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Abstract 

Startups in IT and life sciences appear to be flourishing. However, startups in other sectors, such as 
new materials, automation, and eco-innovations, which are often called "deep tech", seem to 
struggle. We argue that innovations with both technical and commercial challenges, typical of deep 
tech innovations, are especially disadvantaged in a startup-based innovation system. We develop an 
analytical model where startups are more efficient at solving technical challenges and incumbents 
are more efficient at solving commercial challenges. We find that the startup-based system works 
better for "specialized" innovations, where only one type of challenges is significant. Startups 
which face both technical and commercial challenges are disadvantaged because they capture a 
smaller fraction of the value they create. We discuss the implications for various public policies that 
have been proposed to encourage deep tech. 
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Introduction 

The innovation ecosystem in America increasingly consists of a division of innovative labor 

between startups (which develop new inventions, often based on university discoveries) and 

incumbents, which acquire the inventions and commercialize them (Arora, Belenzon, Patacconi, 

and Suh, 2020).1 This system seems to work well for IT innovations, such as software and social 

media applications, and innovations in life sciences. However, many observers (BCG, 2021; Lerner 

and Nanda, 2020; Nanda, 2020) have pointed out that the startup-based system works less well in 

other sectors, such as new materials, automation, and eco-innovations, which are often called "deep 

tech".2 

There are a number of explanations offered for why deep tech startups struggle to attract risk-

capital. Their commercial success might depend on changes in regulations and the development of 

complementary infrastructure for which startups are less equipped to cope with (Janeway, 2018). 

Furthermore, the underlying technology for deep tech ventures may be expensive and difficult to 

de-risk (Nanda, 2020). Finally, there may also be frictions in the supply of risk capital for such 

ventures (Ewens, Nanda and Rhodes-Kropf, 2018; Lerner and Nanda, 2020). These explanations are 

all consistent with the empirical observation that, while the venture capital (VC) sector has been 

exuberant in recent years, investment in deep tech startups is lagging behind (BCG, 2021; Janeway, 

Nanda, and Rhodes-Kropf, 2021).   

In this paper we offer a complementary explanation: the relative importance of technical and 

commercial challenges. We argue that an innovation ecosystem wherein one organizational type 

(startups) are better at solving technical challenges, and another organizational type (incumbents) 

are better at solving the commercial challenges will favor innovations that involve primarily one 

type of challenges. Innovation projects where both technical and commercial challenges are present 

will be disadvantaged and thus naturally less attractive to potential investors. Specifically, the 

                                                            
1 Most startups exit via acquisition by a large corporation (Cunningham, Ederer and Ma, 2021; Gans, Hsu and 
Stern, 2002; Henkel, Rønde and Wagner, 2015; Higgins and Rodriguez, 2006). The National Venture Capital 
Association reports that 82% of all US VC-backed exits in 2016 were acquisitions.  
2 Deep tech (also called hard tech or tough tech) innovation refers to complex technologies rooted in science 
and advanced engineering. Examples include new energy technologies such as small-scale nuclear reactors, 
new energy storage solutions, carbon capture technologies, synthetic biology-based production technologies 
that are environmentally friendly, and lab grown tissue.   
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inability to attract VC is a symptom of a deeper problem – deep tech startups are privately less 

valuable relative to the total value they create. 

Two examples illustrate the combination of technical and commercial challenges that deep tech 

startups must solve.. The traditional production of cement is energy intensive, and is estimated to 

account for 8% of global CO2 emissions (https://www.chathamhouse.org/2018/06/making-concrete-

change-innovation-low-carbon-cement-and-concrete). Biomason is developing a way to grow 

cement bricks and tiles with bacteria to replace traditional cement. Founded in 2012, Biomason has 

raised $23 million in funding, but has generated less than $10 million in revenue. Developing the 

technology was difficult because it relied on engineering bacteria.  

“We grew some bricks and thought, ‘Okay, we’ve done it.’ We thought, ‘Okay, somebody is going 
to be interested in this who knows how to scale the technology and they’re going  

 to do it.’ We realized very quickly that we were going to have to be the ones that did it.” 
(Ginger Dosier, CEO, Biomason)3 

Finding customers and partners was equally challenging. Traditional cement companies were 

skeptical about the commercial viability of the technology. Though structural applications (i.e., 

cement bricks) were the largest market, customers were unwilling to bet on an unproven 

technology. The company has initially targeted niche applications such as tiles and dust-control in 

mining operations, and has survived through DARPA contracts.4   

The history of iRobot, which introduced the autonomous home vacuum cleaner, Roomba, similarly 

highlights the difficulties for startups that face both technical and commercial challenges. The 

company was founded in 1990 by three members of MIT's Artificial Intelligence Lab, who designed 

robots for space exploration and military defense. When the company started its activities there 

were many unsolved technical challenges: Spatial navigation, voice recognition, machine vision, 

and the right mix of mechanical, electrical, and software engineering, connectivity, and data 

science, to name just a few. Most importantly, the market was still unclear. First, customers did not 

believe that a robot could do useful tasks in a way that it could replace humans. Second, there was 

great uncertainty on how customers would use robots once they could be convinced that they were 

                                                            
3 Quoted in Forbes https://www.forbes.com/sites/amyfeldman/2021/06/14/startup-biomason-makes-bio-
cement-tiles-retailer-hm-group-plans-to-outfit-its-stores-floors-with-them. 
4 These include an underwater cement that could be used to protect the shoreline against erosion, and a defense 
subcontract for small landing pads for helicopters in remote locations. 
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useful.5 While iRobot was founded in 1990, its first market success was with the launch of Roomba 

in 2002 whose sales reached 1 million units in 2004. iRobot went public in 2005. However, all the 

years from foundation till 2002, iRobot benefitted from substantial support from DARPA, and 

survived thanks to the military application of its robots.6  

These examples highlight the combination of technical and commercial challenges that deep tech 

startups must solve. In this paper, we show that, other things equal, the combination of technical 

and commercial challenges hurts the bargaining position of the startup in negotiating the price of 

the acquisition. Consequently, the startup’s expected value to potential investors is also lower. 

