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I Introduction

Optimal tax theory generally neglects the fact that households earn multi-
ple incomes and that households differ in multiple dimensions of unobserved
heterogeneity. Most papers that allow for a multidimensional tax base, either
assume that taxpayers differ in one dimension only, or they impose restrictions
on the tax schedule to simplify the problem.1 While Mirrlees (1976, Section 4)
does derive a general optimal tax formula in a context with multiple character-
istics and multiple incomes, he offers virtually no guidance for policymakers.
The aim of this paper is to investigate the properties of the optimal tax sched-
ule when both the tax base and the unobserved heterogeneity are multidimen-
sional.

In this paper, we show that the multidimensional optimal tax problem can
be seen as consisting of two steps. For this purpose, we introduce the concept
of an isotax curve, i.e. a set of income bundles that are associated with the
same tax liability. The first step in solving the multidimensional optimal tax
problem is then to determine the shape of these isotax curves. The second step
concerns the assignment of a tax liability to each isotax curve. We show that
the assignment of tax liabilities to the isotax curves satisfies a generalization
of the ABC-formulas derived by Diamond (1998) and Saez (2001). This ABC-
formula shows how the distributional benefit of a marginal tax increase along
an isotax curve, is to be balanced against the efficiency costs of doing so. The
key challenge to multi-dimensional taxation is then to understand the optimal
shape of the isotax curves.

Finding the optimal shape of the isotax curves requires solving a Partial
Differential Equation, which is much more challenging than solving the Ordi-
nary Differential Equation implied by the optimal tax formula for a single tax
base. To understand the difficulty, note that in the one-dimensional case one can
study the effects of perturbing the marginal tax rate at one income level. The
optimal marginal tax rate at that income level is then expressed as the ratio of
mechanical and income effects at all incomes above, to compensated effects at
the income level under consideration. In the multidimensional case, one cannot
study the effects of a change in the tax gradient at one combination of incomes

1The one-dimensional model was pioneered by Mirrlees (1971) and further developed by Di-
amond (1998). Saez (2001), Scheuer and Werning (2016) and Jacquet and Lehmann (2021b)
discuss to what extent the one-dimensional model extends to the case with one income but
many dimensions of unobserved heterogeneity. Atkinson and Stiglitz (1976) study a multidi-
mensional tax base with one dimension of unobserved heterogeneity.
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without causing additional changes in the tax gradients at other combinations
of incomes. Figure 1 on page 17 illustrates the problem. Perturbing the tax lia-
bilities in a subset of income bundles (the shaded area in Figure 1), affects the
marginal tax rates along the boundary of that subset.

To the best of our knowledge, we are the first to develop a numerical al-
gorithm that addresses this geometric difficulty and that can solve the optimal
multidimensional tax problem in its general form. We apply our algorithm to
the taxation of couples. In our application we make some simplifying assump-
tions, similar to Kleven et al. (2006, 2007). We assume quasilinear and additively
separable household preferences. Moreover, in line with the empirical litera-
ture, we assume that the labor supply of wives is more elastic (0.43) than that
of husbands (0.11) (Bargain and Peichl, 2016). Finally, we non-parametrically
calibrate the joint distribution of skills starting from the joint distribution of
incomes in the Current Population Survey (CPS) of the US census.

We find that the optimal isotax curves are almost linear and parallel, with
positive marginal tax rates for both spouses. A joint income tax that discounts
female income by approximately 53 % closely approximates the fully optimized
schedule in terms of social welfare. Furthermore, we investigate the desirability
of negative jointness, i.e. the requirement that the optimal marginal tax rates of
males decrease with female income (and vice versa). Kleven et al. (2006, 2007)
show analytically that negative jointness is desirable when the productivities of
both spouses are assumed uncorrelated. We numerically find that this result is
not robust to a more realistic joint distribution of productivities.

We perform additional sensitivity analyses to investigate the determinants
of the optimal isotax curves. In each case, we first conjecture the effect that
changing some primitive has on the solution and then numerically check our
prediction. Varying the government’s aversion to inequality, or jointly varying
the labor supply elasticity of both males and females has virtually no effect on
the shape of optimal isotax curves. This only narrows or widens the gap be-
tween isotax curves depending on whether optimal marginal tax rates increase
(when aversion to inequality increases) or decrease (when both elasticities in-
crease). Conversely, only changing the labor supply elasticity of one spouse
changes the slope of the isotax curves. For instance, when the female labor
supply elasticity increases, the optimal marginal tax rate on female income de-
creases, whereas the optimal marginal tax rate on male income increases. These
changes in marginal taxes shift the burden of taxation to the less elastic tax base.

Besides our numerical algorithm, we make several theoretical contributions.
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First, we derive a test for Pareto efficiency. If welfare weights revealed by the
optimal tax formula are negative for some income bundles, then decreasing
tax liabilities at these income bundles is a self-financed Pareto improvement.
We thus extend the revealed social preference approach of Bourguignon and
Spadaro (2012), Bargain et al. (2014a), Bargain et al. (2014b), Jacobs et al. (2017),
Bierbrauer et al. (2020) and Hendren (2020) to the multidimensional context.

Second, we use the mechanism design approach pioneered by Mirrlees (1976)
to derive conditions under which the first-order conditions are sufficient to
characterize the optimal allocation. This is the case when the government’s
Lagrangian is concave with respect to the taxpayers’ utilities and to the gra-
dient of the mapping between the taxpayers’ type and utility. We analytically
verify that the specification we use in our numerical exercise satisfies these suf-
ficiency conditions. Hence, once we have obtained a numerical solution that
verifies the government’s necessary conditions, we can be sure that it is the
unique solution. It is not necessary to conduct sensitivity analyses with respect
to the initial conditions of our algorithm.

Third, we show that the tax perturbation approach and the mechanism de-
sign approach lead to the same "hybrid" optimal tax formula expressed in terms
of welfare weights, behavioral elasticities and type densities, thereby ensuring
that the two approaches are mutually consistent. Moreover, this hybrid formula
turns out to be the most suitable to implement numerically.

Fourth, we address a concern with the tax perturbation approach that both
Saez (2001) and Golosov et al. (2014) assume that incomes respond smoothly to
the size of tax perturbations. We contribute by making explicit which assump-
tions on the tax schedule ensure smooth responses of taxpayers to tax reforms.
Our assumptions rule out kinks in the tax schedule, and the existence of mul-
tiple global maxima, preventing incremental tax perturbations from causing
jumps in the taxpayers’ choices. Furthermore, we make explicit the underlying
single-crossing assumptions that enable the derivation of the optimality condi-
tions in the tax perturbation approach.

Fifth, we develop a new approach to derive the optimal mechanism. Mir-
rlees (1976, 1986) and Kleven et al. (2006, 2007) derive necessary conditions for
the optimal allocation of utilities and incomes. There are many different income
allocations that fulfill the necessary conditions for the optimum. For each such
income allocation, the first-order incentive constraints imply the partial deriva-
tives of the attained utilities with respect to the types. Nothing at this stage
ensures that the obtained partial derivatives of the attained utilities are mutu-
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ally consistent, i.e. that they imply symmetric second-order partial derivatives.
Mirrlees (1976, p. 342) and Kleven et al. (2007, p. 18) acknowledge this difficulty
by stating that among the different solutions of the partial differential equation,
only the one that implies symmetric second-order cross derivatives should be
considered. We prevent these difficulties by directly choosing the utility pro-
file and deriving the incomes as functions of the utility profile and its partial
derivatives.

Lastly, we derive optimal tax schedules when the numbers of types and in-
comes differ. When there are more types than incomes, the tax perturbation
approach is the most natural. In that case, the same optimal tax formulas are
obtained as before by averaging sufficient statics among the different taxpay-
ers with the same income bundles. We thus extend the results obtained by Saez
(2001) and Jacquet and Lehmann (2021b) to the case where taxpayers earn more
than one income. When there are more incomes than types, we show that the
government’s problem consists of two steps. It starts with a subprogram that
finds the most efficient way of distributing income choices to generate a given
mapping from types to utility levels. The solution to this subprogram does not
depend on the preferences of the government, but only on the resource costs of
providing these utility levels. In a second step, the government selects the opti-
mal mapping of types to utilities from the set of possible mappings. Our result
helps to clarify the presence of similar subprograms that are implicitly found in
the settings of Atkinson and Stiglitz (1976), Golosov et al. (2003), Golosov et al.
(2007), Gerritsen et al. (2020) and Ferey et al. (2021).

Related Literature
Our paper is related to the multidimensional screening problem that was

studied in the context of monopoly pricing by Armstrong (1996), Rochet and
Choné (1998) and Basov (2005). Rochet and Choné (1998) show that bunching is
a problem in this setting because of the interplay between the participation and
the incentive constraints. Kleven et al. (2007) show that bunching is not an issue
in the optimal tax problem if taxpayers do not face a participation constraint,
provided that aversion to inequality is not too high. They stress that there is a
wide range of redistributive preferences where bunching does not occur in the
optimum.

