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1 Introduction

Classical mechanism-design theory identifies the holding of private information by economic

agents as a fundamental constraint on the allocations of resources (Hurwicz (1973)). How

agents communicate their private information then becomes crucial for determining the set

of allocations that can be implemented. In pure incomplete-information environments, in

which all payoff-relevant decisions are taken by a single uninformed principal, one can with

no loss of generality restrict all private communication to be one-sided, from the agents to the

principal (Myerson (1979)). Indeed, in that case, the principal need only post a mechanism

selecting a (possibly random) decision for every profile of messages she may receive from

the agents—what we hereafter refer to as a standard mechanism. Communication from the

principal to the agents is then limited to the public announcement of such a mechanism;

private communication from the principal to the agents is redundant, as it has no bearing

on the set of allocations that the principal can implement.

In this paper, we argue that these basic insights from classical mechanism-design theory

do not extend to competitive settings. To this end, we consider competing-mechanism games,

in which the implementation of an allocation is no longer in the hands of a single principal,

but of several principals who noncooperatively design mechanisms, each of which controls

a specific dimension of the allocation. In this context, we show that allowing for private

communication from the principals to the agents can significantly affect the set of allocations

that can be supported in an equilibrium of such a game, and this, even if one focuses, as

we do, on pure incomplete-information environments in which agents take no payoff-relevant

decisions—arguably the least favorable scenario for this form of private communication to

have bite. The general lesson from our results is that, in spite of their universal use in the

theoretical and applied literature, the restriction to standard mechanisms is unwarranted in

competitive settings, which calls for a drastic shift in the conceptualization and analysis of

competing-mechanism games.

To put our findings in perspective, it is useful to keep in mind the two theoretical pillars

of the competing-mechanism literature. First, following Epstein and Peters (1999), one can

construct a space of (indirect) universal mechanisms, whereby each agent can communicate

to each principal his endogenous market information—that is, the profile of mechanisms

posted by the other principals—in addition to his exogenous private information. An analog

of the revelation principle holds: any equilibrium outcome of any competing-mechanism game

can be supported as an equilibrium outcome of the game in which the principals can only

post universal mechanisms. This addresses the infinite-regress problem raised by the failure
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of the standard revelation principle in competing-mechanism games (McAfee (1993), Peck

(1997)). Second, following Yamashita (2010), one can obtain an explicit characterization

of equilibrium outcomes and equilibrium payoffs for a large class of competing-mechanism

games. An analog of the folk theorem holds: any incentive-compatible allocation that

yields each principal a payoff above a well-defined min-max-min bound can be supported in

equilibrium by each principal posting a recommendation mechanism, whereby the agents, in

addition to reporting their exogenous private information, are asked to vote on the direct

mechanism the principal should use. This, in turn, enables them to implement punishments

following any deviation by some other principal.

From our perspective, the key point is that these two central results are established

under the assumption that principals are restricted to post standard mechanisms, so that

all private communication is from the agents to the principals. In particular, both universal

and recommendation mechanisms are instances of standard mechanisms. We challenge these

results by considering a richer class of communication protocols in which the principals can

privately disclose information to the agents.

We model private disclosures from the principals to the agents as contractible private

signals sent by each principal to the agents about her decision rule, that is, the mapping

describing how the decision she implements responds to the messages she receives from the

agents. These private signals are sent to the agents before the latter have the opportunity to

send messages to the principals. Each principal fully commits, as parts of the mechanism she

posts, to a distribution of private signals and to a decision rule mapping the private signals

she initially sends to the agents and the messages she ultimately receives from them into a

(possibly random) decision. Notice that the extension of the game we thereby propose has

no bite in the case of a single principal who can control all the dimensions of the allocation,

as private disclosures do not affect the set of allocations that she can implement. In practice,

such private disclosures may take the form of sellers privately informing buyers in an auction

of personalized reservation prices before they submit their bids, manufacturers privately

informing retailers of the amount of output supplied, or policy makers privately informing

voters of the characteristics of a public good implemented as a result of the solicitation of

the voters’ preferences.

Our first result is that equilibria in standard mechanisms need not be robust to private

disclosures. To establish this result, we start from an example of a competing-mechanism

game without private disclosures in which message spaces are sufficiently rich for the two

principals in the game to post recommendation mechanisms. In this game, any feasible
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payoff vector for the principals can be supported in equilibrium.1 However, we show that,

by posting a mechanism that asymmetrically discloses information about her decisions to

the agents, one of the principals can ensure that the agents no longer have the incentives

to carry out the punishment in the other principal’s mechanism that would be necessary

to make the deviation unprofitable. Intuitively, this is because, by privately informing one

of the agents of her decision while keeping the other agents in the dark, this principal is

able to perfectly align her preferences in each state with those of that agent, making the

latter no longer willing to participate in the required punishment. As a result, this principal

can guarantee herself a payoff strictly above her minimum feasible payoff, regardless of

the mechanism posted by the other principal and of the continuation equilibrium played

by the agents. Many equilibrium payoffs that can be supported when principals compete

in standard mechanisms can thus no longer be supported when, in addition to standard

mechanisms, principals can also post mechanisms with private signals. The upshot of this

example is that equilibrium outcomes and payoffs of competing-mechanism games without

private disclosures, and, in particular, those supported by recommendation mechanisms as

in the folk theorem of Yamashita (2010), need not be supported when principals have the

opportunity to engage into private disclosures.

Our second result is that equilibrium outcomes and payoffs of competing-mechanism

games with private disclosures need not be supported in any game in which principals are

restricted to post standard mechanisms, no matter how rich the message spaces are. The

reason is that private disclosures may help the principals correlate their decisions with the

agents’ exogenous private information in a way that cannot be replicated by principals

responding to the agents’ messages when these are solely based on the agents’ common

knowledge of the mechanisms and on their exogenous private information. To establish this

result, we provide an example of a competing-mechanism game with private disclosures in

which the equilibrium correlation between the principals’ decisions and the agents’ exogenous

private information requires that (1) the agents receive information about one principal’s

decision and pass it on to the other principal before the latter finalizes her own decision,

and (2) such information not create common knowledge among the agents about the former

principal’s decision before they communicate with the latter. The example illustrates the

possibility to achieve both (1) and (2) with private disclosures, and the necessity of both

(1) and (2) when it comes to supporting certain outcomes and payoffs, which implies the

impossibility of supporting these with standard mechanisms, no matter how rich the message

1This reflects that, in the example, the min-max-min bound computed over recommendation mechanisms
is equal to the minimum feasible payoff for each principal.
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spaces are. In equilibrium, the requirement (2) is satisfied by letting one principal send

private signals, each of which is completely uninformative of the principal’s decision from

any agent’s perspective, but which together, once they are passed on by the agents to the

other principal in an incentive-compatible way, perfectly reveal the principal’s decision; thus

private disclosures in this example play the role of an encrypted message that one principal

passes on to the other through the agents, while keeping the latter in the dark. The upshot

of this example is that the universal mechanisms of Epstein and Peters (1999) are no longer

canonical when principals can engage into private disclosures.

Taken together, the above results imply that the sets of equilibrium outcomes and payoffs

of competing-mechanism games with and without private disclosures are not nested. These

results challenge the existing modeling approaches and suggest that private disclosures from

the principals to the agents should be central to the theory of competing mechanisms.

Related Literature

This paper contributes to the theoretical foundations of competing-mechanism games. In

a seminal paper, McAfee (1993) points out that the equilibria of such games may require

that agents report all their private information to the principals; that is, their exogenous

information about their private types and their market information about the mechanisms

posted by the other principals. To overcome the resulting infinite-regress problem, Epstein

and Peters (1999) construct a space of universal mechanisms that enables them to establish

an analog of the revelation principle for competing-mechanism games. Subsequent work

provides explicit characterizations of the equilibrium outcomes of such games. Yamashita

(2010) shows that, if there are at least three agents, every deterministic incentive-compatible

allocation yielding each principal a payoff at least equal to a well-defined min-max-min bound

can be supported in equilibrium. Our results indicate that this characterization is sensitive

to the assumption that the principals are restricted to standard mechanisms and does not

extend when principals can engage into private disclosures. Peters and Troncoso-Valverde

(2013), in a different context, argue that any allocation that is incentive-compatible and

individually rational in the sense of Myerson (1979) can be supported in equilibrium provided

there are sufficiently many players—there is no distinction between principals and agents in

their setup. The distinctive feature of their modeling approach is that each player commits

to a mechanism and to irreversibly sending an encrypted message about her type before

observing the mechanisms posted by the other players and privately communicating with

them. Each player, in particular, sends her encrypted type before knowing whether or not she
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will have to participate in punishing some other player, which allows for harsh punishments

that are not incentive-compatible once the mechanisms are observed. By contrast, our

approach fits more squarely into classical mechanism-design theory by maintaining the

standard distinction between principals and agents, as well as the standard informational

assumption that agents do not communicate among themselves and release no information

before observing the mechanisms posted by the principals and the signals they individually

receive from them.

In classical mechanism-design theory (Myerson (1982)), private communication from

a single principal to the agents is key when certain payoff-relevant actions can solely be

taken by the agents, as in moral-hazard settings. Such communication, taking the form

of action recommendations to the agents, has been shown to serve as a correlating device

between the players’ decisions in several problems of economic interest, such as Rahman and

Obara’s (2010) model of partnerships. Perhaps surprisingly, however, private disclosures

have been neglected in competing-mechanism settings even when agents take payoff-relevant

actions, as in Prat and Rustichini’s (2003) model of lobbying. To the best of our knowledge,

the only exception is the recent work of Attar, Campioni, and Piaser (2019), who study

complete-information games in which agents take observable actions. They construct an

example in which equilibrium allocations supported by standard mechanisms fail to be

robust against a deviation by a principal to a mechanism with private recommendations.

In equilibrium, principals correlate their decisions with the agents’ actions in a way that

cannot be achieved without private recommendations.

Whereas private signals from the principals to the agents can still be interpreted, in

the above papers, in light of the traditional role they play in single-principal settings, the

present paper uncovers two novel roles for such signals, making them very different from

action recommendations. Private signals first alleviate the punishments that can be inflicted

on a principal. In our first example, disclosing her decision to one agent while keeping the

other agents in the dark enables one principal to guarantee herself a payoff strictly above her

min-max-min bound by making it impossible for the agents to coordinate on the required

punishment. Private signals also help overcoming the lack of a direct communication channel

between the principals. In our second example, one principal can correlate her decisions with

those of another principal and with the agents’ exogenous private information by sending

signals to the agents, to be passed on to the other principal, in a way that cannot be replicated

with standard mechanisms.

These features of private disclosures in our model appear particularly relevant for the

5



applications of competing-mechanism games favored in the literature, such as competing

auctions (McAfee (1993), Peters (1997), Peters and Severinov (1997), Virág (2010)) or

competitive search (Moen (1997), Eeckhout and Kircher (2010), Wright, Kircher, Julien and

Guerrieri (2021)). In these settings, contracting is typically decentralized—so that principals

may find it difficult to rely on a common mediator to coordinate their decisions—and

direct communication among the principals—either in the form of principals exchanging

cheap-talk messages, or in the form of principals using semi-private correlation devices whose

realizations are observed by the other principals but not by the agents at the time they

communicate with the principals—is unlikely to be feasible.

In our setting, the correlation in the principals’ decisions is generated by the agents

communicating to each principal both their exogenous private information and the private

signals they receive from other principals. The principals cannot directly condition on other

principals’ decisions and/or mechanisms, or directly exchange information among themselves.

Instead, Kalai, Kalai, Lehrer and Samet (2010), Peters and Szentes (2012), Peters (2015),

and Szentes (2015) consider settings in which players can make commitments contingent

on other players’ commitments and communication is unrestricted. The result in our first

example extends to these settings: by deviating to a mechanism with private disclosures, a

principal can guarantee herself a payoff strictly above her min-max-min bound, regardless of

whether or not principals can make commitments contingent on other principals’ decisions

and/or mechanisms. The result in our second example, instead, extends to settings in which

principals can condition their mechanism on other principals’ mechanisms, as in Peters’

(2015) model of reciprocal contracting, but not to settings in which principals can directly

condition their decisions on other principals’ decisions. This is because private disclosures

in this example take the form of an encrypted message passed on from one principal to the

other through the agents in an incentive-compatible way, something which can be achieved

in a more direct way if principals can communicate directly among themselves after receiving

the agents’ messages.