Stated otherwise, the division of innovative labor between technology startups and incumbents is 

especially inefficient for deep tech innovation 

The key assumption is that startups negotiate with incumbents only after the technical challenges 

are solved. This assumption corresponds with reality. It is also consistent with our model in which 

the fit of the startup’s technology with an incumbent is ex-ante uncertain. Specifically, there are a 

number of possible incumbent firms that could successfully take the technology to market after it is 

developed, but which incumbent will be best positioned to do so is unknown before the technical 

challenges are addressed. This means that a contract with any given incumbent will not solve the 

problem. Potentially, all incumbents could join together to contract with the startup. Even 

discounting the potential anti-trust concerns, this option is very difficult to implement, particularly 

if the incumbents are in different sectors, as was the case with iRobot. Similarly, for Biomason, 

potential incumbents to contract with include producers of decorative tiles and building materials, 

military contractors, and cement producers.  

Turning to related work, there is a large literature on the functioning and efficiency of markets for 

technology (Arora, Fosfuri, and Gambardella, 2001). Within this broad literature, our paper 

contributes to the rapidly growing stream of papers analyzing the consequences of acquisitions of 

high-tech startups by incumbents for issues such as R&D choices (Färnstrand Damsgaard et al., 

2017; Gans et al., 2002), exit strategies of entrepreneurs (Arora, Fosfuri and Rønde, 2021; 

                                                            
5 The uncertainty about the use of the product generated huge costs for iRobot. For instance, their first robot 
vacuum cleaner, Roomba, was built to match the reliability standards of European upright vacuums. Its 
customers, however, would often run it once per day, rather than the once per week average for the European 
standard set. As a consequence, the first generation of Roomba robots broke down two years ahead of schedule, 
hurting its reputation. 
6 For instance, in 1996, iRobot released Ariel, a crab-like robot designed to remove mines. 
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Ransbotham and Mitra, 2010) and the consolidation of market power (Cunningham et al., 2020; 

Fumagalli, Motta and Tarantino, 2020). However, this paper represents – to the best of our 

knowledge – the first analysis of how the allocation of costs across the different stages of the R&D 

process affects the division of innovative labor between startups and incumbents. 

Closer to our work, the importance of upfront investments in solving technical challenges and of 

uncertainty regarding the later uses of a technology feature prominently in the pioneering work of 

Green and Scotchmer (1995). They consider the case where an initial innovation makes possible 

additional innovations, in an industry distinct from that of the initial innovation. The assumption 

that ex ante contracts are not possible is also foundational in their work, and they focus instead on 

how patent breadth (and length) affects the division of rents between the two innovators and, hence, 

the incentives of the two parties.7  

Our model differs in a couple of important ways. First, the initial innovator in our model, the 

startup, can potentially also carry out the second task – namely the follow-on application in Green 

and Scotchmer (1995). More precisely, we assume that either the startup can solve the commercial 

challenges itself, or potentially also seek other firms to do so. These outside options, however, 

entail a higher cost of solving the commercial challenges than that of the focal incumbent, who 

corresponds to the second innovator in Green and Scotchmer (1995). 

This is related to the second way in which our model departs from theirs, which is the relative size 

of the initial and follow-on investment. This is important because when the follow-on investment is 

small, the inefficiency of the outside option matters less, thereby improving the bargaining position 

of the startup. On the other hand, when the initial investment in solving the technical challenges is 

small relative to the investment in addressing the commercial challenges, though the startup’s 

outside options are unattractive, its upfront cost is also lower. Instead, when the technical and 

commercial challenges are comparable in size, the startup is “caught in the middle”: The outside 

options are unattractive but the upfront costs are still substantial. These seemingly minor differences 

nonetheless result in a novel explanation for why deep tech innovation receives insufficient VC 

funding, namely that deep-tech startups are able to capture a smaller fraction of the value they 

create. 

                                                            
7 As they put it, “Although such agreements could achieve first-best incentives for research in our model, they 
would be difficult to negotiate; prior to invention of the first technology, it is difficult for the first innovator to 
identify the firms that will think of second-generation products. (p 23)” 
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Our explanation for the inability of deep tech startups to attract sufficient VC funding also differs 

from existing accounts. One popular explanation focuses on the greater time and investment 

requirements of deep tech ventures (BCG, 2021). The simplest version of this explanation seems to 

suggest that such projects have low expected payoffs. The empirical basis for this assertion is 

unclear, but if true, it implies that these projects would also not be undertaken by established firms.  

That is, this explanation does not speak to the debate of whether deep tech startups are somehow 

disadvantaged relative to incumbents. A related argument, which does pertain to startups, asserts 

that the VC system is biased against projects with longer time horizons and large upfront 

investments, or projects with high scientific or technical uncertainty (Lerner and Nanda, 2020).   

However, these different arguments cannot fully explain why so much VC money has been sunk 

into biotech, an industry faced with high technical challenges, large-scale investments and long-

time horizons. In biotech, if a given project is successful in addressing the technical challenges (i.e. 

does the drug work?), there will not be much uncertainty about the existence of demand and the 

commercialization pathway. Thus, while biotech is confronted with huge technical challenges, the 

commercial challenges appear modest, which, according to our theory, explains why VC support in 

this industry has been readily forthcoming. 

Nanda (2020) have highlighted the problem of de-risking the technology. Simply put, some projects 

take longer and more money before the uncertainty about its commercial prospects is low enough to 

merit large scale investment in scale up and commercialization. By contrast, in other cases, a small 

investment in an early stage venture can produce enough information whereby the venture is either 

shut down or additional investments can be made. Ewens et al. (2018) argue that VCs may forgo 

investing in the ability to evaluate early stage startups. Instead VCs may adopt a “spray and pray” 

approach, wherein they finance a large number of early stage startups and wait to see which 

experiments are successful. In this view, the reduction in the cost of experimenting, made possible 

by the rise of technologies such as cloud-computing, is shifting the focus of investors towards 

software ventures where small early investments quickly resolve much of the uncertainty, and away 

from deep tech and other ventures where the uncertainty takes more time and money to resolve. 

Importantly, the possibility of low-cost experiments creates an option value to investing, so that 

software ventures are more valuable than ventures where low-cost de-risking is not possible. By 

contrast, in our baseline model, all projects have the same expected value, and there is no 

uncertainty creating an option value from investing in solving the technical challenges. By 
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introducing another player, the incumbent who will potentially acquire the startup, we highlight the 

importance of how value is shared between the startup and the incumbent. Although VC is not 

explicitly featured in our model, we implicitly assume that startups are valued using the same 

standard. Startups that can expect to capture a larger share of the value they create will get higher 

valuations. Competition among VCs would ensure that VCs would be indifferent between all 

positive NPV projects.  Negative NPV projects would not, naturally, attract any investors, and nor 

would any rational entrepreneur wish to start a negative NPV venture.     