Our paper also relates to the literature which studies multi-dimensional het-
erogeneity in the context where the government can only observe and tax a sin-
gle income (e.g., Choné and Laroque, 2010; Rothschild and Scheuer, 2013; Roth-
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schild and Scheuer, 2016; Lockwood and Weinzierl, 2015; Jacquet and Lehmann,
2021b; Bergstrom and Dodds, 2021). We rely on the insights in this literature in
formulating our expressions in terms of sufficient statistics. Specifically, in the
context of multi-dimensional heterogeneity, sufficient statistics can be strongly
endogenous to the tax schedule. We use the approach of Jacquet and Lehmann
(2021b) to overcome this issue by expressing our optimal-tax formulas in terms
of total elasticities that incorporate this endogeneity. We expand on this literature
by allowing for multi-dimensional incomes in addition to multi-dimensional
heterogeneity.

Scheuer (2014) and Gomes et al. (2018) study a setting with multi-dimensional
heterogeneity in which agents choose to earn income in one of two different
sectors, and the government can tax the income of each sector according to a
separate tax schedule. The main difference with our approach is that in our
model agents can earn multiple incomes at the same time.

Our paper is also related to Jacquet and Lehmann (2021a), who also con-
sider the optimal taxation of multiple incomes, additionally allowing for gen-
eral equilibrium effects. However, they derive their optimal tax expressions by
restricting the overall tax schedule to be the sum of separate schedules of single
tax bases, a restriction that we do not impose.

Like in our application, Frankel (2014) studies the optimal taxation of cou-
ples in a setting with multi-dimensional heterogeneity and taxation of both
male and female income. The main contrast between the approaches is that
we allow for a continuous-type distribution, whereas Frankel (2014) studies a
discrete 2 × 2 distribution of married couples. Cremer et al. (2001, 2003) also
consider multidimensional settings. However, they only allow labor income to
be taxed non-linearly, whereas taxes on commodity/capital are constrained to
be linear.

Another important paper on taxation with multiple dimensions of labor
through mechanism design tools is Boerma et al. (2022).2 Their paper differs
from ours on several dimensions. First, they solve the government’s problem
using Legendre transformations. This method requires one to restrict individ-
ual utility functions to be additively separable with isoelastic cost of effort. Con-
versely, while our numerical analysis assumes isoelastic cost of effort, neither
our numerical algorithm nor our analytical results rely on such restrictions on
individual preferences. Second, Boerma et al. (2022) introduce a participation

2Boerma et al. (2022) describe Golosov and Krasikov (n.d.) as closely related to the present paper.
As of today, and after contacting the authors, we are unable to obtain a copy of the latter paper.
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constraint in the form of an outside option. We know from Rochet and Choné
(1998) that the interplay between participation and incentive constraints gener-
ates bunching in multidimensional screening. Conversely, there is no participa-
tion constraint in our optimal tax problem with only intensive margins.

The paper is organized as follows. We describe the problem of multidimen-
sional optimal taxation in Section II. Section III is devoted to the tax perturba-
tion approach, and Section IV is devoted to the mechanism design approach.
We present our numerical algorithm and results in Section V.

II The model

II.1 Taxpayers

The economy consists of a unit mass of taxpayers who differ in a p-dimensional

vector of characteristics denoted w
def≡ (w1, ..., wp). We refer to the complete vec-

tor of characteristics of a taxpayer as her type. Types are drawn from the type
space, which is denoted W ⊂ Rp and is assumed to be closed and convex.
Types are distributed according to a twice continuously differentiable density
denoted by f (·), which is positive over W .

Taxpayers make n ≥ 2 choices. This implies the existence of n observable tax

bases, x
def≡ (x1, ..., xn) ∈ Rn

+. We call these tax bases incomes for brevity.3 Tax-
payers pay a tax T(x) that can depend on all incomes in a nonlinear way. Tax-
payers who earn incomes x consume after-tax income c = ∑n

i=1 xi −T(x1, ..., xn).
The preferences of taxpayers of type w over consumption c and income

choices x are described by a thrice continuously differentiable utility function
U (c, x; w) defined over Rn+1

+ ×W . Taxpayers enjoy utility from consumption
but endure disutility to obtain income, so Uc > 0 and Uxi < 0. Let C(·, x; w)

be the inverse of U (·, x; w). That is, a taxpayer of type w earning incomes x
should consume C(u, x; w) to enjoy utility level u. It follows from the implicit
function theorem that Cu = 1/Uc and Cxi = −Uxi /Uc. We assume the utility
function U (·, ·; w) is weakly concave in (c, x) and indifference sets defined by
c = C(u, x; w) are strictly convex in (c, x) for all utility levels u and all types w.

We assume taxpayers maximize utility subject to their budget constraints.

3Our model could be extended to include observable actions like private expenditures in edu-
cation, which correspond to negative cash-flows for the households. This extension would not
affect the validity of our results.
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Therefore, a taxpayer of type w solves:

U(w)
def≡ max

x1,...,xn
U
(

n

∑
i=1

xi − T(x1, ..., xn), x1, ..., xn; w

)
. (1)

Let X(w)
def≡ (X1(w), ..., Xn(w)) denote the solution to this program and let

C(w)
def≡ ∑n

i=1 Xi(w) − T(X(w)) denote the corresponding consumption. In
addition, we denote the marginal rate of substitution between the ith income
and consumption as:

S i(c, x; w)
def≡ −Uxi(c, x; w)

Uc(c, x; w)
= Cxi (U(c, x; w), x; w) > 0. (2)

The first-order conditions for taxpayers of type w are:

∀j ∈ {1, ..., n} : S j (C(w), X(w); w) = 1 − Txj (X(w)) . (3)

II.2 Government

The government’s budget constraint is given by:

B def≡
∫∫

W
T(X(w)) f (w)dw − E ≥ 0, (4)

where E ≥ 0 is an exogenous amount of public expenditure. The govern-
ment’s objective is a social welfare function O which aggregates the utility of
the households in the economy:

O def≡
∫∫

W
Φ (U(w); w) f (w)dw, (5)

where the transformation (u; w) 7→ Φ(u; w) is twice continuously differentiable
in (u, w), increasing and weakly concave in u and potentially type-dependent.
The government’s problem consists of finding the tax function T(·) that maxi-
mizes the social welfare function (5) subject to revenue constraint (4), consider-
ing the households’ optimization in (1).

The Lagrangian for the government’s optimization problem is defined in
monetary terms as:

L def≡ B +
O
λ

=
∫∫

W

(
T(X(w)) +

Φ (U(w); w)

λ

)
f (w)dw − E, (6)

where λ is the shadow price of tax revenue and coincides with the Lagrange
multiplier of the government’s budget constraint at the optimum. Following
Saez (2001), we define the welfare weights of taxpayers of type w as the social
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marginal utility of consumption expressed in monetary terms:

g(w)
def≡ Φu (U(w); w) Uc (C(w), X(w); w)

λ
≥ 0. (7)

III The Tax Perturbation Approach

III.1 Effects of tax perturbations

A necessary condition for a tax schedule to be optimal is that small pertur-
bations of the schedule do not change social welfare. Golosov et al. (2014) are
the first to systematically apply this logic to the case with multiple types and
incomes. They argue that the effects of a tax perturbation on social welfare
consist of mechanical effects on the government budget, effects on household
utilities through the altered tax liabilities, and effects on the government bud-
get through behavioral responses of the taxpayers. In the optimum, the sum of
these effects should be zero.

In what follows, we formally introduce general perturbations to the tax
schedule, and we discuss the behavioral responses to such perturbations. Con-
trary to earlier contributions in the literature, we do not assume from the outset
that individuals respond smoothly to the perturbations. We rather reveal the
underlying assumptions on the tax schedule that induce taxpayers’ responses
to tax perturbations to be smooth. Taking as given the assumptions that lead
to smooth behavioral responses, we then provide a condition under which a
given tax reform is socially desirable. This condition allows us to characterize
the optimal tax schedule: if no tax reform exists that is socially desirable, then
we are in the optimum.

We first formally introduce the perturbations to the tax schedule. Perturbing
the tax schedule x 7→ T(x) in the direction R(·) by magnitude t ⪋ 0 leads to the
perturbed tax schedule x 7→ T(x)− t R(x). If, for example, R(x) > 0 and t > 0
or if R(x) < 0 and t < 0, the perturbation decreases the tax liabilities at incomes
x. Given a tax perturbation in the direction R(·), the utility of taxpayers of type
w becomes a function of magnitude t through:

ŨR(w, t)
def≡ max

x1,...,xn
U
(

n

∑
i=1

xi − T(x1, ..., xn) + t R(x1, ..., xn), x1, ..., xn; w

)
.

(8)
By definition, we know that: ŨR(w, 0) = U(w). The first-order conditions
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associated with (8) are:

∀j ∈ {1, ..., n} : S j

(
n

∑
i=1

xi − T (x) + t R (x) , x; w

)
= 1 − Txj (x) + t Rxj (x) .

