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1 Introduction

Decision-makers routinely solicit advice from experts who have a vested interest in the
decision at hand. Consulting multiple experts may allow a decision-maker to check
the veracity of the advice that he receives by comparing one expert’s recommendation
with another’s. We call this practice cross-verification and study how cross-verification
affects communication.

Naturally, the effectiveness of cross-verification depends on the experts’ information.
If the experts have perfectly correlated information, then inconsistent recommendations
definitively indicate untruthful, self-serving advice. Alternatively, if experts have un-
correlated information, then cross-verification cannot detect misleading advice. Thus,
if the experts strategically acquire information, their choices will affect the scope for
cross-verification. This paper sheds light on this interplay by analyzing a cheap-talk
game, where experts independently acquire information before providing advice to a
decision-maker. More precisely, we study the following game: two experts with iden-
tical preferences, first select statistical experiments that provide information about an
unknown state of the world. The selected experiments are observed by the decision-
maker. The experts privately observe their experiments’ outcomes, and then offer
private reports to the decision-maker. The decision-maker collects all the reports and
chooses an action.

As a benchmark, suppose that an expert could commit to revealing his experiment’s
outcome truthfully. Following Kamenica and Gentzkow (2011), we call the experiment
that this expert would optimally select the expert-optimal experiment. In our model,
however, the experts cannot commit. Yet, we show that there exists an equilibrium,
where both experts choose the expert-optimal experiment and truthfully report the
outcomes of their experiments. In equilibrium, the experts optimally select perfectly
correlated experiments, which enable cross-verification to be most effective. In turn,
cross-verification facilitates truthful communication and allows the experts to receive
their best possible payoff. In other words, cross-verification acts as a commitment
device.

The existence of such an equilibrium relies on three essential properties. First, we
assume that the experts are free to choose arbitrarily correlated statistical experiments
(see Green and Stokey (1978) and Gentzkow and Kamenica (2016, 2017)). In fact in
the equilibrium that we construct, they choose to correlate their experiments’ outcomes
perfectly and thus allow the decision-maker to cross-verify their reports perfectly. Sec-
ond, suppose one expert deviates from reporting the experiment’s outcome truthfully,
while the other is truthful. In this case, the decision-maker detects a deviation as the
two reports are inconsistent. However, the decision-maker cannot deduce the devia-
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tor’s identity. Third, we show that a uniform punishment always exists. There is an
action that punishes the experts for deviating from truthful reporting, irrespective of
the experts’ private information.

The existence of the aforementioned uniform punishment is key to our equilibrium
construction since the decision-maker does not know the deviator’s identity and, there-
fore, cannot condition the punishment on the deviator’s information. Proving the ex-
istence of a uniform punishment is the main technical contribution of the paper. We
stress that the uniform punishment is relative to the expert-optimal experiment. Arbi-
trary experiments do not necessarily admit uniform punishments, and therefore, cross-
verification does not necessarily elicit honest advice when the experts choose arbitrary
experiments.

Our main result, described above, also generalizes to situations where the experts
have non-identical preferences, provided that a uniform punishment continues to exist.
In particular, we show that there is a uniform punishment when the preferences of
the second expert are a convex combination of the preferences of the first expert and
the decision-maker. For example, this is the case in the quadratic utility example of
Crawford and Sobel (1982) when the two experts have like-biases.

Finally, we also study cross-verification from the decision-maker’s perspective. We
show that there is an equilibrium where the decision-maker benefits from cross-verification
if the expert-optimal experiment is informative at some prior belief. The intuition is
as follows: The decision-maker benefits from any additional information, and even the
expert-optimal experiment provides valuable information in many circumstances. If the
expert-optimal experiment does not provide useful information to the decision-maker,
we appropriately modify the expert-optimal experiment. The modified experiment of-
fers valuable information for the decision-maker, and the experts can truthfully com-
municate this information in equilibrium. We also establish this result’s converse: the
decision-maker’s unique equilibrium payoff is equal to his payoff at his prior belief if
the expert-optimal experiment is uninformative at every prior belief. In other words,
the decision-maker only benefits from cross-verification in situations where the experts
also benefit.

Related literature. This paper is related to the literature on cheap talk pioneered
by Crawford and Sobel (1982) and several papers in this literature study communication
with multiple experts. In particular, Battaglini (2002) shows that the decision-maker
can learn a multidimensional state by consulting experts about different dimensions.
Krishna and Morgan (2001a) and Ambrus and Takahashi (2008) are the papers most
closely related to ours. These papers study two-expert cheap-talk games where the
experts have quadratic preferences, perfectly observe the state and simultaneously send
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messages to the decision-maker. Krishna and Morgan (2001a) assume that the state
space is unidimensional and show that there is an equilibrium where the experts truth-
fully reveal the state if the experts’ preferences are identical.1 Ambrus and Takahashi
(2008) study the case where the state is multidimensional and show that there is an
equilibrium where the experts truthfully reveal the state if the experts are biased in
the same direction. Their equilibrium construction is similar to ours and uses cross-
verification to elicit truth-telling: if an expert deviates from truthfully revealing the
state, then the decision-maker chooses a uniform punishment and they show that such
a uniform punishment exists if the experts are biased in the same direction. The survey
by Sobel (2013) also discusses how cross-verification ensures truth-telling in the con-
text of multi-sender cheap-talk games if there is an arbitrarily harsh exogenously-given
punishment.2

Our work differs from these articles in several respects: Foremost, our main result
shows that the experts obtain their commitment payoff. In contrast, the cheap-talk
literature is predominantly interested in full information revelation. In other words,
our emphasis is on the experts’ perspective while the cheap-talk literature focuses on
the decision-maker’s perspective. Second, we assume that the experts choose what kind
of information to acquire, while past works typically assume that the experts perfectly
know the state.3 This is an important distinction since the experts’ information affects
the scope for cross-verification. Third, the literature on cheap talk focuses on agents
with single-peaked preferences and frequently assumes that all agents have quadratic
utility. In contrast, we put no restrictions on the utility functions. With quadratic
utility, the expert-optimal information structure coincides with the decision-maker’s
and entails choosing an experiment that perfectly reveals the state. Therefore, as in
Krishna and Morgan (2001a) and Ambrus and Takahashi (2008), our result also implies
that full information revelation is an equilibrium in this particular case. However, with
other utility specifications, the expert-optimal and decision-maker optimal information
structures need not coincide.

Our paper is also related to the following works that focus on single-expert cheap-
talk games. Lyu (2020) characterizes the equilibrium set in a model where the expert
acquires information before providing advice. Lipnowski (2020) shows that an expert

1In contrast, Krishna and Morgan (2001b) prove that such an equilibrium does not exist if the
experts send messages sequentially.

2Also, see Wolinsky (2002), and Gilligan and Krehbiel (1989) for related work on multi-sender
cheap-talk games.

3Ambrus and Lu (2014) and Mylovanov and Zapechelnyuk (2013) are notable exceptions. Ambrus
and Lu (2014) show that if the state space is large enough, there are equilibrium outcomes of multi-
sender cheap-talk games that are arbitrarily close to full revelation when the senders observe the state
with noise, as the noise converges to zero. Mylovanov and Zapechelnyuk (2013) argue that the receiver
can induce the senders to reveal commonly-known events if the receiver can commit to a decision rule
instead of best replying to his belief as in our paper.
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can obtain his commitment payoff if the expert’s value function is continuous.4 Instead,
we focus on a model with multiple experts and show that the experts receive their
commitment payoff, without making any assumptions on their payoff functions.