In a study of American medical device startups over a 25-year period, Fischer, Henkel and Stern 

(2020) find that 72% of the startups in the sample were acquired, and conditional on acquisition, 

86% were acquired after FDA approval, i.e., after the technical challenges were solved. 

Importantly, they find that pioneering startups have to wait longer, even conditional on FDA 

approval, to be acquired. Fischer et al. (2020) argue that the delay is because of the greater 

commercial challenges for devices that are the first of their type. This is similar in spirit to pioneers 

being caught in the middle. However, whereas we compare startups with the same net value 

creation in an environment of symmetric information, it is possible that pioneers have higher value 

creation and face greater informational asymmetries. 

The rest of paper is organized as follows: Section 2 describes the baseline model. Section 3 derives 

the equilibrium of the model, establishes our main result, and performs comparative statics with 

respect to the parameters of the model. Section 4 discusses policies targeted at deep tech startups, 

and Section 5 outlines different extensions and robustness checks. Finally, Section 6 summarizes 

our results and concludes. Omitted proofs of the formal propositions are provided in the Appendix. 

2. Setup of the model 

All projects have both technical and commercial challenges that need to be addressed in order to 

create value. Let 𝑢 ∈ 0,1  represents the extent to which a project displays technical challenges 

relative to commercial challenges. Thus, 𝑢 1 captures a project with only technical challenges, 

while 𝑢 0 captures a project with only commercial challenges. Intermediate values of 𝑢 represent 

projects with both challenges.  

We treat 𝑢 as a feature of the industry or technological field. Some fields have primarily technical 

challenges to address (for instance, biotech), while others have mainly commercial challenges (for 

instance, software). Finally, some have both types of challenges in similar proportions. As we have 



8 

argued in the introduction, many fields that are considered part of deep tech like, for instance, 

robotics, energy storage, carbon capture and sequestration, alternative energy, and new materials, 

fall into this category. 

For any given 𝑢, there is a startup and n ≥ 1 large corporations (which we shall refer to as 

incumbents). Only the startup can solve the technical challenges (we relax this assumption in an 

extension below). Let 𝑇 𝑢  be the cost of addressing the technical challenges, with 𝑇 𝑢 0. 

Thus, higher values of u imply greater costs of addressing the technical challenges.  

Once the startup has addressed the technical challenges, it can either solve the commercial 

challenges by itself or be acquired by an incumbent that subsequently solves the commercial 

challenges. We assume that incumbents are heterogeneous in their ability to solve the commercial 

challenges of the project. That is, the match between the startup and a given incumbent matters for 

value creation. For instance, each incumbent might have an established go-to-market strategy that 

will be more or less well suited for the startup’s project. The resolution of the technical challenges 

might bring the project closer to the downstream capabilities of a given incumbent, thus reducing its 

cost of addressing the commercial challenges. For instance, iRobot’s demining robot is best 

commercialized by a defense contractor, but its room-cleaning robot would probably be better 

placed with a domestic appliances company. 

To model this notion, we assume that incumbents are equidistantly located in a circle with 

circumference equal to 1. After addressing the technical challenges, the startup’s project falls on the 

location of one of the incumbents (in an extension later we allow the startup’s project to fall on any 

point on the circle). The probability of falling on a given incumbent is uniform across incumbents 

and equal to 1/n. An incumbent’s cost of addressing the commercial challenges is 𝐶 𝑢 1 𝑥  with 

𝐶 𝑢 0. Hence, higher values of u imply lower costs of addressing the commercial challenges. 

Also, x is the distance between the incumbent and the startup. The closest incumbent (x = 0) and the 

second-closest incumbents (x = 1/n) can solve the commercial challenges at costs of 𝐶 𝑢  and 

𝐶 𝑢 1 , respectively. Alternatively, the startup can address the commercial challenges by 

itself at a cost 𝐶 𝑢 1 𝛾  with 𝛾 0 representing the relative disadvantage of the startup in 

solving the commercial challenges. Notice that there are always gains from trade: The most 

efficient way to profit from the project is by selling the startup to the closest incumbent. 
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We assume that all projects have the same net social value defined as the value that the technology 

creates minus the total cost of developing it. All technologies have value v. They also have the same 

total costs but differ in the distribution of these costs (i.e. upfront investment in solving the 

technical challenges vs follow-on investment in addressing the commercial challenges).   

Assumption 1. The net social value of a project 𝑆 ≡ 𝑣 𝑇 𝑢 𝐶 𝑢  is positive and constant in 

u when developed in the most efficient way: 𝑆 0 and 𝑇 𝑢  𝐶 𝑢 0.  

Assumption 1 means that we are effectively analyzing differences in outcome for projects that are 

ex ante identical in terms of social value, albeit with different composition of costs. An increase in u 

shifts costs from the follow-on investment in commercialization to the upfront investment in 

making the technology work, keeping total costs constant. Hence, projects characterized by low u 

are backloaded whereas projects characterized by high u are frontloaded. For simplicity of 

exposition and, in order to reduce the number of different cases, let 𝑇 0 𝐶 1 0. 

Notice that we assume away uncertainty regarding the value v and the cost of solving the 

commercial challenges C(u) that could introduce an option value of investing in solving the 

technical challenges that would depend on u (we introduce uncertainty in an extension below). 

Furthermore, before solving the technical challenges, the startup does not know which incumbent is 

the closest ex-post. We assume that this uncertainty precludes ex-ante contracting. Thus, the startup 

can negotiate a deal with a potential incumbent only after the technical challenges have been 

addressed. 

Turning to the acquisition of the startup, we assume that with probability  the startup makes a take-

it-or-leave-it offer to the closest incumbent, while with probability  the incumbents make a take-it-

or-leave-it offer to the startup. In this latter case, only the offers of closest and the two second-

closest incumbents matter. In order to ensure an equilibrium in pure strategies, it is assumed that if 

two or more bidders bid the same amount, the bidder with the highest willingness to pay acquires 

the startup.8 

  

                                                            
8 In the analysis, we refer to the startup being acquired. However, the unit of analysis is a technology. Hence, 
the model can also be interpreted as the incumbents competing to acquire a technology developed by a startup. 
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3. Solving the model 

Suppose that a startup has invested T(u) in solving the technical challenges. When the startup is sold 

to an incumbent, the parties involved foresee the cost of addressing the commercial challenges. 

