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Nina Bobkova†
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The choice of an auction mechanism influences which object characteristics bid-
ders learn about and whether the object is allocated efficiently. Some object
characteristics are valued equally by all bidders and thus are inconsequential for
the efficient allocation. Others matter only to certain bidders, and thus determine
the bidder with the highest object value. I show that the efficient auction is the
second-price auction: it induces bidders to learn exclusively about object char-
acteristics which matter only to them. An independent private value framework
arises endogenously.

JEL codes: D44; D83.
Keywords: Information choice; endogenous interdependence; multidimensional
auctions; interdependent values; accuracy.

1 Introduction

Preparing how to bid in an auction usually involves evaluating multiple characteristics of
the object. This paper explores which object characteristics bidders gather information
about in cases in which they can learn about their object value before bidding. These
issues are relevant to, for example, corporate takeovers, in which acquiring firms have
access to a variety of information about a target company. This information includes
the company’s R&D activities and its stand-alone value. A reasonable assumption is
that firms cannot perfectly process or uncover all existing information, and are thus
driven to select elements to focus on before the bidding takes place. Should an acquiring
firm conduct research on characteristics that are specific to them, such as their R&D

∗For helpful comments and insightful discussions, I am grateful to Arjada Bardhi, Dirk Bergemann,
Hülya Eraslan, Matteo Escude, Stephan Lauermann, Benny Moldovanu, Mingzi Niu, Mallesh Pai,
Bobby Pakzad-Hurson, Martin Pollrich, Oleg Rubanov, Larry Samuelson, Eric Schmidbauer, Dezsö
Szalay, and several seminar and conference and workshop participants. A previous version of this paper
was circulated under the title "Knowing What Matters to Others: Information Selection in Auctions".

†Email: nina.bobkova@rice.edu. Rice University, Houston, TX.
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synergies with the target? Or should they focus on factors that also matter to other
acquiring firms, such as the stand-alone value?

Another example is resource rights auctions for oil fields or timber. Each bidder has
access to the same uncertain volume of oil or timber when winning the auction. Bidders
may incur different costs in extracting the resources from a site because of the use of
different drilling or logging technologies. Does a bidder prefer to perform exploratory
drilling to learn about oil volume, or to learn about the costs of extracting the resource
through estimating the drilling costs specific to him, or some combination?

Allocative efficiency is of central importance in auction theory. Some characteristics
are relevant only to individual bidders (henceforth, referred to as a private component),
and they determine the efficient allocation. Others are relevant to all bidders (hence-
forth, a common component) but irrelevant for the efficient allocation. Different auction
mechanisms might give rise to different incentives to bidders regarding which compo-
nent to acquire information about. In this paper, I find the auction mechanism which
gives rise to efficient information acquisition.

As a simple example, consider two bidders who compete for one object. Each
bidder’s valuation is the sum of a common component S and his private component Ti,
all drawn independently and uniformly on [0,1]. Assume that (i) bidders can perfectly
learn either their own private or the common component, but not both, and (ii) the
bidder with the highest expected value wins the auction. If there exists an auction
that incentivizes the bidders to learn about their private component, then the object
is allocated efficiently with probability one. If an auction incentivizes bidders to learn
only about their common component, the object is allocated to the lower-value bidder
with probability one-half, achieving the same allocative efficiency as a random lottery.

The contribution of this paper is to find an auction format that leads to efficient
information acquisition. This format turns out to be the second-price auction (SPA).
The novel contribution lies in its illumination of which component of the object bidders
seek to learn. This is in contrast to much of the literature on auctions and mechanism
design, where the focus is on how much costly information bidders seek to acquire
about one given component. By restricting the ability of bidders to learn about several
components at once, I study which value setting arises endogenously: an independent
private values (IPV) framework if bidders learn exclusively about their independent
private components, a pure common value (CV) framework if bidders learn exclusively
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about the common component, or some other interdependent value framework.1

The technical contribution of this paper is to develop a framework for comparing
experiments with varying degrees of informativeness about a multidimensional random
variable, consisting of the components and the total value of an object. To do this, I
use the statistical concept of accuracy from Lehmann (1988) to rank signals in terms
of their accuracy about several components. In addition, I derive a general first-order-
stochastic-dominance result for first- and second-order statistics of two random variables
as I vary their correlation, that could prove useful in a variety of other settings.

Consider two bidders who compete for a single indivisible object. The valuation
of each bidder is increasing and additive in two components: a common component
(e.g., the stand-alone value of a firm) and an independent private value component
(e.g., match-specific R&D synergies). As a benchmark, each bidder can costlessly learn
either about the common or his private component, but not both.2 Information choice
is simultaneous and covert.

Information plays a dual role. Beyond containing information about the object, it is
also informative about the signal of the opponent and hence, his bid. A rational bidder
conditions his estimate of the object value not only on his own information but also
on what he learns from the event of winning. In my model, the extent of the winner’s
curse and the interdependence between the bids are both endogenous and depend on
the information choice. The signals of bidders become more interdependent if they
learn about the common component with a higher probability; the winner’s curse is
exacerbated. If a bidder learns only about his private component, then his information
is independent of the other bidder’s value—there is no winner’s curse.

As a first benchmark, both the common and private-component experiments are
equally accurate about a bidder’s total value. As I show, this implies that they both
have the same marginal distribution (up to a relabeling) and lead to the same posterior
distribution of object value. This observation allows me to focus on the strategic effect
of learning about the two components, and not the intertwined effect when bidders
favor the more informative signal.3

1The IPV setting and the interdependent values setting lead to different theoretical predictions
and vary significantly in their implications for auction design and policy. The literature on auctions
typically assumes either one or the other at the outset of the analysis.

2This assumption is purely for expositional clarity. The main results still hold if experiments are
informative about both components simultaneously, as I show in section 6.

3In a posted price mechanism, a single bidder is indifferent between the signals if they are equally
accurate about the object’s value.
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The first main result is that in an SPA, there exists a unique symmetric equilibrium
in which bidders learn only about their private component. No resources are wasted by
learning about the common component which is irrelevant for efficiency, and the object
is allocated to the bidder with the highest estimate of his private component. The
intuition is that for any candidate equilibrium in which both bidders learn about the
common component, there exists a simple profitable deviation which decreases interde-
pendence (by learning about the private component). This deviation uses the fact that
both signals are equally accurate and hence have the same marginal distribution: in-
stead of learning about the common component, a bidder deviates to learning about his
private component but continues to use the same bidding function as in the candidate
equilibrium (up to relabeling). This deviation strategy does not change the marginal
distribution of bids, but makes the bid distributions independent.

A bidder’s overall winning probability is not affected by this deviation; the proba-
bility that one of two identically and independently distributed random variables (bids)
is higher than the other is one half — the same as in any symmetric candidate equilib-
rium. How does the expected payment change with this deviation strategy? Conditional
on winning in the SPA with the same marginal bidding functions, a bidder pays the
second-order statistic of the two bids. How does the distribution of the second-order
statistic vary with more or less correlation? At the extreme, under perfect correlation,
the winning and losing bids coincide and payment is the same as the winning bid. It is
intuitive that as correlation decreases, the losing bid becomes more detached from the
winning bid, and thus, expected payment decreases. I formalize this intuition as a gen-
eral statistical property: the distribution of the second-order statistic of two correlated
random variables (the distribution of the losing bid in the candidate equilibrium) domi-
nates the distribution of the second-order statistic of two independent random variables
(the distribution of the losing bid with the deviation) in terms of first-order stochastic
dominance.4 By decreasing interdependence in the deviation, the distribution of the
second-order statistic puts more weight on lower bids, and expected payment decreases.

In addition, the expected value of the object conditional on winning coincides in the
candidate equilibrium and the deviation. In contrast to the candidate equilibrium, in
the deviation the bidder is more likely to win when his private component is high, and
less likely to win when the common component is high. However, due to signals being
equally accurate and bidders using the same marginal bidding functions, the deviating

4This holds as long as these random variables have the same marginal distributions. The opposite
is true for the distribution of the first-order statistic.
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bidder’s gain in value from his private component can be shown to exactly equal his loss
from winning with a lower common component. Hence, the deviation does not change
a bidder’s expected object value when winning, but only its component composition.

The above argument relies on both bidders’ experiments about their two components
having the same accuracy about the object’s value. One initial guess might be that if
bidders already prefer the private-component signal under equal accuracy, then bidders
should continue to prefer it if it is even more accurate about the total value. However, I
find two drawbacks to using this accuracy notion: a signal that is more accurate about
the private component need not be more accurate about the total value too. This gives
rise to unintuitive properties. For example, no signal might exist which is more accurate
about the value than a fully uninformative signal, as I show in example 3. In addition, a
signal with higher accuracy about the value overall need not be better for a bidder. This
is because even if the bidder knows his value perfectly, his signal contains additional
information about the opponent’s bid. Therefore, the two-dimensional learning problem
in this paper cannot be reduced to a mathematical problem for which Lehmann (1988)
showed that a decision maker is better off with higher accuracy signal.

I circumvent these novel difficulties which arise in a two-dimensional component set-
ting by developing a two-step procedure that relies on some intermediate experiment.
Specifically, in any symmetric equilibrium of the SPA, bidders learn only about the pri-
vate component if (i) the private-component signal is more accurate about the private
component than some intermediate private-component signal, and (ii) this intermedi-
ate signal is as accurate about the total value as the common-component signal. The
intermediate experiment establishes a point of reference, so I can apply the main result
discussed above. Crucially, I compare the intermediate and the private-component ex-
periment in terms of their accuracy about the private component, rather than about
the overall object value. As Lehmann (1988) showed, many experiments can be ranked
by this, since accuracy is a more complete order than the Blackwell order.

Not every auction format has the same efficient information-choice incentives as
the SPA. I allow bidders to also learn about each other’s private component and show
that if there exists an IPV equilibrium in the first-price auction (FPA), then there
also exists an IPV equilibrium in the SPA, but not vice versa. Furthermore, I allow
bidders to choose both the component they wish to learn about and the accuracy of
their component. Under some additional assumptions on the costs of information, I
show that any equilibrium in the SPA is more efficient than any equilibrium in the
FPA. In the FPA, bidders waste more resources on the common component and never
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learn more accurately about the private component than they do in the SPA.

Related literature. In the classic literature in auction theory, the distribution of
bidders’ private information is exogenous and does not depend on the auction format.
The literature on information acquisition in auctions5 endogenizes the private informa-
tion of bidders, by asking how much costly information they seek to acquire about a
one-dimensional, payoff-relevant variable.

In an IPV framework, Hausch and Li (1991) and Stegeman (1996) show that bidders’
incentives to acquire information coincide in an FPA and an SPA. For a pure CV
framework, Matthews (1977) finds a particular condition on private signals when bidders
acquire the same amount of information about their common value in the SPA and the
FPA.6 The closest paper to mine is Persico (2000). In his the affiliated-value model,
bidders choose the accuracy (Lehmann, 1988) of their signal about a one-dimensional
random variable. Persico (2000) shows that bidders acquire more information in the
FPA than in the SPA. In contrast, bidders in my model choose which component to
learn about, and the accuracy is fixed. My framework provides an absolute prediction
that can be ranked in terms of allocative efficiency: which component do bidders learn
about? In section 6, I look at the combined problem of how much to learn (the focus
in Persico (2000)) and which component to learn about (my focus).

One other related paper is Gleyze and Pernoud (2021). Each agent’s valuation is
private, and agents acquire costly information about their own and the others’ values.
They find that generically, an IPV framework does not arise, and bidders learn about
others’ values unless the mechanism is dictatorial (which the SPA is not). It might seem
as if this result and my result (that an SPA leads to IPV) provide opposing predictions.
However, this is due to a crucial modelling difference: in Gleyze and Pernoud (2021),
how much a bidder learns about his own value can depend on what he learns about the
others’ value, and learning is costly. Consider an SPA with private values, as in Gleyze
and Pernoud (2021), and let all but one bidder learn only about their own values. Then,
for the remaining bidder, learning about others has no impact on the best-response bid
but might save on learning costs. In particular, if the other bidders’ valuations are so
high that the bidder never wins, then he would not want to engage in costly learning.