The role of private signals we highlight in this paper hinges on at least two principals

contracting with at least two agents. When there is a single principal, the revelation principle

obviously holds and private disclosures have no bearing on the set of equilibrium outcomes.

Similarly, when multiple principals contract with a single agent, and irrespective of whether

contracting is simultaneous or sequential, the menu theorems of Peters (2001), Martimort

and Stole (2002), and Pavan and Calzolari (2009, 2010) guarantee that any equilibrium

outcome of a game in which the principals compete by offering arbitrary message-contingent
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decision rules can be reproduced in a game in which the principals offer subsets (menus) of

their decisions to the agent and delegate to the latter the choice of the final allocation. Thus

private disclosures play no role in such settings either.

In a collusion setting à la Laffont and Martimort (1997), von Negenborn and Pollrich

(2020) show that a principal can prevent collusion between an agent and a supervisor by

informing these two players asymmetrically of the decision she will take in response to

their reports. In their model, the benefits of private disclosures disappear when the agent

and the supervisor can write contracts conditioning their side payments on the principal’s

final decision. Instead, we focus on settings with competing principals, and show that the

benefits of private disclosures remain even when principals can condition their decisions

on the other principals’ decisions. Most importantly, we establish that private disclosures

undermine folk-theorem results and the construction of universal mechanisms established in

the competing-mechanism literature.

The paper is organized as follows. Section 2 introduces a general model of competing

mechanisms under incomplete information. Sections 3 and 4 present the results. Section

5 discusses the different roles of private disclosures, and the robustness of the results to

alternative contracting assumptions and to the availability of public correlating devices.

Section 6 concludes.

2 The Model

We consider a pure incomplete-information setting in which several principals, indexed by

j = 1, . . . , J , contract with several agents, indexed by i = 1, . . . , I. As anticipated in the

introduction, our results crucially hinge on I ≥ 2 and J ≥ 2.

Information Every agent i (he) possesses some exogenous private information summarized

by his type ωi, which belongs to some finite set Ωi. Thus the set of exogenous states of the

world ω ≡ (ω1, ..., ωI) is Ω ≡ Ω1 × . . . × ΩI . Principals and agents commonly believe that

the state ω is drawn from Ω according to the distribution P.

Decisions and Payoffs Every principal j (she) takes a decision xj in some finite set Xj.

We let vj : X × Ω → R and ui : X × Ω → R be the payoff functions of principal j and of

agent i, respectively, where X ≡ X1 × . . . × XJ is the set of possible profiles of decisions

for the principals. Agents take no payoff-relevant decisions. An allocation is a function

z : Ω → ∆(X) assigning a lottery over the set X to every state of the world. The outcome
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induced by an allocation z is the restriction of z to the set of states occurring with positive

probability under P.2

Mechanisms with Signals A principal can engage into private disclosures by posting a

mechanism with signals. Such a mechanism consists, first, of a probability distribution over

the signals that the principal privately sends to the agents, and, second, of a decision rule

that assigns a lottery over her decisions to every profile of signals she sends to the agents

and every profile of messages she receives from them. Formally, a mechanism with signals

for principal j is a pair γj ≡ (σj, φj) such that

1. σj ∈ ∆(Sj) is a Borel probability measure over the profiles of signals sj ≡ (s1
j , . . . , s

I
j )

that principal j sends to the agents, where Sj ≡ S1
j × . . . × SIj for some collection of

Polish spaces Sij of signals from principal j to every agent i.

2. φj : Sj×Mj → ∆(Xj) is a Borel-measurable function assigning a lottery over principal

j’s decisions to every profile of signals sj ∈ Sj she sends to the agents and every

profile of messages mj ≡ (m1
j , . . . ,m

I
j ) ∈ Mj she receives from them, where Mj ≡

M1
j × . . .×M I

j for some collection of Polish spaces M i
j of messages from every agent i

to principal j.

We assume that cardΩi ≤ cardM i
j for all i and j, so that the language through which

agent i communicates with principal j is rich enough for him to report his type to her. A

(potentially indirect) standard mechanism for principal j is a special case of a mechanism

with signals in which Sij is a singleton for all i; hereafter, we will often simplify the notation

by omitting σj and representing a standard mechanism solely by a Borel-measurable function

φj : Mj → ∆(Xj) describing the principal’s response to the messages she receives from the

agents. Notice that, for each sj ∈ Sj, φj(sj, ·) : Mj → ∆(Xj) is a standard mechanism.

The private signal sij agent i receives from principal j thus privately informs agent i of how

the decision implemented by principal j responds to the messages she receives from the

agents; that is, sji is a private disclosure from principal j to agent i about the mechanism

φj(sj, ·). The requirement that signal and message spaces be Polish entails no loss of

generality; in particular, the universal standard mechanisms of Epstein and Peters (1999)

involve uncountable Polish message spaces.

Admissibility A general requirement for defining expected payoffs in the game to be

described below is that, for each j, the evaluation mapping (φj, sj,mj) 7→ φj(sj,mj) be

2The distinction between an allocation and an outcome is relevant when the agents’ types are correlated.
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measurable. To do so, we must define a measurable structure over the space of admissible

functions φj. If Sj and Mj are countable, we can take this space to be ∆(Xj)
Sj×Mj , endowed

with the product Borel σ-field. If Sj or Mj are uncountable, however, there is no measurable

structure over the space of all Borel-measurable functions φj : Sj ×Mj → ∆(Xj) such that

the evaluation mapping for principal j is measurable (Aumann (1961)); in that case, there

is no choice but to restrict the space of admissible functions φj. Admissibility can be shown

to coincide with the requirement that this space be of bounded Borel class (Aumann (1961),

Rao (1971)), which still allows for a rich class of mechanisms for our analysis. We hereafter

fix an admissible space Φj, endowed with a σ-field Fj, so that Γj ≡ ∆(Sj)×Φj is the space

of admissible mechanisms for principal j, endowed with the product σ-field Gj generated

by the Borel subsets of ∆(Sj) and the elements of Fj. When attention is restricted to

standard mechanisms, the set of admissible mechanisms is simply denoted by Φj, with the

understanding that signal spaces are singletons.

Timing and Strategies The competing-mechanism game GSM with private disclosures

unfolds in four stages:

1. the principals simultaneously post mechanisms, observed by all agents;

2. the principals’ mechanisms send private signals to the agents;

3. after observing their types, the agents simultaneously send messages to the principals;

4. the principals’ decisions are implemented and all payoffs accrue.

A mixed strategy for principal j is a probability measure µj ∈ ∆(Γj) over Gj. A strategy

for agent i is a measurable function λi : Γ× Si × Ωi → ∆(M i) that assigns to every profile

of mechanisms γ ≡ (γ1, ..., γJ) ∈ Γ ≡ Γ1 × . . . × ΓJ that the principals may post, every

profile of signals si ≡ (si1, ..., s
i
J) ∈ Si ≡ Si1 × . . . × SiJ that agent i may receive, and

every type ωi ∈ Ωi of agent i a Borel probability measure over the profiles of messages

mi ≡ (mi
1, ...,m

i
J) ∈M i ≡M i

1× . . .×M i
J sent by agent i, where Γ×Si×M i is endowed with

the appropriate product σ-field. The allocation zµ,λ : Ω → ∆(X) induced by the strategies

(µ, λ) ≡ (µ1, . . . , µJ , λ
1, . . . , λI) is then defined by

zµ,λ(x |ω) ≡
∫

Γ

∫
S

∫
M

J∏
j=1

φj(sj,mj)(xj)
I⊗
i=1

λi(dmi |γ, si, ωi)
J⊗
j=1

σj(dsj)
J⊗
j=1

µj(dγj)

for all (ω, x) ∈ Ω×X, where S ≡ S1 × . . .× SJ and M ≡M1 × . . .×MJ . For every profile

of mechanisms γ, a behavior strategy for agent i in the subgame γ played by the agents is a
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Borel-measurable function βi : Si×Ωi → ∆(M i) assigning a Borel probability measure over

the profile of messages mi ∈M i she sends to the principals to every profile of signals si ∈ Si

she may receive and to every realization ωi ∈ Ωi of her type. We let zγ,β be the allocation

induced by the profile of behavior strategies β ≡ (β1, . . . , βI) in the subgame γ; the latter

is defined in the same way as zµ,λ, except that γ is fixed and λi(· | γ, si, ωi) is replaced by

βi(· |si, ωi) for all i. We denote by λi(γ) the behavior strategy induced by the strategy λi in

the subgame γ.

A degenerate case of the game GSM arises when Sij is a singleton for all i and j, so that

principals cannot engage into private disclosures and can only post standard mechanisms. To

distinguish this situation, we denote by GM the corresponding competing-mechanism game

without private disclosures; the games studied by Epstein and Peters (1999) and Yamashita

(2010) are prominent examples.

Equilibrium In line with the standard practice of the common-agency literature (Peters

(2001), Martimort and Stole (2002)) and the competing-mechanism literature (Epstein and

Peters (1999), Yamashita (2010), Peters (2014) and Szentes (2015)), we will assume that

the agents treat the mechanisms posted by the principals as given. This means that we

can identify any subgame γ ≡ (γ1, . . . , γJ) ∈ Γ of GSM with a Bayesian game played by

the agents, with type space Si × Ωi and action space M i for every agent i, and in which

the agents’ beliefs are pinned down by the prior P and the signal distributions (σ1, . . . , σJ)

to which the principals are committed through the mechanisms they post in γ, whether or

not γ is reached on the equilibrium path. The strategy profile (µ, λ) is a perfect Bayesian

equilibrium (PBE) of GSM whenever

1. for each γ ∈ Γ, (λ1(γ), . . . , λI(γ)) is a Bayes–Nash equilibrium (BNE) of the subgame

γ played by the agents;

2. given the continuation equilibrium strategies λ, µ is a Nash equilibrium of the game

played by the principals.

An allocation z is incentive-compatible if, for all i and ωi ∈ Ωi,

ωi ∈ arg max
ω̂i∈Ωi

∑
ω−i∈Ω−i

∑
x∈X

P[ω−i |ωi]z(x | ω̂i, ω−i)ui(x, ωi, ω−i).

It follows from the definition of a BNE in any subgame played by the agents that any

allocation zµ,λ supported by a PBE (µ, λ) of GSM is incentive-compatible; otherwise, some

type ωi of some agent i would be strictly better off mimicking the strategy λi(· | ·, ·, ω̂i)
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of some other type ω̂i—this is an instance of the revelation principle (Myerson (1982)).

This observation implies that, when there is a single principal, any allocation that can be

implemented by a mechanism with signals can also be implemented via a direct revelation

mechanism; as agents take no payoff-relevant actions, such direct revelation mechanisms

involve no private disclosures from the principal to the agents. As we show below, the

situation is markedly different when several principals contract with several agents.

3 A Challenge to Folk Theorems

In this section, we address the question of whether equilibrium outcomes and payoffs of

competing-mechanism games without private disclosures, in which principals are restricted

to posting standard mechanisms, yet with potentially rich message spaces, are robust to the

possibility for the principals to post mechanisms with signals. This question is especially

relevant in light of the fact that, as shown by Yamashita (2010), such games typically lend

themselves to folk-theorem-types of results. Notice, for future reference, that similar results

are also pervasive in the literature on contractible contracts and reciprocal contracting; see,

for instance, Kalai, Kalai, Lehrer, and Samet (2010), Peters and Szentes (2012), Peters

(2015), and Szentes (2015).