Hence, the value of the project is 𝑣 𝐶 𝑢  to the closest incumbent, 𝑀𝑎𝑥 𝑣 𝐶 𝑢 1 , 0  to 

the second-closest incumbents, and 𝑀𝑎𝑥 𝑣 𝐶 𝑢 1 𝛾 , 0  to the startup itself. There are no 

frictions at the acquisition stage (see below). Thus, in equilibrium, the startup is always acquired by 

the closest incumbent as this maximizes the gains from trade.  

The acquisition price is the value to the closest incumbent when the startup makes the offer, 𝑣

𝐶 𝑢 . When the incumbents make the offers, the closest incumbent makes the winning bid in 

equilibrium. The winning incumbent matches the startup’s best alternative. The second-closest 

incumbents bid as aggressively as they can in equilibrium and offer the price 𝑀𝑎𝑥 𝑣

𝐶 𝑢 1 , 0 .9 Defining the variable 𝜃 ≡ 𝑀𝑖𝑛 𝛾, , the startup’s best alternative can be 

written as  𝑀𝑎𝑥 𝑣 𝐶 𝑢 1 𝜃 , 0 .  Define: 𝑢∗: 𝑣 1 𝜃 𝐶 𝑢 0 ⇔ 𝑢∗ 𝐶 . 10 

Note that u* is implicitly defined by the condition that the rate of return conditional on the technical 

challenges being solved is equal to the gains from trade i.e., 
∗

∗   .  Notice that for 𝑢 𝑢∗, 

the startup has a viable outside option. Instead, for 𝑢 𝑢∗, the outside option for the startup is 0. 

Thus, the outcome of the bargaining between the startup and the incumbent will change 

significantly whether 𝑢 is greater or smaller than 𝑢∗. 

Assumption 2: 𝜃 

                                                            
9 We do not consider equilibria where the second-closest incumbents bid prices that are strictly above the value 
of the startup to them (but below the value of the startup to the closest incumbent). Such equilibria would, for 
instance, not exist if there were a very small but positive probability that the closest incumbent would be 
prevented from bidding for reasons outside of the model, see Tirole (1988). 
10 Our acquisition stage can also be interpreted as an alternating bargaining game between the startup and the 
closest incumbent in which the time period between offers is close to zero. Nevertheless, this interpretation 
influences which outside option is the relevant one to consider. Binmore, Rubinstein and Wolinsky (1986) 
show that if the risk of losing the gains from trade is what drives the parties to agree on an acquisition price, 
which seems plausible in a fast-moving technological area where the risk of being overtaken is prevalent, the 
relevant outside option in the bargaining process is the startup’s cost of solving the commercial challenges, 
not the competing offers from the second-closest incumbents. However, our argument does not rely on the 
choice of a specific outside option for the startup.     
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Assumption 2 implies the rate of return for the projects must be smaller than the gains from trade, 

represented by 𝜃. Given Assumption 2 and 𝐶 0 0, 𝑢∗ is interior, i.e. 0 𝑢∗ 1.  

Let 𝜋 𝑢  and  𝜋 𝑢  denote the expected payoffs of the startup and the closest incumbent, 

respectively.  We solve the game by looking separately at the two cases, 𝑢 𝑢∗ and 𝑢 𝑢∗. If 

𝑢 𝑢∗, the outside options of both the startup and the (closest) incumbent are equal to 0.  

𝜋 𝑢 𝑣 𝐶 𝑢 𝑇 𝑢 𝑇 𝑢 𝑆 𝑇 𝑢  (1) 

𝜋 𝑢
1
2

𝑣 𝐶 𝑢
1
2
𝑆 𝑇 𝑢 . 

If 𝑢 𝑢∗, the outside option for the startup is 𝑣 1 𝜃 𝐶 𝑢  and 0 for the (closest) incumbent. 

We can compute the following expected payoffs:  

𝜋 𝑢 𝑣 𝐶 𝑢 𝑇 𝑢 𝑣 𝐶 𝑢 1 𝜃 𝑇 𝑢 𝑆 𝐶 𝑢  (2) 

𝜋 𝑢
𝜃
2
𝐶 𝑢 . 

If the startup does not invest in solving the technical challenges, all players get a payoff of zero for 

all values of u. 

We now present the main result of the paper: 

Proposition 1. [Caught in the middle] The value of the startup is the lowest for u = u*. If 

, there exists a region 𝑢 ∈ 𝑢,𝑢  in which this return is strictly negative, 𝑢

𝑢∗ 𝑢.  

Proof: Using equations (1) and (2), we have: 

𝜕𝜋 𝑢
𝜕𝑢

𝑇′ 𝑢 0 𝑓𝑜𝑟 𝑢 𝑢∗

𝐶 𝑢 0 𝑓𝑜𝑟 𝑢 𝑢∗
   (3) 

Hence, 𝜋 𝑢  has a global minimum for 𝑢 𝑢∗. Using 𝐶 𝑢∗  and continuity of 𝜋 𝑢  in u 

we can rewrite the startup’s profit for 𝑢 𝑢∗ as: 

𝜋 𝑢∗ 𝑆
1
2
𝐶 𝑢∗ 𝑣 𝐶 𝑢 𝑇 𝑢

𝑣
2 1 𝜃

. 
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Solving for 𝜋 𝑢∗ 0, we obtain the condition stated in the proposition. Notice also that 

Assumption 1 and T(0) = 0 imply that 𝜋 0 0. Furthermore, Assumption 1 and C(1) = 0 imply 

that 𝜋 1 0. Hence, if 𝜋 𝑢∗ 0, it follows from equation (3) that there exist 𝑢 and 𝑢 where 

𝑢 𝑢∗ 𝑢 and where 𝑢 and 𝑢 are defined implicitly by 𝜋 𝑢 𝜋 𝑢 0. Therefore, 𝜋 𝑢

0 for 𝑢 𝑢 𝑢. □ 

Proposition 1 demonstrates that a startup is caught in the middle when the rate of return is 

sufficiently smaller than the gains from trade. The intuition behind the proposition is the following: 

Upfront investments by the startup in solving the technical challenges cause an ex-post hold up 

problem. When the startup cannot credibly threaten to go alone (𝑢 𝑢∗), the holdup problem 

becomes less severe as 𝑢 declines. Conversely, when the project is mostly about solving technical 

challenges (𝑢 𝑢∗), the holdup problem is partially mitigated because the startup has a viable, 

albeit less efficient, outside option. For higher values of 𝑢, the cost of solving the commercial 

challenges is smaller and the (closest) incumbent’s commercialization advantage matters less. 

