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Lockdowns resulting from the COVID-19 pandemic have drastically altered energy consumption
patterns. Lockdowns implemented within a few months of the pandemic meantthatglobal energy demand,
especially for coal, oil, and gas, declined steeply (McGrath, 2020). According to the International Energy
Agency (IEA, 2020a),energy demand dropped by 25 percenton average perweek in nations with a full
lockdown, and 18 percentin those in partial lockdown. This decline has been mostly driven by the reduced
demand forelectricity in the commercial and industrial sectors, while domestic demand for private consumption
hasrisen by 40 percent, as millions of citizens were confined to theirresidences (Broom, 2020).

In contrast to the pattern for overall energy demand, generation from renewable sources has been resilientto
the COVID-19 crisis. Global use of renewable energy in all sectors actually increased by 1.5 percentand,as a
result, the share of renewables in electricity demand increased in many regions (International Energy Agency
2020b), including parts of Europe and the United States (Figure 1). While this reflects in partthe trend increase
in renewables (Figure 2), with new wind and solar projects already in the pipeline coming online in 2020, itmay
also reflectthe “creative disruption” associated with the crisis, and the increased opportunity to improve energy
efficiency and production from renewable sources of energy.

The aim of this paperis to explore this possibility and testthe hypothesis thatcrises provide a window of
opportunity forgreener energy. For this purpose, we investigate the response of the share of renewable energy
(and dirty energy) in total energy to major historical recessions (including financial crises and pandemics)fora
panel of 176 countries over the period 1965 to 2019. Our results show that recessions—while leading to a
permanentdecline in energy demand stemming from lower GDP and a decline in energy intensity (thatis,
energy per output)—are associated with a medium-term increase (decline) in the share of renewable (dirty)
energy of about2 percentage points (see Figure 3).

These effects, however, mask importantheterogeneities across countries, depending on the role of policy in
facilitating a transition to greener energy. We find that supportive policy in the form of more stringent
environmental protection regulation—such as emission and fuel standards, taxes on pollutants, trading
schemes for carbon, and R&D subsidies and publicinvestmentin renewables—can amplify the effect of
recessions to produce a neardoubling (about4 percentage points)in the share of renewables in total energy.
This highlights the need for policy to supportthe underlying dynamics typically seen during recessions in favor
of a greenerenergy mix.

Our paper contributes to the literature on the relationship between energy consumptionand economic growth
(Jakovac,2018)which, while documenting the cointegration between these variables, has notreached a
consensus on the direction of causality (see Sharma 2010, Al-Iriani 2006, Lee 2006, Soytas and Sari 2003,
Stern 2000). Here, we take a systematiclook at this historical relationship through the lens of growth slowdown
episodes and recoveries, akin to the literature linking crises and emissions (Jalles, 2019). We attemptto
disentangle the temporary effects on energy use from the more permanent shifts thatrepresenta pattern of
recoveries from recessions by focusing on deviations from established trends. Our paper undertakes the first
analysisin the literature of the impactof growth slowdowns on the evolution of the energy mix.

The remainder of the paperis structured as follows. Section Il provides a brief overview of the literature on
obsolescence and creative destruction and provides intuition on how these trends interact with growth



slowdowns and the use of renewables. Section llldescribes our data and empirical framework. Section IV
presents ourresults while Section V checks for robustness. Section VI extents the analysis to assess the
impactby type of economy and the role of supportive policy in the form of environmental protectionstringency.
The last section concludes.

Recessions are associated with a sharp decline in energy demand and the COVID-19 pandemicis no
exception (see Buechleret.al. 2020). Lowerdemand in turn leads to excess electricity supply; and since the
storage options for electricity are limited, power plants tend to be shutdown. This is specially the case for dirty
coal-based plants, because of their older technology and higher marginal cost of operation (includingfuel
costs).

Whetherthis crisis will provide investors an incentive to continue investing in old coal-basedplants orratherin
more efficient, greener plants remains an open question. On one hand, the disruption in financing broughtby
the crisis may reduce innovation in new energy through lower research and development, which is highly
procyclical. On the other hand, the recession may give firms a strongerincentive to improve their efficiency
leading to “creative destruction”.

The idea that units that embody the newest processes and productinnovations are continuously being created
and outdated units destroyed goes back to Joseph A. Schumpeter (1939, 1942)." Industries undergoing
continuous creative destruction can accommodate variationsin demand in two ways: they can vary eitherthe
rate at which production units thatembody new techniques are created or the rate at which outdated units are
destroyed. The economic disruptions broughtaboutby recessions actas a time of cleansing (see Caballero
and Hammour, 1994), with faster obsolescence of outdated units amid lower demand and prices. In addition,
the lack of demand created by the recession results in lower marginal cost of reallocation of both laborand
capital (see e.g., Davis and Haltiwanger, 1990; Aghion and Saint- Paul, 1998; Galiand Hammour, 1991; Hall,
1991).