5Endogenous information acquisition has been analyzed in other areas of economics. See Berge-
mann and Välimäki (2002), Crémer et al. (2009), Shi (2012) and Bikhchandani and Obara (2017)
in mechanism design, Martinelli (2006) and Gerardi and Yariv (2007) in voting, Crémer and Khalil
(1992) and Szalay (2009) in principal-agent-settings, and Rösler and Szentes (2017) in bilateral trade.

6This condition requires the reverse hazard rate of an experiment to be independent of the valuation.
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It is not the strategic interaction in the auction, but the optimal spending on learning
costs which drives the difference between Gleyze and Pernoud (2021) and my model.

In Bergemann et al. (2009), the value of an object is a weighted sum of every bidder’s
type. Bidders either learn perfectly their type, or they learn nothing. Learning cannot
introduce any dependence among the signals of bidders since all types are independent
(although they do matter to other bidders). With positive interdependence, Bergemann
and Välimäki (2002) show that in a generalized Vickrey-Clarke-Groves mechanism bid-
ders acquire more information than would have been socially efficient.

The above literature on auctions considers covert information acquisition where
learning decisions are not observed by other bidders. Another strand of the literature
analyzes overt information acquisition. Hausch and Li (1991) show that the SPA and
the FPA induce different incentives to acquire information when information acquisi-
tion is overt, and revenue equivalence fails. Compte and Jehiel (2007) show in an IPV
setup that an ascending dynamic auction induces more overt information acquisition
and higher revenues than a sealed-bid auction. Hernando-Veciana (2009) compares the
incentives to overtly acquire information in the English auction and the SPA, when bid-
ders can learn about either a common component or a private component. In contrast
to my model, it is exogenous which component the information acquisition is about.

This paper is part of a broader agenda on information acquisition about common or
idiosyncratic aspects in other games and decision problems. Bobkova and Mass (2021)
ask how agents in a social learning framework split their learning budget between a
common-component experiment and an idiosyncratic-component experiment. Perego
and Yuksel (2021) analyze the incentives of media outlets to disclose information about
issues of common interest versus issues for which readers’ preferences are heterogeneous.
In a sender-receiver communication framework, Deimen and Szalay (2019) ask whether
a sender learns about her own or the receiver’s optimal action.

My paper also relates to the literature on information choice in games with strategic
complementarities, e.g., Hellwig and Veldkamp (2009) and Myatt and Wallace (2012).7

My model differs from those in two major ways. First, in my model bidding functions
do not exhibit strategic complementarities (see, e.g., Athey, 2002), which leads to a
fundamentally different strategic problem. Second, in the models just cited, all infor-
mation is about the same one-dimensional state of the world. In my model, however,
bidders choose which component of the multidimensional state to learn about.

7See also Yang (2015) for flexible information acquisition in investment games and Denti (2017) for
an unrestricted information acquisition technology.
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2 Environment

2.1 Model

Two risk-neutral bidders, indexed by i ∈ {1, 2}, compete for one indivisible object. The
reservation value of the auctioneer and the outside options of the bidders are zero.

The valuation for the object of bidder i, denoted by Vi, depends on two attributes:
a common component S, that is identical for both bidders and admits a density hS(.)
on its support S ⊂ R; and a private component Ti that admits a density hT (.) on
its support T ⊂ R.8 The common component and the two private ones {S, T1, T2}
are mutually independent, and T1 and T2 are drawn identically. The valuation for the
object of bidder i is additive in the common and the private component:9

Assumption 1. The value of bidder i is Vi = u(S) +w(Ti). For every S, Ti, the value
is nonnegative and strictly increasing in both components.

The bidders do not observe the realizations of the random variables S, T1, T2. In-
stead, they choose between experiments about their components. If bidder i learns
about the common component and if its realization is S = s, then he observes a ran-
dom variable XS

i with full support X S and density fS(.|s). If bidder i learns about his
private component and if its realization is Ti = t, then he observes XT

i with full support
X T and density fT (.|t).

The information choice of bidder i is the strategy σi which denotes the probability
of learning XS

i . With the remaining probability 1 − σi, bidder i learns XT
i about

his private component.10 The following assumption imposes more structure on these
experiments and the correlation structure such that the private signals of bidders are
correlated only through learning about the common component.

Assumption 2.

(i) XT
1 |= XT

2 and XS
i |= XT

j for i, j ∈ {1, 2};
(ii) XS

1 |= XS
2 | S;

(iii) for all `′ > ` and L ∈ {S, T}, fL(x|`′)
fL(x|`) is strictly increasing in x ∈ X L.

8The results can be easily extended to binary components.
9This additivity assumption can be relaxed under additional symmetry assumptions. See a previous

version of this paper: Bobkova (2019).
10For clarity of the presentation, each bidder observes one experiment about only one of his com-

ponents. However, I also fully solve the case when signals contain information about two components
simultaneously in section 6.2. In addition, in section 6.1, I allow bidders to also learn about the
payoff-irrelevant private component of their opponents.
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By (i), signals are independent if they contain information about different compo-
nents. By (ii), the two experiments about the common component are independent
conditional on S. Furthermore, by (iii), experiments satisfy a strong monotone likeli-
hood ratio property (MLRP) such that higher signal realizations are more indicative of
higher realizations of a component. The game consists of two stages:

1. Information-choice stage. After an auction format is announced, bidders simul-
taneously select which component to learn about by choosing σ1 and σ2.

2. Auction stage. Bidders privately observe their signal XS
i or XT

i and bid in the
auction.

Bidders choose their information knowing the auction format. Information choice
is covert: bidders do not observe which experiment their opponent has learned.

2.2 Efficiency and the equilibrium concept

The model nests two well-known frameworks. If σ1 = σ2 = 1, then the environment
is a pure CV framework. In that case, both bidders learn only about the common
component; no bidder possesses any information about T1 or T2. If σ1 = σ2 = 0, then
this is an IPV framework. In that case, both bidders have no information about the
other bidder’s value, and their signals are independent.

The IPV case plays a special role in the following analysis: it is the learning outcome
in any efficient equilibrium. Both bidders share the same common component, and
the values are nonnegative by assumption 1. Thus, allocative efficiency requires the
object to go to the bidder with the highest private component, based on all available
signals. Efficiency in this environment requires that bidders learn about their private
components and the bidder with the highest private signal XT

i wins the object. From
the perspective of efficiency, bidders should not be wasting their learning resources on
the common component.

My focus is on symmetric, monotonic Bayesian Nash equilibria {σ∗, β∗S, β∗T} in which
bidders have the same information choice σ∗, and use the same increasing bidding
function: β∗S if learning their common component signals XS

i , and β∗T if learning XT
i .

2.3 Discussion

Any information choice σi in my model is costless. This is in contrast to the papers
on information acquisition in which agents learn about a one-dimensional variable, and
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the monetary costs of learning serve as the opportunity costs of learning more. Here,
the opportunity costs of learning about one component are not learning about the other
component. Hence, introducing monetary costs into this environment dilutes the pure
effects of learning about one or the other component as each signal would then have
monetary and nonmonetary opportunity costs. I introduce monetary learning costs in
section 6. In my framework, agents would choose to learn one experiment instead of
nothing because it is costless and unobserved by others, and can be ignored.

Two of my assumptions might seem restrictive, but are made only for reasons of
expositional clarity and relaxed in later parts of the paper. First, I assume that bidders
can learn only about their own private component or the common component, but not
about the private component of the other bidder. This greatly simplifies the notation,
and is relaxed in section 6.

Second, I assume that an experiment is informative about either the common or
the private component, but not both. This provides a reasonable and clean benchmark
in many contexts where information is discrete. For example, drilling an exploratory
well only halfway to the required depth, or performing only the first half of a labo-
ratory procedure does not provide any useful information. In other settings, allowing
bidders to learn some continuous combination about both components might be a more
realistic assumption. I generalize my results in section 6 to nest experiments which
are informative about both components simultaneously. The assumption that signals
are one-dimensional —bidders cannot learn the outcomes of two separate experiments
about two components— is made for tractability. Even without information choice,
establishing existence in the SPA is often not possible for two-dimensional private in-
formation, and there are cases in which an equilibrium does not exist (Jackson, 2009).11

3 Preliminaries

First, I introduce the notion of accuracy of information, which is used repeatedly in
what follows to rank experiments.12 Then, I establish how it relates to the payoff.

Definition 1 (Accuracy). Fix a random variable Z and two signals Xa and Xb with
corresponding distributions Fa(.|z) and Fb(.|z). Xa is more accurate than Xb about Z

11See Pesendorfer and Swinkels (2000) for a discussion of two-dimensional private information. They
show existence in an epsilon equilibrium since they could not establish the existence of an equilibrium.

12Lehmann (1988) introduced this concept into the statistical literature as effectiveness. In eco-
nomics, it is known mainly as accuracy. See Persico (2000).
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(write Xa �Z Xb) if for every x, the function

M(x|z) := F−1
a (Fb(x|z)|z)

is nondecreasing in z. Xa and Xb are equally accurate about Z (write Xa ∼Z Xb) if
Xa �Z Xb and Xb �Z Xa.

The above definition varies slightly from the standard definitions (e.g., those in
Lehmann (1988)) since it defines equal accuracy ∼Z and includes the variable Z explic-
itly in the binary relation �Z . This captures that in my framework, Z can be several
random variables. For example, two signals Xa and Xb can vary in their accuracy about
the value Z = Vi, but also in their accuracy about the private component Z = Ti.13 The
transformation M(x|z) maps a signal realization x from the less accurate experiment
to a signal realization for the more accurate experiment.

Let an agent face the following decision problem: he chooses an action a ∈ A that,
jointly with an unknown state Z, determines the payoff u(a; z) : Z × A → R. The
payoff satisfies a standard single-crossing property:

Definition 2. u(a; z) satisfies a single-crossing property (SCP) in (a; z) if, for a′ > a

and z′ > z, u(a′, z)− u(a; z) > 0 ⇒ u(a′, z′)− u(a; z′) ≥ 0.

The agent does not observe Z, but instead has access to a signal in Xi ∈ {Xa, Xb},
based on which he chooses his optimal action. When the concept of accuracy is applied
to MLRP signals and payoffs satisfy the single-crossing property, then higher accuracy
corresponds to a higher payoff. This is because the more accurate signal is more likely
to produce lower signals when Z is low, and high signals when Z is high. Essentially,
Xa varies more strongly with Z than Xb.

Theorem 1 (Lehmann (1988)). Let Xa and Xb both satisfy the MLRP, and Xa �Z Xb.
Then, the expected payoff with Xa is higher than with Xb for any payoff u(a; z) which
satisfies SCP in (a; z).

4 Equal accuracy and SPA

This section distills the strategic value of information about either component. For
this reason, I abstract away from signals with varying informativeness, and instead

13In a one-dimensional framework with a single payoff-relevant variable, this additional notation is
unnecessary: two signals which are equally accurate about a single variable Z are essentially the same.
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focus on this stylized question: if either of the two component experiments are equally
informative about the total value Vi, which experiment do bidders learn about? The
following assumption captures the notion of “equal informativeness”.

Assumption 3 (Equal Accuracy). For i ∈ {1, 2}, XS
i ∼Vi XT

i .

Let F S(XS
i |vi) be the distribution of XS

i if Vi = vi, and let F T (XT
i |vi) be the

distribution of XT
i given Vi = vi.14 Using the definition of equal accuracy, this requires

that both F T−1(F S(x|vi)|vi) and F S−1(F T (y|vi)|vi) are nondecreasing in vi for every
x ∈ X S and every y ∈ X T . This can hold only if both expressions are constant in
vi. This is summarized in the following lemma which translates equal accuracy into
statements about marginal distributions and the value update.