(9)
If we perturb the tax schedule or any of the characteristics of the households,

then the households will update their choices X̃R(w, t) such that first-order con-
ditions (9) remain satisfied. We now introduce assumptions on the unperturbed
tax schedule that allow applying the implicit function theorem to (9) in order
to study these behavioral responses. If the conditions for the implicit function
theorem are satisfied, then the function X̃R(w, t) that solves (8) is continuously
differentiable for t close to 0, i.e. the behavioral responses to tax reforms are
smooth.

Assumption 1. The tax schedule T(·) verifies the following assumptions:

i) The tax schedule x 7→ T(x) is twice continuously differentiable.

ii) For each type w ∈ W , the second-order conditions associated with (1) are strictly
verified, i.e. the matrix [S i

xj
+ S jS i

c + Txixj ]i,j is positive definite at c = C(w) and
x = X(w).4

iii) For each type w ∈ W , the function x 7→ U (∑n
i=1 xi − T(x), x; w) admits a single

global maximum.

Assumption 1.i) rules out kinks like those in piecewise linear tax schedules.
It ensures that the first-order conditions (9) are continuously differentiable in
t, w and x, provided that the direction R(·) is twice continuously differentiable.
Assumption 1.ii) ensures that the first-order conditions (9) are associated with
a local maximum of the taxpayers’ program (8). Parts i) and ii) of Assumption
1 together enable one to apply the implicit function theorem to determine how
a local maximum of (8) is affected by a small tax perturbation or a small change
in types. Assumption 1 iii) rules out the existence of multiple global maxima.
This prevents an incremental tax perturbation from causing a “jump” in the tax-
payers’ choices from one maximum to another. At such jumps, the derivative
of X̃R(w, t) with respect to the size t of the perturbation tends to infinity, so the
perturbation approach cannot be used.

4We let [a(k)]k denote a column vector whose kth row is a(k), [A(k, ℓ)]k,ℓ denotes a rectangu-
lar matrix whose kth row and ℓth column is A(k, ℓ), and · stands for the matrix product. The
transpose operator is denoted with superscript T, and the inverse operator is denoted with
superscript −1.

10



Geometrically, Assumption 1 implies that for each type w, the indifference
set defined by c = C(U(w), x; w) admits a single tangency point with the bud-
get set defined by c = ∑n

i=1 xi − T(x) and lies strictly above the budget set
elsewhere. Given that we assume that the indifference sets defined by c =

C(u, x; w) are strictly convex, Assumption 1 is automatically verified if the tax
schedule is linear (see Appendix A.1).

In the simulations, we characterize the optimal tax schedule under the pre-
sumption that Assumption 1 holds, and we verify ex post that this is the case.
This is similar to the standard first-order mechanism design approach which
presumes the second-order incentive constraints do not bind in the optimum,
and verifies ex post that this is the case (Mirrlees, 1971, p. 188).

We now show that the effects of any tax perturbation can be decomposed
into the effects of two types of prototypical tax reforms. The first is the lump
sum perturbation which decreases the tax liability by a uniform amount:

x 7→ T(x)− ρ such that : R(x) = 1, (10a)

where we use ρ to denote the magnitude of this specific perturbation. Second,
there are compensated perturbations of the jth marginal tax rate for taxpayers of type
w which are defined as:

x 7→ T(x)− τj
(
xj − Xj(w)

)
such that : R(x) = xj − Xj(w), (10b)

where we use τj to denote the magnitude of these specific perturbations. These
perturbations are said to be “compensated for taxpayers of type w” because
they change the marginal tax rate of type w but leave the tax liability at incomes
x = X(w) unchanged.

Let us denote by ∂Xi(w)/∂ρ and ∂Xi(w)/∂τj the responses of taxpayers of
type w of their ith income to, respectively, the lump sum perturbation (10a) and
to the compensated perturbation (10b) of the jth marginal tax rate.5 A variation
in t affects the first-order conditions (9) through the changes in the marginal tax
rates on the right-hand side of (9). In addition, a variation in t affects the first-
order conditions (9) through the changes in the tax liabilities that determine the

5Strictly speaking, these responses do not just depend on the type w, but also on the Hessian
of the tax function. When the tax function is nonlinear, the responses to a tax reform gener-
ate changes in the marginal tax rates, which further induce compensated responses to these
changes in marginal tax rates, etc. (Jacquet and Lehmann, 2021b). By applying the implicit
function theorem, the behavioral responses ∂Xi(w)/∂ρ and ∂Xi(w)/∂τj encapsulate this “cir-
cular process” through the endogeneity of the marginal tax rates. We refer to these responses as
total responses. We discuss the relation between direct and total responses in the supplemen-
tary materials.
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marginal rates of substitution on the left-hand side of (9). Consequently, for
each type w, a variation dt induces the same responses as a lump-sum pertur-
bation (10a) of size R (X(w)) dt, combined with compensated perturbations of
each of the n marginal tax rates (10b) of respective sizes Rxj (X(w)) dt. We thus
get (see Appendix A.2):

∂X̃R
i (w, t)
∂t

∣∣∣∣∣
t=0

=
∂Xi(w)

∂ρ
R(X(w))︸ ︷︷ ︸

Income responses

+
n

∑
j=1

∂Xi(w)

∂τj
Rxj (X(w))︸ ︷︷ ︸

Compensated responses

. (11)

Note that we do not explicitly assume that responses to tax perturbations
are smooth. We rather show that if the unperturbed tax schedule verifies As-
sumption 1, the function t 7→ X̃R(w, t) is continuously differentiable at t = 0,
and that Eq. (11) holds in that case.

We now investigate whether, starting from a tax schedule T(·) that is not
necessarily optimal, a perturbation in a direction R(·) is socially desirable. We
evaluate the social desirability of the tax reform by investigating its effects on
the following perturbed “Lagrangian”:

L̃R(t, λ)
def≡
∫∫
W

T(X̃R(w, t))− t R(X̃R(w, t)) +
Φ
(

ŨR(w, t); w
)

λ

 f (w)dw,

(12)
where λ > 0 denotes the shadow price of tax revenue. We evaluate the effects
of a tax reform on the perturbed Lagrangian by computing its effects, first, on
the governments’ revenue (4), and second, on the social objective (5).

We compute the response of the tax liabilities T(X̃R(w, t)) − t R(X̃R(w, t))
to a change in the magnitude t of the tax perturbation and evaluate at t = 0.
For each taxpayer, the tax liabilities are modified in two ways. First, inde-
pendently of any behavioral change, the tax revenue is directly affected by
the mechanical effect: −R(X(w)). Second, taxpayers of type w respond to the
tax perturbation by changing their incomes through the behavioral responses
(∂X̃R

i (w, t)/∂t)|t=0, for i = 1, ..., n. The total change in the tax liability due to
the perturbation equals:

∂T(X̃R(w, t))− t R(X̃R(w, t))
∂t

∣∣∣∣∣
t=0

=

[
−1 +

n

∑
i=1

Txi(X(w))
∂Xi(w)

∂ρ

]
R(X(w))

+ ∑
1≤i,j≤n

Txi(X(w))
∂Xi(w)

∂τj
Rxj (X(w)) , (13)
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where we use (11) to decompose the behavioral effects.
Next, we evaluate the effect of the tax perturbation on the social objective.

Applying the envelope theorem to social welfare Φ(U) after inserting (8) and
using (7) leads to:

1
λ

∂Φ
(

ŨR(w, t); w
)

∂t

∣∣∣∣∣∣
t=0

= g(w) R (X(w)) . (14)

For any perturbation in direction R(·) and with magnitude t, there exists a
lump-sum transfer denoted ℓR(t) such that the combination of the two pertur-
bations is budget-balanced, i.e. x 7→ T(x)− t R(x) + ℓR(t) is a budget-balanced
perturbation. Given a direction R(·), it is not easy to compute the lump sum
transfer ℓR(·) that makes the overall combination budget-balanced. However,
if we normalize λ such that:

0 =
∫∫
W

[
1 − g(w)−

n

∑
i=1

Txi(X(w))
∂Xi(w)

∂ρ

]
f (w)dw, (15)

then a lump-perturbation (10a) has no impact on the Lagrangian (6). Conse-
quently, one only needs to evaluate the effect of the perturbation in the direc-
tion R(·) on the Lagrangian (6) to get the sign of the effect of the budget neutral
perturbation on social welfare O. This finding, which is valid even if the tax
schedule is not optimal, is expressed in the following proposition (proven in
Appendix A.3).

Proposition 1. Under Assumption 1 and if λ is such that (15) holds, a tax perturba-
tion in the direction R(·) with t > 0

(
respectively t < 0

)
combined with a lump-sum

rebate of the net budget surplus generated by the perturbation is welfare improving if
and only if (∂L̃R(t, λ)/∂t)|t=0 > 0

(
resp. (∂L̃R(t, λ)/∂t)|t=0 < 0

)
, where:

∂L̃R(t, λ)

∂t

∣∣∣∣∣
t=0

=
∫∫
W

{[
g(w)− 1 +

n

∑
i=1

Txi(X(w))
∂Xi(w)

∂ρ

]
R (X(w)) (16)

+ ∑
1≤i,j≤n

Txi(X(w))
∂Xi(w)

∂τj
Rxj (X(w))

}
f (w)dw.