A stark historical example of this effecthas been documented by Bresnahan and Raff (1991,1993) in their
study of the effectof the Great Depression on the motor vehicles industry. Using census panel data for the
United States, they find thatthe large contraction in automotive production during the depression resulted ina
permanentstructural change. Atthe start of the great depression, the diffusion of mass production techniques
in manufacturing was small, with a substantial segmentstill based on skilled craftsmanship. Butthe plant
shutdowns thatoccurred during the greatdepression due to lack of demand were concentrated in smaller, less
productive craftsmanship plants, while plants thathad adopted the mass-production system maintained a
competitive advantage thatallowed them to survive. The resultwas a shakeoutor “cleansing” of the productive
structure, as mostplantshutdowns were permanentand the automotive industry thatemerged afterwards was
much more relianton mass-production and automation—a process thatlikely would have taken much longer
absentthe destruction caused by the great depression. In addition, they note that even during the massive

' There exists a rich body of research analyzing the role of creative destruction in models of economic growth that embody
technological progress (see, e.g.,Johansen, 1959; Solow, 1960; Phelps ,1963; Sheshinski, 1967; Aghion and Howitt, 1992;
Grossman and Helpman, 1991; Aghion, Akcigit, and Howitt, 2015).



destruction process of plantshutdowns, a sizable number of new mass-production plants entered the industry.
Similarevidencecan be found during the Great Recession (see Pardo, 2016; Rembert,2018).

Turning to the green energy sector, Peters et al. (2012) find that when crises were triggered by energy shocks
such as the 1970s and 1980s oil crises, they contributed to majorimprovementsin the production of renewable
sources of energy and energy efficiency. While this finding in itself is not surprising, as the increase in the cost
of fossil fuels would naturally boostenergy efficiency and substitution toward renewables, they also argue that
in times of crisis, countries tend to sustain economic outputby supporting less energy intensive activities.

The Global Financial Crisis also has been associated with a significantincrease in renewables (see UNEP,
2009; IEA, 2020c). For example, Jaeger (2020) finds that“U.S. solar electricity generation increased over 30
times from 2008 to 2015, and wind generation has increased overthree times.” According to researchers atthe
World Resource Institute, “the United States, China, and Germany became renewable energy leaders in part
because of programs comingoutof the Great Recession.”

Policy can be a powerful tool in boosting these underlying trends and assisting the transformation towards
renewables (OECD, 2010). Forexample, the Climate Change Levy (CCL)introduced in the United Kingdom in
2001 had a strong negative impacton energy intensity and electricity use (see also Martin, de Preux and
Wagner,2011; Martin and Wagner, 2009). Similarly, in Spain, supportfor R&D and technological innovation led
to higherinvestments in environmental protection, including in the use of renewable energy sources.
Introduction of standards and charges for Sulphuroxides in Japan during the 1960s and 1970s resulted in
reductionsin the level of these pollutants and significanttechnological innovation.

Bowen and Stern (2010) further argue thatdownturns provide a “very good opportunity to undertake a
necessary step change in the public spending componentof environmental policies and to start working
through a backlog of publicinvestmentto improve the environment.” Drawing lessons from the Global Financial
Crisis, Agarwal et. al. (2020) provides evidence thatthe implementation of timely and properly designed green
stimulus measures can generate economic growth, create jobs and bring about environmental benefits, but
they note the trade-offs between competing economic, environmental and social policy objectives,
underscoring the importance of proper policy design.

The data on energy comes from the energy datasetmaintained by Our World in Data which is sourced
from the BP Statistical Review of World Energy, with additional energy consumption data fromthe SHIFT data
portal and electricity consumption and mix data supplemented from the EMBER global electricity dashboard.
As a firststep, we use the data on overall primary energy—ameasure of energy as found in nature, for
example blocks of coal, crude oil, natural gas, biofuels, nuclear, hydro, geothermal, solar orwind—and its
subcomponents such as oil and coal which is available for 176 countries from 1965 to 2019. In addition, we use
data on overall electricity and energy mix—electricity from fossil fuels, nuclear and renewable sources—which
is available fora slightly smaller setof 172 countries over the period 1985-2019and is the key focus of the
paper.?

2 As an additional check, we also use data fromthe Interational Energy Agency’s World Energy Balances database to check the
robustness of ourresults. This dataset has coverageforaround 130 countries over the period 1980 to 2016. Allour main results
continue to hold.



The paperanalyses the impact of recessions—defined as periods of negative real GDP growth—on the overall
energy use and mix. While we use recessions as our baseline specification, we also check for robustness of
our results using various other economic shocks. First, we look at the impactof financial crises, data forwhich
are available from Laeven and Valencia, 2020. Second, we explore the impactof pandemics. Following Furceri
etal. (2020), we identify five major pandemic events—SARS in 2003; H1N1in 2009; MERS in 2012; Ebolain
2014;and Zika in 2016. To capture the severity of the pandemic episodes, we look atthe number of infections
per capita. Third, instead of focusing juston periods of negative growth, we identify peaks and troughs in
economic activity using the Harding-Pagan algorithm applied to both annual real GDP and annual per-capita
GDP. We then identify peak to troughs as periods of growth slowdowns. Finally, we test our results using
changesin (log) GDP as opposed to recessionary events.

The various economic data needed for our analysis are taken from the International Monetary Fund’s World
Economic Outlook database, the World Bank’s World DevelopmentIndicators and the Penn World tables.
Environmental policy variables are taken from the Environmental Policy Stringency Index datasetof the OECD
(Botta and Kozluk,2014). These data are the mostcomprehensive available source for policy measures across
countries (28 OECD and six BRICS countries)and time (1990-2015). The datasethelpfully provides a
breakdown by instrumenttype. The EPS data allows us to test the effectof differentinstruments—scaled from
0 (not stringentat all)to 6 (very stringent) —relative to an overall aggregate index consisting of both market-
based and non-market-based measures. Here, market-based measures include instruments such as taxation
on emissions, trading schemes and feed-in tariffs, while non-market-based indicators capture legislation on
emission limits and R&D subsidies,among others.