However, when the technical and commercial challenges are comparable, the startup is “caught in 

the middle”. Either it does not have an outside option and it will face a sizable holdup problem or it 

does have one, but its higher cost of solving the commercial challenges means that the incumbent 

can capture more of the gains from trade. 

Notice that if there are financing frictions, or other types of cost per investment, low NPV projects 

may go unfunded. For example, the expected returns may be outweighed by venture capitalists’ 

mostly fixed costs of due-diligence, mentoring, and oversight or by the costs of incentivizing the 

founders (Holmström and Tirole, 1997). It is obvious that a higher required return on the side of 

investors would expand the area where socially valuable projects fail to receive funding.  

Figure 1 below illustrates the profit function of the startup as a function of u for the case of linear 

costs.  
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Figure 1: Profit function of the startup 𝜋 𝑢  when C(u) = 1 – u and T(u) = u. The parameters are 
 = 1 and v = 1.2 (solid line), v = 1.3 (dashed line), and v = 1.4 (dotted line). 

 

Figure 1 illustrates how the profit function of the startup has a global minimum at u = u*. 

Furthermore, if 𝑣 𝐶 𝑢 𝑇 𝑢 / 𝐶 𝑢 𝑇 𝑢  is below the threshold defined in Proposition 

1, there is a region of u for which the startup’s private return on the project is negative, 𝜋 𝑢 0. 

Hence, without public support these projects will not be realized, an issue that we discuss in the 

next section. Next proposition derives formally the comparative statics of the model. 

Proposition 2. [Comparative statics] Consider u* and 𝑢 and 𝑢 as defined in Proposition 1. Let the 

total cost of solving both the technical and the commercial challenges be 1  𝛽 𝐶 𝑢 𝑇 𝑢 . 

Then, the following holds: 

i) 𝜕𝑢∗
𝜕𝑣 0, 

𝜕𝑢
𝜕𝑣 0, and 𝜕𝑢 𝜕𝑣 0, 

ii)   𝜕𝑢
∗

𝜕𝜃 0, 
𝜕𝑢

𝜕𝜃 0, and 𝜕𝑢 𝜕𝜃 0.  

iii) 𝜕𝑢∗
𝜕𝛽 0, 

𝜕𝑢
𝜕𝛽 0, and 𝜕𝑢 𝜕𝛽 0. 

Proof: See Appendix A. 

The effects of an increase in v are illustrated in Figure 1. The profit function shifts up, reducing the 

size of the region of u in which the return of the startup is negative. At the same time, an increase in 
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v implies that the startup’s outside option, whether solving the commercial challenges by itself or 

selling the project to the second-closest incumbents, becomes profitable for a higher cost of 

addressing the commercial challenges, which explains why u* is decreasing in v. 

A proportional increase in the costs of the addressing the commercial and technical challenges (i.e., 

an increase in 𝛽) has the opposite effects of an increase in v. It shifts the profit function of the 

startup down and makes the outside options of the startup less profitable. Hence, the region of u in 

which the startup earns a negative return expands, and the threshold u* increases. 

Finally, consider a worsening of the startup’s outside options (i.e., an increase in ), which might be 

due to a greater comparative disadvantage of the startup in solving the commercial challenges or a 

reduction in the number of potential buyers. This matters only for u ≥ u* (where the outside options 

influence the bargaining). Hence, as illustrated in Figure 2, an increase in   rotates down the profit 

function for u ≥ u* around the point 𝑢,𝜋 1,𝜋 1 . The threshold u* increases as a result of 

this, and the region of u in which the startup earns a negative return expands for u > u*. 

Figure 2: The expected value of the startup 𝜋 𝑢  when C(u) = 1 – u and T(u) = u. The parameters 

are v = 1.2,  = 0.8 (solid line) and  = 1 (dashed line). 
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Bargaining power 

We have assumed that the gains from trade are divided equally between the two parties. Consider 

now the case in which the startup makes a take-it-or-leave-it offer to the closest incumbent with 

probability b, and the incumbents make take-it-or-leave-it offers to the startup with probability 1 – 

b. Thus, b parameterizes the bargaining power of the startup. The startup’s profit function can be 

calculated as shown below:  

𝐸𝜋 𝑢
𝑏 𝑣 𝐶 𝑢 𝑇 𝑢 𝑓𝑜𝑟 𝑢 𝑢∗

𝑣 1 1 𝑏 𝜃 𝐶 𝑢 𝑇 𝑢  𝑓𝑜𝑟 𝑢 𝑢∗
 

It is easy to show that 𝜕𝐸𝜋 𝑢
𝜕𝑏 0. In other words, an increase in bargaining power always 

increases the startup’s value. Furthermore, the marginal value of an increase in bargaining power 

increases as 𝑢 increases, for startups without a viable outside option (𝑢 𝑢∗), but decreases with 𝑢 

when the startup has a viable outside option (𝑢 𝑢∗): 

𝜕 𝐸𝜋 𝑢
𝜕𝑏𝜕𝑢

C u 0 𝑓𝑜𝑟 𝑢 𝑢∗

𝜃C u 0 𝑓𝑜𝑟 𝑢 𝑢∗
 

The implication is that startups caught in the middle are hurt the most by a lack of bargaining power. 

Figure 3 below illustrates this point. 

Figure 3: Profit function of the startup 𝜋 𝑢  when C(u) = 1 – u and T(u) = u. The parameters are 

v = 1.2,  = 1, b = 1/2 (solid line) and b = 1/4 (dashed line).
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Similarly, we have: 𝜕 𝐸𝜋 𝑢
𝜕𝑏𝜕𝜃

0 𝑓𝑜𝑟 𝑢 𝑢∗

C u 0 𝑓𝑜𝑟 𝑢 𝑢∗
.  

This shows that increased bargaining power and a better outside option are substitutes for startups 

that have a viable outside option. More precisely, the marginal value of increased bargaining power 

increases with the startup’s comparative disadvantage in solving the commercial challenges and 

decreases with the number of potential buyers. 

4. Policy interventions 

In the previous section, we demonstrated how startups facing both significant technical and 

commercial challenges are less valuable. In particular, some of these projects may not be initiated 

or funded. This raises the question of which policy instruments would be suitable to alleviate the 

identified failures in the market for startups. 

We have treated u as a feature of technological areas that we have implicitly mapped into industries.  