In subsections III.2 and III.3, we apply this proposition to derive the optimal-
tax function under fixed isotax curves and for the general case, respectively.
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III.2 Optimal taxation for given isotax curves

Intuitively, the design of the optimal tax schedule x 7→ T(x) can be decom-
posed into two steps. The first step concerns the design of the isotax curves,
which are the loci of incomes x that are associated with the same tax liability.6

The second step concerns the assignment of a specific tax liability to each iso-
tax curve. In this subsection, we apply Proposition 1 to solve the solution to the
second step of finding the optimal tax liability for given isotax curves. We show
that the assignment of tax liabilities to given isotax curves is characterized by
a tax formula reminiscent of the ABC-formula of Saez (2001) that characterizes
the optimal schedule with a one-dimensional base.

Isotax curves are implicitly given through the function Γ(·) which defines
taxable income as follows:

y = Γ(x) ∈ R

for each combination of incomes x. Values of x with the same tax liability T(x)
map to the same value of Γ(x). Assuming that Γ(·) is twice continuously dif-
ferentiable and that it admits a non-zero gradient everywhere, it follows that
combinations of incomes with equal values of taxable income y are on the same
isotax curve. We then solve for the optimal assignment of tax liabilities to each
taxable income, denoted by T , so that we have T(x) = T (Γ(x)).7 We then con-
sider perturbations of the form x 7→ T (Γ(x))− t R (Γ(x)), where the direction
R(·) admits taxable income Γ(x) as its single argument. We thus only consider
perturbations of the function T , preserving isotax curves y = Γ(x). We de-
note as Y(w) = Γ(X(w)) the realized taxable income for taxpayers of type w
under the unperturbed tax schedule, and as ỸR(w, t) = Γ(X̃R(w, t)) the real-
ized taxable income of taxpayers of type w under the perturbed tax schedule
x 7→ T (Γ(x))− t R (Γ(x)).

The lump sum perturbation (10a) defines the income response of taxable
income as:

∂Y(w)

∂ρ
=

n

∑
i=1

Γxi(X(w))
∂Xi(w)

∂ρ
. (17a)

We show in Appendix A.4 that the compensated tax perturbation at taxable
income Y(w) in the direction R(y) = y − Y(w) of size τ causes the following

6Formally, these loci are "curves" only if n = 2. If n = 3, they are isotax surfaces. If n ≥ 4, they
are isotax hypersurfaces, etc. We maintain the term "isotax curves" for simplicity.

7We call the summary statistic y "taxable income" because this is the most natural interpretation.
Mathematically, it is merely a statistic determined by the combination of income choices x.
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compensated responses of taxable income for taxpayers of type w:

∂Y(w)

∂τ

def≡ ∑
1≤i,j≤n

Γxi(X(w))
∂Xi(w)

∂τj
Γxj(X(w)). (17b)

Let m(·) denote the density of taxable income Y and let M(·) denote the cor-
responding cumulative density function. In addition, let ∂Y(y)/∂τ, ∂Y(y)/∂ρ

and g(y) denote the mean values among taxpayers earning Y(w) = y of the
compensated responses ∂Y(w)/∂τ, the income responses ∂Y(w)/∂ρ and the
welfare weights g(w) respectively. We show in Appendix A.4 that the optimal
assignment of tax liabilities to the isotax curves verifies the following Proposi-
tion.

Proposition 2. The optimal assignment of tax liabilities to each isotax curve verifies
the optimal income tax formula:

T ′(y)
1 − T ′(y)

=
1

ε(y)
1 − M(y)

y m(y)

∫ ∞

z=y

[
1 − g(z)− T ′(z)

∂Y(z)
∂ρ

]
m(z)

1 − M(y)
dz,

(18a)
together with transversality condition:

0 =
∫ ∞

z=0

[
1 − g(z)− T ′(z)

∂Y(z)
∂ρ

]
m(z)dz, (18b)

where we define the compensated elasticity at income y:

ε(y)
def
≡ 1 − T ′(y)

y
∂Y(y)

∂τ
. (18c)

Formula (18a) is similar to Equation (19) in Saez (2001) with the exception
that it is defined over taxable income rather than labor income. The distor-
tions arising from a change in the marginal tax rate in the neighborhood of
isotax curve y are proportional to the compensated elasticity ε(y) and to the
size of the tax base y m(y). In the optimum, these distortions should be offset
by the sum of the mechanical effects, 1 − g(z), and the income response effects,
T ′(z) (∂Y(z)/∂ρ), for all taxable incomes z above y.

Since we can replicate known results from the one-dimensional problem so
readily in assigning tax liabilities to given isotax curves, the difficulty of solv-
ing the multidimensional tax problem does not lie in this step. However, the
complementing step of designing the optimal shape of isotax curves is novel
and causes new difficulties.
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III.3 Optimal tax formula

We now apply Proposition 1 to the more general problem of designing the
optimal income tax schedule in the income space. We introduce the following

notations. Let X def≡ {x|∃w ∈ W : x = X(w)} denote the range of the type set
W under the allocation w 7→ X(w). Let h(x) denote the joint density of incomes
x, which is defined over X . Finally, for each combination of incomes x ∈ X , let
∂Xi(x)/∂τj, ∂Xi(x)/∂ρ and g(x) respectively denote the means of ∂Xi(w)/∂τj,
∂Xi(w)/∂ρ and g(w) among taxpayers that earn the combination of incomes
X(w) = x.

At the optimum, there should not exist an infinitesimal perturbation of the
tax schedule that would induce a first-order effect on the government’s objec-
tive. According to Proposition 1, this is equivalent to demanding that the right-
hand side of (16) equals zero for any direction R(·). To derive an optimal tax
formula from this requirement, we rewrite (16) in the income space, which re-
quires the following assumption about the regularity of the optimal allocation:

Assumption 2. The sufficient statistics h(x), ∂Xi(x)/∂τj, ∂Xi(x)/∂ρ and g(x) are
continuously differentiable functions of x.

At the end of this subsection, we provide sufficient microfoundations to il-
lustrate the plausibility of Assumption 2. The following proposition then char-
acterizes the optimal tax schedule (see the proof in Appendix A.5).

Proposition 3. Under Assumptions 1 and 2, the optimum verifies the Euler-Lagrange
equation:

[
1 − g(x)−

n

∑
i=1

Txi(x)
∂Xi(x)

∂ρ

]
h(x) = −

n

∑
j=1

∂

[
n
∑

i=1
Txi(x)

∂Xi(x)
∂τj

h(x)

]
∂xj

, (19a)

for all x in X , and the boundary conditions:

∀x ∈ ∂X : ∑
1≤i,j≤n

Txi(x)
∂Xi(x)

∂τj
h(x) ej(x) = 0, (19b)

where ∂X denotes the boundary of X , and e(x) = (e1(x), ..., en(x)) denotes the out-
ward unit vector normal to the boundary at x.

Proposition 3 provides a divergence equation that should hold for any in-
come x ∈ X . Euler-Lagrange equation (19a) corresponds to what is derived by
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Golosov et al. (2014, p. 49) in the proof of their Proposition 3, while bound-
ary conditions (19b) are first derived in the present paper. A more intuitive
formulation can be obtained by integrating the Euler-Lagrange Partial Differ-
ential Equation (19a) on any subset Ω ⊆ X of the income set. Applying the
divergence theorem yields the following corollary:

Corollary 1. Under Assumptions 1 and 2, the optimum must verify the following
integrated Euler-Lagrange equations for any subset of incomes Ω ⊆ X with smooth
boundary ∂Ω and outward unit normal vectors e(x) = (e1(x), ..., en(x)):

−
∮

∂Ω

∑
1≤i,j≤n

Txi(x)
∂Xi(x)

∂τj
ej(x) h(x)dΣ(x) (19c)

=
∫∫
Ω

[
1 − g(x)−

n

∑
i=1

Txi(x)
∂Xi(x)

∂ρ

]
h(x)dx,

where the symbol
∮

denotes a (hyper)-surface integral and dΣ(x) is the corresponding
measure.

x1

x2

R(x) = 1

Ω

∂Ω

δe(x)

Figure 1: Intuition for Proposition 3. x1 and x2 are incomes.

Equation (19c) corresponds to Equation (17) in Golosov et al. (2014). To clar-
ify the economic intuition of Corollary 1, we now provide a heuristic derivation
of Eq. (19c) for the case with two incomes (n = 2). In doing so, we extend the
heuristic derivation of the optimal tax formula provided by Saez (2001) for the
one-dimensional case to the multidimensional case. We consider a tax reform,
illustrated in Figure 1, that consists of two parts:

i. Inside the subset of incomes Ω (shaded area in Figure 1): A lump sum per-
turbation (10a) that uniformly decreases the tax liability by t for all house-
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holds with incomes x ∈ Ω before the reform.8 Using R(X(w)) = 1 and
Rxi(X(w)) = 0 inside Ω, only mechanical and income effects matter for
types with incomes X(w) ∈ Ω. From (13) and (14), the contributions of the
mass h(x) of taxpayers with initial income x inside Ω to the change in the
government’s objective L̃(t) is therefore given by:

−
[

1 − g(x)−
n

∑
i=1

Txi

∂Xi(x)
∂ρ

]
h(x).