Finally, this paper is closely related to the literature on Bayesian persuasion (Ka-
menica and Gentzkow (2011)). A number of articles that include Au and Kawai (2020),
Gentzkow and Kamenica (2016, 2017), Koessler et al. (2018) and Li and Norman (2018,
2020) study persuasion with multiple experts. In all of these papers, the experts can
commit to revealing their information truthfully. In contrast, we assume that the ex-
perts’ recommendations are cheap-talk, i.e., we require sequential rationality at every
stage of the game. Our result shows that the experts can achieve their commitment
payoff even though they cannot commit to revealing their information. For a recent
survey of the literature on Bayesian persuasion, we refer to Kamenica (2019).

2 The Model

We study a cheap-talk game between two experts, labelled 1 and 2, and a decision-
maker. The experts provide information to the decision-maker about a payoff-relevant
state ω ∈ Ω, who then chooses an action a ∈ A. The sets A and Ω are finite. The
experts have identical preferences. An expert’s payoff is u(a, ω) when the decision-maker
chooses action a and the state is ω. (We relax the assumption of identical preferences in
the next section.) The decision-maker’s payoff is v(a, ω). Initially, neither the experts
nor the decision-maker knows the state. The common prior probability that the state
is ω is π◦(ω).

We first provide an informal description of the cheap-talk game. The game has
three stages. In the first stage, the two experts simultaneously choose statistical ex-
periments. The selected experiments are publicly observed. In the second stage, each
expert privately observes his experiment’s outcome and then sends a message to the
decision-maker. In the third stage, the decision-maker observes the experts’ messages
and chooses an action.

We now provide a formal description. To model the choice of statistical experiments,
we follow Gentzkow and Kamenica (2016, 2017). These authors define a statistical
experiment σ as a partition of Ω × [0, 1] into finitely many (Lebesgue) measurable
subsets. A signal s is an element of the partition σ, i.e., a measurable subset of Ω×[0, 1].
The probability of signal s ∈ σ conditional on ω is the (Lebesgue) measure of the set

4The value function describes the expert’s highest expected payoff at a given belief conditional on
the decision-maker choosing a best-reply to that belief. Continuity of the value function is a strong
assumption. E.g., with two states and two actions, it requires the expert to be indifferent between the
two actions whenever the decision-maker is.
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{x ∈ [0, 1] : (ω, x) ∈ s}.5 Throughout, we omit the dependence on the experiment σ,
and write λs for the probability of the signal s and πs for the posterior probability. We
denote the set of experiments that the experts can choose from by Σ.

In the first stage, expert i thus chooses an experiment σi ∈ Σ. The chosen exper-
iments (σ1, σ2) are publicly observed. In the second stage, expert i privately observes
the realization si ∈ σi and sends a private message mi ∈Mi to the decision-maker. We
assume that the sets of messages are rich enough to communicate any signal realiza-
tions. Finally, the decision-maker observes the messages (m1,m2) (but not the realized
signals (s1, s2)) and chooses an action a. We denote Γ(π◦, u, v) the cheap-talk game.
Note that different extensive-form games are consistent with our description. Through-
out, we assume that the state (ω, x) ∈ Ω × [0, 1] is chosen by Nature according to the
probability distribution π◦ × U [0, 1] after the experts have chosen their experiments,
where U [0, 1] denotes the uniform distribution on the unit interval. Thus, we have a
proper sub-game after each choice of statistical experiments (σ1, σ2).

A strategy for expert i is a pair (σi, τi), where σi ∈ Σ and τi(σi, σj, si) ∈ ∆(Mi) for
all (σi, σj, si) with si ∈ σi. A strategy for the decision-maker specifies a mixed action
α(σi, σj,mi,mj) ∈ ∆(A) for all (σi, σj,mi,mj).6 The solution concept is weak perfect
Bayesian equilibrium. We stress that this requires the beliefs to be consistent with the
chosen experiments (σ1, σ2) even if these experiments are off the equilibrium path.

Few remarks are worth making. First, as in classical cheap-talk games, none of the
experts can commit to reporting strategies.

Second, if the experiments are (σ1, σ2), then the joint probability of (s1, s2) ∈ σ1×σ2

conditional on ω is the measure of the set {x : (ω, x) ∈ s1 ∩ s2}. Thus, if both experts
choose the same experiment σ, then the probability of (s, s′) ∈ σ × σ is zero, whenever
s 6= s′. (To see this, note that if s 6= s′, then s ∩ s′ = ∅ since σ is a partition.) In
words, if both experts choose the same experiment, their realized signals are perfectly
correlated. This property will turn out to be crucial. An alternative modeling approach
would be to assume that there is a fixed set of statistical experiments and let the experts
observe the realization of the experiment of their choices. This alternative modeling
also implies that if the two experts choose to observe the same experiment’s realization,
their observations are identical. For instance, this would be the case if the experts
source their information from the same provider.

5It is usual to model statistical experiments as probability kernels σ∗ : Ω → ∆(S), where S is the
(finite) set of signals. This implies the formulation that we use in this paper: for each ω, we can
partition [0, 1] into |S| non-empty and disjoint intervals such that the length of the s-th interval is
σ∗(s|ω) when the state is ω. With a slight abuse of notation, we identify the probability kernel σ∗
with that particular partition of Ω× [0, 1].

6To ease exposition, we do not explicitly consider randomizations over the choices of experiments.
This does not affect any of our results.
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Third, we can allow for the set of experiments to also include identical and inde-
pendent experiments without affecting our results. To do so, it suffices to define an
experiment as a finite partition of Ω× [0, 1]× [0, 1], with (ω, x, y) distributed according
to π◦ × U([0, 1])× U([0, 1]). Intuitively, if the experts condition their random observa-
tions on x, they are correlated, while they are independent if one expert conditions on x
and the other on y. Importantly, though, the option of choosing a perfectly correlated
experiment remains available to the experts. For example, consider two statisticians
learning about the state from a population sample. If they use the same sample x
and perform identical statistical tests on this sample, then the statisticians will have
perfectly correlated signals – the same statistics. In contrast, if they apply the same
statistical test to two different samples x and y, they will have signals, which are inde-
pendent conditional on the state (that is, the underlying population). Similarly, if two
doctors use the same set of lab results when making a recommendation to a patient,
they have perfectly correlated signals.

We now introduce some additional notation. We denote by v(α, π) the decision-
maker’s expected payoff when he chooses the mixed action α and his belief about ω is
given by π ∈ ∆(Ω), by BR(π) := {α ∈ ∆(A) : v(α, π) ≥ v(α′, π),∀α′ ∈ ∆(A)} the
decision-maker’s best-replies at π, and by br(π) ⊂ A the decision-maker’s pure best-
replies at π. Similarly, we write u(α, π) for an expert’s expected payoff. Note that
payoffs are linear in π.

Throughout, truthful equilibria, in which the two experts choose the same ex-
periment in the first stage and truthfully report the common signal realization in the
second stage, play an important role.