Lemma 1 (Equal Accuracy). Let XS
i ∼Vi X

Ti
i . There exists a bijectionM : X S → X T

such that for every x ∈ X S,

1. (value-independent transformation) F S(x|vi) = F T (M(x)|vi) for all vi;
2. (equal marginal distribution) F S(x) = F T (M(x));
3. (equal posterior value) E[Vi|XS

i = x] = E[Vi|XT
i = M(x)].

For any object value vi, XT
i and M(XS

i ) are distributed identically. Hence, equal
accuracy pins down the same experiment about the total value vi, up to a relabeling via
M(.). If all components are distributed identically, and the valuation is symmetric in
the components (e.g., Vi = S + Ti), then any fixed signal technology where F S(x|s) =
F T (M(x)|t) for s = ti satisfies assumption 3. As the following two examples show,
there are several other nonsymmetric frameworks that satisfy assumption 3.

Example 1. Let S ∈ {0, 1} with equal probability, Ti ∼ U [1, 2], and Vi = S + Ti.

Then, the following two signal distributions satisfy equal accuracy about Vi: the private-
component signal is fully revealing, i.e., XT

i = Ti, and the distribution function of the
common-component signal is fS(x|S = 0) = 2−2x and fS(x|S = 1) = 2x for x ∈ [0, 1].
In this case, the state-independent transformation is M(x) = x+ 1.

Example 2. Let S, Ti ∈ {0, 1} with equal probability, and Vi = S+2Ti. Then, assump-
tion 3 is satisfied by (i) a common-component experiment with fS(x|S = 0) = 2−2x and
fS(x|S = 0) = 2x, and (ii) a private-component experiment with fT (x|Ti = 0) = 3

2 − x
and fT (x|Ti = 0) = 3

2 + x with x ∈ X S = X T = [0, 1]. In this case, M(x) = x.
14This is a slight abuse of notation as FS(.|s) is the distribution of XS

i given the common component
S = s. However, this avoids additional notation and in what follows there should be no confusion since
I always include vi or s to clarify which variable the distribution refers to.
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If assumption 3 holds and a bidder is offered the object for a posted price, then he is
indifferent between learning XS

i or XT
i : both lead to an identical posterior distribution

of vi, and the component composition beyond vi is payoff-irrelevant. However, in a
strategic environment, learning XS

i might give a bidder a better idea of his opponent’s
bid. Thus, it need not be the case that a bidder is indifferent between both signals.
This is due to the strategic effects of bidders choosing more or less correlated signals,
and not due to one signal containing more information about the object’s value.

The following main result shows that the SPA is the efficient auction format if
bidders choose between signals with equal accuracy about their value.

Theorem 2 (SPA induces IPV). Let XS
i ∼Vi XT

i for i = 1, 2. In any symmetric
equilibrium of the SPA, σ∗ = 0. There exists an equilibrium with σ∗ = 0 and β∗T (XT

i ) =
E[Vi|XT

i = x].

The bidder with the highest signal realization about his private component wins,
and bidders do not waste their learning resources on the common component, which
is irrelevant for the optimal allocation. The remainder of this section is devoted to
providing intuition for why only an IPV framework can arise endogenously in the SPA.

4.1 Existence

The existence of an IPV equilibrium in theorem 2 follows from the equal accuracy
assumption. If bidder 2 learns XT

2 , then there is no winner’s curse for bidder 1. If it
is optimal for bidder 1 to bid b following XS

1 = x, then bidding b is also optimal when
XT

1 = M(x). This is because both signals lead to the same expectation of Vi (lemma
1), and both are independent of the other bidder’s bid. Finally, both signals XT

1 and
M(XS

1 ) are distributed identically, so a bidder is indifferent between learning either
since they both lead to the same strategic problem.

4.2 Uniqueness

In what follows, I show by contradiction that there cannot exist a CV equilibrium in
which both bidders learn about the common component.15 Let the candidate equilib-
rium have σ = 1 and some increasing bidding function βS. The following deviation
constitutes a strictly profitable deviation for bidder 1:

15The focus on σ = 1 is for expositional clarity. The proof in appendix B holds for any σ ∈ (0, 1].
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1. information choice: σ̂1 = 0;
2. bidding function: β̂T (M(x)) = βS(x).

I show that this deviation leads to (i) the same winning probability; (ii) a strictly
lower expected payment; (iii) the same expected value when winning. Hence, a bidder
is better off using the same marginal bid distribution as in the candidate equilibrium on
the private-component signal, while avoiding any interdependence with his opponent.

Equal winning probability. In the candidate equilibrium, due to symmetry, both
bidders win with probability 1

2 . If bidder 1 deviates, then the bidders’ signals are
independent. Recall that M(XS

1 ) and XT
1 are distributed identically, and both lead to

the same bid distribution. Hence, both bidders have the same marginal bid distribution,
and win with equal probability; formally, we have:

Pr(XT
1 ≥M(XS

2 )) =
∫
XS
fS(x)

[
1− F T (M(x))

]
dx = 1−

∫
XS
fS(x)F S(x)dx = 1

2 .

(1)

Thus, the deviation has no effect on the winning probability.

Proposition 1. Let σ = 1 and βS be a candidate equilibrium in the SPA. Bidder 1
wins with probability 1

2 if (i) he plays the candidate equilibrium, or (ii) he deviates to
σ̂1 = 0 and bidding function β̂T (M(x)) = βS(x).

Lower expected payment. Let G(2)(x) := Pr(XS
2 ≤ x|XS

1 ≥ XS
2 ) be the distri-

bution of the signal of bidder 2 in the candidate equilibrium, conditional on bidder 1
winning. This is the distribution of the second-order statistic of the two correlated,
identically distributed private signals,16 which is as follows:

G(2)(x) = 2F S(x)−
∫
S
[F S(x|s)]2h(s)ds. (2)

For bidder 1’s deviation, let Ĝ(2)(x) := Pr(XS
2 ≤ x|M−1(XT

1 ) ≥ XS
2 ) be the dis-

tribution of bidder 2’s signal conditional on bidder 1 winning. Recall that signals XS
2

and M−1(XT
1 ) are distributed identically and independently. Hence, this distribution

equals the well-known distribution of the second-order statistic of two i.i.d. variables:

Ĝ(2)(x) = 2F S(x)−
[
F S(x|s)

]2
. (3)

16See (8) and proposition 9 in the appendix for further details.
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Figure 1: Distributions of first- and second-order statistics of two identically distributed random variables.

When is bidder 1’s payment higher? In both the candidate equilibrium and the
deviation, bidder 1 pays the bid of bidder 2, who uses the bidding function βS. If bidder
1 wins, he pays

∫
XS βS(x)dG(2)(x) in the candidate equilibrium, and

∫
XS βS(x)dĜ(2)(x)

in the deviation. As the following result shows, G(2) and Ĝ(2) can be ranked.17

Proposition 2 (Lower expected payment.). Let σ = 1 and βS be a candidate equilib-
rium in the SPA. G(2) first-order stochastically dominates Ĝ(2). The expected payment
for a winning bidder is strictly lower in the deviation than in the candidate equilibrium.

In the deviation, bidder 2’s signal realizations, and hence, his bids, are more likely
to be distributed lower when bidder 1 wins. As the bidding function βS is increasing, it
follows that the expected payment is also lower.18 Consider the extreme case of perfectly
correlated signals in the candidate equilibrium. Then, both bidders bid the same, the
first- and second-order statistics of the bids coincide, and bidder 1 pays his own bid in
the SPA when winning. However, in the deviation, bidder 1 pays less conditional on
winning because the two bids no longer coincide: there is a gap between the distribution
of the second-order statistic of the bids (which bidder 1 pays when winning) and the
first-order statistics of the bids (which bidder 1 bids when winning). The deviation
increases the gap between the first- and the second-order statistics distributions. This
increase takes the form of first-order stochastic dominance, as depicted in figure 1.

Equal value when winning. In the candidate equilibrium, there is no informa-
tion about the private components. Conditional on winning, the expected private-

17See lemma 2 in the appendix for a general ranking of the distributions of first- and second-order
statistics of two variables with the same marginal distribution and varying correlation.

18This argument holds for any nondecreasing bidding function βS , and does not require the functional
form of equilibrium bidding functions in the SPA as in Milgrom and Weber (1982).
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Figure 2: Expected value from components in the candidate equilibrium (left two axes) and deviation (right two axes).

component payoff is therefore E[w(T1)|XS
1 ≥ XS

2 ] = E[w(T1)], depicted by the red dot
on the left axis in figure 2. Bidder 1 wins at every S with probability 1

2 . Hence, the
common-component payoff conditional on winning is E[u(S)|XS

1 ≥ XS
2 ] = E[u(S)],

shown by the red dot on the second-from-the-left axis in figure 2.
When deviating, bidder 1 no longer wins with probability 1/2 at every realization

of S. Instead, he is more likely to win with a high XT
1 and thus a high T1.

19 Hence,
conditional on winning, the private-component payoff is higher in the deviation than in
the candidate equilibrium. Figure 2 shows this increase, denoted by ∆, in the second-
from-the-right axis.

Analogously, if bidder 1 deviates, bidder 2 is more likely to win when XS
2 is high.

Hence, conditional on winning, bidder 2’s expected value of S is higher than in the
candidate equilibrium. This is depicted by the blue dot on the far right axis of figure 2.
Due to the equal accuracy assumption and symmetry in bid distributions, this increase is
exactly ∆, bidder 1’s increase from T1.20 The total surplus from the common component
is E[u(S)]. As the object is always sold (i.e., no surplus is destroyed), and both bidders
are equally likely to win when bidder 1 deviates (proposition 1), the sum of the expected
values equal the total surplus, as shown here:

E[u(S)] = 1
2 E[u(S)|M−1(XT

1 ) < XS
2 ]︸ ︷︷ ︸

E[u(S)]+∆

+1
2E[u(S)|M−1(XT

1 ) ≥ XS
2 ] (4)

This pins down the expected value of the common component for the deviating
19Recall that signals satisfy the MLRP (assumption 2).
20For further details, see the proof of proposition 11 in the appendix.
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bidder 1: (4) can only be satisfied if E[u(S)|M(XT
1 ) ≥ XS

2 ] = E[u(S)]−∆, i.e., bidder 1’s
common-component payoff decreases by the same amount by which bidder 2’s common-
component payoff increases. Hence, when deviating and winning, bidder 1’s expected
object value increases by ∆ from the private component, but this is exactly cancelled
out by a decrease of ∆ in the common component.

Proposition 3 (Equal expected value.). Let σ = 1 and βS be a candidate equilibrium
in the SPA. Bidder 1’s expected object value when winning is identical in the candidate
equilibrium and in the deviation.

These insights carry over for any candidate equilibrium with σ > 0. A bidder has
a strictly profitable deviation to learn XT

i instead of XS
i to avoid any interdependence

with his opponent’s bid, and to use the same marginal bidding function as in the candi-
date equilibrium. This strictly decreases the expected payment via a lower distributed
second-order statistic of the now independent bids, while keeping the overall winner’s
curse unaffected: the total value of the object conditional on winning does not change
(although its component composition does), and neither does the winning probability.

5 Higher accuracy in the SPA

In the previous section, signals about the common or the private component were
equally informative about the bidders’ total value. While this isolated the strategic
value of information about either component, it is a knife-edge case. In what follows, I
relax the equal accuracy assumption and show how theorem 2 can be extended.

