (33) and the choice of p, implies that∑
θ′∈Θ,xt−i∈Xt

−i

PIt (θ′, xt−i|xti, {θ}∩Ft(θ, d))
(
ui(ai, σ−i(x

t
−i), θ

′)− ui(a′i, σ−i(xt−i), θ′)
)
≥ −ε.

That is, for all t ≥ T and θ ∈ Θ, the action distribution induced by any BNE of Gt(I)
conditional on the event {θ} ∩ Ft(θ, d) is an ε-correlated equilibrium at θ.

Thus, for all t ≥ T ,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt −m‖ ≤ max
θ∈Θ

p0(θ)
(
1− PIt (Ft(θ, d)|θ)

)
.

By Sanov’s theorem, this implies that, as t→∞,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt −m‖ ≤ exp[−td+ o(t)].

Since this holds for any d < λ(I), this proves inequality (31).
Inequality (32): Pick p ∈ (0, 1) large enough that

ε ≥ (1− p) max
i,ai,a′i,a−i,θ

|ui(ai, a−i, θ)− ui(a′i, a−i, θ)| .

Take any d < λ(I). By Lemma A.2, there exists T such that for all t ≥ T , i ∈ I, and
θ ∈ Θ, whenever KL(νit, µ

θ
i ) ≤ d, then (33) holds.

Take any m ∈ NE(G), and let αθi ∈ ∆(Ai) denote the corresponding Nash equi-
librium strategy of player i at θ. Let Σit(d) denote the set of i’s strategies σit in
Gt(I) such that, for each θ, σit(·|xti) = αθi (·) whenever KL(νit, µ

θ
i ) ≤ d. By Kakutani’s

fixed-point theorem applied to the best-response correspondences on the restricted
strategy space

∏
i Σit(d), there exists a strategy profile σt ∈

∏
i Σit(d) such that each

player i’s action conditional on a signal sequence xti with KL(νit, µ
θ
i ) > d is interim

optimal against σ−it. Moreover, for t ≥ T , (33) and the choice of p ensure that each
player i’s action conditional on a signal sequence xti with KL(νit, µ

θ
i ) ≤ d (i.e., the

support of αθi ) is ε-interim optimal against σ−it. Thus, σt is an ε-BNE of Gt(I).
Hence, for all t ≥ T ,

sup
mt∈NE(G,I)

inf
m∈BNEεt (G,I)

‖mt −m‖ ≤ max
θ∈Θ

p0(θ)
(
1− PIt (Ft(θ, d)|θ)

)
.
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By Sanov’s theorem, this implies that, as t→∞,

sup
mt∈NE(G,I)

inf
m∈BNEεt (G,I)

‖mt −m‖ ≤ exp[−dt+ o(t)].

Since this holds for any d < λ(I), this proves inequality (32).
Equality for some G: Take i and θ, θ′ such that d(µθi , µ

θ′
i ) = λ(I). Then consider

a basic game G such that Ai = {ai, a′i} and, for all a−i,

ui(ai, a−i, θ)− ui(a′i, a−i, θ) = 2ε = ui(a
′
i, a−i, θ

′)− ui(ai, a−i, θ′).

This implies that, for any m ∈ CEε(G) ∪ NE(G), we have m(ai|θ) = m(a′i|θ′) = 1.
Thus,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt−m‖ ≥ sup
mt∈BNEt(G,I)

max{p0(θ)(1−mt(ai|θ)), p0(θ′)(1−mt(a
′
i|θ′))},

sup
m∈NE(G)

inf
mt∈BNEεt (G,I)

‖mt−m‖ ≥ inf
mt∈BNEεt (G,I)

max{p0(θ)(1−mt(ai|θ)), p0(θ′)(1−mt(a
′
i|θ′))}.

For any sequence (mt) of distributions induced by ε-BNE (or any strategy profiles
more generally), the proof of Lemma C.1 adapted to the current notation shows that

lim inf
t→∞

1

t
log (max{1−mt(ai|θ), 1−mt(a

′
i|θ′)}) ≥ −d(µθi , µ

θ′

i ).

Thus, as t→∞,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt −m‖ ≥ exp[−td(µθi , µ
θ′

i ) + o(t)],

sup
m∈NE(G)

inf
mt∈BNEεt (G,I)

‖mt −m‖ ≥ exp[−td(µθi , µ
θ′

i ) + o(t)],

as claimed.