For example, the cost of drug development tends to be frontloaded (low C(u), high T(u)) 

corresponding to a high value of u. Even so, the correspondence between industry and technology is 

imprecise, making it difficult to target policies. Another challenge for targeted policy interventions 

is the uncertainty regarding the final use for many deep tech innovations. For example, Gore-Tex 

fibers were initially developed for cables for extreme conditions. However, their main use is in a 

completely different industry, garments and textiles. Finally, in order for policy makers to support 

only projects that otherwise would not have been undertaken, they would also need to have a deep 

understanding of the startup’s capabilities (cost of solving the commercial challenges) and of the 

market conditions (number of potential buyers, distribution of bargaining power). While specialized 

VCs might have this type knowledge, most policy makers probably do not.  

In the following, we assume that policy makers do not have the necessary information and insight to 

make policies conditional on u. If this could be done, it would obviously be efficiency-enhancing as 

there would be no public funds spent on projects that do not require them. We will also assume that 

there are unfunded projects in the neighborhood of u* as there is otherwise no role for public 

intervention in our framework.  

Subsidies and grants 

Subsidies and grants are commonly used by governments to support innovative activities. One 

could parameterize a subsidy/grant as an amount s of funds allocated to all projects. This is 

equivalent to an increase in v inside our model, and it shifts up the startup’s profit function for all 
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values of u (see Figure 1). Proposition 2 shows that a subsidy decreases the size of the region 

around u* in which projects of positive net social value are not privately profitable and thus not 

funded. Outside of this region, however, the subsidies are transfers from the public to startups and 

their investors, which may create separate welfare losses.  

Some simple algebra shows that: 

𝜕𝐸𝜋 𝑢
𝜕𝑠

𝑏 𝑓𝑜𝑟 𝑢 𝑢∗

1 𝑓𝑜𝑟 𝑢 𝑢∗ 

That is, a subsidy is less effective in increasing the value of the startup on the left of 𝑢∗, where the 

sensitivity of the value of the startup to a subsidy increases with the startup’s bargaining power. Put 

it differently, a subsidy is more effective when the technical challenges are substantial and startups 

have weak bargaining power, but less so when most of the challenges are commercial.  

Another possibility is a subsidy (or, tax break) that is a fraction of the cost of solving the technical 

challenges, T(u). This instrument implies a relatively small (large) subsidy to projects characterized 

by a low (high) value of u. Hence, the efficiency of this instrument depends on the value of u*, 

which, in turn, is a function of both the characteristics of the technology and of the market for 

startups. Without information about u*, a policy maker risks spending money on subsidies that have 

little effect on the formation of deep tech startups.  

Facilitating entry 

Another set of policy instruments aims at facilitating survival and growth of startups and at creating 

so-called “entrepreneurial ecosystems” (Stam and van de Ven, 2021). Take the example of business 

incubators and accelerators, which have existed since the late 1950s. Incubators help startups in the 

early stages with, e.g., developing a business plan and obtaining financing. Business accelerators, 

on the other hand, tend to help startups at the later stages, closer to commercialization. They may, 

for instance, connect startups with strategic partners, help them with market research or developing 

a prototype, and assist them in identifying the right competences and profiles for the management 

team in order to prepare for scale-up. Initiatives of this type have become an important part of 

public policy towards entrepreneurship around the world. In our model their effect can be thought 

of as a reduction in the startup’s disadvantage in solving the commercial challenges, . To the extent 

that the relevant outside option for the startup is solving the commercial challenges by itself, which 

occurs for instance when there are few potential buyers, these policies reduce the region of u in 

which the startup earns negative returns, as shown in Proposition 2 and Figure 2. Moreover, such 
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policies are most effective for startups operating in industries around u* where the problem of 

socially valuable projects yielding negative private returns is most pronounced. One potential 

downside of these policies is that, though they might improve welfare, they are never used in 

equilibrium insofar it is efficient to sell the startup. Thus, ex-post evaluations of such policies would 

indicate insufficient impact.  

Innovation procurement by public authorities contains elements of both financial and 

commercialization support. First, it provides the winning firm with the necessary funds to do R&D 

and to develop the business. Second, it opens the market for an application of the technology. A 

prominent example is the US Defense Advanced Research Projects Agency (DARPA) that supports 

emerging technologies with awards. These awards have been crucial for the development of many 

deep tech startups such as the two mentioned in the introduction, iRobot and Biomason.  

Direct public investment in startups 

Some countries have government VC funds (GVCs) that invest directly in startups in return for an 

equity stake. A prominent example is the European Innovation Council (EIC) Accelerator scheme 

introduced by the European Commission as part of Horizon Europe that, with a budget of several 

billion euros, is supposed to make equity investments in deep tech ventures during the 2021-27 

period. Usually GVC funding comes with some sort of co-investment requirement to minimize 

crowding-out private investors, and to exploit the comparative advantage of private investors in 

performing due diligence, and providing mentoring and oversight. Since GVCs typically bring less 

expertise than private VCs, the role of GVCs is ultimately to fill gaps in the supply of private risk 

capital and perhaps also provide funding below the market rate.  

In our model, there are no financing frictions that reduce the supply of private risk capital. Instead, 

the problem is negative returns for a subset of projects. In this context, GVCs can be effective only 

insofar as they reduce the cost of capital. Hence, a project may be undertaken even if it results in a 

negative return. Such a policy can reduce the size of the region around u* in which socially valuable 

projects fail to get funded.  However, if GVCs aim only at increasing the supply of private risk 

capital, but otherwise behave like private VCs requiring co-investment and positive returns, our 

model suggests that they are not an effective tool to solve the inefficient functioning of the market 

for deep tech startups.  
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5. Extensions and robustness checks 

In the following, different extensions and robustness checks are briefly discussed. Details are 

available from the authors upon request. 

Continuous location on the circle 

We have analyzed a variant of the model where the startup with equal probability falls on any point 

on the circle. The key difference compared to the model presented in Section 2 is that the outside 

option depends on the realized location. If the startup falls close to the middle between two 

incumbents, there will be competition among the closest incumbents to acquire the startup. 

However, if the startup falls close to one of the incumbents, the outside option when negotiating the 

acquisition price with the closest incumbent is either to solve the commercial challenges by itself (if 

C(u) is low) or to abandon the project (if C(u) is high).  