An initial naive guess might be that if the private-component signal is more accurate
about the value than the common-component signal, i.e.,XT

i �Vi XS
i , then bidders learn

only about their private component in any symmetric equilibrium. After all, this is true
for XT

i ∼Vi XS
i by theorem 2, so why shouldn’t bidders prefer the private-component

signal if it contains even more accurate information about their value Vi? Yet, there are
two caveats which make the accuracy order XT

i �Vi XS
i a suboptimal choice. I discuss

both below, before introducing the correct accuracy order to extend theorem 2.
The first caveat is that only few signals might satisfy XT

i �Vi XS
i . A more accurate

signal about Ti need not be more accurate about Vi. This is due to the two dimensions
which influence the value,21 and gives rise to counterintuitive properties. For the ex-

21For the particular value function in Example 3, XT
i cannot be simultaneously affiliated with Ti

and affiliated with Vi, unless it is fully uninformative.
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Figure 3: Sketch for Example 3. On the left: XS
i fully uninformative. On the right: an informative XT

i , with M(x|Vi)
decreasing from Vi = 1 to Vi = 2.

ample below, there exists no XT
i which is strictly more accurate about Vi than a fully

uninformative XS
i . Yet many signals exist which are more accurate about Ti than a

fully uninformative signal, and which are not comparable in terms of �Vi .

Example 3. Let S, Ti ∈ {0, 1}, and Vi = 2S + Ti. Note the nonmonotonicity in Ti:
Vi = 1 only if Ti = 1, and Vi = 2 only if Ti = 0. By assumption 2, XT

i satisfies the
MLRP with respect to Ti,22 and hence,

F T (x|Vi = 2) = F T (x|Ti = 0) ≥ F T (x|Ti = 1) = F T (x|Vi = 1). (5)

Then, no informative signal about the private component can have a higher accuracy
about Vi than a fully uninformative signal XS

i ∼ U [0, 1]. This is becauseM(.|vi) : XS
i →

XT
i is decreasing from Vi = 1 to Vi = 2 due to (5), which is sketched in figure 3.

The second caveat is that even if two signals satisfy XT
i �Vi XS

i and both signals
are affiliated with Vi, it is not clear why bidders should prefer the more accurate signal
about Vi. To see this, consider the expected utility of bidder 1 who receives a signal
XT

1 = x1, whose value is v1 and who places a bid b:

ũT1 (b; v1, x1) =σ2

∫ β−1
S (b)

[v1 − βS(x2)] dF S
2 (x2|v1, x1)︸ ︷︷ ︸

bidder 2 learns XS
2

(6)

+ (1− σ2)
∫ β−1

T (b)
[v1 − βT (x2)] dF T

2 (x2)︸ ︷︷ ︸
bidder 2 learns XT

2

. (7)

Note the dependence of ũT on the signal x1. Due to the two-dimensional composition
of bidder 1’s value, the distribution of the opponent’s signal F S

2 (x2|v1, x1) depends not
22First-order stochastic dominance is a well-known consequence of the MLRP.
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only on the realization v1 but also on the realization of bidder 1’s signal. This is because
bidder 1’s signal conveys information about which of the possible (S, T1)-combinations
is more likely, and hence, which S influences bidder 2’s signal XS

2 .23 This situation
does not arise in classic models where the value pins down the distribution of the other
bidders (see, e.g., Athey (2001), Persico (2000)). In addition, it is not clear why the
function ũT (b; v1, x1) should satisfy the SCP. It is well known that (7) (which arises
in IPV models) satisfies the SCP in (b; v1). But even if (6) also satisfies the SCP, it
remains the case that, in general, the sum of two functions which satisfy the SCP—as
(6) and (7) do in this case—need not itself satisfy the SCP. Thus, theorem 1 cannot
be applied because two of its conditions might not hold: the signal is payoff relevant
beyond its information about v1, and the SCP in (b; v1) might be violated. This means
that higher accuracy about Vi might not translate into a higher expected utility.

However, comparing accuracy about a component (not about the value) avoids the
above problems and allows a comparison among a rich set of experiments:

Theorem 3 (Efficient SPA). Let bidders choose between XT
i and XS

i . If there exists
some X̃T

i such that XT
i �Ti X̃T

i ∼Vi XS
i , then bidders learn XT

i in any symmetric
equilibrium in the SPA.

Hence, a meaningful accuracy comparison in a two-dimensional valuation framework
requires a two-step approach: (i) finding an intermediate private-component experiment
X̃T
i that is as accurate about Vi as XS

i is, and then (ii) comparing its accuracy about
Ti (not about Vi) with the available private-component experiment XT

i . This preserves
the richness of the order �Ti , since many experiments about the private component can
be ranked in this way, regardless of the functional form of Vi = u(S) + w(Ti).

For a sketch of the proof, I show that bidders prefer higher accuracy about the
private component, and therefore prefer XT

i to X̃T
i . The difficulty of establishing this

is similar to the second caveat above for �Vi : it is not clear whether theorem 1 is
applicable. I prove that if Ti = ti and a bidder places a bid b, his expected payoff (i)
satisfies the SCP and (ii) does not depend on the realization of a private-component
experiment. This is because the distribution of the opponent’s signal is independent
of both XT

i and X̃T
i conditional on Ti (but not Vi). In addition, the bidder’s inference

about S when winning can be integrated out. Hence, theorem 1 can be applied. Finally,
23To see this, let S, T1 ∈ {0, 1} and V1 = S + T1. If V1 = 1, then either T1 = 1 (and S = 0), or

T1 = 0 (and S = 1). A high signal XT
1 is more indicative of T1 = 1 and S = 0, and hence, XS

2 is
more likely to be low (as it is affiliated with a low common component). However, a low XT

1 is more
indicative of S = 1 and T1 = 0. In this case, XS

2 is likely to be higher.
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the intermediate experiment X̃S
i allows the application of theorem 2.

6 Discussion and extensions

6.1 Robustness of an IPV equilibrium in the SPA

Learning about the opponent’s private component. In my model, bidders can
learn only about their payoff-relevant components, but not the private component of the
other bidder. How relevant is this assumption for the uniqueness of the IPV equilibrium
in the SPA? Allowing bidders to learn about the other bidder’s private component
imposes further restrictions on the IPV equilibrium since it constitutes an additional
deviation. In what follows, I show that the IPV outcome remains an equilibrium in the
SPA even if bidders can learn about every component in the model.

As in the baseline model, bidder i 6= j has access to the two experimentsXT
i andXS

i .
In addition, each bidder can learn a signal about the private component of the other
bidder, Y T

i , which is informative only about Tj. I do not impose any accuracy ranking
about Vj among Y T

i and XT
j , and Y T

1 and Y T
2 can have different distributions. The

following result shows that the privacy-preserving IPV outcome remains an equilibrium
in the SPA.

Proposition 4. Let bidders choose one signal in {XS
i , X

T
i , Y

T
i } where XS

i ∼Vi XT
i .

Then, there exists an IPV equilibrium in the SPA, in which bidders learn only XT
i .

Comparison to an FPA. In addition to allowing bidders to learn about the private
components of their opponent, I relax two further assumptions next: signals are now
costly,and no accuracy ranking among signals is required anymore. While an absolute
prediction as in theorem 2 (i.e., bidders learn only XT

i in equilibrium) is no longer
possible, I can derive a relative prediction between the SPA and the FPA. This shows
that not every auction format has the same efficiency properties of the SPA.

Proposition 5. Let bidders choose among {XT
i , X

S
i , Y

T
i } with corresponding costs

{cT , cS, c̃T}. If there exists an IPV equilibrium in the FPA, then there exists an IPV
equilibrium in the SPA. The reverse is not true.

The proof relies on revenue equivalence. In an IPV equilibrium, bidders’ expected
utility coincides in the FPA and the SPA. In addition, I show that the deviation payoff
after learning XS

i also coincides in the FPA and the SPA. This means that if learning
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about the common component is not a strictly profitable deviation in the FPA, then
the same is true for the SPA. As in proposition 4, learning Y T

i cannot be a strictly
profitable deviation in the SPA since it results in a constant bid.

Why does the existence of an IPV equilibrium in the SPA not imply that there
also exists an equilibrium in the FPA? Let bidder 2 learn only about T2. In the FPA,
anticipating bidder 2’s bid can be useful for bidder 1 who does not want to “leave money
on the table” by placing an unnecessarily high winning bid. Learning Y T

1 yields a better
estimate of bidder 2’s bid. However, learning Y T

1 also comes at the opportunity cost of
not learning about V1. In an FPA, bidders trade off these effects of exploiting higher
correlation versus learning more about one’s own valuation. Example 4 shows that the
former effect can dominate and destroy the existence of an IPV equilibrium in the FPA.

Example 4. Let S, T1, T2 ∼ U [0, 1] and Vi = S + Ti, and let signals be perfectly re-
vealing: XS

1 = XS
2 = S and XT

i = Y T
j 6=i = Ti. Since both signals are equally accurate

about Vi, it follows that learning XT
i and bidding E[Vi|XT

i = Ti] constitutes an IPV
equilibrium in the SPA.24

Next, I show that there exists no IPV equilibrium in the FPA. Consider a candidate
equilibrium in which bidders bid the standard IPV bidding function β(XT

i = x) =
E
[
Vj|E[Vj|XT

j ] ≤ E[Vi|XT
i = x]

]
= 1+x

2 . Bidder i’s expected payoff with XT
i = x is

(1
2 + x− 1+x

2 )x = x2

2 . Overall, his expected payoff in this candidate equilibrium is 1
6 .

However, the following deviation yields a strictly higher payoff: learn Y T
1 = T2 and

slightly outbid the opponent by bidding 1+T2
2 + ε for some small ε > 0. This strategy

always wins the object at its prior expected value of 1. For ε → 0, bidder 1 pays the
expected bid of the opponent, which is 3

4 . Hence, for ε sufficiently small, bidder 1’s payoff
from this deviation approaches 1− 3

4 = 1
4 , making this a strictly profitable deviation.

6.2 Experiments about both components

So far, bidders could learn about only one component. If possible, would bidders prefer
to learn simultaneously about both components in one experiment? To answer this, I
allow experiments to vary continuously in their accuracy about the components. To
compare the results to theorem 2, each experiment is assumed to have the same accuracy
about a bidder’s value. I assume that bidders have access to a parametrized set of
experiments {Xρ}ρ∈[0,1], where ρ captures the amount of information the experiment

24In this case, both bidders are indifferent between learning S and Ti.
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contains about S and Ti. Let fρ(.|s, ti) be the positive density of Xρ with support X .

Assumption 4. Bidders choose one experiment in the set {Xρ}ρ∈[0,1] such that

1. for all ρ′ > ρ, Xρ′

i �S X
ρ
i (but not Xρ

i �S X
ρ′

i ), X
ρ
i �Ti X

ρ′

i , and X
ρ
i ∼Vi X

ρ′

i ;
2. for all ρ ∈ (0, 1), fρ satisfies the strong MLRP with respect to S;
3. there exist XT

i , X
S
i satisfying assumption 2, and Xρ=0

i = XT
i and Xρ=1

i = XS
i .

That is, every experiment is equally accurate about the total value Vi. What varies
in ρ is how much information the experiment contains about the two payoff-relevant
components.25 A higher ρ is more accurate about the common component, while sac-
rificing accuracy about the private component Ti. At the extreme, if ρ ∈ {0, 1}, then
the experiment is informative about only one component, as previously.

Bidders choose a signal in the set {Xρ}ρ∈[0,1] by choosing ρi ∈ [0, 1]. As before, the
outcome is efficient if bidders choose ρi = 0, and do not waste their learning resources
on S, which is irrelevant for finding the efficient allocation. And as in section 4, I prove
that the SPA is the efficient auction format in this richer informational framework.

Theorem 4. Let bidders choose one experiment from {Xρ}ρ∈[0,1] which satisfies as-
sumption 4. Then, in any symmetric equilibrium of the SPA, bidders acquire informa-
tion only about their private components, ρ∗ = 0. An equilibrium with ρ∗ = 0 exists.