The construction of Yamashita (2010), which we exploit in Section 3.1 below, is based

on the idea that, given rich enough message spaces, each principal’s equilibrium mechanism

can be made sufficiently flexible to punish other principals’ potential deviations. This can be

achieved by enabling the agents to recommend to every principal j a (deterministic) direct

mechanism dj : Ω→ Xj selecting a decision for any profile of reported types she may receive

from them. Specifically, consider a competing-mechanism game without private disclosures

in which every message space M i
j is sufficiently rich to enable agent i to recommend any

direct mechanism to principal j and to make a report about his type; that is, letting Dj

be the finite set of all such direct mechanisms, Dj × Ωi ⊂ M i
j for all i and j. Accordingly,

a recommendation mechanism φrj for principal j stipulates that, if every agent i sends a

message mi
j ≡ (dij, ω

i) ∈ Dj × Ωi to principal j, then

φrj(m
1
j , . . . ,m

I
j ) ≡

{
dj(ω

1, . . . , ωI) if card{i : dij = dj} ≥ I − 1
xj otherwise

, (1)

where xj is some fixed decision in Xj; if, instead, some agent i sends a message mi
j 6∈ Dj×Ωi

to principal j, then φrj treats this message as if it coincided with some fixed element (dj, ω
i
j)

of Dj × Ωi, once again applying rule (1). Intuitively, recommendation mechanisms provide

a flexible system of punishments against other principals’ potential deviations that can be

11



used to support many equilibrium allocations. Indeed, Yamashita (2010) establishes the

following folk theorem: if I ≥ 3, then every deterministic incentive-compatible allocation

yielding each principal a payoff at least equal to a well-defined min-max-min payoff bound

can be supported in equilibrium.3

We now provide an example showing that the possibility for principals to use private

disclosures undermines this characterization result. In this example, a folk theorem holds

for any competing-mechanism game without private disclosures but with rich enough message

spaces; however, a continuum of equilibrium payoff vectors of any such game can no longer be

supported when principals can post mechanisms with signals. This shows that equilibrium

outcomes and payoffs supported by standard mechanisms need not be robust to private

disclosures.

Example 1 Let J ≡ 2 and I ≡ 3. We denote the principals by P1 and P2, and the agents

by A1, A2, and A3. The decision sets are X1 ≡ {x11, x12} for P1 and X2 ≡ {x21, x22} for

P2. A1 and A2 can each be of two types, with Ω1 = Ω2 ≡ {ωL, ωH}, whereas A3 can only

be of a single type, which we omit from the notation for the sake of clarity. A1’s and A2’s

types are perfectly correlated: only the states (ωL, ωL) and (ωH , ωH) can occur with positive

probability under P.

The players’ payoffs are represented in Tables 1 and 2 below, in which the first payoff

is that of P2 and the last two payoffs are those of A1 and A2, respectively. P1’s and A3’s

payoffs are constant over X × Ω and hence play no role in the analysis.

x21 x22

x11 5, 8, 8 5, 1, 1
x12 6, 4.5, 4.5 6, 4.5, 4.5

Table 1: Payoffs in state (ωL, ωL).

x21 x22

x11 6, 4.5, 4.5 6, 4.5, 4.5
x12 5, 1, 1 5, 8, 8

Table 2: Payoffs in state (ωH , ωH).

3As pointed out by Peters (2014), however, these bounds typically depend on the message spaces M i
j . The

requirement that there be at least three agents reflects that, according to (1), near unanimity unequivocally
pins down a direct mechanism for each principal posting a recommendation mechanism. Relatedly, Attar,
Campioni, Mariotti, and Piaser (2021) show that this and related folk theorems crucially hinge on each agent
participating and communicating with each principal, regardless of the profile of posted mechanisms.
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3.1 A Folk Theorem in Standard Mechanisms

In the context of this example, let us first consider, as in Yamashita (2010), a general

competing-mechanism game GM
1 without private disclosures, and with message spaces such

that Dj ×Ωi ⊂M i
j for all i and j, so that principals can post recommendation mechanisms.

To guarantee the existence of an equilibrium in every subgame φ ≡ (φ1, φ2) of GM
1 , we

assume that all the message spaces M i
j are finite. Our first result characterizes the set of

equilibrium payoffs for P2 in GM
1 .

Lemma 1 Any payoff for P2 in [5, 6] can be supported in a PBE of GM
1 .

Proof. The proof consists of two steps. Step 1 proves that GM
1 admits a PBE in which

P2 obtains his minimum feasible payoff of 5, which also shows that 5 is P2’s min-max-min

payoff in GM
1 . Step 2 then leverages on the construction in Step 1 to prove that any payoff

for P2 in (5, 6] can also be supported in a PBE of GM
1 , which completes the proof.

Step 1 We first show that the outcome

z(ωL, ωL) ≡ δ(x11,x21), z(ωH , ωH) ≡ δ(x12,x22), (2)

in which P2 obtains her minimum feasible payoff of 5, can be supported in a PBE of GM
1 .4

To establish this result, we first show that, if P1 and P2 post recommendation mechanisms,

then there exists a continuation BNE supporting the outcome (2). We next show that, in

every subgame in which P1 posts her equilibrium recommendation mechanism, there exists a

continuation BNE in which P2 obtains a payoff of 5. The result then follows from these two

properties along with the fact that P1 has no profitable deviation as her payoff is constant

over X × Ω.

On Path Suppose that both P1 and P2 post recommendation mechanisms φr1 and φr2.

We assume that, for each j, ω1
j = ω2

j = ωL, so that, if some agent i = 1, 2 sends a message

mi
j 6∈ Dj × Ωi to principal j, φrj treats this message as if agent i reported to principal j to

be of type ωL. We claim that, in the subgame (φr1, φ
r
2), it is a BNE for the three agents to

recommend the direct mechanisms (d∗1, d
∗
2) defined by

d∗1(ω) ≡
{
x11 if ω = (ωL, ωL)
x12 otherwise

and d∗2(ω) ≡
{
x21 if ω = (ωL, ωL)
x22 otherwise

(3)

for all ω ≡ (ω1, ω2) ∈ Ω1 × Ω2, and for A1 and A2 to report their types truthfully to P1

and P2. To see this, we only need to observe that these strategies implement the outcome

4For any finite set A and for each a ∈ A, δa is the Dirac measure over A assigning probability 1 to a.
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(2), which yields A1 and A2 their maximum feasible payoff of 8 in each state; because A3’s

payoff is constant over X × Ω, these strategies thus form a BNE of the subgame (φr1, φ
r
2).

The claim follows.

Off Path Because P1’s payoff is constant over X × Ω, she has no profitable deviation.

Suppose then that P2 deviates to some arbitrary standard mechanism φ2 : M2 → ∆(X2),

and let p(m2) be the probability that the lottery φ2(m2) assigns to decision x21 when the

agents send the messages m2 ≡ (m1
2,m

2
2,m

3
2) ∈M2 to P2. Now, let

p ≡ max
m2∈M2

p(m2) (4)

and select a message profile m2 ≡ (m1
2,m

2
2,m

3
2) ∈ M2 that achieves the maximum in (4);

similarly, let

p ≡ min
(m1

2,m
2
2)∈M1

2×M2
2

p(m1
2,m

2
2,m

3
2) (5)

and select a message profile (m1
2,m

2
2) ∈M1

2 ×M2
2 for A1 and A2 that, given m3

2, achieves the

minimum in (5). That p, m2, p, and (m1
2,m

2
2) are well-defined for any given φ2 follows from

the fact that M2 is finite. We now prove that there exist BNE strategies for the agents in the

subgame (φr1, φ2) such that P2 obtains a payoff of 5, so that the deviation is not profitable.

We consider two cases in turn.

Case 1: p ≥ 1
2

Suppose first that φ2 is such that p ≥ 1
2
. We claim that the subgame

(φr1, φ2) admits a BNE that satisfies the following properties: (i) all agents recommend the

direct mechanism d∗1 to P1, as if P2 did not deviate; (ii) A1 and A2 truthfully report their

types to P1; (iii) A3 sends message m3
2 to P2; (iv) P2 obtains a payoff of 5. As for (i), the

argument is that unilaterally sending a different recommendation to P1 is of no avail as no

agent is pivotal. As for (iii), sending m3
2 to P2 is optimal for A3 given that his payoff is

constant over X × Ω. Consider then (ii). Suppose first that the state is (ωL, ωL). Because

p ≥ 1
2
, 8p+ (1− p) ≥ 4.5. From Table 1, and by definition of d∗1 and m2, it thus follows that,

if A2 reports ωL to P1 and sends m2
2 to P2, and if A3 sends m3

2 to P2, then A1 best responds

by reporting ωL to P1 and sending m1
2 to P2; notice, in particular, that, because ω1

1 = ωL, if

A1 sends a message m1
1 6∈ D1×Ω1 to P1, then P1 takes the same decision as if A1 truthfully

reported his type to her. The argument for A2 is identical. Suppose next that the state is

(ωH , ωH). If either A1 or A2 truthfully reports his type to P1, then, by definition of d∗1, the

other informed agent A2 or A1 cannot induce P1 to take a decision other than x12. These

properties, along with the finiteness of M2, imply that the subgame (φr1, φ2) admits a BNE
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satisfying (i)–(iii). In this BNE, P1 takes decision x11 in state (ωL, ωL) and decision x12 in

state (ωH , ωH), yielding a payoff of 5 to P2, as required by (iv). The claim follows.

Case 2: p < 1
2

Suppose next that φ2 is such that p < 1
2
. We claim that the subgame

(φr1, φ2) admits a BNE that satisfies the following properties: (i) all agents recommend the

direct mechanism

d1(ω) ≡
{
x12 if ω = (ωH , ωH)
x11 otherwise

(6)

to P1; (ii) A1 and A2 truthfully report their types to P1; (iii) A3 sends message m3
2 to P2;

(iv) P2 obtains a payoff of 5. The arguments for (i) and (iii) are the same as in Case 1.

Consider then (ii). Suppose first that the state is (ωL, ωL). If either A1 or A2 truthfully

reports his type to P1, then, by definition of d1, the other informed agent A2 or A1 cannot

induce P1 to take a decision other than x11. Suppose next that the state is (ωH , ωH). Because

p ≤ p < 1
2
, p + 8(1 − p) > 4.5. From Table 2, and by definition of d1 and (m1

2,m
2
2), it thus

follows that, if A2 reports ωH to P1 and sends m2
2 to P2, and if A3 sends m3

2 to P2, then

A1 best responds by reporting ωH to P1 and sending m1
2 to P2; notice, in particular, that,

because ω1
1 = ωL, if A1 sends a message m1

1 6∈ D1×Ω1 to P1, then P1 takes the same decision

as if A1 misreported his type. The argument for A2 is identical. These properties, along

with the finiteness of M2, imply that the subgame (φr1, φ2) admits a BNE satisfying (i)–(iii).

The argument for (iv) is then the same as in Case 1. The claim follows.

This completes Step 1 of the proof. We refer to the Appendix for Step 2 of the proof.

The result follows. �

The arguments in Step 1 of the proof rely on the same intuition as in Yamashita (2010,

Theorem 1). The possibility for the agents to recommend a different direct mechanism to

P1 for every mechanism posted by P2 allows them to implement punishments contingent

on P2’s deviations. In particular, the argument in Case 2 shows that any deviation by

P2 to a mechanism that implements x21 with a probability strictly less than 1
2

is blocked

by recommending to P1 the direct mechanism d1, which is different from the equilibrium

mechanism d∗1. Observe that, unlike in Yamashita (2010), we allow principals to post

stochastic mechanisms; yet the threat of agents choosing a deterministic direct mechanism

is sufficient to yield P2 her minimum feasible payoff of 5 in equilibrium.

Stochastic mechanisms, however, can be used to support random allocations; see, for

instance, Xiong (2013). Step 2 of the proof in turn shows that this permits one to support

any payoff for P2 in the feasible set [5, 6] in equilibrium. The proof, which is provided in
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the Appendix, only requires adjusting the principals’ behavior on path—off path, letting the

agents coordinate on the mechanisms d∗1 or d1 used in Step 1 suffices to deter P2’s deviations.

To this end, we modify Yamashita’s (2010) definition of a recommendation mechanism to

allow principals to randomize over their decisions on path, while maintaining the assumption

that the agents’ message spaces are finite.

In related work, Peters and Troncoso-Valverde (2013) establish a folk theorem in a

generalized version of Yamashita (2010). In the game they study, any outcome corresponding

to an allocation that is incentive-compatible and individually rational in the sense of Myerson

(1979) can be supported in equilibrium provided there are at least seven players. It is

straightforward to check that the outcome (2) satisfies these conditions, which guarantees

that it can also be supported in equilibrium in their framework.5 Notice finally that, whereas,

in general, a principal’s min-max-min payoff may be sensitive to the richness of the available

message spaces, in our example P1 posting a recommendation mechanism is sufficient to

inflict P2 her minimum feasible payoff of 5, leaving no role for additional messages beyond

those contained in D1 ×Ωi for all i. In other words, that P2’s relevant min-max-min payoff

is equal to 5 is fairly uncontroversial.