To estimate the dynamic effects of recessions on energy use and mix, we use the local projection methods
proposed by Jorda (2005) and estimate impulse response functions directly from local projections. Specifically,
we estimate:
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wheree, ., is the energy variable, in country i at date t. This energy variable either enters the equation as the
logarithm of the energy use (in terawatt-hour) or the share of different sources in total electricity in the case of
the energy mix variables. s; , denotes the measure of growth slowdown, u; are country-fixed effects to account
fortime-invariant country-specific characteristics. We do notexplicitly include time dummiesin our baseline
specification because many growth slowdown episodes and crises—such as pandemics and financial crises—
are global in nature and time fixed effects would absorbtheirimpact, which we wantto explicitly capture. In
addition, when exploring the role of environmental policy regulation (see below) we observe thatmany of the
policy initiatives were synchronized globally, either on accountof them being an outcome (director indirect) of
multilateral climate agreements or partof a regional package (in particular for the countries in the European
Union). However, to allow for betteridentification, and as a robustness check, we include both time dummies
and a country-specifictime trend; to capture trendsin energy use or the share of renewables, as well as
fluctuations in global fuel prices. Our main results continue to hold.

Equation 1is estimated foran unbalanced panelof up to 176 countries over the period 1965-2019, foreach
year h=0,1, 2... The impulse response functions computed using the estimated coefficient 6, , with the
associated confidence bands obtained using robuststandard errors clustered atthe country level. The baseline
assumes 2-lags, butthe results are robustto differentspecifications of lags and leads. In the case of energy



use, the coefficients can be interpreted as the change in consumption h years after the shock relative to a
baseline of no growth slowdown, while in the case of energy mix, the interpretation is thatof a change in the
share of say, solar power, in total electricity, h years after the growth slowdown episode. We also estimate
equation 1 forsubsamples byincome group, i.e.,advanced economies and emerging marketand developing
economies.

We use the smooth transition autoregressive model developed by Granger and Teravistra (1993) to test
whether the effectof recessions on the share of renewables varies across differentlevels and types of
environmental protection “regimes”. This method allows the effect of recessions to vary smoothly across
regimes by consideringa continuum of states, thus making the functions more stable and precise. Specifically,
we estimate:
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where z is the environmental protection stringency or its subcomponent, normalized to have zero mean and a
unitvariance and EPS; ,_, is the corresponding lagged value of the measure. The weights assigned to each
regime vary between 0 and 1 according to the weighting function F(.), so that F(z,,) can be interpreted as the
probability of being in a given regime. The coefficients 8:and 8, capture the impactof recessions in cases of
very low EPS (F(z;,) = 1 when z goes to minusinfinity) and very high EPS (1 — F(z;,) ~ 1 when z goesto plus
infinity), respectively.

Before moving to the core results on the effects of recessions on energy mix, we presentthe results on
the effectof recessions on energy use. As expected, and in line with previous research, we find thatrecessions
are associated with a significantand permanentdecline in energy use. Figure 4 summarizes our main results
on energy use. While energy use expectedly declines following recessions, even after five years, primary
energy use is around 10 percentbelow their pre-recession trend. A similar pattern can be seen in specific
sectors—coal and oil demand after arecession isdown by around 5 and 8 percentrespectively afterfive years,
while electricity demand declines by around 7 percent. Although there is a permanentlevel effect, the
slowdown in growth of energy use is temporary, with growth rates returning to trend after around three years
(see Annex Figure 1). In addition to the effecton energy use, there is also a statistically significantshiftin
energy intensity—defined as energy used per unitof output, measured by the level of GDP. Results highlighted
in Figure 5 show that energy intensity declines durably after a recession. The initial decline in energy use isin
line with the decline in output, resulting in no statistically significantchange in energy intensity, butovertime,
as outputrecovers, energy intensity declines (see Annex Figure 2).

Having established the negative impact of recessions on energy use and intensity, we turn our attention to the
question on energy mix and try to answer the following question: does the share of renewable energy durably
increase afterarecession? Our main results, shown in Figure 6, confirm thatafter a majorrecession, the
energy mixbecomes greener, with the share of electricity generated from coal going down by abouta percent
afterfive years, while the share of renewablesincreases by almost2 percent. Annex Figure 3 shows the



impulse response of the level of electricity generated by renewables (as opposedto share of total electricity)
and confirms thatelectricity production from renewables is resilient to recessions, despite the overall decline in
energydemand as seenin Figure 4, resulting in an increase in share of renewables. Moreover, while overall
energy intensity declines, the intensity of renewables—renewable energy as a share of GDP—increases
durably after recessions (Annex Figure 4).

This reflects the fact that once built, renewables like hydro, wind and solar have a very low marginal costs of
operation and are generally used before other sources of electricity—renewables receive priority in the grid and
are not asked to adjusttheir outputto match demand insulating them from the impacts of lower electricity
demand. As a result, during recessions, when demand forenergy is low and overall capacity utilization falls
(Annex Figure 5, top chart), older power plans, primarily coal-based plants, are the first to be shut down given
theirhigh marginal costof operation (fuel costs) and the relative inefficiency of the older technologies. Once
demand recovers, investors choose notto put in the funds to restart these environmentally unfriendly and
relatively inefficient power plans and instead investin newer and renewable technologies to address the
increase in demand for electricity. Thisis corroborated by the large increase in investmentin renewable
observed during the global financial crisis (Annex Figure 5, bottom panel). Within renewables, both solar and
hydro get a boost, with the results for wind energy less robustand virtually no change in the share of nuclearin
total energy (Figure 7).