Integrating these effects over all incomes x inside the shaded area Ω leads
to minus the right-hand side of (19c).

ii. Inside a ring of width δ around Ω (area between the shaded area and the
dashed curve in Figure 1): The tax gradient (Tx1 , ..., Txn) must change to
ensure tax liabilities uniformly decrease by t inside Ω and are unchanged
outside a ring of width δ around Ω. For this purpose, along any radius nor-
mal to the boundary ∂Ω, the tax gradient (Tx1 , ..., Txn) must be perturbed
in a direction such that Rxj(X(w)) = −ej(x)/δ for all j ∈ {1, ..., n}, where
(e1(x), ..., en(x)) is the outward unit vector normal to ∂Ω at income x. If the
width δ of the ring around Ω is sufficiently small, then the effects of changes
in tax liabilities within the ring are of second-order importance compared
to those inside Ω. We therefore approximate the tax perturbation in the ring
by the n compensated tax perturbations (10b) of sizes −ej(x)/δ. This allows
us to use (13) and R(X(w)) ≃ 0 to approximate the contribution by taxpay-
ers with initial income x inside the ring to the change in the government’s
objective L̃(t) as:

−1
δ ∑

1≤i,j≤n
Txi

∂Xi(x)
∂τj

ej(x) h(x).

Integrating this expression, first along a radius of width δ normal to ∂Ω,
and second along the boundary ∂Ω of Ω leads to the left-hand side of (19c).

If the initial tax schedule is optimal, the substitution effects inside the ring of
width δ around Ω must be exactly offset by the mechanical and income effects
inside Ω, which leads to (19c).

Following Bourguignon and Spadaro (2012), Bargain et al. (2014b) and Ja-
cobs et al. (2017), one can use Proposition 3 to reveal the social preferences that

8The area Ω in our Figure 1 does not need to be convex.
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are consistent with an existing tax schedule. According to (19a), the revealed
marginal welfare weights are:

ĝ(x)
def≡
[

1 −
n

∑
i=1

Txi(x)
∂Xi(x)

∂ρ

]
+

1
h(x)

n

∑
j=1

∂

[
n
∑

i=1
Txi(x)

∂Xi(X(w))

∂τj
h(x)

]
∂xj

.

(21)
If for some income x these revealed marginal welfare weights are negative, then
there exists a Pareto-improvement to the current tax schedule. We thus get a
necessary condition for a given tax schedule to be Pareto efficient (see the proof
in Appendix A.6).

Proposition 4. Under Assumptions 1 and 2:

i) If for some incomes x⋆ inside X , one has ĝ(x⋆) < 0 then an incremental tax
perturbation that decreases the tax liabilities in an interior neighborhood of x⋆ is
Pareto improving.

ii) A Pareto efficient tax schedule must lead to ĝ(x) ≥ 0 for all x ∈ X .

Part ii) of Proposition 4 provides a necessary condition in terms of observ-
able statistics to test whether the current tax system is Pareto efficient. If the test
fails, Part i) of Proposition 4 provides a Pareto improving tax reform. This re-
sult extends the findings of Werning (2007), Lorenz and Sachs (2016), Hendren
(2020), Bierbrauer et al. (2020) and Gaube (2022) to the case where taxpayers
earn many incomes.

In the remainder of this section, we discuss a microfoundation under which
Assumption 2 holds. We will show that Assumption 2 holds under the follow-
ing extension of the single crossing condition to the multidimensional context.

Assumption 2’. The utility function U and the tax schedule T(x) satisfy the following
conditions.

i) The number of incomes is equal to the number of unobserved characteristics: n =

p.

ii) The matrix
[
S i

wj

]
i,j

is invertible.

iii) The mapping w 7→
(
S1(c, x; w), ...,Sn(c, x; w)

)
defined on W is injective.

iv) The tax schedule x 7→ T(x) is thrice differentiable.
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Part ii) of Assumption 2’ is standard (see Mirrlees, 1976, Section 4 and Renes
and Zoutman, 2017). For n = p = 1, Parts i) ii) and iii) of Assumption 2’ are
equivalent to the standard single crossing condition. For n = p ≥ 1, when the
utility function is additively separable:

U (c, x; w) = γ(c)−
n

∑
i=1

υi(xi, wi) where : γ′, υi
xi

, υi
xi,xi

> 0 ̸= υi
xi,wi

(22)

then both Part ii) and Part iii) become equivalent to υi
xi,wi

̸= 0.9 Part iv) of
Assumption 2’ is more demanding than Assumption 1. It is necessary to ensure
that behavioral responses ∂Xi(w)/∂τj, ∂Xi(w)/∂ρ and ∂Xi(w)/∂wj, which are
defined along nonlinear income tax schedules, vary in a smooth way in the type
space at the optimum (see Appendix A.7). Combining Assumptions 1 and 2’,
we obtain the following Lemma, which we prove in Appendix A.7.

Lemma 1. Under Assumptions 1 and 2’, the mapping w 7→ X(w) is a continuously
differentiable bijection from W into X , and Assumption 2 holds.

In the case where the dimension p of the type set is larger than the dimension
n of the income set, Propositions 3 and 4 remain valid under Assumptions 1 and
2. One can follow Jacquet and Lehmann (2021b) by assuming that Assumption
2 holds with respect to an n-dimensional subset of types, and “pooling” the
p − n types of taxpayers who get the same combinations of incomes.

IV The Mechanism Design approach

In this section, we rederive the optimal tax system using the mechanism-
design approach instead of the tax-perturbation approach. This exercise serves
three purposes. First, it allows us to verify under what conditions the two ap-
proaches result in the same optimal allocation. Second, by addressing the same
problem from two sides, we arrive at a hybrid formulation for the optimal-tax
function that is particularly useful for the purpose of simulation. Third, we use
the mechanism-design approach to verify under what conditions the solution
to the first-order conditions uniquely describe the maximum.

The mechanism design approach relies on the Taxation Principle (Ham-
mond, 1979; Guesnerie, 1995), according to which it is equivalent for the gov-

9When the utility function takes the form (22), we get S i(c, x; w) = υi
xi
(xi, wi)/γ′(c). As-

sumption 2’ then amounts to demanding that the n one-dimensional mappings wi 7→
υi

xi
(xi, wi)/γ′(c) are injective, which is guaranteed by υi

xi ,wi
being either everywhere positive

or everywhere negative.
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ernment to select a tax function x 7→ T(x) taking into account the taxpayers’
decisions through (1), or to directly select an allocation w 7→ (C(w), X(w)) that
verifies the self-selection (or incentive) constraints:

∀w, ŵ ∈ W : U(w)
def≡ U (C(w), X(w); w) ≥ U (C(ŵ), X(ŵ); w) . (23)

Instead of dealing with the double continuum of inequalities in (23), we
follow Mirrlees (1971, 1976) by adopting a First Order Mechanism Design ap-
proach (henceforth the FOMD). This approach consists of, first, considering
only “smooth” allocations. We formalize this in Assumption 3:

Assumption 3. The allocation w 7→ (C(w), X(w)) is continuously differentiable and
verifies (23).

Second, we consider only the first-order incentive constraints:

∀w ∈ W , ∀i ∈ {1, ..., p} : Uwi(w) = Uwi (C(w), X(w); w) , (24)

which are obtained by applying the envelope theorem to the maximization of
U (C(ŵ), X(ŵ); w) with respect to ŵ and demanding that the maximand equals
w.

Under Assumption 3, the FOMD consists of finding a continuously differen-
tiable allocation w 7→ (U(w), X(w), C(w)) that verifies the first-order incentive
constraint (24) and maximizes the government’s Lagrangian:∫∫

W

{
n

∑
i=1

Xi(w)− C(w) +
Φ(U(w); w)

λ

}
f (w)dw − E. (25)

Our approach is to divide the optimization problem in two stages. In the
first stage, the government chooses the utility profile w 7→ U(w). In the second
stage, which we label the subprogram, the government chooses the allocation
w 7→ X(w) to maximize the resources extracted from taxpayers conditional on
the utility profile chosen in the first stage. Formally, the government chooses
the utility profile w 7→ U(w) to maximize:∫∫

W
L
(

U(w), Uw1 , . . . , Uwp ; w, λ
)

dw, (26)

where the Lagrangian L(·) is defined as:

L(u, z; w, λ)
def≡
(
R (u, z; w) +

Φ(u; w)

λ

)
f (w)− E, (27)
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and the function R(·) is defined via the subprogram:

R(u, z; w)
def≡ max

x1,...,xn

n

∑
i=1

xi − C(u; x; w) (28)

s.t : ∀i ∈ {1, ..., p} : zi = Uwi (C (u, x; w) , x; w) .