3.2 Nonrobustness to Private Disclosures

We now show that many of the equilibrium payoffs characterized in Lemma 1 cannot be

supported when private disclosures are allowed for. Specifically, Lemma 2 below shows that,

in any enlarged game in which principals can post mechanisms with signals, P2 can guarantee

herself a payoff strictly higher than her min-max-min payoff of 5. To this end, we consider

a general competing-mechanism game GSM
1 with private disclosures; this notably includes

the case where Dj × Ωi ⊂ M i
j for all i and j, as in the game GM

1 studied in Section 3.1. To

guarantee that the result is not driven by the possible nonexistence of equilibria, we assume

that all the signal spaces Sij and the message spaces M i
j are finite.6

The proof of Lemma 2 crucially exploits the fact that, by posting a mechanism with

signals, P2 can asymmetrically inform the agents of her decision. Specifically, we construct

a mechanism for P2 such that, when communicating with P1, A1 is perfectly informed of

P2’s decision, while A2 and A3 are kept in the dark by P2. Such an asymmetry in the

information transmitted by P2 to the agents, which is possible only when private disclosures

5The requirement on the number of players can be met by adding additional agents identical to A3.
6As the arguments below reveal, the second part of Lemma 2, which provides a lower bound for P2’s

payoff in GSM
1 , does not hinge on this simplifying assumption, and extends to any infinite game GSM

1 that
admits an equilibrium.
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are allowed for, is precisely what enables P2 to guarantee herself a payoff strictly above

her min-max-min payoff of 5 regardless of the mechanism posted by P1 and of the agents’

continuation equilibrium strategies.

To see this, notice that the only way to keep P2’s payoff down to 5 is for P1 to take decision

x11 in state (ωL, ωL) and decision x12 in state (ωH , ωH). However, by privately informing

A1 of her decision, P2 can exploit the fact that, in state (ωL, ωL), and upon learning that

x2 = x22, A1’s preferences over X1 are perfectly aligned with hers; this guarantees that,

if A1 could influence P1’s decision in state (ωL, ωL), she would induce P1 to take decision

x12 with positive probability, bringing P2’s payoff strictly above 5. Hence, given the other

agents’ messages, A1 must not be able to influence P1’s decision in state (ωL, ωL). A similar

argument implies that, given the other agents’ messages, A1 must not be able to influence

P1’s decision in state (ωH , ωH) either.7 Moreover, because A3 does not observe the state,

his message to P1 must be the same in each state. As a result, A2 must de facto have

full control over P1’s decision. However, when P2 is expected to take decision x21 with

probability σ > 1
2
, A2, without receiving further information from P2, strictly prefers to

induce P1 to take decision x11 in both state. Hence, if she has the possibility to do so, which

we just argued must be the case, she has no incentive to induce the distribution over X1

that inflicts the min-max-min payoff of 5 on P2.

Lemma 2 proves a more general result by characterizing an interval of P2’s equilibrium

payoffs in GM
1 that cannot be supported when private disclosures are allowed for.

Lemma 2 GSM
1 admits a PBE. Moreover, if cardS1

2 ≥ 2, then P2’s payoff in any PBE of

GSM
1 is at least equal to 5 + P [(ωL,ωL)]P [(ωH ,ωH)]

2−P [(ωL,ωL)]
.

Proof. We first show that a PBE exists. We next establish the desired bound on P2’s

equilibrium payoff.

Existence of a PBE Because, for each j, the sets Sj and Mj are finite, the space

Γj ≡ ∆(Sj) × ∆(Xj)
Sj×Mj of mechanisms for principal j in GSM

1 is compact, and every

subgame (γ1, γ2) ∈ Γ1 × Γ2 is finite; moreover, the agents’ information structures and

payoffs are continuous functions of (γ1, γ2). Hence the BNE of the subgame (γ1, γ2) form a

nonempty compact set B∗(γ1, γ2), and the correspondence B∗ : Γ1×Γ2 �
∏3

i=1 ∆(M i)S
i×Ωi

is upper hemicontinuous (Milgrom and Weber (1985, Theorem 2)) and, therefore, admits a

Borel-measurable selection b∗ ≡ (b1∗, b2∗, b3∗) by Kuratowski and Ryll-Nardzewski’s selection

7Otherwise, in state (ωH , ωH), and upon learning that x2 = x21, A1 would induce P1 to take decision
x11 with positive probability, bringing P2’s payoff again strictly above 5.
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theorem (Aliprantis and Border (2006, Theorem 18.13)); the corresponding strategy for every

agent i in GSM
1 is defined by λi∗(mi | γ1, γ2, s

i, ωi) ≡ bi∗(γ1, γ2)(mi | si, ωi). Now, suppose

that P1 posts the mechanism γ∗1 that equiprobably randomizes between decisions x11 and

x12 regardless of the signals P1 sends to the agents and the messages she receives from them.

Then, from Tables 1–2, P2 obtains an expected payoff of 5.5 regardless of the mechanism

she posts. Because P1’s payoff is constant over X × Ω, it follows that, for each γ∗2 ∈ Γ2,

(γ∗1 , γ
∗
2 , λ

1∗, λ2∗) is a PBE of GSM
1 .

A Tighter Payoff Bound for P2 For each σ ∈ (1
2
, 1), we first construct a mechanism

γ2(σ) ∈ Γ2 that guarantees P2 a payoff of 5 + (1−σ)P [(ωL,ωL)]P [(ωH ,ωH)]
1−σP [(ωL,ωL)]

regardless of the

mechanism posted by P1 and of the agents’ continuation equilibrium strategies; that is,

inf
γ1∈Γ1

inf
β∈B∗(γ1,γ2(σ))

∑
ω∈Ω

∑
x∈X

P[ω]zγ1,γ2(σ),β(x |ω)v2(x, ω)

≥ 5 +
(1− σ)P[(ωL, ωL)]P[(ωH , ωH)]

1− σP[(ωL, ωL)]
, (7)

where zγ1,γ2(σ),β(x |ω) is the probability that the decision profile x is implemented when the

agents’ private information is ω, the principals’ mechanisms are (γ1, γ2(σ)), and the agents

play according to β. To see this, suppose without loss of generality that {1, 2} ⊂ S1
2 and

∅ ∈ Si2 for i = 2, 3. Fix then some σ ∈ (1
2
, 1), and let γ2(σ) be the mechanism with signals

for P2 such that

� with probability σ2(1, ∅, ∅) ≡ σ, P2 sends signal s1
2 = 1 to A1 and signals s2

2 = s3
2 = ∅

to A2 and A3 and takes decision x21 regardless of the profile of messages she receives

from the agents;

� with probability σ2(2, ∅, ∅) ≡ 1 − σ, P2 sends signal s1
2 = 2 to A1 and signals s2

2 = s3
2

= ∅ to A2 and A3 and takes decision x22 regardless of the profile of messages she

receives from the agents.

Thus, given the private signals sent by P2, A1 knows exactly P2’s decision, while A2 and A3

remain uninformed. That is, A2 and A3 believe that P2 takes decision x21 with probability

σ and decision x22 with probability 1− σ; yet they know that A1 knows P2’s decision. We

claim that γ2(σ) satisfies (7).

Indeed, suppose, by way of contradiction, that there exists (γ1, β) ∈ Γ1 × B∗(γ1, γ2(σ))

such that, given (γ1, γ2(σ), β), P2’s payoff is 5 + ε, where

0 ≤ ε <
(1− σ)P[(ωL, ωL)]P[(ωH , ωH)]

1− σP[(ωL, ωL)]
. (8)
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Observe that the mechanism γ2(σ) implements decisions in X2 that are independent of any

messages P2 may receive from the agents and, hence, of any signals sent by γ1. Thus the only

role that signals in γ1 could play, given γ2(σ), would be to affect the distribution over P1’s

decisions induced by the agents; but it follows from standard arguments (Myerson (1982))

that messages are enough to this end, and thus that signals are redundant. We can thus

assume that γ1 is a standard mechanism φ1, involving no signals.

We first establish some useful accounting inequalities. Given (φ1, γ2(σ)) and β, the

probability that P1 takes decision x11 in state (ωL, ωL) can be written as

π11(ωL, ωL) ≡ σπ11(ωL, ωL, 1) + (1− σ)π11(ωL, ωL, 2) (9)

where, for each s1
2 ∈ {1, 2},

π11(ωL, ωL, s
1
2) ≡

∑
(m1

1,m
2
1,m

3
1)∈M1

β1(m1
1 |s1

2, ωL)β2(m2
1 |ωL)β3(m3

1)φ1(x11 |m1
1,m

2
1,m

3
1) (10)

is the probability that P1 takes decision x11 in state (ωL, ωL), conditional on P2 sending

signal s1
2 to A1. Similarly, the probability that P1 takes decision x12 in state (ωH , ωH) can

be written as

π12(ωH , ωH) ≡ σπ12(ωH , ωH , 1) + (1− σ)π12(ωH , ωH , 2) (11)

where, for each s1
2 ∈ {1, 2},

π12(ωH , ωH , s
1
2) ≡

∑
(m1

1,m
2
1,m

3
1)∈M1

β1(m1
1 |s1

2, ωH)β2(m2
1 |ωH)β3(m3

1)φ1(x12 |m1
1,m

2
1,m

3
1) (12)

is the probability that P1 takes decision x12 in state (ωH , ωH), conditional on P2 sending

signal s1
2 to A1. By definition of ε, we have

P[(ωL, ωL)][6− π11(ωL, ωL)] + P[(ωH , ωH)][6− π12(ωH , ωH)] = 5 + ε,

or, equivalently,

P[(ωL, ωL)]π11(ωL, ωL) + P[(ωH , ωH)]π12(ωH , ωH) = 1− ε,

which implies

π11(ωL, ωL) ≥ 1− ε

P[(ωL, ωL)]
and π12(ωH , ωH) ≥ 1− ε

P[(ωH , ωH)]
(13)

as both π11(ωL, ωL) and π12(ωH , ωH) are at most equal to 1. Notice that (8) ensures that

the right-hand side of each inequality in (13) is strictly positive, and thus can be interpreted
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as a probability as it is at most equal to 1. Similarly, it follows from (9) and from the first

inequality in (13) that

π11(ωL, ωL, 2) ≥ 1− ε

(1− σ)P[(ωL, ωL)]
. (14)

Again, (8) ensures that the right-hand side of (14) is strictly positive, and thus can be

interpreted as a probability as it is at most equal to 1.

We now come to the bulk of the argument. From Table 1, in state (ωL, ωL), and upon

receiving signal s1
2 = 2 from P2, A1 wants to minimize the probability that P1 takes decision

x11. It follows that, given the reporting strategies β2(· |ωL) and β3 of A2 and A3, any message

that A1 sends with positive probability to P1 in state (ωL, ωL) upon receiving signal s1
2 = 2

from P2 induces P1 to take decision x11 with probability π11(ωL, ωL, 2), and, by (10) and

(14), that, for any message m1
1 ∈M1

1 ,∑
(m2

1,m
3
1)∈M2

1×M3
1

β2(m2
1 |ωL)β3(m3

1)φ1(x11 |m1
1,m

2
1,m

3
1) ≥ 1− ε

(1− σ)P[(ωL, ωL)]
; (15)

otherwise, by (14), A1 could induce P1 to take decision x11 with a probability strictly lower

than π11(ωL, ωL, 2), yielding A1 a strictly higher payoff, a contradiction. Integrating (15)

with respect to the measure σβ1(· |1, ωH) + (1− σ)β1(· |2, ωH) then yields∑
(m1

1,m
2
1,m

3
1)∈M1

[
σβ1(m1

1 |1, ωH) + (1− σ)β1(m1
1 |2, ωH)

]
β2(m2

1 |ωL)β3(m3
1)φ1(x11 |m1

1,m
2
1,m

3
1)

≥ 1− ε

(1− σ)P[(ωL, ωL)]
.

This means that, by deviating to β2(· |ωL) in state (ωH , ωH), A2 can ensure that P1 takes

decision x11 with probability at least 1− ε
(1−σ)P [(ωL,ωL)]

. Because 4.5 > σ+8(1−σ) as σ > 1
2
,

A2 can thus guarantee himself a payoff at least equal to

4.5

{
1− ε

(1− σ)P[(ωL, ωL)]

}
+ [σ + 8(1− σ)]

ε

(1− σ)P[(ωL, ωL)]
. (16)

By contrast, if A2 plays β2(· |ωH) in state (ωH , ωH), as he must do in equilibrium, then, by

the second inequality in (13), he obtains an expected payoff at most equal to

4.5
ε

P[(ωH , ωH)]
+ [σ + 8(1− σ)]

{
1− ε

P[(ωH , ωH)]

}
. (17)

Comparing (16) and (17), and using again the fact that 4.5 > σ + 8(1− σ), we obtain that

this deviation is profitable for A2 for every ε satisfying (8), contradicting the assumption

that β ∈ B∗(φ1, γ2(σ)). Thus γ2(σ) satisfies (7), as claimed.