We check the robustness of our results by exploring the role of differenttypes of growth slowdown
episodes. While Figure 6 was based on recessions (negative growth), in Figures 8 and 9, we look at the impact
of financial crises (Laeven and Valencia, 2020), pandemics, peak to trough slowdowns identified by the
Harding-Pagan algorithm applied to both annual real GDP data and annual per-capita GDP data, and simple
GDP growth. Figure 8, top panel, shows results similar to those obtained for recessions, with total electricity
use declining by around 6 percentafter five years, with the share of renewables increasing by a little over 1
percent. Annex Figure 6 reports the impactof financialcrises on other variables (primary energy, oil, electricity
from coal, electricity from solar wind and hydro), and we continue to find robustand statistically significant
results, with financial crises decreasing primary energy demand by around 8 percentbutgiving a boost to
renewables like solar,wind and hydro. The relatively greater disruption in financing and investmentinherentin
a financial crisis likely explains the marginally weakerimpacton primary energy—slower pace of innovation
and investmentcompared with a generalized growth slowdown—butthisis not picked up in the case of
electricity demand.

Turing to pandemics (Figure 8 bottom panel), the impacttakeslongerto develop and is weaker—this can be
explained by a lower initial energy demand from businesses being partially offsetby higherdemand from
households due to lockdowns and increased work from home. Nevertheless, the impacton energy mixremains
positive with anincrease in the share of renewables. Results for otherindicators are presented in Annex Figure
7.

The analysis thus farhasrelied on various economics shocks. Butwe also look at the impactof generalized
growth slowdowns, measured as the period after growth peaks to its trough. As noted earlier, peaks and
troughs are identified by the Harding-Pagan algorithm applied to both annual real GDP data and annual per-
capita GDP data. Our baseline results continue to hold, with a decline in overall energy demand and an



increase in the share of renewables (Figure 9 top and middle panel). However, the results for the changesin
the energy mix are somewhatweaker and less statistically significant, particularly for solarand wind energy
(see Annex Figures 8 and 9). A likely explanation is that, in contrast to recessions and recoveries, prolonged
periods of slow growth resultis longer periods of lowerinvestmentgenerally, including in renewables. Hydro,
with its long gestation lag, is less affected. In addition, in the absence of the immediate shock from the
recession (negative growth), the creative destruction channel is likely to be weakerand more drawn outas well.
As a final check, we also look at the impulse responses to GDP growth and find that the share of renewable
energyis counter-cyclical (Figure 9 bottom panel and Annex Figure 10).

Alternative specifications

We conducta number of additional checks to gauge the robustness of our results. Following the
literature on local projections, our baseline specification controls forlags of the shock variable—economic
recessions measured by periods of negative growth in the baseline. While the baseline regressions use two
lags of both the dependentvariable and the recession dummy, our results are robustto alternative lags. Figure
10, top panel summarizes the results from using eightlags. To further control for pre-existing trends as well as
the persistence of the recessions, we alsoincluded leads of the shock variable in the regression. Results
continue to hold with two and eight leads (Figure 10 middle and bottom panel).

As an additional robustness check, we control forlagged growth in our regression directly. The impulse
responses are presented in Figure 11,top panel,and Annex Figure 11 and all our results continue to hold. In
addition, as noted earlier, we do notinclude time dummies and country-specific trends in our baseline
regressions to avoid excluding global crises and pandemics from our analysis. However, all our results
continue to hold if we include time dummies (Figure 11 middle panel and Annex Figure 12) and are also robust
to controlling for country-specific time trends (Figure 11 bottom panel and Annex Figure 13). These results
confirm thatour results are robustto other global shocks—such as swings in fuel prices and technological
changes thataffect production costs—which are picked up by the time effects.

While reverse causality is unlikely to be an issue (as the energy mix does notaffectthe occurrence of a major
recession), a potential concern is omitted variable bias where the omitted factors are (directedly and indirectly)
correlated with major recessions and the energy mix.2 To address this concern, we repeatthe analysis to
include the following setof additional controls: population growth; change in urbanization; creditgrowth;
investmentgrowth; changesin the share of manufacturing in total value added; exportgrowth. The inclusion of
these controls does not affectour main results (Figure 12).

While the inclusion of the additional controls helps to mitigate concerns regarding omitted variable bias, using
the observables to identify the bias from the unobservable variables requires making further assumptions about
the covariance properties of the two sets of data.* To address this issue, we use the bias-adjusted treatment

® Indeed, Granger causality tests (not reported but available uponrequest) suggestthat lags of the energy mix do not contribute to
explain the occurrence of major recessions.

* In particular, the case in which the omitted variable bias is fully identified by the observed controls corresponds to the extreme
assumption that the relationship between treatment and unobservable variables can be fully recovered from the relationship
between treatment and observables (Altonji, Elder, and Taber2005; Oster2019).



effectestimator proposed by Oster (2019).5 The results also in this case are similarto, and not statistically
differentfrom, the baseline.