H Gaussian Signals
We show that the speed of common learning also coincides with the speed of individual
learning in the following infinite-signal Gaussian environment. For simplicity, consider
two players i = 1, 2 and two states θ = θ, θ; extending to more players/states is
straightforward. Assume that conditional on state θ, signal profiles are drawn i.i.d.
according to

(x1t, x2t) ∼ N
(
(mθ

1,m
θ
2),Σ

)
, Σ =

(
(σ1)2 ρσ1σ2

ρσ1σ2 (σ2)2

)
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for some ρ ∈ (−1, 1). Up to applying an affine transformation of signals, we can
assume without loss of generality that mθ

i = 0, mθ
i = 1 for i = 1, 2.

Considermit :=
∑t

s=1
xis
t
, which is a sufficient statistic for player i’s (higher-order)

beliefs. Conditional on state θ, (m1t,m2t) is distributed Gaussian with mean (mθ
1,m

θ
2)

and covariance matrix 1
t
Σ. Moreover, by the law of large numbers, mit → mθ

i almost
surely conditional on state θ. For any sufficiently large t, if mit <

1
2
(resp. mit >

1
2
),

then i’s belief concentrates on state θ (resp. θ).
Fix any p ∈ (0, 1) and consider state θ; the argument in state θ is analogous. To

calculate the speed of individual learning in state θ, note that

lim
t→∞
−1

t
log
(
1− Pt[Bp

i (θ) | θ]
)

= lim
t→∞
−1

t
logPt

[
mit <

1

2
| θ
]

=
1

8(σi)2
,

where the final equality holds by Cramér’s theorem.27 Thus, as t→∞,

Pt[Bp
t (θ) | θ] = 1− exp

[
−1

8 maxi(σi)2
t+ o(t)

]
.

To calculate the speed of common learning in state θ, assume without loss that
σ1 ≤ σ2, i.e., player 1’s rate of individual learning is faster. For each d ∈ (0, 1/2),
consider the event

Ft(d, θ) =

{
|m1t − 1| ≤ d

σ1

σ2

}
∩ {|m2t − 1| ≤ d} .

Observe that Ft(d, θ) ⊆ Bp
t (θ) for all sufficiently large t. Next, we show that this

event is p-evident. Indeed, note that for each i, we have∣∣E[m−it|mit, θ]− 1
∣∣ = |ρ|σ−i

σi
|mit − 1|.

Thus, conditional on event Ft(d, θ), we have∣∣E[m1t|m2t, θ]− 1
∣∣ ≤ |ρ|dσ1

σ2

,
∣∣E[m2t|m1t, θ]− 1

∣∣ ≤ |ρ|d.
Since i’s estimate of m−it given mit and θ becomes arbitrarily precise as t grows
large (i.e., the conditional variance 1

t
(1 − ρ2)σ2

−i → 0), this guarantees that event
Ft(d, θ) is p-evident for all sufficiently large t. Hence, by Monderer and Samet (1989),

27Indeed, sincemit is the sample mean of i.i.d. draws from N (mθ
i , (σi)

2), Cramér’s theorem implies
that limt→∞− 1

t logPt
[
mit <

1
2 | θ

]
= I( 1

2 ), where I(a) := supλ (λa− logM(λ)) =
(a−µθi )2

2(σθi )2
and

M(λ) = exp[λmθ
i + λ2(σi)

2

2 ] is the moment generating function of N (mθ
i , (σi)

2).
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Ft(d, θ) ⊆ Cp
t (θ) for all sufficiently large t. Thus, Cramér’s theorem implies that

lim inf
t→∞

−1

t
log
(
1− Pt[Cp(θ) | θ]

)
≥ lim

t→∞
−1

t
logPt

[
|m1t − 1| > d

σ1

σ2

or |m2t − 1| > d | θ
]

=
d2

2(σ2)2
.

Since d can be chosen arbitrarily close to 1
2
, it follows that

Pt[Cp
t (θ) | θ] = 1− exp

[
−1

8 maxi(σi)2
t+ o(t)

]
,

i.e., as t→∞, common learning and individual learning occur at the same exponential
rate.
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