20



To conclude the proof, observe that, because P2 can, for any σ ∈ (1
2
, 1), guarantee herself

a payoff of 5 + (1−σ)P [(ωL,ωL)]P [(ωH ,ωH)]
1−σP [(ωL,ωL)]

by posting the mechanism γ2(σ), her payoff in any

PBE of GSM
1 must at least be equal to

sup
σ∈( 1

2
,1)

5 +
(1− σ)P[(ωL, ωL)]P[(ωH , ωH)]

1− σP[(ωL, ωL)]
= 5 +

P[(ωL, ωL)]P[(ωH , ωH)]

2−P[(ωL, ωL)]
.

The result follows. �

Lemma 2 constructs a lower bound for P2’s equilibrium payoff that is strictly higher

than her min-max-min payoff. This lower bound is independent of the richness of the signal

spaces Si1 and of the message spaces M i
1 used by P1 in GSM

1 . In particular, replacing all

sums by the appropriate integrals in the proof of Lemma 2 reveals that this bound remains

relevant even if some agent can send infinitely many messages to P1—provided, of course,

an equilibrium still exists.

Because A1’s and A2’s preferences are perfectly aligned and A3’s payoff is constant over

X × Ω, the reader may wonder why P2 would want to inform the agents in an asymmetric

way. The reason is that, if the agents had the same information about P2’s decision, then

they could discipline each other, which would enable them to implement incentive-compatible

punishments for P2 as in Yamashita’s (2010) construction. For example, if all the agents are

perfectly informed of P2’s decision, then there exists a mechanism for P1 and a continuation

equilibrium in the subgame played by the agents that jointly implement the distribution over

X1×Ω that inflict 5 on P2. The possibility for P2 to asymmetrically inform the agents of her

decision is precisely what allows her to prevent the agents from selecting a direct mechanism

that punishes her in case she deviates.

Lemmas 1–2 together imply the following result.

Proposition 1 PBE outcomes of competing-mechanism games without private disclosures

need not be robust to the possibility for principals to post mechanisms with private signals.

In particular, PBE payoff vectors of competing-mechanism games without private disclosures

but with rich message spaces such that Dj ×Ωi ⊂M i
j for all i and j need not be supportable

once principals can engage into private disclosures.

4 A Challenge to Universal Standard Mechanisms

In the previous section, we have shown that equilibrium outcomes of competing-mechanism

games in which principals are restricted to standard mechanisms, yet with potentially rich
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message spaces, need not be robust to the possibility for principals to post mechanisms with

signals. In this section, we address the dual question of whether competing-mechanism games

in which principals can engage into private disclosures may admit equilibria whose outcomes

and payoffs cannot be supported when principals are restricted to standard mechanisms, no

matter how rich the message spaces are.

We provide an example showing that this is indeed the case. In this example, a principal

can use private signals to make the agents’ messages to the other principal depend on

information that correlates with her own decision. In turn, this allows the principals to

correlate their decisions with the agents’ exogenous private information in a way that cannot

be achieved, when private disclosures are not feasible, by letting the principals randomize

over their choices of mechanisms or by letting the agents randomize over the messages they

send to the principals.

Example 2 Let I = J ≡ 2. We denote the principals by P1 and P2, and the agents by

A1 and A2. The decision sets are X1 ≡ {x11, x12, x13, x14} for P1 and X2 ≡ {x21, x22} for

P2. A2 can be of two types, with Ω2 ≡ {ωL, ωH}, whereas A1 can only be of a single type,

which we omit from the notation for the sake of clarity. The states ωL and ωH are commonly

believed to occur with probabilities P[ωL] = 1
4

and P[ωH ] = 3
4
, respectively.

The players’ payoffs are represented in Tables 3 and 4 below, in which the first payoff is

that of P2 and the last two payoffs are those of A1 and A2, respectively; ζ < 0 is an arbitrary

loss for P2. P1’s payoff is constant over X × Ω and hence plays no role in the analysis.

x21 x22

x11 ζ, 4, 1 ζ, 8, 3.5
x12 ζ, 2, 5 ζ, 9, 8
x13 10, 3, 3 ζ, 5.5, 3.5
x14 ζ, 1, 3.5 10, 7.5, 7.5

Table 3: Payoffs in state ωL.

x21 x22

x11 ζ, 1, 6 10, 7.5, 5
x12 10, 3, 9 ζ, 5.5, 6
x13 ζ, 8, 7 ζ, 4.5, 7
x14 ζ, 9, 6 ζ, 3, 9

Table 4: Payoffs in state ωH .
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4.1 An Equilibrium with Private Disclosures

To illustrate the key ideas in the simplest possible manner, we consider a specific competing-

mechanism game GSM
2 with private disclosures in which only P2 can send signals to the

agents, and these signals are binary; that is, we let S1
1 = S2

1 ≡ {∅} and S1
2 = S2

2 ≡ {1, 2}.
Furthermore, we consider the simplest possible message spaces that allow the agents to

report their private information to the principals; that is, we let M i
1 ≡ Ωi×Si2 and M i

2 ≡ Ωi

for all i.8 The following result then holds.

Lemma 3 For α = 2
3
, the outcome

z(ωL) ≡ αδ(x13,x21) + (1− α)δ(x14,x22), (18)

z(ωH) ≡ αδ(x12,x21) + (1− α)δ(x11,x22), (19)

in which P2 obtains her maximum feasible payoff of 10, can be supported in a PBE of GSM
2 .

Proof. Let P2 post the mechanism γ∗2 ≡ (σ∗2, φ
∗
2) such that

σ∗2(s2) ≡


α
2

if s2 = (1, 1)
α
2

if s2 = (2, 2)
1−α

2
if s2 = (1, 2)

1−α
2

if s2 = (2, 1)

and, for each (s2,m2) ∈ S2 ×M2,

φ∗2(s2,m2) ≡
{
δx21 if s2 ∈ {(1, 1), (2, 2)}
δx22 if s2 ∈ {(1, 2), (2, 1)} (20)

irrespective of the messages m2 ∈ M2 received from the agents. A key feature of this

mechanism is that, regardless of the signal he receives from P2, every agent’s posterior

distribution about P2’s decision coincides with his prior distribution; that is, each agent

believes that P2 takes decision x21 with probability α and decision x22 with probability

1−α. For the same reason, each agent believes that the other agent received the same signal

as his with probability α and a different signal with probability 1− α. Thus γ∗2 completely

keeps both agents in the dark.

As for P1, let her post the deterministic mechanism γ∗1 ≡ (δ(∅,∅), φ
∗
1) such that, for each

(m1
1,m

2
1) ∈M1,

φ∗1(∅, ∅,m1) ≡


δx13 if m1 ∈ {(1, ωL, 1), (2, ωL, 2)},
δx14 if m1 ∈ {(1, ωL, 2), (2, ωL, 1)},
δx12 if m1 ∈ {(1, ωH , 1), (2, ωH , 2)},
δx11 if m1 ∈ {(1, ωH , 2), (2, ωH , 1)},

(21)

8As the arguments below reveal, Lemma 3 does not hinge on these simplifying assumptions, and extends
to games with richer signal and message spaces as long as Ωi × Si

2 ⊂M i
1 and Ωi ⊂M i

2 for all i.
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in which, for instance, (1, ωL, 1) stands for m1
1 = 1 and m2

1 = (ωL, 1); that is, A1 reports to

P1 that she received signal s1
2 = 1 from P2, whereas A2 reports that her type is ωL and that

she received signal s2
2 = 1 from P2. Observe from (20)–(21) that the outcome (18)–(19) is

implemented in the subgame (γ∗1 , γ
∗
2) if every agent reports truthfully to P1 his type and the

signal he receives from P2. We now show that, if α = 2
3
, then truthful reporting is consistent

with a BNE of the subgame (γ∗1 , γ
∗
2). The proof consists of two steps.

Step 1 Consider first A1’s incentives, under the belief that A2 is truthful to P1. Because

A1 has only one type, we only need to check A1’s incentives to truthfully report to P1 the

signal he receives from P2.

If A1 truthfully reports his signal to P1, then, regardless of the signal he receives from

P2, his expected payoff is

1

4
[αu1(x13, x21, ωL) + (1− α)u1(x14, x22, ωL)]

+
3

4
[αu1(x12, x21, ωH) + (1− α)u1(x11, x22, ωH)] = 3α + 7.5(1− α). (22)

If, instead, A1 misreports his signal to P1, then, regardless of the signal he receives from P2,

his expected payoff is

1

4
[αu1(x14, x21, ωL) + (1− α)u1(x13, x22, ωL)]

+
3

4
[αu1(x11, x21, ωH) + (1− α)u1(x12, x22, ωH)] = α + 5.5(1− α),

which is strictly less than the value in (22) for all α ∈ [0, 1].

Step 2 Consider next A2’s incentives, under the belief that A1 is truthful to P1. We need

to check A2’s incentives to truthfully report to P1 both his type and the signal he receives

from P2.

Case 1: ω2 = ωL We first consider the behavior of A2 when he is of type ωL. If A2

truthfully reports both his type and his signal to P1, then, regardless of the signal he receives

from P2, his expected payoff is

αu2(x13, x21, ωL) + (1− α)u2(x14, x22, ωL) = 3α + 7.5(1− α). (23)

If, instead, A2 truthfully reports his type but misreports his signal to P1, then, regardless

of the signal he receives from P2, his expected payoff is

αu2(x14, x21, ωL) + (1− α)u2(x13, x22, ωL) = 3.5,
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which is at most equal to the value in (23) if α ≤ 8
9
.

Next, if A2 misreports his type but truthfully reports his signal to P1, then, regardless

of the signal he receives from P2, his expected payoff is

αu2(x12, x21, ωL) + (1− α)u2(x11, x22, ωL) = 5α + 3.5(1− α),

which is at most equal to the value in (23) if α ≤ 2
3
.

Finally, if A2 misreports both his type and his signal to P1, then, regardless of the signal

he receives from P2, his expected payoff is

αu2(x11, x21, ωL) + (1− α)u2(x12, x22, ωL) = α + 8(1− α),

which is at most equal to the value in (23) if α ≥ 1
5
.

Case 2: ω2 = ωH We next consider the behavior of A2 when he is of type ωH . If A2

truthfully reports both his type and his signal to P1, then, regardless of the signal he receives

from P2, his expected payoff is

αu2(x12, x21, ωH) + (1− α)u2(x11, x22, ωH) = 9α + 5(1− α). (24)

If, instead, A2 truthfully reports his type but misreports his signal to P1, then, regardless

of the signal he receives from P2, his expected payoff is

αu2(x11, x21, ωH) + (1− α)u2(x12, x22, ωH) = 6,

which is at most equal to the value in (24) if α ≥ 1
4
.

Next, if A2 misreports his type but truthfully reports his signal to P1, then, regardless

of the signal he receives from P2, his expected payoff is

αu2(x13, x21, ωH) + (1− α)u2(x14, x22, ωH) = 7α + 9(1− α),

which is at most equal to the value in (24) if α ≥ 2
3
.

Finally, if A2 misreports both his type and his signal to P1, then, regardless of the signal

he receives from P2, his expected payoff is

αu2(x14, x21, ωH) + (1− α)u2(x13, x22, ωH) = 6α + 7(1− α),

which is at most equal to the value in (24) if α ≥ 2
5
.

The above analysis implies that it is a BNE for A1 and A2 to truthfully report their

private information to P1 in the subgame (γ∗1 , γ
∗
2) if and only if α = 2

3
. In this continuation

25



equilibrium, P2 obtains her maximal feasible payoff of 10. Because P1’s payoff is constant

over X × Ω, there exists a PBE of GSM
2 in which P1 and P2 post the mechanisms γ∗1 and

γ∗2 , and A1 and A2 play any BNE in any subgame following a deviation by P1 or P2—the

existence of such an equilibrium being guaranteed by the fact that all these subgames are

finite. The result follows. �

Observe for future reference that, in this equilibrium, A1 obtains an expected payoff of

4.5, while A2 obtains an expected payoff of 4.5 if he is of type ωL and an expected payoff of

23
3

if he is of type ωH .