3 The Main Result

In this section, we show that the ability of the decision-maker to cross-verify information
serves as a commitment device for the experts. More precisely, we show that there exists
an equilibrium of the cheap-talk game, in which the experts obtain their commitment
value.

We define the commitment value as the highest payoff an expert can obtain when he
commits to truthfully disclose the realized signal, as in games of Bayesian persuasion.
Formally, consider the persuasion game, where an expert first chooses a statistical
experiment σ : Ω → ∆(S), commits to truthfully reveal the realized signal s to the
decision-maker, who then makes a decision. Kamenica and Gentzkow (2011) prove that
the best equilibrium payoff for the expert in this game is given by cav u(π◦), where
cav u is the concavification of u and u(π) := maxα∈BR(π) u(α, π) for all π. (See also
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Aumann and Maschler, 1995.) For later reference, we write (λ∗s, π
∗
s)s∈S for an optimal

splitting of the prior π◦, that is,
∑

s∈S λ
∗
su(π∗s) = cavu(π◦) and

∑
s∈S λ

∗
sπ
∗
s = π◦. We

write Π∗ for {π∗s : s ∈ S}, co Π∗ for the convex hull of Π∗, and ∆∗ for the set of all
probability distributions over Π∗. The corresponding optimal experiment is denoted
σ∗.

Theorem 1. There exists a truthful equilibrium of the cheap-talk game, where both
experts obtain their commitment value cav u(π◦).

Before proving Theorem 1, we explain our result’s logic with the help of a simple
example. There are two states, ω0 and ω1, and four actions, a0, aL, aR and a1. The
preferences are depicted in Figure 1. Throughout the example, probabilities refer to
the probability of ω1. Assume that π◦ = 0.45.

v(a, π)

π

a0

aL aR

a1

0.60.3 0.4

(a) DM’s Preferences. This figure depicts v(a, π)
as a function of π = Pr[ω = ω1]. Action a0 is op-
timal for the DM for π ∈ [0, 0.3], action aL is op-
timal for π ∈ [0.3, 0.4], aR is optimal for [0.4, 0, 6],
and a1 is optimal for [0.6, 1].

u(a, π)

π

a0

0.3 0.4

aL aR

αp
a1

0.6

(b) Expert’s Preferences. The black dashed lines
depict u(a, π) as a function of π. The solid
black lines depict u(π), the solid blue line de-
picts cav u(π) for π ∈ [0, 3, 0.6], and cav u(π)
coincides with u(π) for π /∈ [0, 3, 0.6]. The red
dashed line depicts the payoff to the mixed action
αp ∈ ∆({aL, aR}). The mixed action αp is the
uniform punishment; it is a best response for the
DM to belief πp = 0.4.

Figure 1: Uniform Punishment and Cross-verification.

We first note that the optimal experiment σ∗ consists in splitting the prior into the
posteriors posteriors π∗s0 = 0.3 and π∗s1 = 0.6.7 We also note that u(a0, πs0) < u(a1, πs0)

and u(a1, πs1) < u(a0, πs1), that is, the experts have an incentive to mis-report the
realized signals. Thus, if there was a single expert, choosing the experiment σ∗ and
truthfully reporting the realized signal would not be an equilibrium. More generally,
no equilibrium would give the expert his commitment value.

7We have λ∗s0 = λ∗s1 = 1/2. The experiment is given by: σ∗(s0|ω0) = 0.64 and σ∗(s1|ω1) = 0.67.
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Matters are different if the decision-maker chooses to consult another expert. To
see this, suppose that the two experts choose the experiment σ∗ and truthfully report
the outcome of the experiment. The decision-maker then holds belief 0.3 (resp., 0.6)
and plays action a0 (resp., a1) after observing two matching messages equal to s0 (resp.,
s1). Off the equilibrium path, i.e., when the decision-maker observes two contradictory
messages, assume that he holds belief πp = 0.4 and plays action αp ∈ ∆({aL, aR}) =

BR(0.4).

The key observation to make is that the mixed strategy αp ∈ BR(0.4) is a uniform
punishment, that is, u(αp, πs0) < u(a0, πs0) and u(αp, πs1) < u(a1, πs1). (See Figure
1.) In words, regardless of the realized signal, an expert is punished for deviating
from truth-telling. All the decision-maker needs to know is that a deviation has oc-
curred, and the presence of the second expert indeed guarantees that deviations are
detected. The experts thus benefit from the decision-maker cross-verifying their infor-
mation. (Naturally, there are other equilibria, where the decision-maker benefits from
cross-verification. See the next section.)

We conclude with two additional remarks. First, if the experts choose the perfectly
informative experiment, truthful reporting does not constitute an equilibrium. This is
because the actions that are best for the decision-maker at beliefs πs0 = 0 and πs1 = 1

are the worst for the experts at those beliefs. Second, for any two experiments σ1

and σ2, there is an equilibrium, where experts 1 and 2 choose experiments σ1 and σ2,
respectively, and a babbling equilibrium of the ensuing sub-game is played.

We now turn to the proof of Theorem 1. The proof rests on three essential proper-
ties. First, as already explained, if the two experts choose the same experiment, their
signals’ realizations are perfectly correlated. Second, if the two experts choose the same
experiment, the decision-maker detects any deviation from truth-telling. This is be-
cause the decision-maker receives contradicting messages after any deviation. However,
he cannot identify the deviator and, thus, cannot infer the true signal’s realization.
Therefore, to deter deviations, the decision-maker must be able to punish the two ex-
perts simultaneously. The third property is the existence of such a uniform punishment
whenever the experiment is expert optimal. The following lemma states this property.

Lemma 1 (Uniform punishment). Let (λ∗s, π
∗
s)s∈S be an optimal splitting. There exist

πp ∈ co Π∗ and αp ∈ BR(πp) such that u(αp, π
∗
s) ≤ u(π∗s) for all π∗s ∈ Π∗.

Lemma 1 is our main technical contribution. We postpone its proof to the end of
this section and now show how to construct an equilibrium of the cheap-talk game with
a payoff of cavu(π◦) to the experts.

Proof of Theorem 1. Let (λ∗s, π
∗
s)s∈S be an optimal splitting inducing the payoff cavu(π◦).

Let σ∗ be the optimal experiment associated with that splitting. Recall that Π∗ :=
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{π∗s : s ∈ S}. From Lemma 1, there exist πp ∈ co Π∗ and αp ∈ BR(πp) such that for all
π∗s ∈ Π∗, u(αp, π

∗
s)− u(π∗s) ≤ 0.

We construct a truthful equilibrium as follows. The experts choose the optimal
experiment σ∗ and truthfully report the realized signal. Following the choice of σ∗,
the decision-maker chooses α ∈ BR(πs), with u(α, πs) = u(πs), when he observes
two identical messages equal to s. Alternatively, if the decision-maker receives two
conflicting messages, he chooses αp (sustained by the belief πp). Finally, following the
choice of any other statistical experiment, an equilibrium of the continuation game,
which exists by finiteness, is played. It is routine to check that we indeed have an
equilibrium.

We now offer a series of remarks.

Remark 1. Throughout the paper, we have assumed that the set of actions is finite. We
have verified that Lemma 1 and Theorem 1 continue to hold if A is a compact subset
of Rd, and the functions u and v are continuous in a. A proof is available upon request.