Another concernisthat the results are picking up the effectof trends in energy mix ratherthan the effectof the
crises per se. To address this, we also checked the validity of the parallel trend assumption—thatis, the
assumption thatthe energy mixin the treatmentand counterfactual were following a parallel trend before the
recession. We do this by running a placebo testwhere the impulse responses are computedby randomly
assigning the date of the recession across the sample. Reassuringly, the impulse response functions obtained
by attributing randomly recession dates do notpointto any significanteffecton the energy mix (see Figure 13).
In other words, the impulse response functions obtained in the baseline (Figures 5-7) are indeed capturingthe
effectof the recessions and notof differences (orfactors driving differences) in energy mixtrends between a
country experiencing a recession (freatment) and a country with no recessions (control).®

Do the results differ betweenadvanced economies and emerging marketand developing economies?
We find that the share of renewables in total electricity rises strongly in the case of advanced economies, but
the results are weaker and quantitatively smallerin the case of emerging marketand developing economies
(Figure 14). Thisin part reflects the fact that our sample starts from 1985, when the prospects for renewable
energy otherthan hydro was less certain and the technology needed for generating solarand wind energy was
largely restricted to advanced economies. In addition, itis likely driven by that fact that mostemerging market
and developing economies lack the resources to make the costly investments necessary forrenewable sources
and have lower and less stringentenvironmental protection regulation and enforcementthatcan hasten the
adoption of renewable sources of energy.

On the last point, we formally testthe impact of varying degrees of environmental protectionon the change in
energy mix after a recession.” However, as noted earlier, comprehensive cross-country data on environmental
policy variables are only available for a limited setof relatively advanced economies and over a shortertime
period. We therefore begin our analysis by confirmingthatour baseline results hold for this more limited sample
(Figure 15). Then, as a first step, we introduce the environmental policy variables in our baseline specification.
In line with the literature highlighting thatrole of environmental policy stringency in accelerating environmental
innovation (Hassan and Rousseliére,2021), Table 1 confirms thatboth overall environmental protection
stringency (EPS) as well as marketand non-market EPS are associated with a higher share of renewablesin
total electricity after a recession. In addition, the impactincreases overtime. In particular, we find that a unitary

® Specifically, we used the Stata pscalc command assuming: (i) a value of 1 for the relative degree of selection on observed and
unobserved variables (8); and (ii) a value of 1 for Rmax—the R-squared from a hypothetical regression of the outcome on treatment
and both observed and unobserved controls.

® Intuitively, if the improvement in energy use and mix is driven by a trend and not any underlying dynamics associated with the
shock (economic recession in the baseline), then we should find statistically significantresults from assigning recession dates
randomly.

" Itis possible that a crisis triggers the adoption of more stringent environmental protection regulation, which in tum affects energy
mix afterthe recession. We test for this and find that the effect of crisis on environmental policies is not statistically significant in our
sample. Bourcet (2020) provides a survey of the literature on the determinants of renewable energy deployment,including therole
of environmental policy on electricity markets (see also Cullen and Mansur, 2017).



increase in the EPS indicator (such as the United Kingdom in 2010 when various climate change policies were
strengthened, including the introduction of feed-in-tariffs and inflation indexing of the CCL levy) can lead to
medium-term increase of 3-5 percentage pointsin the share of renewable energy. This resulthas important
implications per se as it suggests that climate change polices can be effective in fostering the transitionto a
greenereconomy.

Next, we use the smooth transition autoregressive model outlined in Equation 2 to formally assess the impact
of EPS (high and low EPS “regimes”) in affecting the energy mix after a recession. Our headline resultshown
Figure 16 confirms thatoverall environmental protection stringency (EPS) can boostthe transition towards
renewable energy, with high EPS associated with an increase in the share of renewables in total electricity after
a recession, while the effectis not statistically significantin regimes with low level of EPS. While on average,
we find that a recession is associated with a 2 percentage pointsincrease in the share of renewables (based
on the comparable restricted sample shown in Figure 15), countries with high EPS see a much larger
increase—almostdouble ataround 4 percentage point. In addition, the effectof EPSis largerduring
recessions.

Digging deeper, we look atboth marketand non-market-based EPS. Marketbased EPS comprise of taxes on
pollutants, trading schemes such as carbon trading, energy savings certificates and green energy certificates,
and feed-in-tariffs forrenewables. In contrast, non-market-based EPS include emission and fuel standards and
R&D incentives and investments, including publicinvestment (see Botta and Kozluk, 2014). We find thatboth
marketand non-market EPSs are associated with an increase in share of renewables after a recession (Figure
17). These results are confirmed by looking more narrowly atspecific measures (see Figure 18). Higher
emission and fuel standards are associated with a larger shifttowards renewables after recessions. Particularly
relevantforrenewable electricity generation are feed-in-tariffs and trading schemes such as green certificates
and white certificates.®

This paper explores the historical relationship between growth slowdowns and energy use to identify
systematic and permanentshiftsinherentin the pattern of recoveries from recessions. The empirical analysis
confirms thatgrowth slowdowns, including those engendered by pandemics and financial crises, resultin a
permanentincrease in energy efficiency and a corresponding decline in the energy intensity of output, with a
disproportionate impacton dirty energy. These effects are strongerin the case of advanced economies, and in
the presence of stronger environmental policies thatincentivize the shifttowards renewable energy. Our results
confirm thatboth non-market-basedpolicies in the form of emission and fuel standards, R&D incentives and
subsidies and publicinvestments, as well as market-based measures such as trading schemes for carbon,
renewable energy certificates and energy saving certificates, can be effective in boosting the transition towards
renewables. As noted by the OECD, taxes and other environmental policy instruments can complementeach
other. And even though renewable sources of electricity are becoming cost-competitive with fossil fuels and
nuclear power (Union of Concerned Scientists, 2017) and will soon no longer need subsidies, policies such as

® Green certificate is an obligation, which can be traded, to source a given percent of electricity from green sources. White
certificates are tradeables documents confirming energy saving, with more stringent policy associated with higheroverall energy
savings targets.



carbon pricing and more stringentclimate policy can encourage demand forrenewable energy and help meet
ambitious climate targets (Baldwin, Cai, and Kuralbayeva, 2020).