Even though bidders can learn about both components simultaneously, they choose
not to do so. Thus, IPV arises endogenously again even with a richer signal structure.
A crucial assumption in theorem 4 is that every available experiment is equally accurate
about the total value. This limits information choice purely to strategic considerations,
and not to decisions about how much to learn. In reality, it might be that bidders
can more easily learn a bit about both components than a lot about one component.
A bidder might then prefer a signal which is simultaneously informative about both
components.26 Hence, in general, a result as strong as theorem 4 will not be possible if
bidders consider both the strategic effect and the informativeness of their experiments.

25An interior ρ ∈ (0, 1) can be interpreted as a reduced form of a sequential learning procedure,
where experiments are conducted on both components based on the outcome of previous experiments,
and the bidder receives a one-dimensional summary signal at the end.

26As an extreme illustration, consider a (possibly) fully revealing signal Xρ
i = ρiS+(1−ρi)Ti.While

ρi ∈ {0, 1} perfectly reveals one component, ρi = 1/2 fully resolves all uncertainty about Vi.
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6.3 Choosing accuracy and a component

The preceding analysis focused on which component bidders choose to learn about while
fixing the accuracy and abstracting from monetary costs of information. In practice,
bidders are likely to face both decisions: how much to learn, and about which compo-
nent? If the costs of learning vary between the two components, then the information
choice of the bidders inevitably depends on the cost functions; a statement as general
as theorem 2 that contains an absolute information-choice prediction will not always be
possible. However, under some regularity conditions on the cost function, I can pro-
vide a relative prediction of information choice between the SPA and the FPA. I show
that the SPA leads to a more efficient outcome than an FPA. To simplify the problem
and avoid additional assumptions, I now consider only pure strategy equilibria where
bidders learn deterministically about either the common or the private component.27

Each bidder chooses one signal from two parametrized sets: {XS,ρ
i }ρ∈[0,1] about the

common component, and {XT,τ
i }τ∈[0,1] about the private component. All these signals

satisfy assumption 2. A higher ρ or τ is more accurate, respectively, about the common
or private component: XS,ρ′

i �S XS,ρ
i for ρ′ > ρ, and XT,τ ′

i �Ti X
T,τ
i for τ ′ > τ .

To establish a point of reference among experiments about different components, let
XS,ρ
i ∼Vi X

T,τ
i for ρ = τ . That is, two experiments with the same parameter are

equally accurate about the value. Each experiment comes at a cost cS(ρ) and cT (τ), with
c′T (.) > 0 for ρ, τ ∈ (0, 1), and cT (0) = cS(0) = 0. For every ρ, the distribution F S,ρ(x|s)
is differentiable in ρ, and continuous in s. For every τ , F T,τ (x|t) is differentiable in τ ,
and continuous in t.

Finally, I assume that if bidders can learn about only one of the two components,
then there exists a unique symmetric equilibrium: If bidders choose only in {XS,ρ

i }ρ∈[0,1],
then ρSPA and ρFPA are the unique information choices in a symmetric equilibrium of
the SPA and the FPA. If bidders choose only in {XT,τ

i }τ∈[0,1], then τSPA and τFPA are
the unique information choices in a symmetric equilibrium.28

Proposition 6 (SPA more efficient than FPA). Consider symmetric pure strategy equi-
libria in which bidders choose one signal from {XS,ρ

i }ρ∈[0,1] ∪ {XT,τ
i }τ∈[0,1].

27When one bidder mixes between a common- and a private-component signal, it is not straightfor-
ward to establish a SCP to guarantee that more accurate information about S is better via theorem
1. While the SCP can be established under additional assumptions on the distributions and value
function, this goes beyond the scope of this section.

28If bidders learn about only one component, then this is the framework of Persico (2000). See his
corollary 1 for assumptions such that a unique symmetric equilibrium exists. By assuming existence
and uniqueness, I focus on the additional effect of choosing between two components, instead of one.
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1. Let cS(a) ≥ cT (a) for all a ∈ [0, 1]. In the SPA, σSPA = 0 in any symmetric
equilibrium of the SPA. The FPA might have a pure CV equilibrium, but also has
an IPV equilibrium. In the IPV equilibrium of both auctions, τSPA = τFPA.

2. Let cS(a) < cT (a) for all a ∈ [0, 1]. Then, there exists no IPV equilibrium in the
SPA or in the FPA. In any symmetric pure CV equilibrium , ρSPA ≤ ρFPA.

In both cases, any SPA equilibrium is more efficient than any FPA equilibrium.

If it is cheaper to learn about one’s private component than about the common
component, then bidders learn only about their private component in the SPA. Ignoring
the costs, under equal accuracy, bidders prefer the private-component signal (Theorem
2). Thus, bidders prefer it even more when it is cheaper, making learning about S
unsustainable in equilibrium. If it is cheaper to learn about S, then IPV cannot be an
equilibrium since bidders can get the same amount of information about their value from
the common-component experiment instead of their private-component experiment, still
have independent signals, but pay strictly less.

The relative comparison of accuracy between the auctions in the proposition, τSPA =
τFPA and ρSPA ≤ ρFPA, follows as a corollary of Persico (2000). He considers a frame-
work related to mine: bidders choose how accurately to learn about their one com-
ponent, and bidders’ components are affiliated and (possibly) payoff-relevant for all.29

He shows that bidders acquire more information in the FPA than in the SPA. His
framework does not make any statement about the efficiency of information choice. My
analysis sheds light on the intricate interaction between higher accuracy and higher
efficiency. In my model, the additional information which is acquired in the FPA is
about the common component. Hence, learning more does not correspond to a higher
allocative efficiency, since it is both costly and useless for finding the efficient allocation.

It is worth noting in which sense the SPA is more efficient than the FPA: the SPA
does not necessarily lead to more learning about the private component. In fact, in
an IPV equilibrium, both auction formats lead to the same allocative efficiency since
they induce bidders to learn about their private components with the same accuracy
in the FPA and SPA. However, the SPA has two advantages over the FPA: (1) It is
more likely to induce an equilibrium in IPV. (2) It leads to less wasteful information
acquisition about the common component. If the mechanism designer also takes the
costs of information acquisition into account, then he might want to choose the SPA over

29Thus, he considers information acquisition about only one component, but his one-dimensional
learning framework is more general than what I allow for each of the two components.

24



the FPA even both result in a pure CV equilibrium. An exciting follow-up question is
whether this finding — that all additional information acquired in the FPA, as compared
to the SPA, is wasteful — would survive in a richer model with multidimensional costly
signals. This is left for future research as it is outside the scope of this paper.

6.4 Many bidders

So far, I have focused exclusively on the case of two bidders. Does an IPV equilibrium
still exist in the SPA for more than two bidders? The answer is an unambiguous yes.

Proposition 7. Let N ≥ 2 bidders choose between {XT
i , X

S
i } with XT

i ∼Vi XS
i . Then,

learning XT
i and bidding β(XT

i ) = E[Vi|XT
i ] are an equilibrium outcome in the SPA.

As was true previously for two bidders, bidders are indifferent between learning
two equally informative signals if both signals are independent of the information of
others. With more than two bidders, is the IPV equilibrium also the unique symmetric
equilibrium? The answer to this is more complicated. If N ≥ 3 and a bidder uses
the same class of deviation strategies as described previously, then he might be strictly
more likely to win when deviating. As a consequence, the deviating bidder’s expected
payment might be strictly higher than in the candidate equilibrium. However, under
additional assumptions, previous results can be extended to any number of bidders. For
example, for binary states and a symmetric value function, Proposition 8 shows that a
pure CV framework cannot be an equilibrium outcome in the SPA.30

Proposition 8. Let S, Ti ∈ {0, 1} uniformly, Vi(S = 1, Ti = 0) = Vi(S = 0, Ti = 1),
and XT

i ∼Vi XS
i . For any N ≥ 2, there exists no pure CV equilibrium in the SPA.

7 Conclusion

This paper explores the impact of the auction mechanism on the type of information
bidders choose to learn. Information about the common component simplifies coordi-
nation and is informative about the other bidder’s bid. However, it is socially wasteful,
since it comes at the opportunity cost of learning less socially valuable information
about their own private component. In this paper, I found that the efficient auction
format is the SPA, as long as all available information is equally informative about bid-
ders’ total valuation. In the SPA, an IPV framework arises endogenously. This result

30This result can be extended further to rule out candidate equilibria with mixing, σ ∈ (0, 1).
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can be extended in several ways – to compare signals with different accuracy, and to
show that the SPA is more efficient than the FPA. This shows the endogenous nature
of the IPV framework. If the auctioneer switches the auction format, bidders might
react by learning more about the common component in the FPA than in the SPA. In
the worst case scenario, bidders learn exclusively about the common component, and
the FPA has the same chance of achieving the efficient allocation as a random lottery.

In addition to efficiency considerations, revenue also varies with bidders’ information
choice. Which auction format maximizes revenue? In an IPV framework, the SPA and
the FPA yield the same revenue, while in a pure CV framework, the SPA yields higher
revenue than the FPA (Milgrom and Weber, 1982). However, when bidders choose
which components to learn about, an auctioneer might be facing the choice of an SPA
with an IPV framework, or an FPA with a pure CV framework. Finding the revenue-
maximizing mechanism remains an open question and is left for future research.

More broadly, agents choose information in a variety of other strategic settings
beyond an auction environment, for example, in voting and public good problems.
Understanding how a mechanism impacts the type of information that agents seek is
essential if agents have multidimensional valuations with varying efficiency implications.
Many models in these frameworks have well-known results if agents have common or
independent private valuations; and, importantly, policy recommendations vary based
on these two frameworks. However, if the change in private information is not taken
into account, then policy recommendations might backfire and result in less efficiency:
the policies might drive people to learn about aspects which do not matter for an
efficient outcome. The question as to for which mechanisms an IPV or interdependent
valuation framework arises endogenously in other essential strategic problems provides
an exciting new avenue for future research.
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A Auxiliary Results

A.1 Order statistics and stochastic dominance
The following auxiliary lemma establishes a strong stochastic ordering of variables with
the same marginal distribution but varying correlation.

Let X1, X̂1 and X2 be three continuous random variables, distributed identically
with marginal distribution F (x) for x ∈ X . X̂1 and X2 are drawn independently. X1
and X2 are drawn independently conditional on some random variable S with positive
density h(s). X1 and X2 satisfy the strong MLRP with respect to S.

Let Y(2) := min{X1, X2} be the second-order statistic of X1 and X2. Denote the
respective distribution by G(2). Let Y(1) := max{X1, X2} be the first-order statistic of
X1 and X2 with distribution G(1). Similarly, define Ŷ(2) := min{X̂1, X2} be the second-
order statistic of X̂1 and X2, with distribution Ĝ(2). Let Ŷ(1) := max{X̂1, X2} be the
first-order statistic of X̂1 and X2 with distribution Ĝ(1).

Lemma 2. For any x ∈ X such that F (x) ∈ (0, 1),
1. Ĝ(1) first-order stochastically dominates G(1), and Ĝ(1)(x) < G(1)(x),
2. G(2) first-order stochastically dominates Ĝ(2), and Ĝ(2)(x) > G(2)(x).
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Proof. Proof of part 1. The distribution of the first-order statistic of the two indepen-
dent random variables, Ŷ(1), is Ĝ(1)(x) = F (x)2. The distribution of the first-order
statistic of the two interdependent variables, Y(1), is G(1)(x) =

∫
S F (x|s)2h(s)ds. For

all x with F (x) ∈ (0, 1), using the strict Cauchy-Bunyakowski-Schwartz inequality and
the strong MLRP,31

Ĝ(1)(x) = F (x)2 =
[∫
S
F (x|s)h(s)ds

]2
<
∫
S
h(s)ds︸ ︷︷ ︸
=1

∫
S
F (x|s)2h(s)ds = G(1)(x).