Remark 2. So far, we have assumed that the two experts share the same preferences.
If the preferences of one expert, say the second expert, are a convex combination of
the preferences of the first expert and the decision-maker, i.e., βu(a, ω) + (1−β)v(a, ω)

for some β ∈ [0, 1], then we can still construct a truthful equilibrium, where the first
expert continues to obtain his commitment value. To see this, let as be such that
u(as, π

∗
s) = u(π∗s) and note that v(αp, π

∗
s) ≤ v(as, π

∗
s) = maxα̃ v(α̃, π∗s) for all s, where

αp is the uniform punishment, which exists by Lemma 1. This implies that βu(αp, π
∗
s)+

(1−β)v(αp, π
∗
s) ≤ βu(as, π

∗
s) + (1−β)v(as, π

∗
s) for all π∗s ∈ Π∗, i.e., αp is also a uniform

punishment for the second expert. We illustrate this remark with a simple example.
As in Crawford and Sobel (1982), assume that the decision-maker obtains the payoff
−(α−ω)2, when he chooses α ∈ [0, 1] and the state is ω. The payoff of the two experts
are −(α−ω−b)2 and −(α−ω−βb)2, with β ∈ [0, 1] and b > 0, respectively. The second
expert is (weakly) less biased than the first expert. Observe that, up to a constant, the
payoff of the less biased expert is a convex combination of the payoff of the most biased
expert and the decision-maker, that is:

−
[
(1− β)(α− ω)2 + β(α− ω − b)2

]
= −(α− ω − βb)2 − b2β(1− β).

Therefore, there exists an equilibrium, which gives the most biased expert his commit-
ment value.8

8In the quadratic example, the payoff u(π) to the most biased expert is −(Vπ[ω] + b2), with Vπ[ω]
the variance of ω with respect to the distribution π. Since the variance of a real-valued random variable
is concave in its distribution, full information disclosure attains the commitment value.
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Remark 3. Lemma 1 can also be used to identify a class of preferences under which
a fully revealing equilibrium exists in a cheap-talk game played between two perfectly
informed experts and a decision-maker. Such a cheap-talk game corresponds to stages
2 and 3 of our model, when the experts choose the fully revealing experiment in the
first stage. In particular, suppose that the preferences of the first expert are given by
u, the optimal experiment with respect to u is fully revealing, and the preferences of
the second expert are given by:

u2(a, ω) = fω(βωu(a, ω) + (1− βω)v(a, ω)),

for all (a, ω), for some concave and non-decreasing functions fω and scalars βω ∈ [0, 1].
Let αp be the uniform punishment with respect to u, which exists by Lemma 1. Un-
der these assumptions, there is a fully revealing equilibrium of the cheap-talk game
because u2(αp, ω) ≤ u2(aω, ω) for all ω, with u(aω, ω) = u(ω), i.e., αp is also a uniform
punishment with respect to u2. To see this, note that

u2(αp, ω) =
∑
a∈A

αp(a)fω(βωu(a, ω) + (1− βω)v(a, ω))

≤ fω(βωu(αp, ω) + (1− βω)v(αp, ω))

≤ fω(βωu(aω, ω) + (1− βω)v(aω, ω)) = u2(aω, ω),

for each ω ∈ Ω, where the first inequality follows from the concavity of fω and the
second from the non-decreasingness.

A prominent example of a cheap-talk game with multiple experts, where the op-
timal experiment is fully revealing, is Ambrus and Takahashi (2008). In Ambrus and
Takahashi (2008), the decision-maker’s preferences are given by −||a−ω||2, where || · ||
is the Euclidian norm, while the experts’ preferences are given by −||a − ω − b||2 and
−||a − ω − βωb||2, respectively, with βω ∈ [0, 1] and b ∈ Rd. The second expert is
(weakly) less biased in the same direction as the first expert. The set Ω is a finite
subset of Rd and A is a subset of Rd that contains the convex hull of Ω.

In this game, the optimal experiment for the most biased expert is well-known to
be fully revealing. Intuitively, the expert aims to minimize the expected variance of
the state, which is attained by fully disclosing the state.9 Moreover, at each state, the
payoff of the less biased expert is a convex combination of the payoff of the most biased

9To see that the optimal experiment for the most biased expert is fully revealing, note that the
payoff u(π) to the most biased expert is −(

∑d
j=1 Vπ[ωj ] +

∑d
j=1(bj)2), where ωj and bj are the jth

components of the vectors ω and b, respectively, and Vπ[ωj ] is the variance of ωj with respect to the
distribution π. Since the variance of a real-valued random variable is concave in its distribution, u(π)
is a convex function.
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expert and the decision-maker up to a constant, that is:

−
[
(1− βω)||a− ω||2 + βω||a− ω − b||2

]
= −

d∑
j=1

(αj − ωj − βωbj)2 + (bj)2βω(1− βω)

= −||a− ω − βωb||2 +
d∑
j=1

(bj)2βω(1− βω),

where aj, ωj, and bj are the j-th components of the vectors a, ω and b, respectively.
Therefore, the above argument implies the existence of a uniform punishment and
this uniform punishment can be used to construct a fully revealing equilibrium. The
existence of a fully revealing equilibrium already appears in Ambrus and Takahashi
(2008).

Remark 4. We have assumed that the choice of experiments is publicly observed. If
the decision-maker does not observe the experiments chosen by the two experts, but
if the experts observe each other’s experiment choice, then again there is a truthful
equilibrium, where the optimal experiment σ∗ is chosen as in Theorem 1. In this
equilibrium, play on the equilibrium path unfolds as in Theorem 1. If any expert
deviates and chooses another experiment σ 6= σ∗, then the two experts send the message
m0, where m0 is a message that is never sent on the equilibrium path. If the decision-
maker observes two messages that do not match or observes a message equal to m0

from either of the two experts, then he best responds to belief πp by playing action αp.

Remark 5. Similarly, if we assume that the experts do not observe each other’s choice
of experiments, but the decision-maker does, then our result continues to hold. To
see this, we construct an equilibrium as follows. In the first stage, the experts choose
the optimal experiment. In the second stage, an expert truthfully reports his signal
if he has chosen the optimal experiment in the first stage. (The strategies are left
unspecified in other contingencies.) If the decision-maker observes the experts choosing
the optimal experiment, he follows the same strategy as in our main proof. If the
decision-maker observes only one expert choosing the optimal experiment, he plays a
best-reply to the message sent by that expert. (The strategies are left unspecified in
all other contingencies.) On path, the experts receive their commitment value. If an
expert chooses another experiment, the decision-maker observes the deviation but not
the other expert, who continues to truthfully reveal the signal. Hence, the deviation
does not change the expert’s payoff.

Remark 6. We have assumed that the two experts choose experiments simultaneously.
This assumption is again not required for our result. Suppose instead that one expert,
say the first expert, chooses an experiment σ : Ω→ ∆(S1×S2), with expert i privately
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observing the signal’s realization si. As before, after observing their signals, the experts
send messages to the decision-maker, who then chooses an action. Yet again, we have
a truthful equilibrium, where the equilibrium payoff of the two experts is cavu(π◦) as
in Theorem 1. In this equilibrium, the first expert chooses the optimal experiment and
perfectly correlates the second expert’s signal with his own.