Although climate change and clean energy policies can entail political costs in the form of opposition from both
energy-using industries as well as the public at large, these costs can be avoided if the design of mitigation
policies takes into account political economy dimensions and if com plementary policies are deployed to protect
vulnerable households (see Furceri, Gansimeier,and Ostry, 2021). Although the migration to renewables might
be socially less costly during times of booms—easier for obsolete power plantworkers and coal miners to find
new jobs during a boom—itstill requires strong and politically costly policy actions in the form of standards or
taxes to close down a power plantduring aboom when energy demand is high. Recessions, such as the
currentone, and the associated “creative destruction”, provides a window opportunity to fosterreforms to
achieve amore resilientand greenerrecovery (Georgieva, 2020).



Figure 1. Energy trends during the pandemic
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Figure 2. Trend in electricity generation
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Figure 3. Summary of main results
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Note: Bars show the impact of growth slowdowns after five years on total electricity use and energy mix estimated using equation

(1)




Figure 4. Impact of recessions on energy use

Primary energy response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Coal response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.




Figure 5. Impact of recessions on energy intensity

Primary energy intensity response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity intensity response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Figure 6. Changes in energy mix after recession

Electricity share from coal response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from renewables response to recession
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Note: Impulse response functions are estimated usinga

sample of 172 countries overthe period 1985-2019using

equation (1). The graph shows the responseand 95 and 90

percent confidence bands. The x-axis shows years afterthe

event, with t=0 is the year of the recession.




Figure 7. Impact of recession on renewables
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90

percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from hydro response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from wind response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from nuclear response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the response and 95 and 90

percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.




Figure 8. Robustness to different types of crisis
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity response to pandemics (cases/population)
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from renewables response to financial crisis
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from renewables response to pandemics (cases/population)
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.




Figure 9. Robustness to other economic shocks

Electricity response to slowdown (peak to trough)

-10

T T T
4 6
Years

o]
IN)
oo

Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity response to slowdown (peak to trough), per capita
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity response to GDP growth
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands to changes in GDP growth
(inverted).
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands to changes in GDP growth
(inverted).




Figure 10. Robustness to lags and leads
Eight lags of dependent and shock
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Electricity share from renewables response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Adding eight leads of shock
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.




Figure 11. Robustness to alternative specifications
Controlling for GDP growth directly
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Note: Impulse response functions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is the year of the
recession.
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Note: Impulse response functions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is the year of the
recession.

Controlling for time dummies

Electricity response to recession
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Note: Impulse response functions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is theyear of the
recession.
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Note: Impulse response functions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is theyear of the
recession.

Controlling for trend trend
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Note: Impulse responsefunctions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is the year of the
recession.
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Note: Impulse response functions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is theyear of the
recession.




Figure 12. Robustness — Additional controls
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Note: Impulse response functions are estimated usinga
sample of 176 countries over the period 1965-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from wind response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with =0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from solar response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from hydro response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.




Figure 13. Robustness — Placebo and parallel trends

Primary energy response to placebo
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Note: Impulse response functions are estimated using a sample of
176 countries over the period 1965-2019 using equation (1). The

graph shows the response and 95 and 90 percent confidencebands.

The x-axis shows years after the placebo event —a shock assigned
randomly acrossthe sample.

Electricity share from renewables response to placebo
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Note: Impulse response functions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The

graph shows the response and 95 and 90 percent confidence bands.

The x-axis shows years after the placebo event — a shock assigned
randomly acrossthe sample.

Electricity share from wind response to placebo
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Note: Impulse responsefunctions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The

graph shows the response and 95 and 90 percent confidence bands.

The x-axis shows years after the placebo event —a shock assigned
randomly acrossthe sample.

Electricity response to placebo
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Note: Impulse response functions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the placebo event —a shock assigned
randomly acrossthe sample.

Electricity share from solar response to placebo
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Note: Impulse response functions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the placebo event — a shock assigned
randomly acrossthe sample.

Electricity share from hydro response to placebo
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Note: Impulse response functions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the placebo event —a shock assigned
randomly acrossthe sample.




Figure 14. Impact by type of economy
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Note: Impulse response functions are estimated overthe
period 1985-2019 using equation (1) for the subsample of
35 advanced economies. The graph shows the response
and 95 and 90 percent confidence bands. The x-axis shows
years afterthe event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated overthe
period 1985-2019 using equation (1) for the subsample of
135 emerging market and developing economies. The graph
shows the response and 95 and 90 percent confidence
bands. The x-axis shows years after the event, with t=0 is
the yearof the recession.

Figure 15: Impact of recession (restricted sample with environmental policy data)
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Note: Impulse response functions are estimated usinga
sample of 33 countries overthe period 1990-2015 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 33 countries overthe period 1990-2015 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.