In this extension, as before, the expected value of the outside option is increasing in u. Indeed, as 

C(u) decreases, the second-closest incumbent bids more aggressively for the startup if it falls close 

to the middle, and addressing the commercial challenges by the startup itself becomes more 

profitable if it falls close to one of the incumbents. 

We show that the two effects generating the region of u with negative return for the startup 

demonstrated in Proposition 1 are also at play in this variant of the model. For low values of u, the 

expected value of the startup’s outside option when negotiating the acquisition price is low. Since 

C(u) is high, the startup cannot solve the commercial challenges by itself, and a possible competing 

offer from another incumbent will be low. While an increase in u improves the expected outside 

option, this effect is dominated by the holdup problem becoming more severe. Hence, the expected 

profit of the startup is decreasing in u for low values of u. For higher values of u, the expected 

outside option of the startup is good, and here the improved bargaining position associated with an 

increase in u outweighs the amplification of the holdup problem. Therefore, profits are increasing in 

u for u sufficiently large.   

Summing up, while a model with continuous location on the circle requires additional analysis due 

to the startup’s outside option being stochastic, the basic logic and results of the model remain.  
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Investment by an incumbent 

We have explored a variant of the model with a single incumbent capable of solving the technical 

challenges. In particular, conditional on investment T(u), the incumbent succeeds in solving the 

technical challenges with probability q whereas the startup succeeds with probability 1. It is 

assumed that 𝑞 , which implies that the startup’s comparative advantage in solving the technical 

challenges is sufficiently large. While the startup is able to solve the commercial challenges for u > 

u* (i.e. when C(u) is low), we assume that it cannot profitably compete with the incumbent. Hence, 

the timing is as follows. The two firms decide simultaneously whether to invest or not to solve the 

technical challenges. If the incumbent invests and is successful in solving the technical challenges, 

it also solves the commercial challenges, and the startup abandons its project. If the startup is the 

only firm to solve the technical challenges, either because the incumbent is unsuccessful, or because 

the incumbent does not invest, the game proceeds as in the baseline model.  

We show that both the startup and the incumbent have lower incentives to solve the technical 

challenges when the other firm invests, which may cause multiple equilibria to exist. The startup’s 

incentives to invest are lower when the incumbent invests because the incumbent’s investment may 

make the startup’s project redundant. Similarly, the incumbent’s incentives to invest are lower when 

the startup invests because it can also profit from commercializing the startup’s project instead of its 

own. 

We show that our main results carry over to this extension. In particular, there is a neighborhood 

around u* in which no firm invests in solving the technical challenges when the rate of return 

𝑣 𝐶 𝑢 𝑇 𝑢 / 𝐶 𝑢 𝑇 𝑢  is low. However, allowing the incumbent to solve the 

technical challenge does modify some of the results. First, for low values u, both firms invest as the 

cost of solving the technical challenges is low. Second, if the incumbent’s ability to solve the 

technical challenges is sufficiently high (1/3 < q ≤ 1/2), multiple equilibria may arise in an interval 

of u. In this interval, both firms are willing to invest T(u) but only if the other firm does not invest.11 

Our model does not predict which equilibrium arises in this situation. However, if we would 

introduce sequential moves, the first-mover would choose to invest in solving the technical 

challenges. For example, university spinouts may have the first-mover advantage and be the ones 

investing for deep tech growing out of university research. 

                                                            
11 In addition, there is an equilibrium in mixed strategies where the firms invest with a positive probability. 
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Uncertainty regarding the cost of solving the commercial challenges 

Uncertainty regarding the value created is an important feature of all innovation projects, and this is 

particularly true for deep tech. We have ignored uncertainty so far in order to illustrate the main 

mechanism in the simplest possible way. In this extension, uncertainty is introduced in order to 

illustrate how it moderates our results.  Below, only uncertainty regarding the cost of solving the 

commercial challenges is considered, but uncertainty regarding the value of the project has very 

similar effects. 

Suppose that the realized cost of solving the commercial challenges is 𝐶 𝑢 ∆ with probability ½ 

and 𝐶 𝑢 ∆ also with probability ½. We assume that 𝐶 𝑢 ∆ 𝑣 so that no project is 

abandoned after the cost of solving the commercial challenges is realized. Hence, there is no option 

value associated with investing in solving the technical challenges from the point of view of social 

welfare.  

If 𝐶 𝑢 ∆ 1 𝜃 𝑣, uncertainty does not matter. The (expected) value of the startup is given 

by equation (1). Similarly, if 𝐶 𝑢 ∆ 1 𝜃 𝑣, the expected profit of the startup is given by 

equation (2). However, if 𝐶 𝑢 ∆ 1 𝜃 𝑣 𝐶 𝑢 ∆ 1 𝜃 , uncertainty makes a 

difference. The expected value of the startup is now: 

𝜋 𝑢  
1
2
∗

1
2
𝑣 𝐶 𝑢 ∆

1
2

𝑣 𝐶 𝑢 ∆ 1
𝜃
2

𝑇 𝑢  

𝑣 𝐶 𝑢 1 ∆ 𝑇 𝑢 .   (4) 

Notice that introducing uncertainty does not change the expected social value of the project as it 

only affects the distribution of the value created. This case can only arise for 𝑢∗ 𝑢 𝑢∗ where 

the thresholds are defined as: 

𝑢∗ ≡ 𝑐
𝑣

1 𝜃
∆  and 𝑢∗ ≡ 𝑐

𝑣
1 𝜃

∆ . 

We assume that the parameters are such that 0 𝑢∗ 𝑢∗ 1. 

Proposition 3. Uncertainty regarding the cost of solving the commercial challenges leads to a strict 

increase in the startup’s expected profit compared to a situation with no uncertainty for 𝑢∗ 𝑢

𝑢∗. 
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Proof: See Appendix A. 

The intuition behind Proposition 3 is that the profit of the startup is convex in u around u*. Hence, 

the convex combination of the profits for uL and uH where uL < u* < uH is greater than the profit for 

the equivalent convex combination of uL and uH. Figure 4 illustrates this point. Put differently, 

uncertainty regarding the cost of solving the commercial challenges alleviates the problem of 

startups caught in the middle. Intuitively, once the technical challenges have been solved, 

uncertainty provides startups with the possibility to solve the commercial challenges themselves 

with some probability. Notice, however, that uncertainty about the cost of solving the technical 

challenges, 𝑇 𝑢 , does not have any effect on the expected value of the startup.  