Remark 7. We used weak perfect Bayesian equilibrium as our solution concept. If we re-
strict attention to a finite set of experiments, which contains σ∗, then we can strengthen
the solution concept to sequential equilibrium. We only need a slight modification of
Lemma 1 that ensures that the decision-maker believes the realized signal is either s
or s′ after observing report (s, s′). A minor adaptation of the proof of Lemma 1 shows
that there is a belief πs,s′ ∈ ∆({π∗s , π∗s′}) and a mixed action αs,s′ ∈ BR(πs,s′) such that
u(αs,s′ , π

∗
s̃)− u(π∗s̃) ≤ 0 for all s̃ ∈ {s, s′}.

Proof of Lemma 1. We first establish two intermediate claims, then we use these two
claims to establish the lemma. Let (λ∗s, π

∗
s)s∈S be an optimal splitting. Recall that

Π∗ := {π∗s : s ∈ S} and ∆∗ is the set of all probability distributions over Π∗.

Claim 1: For any λ ∈ ∆∗, u(
∑

s λsπ
∗
s) ≤

∑
s λsu(π∗s).

Proof of Claim 1: Consider the convex hull of the graph of u, i.e., co {(π, r) ∈ ∆(Ω)×
R : r = u(π)}. By construction, the point (π◦, cav u(π◦)) = (

∑
s λ
∗
sπ
∗
s ,
∑

s λ
∗
su(π∗s)) is

on the boundary of the convex hull. From the supporting hyperplane theorem, there
exists a hyperplane h ∈ R|Ω| × R supporting co {(π, r) ∈ ∆(Ω) × R : r = u(π)} at
(π◦, cav u(π◦)) such that the graph of u lies below h. For all s ∈ S, the point (π∗s , u(π∗s))

also lies on the hyperplane h. Consequently, the point (
∑

s λsπ
∗
s ,
∑

s λsu(π∗s)), must also
lies on the hyperplane. Therefore, u(

∑
s λsπ

∗
s) ≤

∑
s λsu(π∗s) as required. �

Claim 2: Choose any non-empty subset B ⊂ A and ε > 0. If maxs∈S[u(α, π∗s) −
u(π∗s)] ≥ ε for each α ∈ ∆(B), then there exists λ̂ ∈ ∆∗ such that
minα∈∆(B) u(α,

∑
s λ̂sπ

∗
s) ≥

∑
s λ̂su(π∗s) + ε.

Proof of Claim 2: The claim follows from duality. Consider the following linear
program:

min
(x,α)∈R×∆(B)

x

subject to: for all s ∈ S, ∑
a∈B

α(a) [u(a, π∗s)− u(π∗s)] ≤ x.

This minimization problem has a solution x̂. Our hypothesis implies that x̂ ≥ ε. The
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dual program is given by
max

(y,λ)∈R×∆(Π∗)
y

subject to: for all a ∈ B, ∑
s∈S

λs [u(a, π∗s)− u(π∗s)] ≥ y.

Since the primal linear program has a solution, the dual program also has a solution
(ŷ, λ̂). No duality gap further implies that ŷ = x̂ ≥ ε. (See Section 4.2 of Luenberger
and Ye, 2008.) Therefore, for all a ∈ B,

u(a,
∑
s

λ̂sπ
∗
s) =

∑
s∈S

λ̂su(a, π∗s) ≥ ε+
∑
s∈S

λ̂su(π∗s)

Hence, u(α,
∑

s λ̂sπ
∗
s) ≥

∑
s λ̂su(π∗s) + ε for all α ∈ ∆(B), as required. �

We now use Claims 1 and 2 to complete the proof. Recall that br(π) ⊂ A is the
decision-maker’s pure best-replies to belief π.

By contradiction, assume that there does not exist πp ∈ co Π∗ and αp ∈ BR(πp)

such that u(αp, π
∗
s) − u(π∗s) ≤ 0 for all π∗s ∈ Π∗. Note that π ∈ co Π∗ if and only if

π =
∑

s λsπ
∗
s for some λ ∈ ∆∗. Hence, our contradiction hypothesis can be restated as

follows: for each λ ∈ ∆∗, there exists ε(λ) > 0 such that maxs∈S[u(α, π∗s)−u(π∗s)] ≥ ε(λ)

for each α ∈ ∆(br(
∑

s λsπ
∗
s)) = BR(

∑
s λsπ

∗
s). Let ε := minλ∈∆∗ ε(λ). Note that ε > 0

because ε(λ) depends only on the finite set br(
∑

s λsπ
∗
s), and there are finitely many

such subsets of A.
Define the correspondence F : ∆∗ → ∆∗, with

F (λ) :=
{
λ′ ∈ ∆∗ : min

α∈BR(
∑

s λsπ
∗
s )

∑
s

λ′s

(
u(α, π∗s)− u(π∗s)

)
≥ ε
}
.

We can readily check that this correspondence is convex and compact valued. We argue
below that it is non-empty valued and lower hemi-continuous. Hence, the correspon-
dence has a fixed point λ ∈ F (λ) by Theorem 15.4 in Border (1990). Noting that∑

s λ(s)u(α, π∗s) = u(α,
∑

s λ(s)π∗s), we find

min
α∈BR(

∑
s λ(s)π∗s )

(
u(α,

∑
s

λ(s)π∗s)−
∑
s

λ(s)u(π∗s)
)
≥ ε

for λ ∈ ∆∗ contradicting Claim 1 and establishing the result.

We now show that the correspondence is non-empty valued. Pick any λ ∈ ∆∗.
The contradiction hypothesis states that maxs∈S[u(α, π∗s) − u(π∗s)] ≥ ε for each α ∈
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BR(
∑

s λsπ
∗
s). Claim 2 then implies that there exists λ̂ ∈ ∆∗ such that

min
α∈BR(

∑
s λsπ

∗
s )

∑
s

λ̂s(u(α, π∗s)− u(π∗s)) ≥ ε,

i.e., the correspondence is non-empty valued.

Finally, we prove lower hemi-continuity. Pick an open set O ⊆ ∆∗ such that F (λ)∩
O 6= ∅. Since BR is upper hemi-continuous (by the maximum principle) and A is finite,
there exists a neighborhood O′ of λ such that BR(

∑
s λ
′
sπ
∗
s) ⊆ BR(

∑
s λsπ

∗
s) for all

λ′ ∈ O′. Therefore, for all λ′ ∈ O′,

min
α∈BR(

∑
s λ
′
sπ
∗
s )

∑
s

λ
′′

s

(
u(α, π∗s)− u(π∗s)

)
≥ min

α∈BR(
∑

s λsπ
∗
s )

∑
s

λ
′′

s

(
u(α, π∗s)− u(π∗s)

)
≥ ε

for any λ′′ ∈ F (λ)∩O because BR(
∑

s λ
′
sπ
∗
s) ⊆ BR(

∑
s λsπ

∗
s), i.e., λ

′′ ∈ F (λ′). Hence,
F (λ′) ∩ O 6= ∅ for all λ′ ∈ O′, which proves the lower hemi-continuity of F (Definition
11.3 in Border (1990)).