Our equilibrium construction relies on the fact that, although the mechanism with signals

γ∗2 is publicly disclosed to both A1 and A2, A1 and A2 receive different signals from P2.

Specifically, private disclosures by P2 take the form of encryption keys : taken in isolation,

each signal sent by P2 is completely uninformative of her decision, whereas, taken together,

the two signals sent by P2 are perfectly informative of her decision; we will return to this

point in Section 5. Notice in that respect that, if P2 were to inform the agents of her decision,

then, after learning that P2 takes decision x21, A2, when of type ωL, would no longer be

willing to induce P1 to take decision x13. By claiming that his type is ωH , type ωL of A2

can induce P1 to take the decision x12 with certainty, obtaining a payoff of 5 instead of the

payoff of 3 he obtains by being truthful.

Our construction also reveals that, for P2 to obtain her maximum feasible payoff of

10 while maintaining the agents’ incentives, it is essential that both principals randomize

over their decisions but do so in a perfectly correlated manner. Whereas it is technically

feasible to achieve the equilibrium correlation between the principals’ decisions by letting the

agents randomize over the messages they send to the principals, while letting the principals

respond deterministically to the messages they receive from the agents, such a delegation

is not incentive-compatible. It is thus essential that the randomization be carried out by

the principals themselves. The correlation between the principals’ decisions then requires

that some information be passed on from one principal to the other, which, in the absence

of a direct communication channel between the principals, is possible only through private

disclosures. The analysis in Section 4.2 and the discussion in Section 5 will now confirm this

intuition by showing that private signals are indispensable, no matter how rich the message

spaces are.

4.2 Indispensability of Private Signals

We now show that the outcome (18)–(19) for α = 2
3

cannot be supported in any equilibrium of
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any game in which the principals are restricted to posting standard mechanisms, irrespective

of the richness of the message spaces, and, more generally, that the maximal payoff of 10 for

P2 cannot be supported in any equilibrium of any such game. That is, private disclosures

are indispensable to support this outcome and this payoff for P2. To this end, we consider

a general competing-mechanism game GM
2 without private disclosures, and with arbitrary

message spaces M i
j . This general formulation notably allows us to capture the case where

every principal j’s message spaces are large enough—namely, uncountable Polish spaces—to

encode the agents’ information about the mechanism posted by her opponent, as in Epstein

and Peters (1999).

The structure of the argument can be briefly sketched as follows. Suppose, by way of

contradiction, that there exists a distribution over pairs of standard mechanisms and a pair of

continuation equilibrium strategies for the agents such that P2 obtains her maximum feasible

payoff of 10. Then, because the principals’ decisions must be perfectly correlated in both

states, every pair of mechanisms posted by the principals must respond deterministically to

the messages sent by the agents on path. Moreover, because only A2 observes the state, when

the distribution over the principals’ decisions is state-dependent, A2 must weakly prefer the

distribution of messages he is supposed to carry out in each state to the one he is supposed

to carry out in the other state. We show that, for every pair of mechanisms posted by the

principals, this constrains the joint distribution over the principals’ decisions to be the one

in (18)–(19) for α = 2
3
; the proof relies on the possibility for A2 to decorrelate the messages

he sends to the principals by drawing the message he sends to P1 from his continuation

equilibrium strategy in state ωH and by independently drawing the message he sends to P2

from his continuation equilibrium strategy in state ωL. Another way for A2 to decorrelate

his messages to the principals consists in independently drawing twice from his continuation

equilibrium strategy in state ωH , and then using the first and the second of these draws to

determine his messages to P1 and P2, respectively. We show that, for type ωL of A2 to

weakly prefer the distribution over the principals’ decisions he is supposed to induce in state

ωL to that induced by this alternative strategy, the messages that A2 sends in state ωH must

have no influence on the principals’ decisions when combined with those sent with positive

probability by A1. This implies, in turn, that A1 has a profitable deviation, because he

can induce the high-payoff decision profile (x11, x22) in the high-probability state ωH . The

following result then holds.

Lemma 4 There exists no PBE of GM
2 in which P2 obtains her maximum feasible payoff of

10. In particular, there exists no PBE of GM
2 that supports the outcome (18)–(19) for α = 2

3
.
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Proof. The arguments below more generally show that there is no joint probability measure

µ ∈ ∆(Φ1 × Φ2) over F1 ⊗F2 and no equilibrium strategies λ ≡ (λ1, λ2) for the agents that

deliver a payoff of 10 to P2. In particular, we do not require that µ be a product measure.

In other words, we allow the principals to coordinate their choice of a mechanism through

arbitrary correlation devices. The proof is by contradiction, and consists of five steps.

Step 1 Observe first that, with probability 1, µ must select a pair of mechanisms φ ≡
(φ1, φ2) such that, in the subgame φ, the equilibrium behavior strategies (λ1(φ), λ2(φ))

support an outcome of the form

zφ(ωL) ≡ αφLδ(x13,x21) + (1− αφL)δ(x14,x22),

zφ(ωH) ≡ αφHδ(x12,x21) + (1− αφH)δ(x11,x22),

for some (αφL, α
φ
H) ∈ [0, 1] × [0, 1]. Otherwise, with µ-positive probability, P2 would incur

a loss ζ, and his overall payoff would be strictly less than 10, a contradiction. The above

property implies that, for µ-almost every φ and for (λ1(φ), λ2(φ))-almost every message

profile (m1,m2) sent by the agents under the equilibrium behavior strategies (λ1(φ), λ2(φ)),

the lotteries (φ1(m1), φ2(m2)) over the principals’ decisions must be degenerate.

Step 2 We now prove that, for µ-almost every φ, αφL = αφH = 2
3
. Notice first that,

as A1 does not know which state prevails, it must be that, given A1’s state-independent

behavior strategy λ1(φ), the state-dependent outcomes zφ(ωL) and zφ(ωH) are induced by

A2’s state-dependent behavior strategies λ2(φ)(· |ωL) and λ2(φ)(· |ωH). Then, for type ωL

of A2 to induce zφ(ωL) instead of zφ(ωH), it must be that

3αφL + 7.5(1− αφL) ≥ 5αφH + 3.5(1− αφH). (25)

Similarly, for type ωH of A2 to induce zφ(ωH) instead of zφ(ωL), it must be that

9αφH + 5(1− αφH) ≥ 7αφL + 9(1− αφL). (26)

Summing (25)–(26) yields αφL ≤ αφH , and reinserting this inequality in (25)–(26), we obtain

αφL ≤
2

3
≤ αφH . (27)

Now, consider the alternative behavior strategy for A2 obtained from his state-dependent

candidate equilibrium behavior strategies λ2(φ)(· | ωL) and λ2(φ)(· | ωH) by decorrelating

the two principals’ decisions. Formally, this amounts for A2 to independently drawing two

message profiles m2 ≡ (m2
1,m

2
2) and m̂2 ≡ (m̂2

1, m̂
2
2) from λ2(φ)(· | ωH) and λ2(φ)(· | ωL),
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respectively, and then sending m2
1 to P1 and m̂2

2 to P2, thus using the distribution λ2(φ)(· |
ωH) to determine his message to P1 and the distribution λ2(φ)(· | ωL) to determine his

message to P2. Given A1’s behavior strategy λ1(φ), this alternative strategy induces a

distribution Pr over (x11, x12, x21, x22) with the following marginals:

Pr(x11, x21) + Pr(x11, x22) = 1− αφH ,

Pr(x12, x21) + Pr(x12, x22) = αφH ,

Pr(x11, x21) + Pr(x12, x21) = αφL,

Pr(x11, x22) + Pr(x12, x22) = 1− αφL.

It is easy to check that this system has not full rank, and admits a continuum of solutions

indexed by p ≡ Pr(x11, x21), which allows us to write Pr(x12, x21) = αφL − p, Pr(x11, x22) =

1− αφH − p, and Pr(x12, x22) = p+ αφH − α
φ
L. Now, if type ωL of A2 were to follow the same

behavior, thus sending the messages m2
1 and m̂2

2 according to the strategy described above,

he would obtain an expected payoff of

p+ 5(αφL − p) + 3.5(1− αφH − p) + 8(p+ αφH − α
φ
L) = 3.5 + 0.5p+ 4.5αφH − 3αφL.

Because this payoff must at most be equal to his equilibrium payoff of 3αφL + 7.5(1− αφL), it

follows that 4 ≥ 4.5αφH + 1.5αφL. Combining this inequality with (26), we obtain αφL ≥ αφH

and hence αφL = αφH = 2
3

by (27), as desired. As a result, in µ-almost every subgame φ, type

ωL of A2 obtains a payoff of 4.5.

Step 3 Now, fixing a subgame φ such that αφL = αφH = 2
3
, consider the alternative behavior

strategy for A2 obtained by decorrelating the two principals’ decisions, but this time using

only the candidate equilibrium behavior strategy λ2(φ)(· | ωH). Formally, this amounts for

A2 to independently drawing two message profiles m2 ≡ (m2
1,m

2
2) and m̂2 ≡ (m̂2

1, m̂
2
2) from

λ2(φ)(· |ωH) and then sending m2
1 to P1 and m̂2

2 to P2, thus using the first draw to determine

his message to P1 and the second draw to determine his message to P2. Given A1’s behavior

strategy λ1(φ), this alternative strategy induces a distribution P̃r over (x11, x12, x21, x22) with

the same marginals as under the original strategy,

P̃r(x11, x21) + P̃r(x11, x22) =
1

3
,

P̃r(x12, x21) + P̃r(x12, x22) =
2

3
,

P̃r(x11, x21) + P̃r(x12, x21) =
2

3
,

P̃r(x11, x22) + P̃r(x12, x22) =
1

3
.
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It is easy to check that this system too has not full rank, and admits a continuum of solutions

indexed by p ≡ P̃r(x11, x21) = P̃r(x12, x22), which allows us to write P̃r(x11, x22) = 1
3
− p

and P̃r(x12, x21) = 2
3
− p. Now, if type ωL of A2 were to follow the same behavior, thus

sending the messages m2
1 and m̂2

2 according to the strategy described above, he would obtain

an expected payoff of

p+ 5

(
2

3
− p
)

+ 3.5

(
1

3
− p
)

+ 8p = 4.5 + 0.5p.

Because this payoff must at most be equal to his equilibrium payoff of 4.5, it follows that

p = 0. This implies that, for λ2(φ)(· |ωH)⊗ λ2(φ)(· |ωH)-almost every (m2, m̂2), we have

(φ1(m1
1,m

2
1), φ2(m1

2, m̂
2
2)) ∈ {δ(x11,x22), δ(x12,x21)} (28)

for λ1(φ)-almost every m1. But, according to Step 1, for λ2(φ)(· |ωH)⊗ λ2(φ)(· |ωH)-almost

every (m2, m̂2), we have

(φ1(m1
1,m

2
1), φ2(m1

2,m
2
2)) ∈ {δ(x11,x22), δ(x12,x21)},

(φ1(m1
1, m̂

2
1), φ2(m1

2, m̂
2
2)) ∈ {δ(x11,x22), δ(x12,x21)}

for λ1(φ)-almost every m1. Thus (28) implies that for λ2(φ)(· | ωH) ⊗ λ2(φ)(· | ωH)-almost

every (m2, m̂2), we have

(φ1(m1
1,m

2
1), φ2(m1

2,m
2
2)) = (φ1(m1

1, m̂
2
1), φ2(m1

2, m̂
2
2)) (29)

for λ1(φ)-almost every m1. Because φ1 and φ2 are measurable, we can then conclude from

Fubini’s theorem (Aliprantis and Border (2006, Theorem 11.27)) that (29) holds for λ1(φ)⊗
λ2(φ)(· | ωH) ⊗ λ2(φ)(· | ωH)-almost every (m1,m2, m̂2). Applying again Fubini’s theorem,

we obtain that for λ1(φ)-almost every m1, (29) holds for λ2(φ)(· |ωH)⊗ λ2(φ)(· |ωH)-almost

every (m2, m̂2), so that the mapping (m2
1,m

2
2) 7→ (φ1(m1

1,m
2
1), φ2(m1

2,m
2
2)) is constant over

a set of λ2(φ)(· |ωH)-measure 1.