Our approach differs from the traditional approach in Mirrlees (1976), Kleven
et al. (2007) and Renes and Zoutman (2017), who directly maximize Lagrangian
(25) subject to the incentive constraint (24) with respect to both the utility pro-
file and the allocation. The traditional approach hides a conceptual problem in
the multidimensional context. To see this, consider an example in which utility
is additively separable as in (22). In that case, for a given candidate allocation
w 7→ X(w) the first-order incentive constraints (24) form a system of Partial
Differential Equations in w 7→ U(w). If there is only one type, p = 1, the sys-
tem simplifies to an Ordinary Differential Equation which can be integrated to
provide the corresponding mapping w 7→ U(w) (up to a constant). Conversely,
when p ≥ 2, the system of Partial Differential Equations (24) for a given candi-
date mapping w 7→ X(w) yields a candidate for the gradient of w 7→ U(w) with

components w 7→ Zi(w)
def≡ −υi

wi
(Xi(w), wi) for all i ∈ {1, ..., p}. However, not

every combination of mappings w 7→ Zi(w) can effectively be the gradient of
a mapping w 7→ U(w). The utility profile w 7→ U(w) must exhibit symmetric
second-order cross-derivatives, i.e. Uwj,wk(w) = Uwk,wj(w) for all j, k and all
w. Hence, only candidate mappings w 7→ X(w) that imply a utility profile that
verifies ∂Zk(w)/∂wj = ∂Zj(w)/∂wk for all j, k and for all w, are implementable.
These additional implementability constraints are irrelevant in one-dimensional
optimal tax problems but cannot be ignored in the multidimensional case.

Our approach overcomes this challenge by explicitly choosing the utility
profile U(w) in the first stage. Therefore, the solution automatically satisfies
the implementation condition Uwi,wj(w) = Uwj,wi(w).

It is important to discuss the FOIC (24) in greater detail, since these form
the constraints to the subprogram (28). Consider first the case in which n =

p = 1, and assume the single-crossing condition is satisfied, i.e. Uxw(·) is either
strictly positive or negative for all (u, x, w), such that the right-hand side of (24)
is monotonic in x. In that case, for any utility profile the FOIC (24) admits one
solution, and hence, the inner optimization problem (28) becomes trivial since
only one allocation can implement the utility profile.10

10Depending on the specification of the utility function, there may exist utility profiles for which
(24) does not admit a solution. For instance, consider n = p = 1 and assume utility is defined
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In a setting with more incomes n > 1, the same utility profile can often be of-
fered through multiple allocations, the number of free variables in the system of
equations (24) is larger. In that case, the subprogram (28) ensures that the gov-
ernment maximizes the resources extracted from each taxpayer. This division of
the optimization problem into two stages explains several efficiency results in
the literature, the most famous example being the Atkinson and Stiglitz (1976)
theorem. If the type space is one-dimensional, p = 1, and Uw depends only on
c and x1, but not on (x2, ..., xp), then marginal tax rates on (x2, ..., xp) should be
zero. More generally, as argued by Gauthier and Laroque (2009), if one includes
externalities or public good provision in (x2, ..., xp), then one retrieves first-best
rules, such as a Pigouvian tax rule in case of an externality, or a Samuelson rule
in case of public good provision.

A final concern is that we have not excluded the possibility that two allo-
cations which implement the same utility profile, also extract exactly the same
amount of resources. In addition, a concern is that the solution to (28) is not
differentiable. Assumption (4) rules out these possibilities.

Assumption 4. Subprogram (28) admits a single solution for each (u, z; w). We de-
note this solution by X1(u, z; w), ..., Xn(u, z; w) and assume that it is twice continu-
ously differentiable in (u, z; w).

We provide a micro-foundation for (4) in Assumption (4’) below.
Under Assumptions 3 and 4 we can derive the necessary conditions for the

FOMD problem (26) using a perturbation approach. In Appendix B.1 we derive
these conditions by considering perturbations in the utility profile w 7→ U(w)

that leave the value of the Lagrangian (26) unchanged. The resulting expres-
sions are summarized in Proposition. 5.

Proposition 5. Under Assumptions 3 and 4, the optimal utility profile w 7→ U(w)

must verify for all w in W :(
1 − S i

)
f (w) = Uc

n

∑
j=1

θj(w) S i
wj

, (29a)

such that Uw is strictly positive for all (u, x, w). In that case a candidate utility profile with
Uw(w) < 0 for at least one w cannot be implemented. Technically, we can handle this concern
by assigning to the subprogram the value R(·) = −∞ when the constraints to the subprogram
do not admit a solution. Assigning negative infinity to the subprogram ensures that such a
utility profile cannot maximize the Lagrangian (26). The first stage nevertheless remains well
defined, as long as there exists at least one utility profile that satisfies the FOIC. This is ensured
because the Laissez-Faire allocation is by definition incentive compatible. In the remainder we
will ignore this issue because it is unlikely to be of practical relevance.
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n

∑
j=1

∂θj

∂wj
(w) =

(
1
Uc

− Φu(U(w); w)

λ

)
f (w)−

n

∑
j=1

θj(w)
Ucwj

Uc
, (29b)

0 =
n

∑
j=1

θj(w)ej(w), ∀w ∈ ∂W , (29c)

where we define:

θj(w)
def
≡ −Lzj (U(w), Uw1(w), ..., Uwn(w); w, λ) . (29d)

Eq. (29a) characterizes the optimal incomes X(w). Eq. (29b) is the Euler-
Lagrange equation characterizing the cost θ(wj) of distorting the jth component
of the gradient of w 7→ U(w) (see (29d)). Eq. (29c) corresponds to the boundary
conditions that must hold along the boundary of the type space ∂W . Equations
(29a), (29b), and (29c) respectively correspond to equations (60), (61) and (62)
in Mirrlees (1976). Note that θj(·) corresponds to the multiplier of the incen-
tive constraints in Mirrlees (1976), as well as to the multiplier of the incentive
constraints in the resource maximization subprogram (28). Our approach of
perturbing w 7→ U(w) and deducing the implied perturbation of the alloca-
tion w 7→ (C(w), X(w)) from the first-order incentive constraints, thus shows
that shadow cost on the incentive constraint can be interpreted as the marginal
resource cost of providing the utility profile.

We now provide a microfoundation to show the plausibility of Assumption
4.

Assumption 4’. The number of incomes equals the number of unobserved character-
istics, i.e. n = p, and for each utility level u and each type w ∈ W , the mapping

(u, x; w) 7→
(
Uw1 (C(u, x; w), x; w) , ...,Uwp (C(u, x; w), x; w)

)
is twice continuously differentiable in (u, x, w), and bijective in x with an invertible
Jacobian.

When the utility function is of the additively separable form described in
(22), Assumption 4’ is equivalent to υi

xi,wi
̸= 0. Hence, Assumption 4’ is a way

to extend the single crossing condition in a multidimensional context.11

In Appendix B.2, we rewrite the conditions of Proposition 5 in terms of
behavioral elasticities, type densities and welfare weights when n = p. We
show that under Assumptions 3 and 4, the Euler-Lagrange Equation (29b) can

11Mirrlees (1976, page 342) adds a similar assumption when interpreting his optimality condition.
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be rewritten:[
1 − g(w)−

n

∑
i=1

Txi(X(w))
∂Xi(w)

∂ρ

]
f (w) =

n

∑
j=1

∂
n
∑

i=1

(
Txi(X(w)) Aj,i(w) f (w)

)
∂wj

,

(30a)
for all w in W , while the Boundary conditions become:

∑
1≤i,j≤n

Txi(X(w)) Aj,i(w) ej(w) = 0, (30b)

for all w in W , where the matrix A is defined by:

[
Ai,j
]

i,j
def≡
[
S i

wj

]−1

i,j
= −

[
∂Xi(w)

∂wj

]−1

i,j

·
[

∂Xi(w)

∂τj

]
i,j

. (30c)

In Appendix A.8, we show how optimal tax formulas (30) can also be retrieved
by applying the tax perturbation approach using Assumption 1 and only Parts
i) and ii) of Assumption 2’. Hence, we show that the optimality conditions de-
rived by Mirrlees (1976, 1986) through a mechanism design approach are con-
sistent with the optimality conditions in terms of sufficient statistics derived by
Golosov et al. (2014) using a tax perturbation approach. We thus confirm that
these two approaches are consistent in the multi-dimensional setting, as Saez
(2001) shows for the one-dimensional case. The tax perturbation approach and
FOMD approach are two faces of the same coin: while the FOMD approach
computes the effects of directly perturbing a utility profile, the tax perturbation
approach considers the effects of perturbing a tax function that decentralizes an
allocation and the corresponding utility profile. The tax perturbation approach
thus indirectly deals with perturbed allocations and yields conditions for op-
timality that are consistent with those that follow from the FOMD approach
using direct perturbations.