4 The Decision-maker and Cross-verification

The previous section showed that the experts benefit from the decision-maker cross-
verifying their information. This section explores whether the decision-maker can also
benefit from cross-verification.

We begin with some definitions. Fix a cheap-talk game Γ(π◦, u, v). We say that the
experts benefit from persuasion if cavu(π◦) > u(π◦). Similarly, we say that the decision-
maker benefits from cross-verification if there exists an equilibrium of the cheap-talk
game, where the decision-maker’s payoff exceeds the ex-ante payoff maxa∈A v(a, π◦).
Notice that if the decision-maker benefits from cross-verification, the experts must reveal
some information to the decision-maker.

Define Â := {a ∈ A : ∃π ∈ ∆(Ω) s.t. a ∈ BR(π)} and v(π) := maxα v(α, π) for all
π ∈ ∆(Ω). We say that there are no redundant actions for the decision-maker if for any
non-empty B ⊂ Â and B 6= Â, there exists π ∈ ∆(Ω) such that v(π) > maxa∈B v(a, π).
There are no redundant actions for the experts if there are no two distinct actions a
and a′ such that u(a, ω) = u(a′, ω) for all ω ∈ Ω.

Remark 8. The conditions of non-redundancy are generic. Moreover, the condition of no
redundant actions for the decision-maker does not preclude strictly dominated actions.
Two important implications of that condition are as follows: (i) the set BR−1(a) :=

{π ∈ ∆(Ω) : v(a, π) = v(π)} has full dimension (as a subset of the simplex of dimension
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|Ω| − 1), and (ii) no action other than a is optimal in the relative interior of BR−1(a),
denoted by intBR−1(a).

Theorem 1 showed that the experts benefit from cross-verification in games where
they benefit from persuasion. The following proposition further establishes that the
decision-maker also benefits from cross-verification in such games.

Proposition 1. Assume that there are no redundant actions for the decision-maker in
the game Γ(π◦, u, v). At almost all priors π◦, if the experts benefit from persuasion,
then the decision-maker benefits from cross-verification.

We first illustrate the logic of the proposition with the help of a simple example.
There are two states, ω0 and ω1, and three actions, a0, a1 and ap. Throughout the
example, probabilities refer to the probability of ω1. The prior is π◦ = 0.45. The
payoffs are illustrated in Figure 2. The optimal experiment consists in splitting the
prior into the posteriors π∗s0 = 0.3 and π∗s1 = 0.6. The experts strictly benefit from
persuasion. From Theorem 1, there exists a truthful equilibrium, where an expert’s
payoff is his commitment value. Action ap is the uniform punishment sustaining the
equilibrium. Note that ap is uniquely optimal at the prior and also optimal at the two
posteriors. Consequently, the decision-maker does not benefit from cross-verification at
the equilibrium. Yet, we can construct another equilibrium, where the decision-maker
benefits from cross-verification. To see this, consider the splitting of the prior into
πs0 = 0.2 and πs1 = 0.8. At πs0 (resp., πs1), the decision-maker plays a0 (resp., a1). To
sustain this splitting as an equilibrium, the decision-maker punishes the experts with
ap. The decision-maker strictly benefits from this more informative experiment.

We prove that the logic of the example generalizes to almost all priors. That is,
for all priors, but for a subset with Lebesgue measure zero, we can always construct
an equilibrium of the cheap-talk game, where the decision-maker benefits from cross-
verification if the experts benefit from persuasion. More precisely, we prove that the
proposition holds at all interior priors, where the decision-maker has at most two best-
replies, a generic condition.

The need for non-redundancy is clear. If the decision-maker is indifferent between all
his actions, the decision-maker cannot benefit from cross-verification, while the experts
can benefit from persuasion. We now turn to the proof.

Proof of Proposition 1. Consider an optimal splitting (λ∗s, π
∗
s)s∈S of π◦, which induces

the value cavu(π◦), where cavu(π◦) > u(π◦). Without loss of generality, assume that
λ∗s > 0 for all s ∈ S. Let v(π) := maxα v(α, π) for all π ∈ ∆(Ω).

If the decision-maker benefits from the statistical experiment, there is nothing to
prove. So, assume that the decision-maker does not benefit from the statistical ex-
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v(a, π)

π

a0

ap

a1

0.60.3

(a) DM’s Preferences. Action a0 is optimal for
the DM for π ∈ [0, 0.3], action ap is optimal for
π ∈ [0.3, 0.6], and a1 is optimal for [0.6, 1].

u(a, π)

π
0.30.2 0.8

a0

ap

0.6

a1

(b) Expert’s Preferences. The solid black lines
depict u(π), the solid blue line depicts cav u(π) for
π ∈ [0, 3, 0.6], and cav u(π) coincides with u(π)
for π /∈ [0, 3, 0.6].

Figure 2: DM Benefits from Cross-verification.

periment, i.e.,
∑

s λ
∗
sv(π∗s) = v(π◦). We construct another equilibrium at which the

decision-maker benefits from cross-verification.

We first claim that for all a ∈ br(π◦), a ∈ br(π) for all π ∈ co {π∗s : s ∈ S}. To see
this, consider any a ∈ br(π◦) and observe that

∑
s

λ∗sv(π∗s) = v(π◦) = v(a, π◦) = v

(
a,
∑
s

λ∗sπ
∗
s

)
=
∑
s

λ∗sv(a, π∗s).

It follows that ∑
s

λ∗s︸︷︷︸
>0

(v(π∗s)− v(a, π∗s)︸ ︷︷ ︸
≥0

) = 0.

If there exists s such that v(π∗s) > v(a, π∗s), we have a contradiction. Hence, a ∈ br(π∗s)
for all s and, consequently, a ∈ br(π) for all π ∈ co {π∗s : s ∈ S}.

From the definition of u, we have that u(a, π∗s) ≤ u(π∗s) for all s, for all a ∈ br(π◦),
since BR(π◦) ⊆ BR(π∗s) for all s. We now argue that for all a ∈ br(π◦), there exists
sa ∈ S such that u(a, π∗sa) < u(π∗sa). Choose any a ∈ br(π◦). To the contrary, assume
that u(a, π∗s) = u(π∗s) for all s. We then have

cavu(π◦) =
∑
s

λ∗su(π∗s) =
∑
s

λ∗su(a, π∗s) = u(a, π◦) ≤ u(π◦) ≤ cavu(π◦),

a contradiction with the expert benefiting from the experiment.

To sum up, we have (i) BR(π◦) ⊆ BR(π) for all π ∈ co {π∗s : s ∈ S}, and (ii) for
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each a ∈ br(π◦), there exists sa such that u(a∗sa , π
∗
sa) > u(a, π∗sa) with a∗sa ∈ br(π∗sa)

satisfying u(a∗sa , π
∗
sa) = u(π∗sa).

The fact that u is continuous in π and u(a, π∗sa) < u(a∗sa , π
∗
sa) for each a ∈ br(π◦)

together imply that there exists ε > 0 and an open ball O = {π ∈ ∆(Ω) : ||π−π∗sa|| < ε}
such that u(a, π) < u(a∗sa , π) for all a ∈ br(π◦) and all π ∈ O.