Step 4 We are now ready to complete the proof. The upshot from Step 3 is that A1

can force the decision when the state is ωH . This implies that M1 should include a message

profile allowing A1 to implement δ(x11,x22) regardless of the message sent in equilibrium by

A2. By sending this message, A1 can achieve a payoff of 7.5 when the state is ωH . Thus,

he can guarantee himself an expected payoff of at least 3
4
× 7.5, which is strictly higher than

his equilibrium payoff of 4.5, a contradiction. The result follows. �

It should be noted that the result in Lemma 4 holds no matter how rich the message spaces

are. Hence, it also applies to the Epstein and Peters (1999) class of universal mechanisms,
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which, while they allow the agents to communicate all their market information to the

principals, nonetheless remain standard mechanisms.

Lemmas 3–4 together imply the following result.

Proposition 2 PBE outcomes and PBE payoff vectors of competing-mechanism games with

private disclosures need not be supported in any PBE of any competing-mechanism game

without private disclosures—including, in particular, the game in which principals can post

universal mechanisms—and this, even if the principals or the agents play mixed strategies in

equilibrium.9

This result shows that the universal mechanisms of Epstein and Peters (1999) fail to be

canonical when principals can engage into private disclosures, that is, when they can send

private signals to the agents about their decisions as a way of correlating their decisions with

those of the other principals and with the agents’ exogenous private information. Together

with Proposition 1, Proposition 2 implies that the sets of equilibrium outcomes and payoffs

of competing-mechanism games with and without private disclosures are not nested.

Incidentally, Proposition 2 also implies that the folk theorem of Yamashita (2010) does

not extend to stochastic allocations. Indeed, the allocation (z(ωL), z(ωH)) defined by (18)–

(19) for α = 2
3

is certainly incentive-compatible; moreover, it yields P2 her maximum

feasible payoff of 10, which is certainly at least equal to her min-max-min payoff, as defined

by Yamashita (2010) over recommendation mechanisms. Yet Lemma 4 implies that this

allocation cannot be supported in an equilibrium of GM
2 , even when Dj × Ωi ⊂ M i

j for all i

and j, so that recommendation mechanisms are feasible.

Finally, the proof of Lemma 4 does not make use of the property that the principals

choose their mechanisms independently. The result in Lemma 4 thus carries over to the case

where GM
2 is augmented by arbitrarily rich public randomizing devices that the principals

may use to correlate their choices of mechanisms. On the other hand, the result does hinge

on the principals not having access to private randomizing devices whose realizations are not

known to the agents at the time they send they messages to the principals; we discuss this

issue at length in Section 5.3.

5 Discussion

In this section, we put our results in perspective by discussing the different roles that

private disclosures play in our examples and by examining the consequence for our results

9Epstein and Peters (1999) restrict attention to equilibria in which principals play pure strategies.
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of alternative informational and contracting assumptions.

5.1 Informative versus Uninformative Signals

Each of our examples is designed to illustrate a specific role of private signals; we now discuss

these different roles in turn.

In Example 2, private signals are used by P2 on path to correlate her decisions with P1’s

decisions and the agents’ private information in a way that cannot be achieved in equilibrium

with standard mechanisms. As we show in the proof of Lemma 3, the private signals that

P2 may use to this end need not modify the agents’ beliefs. Instead, they can work as pure

encryption keys: in isolation, each key is completely uninformative of P2’s decision but,

taken together, the keys perfectly reveal it.

By contrast, in Example 1, the main thrust of private signals is the destabilizing role they

play off path in undermining the robustness of equilibria in standard mechanisms. As we

show in the proof of Lemma 2, P2 can guarantee herself a payoff strictly above her minimum

feasible payoff by asymmetrically informing the agents about her decision, changing A1’s

beliefs before A1 has the opportunity to communicate with P1, while keeping A2 and A3

in the dark. In the discussion of Lemma 2, we argued that, if P2 were to perfectly inform

all agents of her decision, or, more generally, of the decisions taken in response to the

agents’ messages—as in a standard mechanism—then it would be possible for P1 to post a

mechanism that would inflict on P2 her minimum feasible payoff. We now show that the

same conclusion is true of any signal structure that keeps all agents in the dark. Formally,

we show that the analog of Lemma 2 is false if P2 is restricted to posting mechanisms in

which private signals take the form of uninformative encryption keys as those used in the

context of Example 2.

To see this, consider the game GSM
1 studied in Lemma 2; moreover, as in Lemma 1,

assume that Dj ×Ωi ⊂M i
j for all i and j, so that recommendation mechanisms are feasible,

and assume that all the message spaces M i
j are finite. We say that a mechanism γ2 ≡ (σ2, φ2)

of P2 has uninformative signals if∑
s−i
2 ∈S

−i
2

σ2(s−i2 |si2)φ2(x2 |si2, s−i2 ,m2) =
∑
s2∈S2

σ2(s2)φ2(x2 |s2,m2) (30)

for all i, si2 ∈ Si2, m2 ∈ M2, and x2 ∈ X2.10 That is, the signals si2 sent by P2 to any given

agent i do not reveal to him anything about P2’s effective decision rule φ2(· | s2, ·). The

10That S2 is a finite set plays no role for this discussion. In particular, Lemma 5 below remains valid if
S2 is an arbitrary Polish space.
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following result then holds.

Lemma 5 In GSM
1 , if P1 posts a recommendation mechanism φr1, then, for every mechanism

γ2 of P2 that has uninformative signals, there exists a BNE of the subgame (φr1, γ2) in which

P2 obtains her minimum feasible payoff of 5.

Proof. Because A3’s payoff is constant over X × Ω and A1’s and A2’s payoff functions are

identical, we can focus on A1’s incentives. Suppose that, in the subgame (φr1, γ2), A2 and

A3 play behavior strategies β2 and β3 that prescribe the same play for any signals s2
2 and s3

2

they may receive from P2, respectively; that is, for each ω2 ∈ Ω2, β2(· |s2
2, ω

2) is independent

of s2
2, and similarly β3(· | s3

2) is independent of s3
2. Then, because every signal A1 receives

from P2 is uninformative, A1 may as well best respond by playing a behavior strategy β1

that prescribes the same play for any signal s1
2 he may receive from P2; that is, for each

ω1 ∈ Ω1, β1(· | s1
2) is independent of s1

2. Because all the message spaces M i
j are finite, this

implies that the subgame (φr1, γ2) admits a BNE in which all agents play behavior strategies

that prescribe the same play for any signals they may receive from P2. According to (30),

any such BNE of the subgame (φr1, γ2) can be straightforwardly turned into a BNE of the

subgame (φr1, φ̂2) in which P1 posts the recommendation mechanism φr1 and P2 posts the

standard mechanism φ̂2 defined by

φ̂2(x2 |m2) ≡
∑
s2∈S2

σ2(s2)φ2(x2 |s2,m2)

for all m2 ∈M2 and x2 ∈ X2. Notice that, by construction, the same outcome is implemented

in either case. Conversely, any BNE of the subgame (φr1, φ̂2) can be straightforwardly turned

into a BNE of the subgame (φr1, γ2) in which all agents play behavior strategies that prescribe

the same play for any signals they may receive from P2, and which implements the same

outcome. To conclude, observe that, as φ̂2 is a standard mechanism, we know from the proof

of Lemma 1 that the subgame (φr1, φ̂2) admits a BNE in which P2 obtains a payoff of 5. The

result follows. �

This last result reflects that, if P1 posts a recommendation mechanism φr1 and P2 posts

a mechanism γ2 with uninformative signals, then there exists a one-to-one correspondence

between the babbling equilibria of the subgame (φr1, γ2), in which the agents ignore the

signals they receive from P2, and the equilibria of the subgame (φr1, φ̂2) in which P2 posts

the standard mechanism φ̂2 obtained by averaging γ2 over the profiles of signals s2. But then,

because, by Lemma 1, P2’s payoff can be kept down to 5 in the latter case, this must also be
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the true in the former case. Notice that there is no tension between this result and Lemma

3, which illustrates the power of mechanisms with uninformative signals in the context of

Example 2; indeed, the key step in the proof of Lemma 3 precisely consists in constructing a

non-babbling equilibrium of the agents’ subgame in which they truthfully report to P1 the

uninformative signals they receive from P2.

However, Lemma 5 points at a potential drawback of mechanisms with uninformative

signals, namely, that they naturally lend themselves to babbling equilibria: if all agents but

one ignore their uninformative signals, then the remaining agent may as well do the same.

This contrasts with the mechanism constructed in the proof of Lemma 2, which, by disclosing

P2’s decision asymmetrically to the agents, allows P2 to guarantee herself more than her

min-max-min payoff regardless of the mechanism posted by P1 and of the continuation

equilibrium played by the agents. The general lesson that Lemma 2 thus illustrates is that,

if a principal deviates and makes an informative private disclosure about her decision rule

to an agent, then the agent cannot simply ignore it; this reasoning, of course, fully exploits

the logic of sequential rationality and the standard assumption that the agents treat the

mechanisms posted by the principals as given.

5.2 Contractible Contracts and Reciprocal Mechanisms

The nonrobustness result in Proposition 1 is established under the assumption that no

principal can directly condition the decisions she takes and/or the mechanism she chooses on

the other principals’ decisions and/or mechanisms. However, the result extends to settings in

which such conditioning is feasible, as in the literature on contractible contracts (Kalai, Kalai,

Lehrer, Samet (2010), Peters and Szentes (2012), Szentes (2015)) and reciprocal mechanisms

(Peters (2015)). To see this, observe that, in Example 1, the only way to inflict on P2 her

minimum feasible payoff of 5 is for P1 to take decision x11 in state (ωL, ωL) and decision x12

in state (ωH , ωH) with probability 1. However, because the state is privately observed by A1

and A2, P1 must ultimately let them determine which decisions to implement in response

to a deviation by P2, were P2 to post a mechanism with signals. Now suppose, for instance,

that, as in the proof of Lemma 2, P2 posts a mechanism whereby she selects a decision at

random and only informs A1 of her decision. Because, when P2 selects decision x22, this

mechanism perfectly aligns P2’s and A1’s preferences in each state, P1’s mechanism must

not be responsive to A1’s messages on pain of moving P2’s payoff away from 5; notice that

this remains true even if P1 can condition the decision she takes and/or the mechanism

she chooses on P2’s decision and/or mechanism. Thus P1 must entirely delegate to A2 the
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task of making her decision contingent on the state. Yet, by construction, A2 does not

know which decision P2 is committed to; moreover, the additional possibility for P1 to, for

instance, condition her decision on P2’s is of little use if P2’s payoff is to be kept down to 5,

as this requirement uniquely pins down P1’s decision in each state. It follows that P1 still

has no way to reward A2 for truthfully reporting the state to her, and, as in the proof of

Lemma 2, that A2 has a profitable deviation. We conclude that, even if P1 can resort to

contractible contracts or post a reciprocal mechanism, it is impossible for her to induce A1

and A2 to carry out the punishments necessary to block P2’s deviation.

In this respect, the case of Proposition 2 is less clear cut. On the one hand, in Example

2, the proof of Lemma 4 goes through unaltered even if each principal can condition her

choice of a mechanism on the other principal’s mechanism—indeed, the argument is valid

for any pair of mechanisms posted by the principals, no matter how this pair is generated.

This implies that Proposition 2 extends to settings in which principals can post reciprocal

mechanisms (Peters (2015)). On the other hand, Lemma 4 does hinge on each principal

being unable to directly condition her decision on the other principal’s decision. Indeed, if

this were possible, then the outcome (18)–(19) for α = 2
3

could trivially be supported even

without private disclosures.

5.3 Additional Randomizing Devices

The constructions in Epstein and Peters (1999) and Yamashita (2010) do not allow for

additional randomizing devices that would directly enable principals and agents to correlate

their choices. We have closely followed these authors in that respect; indeed, the whole point

of Example 2 is to show that such correlation can endogenously arise in equilibrium when

principals can post mechanisms with signals, but not when they can only post standard

mechanisms. It is nevertheless natural to ask to which extent our findings are robust to the

availability of additional randomizing devices.

In Example 1, the destabilizing role of private disclosures remains relevant regardless

of whether and at which stage of the game the principals and the agents have access to

such devices—they may be used to correlate principals’ choices of mechanisms, the messages

sent by the agents to the principals, or the decisions taken by the principals in response to

these messages. To see this, we can focus on the agents’ behavior because, as pointed out

in Section 5.1, the key role of private signals in the game GSM
1 of Example 1 is that they

can be used by P2 to eschew equilibrium outcomes supported by standard mechanisms in

which she obtains her minimum feasible payoff of 5. In that respect, enabling the agents
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to observe the realization of a public randomization device—a sunspot—would not change

the conclusion of Lemma 2 as the mechanism for P2 constructed in the proof guarantees

her a payoff strictly above 5 regardless of the continuation equilibrium played by the agents.