Figure 16. Impact of environmental protection stringency (EPS)
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Note: Impulse response functions are estimated usinga sample of 33 countries overthe period 1990-2015 using equation (2).
The graph shows the response and 95 and 90 percent confidence bands. The left panel denotes the low “regime” when F(z;.) ~

1 and the right panel denotes the high ‘regime; when (1 — F(z;)) = 1. The x-axis shows years afterthe event, with t=0 is the
year of the recession.




Figure 17. Impact by market vs non-market EPS
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Note: Impulse response functions are estimated usinga sample of 33 countries overthe period 1990-2015 using equation (2).
The graph shows the response and 95 and 90 percent confidence bands. The left panel denotes the low “regime” when F(z;,) ~
1 and the right panel denotes the high ‘regime; when (1 — F(z;)) =~ 1. The x-axis shows years afterthe event, with t=0 is the
yearof the recession.
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Note: Impulse response functions are estimated usinga sample of 33 countries overthe period 1990-2015 usingequation (2).
The graph shows the response and 95 and 90 percent confidence bands. The left panel denotes the low “regime” when F(z;,) ~
1 and the right panel denotes the high ‘regime; when (1 — F(z;)) ~ 1. The x-axis shows years afterthe event, with t=0 is the
year of the recession.




Figure 18. Impact of specific measures: Standards, feed-in-tariffs and trading schemes
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Note: Impulse response functions are estimated using a sample of 131 countries over the period 1985-2016 using equation (2). The graph shows the response and 95 and
90 percent confidence bands. The left panel denotes the low “regime” when F(z,,) ~ 1 and the right panel denotes the high "regime; when (1 — F(z,,)) ~ 1. The x-axis
shows years after the event, with t=0 is the year of the recession.

Low Feed-in tariffs, Electricity share from renewables High Feed-in tariffs, Electricity share from renewables
o o
w w A
O 1~—m———— I o A
QA QA
0 2 4 6 8 0 2 4 6 8
Years Years

Note: Impulse response functions are estimated using a sample of 131 countries over the period 1985-2016 using equation (2). The graph shows the response and 95 and
90 percent confidence bands. The left panel denotes the low “regime” when F(z;,) ~ 1 and the right panel denotes the high “regime; when (1 — F(z,,)) = 1. The x-axis
shows years after the event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated using a sample of 131 countries over the period 1985-2016 using equation (2). The graph shows the response and 95 and
90 percent confidence bands. The left panel denotes the low “regime” when F(z,,) ~ 1 and the right panel denotes the high “regime; when (1 — F(z,,)) ~ 1. The x-axis
shows years after the event, with t=0 is the year of the recession.




Table 1. Electricity share from renewables after recession

(1) 2) @) (4) (5) (6) (7) @) )
VARIABLES 1year 5years 8 years 1year 5years 8 years 1year 5years 8 years
Recession 0.0138* 0.0136* 0.0174*** 0.0147* 0.0153* 0.0212%** 0.0145* 0.0149* 0.0165***
(0.00606) (0.00669) (0.00530) (0.00630) (0.00679) (0.00551) (0.00584) (0.00677) (0.00551)
Lag 1 0.00321 0.00675 0.00463 0.00275 0.00774 0.00833 0.00258 0.00556 0.00464
(0.00275) (0.00546) (0.00383) (0.00270) (0.00536) (0.00503) (0.00298) (0.00599) (0.00366)
Lag?2 0.00442 0.00741* 0.00466 0.00474 0.00786* 0.00716 0.00462 0.00803* 0.00614
(0.00445) (0.00402) (0.00775) (0.00459) (0.00386) (0.00902) (0.00447) (0.00426) (0.00742)
Renewable share (Lag
1) 0.436*** 0.365*** 0.261 0.464*** 0.445** 0.339* 0.441** 0.365*** 0.251
(0.103) (0.113) (0.180) (0.103) (0.125) (0.195) (0.105) (0.113) (0.177)
Lag 2 0.393*** 0.427%** 0.362 0.407*** 0.448*** 0.385 0.385%** 0.402%** 0.344
(0.0848) (0.128) (0.232) (0.0879) (0.143) (0.256) (0.0829) (0.122) (0.225)
Overal EPS (Lag 1) 0.00290 0.0277** 0.0485***
(0.00449) (0.00569) (0.00982)
Lag 2 0.0153*** 0.0174%** 0.0124*
(0.00538) (0.00551) (0.00660)
Market EPS (Lag 1) 0.00507** 0.0239*** 0.0378***
(0.00242) (0.00635) (0.00837)
Lag?2 0.0120*** 0.0176** 0.0164**
(0.00295) (0.00651) (0.00575)
Non-market EPS (Lag 1) 0.00427 0.0207*** 0.0343***
(0.00423) (0.00483) (0.00625)
Lag?2 0.00957** 0.0148*** 0.0141*
(0.00460) (0.00447) (0.00387)
Constant 0.0177 0.00345 0.0380 0.0178 0.00615 0.0498 0.0182 0.00719 0.0401
(0.0203) (0.0487) (0.0814) (0.02186) (0.0535) (0.0883) (0.0196) (0.0475) (0.0799)
Observations 708 692 627 708 692 627 714 698 633
R-squared 0.609 0.601 0.500 0.594 0.540 0.407 0.603 0.587 0.489
Number of countries 33 33 33 33 33 33 33 33 33

Dependentvariableis the share ofrenewables in electricity generation. Robust standard errors clustered atthe country level. *** p<0.01, ** p<0.05, * p<0.1



Annex Figure 1. Impact of recessions on growth in energy use

Primary energy growth response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Oil growth response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Coal growth response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity growth response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.