We claim that O intersects the relative interior of br−1(a∗sa). To see this, note that
O∩ br−1(a∗sa) 6= ∅ since π∗sa is an element of both O and br−1(a∗sa). Moreover, it follows
from the non-redundancy of A that π∗sa is not in the relative interior of br−1(a∗sa) since
any a ∈ br(π◦) is also optimal at π∗sa . Since the relative interior of br−1(a∗sa) is non-
empty, there exists π∗∗ in the relative interior such that the half-open line segment
[π∗∗, π∗sa) is contained in the relative interior. (See Theorem 2.1.3 and Lemma 2.1.6 in
Hiriart-Urruty and Lemaréchal.) Therefore, there exists πa in the intersection of the
relative interior of br−1(a∗sa) and O, i.e., such that u(a, πa) < u(a∗s, πa) = u(πa). Note
that v(a∗sa , πa) > v(a, πa) since a∗sa is uniquely optimal at π. In other words, there is an
element of br(π◦), namely a, which is not an element of br(πa).

The last step consists in showing that there exists a ∈ br(π◦) and πa ∈ br−1(a) such
that the open segment (πa, πa) includes π◦. Indeed, if such an open segment exists, we
have a splitting (πa, πa) of π◦ such that u(πa) ≥ u(a, πa), u(πa) = u(a∗sa , πa) > u(a, πa).
This splitting can be supported as a truthful equilibrium (with a as the punishment at
belief π◦). Moreover, since v(a∗sa , πa) > v(a, πa), the decision-maker strictly benefits,
the desired contradiction.

Finally, suppose that π◦ is in the interior of the simplex. If br(π◦) = {a}, then π◦

is in the relative interior of br−1(a). Thus, we can trivially find a segment with the
required property.

If br(π◦) = {a, b} and sa = sb, then the same arguments apply, since the open
segment will intersect either br−1(a) or br−1(b). If sa 6= sb, choose πsa such that b is
uniquely optimal at πsa . Such πa exists since v(b, πsa) = maxa′∈br(πsa ) v(a′, πsa) (if not
sa = sb). As before, the open segment intersects either br−1(a) or br−1(b). However,
it cannot be br−1(b). If it were, b would be uniquely optimal at πsa and optimal at π◦

and πsa , which is not possible since br−1(b) is convex.

Since the set of interior priors with at most two best-replies is generic, the proof is
complete.

Proposition 1 does not generalize to all priors. For a counter-example, consider
Figure 3. There are three states, ω0, ω1 and ω2, and two actions, a and b. The action a
(resp., b) is optimal in the left triangle marked “a” (resp., in the right triangle marked
“b”). At the prior π◦, the action a is the unique best-reply of the decision-maker.
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Assume that u(b, ω1) > u(a, ω1). Thus, if the experts truthfully reveal the state, they
benefit from persuasion, while the decision-maker does not.10

ω0

ω1

ω2

π◦

a b

Figure 3: A counter-example

Proposition 1 proved that the decision-maker benefits from cross-verification when-
ever the experts benefit from persuasion. We now show a partial converse, that is,
the decision-maker benefits from cross-verification only when the experts benefit from
persuasion.

Proposition 2. Assume that there are no redundant actions for the experts and the
decision-maker in the game Γ(π◦, u, v). If u is a concave function, then the decision-
maker does not benefit from cross-verification. That is, in all equilibria of Γ(π◦, u, v),
the decision-maker’s payoff is v(π◦).

To understand Proposition 2, assume that the experts and the decision-maker have
opposing preferences, that is, u = −v. In this case, what is best for the decision-maker
is worst for the experts, and therefore, v = −u. Moreover, if either of the experts, say
expert 1, chooses a uninformative experiment, an expert’s payoff is u(π◦) in all equilibria
of the ensuing game. This is because if expert 2’s experiment produces two signals s
and s′ such that the set of best-replies at πs differs from the set of best-replies at s′, then
expert 2 has an incentive to misreport one of the two signals, if not both. The experts
cannot credibly communicate any information. Therefore, no expert can obtain less
than u(π◦) in equilibrium. Experts cannot obtain more than u(π◦) either. Indeed, for
every on-path posterior π, the decision-maker chooses a best-reply in equilibrium, hence
an expert’s payoff is minimized at π, i.e., an expert’s payoff is umin(π) := mina u(a, π).
The result then follows from the concavity of umin. Proposition 2 does not require
opposing preferences; the logic outlined above extends to all games, where u is concave.

10If there are two states, Proposition 1 generalizes to all interior priors. In this case, non-redundancy
of the decision-maker’s payoff implies that the decision-maker has at most two best-replies at each belief,
where we know that Proposition 1 holds. In general, however, we do not know whether the proposition
generalizes to all interior priors.
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v(a, π)

π

a0 a1

0.4

(a) DM’s Preferences. Action a0 is optimal for the
DM for π ∈ [0, 0.4] and a1 is optimal for [0.4, 1].

u(a, π)

π
0.4

a0a1

(b) Expert’s Preferences. The solid black lines
depict the concave function u(π).

Figure 4: No Benefit from Cross-verification or Persuasion.

To further illustrate Proposition 2, consider Figure 4. For the decision-maker to
benefit from cross-verification, the experts would need to choose an experiment, which
induces the decision-maker to play different actions after receiving different signals.
However, we cannot sustain such a choice as an equilibrium. An expert would always
have an incentive to misreport the realized signal. This is because any action other
than the one chosen by the decision-maker improves an expert’s payoff, i.e., there is no
uniform punishment.

The need for the non-redundancy of the experts’ actions is again clear. If the
experts are totally indifferent, they cannot benefit from persuasion but can provide the
decision-maker with perfectly informative signals. It remains to prove Proposition 2.
We do so by establishing a series of lemmata under the assumptions of Proposition
2. The following lemma shows that the conflict of interest between the experts and
the decision-maker is maximal when the experts cannot benefit from persuasion; that
is, the decision-maker’s best-replies at belief π minimizes the experts’ expected payoff.
Recall that Â is the set of actions that are a best response for the decision-maker to
some belief.

Lemma 2. For every π ∈ ∆(Ω), BR(π) = arg minα′∈∆(Â) u(α′, π).

Proof of Lemma 2. We start by proving the following claim.

Claim 1. a ∈ Â and π ∈ int br−1(a) implies {a} = arg minα′∈∆(Â) u(α′, π).

Proof of Claim 1. Fix a ∈ Â and π ∈ int br−1(a). We first argue that there does not
exist a′ ∈ Â such that such that u(a′, π) < u(a, π). To the contrary, suppose such a′

exists. Pick an arbitrary π′ ∈ int br−1(a′). There exists π′′ ∈ int br−1(a′) and λ ∈ (0, 1)
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such that π′′ = λπ + (1− λ)π′. We obtain

u(a′, π′′) = u(π′′)

≥ λu(π) + (1− λ)u(π′)

= λu(a, π) + (1− λ)u(a′, π′)

> λu(a′, π) + (1− λ)u(a′, π′)

= u(a′, π′′),

where the first inequality follows from the concavity of u, the desired contradiction.