Less obviously, this mechanism is still effective regardless of the mechanism posted by P1

even if the agents’ behavior in the corresponding subgame is coordinated by a mediator who

can first elicit information from the agents and then send them private recommendations.

In line with the discussion in Section 5.2, the point is that, once A1 knows that P2 has

selected decision x22, he has, state-by-state, the same preferences as P2. This means that

the mediator cannot extract from A1 information about the state and P2’s decision and use

that information to keep P2’s payoff down to 5. But then the task of punishing P2 must be

fully delegated to A2, which we know is impossible.

The situation in Example 2 is slightly different. As mentioned in our discussion of

Proposition 2, it is impossible to support the outcome (18)–(19) for α = 2
3

in the game GM
2

even if the principals can correlate their choices of standard mechanisms. Moreover, the

proof of Lemma 4 goes through unaltered even if agents can coordinate their messages by

means of a public randomization device; to see this, we need only notice that, for any pair

of mechanisms posted by P1 and P2, and for any realization of the sunspot that enables the

agents to correlate their messages, A1 and A2 must play an equilibrium in the continuation

game. Thus Proposition 2 extends to settings in which the principals and the agents have

access to rich public randomizing devices whose realizations are observed by all players

before committing to their choices. Things would be different if the principals could use

randomization devices whose realizations are not known to the agents at the time they send

their messages to the principals. Indeed, because the only role of private disclosures in the

example is to pass on information from one principal to the other without changing the

agents’ beliefs, such private disclosures can be dispensed with if the principals have access

to private correlation devices—that is, to devices whose realization is determined after the

agents have sent their messages but before the principals have selected their payoff-relevant

decisions. The value of the example is rather to show that, in the setting that has been at the

center stage of the literature—in which direct communication between the principals is not

feasible, private randomizing devices are not available, and principals cannot condition their

decisions on other principals’ decisions—private disclosures have important implications for

the set of equilibrium outcomes and for the validity of the universal revelation principle

established in this setting.
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6 Concluding Remarks

Private disclosures, that is, signals about the decisions implemented in a mechanism sent

by a principal to the agents before they have an opportunity to send messages back to her,

have been ignored in previous work on competing-mechanism games. Our examples show

that private disclosures have important consequences for the equilibrium outcomes of such

games. They have a bearing on the two pillars of the literature, namely, the canonicity

of universal mechanisms (Epstein and Peters (1999)) and the validity of folk theorems

(Yamashita (2010)).

Taken together, our two examples illustrate that private signals in competing-mechanism

games play a fundamentally different role from the one they play in single-principal settings

(Myerson (1982)). In the latter, signals are used to correlate the agents’ behavior when

the agents take payoff-relevant actions that are not under the control of the principal. In

competing-mechanism games, instead, signals are used to asymmetrically inform the agents

of the decisions taken by a principal in response to the messages she receives from them.

Keeping the agents in the dark allows a principal to eschew punishment from the other

principals (Example 1) and to support correlated outcomes and corresponding payoffs that

could not be supported otherwise (Example 2).

An open question is what structure for the signal and message space is fully canonical, in

the sense of (1) enabling one to support all equilibrium allocations of competing-mechanism

games with arbitrarily richer message and signal spaces, and (2) guaranteeing that the

equilibrium outcomes of the canonical game are robust to deviations to mechanisms with

richer message and signal spaces. Identifying a canonical extensive form, a canonical class of

mechanisms, and a set of fully robust equilibrium outcomes for competing-mechanism games

are important next steps for future research.

Finally, we have deliberately framed our examples as abstract games, so as to identify and

illustrate the different roles that private signals can play in competing-mechanism games. It

will be important, in future research, to assess the consequences of private signals in more

structured economic environments.

Appendix

Proof of Lemma 1. We start with a definition. An extended recommendation mechanism

φ̃rj : Mj 7→ ∆(Xj) for principal j implements the same decisions as the recommendation

mechanism φrj in (1), except if at least I − 1 agents send messages mi
j ≡ (d0

j , ω
i) ∈ Dj × Ωi
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to principal j, for some fixed direct mechanism d0
j ∈ Dj, in which case principal j disregards

d0
j and implements a (possibly stochastic) direct mechanism d̃j : Ω→ ∆(Xj); again, if some

agent i sends a message mi
j 6∈ Dj × Ωi to principal j, then φ̃rj treats this message as if it

coincided with some fixed element (dj, ω
i
j) of Dj × Ωi, for some dj 6= d0

j .

Step 2 We now construct a family of PBEs of GM
1 , indexed by P2’s payoff v ∈ (5, 6], in

which P2 posts the same recommendation mechanism φr2 as in Step 1 of the proof and P1

posts an extended recommendation mechanism φ̃r1. Again, because P1’s payoff is constant

over X × Ω, she has no profitable deviation. If P2 deviates to some arbitrary standard

mechanism φ2 : M2 → ∆(X2), then we require that the agents’ strategies implement the

same punishments for P2 as in Step 1 of the proof. We suppose in particular that the direct

mechanism d0
1 differs from the direct mechanisms d∗1 and d1, defined by (3) and (6), which

may be recommended by the agents to P1 following a deviation by P2; recall that these

punishments inflict on P2 her minimum feasible payoff of 5. We consider two cases in turn.

Case 1: v ∈ (5, 5.5] We specify φ̃r1 as follows. First, we assume that ω1
1 = ω2

1 = ωL, so

that, if some agent i = 1, 2 sends a message mi
1 6∈ D1×Ωi to P1, then φ̃r1 treats this message

as if agent i reported to principal j to be of type ωL; recall from Step 1 of the proof that φr2

similarly satisfies ω1
2 = ω2

2 = ωL. Fixing some ξ ∈ [1
2
, 1), we then let

d̃1(ω) ≡
{
x̃ξ1 if ω = (ωL, ωL)

x̃1−ξ
1 otherwise

,

where

x̃ξ1 ≡ ξδx11 + (1− ξ)δx12 and x̃1−ξ
1 ≡ (1− ξ)δx11 + ξδx12 .

We now show that, for each ξ ∈ [1
2
, 1), the subgame (φ̃r1, φ

r
2) admits a BNE in which: (i)

each agent recommends to P1 the direct mechanism d0
1, and recommends to P2 the direct

mechanism d∗2 defined by (3); (ii) A1 and A2 truthfully report their types to P1 and P2.

The corresponding payoff for P2 in the subgame (φ̃r1, φ
r
2) is v = 6 − ξ ∈ (5, 5.5] as ξ varies

in [1
2
, 1), as desired. Because A3’s payoff is constant over X × Ω, we only need to focus on

A1’s and A2’s incentives.

Consider first state (ωL, ωL), and suppose that A2 and A3 recommend d0
1 to P1 and d∗2

to P2, and that A2 truthfully reports his type to P1 and P2. Because A1 is not pivotal,

recommending a different direct mechanism to either principal is of no avail to him; moreover,

because ω1
1 = ω1

2 = ωL, sending a message m1
j 6∈ Dj × Ω1 to any principal j amounts for A1

to truthfully reporting his type to her. We can thus with no loss of generality assume that
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A1 recommends d0
1 to P1 and d∗2 to P2, and we only need to study A1’s reporting decisions.

(1) If A1 truthfully reports his type to P1 and P2, then P1 implements the lottery x̃ξ1, P2

takes decision x21, and A1 obtains a payoff of 8ξ + 4.5(1 − ξ). (2) If A1 truthfully reports

his type to P1 and misreports his type to P2, then P1 implements the lottery x̃ξ1, P2 takes

decision x22, and A1 obtains a payoff of ξ+ 4.5(1− ξ) < 8ξ+ 4.5(1− ξ). (3) If A1 misreports

his type to P1 and truthfully reports his type to P2, then P1 implements the lottery x̃1−ξ
1 ,

P2 takes decision x12, and A1 obtains a payoff of 8(1− ξ) + 4.5ξ ≤ 8ξ + 4.5(1− ξ) as ξ ≥ 1
2
.

(4) Finally, if A1 misreports his type to P1 and P2, then P1 implements the lottery x̃1−ξ
1 ,

P2 takes decision x22, and A1 obtains a payoff of 1 − ξ + 4.5ξ < 8ξ + 4.5(1 − ξ). Thus A1

has no incentive to deviate from his candidate equilibrium strategy in state (ωL, ωL), and

neither has A2 by symmetry.

Consider next state (ωH , ωH), and suppose that A2 and A3 recommend d0
1 to P1 and

d∗2 to P2, and that A2 truthfully reports his type to P1 and P2. Then P1 implements the

lottery x̃1−ξ
1 and P2 takes decision x22 regardless of the reports and/or messages of A1 to

P1 and P2. Thus A1 has no incentive to deviate from his candidate equilibrium strategy in

state (ωH , ωH), and neither has A2 by symmetry. This concludes the discussion of Case 1.

Case 2: v ∈ (5.5, 6] We specify φ̃r1 as follows. First, we assume that ω1
1 = ω2

1 = ωH , so

that, if some agent i = 1, 2 sends a message mi
1 6∈ D1×Ωi to P1, then φ̃r1 treats this message

as if agent i reported to principal j to be of type ωH ; the corresponding property for φr2 is

irrelevant for the following arguments. Fixing some ξ ∈ [1
2
, 1], we then let

d̃1(ω) ≡
{
x̃ξ1 if ω = (ωH , ωH)

x̃1−ξ
1 otherwise

,

where the lotteries x̃ξ1 and x̃1−ξ
1 are defined as in Case 1.

We now show that, for each ξ ∈ (1
2
, 1], the subgame (φ̃r1, φ

r
2) admits a BNE in which: (i)

each agent recommends to P1 the direct mechanism d0
1, and recommends to P2 the direct

mechanism d∗∗2 that selects the decision x21 regardless of A1’s and A2’s reports; (b) A1

and A2 truthfully report their types to P1—because P2’s decision is fixed, the messages

they send to P2 are irrelevant. The corresponding payoff for P2 in the subgame (φ̃r1, φ
r
2) is

v = 5 + ξ ∈ (5.5, 6] as ξ varies in (1
2
, 1], as desired. Because A3’s payoff is constant over

X × Ω, we only need to focus on A1’s and A2’s incentives.

Consider first state (ωH , ωH), and suppose that A2 and A3 recommend d0
1 to P1 and d∗∗2 to

P2, and that A2 truthfully reports his type to P1. Because A1 is not pivotal, recommending

a different direct mechanism to either principal is of no avail to him; moreover, because

ω1
1 = ωH , sending a message m1

1 6∈ D1×Ω1 to P1 amounts for A1 to truthfully reporting his
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type to her. We can thus with no loss of generality assume that A1 recommends d0
1 to P1 and

d∗∗2 to P2, and we only need to study A1’s reporting decisions. (1) If A1 truthfully reports

his type to P1, then P1 implements the lottery x̃ξ1 and A1 obtains a payoff of 4.5ξ + 1− ξ.
(2) If A1 misreports his type to P1, then P1 implements the lottery x̃1−ξ

1 and A1 obtains a

payoff of 4.5(1− ξ) + ξ < 4.5ξ + 1− ξ as ξ > 1
2
. Thus A1 has no incentive to deviate from

his candidate equilibrium strategy in state (ωH , ωH), and neither has A2 by symmetry.

Consider next state (ωL, ωL), and suppose that A2 and A3 recommend d0
1 to P1 and d∗∗2

to P2, and that A2 truthfully reports his type to P1. Then P1 implements the lottery x̃1−ξ
1

regardless of A1’s reports and/or messages to P1. Thus A1 has no incentive to deviate from

his candidate equilibrium strategy in state (ωL, ωL), and neither has A2 by symmetry. This

concludes the discussion of Case 2.

To conclude the proof, observe that, because P1’s payoff is constant over X×Ω, she has no

profitable deviation, and that any deviation by P2 to some arbitrary standard mechanism

φ2 : M2 → ∆(X2) can be punished as in Step 1 of the proof, yielding her her minimum

feasible payoff of 5, so that she has no profitable deviation either. The result follows. �
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