Proof of part 2. The distribution of the second-order statistics of two i.i.d. ran-
dom variables is Ĝ(2)(x) = 2F (x) − F (x)2. For a fast way to derive G(2), note that
the weighted first-order and second-order statistic distributions have to add up to the
marginal distribution, i.e., F (x) = 1

2G(1)(x) + 1
2G(2)(x). Therefore,

G(2)(x) = 2F (x)−G(1)(x) = 2F (x)−
∫
S
F (x|s)2h(s)ds. (8)

The same argument as above (the strict Cauchy-Bunyakovski-Schwartz inequality and
the strict MLRP property) yields the result.

A.2 SCP and supermodularity
In this subsection, I present sufficient conditions when a function u1 : R+ × T → R
satisfies SCP in (b; t1), which will be used in later proofs.

Definition 3. A function y : R+ × T → R is supermodular (spm) if for every t′1 > t1
and every b′ > b, it holds that y(b′; t′1) + y(b; t1) ≥ y(b; t′1) + y(b′; t1).

The following is a well-known result (see, e.g., Athey (2001)).

Lemma 3. If u1 : R+ × T → R is spm, then it is SCP in (b; t1).

The following are sufficient conditions for u1 to be spm.32

Lemma 4. Let u1(b; t1) = f(t1, b)g(b). If (i) g(b) is nondecreasing in b and nonnegative,
and (ii) f(t1, b) is nondecreasing in t1 and spm, then u1(b; t1) is spm.

31The Cauchy-Bunyuakovsky-Schwarty inequality
[∫ b
a
c(s)d(s)ds

]2
≤
∫ b
a
c(s)2ds ·

∫ b
a
d(s)2ds is strict

unless c(s) = α ·d(s) for some constant α (see Hardy et al. (1934), Chapter VI.) In the above argument,
c(s) =

√
h(s), and d(s) = F (x|s)

√
h(s). Due to the strong MLRP, unless x such that F (x) ∈ {0, 1},

F (x|s) is not constant in s.
32A similar observation has been made in Athey (2001) in the proof of Theorem 7 in the appendix.
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Proof. For any b′ > b and t′1 > t1,

f(t′1, b′)− f(t1, b′) ≥ f(t′1, b)− f(t1, b)
⇒ g(b′) [f(t′1, b′)− f(t1, b′)] ≥ g(b) [f(t′1, b)− f(t1, b)]
⇒ f(t′1, b′)g(b′) + f(t1, b)g(b) ≥ f(t′1, b)g(b) + f(t1, b′)g(b′).

Hence, to show that a function u1(b; t1) = f(t1, b)g(b) satisfies SCP in (b; t1), it is
sufficient to establish the above properties (i) and (ii) in lemma 4.

B Omitted Proofs
Proof of Lemma 1. For existence of a value-independent M(.), see the main text
before the lemma. As ∀vi, F S(x|vi) = F T (M(x)|vi), it holds that F S(x) = F T (M(x)).
Then, by Bayes rule, it holds that F S(vi|x) = F T (vi|M(x)). Hence,

E[Vi|XS
i = x] =

∫
vidF

S(vi|x) =
∫
vidF

T (vi|M(x)) = E[Vi|XT
i = M(x)].

Proof of Theorem 2. Section 4.1 in the main text establishes existence. Next, I
show uniqueness. By contradiction, let there exist a candidate equilibrium {σCE >
0, βCES , βCET }. Then, bidder 1 has a profitable deviation: learn XT

1 (σ1 = 0) and bid
βT (M(x)) = βCES (x), where a bijectionM : XS → XT exists by lemma 1. This deviation
yields a strictly higher payoff than learning XS

1 and bidding βCES (.), as I show next.

Proposition 9 (Equal winning probability). Let {σCE > 0, βCES , βCET } be a candi-
date equilibrium. Bidder 1 wins with the same probability if (i) he plays the candidate
equilibrium and learns XS

1 , or (ii) he plays the above deviation.

Proof. With probability σCE, bidder 2 learns XS
2 . Then, winning probability in (i) the

candidate equilibrium after learning XS
1 and (ii) in the deviation strategy is 1/2, which

is proven in the main text in (1).
With probability 1 − σCE, bidder 2 learns XT

2 . As XT
2 is independent of both XS

1
and XT

1 , and XT
1 andM(XS

1 ) are distributed identically (lemma 1), winning probability
in (i) and (ii) also coincides,

Pr
[
βT (XT

1 ) ≥ βCET (XT
2 )
]

= Pr
[
βT (M(XS

1 )) ≥ βCET (XT
2 )
]

= Pr
[
βCES (XS

1 ) ≥ βCET (XT
2 )
]
.

Proposition 10 (Lower expected payment.). Let {σCE > 0, βCES , βCET } be a candidate
equilibrium. Bidder 1’s expected payment is strictly lower in the deviation than in the
candidate equilibrium when learning XS

1 .

Proof. With probability 1− σCE, bidder 2 learns XT
2 and bids βTCE(XT

2 ), which bidder
1 pays when winning. In both the deviation and in the candidate equilibrium when
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learningXS
1 , bidder 1 has the same marginal bidding function: he places a bid βCES (x) =

βT (M(x)) or below with probability F S(x) = F T (M(x)). Bids are independent in both
cases. Hence, bidder 1’s expected payment is the same.

With probability σCE, bidder 2 learns XS
2 . In the candidate equilibrium after learn-

ing XS
1 , bidder 1 wins if XS

1 ≥ XS
2 . Hence, the expected payment of bidder 1 when

winning after learning XS
1 is

∫
XS β

CE
S (x)dG(2)(x), where G(2)(x) is the second-order

statistic distribution of two identically distributed signals XS
1 and XS

2 as derived in (8).
In the deviation strategy, bidder 1 wins if M−1(XT

1 ) ≥ XS
2 . Both random variables

XS
1 and M(XT

1 ) are i.i.d. with distribution F S(.). Hence, if bidder 1 wins, he pays the
bid of the second-order statistics,

∫
XS β

CE
S (x)dĜ(2)(x), where Ĝ(2) = 2F S(x) − F S(x)2

is the second-order statistic distribution of two i.i.d. variables with distribution F S(.).
Lemma 2 in Appendix A establishes that G(2) first-order stochastically dominates

Ĝ(2) (in the notation of the lemma, let X1 = XS
1 , X̂1 = M−1(XT

1 ), and X2 = XS
2 ).

Thus, because G(2)(x) < Ĝ(2)(x) for every x for which F (x) 6∈ {0, 1} and as βCES is
increasing, it follows that

∫
XS β

CE
S (x)dĜ(2)(x) <

∫
XS β

CE
S (x)dG(2)(x). If bidder 2 learns

XS
2 , then bidder 1’s expected payment conditional on winning is strictly lower in the

deviation strategy than in the candidate equilibrium after learning XS
1 . Finally, by

proposition 9, overall winning probability is 1
2 in the candidate equilibrium and the

deviation if bidder 2 learns XS
2 . Hence, the unconditional expected payment is also

strictly lower in the deviation.

Proposition 11 (Equal expected value.). Let {σCE > 0, βCES , βCET } be a candidate
equilibrium. In the candidate equilibrium and the deviation strategy, bidder 1’s expected
value when winning, E[v1|bidder 1 wins], is identical.

Proof. With probability 1− σCE, bidder 2 learns XT
2 . Bidder 1 with signal XS

1 = x in
the candidate equilibrium wins with the same probability as with XT

1 = M(x) in the
deviation.33 There is no winners curse for bidder 1. By lemma 1, E[V1|XS

1 = x] =
E[V1|XT

1 = M(x)]. Hence, the value of V1 conditional on winning is the same due to
the same marginal distribution of M(XS

1 ) and XT
1 .

With probability σCE, bidder 2 learns XS
2 . Then, in the candidate equilibrium, the

expected object value for bidder 1 who learns XS
1 and wins is E[u(S)] + E[w(T1)], as

bidders are symmetric and win with probability 1
2 at every s ∈ S, and do not have any

information about their private components.
In the deviation strategy, signals are independent and XT

1 is informative only about
S, while XS

2 is informative only about S. As M−1(XT
i ) and XS

i are distributed i.i.d.,
33Bidder 1 places the same bid with XS

1 = x1 and XT
1 = M(x1), βCES (x1) = βT (M(x1)). M(XS

1 ),
XT

1 , XT
2 are i.i.d., so Pr

[
βCES (x1) ≥ βCET (XT

2 )
]

= Pr
[
βT (M(x1)) ≥ βCET (XT

2 )
]
.
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bidder 1’s expected value of the private component when winning can be written as

E
[
w(T1)|βT (XT

1 ) ≥ βCES (XS
2 )
]

=
∫
XS

E
[
w(T1)|XT

1 = M(x)
]
fS(x)F S (x) dx

=
∫
XS

E
[
u(S)|XS

1 = x
]
fS(x)F S (x) dx

+ E [w(T1)]− E [u(S)] , (9)

where the last equality followed because

E
[
V1 = u(S) + w(T1)|XS

1 = x
]

= E
[
V1 = u(S) + w(T1)|XT

1 = M(x)
]

⇔ E
[
u(S)|XS

1 = x
]

+ E[w(T1)] = E
[
w(T1)|XT

1 = M(x)
]

+ E[u(S)].

Note the similarity of (9) to bidder 2’s common component value when winning:

E
[
u(S)|βCES (XS

2 ) > βT (XT
1 )
]

=
∫
XS

E
[
u(S)|XS

2 = x
]
fS(x)F S (x) dx. (10)

The object is always sold, the common component surplus to be divided between
the bidders is E [u(S)], and each bidder wins with probability 1

2 (see proposition 9) if
bidder 2 learns XS

2 . Hence,

E [u(S)] = 1
2E [u(S)| βCES (XS

2 ) ≤ βT (XT
1 )︸ ︷︷ ︸

bidder 1 wins

] + 1
2E [u(S)| βCES (XS

2 ) > βT (XT
1 )︸ ︷︷ ︸

bidder 2 wins

].

This and equations (9) and (10) pin down bidder 1’s value when deviating and winning,

E
[
u(S) + w(T1)|βT (XT

1 ) ≥ βCES (XS
2 )
]

=2E [u(S)]− E
[
u(S)|βCES (XS

2 ) > βT (XT
1 )
]

+ E
[
w(T1)|βCES (XS

2 ≤ βT (XT
1 )
]

=2E [u(S)] + E [w(T1)]− E [u(S)] = E [u(S)] + E [w(T1)] ,

which is the same expected value conditional on winning as in the candidate equilibrium
when both bidders learn XS

i .

Together, Propositions 9, 10 and 11 establish that bidder 1 has a strictly profitable
deviation in any candidate equilibrium with σCE > 0. If bidder 2 learns XS

2 (a positive
probability event), then the deviation performs strictly better (lower expected payment
and equal value of the object) than learning XS

1 in the candidate equilibrium. If bidder
2 learns XT

2 , the deviation strategy yields the candidate equilibrium payoff.

Proof of Propositions 1, 2 and 3. These propositions are special cases of propo-
sitions 9, 10 and 11 in the proof of theorem 2.

Proof of Theorem 3. By contradiction, assume there exists a symmetric candidate
equilibrium with σ > 0 and bidding functions βS and βT . In what follows, I show that
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bidder 1 has a strictly profitable deviation. Denote bidder 1’s expected utility after
learning X1 ∈ {XT

1 , X̃
T
1 } and bidding optimally as EU∗1 [X1].

Claim 1. EU∗1 [XT
1 ] ≥ EU∗1 [X̃T

1 ].

Proof. Let T1 = t1. Let Pr[1 wins|b] be the probability that bidder 1 wins with a bid b
when bidder 2 plays the candidate equilibrium. When winning with b, denote bidder 1’s
object value as E[u(S) + w(t1)|b, 1 wins] := w(t1) + E[u(S)|b, 1 wins], and his expected
payment as E[pay|b, 1 wins]. Then, bidder 1’s expected utility when he bids b is

u1(t1, b) = (w(t1) + E[u(S)|b, 1 wins]− E[pay|b, 1 wins]) Pr[1 wins|b]. (11)

The above expression does not depend on whether bidder 1 learns XT
1 or X̃T

1 and its
realization. This is because with both signals, bidders’ information is independent and
hence, winning probability and inference about S only depends on the placed bid b.