We now argue that there does not exist a′ ∈ Â such that u(a′, π) = u(a, π). From the
above, for all πn ∈ int br−1(a), u(a′, πn) ≥ u(a, πn). Consider any convex combination
(λn, πn)n satisfying

∑
n λnπn = π, πn ∈ int br−1(a) for all n, λn > 0 for all n, and the

πn being linearly independent. Such a convex combination exists since br−1(a) has full
dimension. If u(a′, π) = u(a, π), then

u(a′, π) =
∑
n

λnu(a′, πn) ≥
∑
n

λnu(a, πn) = u(a, π) = u(a′, π),

i.e., u(a′, πn) = u(a, πn) for all n, a contradiction with the condition of no redundant
actions for the experts. Therefore, for all a′ 6= a, u(a′, π) > u(a, π), which completes
the proof of the claim.

From Claim 1, the statement is true for all π such that π ∈ int br−1(a) for some
a ∈ Â. Since BR and arg minα′∈Â u(α′, π) are upper hemi-continuous correspondences,
which coincide almost everywhere (in Lebesque measure), they coincide everywhere.

We now derive an immediate implication of Lemma 2. We first introduce some
additional notation. Recall that following the choice of experiments (σ1, σ2), we have
a proper sub-game. We are interested in analyzing the play in these sub-games. To
ease notation, we drop the dependence on (σ1, σ2) and write π(m1,m2) ∈ ∆(Ω) for
the decision-maker’s belief after observing the messages (m1,m2). Similarly, we write
α(m1,m2) for the decision-maker’s equilibrium reply. Notice that α(m1,m2) ∈ ∆(Â)

because this action is a best response to belief π(m1,m2). Finally, let P denote the
probability distribution over signals, messages and actions induced by the prior and the
strategy profile, conditional on the experiments (σ1, σ2). At an equilibrium, sequential
rationality requires the decision-maker to choose a best-reply to his belief. Fix an equi-
librium, an on-path profile of messages (m1,m2), and its associated belief π(m1,m2).
Since all best-replies of the decision-maker to π(m1,m2) minimize the experts’ pay-
offs, no expert must be able to induce the decision-maker to choose an action outside
BR(π(m1,m2)) by changing his message to m′1.

21



Lemma 3. If P(mi,mj) > 0, then for all m′i, α(m′i,mj) ∈ BR(π(mi,mj)).

Proof of Lemma 3. Without loss of generality, let i = 1, j = 2. The proof is by contra-
diction. Assume that there exists m1,m

′
1,m

′
2 such that α(m′1,m

′
2) /∈ BR(π(m1,m

′
2)).

From Lemma 2, u(α(m′1,m
′
2), π(m1,m

′
2)) > u(α(m1,m

′
2), π(m1,m

′
2)). The equilib-

rium payoff to expert 1 is∑
(m̃1,m̃2)

P(m̃1, m̃2)u(α(m̃1, m̃2), π(m̃1, m̃2)).

If expert 1 deviates by always sending the message m′1, his expected payoff is:∑
(m̃1,m̃2)

P(m̃1, m̃2)u(α(m′1, m̃2), π(m̃1, m̃2)).

We now argue that the deviation is profitable, the required contradiction.
From Lemma 2, we have that u(α(m̃1, m̃2), π(m̃1, m̃2)) ≤ u(α(m′1, m̃2), π(m̃1, m̃2))

for all (m̃1, m̃2). Moreover, there exists (m1,m2) such that the inequality is strict and
P(m1,m2) > 0. Thus, the deviation is profitable.

The next lemma shows that if any expert chooses an uninformative experiment,
then the experts’ and the decision-maker’s payoff in the ensuing equilibrium is equal to
their payoff at their prior belief.

Lemma 4. Let (σ1, σ2) be a profile of experiments. If either σ1 or σ2 is an uninforma-
tive experiment, then the experts’ equilibrium payoff is u(π◦) and the decision-maker’s
equilibrium payoff is v(π◦) in the ensuing sub-game.

Proof of Lemma 4. Without loss of generality, assume that σ2 is uninformative. Since
the experiments are observed by the decision-maker, this implies that π(m1,m2) is
independent of m2. (Recall that we require the beliefs to be consistent with the exper-
iments.) To ease the notation, we drop the dependence on m2.

Together with Lemma 3, this implies that for all (m1,m2) such that P(m1,m2) > 0,
α(m′1,m2) ∈ BR(π(m1)) for all m′1. That is, α(m′1,m2) is a best-reply to all posterior
beliefs π(m1). Note that since P(m1,m2) > 0, the message m1 has strictly positive
probability. It follows that α(m′1,m2) is a best-reply to π◦ (as the prior is a convex
combinations of the posteriors). Since it is true for all (m′1,m2), the decision-maker
payoff is v(π◦).

Finally, since Lemma 2 states that the experts are indifferent among all best-replies
of the decision-makers, an expert’s payoff is u(π◦).

We now conclude the proof.
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Lemma 5. In any equilibrium of the cheap-talk game, the experts’ payoff is u(π◦), and
the decision-maker’s payoff is v(π◦).

Proof of Lemma 5. Fix any equilibrium of the cheap-talk game. From Lemma 4, the
payoff to any expert must at least be u(π◦). We now argue that it cannot be higher.
If (σ∗1, σ

∗
2) are the experiments chosen at the first stage, then in the ensuing sub-game,

an expert’s payoff is:∑
(m1,m2)

P(m1,m2)u(α(m1,m2), π(m1,m2)) =
∑

(m1,m2)

P(m1,m2) min
a∈A

u(a, π(m1,m2))

≤ min
a∈A

u

a, ∑
(m1,m2)

P(m1,m2)π(m1,m2)


= min

a∈A
u (a, π◦) = ū(π◦).

(Recall that P, α and π depend on (σ∗1, σ
∗
2), but to ease notation, we do not explicitly

write the dependence.)

Finally, we argue that the decision-maker cannot get a payoff higher than v(π◦)

either. Indeed, for the decision-maker to obtain a higher payoff, there must exist an
action a ∈ br(π◦) and a message profile (m1,m2) such that P(m1,m2) > 0 and a /∈
br(π(m1,m2)). This, however, would imply that an expert’s equilibrium payoff is strictly
less than u(a, π◦), a contradiction with an expert’s equilibrium payoff being equal to
ū(π◦) = mina′∈Â u (a′, π◦).

The latter assertion follows from Lemma 3, which states that u(a, π(m1,m2)) >

u(α(m1,m2), π(m1,m2)) and u(a, π(m′1,m
′
2)) ≥ u(α(m′1,m

′
2), π(m′1,m

′
2)) for all pairs of

messages (m′1,m
′
2) with P(m′1,m

′
2) > 0.

5 Conclusion

In this paper, we studied the effects of cross-verification on the decision-maker’s and
experts’ payoffs. Clearly, cross-verification is not the sole reason for soliciting advice
from multiple experts. Consulting a diverse set of experts with different opinions, spe-
cializations, preferences can provide a decision-maker with insights about the merits
of different aspects of an issue. In fact, a decision-maker may be able to perfectly
learn a multidimensional state by consulting experts about different dimensions. How-
ever, consulting experts that have information about different dimensions of a decision
reduces the scope for cross-verification since cross-verification is most effective when
experts’ information is highly correlated. Moreover, as we demonstrated in this paper,
the experts have an incentive to facilitate cross-verification by acquiring correlated in-
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formation. This points to an interesting tension that can inform future research on
committee design.
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