Finally, we discuss the strengths and weaknesses of the tax perturbation and
the mechanism design approaches. First assume the number of incomes equals
the number of types, n = p, and assume that individual preferences verify Parts
i), ii) and iii) of Assumptions 2’ and Assumption 4’.12 The tax perturbation
approach then requires the tax function to be smooth enough in the sense of
Assumption 1 and of Part iv) of Assumption 2’, while the first-order mechanism
approach requires incentive-compatible allocations that are smooth in the sense

12Recall when individual preferences are additively separable as in (22), Parts i), ii) and iii) of
Assumption 2’ on the one hand and Assumption 4’ on the other hand are both equivalent to
υi

wi ,yi
̸= 0.
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of Assumption 3. We show in Appendix A.2 that Assumptions 1 and 2’ together
imply Assumption 3. Conversely, combining Assumption 3 with the left-hand
side of (3) implies that marginal tax rates are only once-differentiable functions
of type w, while Part iv) of Assumption 2’ requires they are twice-differentiable
in incomes x. The tax perturbation approach is thus slightly more demanding
than the mechanism design approach when n = p.

When the number of types is larger than the number of incomes, p > n, the
tax perturbation method is easier to trace than the mechanism design approach.
The reason is that the tax perturbation approach directly optimizes over the tax
function T(x), which depends on n inputs whereas the mechanism-design func-
tion optimizes over the indirect-utility function V(w) which depends on p > n
inputs. Hence, using the tax perturbation approach rather than the mechanism-
design approach reduces the dimensionality of the problem. Conversely, and
by the same logic the mechanism-design approach is easier to trace when n > p.

Proposition 6. Under Assumptions 3 and 4, if for each type w ∈ W and each λ ∈ R+

the mapping (U, z) 7→ L (U, z; w, λ) is concave and w 7→ U⋆(w) verifies Equations
(29), then w 7→ U⋆(w) is the unique solution to the relaxed problem.

This result is especially important for the numerical simulations below be-
cause it ensures that, whenever (U, z) 7→ L(U, z; w, λ) is concave, and an alloca-
tion is found that verifies the necessary conditions, this allocation is the unique
solution to the government’s problem.

V Numerical simulations

Because both the type space and the income space are multidimensional, the
optimal tax formulas do not take the form of ordinary differential equations, as
in Mirrlees (1971), Diamond (1998) and Saez (2001) but they take the form of a
second-order partial differential equation, as in Mirrlees (1976) and Golosov et
al. (2014). This significantly complicates the process of solving the optimal tax
equations. To understand this, it helps to consider the effects of a tax perturba-
tion from a geometric perspective. In the one-dimensional case, the change in
the marginal tax rate at a given income level is directly connected to changes in
tax liabilities at all higher incomes. In the multidimensional case, the relation is
more complicated. To change the gradient of the tax function at a given point,
one must change the tax liabilities near that point, causing changes in the tax
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gradient elsewhere, see for instance Figure 1. To deal with this complexity, we
rely on numerical simulations.

We develop a new numerical algorithm and apply it to the optimal taxation
of couples. We consider an economy where couples differ in the productivity
of females (w f ) and males (wm), so unobserved heterogeneity is bi-dimensional
(p = 2). Each couple chooses the labor supply of both spouses, so there are
two incomes (i.e. n = p = 2). Preferences over the couple’s consumption c, fe-
male income x f and male income xm are quasilinear in consumption, additively
separable and isoelastic in each income:

U (c, x f , xm; w f , wm) = c −
ε f

1 + ε f
x

1+ε f
ε f

f w
− 1

ε f
f − εm

1 + εm
x

1+εm
εm

m w
− 1

εm
m . (31)

Income effects are thus assumed away (i.e. ∂X f (w)/∂ρ = ∂Xm(w)/∂ρ = 0).
Moreover, if the tax schedule is additively separable, the cross responses are
equal to zero (i.e. ∂X f (w)/∂τm = ∂Xm(w)/∂τf = 0). Finally, ε f and εm respec-
tively denote the direct elasticities of male and female incomes with respect
to their own net-of-marginal-tax rates. Our baseline values are ε f = 0.43 and
εm = 0.11, which correspond to the mean labor supply elasticity for married
women and for men in the meta-analysis of Bargain and Peichl (2016, Figure 1).

We calibrate the skill density f (·) using the Current Population Survey (CPS)
of the US census of March 2016. We focus on married, mixed-gender couples
that live together. We only consider income from labor. We drop couples in
which either partner earns less than $1, 000 per year or in which either of the
partners’ incomes is top-coded. We drop same-sex couples because in our sim-
ulations we attach labor elasticities based on gender in each couple. From
each observed couple, we recover their type (w f , wm) from their labor earn-
ings (x f , xm) by inverting the first-order conditions (3). For this purpose, we
use a rough approximation of the current tax schedule in the US by assuming
a constant marginal tax rate of 37%, a figure which is consistent with Barro
and Redlick (2011, Table 1). Next, we estimate the type density through a bi-
dimensional kernel. We specify the social welfare function to be CARA with
Φ(u, w1, w2) = 1 − exp (−β u) /β, where β > 0 stands for the degree of in-
equality aversion. For our baseline simulation, we select β such that the as-
sumed 37% tax rate coincides with the optimal linear tax rate. This leads to
β = 0.0061. Throughout the simulations, we assume that the government’s
revenue requirement equals 15% of GDP, which is close to the observed share
of public spending in GDP for the US.
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With our functional specifications, the government’s Lagrangian (27) be-
comes:

L(u, z; w, λ) =

[
∑

i= f ,m

(
(1 + εi)

εi
1+εi wi z

εi
1+εi
i − εi zi wi

)
− u − exp (−β u)

λ

]
f (w),

which is concave in (u, z f , zm). Since the Lagrangian is concave, Proposition 6
applies, meaning that our optimal tax formulas are both necessary and suffi-
cient for the unique optimum.

We first give an overview of the simulation algorithm, in Subsection V.1.
Next, in Subsection V.2, we report the results of the simulations for the baseline
calibration. Finally, in Subsection V.3, we consider a number of comparative
statics. We conjecture what happens when we vary the labor supply elastici-
ties, the inequality aversion, or the simulation domain, and we verify our con-
jectures in the simulations.

V.1 Simulation algorithm

The idea of our numerical algorithm is to first solve an optimal tax formula
for given values of sufficient statistics, then to update the sufficient statistics
using the tax schedule derived from the optimal tax formula, and to repeat
this procedure until it converges to the optimal tax schedule. To do so, we
can a priori use three optimal tax formulas, namely (19), (29) and (30). Let us
explain why we choose (30). The optimal formula in (29) takes the form of a
second-order nonlinear partial differential equation in the type space, which is
numerically much more challenging than solving a linear second-order partial
differential equation. Conversely, the optimal formula in Equations (19) is a
linear second-order partial differential equation. However, it is defined in the
income set X . Hence, if one solves the optimal tax formula (19a) using the
same income set from one iteration to the next, which is required given the
boundary conditions (19b), then the corresponding typeset is changing from
one iteration to the next. This is problematic when, for instance, comparing the
values obtained for the tax revenue or for the social objective from one iteration
to the next. Finally, the partial differential equation described in (30) is linear,
provided that the sufficient statistics g(w) and A(w) are taken as given. In
addition, it is defined over the fixed type set W .

Here again, there is a difficulty. Equations (30a)-(30b) are defined in the type
space, while (Tx1 , ..., Txn) stands for the gradient of tax liability with respect to
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incomes. However, one can rewrite (30a)–(30b) in terms of the gradient of tax
liability in the skills-space by scaling matrix A by the matrix

[
∂Xj(w)/∂wi

]−1
i,j .

We then iterate by i) finding the mapping w 7→ T(X(w)) that solves Equa-
tions (30a)–(30b) for given matrix A, Jacobian

[
∂Xj(w)/∂wi

]
i,j and type density

f (w) and getting a tax schedule x 7→ T(x) from this solution, and ii) updat-
ing the matrix A and the Jacobian

[
∂Xj(w)/∂wi

]
i,j given the new tax schedule.

This hybrid approach thus combines the strength of the mechanism design ap-
proach (a fixed typeset over which to integrate), with the strength of the tax
perturbation approach (a linear PDE). We describe the algorithm in more detail
in the supplementary materials.

V.2 Results under the baseline calibration

Figure 2 displays the solution of the optimal tax problem using our base-
line calibration. The optimal tax schedule is represented by the isotax curves,
which are the loci of incomes for which the tax liability is constant at a given
value. Male income is shown on the horizontal axis, while female income is
indicated on the vertical axis. The left panel displays the whole domain of the
simulations running up to $500, 000, while the right panel zooms in at incomes
below $200, 000, where we find most taxpayers, roughly 97% of males and 99%
of females.

(a) Full simulation set (b) Zoom on x f , xm ≤ $200, 000

Figure 2: Isotax curves in the baseline case

Strikingly, isotax curves are almost linear and parallel, except close to the
boundaries. There, isotax curves are curved to satisfy boundary constraints
(19b). This curvature pattern is most notable at high income levels where there
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are very few taxpayers. For lower incomes, the curvature only affects isotax
curves very close to the lower bound.