Next, I show that u1(t1, b) satisfies SCP in (b; t1), a prerequisite of theorem 1. To
establish this, in section A.2 I showed that it is sufficient to show that (i) the function
f(t1, b) := w(t1) + E[u(S)|b, 1 wins] − E[pay|b, 1 wins] is supermodular (spm)34 and
nondecreasing in t1, and (ii) g(b) := Pr[1 wins|b] is nondecreasing and nonnegative.
Pr[1 wins|b] is nonnegative and nondecreasing as a higher bid is weakly more likely to
win in an SPA. Hence, (ii) is satisfied. The function f(t1, b) is nondecreasing in t1, as
only the first term w(t1) depends on t1 and is nondecreasing by assumption. Finally,
none of the additive terms in f depend on both t1 and b; it is straightforward that f(., .)
is spm. Hence, (i) is satisfied. This establishes that u1(t1, b) is SCP in (b; t1). Thus,
theorem 1 can be applied: bidder 1 weakly prefers XT

1 to X̃T
1 as XT

1 �T1 X̃
T
1 .

Denote bidder 1’s expected utility in the candidate equilibrium when learning XS
1

as EUCE
1 [XS

1 ].

Claim 2. EU∗1 [X̃T
1 ] > EUCE

1 [XS
1 ].

Proof. As XS
1 ∼V1 X̃

T
1 , by lemma 1, there exists a transformation M(.) which maps

the common-component signal into a signal X̃T
1 . As was shown in the proof of theorem

2, instead of learning XS
1 and bidding βS(XS

1 ) in the candidate equilibrium, bidder 1
is strictly better off learning X̃T

1 and bidding βS(M−1(X̃T
1 )). This deviation is strictly

profitable whenever bidder 2 learns XS
2 , and results in the same payoff whenever bidder

2 learns XT
2 .

35 Finally, note that the above deviation strategy is a lower bound for
EU∗1 [X̃T

1 ], bidder 1’s optimal payoff from X̃S
1 . This establishes the claim.

Hence, bidder 1 is strictly better off learning XT
1 than X̃T

1 , and strictly better
off learning X̃T

1 instead of XS
1 (which he learns with strictly positive probably in the

candidate equilibrium). Hence, by transitivity, σ > 0 cannot arise in equilibrium.
34See Definition 3 in section A.2 in the appendix.
35This holds irrespective of bidder 2’s bidding function as long as it is independent of bidder 1’s

private signal.
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Proof of Proposition 4. By the same argument as in theorem 2 and section 4.1,
bidders do not have a profitable deviation involvingXS

i . I show that learning Y T
i cannot

be part of a strictly profitable deviation. Bidder i’s best-response bid with any payoff-
irrelevant signal realization Y T

i = y is constant: β(Y T
i = y) = E[Vi|Y T

i = y] = E[Vi].
Bidder i can obtain the same payoff by learning XT

i , and bidding β(XT
i ) = E[Vi] for

any realization. Hence, his payoff after learning XT
i and bidding optimally (as in the

candidate equilibrium) is weakly higher, and no strictly profitable deviation exists.

Proof of Proposition 5. Let there exist an equilibrium in the FPA with σ = 0.
Without loss, consider bidder 1. By standard IPV arguments for the FPA, bidder 2
bids the symmetric equilibrium bidding function

βFPA(XT
2 ) = E

[
E[V1|XT

1 ]|E[V1|XT
1 ] ≤ E[V2|XT

2 ]
]
.

By the same argument, bidder 1’s best-response bid when deviating to XS
1 is

β̃FPA(XS
1 ) = E

[
E[V2|XT

2 ]|E[V2|XT
2 ] ≤ E[V1|XS

1 ]
]
.

Now consider an IPV candidate equilibrium in the SPA with bidding function
βSPA(XT

i ) = E[Vi|XT
i ]. By the same logic as in proposition 4, bidders do not have

a strictly profitable deviation to learn Y T
i , as it is payoff irrelevant, and leads to a

constant best-response bid that a bidder could as well place after learning XT
i .

It remains to be shown that learning XS
i cannot be part of a strictly profitable

deviation. Let bidder 1 deviate and learn XS
1 . Then, β̃SPA(XS

1 ) = E[V1|XS
1 ] is an

optimal bid by a standard IPV argument. Note that the optimal expected payoff for
each realization XS

1 = x is the same in the SPA and the FPA because
1. winning probability is identical,36

Pr
[
β̃FPA(XS

1 = x) ≥ βFPA(XT
2 )
]

= Pr
[
E[V1|XS

1 = x] ≥ E[V2|XT
2 ]]
]

= Pr
[
β̃SPA(XS

1 = x) ≥ βSPA(XT
2 )
]

2. expected value if winning depends only on XS
1 = x, i.e., E[V1|XS

1 = x, 1 wins] =
E[V1|XS

1 = x]
3. expected payment when winning is identical,

E[βSPA(XT
2 )|βSPA(XT

2 ) ≤ β̃SPA(XS
1 = x)] = E

[
E[V2|XT

2 ]|E[V2|XT
2 ] ≤ E[V1|XS

1 = x]
]

= β̃FPA(XS
1 = x).

Hence, the deviation payoff after learning XS
1 and bidding optimally coincides in

the FPA and the SPA. By revenue equivalence, bidder 1 obtains the same payoff in the
36For XS

1 = x and XT
1 = y such that E[V1|XS

1 = x] = E[V1|XT
1 = y], bidder 1 places the same bid

in the deviation and the candidate equilibrium. By symmetry, E[V1|XT
1 = y] = E[V2|XT

2 = y]. Thus,
bidder 1 with XS

1 = x wins if XT
2 ≤ y, or equivalently, if E[V2|XT

2 ] ≤ E[V2|XT
1 = y] = E[V1|XS

1 = x].
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IPV (candidate) equilibrium of the FPA and the SPA. By assumption, deviating to XS
1

is not a strictly profitable deviation in the FPA. As shown above, this deviation has
the same payoff in the SPA, and is thus also not a strictly profitable deviation.

Finally, I show that the existence of an IPV equilibrium in the SPA does not imply
the existence of an IPV equilibrium in the FPA. Example 4 in the main text provides
a counterexample which relies on perfectly revealing signals, and thus does not satisfy
assumption 2. Consider the following variation on this example with noisy signals
satisfying the requirements of the model, XS

i ∼ N (S, σ2) and XT
i ∼ N (Ti, σ2). For any

ε > 0, there exists a σ2 sufficiently small such that after bidder 1 learns Y T
1 , then he

knows with probability approaching one that bidder 2’s value falls within the ε-interval
of E[V2|Y T

1 ]. Then, bidder 1 is almost sure of bidder 2’s bid and can outbid him by
bidding E[V2|Y T

1 ] + ε. Thus, as σ2 → 0, bidder 1’s deviation is strictly profitable as it
approaches the strictly profitable full information benchmark.

Proof of Theorem 4. Existence follows by the same argument as in section 4.1. The
following notation for a bidder’s signal distribution with information choice ρi will be
used in the proof. Let the (full) support of Xρi

i be X ρi . Let fρi(x|s, t) be the density of
bidder i’s signal with components S = s and Ti = t. Let fρiS (x|s) :=

∫
T f

ρi(x|s, t)ht(t)dt
be the marginal density of Xρi

i given S, and F ρi
S (x|s) the distribution. Similarly, let

fρiT (x|t) be the marginal density of Xρi
i given Ti = t, and F ρi

T (x|t) the distribution. Let
fρi(x) (F ρi(x)) be the marginal density (distribution).

Assume by contradiction that there exists a candidate equilibrium with ρ > 0 and
β(Xρ

i ). I show that bidder 1 has a strictly profitable deviation: ρ1 = 0 and β̂(X0
1 ) =

β(M−1(X0
1 )) where M is the invertible bijection M : Xρ

1 → X0
1 . Such a map exists

because lemma 1 extends to Xρ
1 ∼V1 X

0
1 (by substituting XS

1 with Xρ
1 in the proof).

Similarly to the proof of theorem 2, I show that when deviating from the candidate
equilibrium (i) the winning probability is the same; (ii) the expected payment is strictly
lower; (iii) the expected object value when winning is weakly higher.

Proof of (i). In the symmetric candidate equilibrium, winning probability is 1
2 . In

the deviation strategy, bidder 1 wins if X0
1 ≥ M(Xρ

2 ). Using the same argument as in
lemma 1, these two random variables are i.i.d. Hence, winning probability is 1

2 .
Proof of (ii). This follows from the same arguments as proposition 10. In the can-

didate equilibrium, both bidders have the same marginal bid distribution which is cor-
related via the common component. In the deviation strategy, bidders have the same
bid distributions but the bids are now independent. The distribution of the second-
order statistic under correlation strictly first-order stochastically dominates that under
independence. This is a general statistical property which I establish in lemma 2. A
winning bidder pays the second-order statistics of the two bids. Hence, expected pay-
ment conditional on winning is strictly lower in the deviation.

Proof of (iii). Let bidder 2 play the candidate equilibrium. Then, denote bidder 1’s
net gain in private-component value when winning from deviating from the candidate
equilibrium as ∆T

1 := E[w(T1)|1 wins, ρ1 = 0] − E[w(T1)|1 wins, ρ1 = ρ]. Analogously,
define ∆S

i := E[u(S)|i wins, ρ1 = 0]−E[u(S)|i wins, ρ1 = ρ] for bidder i for the common
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component. By the same argument as in proposition 9, the object is always sold, and
both bidders win with probability 1/2. Therefore,

E[u(S)] = 1
2E[u(S)|1 wins, ρ1 = ρ] + 1

2E[u(S)|2 wins, ρ1 = ρ]

= 1
2E[u(S)|1 wins, ρ1 = 0] + 1

2E[u(S)|2 wins, ρ1 = 0].

Hence, ∆S
1 = −∆S

2 . Using this observation, I prove in the following that bidder 1’s
deviation is strictly profitable as ∆T

1 + ∆S
1 = ∆T

1 −∆S
2 ≥ 0.

In the candidate equilibrium, due to symmetry, both bidders win at every s with
probability 1/2. Hence, E[u(S)|i wins, ρ1 = ρ] = E[u(S)] and

∆T
1 −∆S

2 =E[w(T1)|1 wins, ρ1 = 0]− E[w(T1)|1 wins, ρ1 = ρ]
− E[u(S)|2 wins, ρ1 = 0] + E[u(S)]. (12)

Let g1(x; ρ) be the density of the first-order statistic of the two signals Xρ
1 and Xρ

2 .
Conditional on winning in the candidate equilibrium, bidder 1’s signal when winning is
distributed with density g1. We can write

E[w(T1)|1 wins, ρ1 = ρ] =
∫
X ρ

E[w(T1)|Xρ
1 = x]g1(x; ρ)dx

≤
∫
X ρ

E[w(T1)|Xρ
1 = x]2fρ(x)F ρ(x)dx, (13)

where 2fρ(x)F ρ(x) is the density of the first-order statistic of two i.i.d. random variables
with marginal distribution F ρ(x). The inequality in the last step followed from lemma
2: the first-order statistic of two i.i.d. variables first-order stochastically dominates
that of correlated variables with the same marginal distribution, and E[w(T1)|Xρ

1 = x]
is nondecreasing in x. As F ρ(x) = F 0(M(x)), we can write

E[w(T1)|1 wins, ρ1 = 0] =
∫
X ρ

E[w(T1)|X0
1 = M(x)]2fρ(x)F ρ(x)dx.

E[u(S)|2 wins, ρ1 = 0] =
∫
X ρ

E[u(S)|Xρ
2 = x]2fρ(x)F ρ(x)dx.