Figure 4: The expected profit with uncertainty (solid) and without uncertainty (dashed) when C(u) 
= 1 – u and T(u) = u. The parameters are  = 1, v = 1.2 (solid line), and Δ = 0.1. 

 

 

Conclusion 

By applying complex technologies rooted in science and advanced engineering to some of society’s 

most pressing problems, deep tech innovation promises to bring a large array of new, radical 

advances to the marketplace. However, set aside a few notable exceptions, deep tech innovation has 
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not delivered up to expectations. Scholars and practitioners alike have suggested that, despite the 

exuberant VC industry, deep tech innovation has failed to attract sufficient risk capital.  

In this paper, we develop a parsimonious theoretical model that provides an intuitive yet novel 

explanation to this puzzle: Deep tech startups do not receive sufficient funding because, other things 

equal, they are privately less valuable relative to the total value they create.  

Many deep tech inventions, given their strong dependence on science and basic research, are 

initiated in startups, especially university spinoffs. However, startups often lack the complementary 

assets that are required to scale up and commercialize such technologies. Complementary assets are 

typically owned by incumbents. Thus, an efficient market for deep tech startups would bring 

important welfare benefits. Our analysis shows that such a market for startups does not work well 

when technologies display both technical and commercial challenges, which is typical of deep tech 

innovation. Startups that develop projects which entail both types of challenges are “caught in the 

middle” when negotiating the acquisition price with an incumbent. The upfront investment in 

addressing the technical challenges exposes them to holdup problems and the follow-on investment 

in solving the commercial challenges mutes the threat of the startup commercializing the 

technology itself. This results in a low acquisition price for the startup relative to the societal value 

created by the technology. Thus, an innovation ecosystem, where startups develop new inventions, 

often based on university discoveries, and incumbents acquire the inventions and commercialize 

them, which has worked well in many areas of the economy in recent decades (Arora et al., 2020) is 

unlikely to deliver the holy grail of deep tech innovation. 

In the analysis, the composition of costs has been considered an inherent characteristic of the 

technology area and thus exogenous. However, to the extent that startups choose among projects, 

they will seek out project that mainly involve one type of risk, compounding the problem analyzed 

in this paper. 

Our results also highlight the policy challenges of enhancing deep tech innovation. Although grants 

and subsidies, and subsidized investment in deep tech startups can be useful, so can policies 

improving the startups’ commercialization capabilities. By increasing the commercialization 

alternatives open to a startup, these policies help the startup to achieve a higher acquisition price, 

alleviating the problem of the insufficient value capture. Still, these policies may appear ineffective 

to the general public as they do not result in startups entering the markets and competing. 
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This paper contains one of the first attempts to analyze issues pertinent to deep tech using formal 

modelling. Still, there are clearly important issues that are not addressed here. For example, the 

consolidation of market power resulting from tech giants acquiring promising high-tech startups is 

high on the policy agenda in many jurisdictions (Cunningham et al., 2021; Fumagalli et al., 2020). 

Whether this concern applies equally to deep tech startups is an interesting question. Deep tech 

startups aim for major breakthrough that potentially could make the market position of the acquiring 

firm difficult to challenge. At the same time, we know from early work of Gilbert and Newbery 

(1982) that the incentives for incumbents to preempt competition is weaker for radical innovations. 

Another issue concerns the access to complementary services such as contract development and 

manufacturing for biotech startups and cloud computing for IT startups. To the extent that such 

services are less developed in the areas of deep tech, this would make it harder for deep tech to 

pursue own commercialization (corresponding to a higher value of  inside our model), weaken 

their bargaining position vis-à-vis potential acquirers, and exacerbate the financing problem that 

deep tech startups face. We leave these and other issues for future research.   
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Appendix: Proof of the propositions in the main text 

Proof of Proposition 2: Introducing 1 𝛽 , we have that u* is defined as 𝑢∗ 𝐶 . 

Total differentiating this expression, we have: 

𝑑𝑢∗

𝑑𝑣
1

1 𝜃 1 𝛽 𝐶 𝑣
1 𝜃 1 𝛽

0,  

 
𝑑𝑢∗

𝑑𝜃
𝑣

1 𝜃 1 𝛽 𝐶 𝑣
1 𝜃 1 𝛽

0, 

 
𝑑𝑢∗

𝑑𝛽
𝑣

1 𝛽 1 𝜃 𝐶 𝑣
1 𝜃 1 𝛽

0 . 

Turning 𝑢, it is defined implicitly by  𝑣 1 𝛽 𝐶 𝑢 1 𝛽 2𝑇 𝑢 0. Total 

differentiating this expression, and using 𝐶 𝑢 𝑇 𝑢 0, we have: 

𝑑𝑢
𝑑𝑣

1
𝑇′ 𝑢 1 𝛽

0 and 
𝑑𝑢
𝑑𝛽

𝐶 𝑢 2𝑇 𝑢

𝑇 𝑢 1 𝛽
0.  

Notice that  does not enter the equation defining 𝑢, and thus 0. Finally, 𝑢 is defined implicitly 

by 𝑣 1 𝛽 𝐶 𝑢 𝑇 𝑢 𝐶 𝑢 0. Total differentiating this expression, we have: 

𝑑𝑢
𝑑𝑣

2
𝜃𝐶 𝑢

0 and 
𝑑𝑢
𝑑𝜃

𝐶 𝑢
𝜃𝐶 𝑢

0 and 
𝑑𝑢
𝑑𝛽

𝐶 𝑢 1 𝜃
2 𝑇 𝑢

1 𝛽 𝜃
2 𝐶 𝑢

0. 

This completes the proof of Proposition 2. □ 

 

Proof of Proposition 3: The profit of the startup is 𝑣 𝐶 𝑢 1 ∆ 𝑇 𝑢  with 

uncertainty and 𝑀𝑎𝑥 𝑣 𝐶 𝑢 𝑇 𝑢 , 𝑣 𝐶 𝑢 1 𝑇 𝑢  without uncertainty, see 

equations (1), (2), and (4). Simple calculations show: 
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3
4

𝑣 𝐶 𝑢 1
𝜃
3

∆ 1 𝜃
4

𝑇 𝑢

𝑀𝑎𝑥
1
2
𝑣 𝐶 𝑢 𝑇 𝑢 , 𝑣 𝐶 𝑢 1

𝜃
2

𝑇 𝑢 ⇔ 

𝐶 𝑢 ∆ 1 𝜃 𝑣 𝐶 𝑢 ∆ 1 𝜃 , 

which proves the proposition. □ 