Annex Figure 2. GDP growth and level after recession

GDP growth response to recession
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Note: Impulse response functions are estimated usinga
sample of 180 countries overthe period 1982-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

GDP response to recession
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Note: Impulse response functions are estimated usinga
sample of 180 countries overthe period 1982-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.




Annex Figure 3. Changes in level of renewables after recession

Electricity from renewables response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the

event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Electricity from solar response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the

event, with t=0 is the year of the recession.

Electricity from hydro response to recession

10
|

-10

0 2 4 6 8
Years

Note: Impulse response functions are estimated usinga

sample of 172 countries over the period 1985-2019 using

equation (1). The graph shows the responseand 95 and 90

percent confidence bands. The x-axis shows years afterthe

event, with t=0 is the year of the recession.




Annex Figure 4. Energy intensity after recession

Electricity from coal intensity response to recession Electricity from renewables intensity response to recession
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Note: Impulse response functions are estimated usinga Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90 equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the percent confidence bands. The x-axis shows years after the

event, with t=0 is the year of the recession. event, with t=0 is the year of the recession.




Annex Figure 5. Capacity utilization and investment during recessions

Electricity capacity utilization in US
(in percentage, shading represents recession)
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Annex Figure 6. Impact of financial crisis

Primary energy response to financial crisis
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from coal response to financial crisis
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Electricity share from wind response to financial crisis
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Oil response to financial crisis
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Note: Impulse response functions are estimated usinga
sample of 176 countries over the period 1965-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from solar response to financial crisis
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from hydro response to financial crisis
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.




Annex Figure 7. Impact of pandemics (cases/population)

Primary energy response to pandemics (cases/population)
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from coal response to pandemics (cases/population)
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Electricity share from wind response to pandemics (cases/population)
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Oil response to pandemics (cases/population)
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Note: Impulse response functions are estimated usinga
sample of 176 countries over the period 1965-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from solar response to pandemics (cases/population)
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from hydro response to pandemics (cases/population)
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with =0 is the year of the recession.




Annex Figure 8. Impact of growth slowdown (peak to trough)

Primary energy response to slowdown (peak to trough)
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Electricity share from wind response to slowdown (peak to trough)
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Oil response to slowdown (peak to trough)
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Note: Impulse response functions are estimated usinga
sample of 176 countries over the period 1965-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from solar response to slowdown (peak to trough)
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from hydro response to slowdown (peak to trough)
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with =0 is the year of the recession.




Annex Figure 9. Impact of per capita growth slowdown (peak to trough)

Primary energy response to slowdown (peak to trough), per capita
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from coal response to slowdown (peak to trough), per capita
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Electricity share from wind response to slowdown (peak to trough), per capite
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 176 countries over the period 1965-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from solar response to slowdown (peak to trough), per capite
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.




Annex Figure 10. Impact of GDP growth

Primary energy response to GDP growth
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Note: Impulse response functions are estimated usinga
sample of 176 countries over the period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands to changes in GDP growth
(inverted).

Electricity share from coal response to GDP growth
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands to changes in GDP growth
(inverted).

Electricity share from wind response to GDP growth
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands to changes in GDP growth
(inverted).

Oil response to GDP growth
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands to changes in GDP growth
(inverted).

Electricity share from solar response to GDP growth
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands to changes in GDP growth
(inverted).

Electricity share from hydro response to GDP growth
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands to changes in GDP growth
(inverted).




Annex Figure 11. Controlling for GDP growth directly (additional results)

Primary energy response to recession
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Note: Impulse responsefunctions are estimated using a sample of
176 countries over the period 1965-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is theyear of the
recession.

Electricity share from coal response to recession
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Note: Impulse responsefunctions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is theyear of the
recession.

Electricity share from wind response to recession
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Note: Impulse responsefunctions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidencebands.
The x-axis shows years after the event, with t=0 is theyear of the
recession.

Qil response to recession
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Note: Impulse responsefunctions are estimated using a sample of
176 countries over the period 1965-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is theyear of the
recession.

Electricity share from solar response to recession
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Note: Impulse responsefunctions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidencebands.
The x-axis shows years after the event, with t=0 is theyear of the
recession.

Electricity share from hydro response to recession
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Note: Impulse responsefunctions are estimated using a sample of
172 countries over the period 1985-2019 using equation (1). The
graph shows the response and 95 and 90 percent confidence bands.
The x-axis shows years after the event, with t=0 is the year of the
recession.




Annex Figure 12. Time dummies (additional results)

Primary energy response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with t=0 is the year of the recession.

Electricity share from wind response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Qil response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries over the period 1965-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from solar response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from hydro response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.




Annex Figure 13. Time trends (additional results)

Primary energy response to recession
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Note: Impulse response functions are estimated usinga
sample of 176 countries overthe period 1965-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years after the
event, with =0 is the year of the recession.
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Note: Impulse response functions are estimated usinga
sample of 176 countries over the period 1965-2019 using
equation (1). The graph shows the response and 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with t=0 is the year of the recession.

Electricity share from solar response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries over the period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with =0 is the year of the recession.

Electricity share from hydro response to recession
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Note: Impulse response functions are estimated usinga
sample of 172 countries overthe period 1985-2019 using
equation (1). The graph shows the responseand 95 and 90
percent confidence bands. The x-axis shows years afterthe
event, with =0 is the year of the recession.
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