E[u(S)|2 wins, ρ1 = ρ] =E[u(S)] =
∫
X ρ

E[u(S)]2fρ(x)F ρ(x)dx.

Plugging this and (13) back into (12) yields

∆T
1 −∆S

2 ≥
∫
X ρ

(E[w(T1)|X0
1 = M(x)]− E[w(T1)|Xρ

1 = x]

− E[u(S)|Xρ
2 = x] + E[u(S)])2fρ(x)F ρ(x)dx = 0.

The last equality followed by symmetry, E[V1|Xρ
1 = x] = E[V2|Xρ

2 = x], and by the

36



equal accuracy assumption, as for every x ∈ X ρ,

E[V1|X0
1 = M(x)] = E[V1|Xρ

1 = x]
⇔ E[u(S)] + E[w(T1)|X0

1 = M(x)] = E[u(S)|Xρ
1 = x] + E[w(T1)|Xρ

1 = x].

Proof of Proposition 6. Part 1. Let cs(a) ≥ cT (a) for all a ∈ [0, 1]. First, by con-
tradiction, let there exist an equilibrium in pure CV with σSPA = 1 in which bidders
choose ρSPA = a and learn XS,a

i . By the same argument as in theorem 2, and while
ignoring the monetary costs of information, a bidder has a strictly profitable deviation
to XT,a

i . In addition, such information is cheaper, cS(a) ≥ cT (a), and thus, it is a
strictly profitable deviation. Hence, σSPA = 0 in any symmetric pure equilibrium.

Consider an IPV candidate equilibrium in the SPA in which bidders learn about
the private component with precision τSPA. This is the equilibrium accuracy level
if only private-component experiments were available, so by construction no bidder
has a profitable deviation to another private-component signal. Furthermore, for any
experiment, a bidder’s signal is independent of the information and the bid of his
opponent. Hence, by the same argument as before, experiment XS,a

i and experiment
XT,a
i yields the same payoff when bidding optimally. This is because both result in

the same distribution of the posterior and the same optimal bid. Hence, in an SPA, a
bidder also has no profitable deviation from learning with any available precision about
the common component. The exact same argument for a candidate equilibrium with
τFPA and σFPA = 0 establishes existence of an IPV equilibrium in the FPA.

The proof of τSPA = τFPA is a corollary of a result in Persico (2000): For the IPV
case, the variable Vi in Persico (2000) corresponds to variable Ti in my model. No bidder
acquires any information about the common component, hence, signals are independent
for any precision τ ∈ [0, 1]. The common component is a mere normalization in the
expected payoff. Hence, information choice about the private component in my model
is a special case of Persico’s one-dimensional information choice. Hence, his result
(Proposition 2, Fact 2 and Footnote 10 for independent components) applies. In his
terminology, the expected payoff in the SPA and the FPA is equally risk sensitive, and
hence, equilibrium accuracy is the same.

Part 2. Let cs(a) < cT (a) for all a ∈ [0, 1]. Assume by contradiction that there is an
IPV equilibrium in the SPA in which both bidder learn XT,a

i for some σ = a and get
independent signals. By assumption, experiment XT,a

i ∼Vi X
S,a
i . Thus, XS,a

i yields the
same information about Vi, leads to the same distribution of best response bids, and
yields the same payoff as when learning XT,a

i and bidding optimally. However, XS,a
i is

strictly cheaper than XT,a
i and hence, a strictly profitable deviation. The exact same

argument rules out an IPV equilibrium in the FPA.
The proof of ρSPA ≤ ρFPA in any pure CV equilibrium follows from Persico (2000).

For the pure CV case, Vi in Persico (2000) corresponds to S in my model. As bidders
acquire no information about their Ti in a pure CV equilibrium, the expectation of the
private component is just a normalization in the payoff. Hence, once again, informa-
tion choice just about one component is a special case of the one-dimensional learning
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problem in Persico (2000). Hence, his result (Proposition 2 and Fact 2) applies to my
framework: equilibrium accuracy is weakly higher in the FPA than in the SPA.

Proof of Proposition 7. Without loss, consider bidder 1. If all other bidders learn
XT
i 6=1, then both experiments available to bidder 1 result in independent signals and

the same distribution of the posterior value because XT
1 ∼V1 X

S
1 . Thus, learning XS

1
and bidding optimally results in the same payoff as learning XT

1 and bidding optimally.
Thus, XS

1 cannot be part of a strictly profitable deviation. After learning XT
i , it is well

known that bidding the expected value is a weakly dominant strategy in the SPA.

Proof of Proposition 8. The following properties are used in the proof and follow
from XS

i ∼Vi XT
i and lemma 1. For any realization XS

1 = x, there exists XT
1 = M(x)

such that F S(x) = F T (M(x)). By equally accuracy, E[Vi|XS
i = x] = E[Vi|XT

i =
M(x) = y]. For this to hold and as by assumption, Pr(S = 1) = Pr(Ti = 1), it
holds that F S(XS

i = x|S = 1) = F T (XT
i = y|Ti = 1) and F S(XS

i = x|S = 0) =
F T (XT

i = y|Ti = 0). Let v0 := E[Vi|S = 0, Ti = 0], v2 := E[Vi|S = 1, Ti = 1], and
v1 := E[Vi|S = 1, Ti = 0] = E[Vi|S = 0, Ti = 1]. Finally, due to symmetry, E[Vi] = v1.

By contradiction, consider a pure CV candidate equilibrium where each bidder learns
XS
i and bids β(XS

i ). I show that bidder 1 has a strictly profitable deviation: learn XT
1

and bid β(XT
1 ) = βS(M−1(XT

1 )). Let Y(1) = max{XS
2 , ..., X

S
N} be the highest common-

component signal of all other bidders. Let GS
(1)(x|s) := Pr(Y(1) ≤ x|S = s) = F S(y|S =

1)N−1 be the distribution of Y(1), and g(1) the corresponding density.
Let V1 = v0. Then, S = 0 and T1 = 0. In the candidate equilibrium and the

deviation, bidder 1 has the same marginal bid distribution F S(x|S = 0) = F T (M(x) =
y|T = 0), so the deviation has no effect on the payoff which is in both cases∫

XS
[v0 − βS(x)] gS(1)(x|0)[1− F S(x|0)]dx.

Similarly, if V1 = v2 (S = 1 and T1 = 1), deviating has no effect on the payoff. For the
remaining case, if V1 = v1, then in the candidate equilibrium the expected payoff is∫

XS
[v1 − βS(x)]

[1
2g

S
(1)(x|1)[1− F S(x|1)]dx+ 1

2g
S
(1)(x|0)[1− F S(x|0)]

]
dx. (14)

The expected payoff in the deviation is

1
2

∫
XS

[v1 − βS(x)] gS(1)(x|1)[1− F T (M(x)|1)]dx

+ 1
2

∫
XS

[v1 − βS(x)] gS(1)(x|0)[1− F T (M(x)|1)]dx

=
∫
XS

[v1 − βS(x)]
[1
2g

S
(1)(x|1)[1− F S(x|0)]dx+ 1

2g
S
(1)(x|0)[1− F S(x|1)]

]
dx. (15)

Next, I show that the payoff with the deviation is higher with v1. Note that (15)
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minus (14) (the net payoff from the deviation) can be written as

1
2

∫
XS

[βS(x)− v1]
(
gS(1)(x|0)− gS(1)(x|1)

) (
F S(x|1)− F S(x|0)

)
dx. (16)

Let α(x) :=
(
gS(1)(x|0)− gS(1)(x|1)

) (
F S(x|1)− F S(x|0)

)
. It captures the difference

in winning probability between the candidate equilibrium and the deviation for bidder
1. Next, I show that by deviating, bidder 1 is more likely to win.

Lemma 5.
∫
XS α(x)dx < 0.

Proof. Using integration by parts, we can write∫
XS
α(x)dx = −

∫
XS

(
f s(x|1)− fS(x|0)

) (
F S(x|0)N−1 − F S(x|1)N−1

)
dx

= + 2
N
−
[ 1
N

+ N − 1
N

] ∫
XS

(
fS(x|1)F S(x|0)N−1 + fS(x|0)F S(x|1)N−1

)
dx

(17)

Integrating both terms of the middle 1
N
-term by parts yields

1
N

∫
XS

(
fS(x|1)F S(x|0)N−1 + fS(x|0)F S(x|1)N−1

)
dx

= 2
N
− N − 1

N

∫
XS
fS(x|1)F S(x|1)N−2F S(x|0) + fS(x|0)F S(x|0)N−2F S(x|1)dx.

Plugging this into (17) for the 1
N
-term, the expression simplifies to

−N − 1
N

∫
XS

(
F S(x|0)N−2 − F S(x|1)N−2

) (
fS(x|1)F S(x|0)− fS(x|0)F S(x|1)

)
dx

By N ≥ 3 and the strong MLRP, for all interior x, F S(x|0)N−2 − F S(x|1)N−2 > 0
and fS(x|1)

FS(x|1) >
fS(x|0)
FS(x|0) (reverse-hazard-rate dominance). Hence,

∫
XS α(x)dx < 0.

Lemma 6. There exists x, x with x ≤ x such that
1. α(x) crosses zero exactly once from below at some x ≤ x̂ where fS(x̂|1) = fS(x̂|0).
2.
∫
XS≥x α(x)dx = 0.

Proof. By Theorem 2 and 4 in Milgrom and Weber (1982), Y(1) and S are affiliated (due
to conditional independence of all XS

i given S). Hence, g(1)(x|1)
g(1)(x|0) is nondecreasing in x.

MLRP implies first-order stochastic dominance, F S(x|1) ≤ F S(x|0). This establishes
the single-crossing property of α(x). As

∫
XS α(x)dx ≤ 0 by lemma 5, and α(x) crosses

zero once, there exists x ≤ x (the crossing point) as in the Lemma.
Because the signalXS

i has the MLRP, and
∫
XS f

S(x|s)dx = 1, there exists a ‘neutral’
signal x̂ such that fS(x̂|1) = fS(x̂|0). At this signal x̂, α(x̂) ≥ 0 because F S(x̂|1) ≤
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F S(x̂|0) and

gS(1)(x̂|0)− gS(1)(x̂|1) =(N − 1)
[
fS(x̂|1)F S(x̂|1)N−2 − fS(x̂|0)F S(x̂|0)N−2

]
≤(N − 1)F S(x̂|0))N−2

[
fS(x̂|1)− fS(x̂|0)

]
= 0.

Hence, x̂ ≥ x: α(x) crosses zero at some realization below x̂.

Let γ(x) := βS(x)−v1, which is nondecreasing in x. Using this, (16) can be written
as two sums,

1
2

∫
XS<x

γ(x)α(x)dx+ 1
2

∫
XS≥x

γ(x)α(x)dx.

The first summand is strictly positive. This is because by lemma 6, α(x) < 0 as
x ≤ x where the crossing at zero from below occurs. In addition, the bidding function
in an SPA is βS(x) = E[Vi|XS

i = x, Y(1) = x] and increasing in x by Milgrom and Weber
(1982). Thus, at any x ≤ x, βS(x) ≤ βS(x) ≤ βS(x̂) = E[Vi|XS

i = x̂, Y(1) = x̂] ≤ E[Vi] =
v1. The second to last inequality followed because any signal lower than the neutral
signal x̂ is bad news for the value of the object. Thus, for any x ≤ x, γ(x)α(x) ≥ 0,
and for a positive measure of x, γ(x)α(x) > 0.

The following follows from lemma 1 in Persico (2000), the proof is therefore omitted.

Lemma 7. Let
∫
X α(x)dx = 0, cross zero once from below and γ(x) be a nondecreasing

function. Then,
∫
X α(x)γ(x) ≥ 0.

As I established in lemma 6, all these assumptions are satisfied by α(.) and γ(.)
for X S ≥ x. Hence, the second summand is nonnegative. This establishes that the
deviation payoff is positive for N ≥ 3. The result for N = 2 follows by theorem 2.
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