Compared with the current economy, which is approximated by a linear tax
rate of 37%, the optimal tax schedule leads to an improvement of the social ob-
jective equivalent to 0.82% of GDP in monetary terms. To understand which
forces drive this gain, we decompose the welfare gain in different steps. Going
from our approximation of the current economy (where we assume linear tax
rates) to the optimal joint tax (x f , xm) 7→ T(x f + xm) captures the welfare gain
of allowing the joint income tax schedule to be nonlinear. We find this wel-
fare gain to be only 0.03%. If we now maintain the requirement that the isotax
curves are linear and parallel, but remove the requirement that both marginal
tax rates are equal, so (x f , xm) 7→ T(x f + α xm) where α is optimized, we obtain
a welfare gain from the current economy equal to 0.81%. The optimal value of
α is 2.13, which implies that female income is discounted by 53%. Hence, while
the gain of optimizing the slope of the isotax curves (optimizing α) is econom-
ically significant, the welfare gain of relaxing the constraint that isotax curves
must be linear and parallel appears to be small.
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Figure 3: Optimal Jointness

Kleven et al. (2006, 2007) show that under our individual and social prefer-
ences, when the abilities of both spouses are not correlated, the optimal marginal
tax rates of each partner decrease in the income of the other partner. This is the
so-called negative jointness of the optimal tax system. In a separate simulation
with a population that replicates the moments of male and female incomes, but
removes any correlation between the two, we confirm the optimality of the neg-
ative jointness of the tax system. In reality, however, the assumption that the
skills of both partners are not correlated, is counterfactual. We show in Figure
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3 that the optimal negative jointness result is not robust to using more realistic
type densities with positive assortative matching. Figure 3a (resp. Figure 3b)
displays the marginal tax rate for females (males) as a function of their own
income. Each curve graphs this marginal income fixing male (female) income
at the 10-th, 50-th and 90-th percentile of the male (female) income distribution.
In case of negative jointness, the curve corresponding to male (female) income
at the 10-th percentile should be everywhere above the curve corresponding to
male (female) income at 50-th and 90-th percentiles of the distribution. Figures
3a and 3b contradict this prediction, thereby rejecting the idea that negative
jointness holds at the optimum.

V.3 Comparative statics

To better understand the determinants of the optimal schedule, we examine
how the simulated optimal schedule varies when we change the parameters of
the simulations. For each parameter that we vary, we first intuitively provide
conjectures on how changes in these parameters are going to affect optimal
isotax curves before examining whether our simulations confirm or negate our
a priori guess.

V.3.a Varying labor supply elasticity

One may conjecture that the slope of the isotax curves is affected by the ratio
of the labor supply elasticities of both spouses. Whenever the labor supply
elasticities of the two spouses are different, we expect that it is optimal to levy
the lowest marginal tax rate on the spouse with the highest elasticity. Doing so
shifts the burden of taxation away from the most elastic tax base. Recall that
the empirical literature finds that married females have higher labor supply
elasticities than married males. With male earnings in the horizontal axis, this
amounts to making the isotax curves steeper. We thus conjecture that the larger
is the ratio of female to male labor supply elasticity, the steeper are the optimal
isotax curves.

We investigate the validity of this conjecture in Figure 4. The left panel dis-
plays isotax curves when the two elasticities are equal ε f = εm = 0.11, while
the right panel shows the benchmark values ε f = 0.43 for female and εm = 0.11
for male income. In both cases, we maintain inequality aversion at its baseline
value β = 0.0061. As we conjectured, isotax curves are steeper when the two
elasticities are different.
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(a) ε f = εm = 0.11 (b) ε f = 0.43, εm = 0.11

Figure 4: Isotax curves with different elasticities.

In Figure 5, we assume ε f = εm = 0.11 in the left panel and ε f = εm = 0.43
in the right panel. In this figure, the slope of isotax curves looks the same in
both panels. However, all else equal, higher labor supply elasticities decrease
the optimal marginal tax rates, similar to what is found in the one-dimensional
case. This is visible in the figure in the increasing distance between the isotax
curves.

(a) ε f = εm = 0.11 (b) ε f = εm = 0.43

Figure 5: Isotax curves with different elasticities.

V.3.b Varying inequality aversion

We now investigate the sensitivity of the optimal tax schedule to the inequal-
ity aversion parameter β. In Figure 6, we contrast the case where the inequality
aversion parameter is half lower than its baseline value in the left panel to the
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case where this parameter is half above its baseline value in the right panel.
The shapes of isotax curves are virtually unaffected by change in the inequality
aversion. However, the isotax curves are much closer together in the right panel
when the government is more inequality averse. As in the one-dimensional
case, a higher inequality aversion, all else being equal, leads to higher optimal
marginal tax rates, causing the isotax curves to be closer together.

(a) β = 0.003 (b) β = 0.009

Figure 6: Isotax curves with different inequality aversion.

V.3.c Simulation domain

So far, it seems that the main departure from parallel and linear isotax curves
is the curvature imposed by the boundary conditions. To verify the plausibil-
ity of this conjecture, we see what happens if we move the boundaries of the
type space. In Figure 7 we compare the simulated isotax curves when both
incomes are below $500, 000 (Figures 7a and 7c), and when male income is be-
low $500, 000 while female income is below $800, 000 (Figures 7b and 7d). As
expected, changing the simulation domain has virtually no effect for incomes
below $200, 000 (Figures 7c and 7d). One difference between the simulations is
that the larger domain adds some very rich taxpayers, which causes a minor
increase in the distributional benefits of higher marginal tax rates, triggering a
slight inwards shift of the isotax curves. Simultaneously, the curvatures of the
isotax curves near the high-income boundaries adapt to where these bound-
aries are (Figures 7a and 7b). For instance, when female income is simulated up
to $800, 000, then the $130, 000 isotax curve is concave everywhere (see Figure
7b). In this case, the shape of the isotax curve is affected by the boundary con-

33



(a) Simulations on x f ≤ $500, 000
and xm ≤ $500, 000.
Full simulation set.

(b) Simulations on x f ≤ $800, 000 and
xm ≤ $500, 000.
Full simulation set.

(c) Simulations on x f ≤ $500, 000
and xm ≤ $500, 000.
Zoom on x f , xm ≤ $200, 000.

(d) Simulations on x f ≤ $800, 000
and xm ≤ $500, 000.
Zoom on x f , xm ≤ $200, 000.

Figure 7: Isotax curves with different domains

dition for a zero male income and a female income just above $500, 000. Con-
versely, when the income space is limited to female incomes below $500, 000,
the isotax curve for a tax liability of $130, 000 exits the domain by crossing the
top boundary and therefore becomes convex for low male income. Figure 7 thus
confirms our conjecture that boundary conditions are the main explanation for
the nonlinearity of the isotax curves at high income levels.
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VI Conclusion

We study the optimal tax problem with multiple incomes and multiple di-
mensions of unobserved heterogeneity. We propose a numerical algorithm that
addresses the difficulties inherent to the multidimensional tax problem. We ap-
ply this algorithm to the optimal taxation of couples. We find that the optimal
isotax curves are close to linear and parallel. Optimal isotax curves are closer
together when labor supply elasticities are higher or when inequality aversion
is higher. When the labor supply elasticity of one spouse increases, the optimal
marginal tax rate for this spouse decreases. We show that the optimal negative
jointness of the tax schedules when skills are uncorrelated is not robust to the
introduction of a more realistic distribution based on empirical simulations.

Analytically, we find a necessary condition for the tax schedule to be Pareto
Efficient. If this condition is not verified, we describe a tax reform that is Pareto-
improving. Second, we find conditions that ensure the necessary conditions of
the optimal tax problem are unique and sufficient. Third, we derive conditions
under which the tax perturbation and mechanism design approaches lead to
the same tax formula. Fourth, we improve the tax perturbation approach by
proposing conditions under which income bundles respond smoothly to small
tax reforms. Fifth, we propose a mechanism design approach that encapsulates
not only incentive constraints, but also the implementability constraints em-
bedded in the multidimensional optimal tax problem. Lastly, we consider the
cases where the number of incomes differs from the number of types.

Comparing the mechanism design approach to the tax perturbation approach,
we find that the latter implies slightly more demanding restrictions on the
smoothness of the tax schedule. The tax perturbation approach is thus slightly
more demanding than the mechanism design approach. An additional advan-
tage of the mechanism design approach is that it allows identifying a condition
under which the necessary optimality conditions are also sufficient. A disad-
vantage of the mechanism design approach is that it is tractable only when the
number of dimensions of unobserved heterogeneity does not exceed the num-
ber of incomes. An advantage of the tax perturbation approach is that it is
allows providing an intuitive, graphical interpretation for the optimality con-
ditions. We have shown that the tax perturbation approach is not less rigorous
than the mechanism design approach.

Our paper can be extended in different ways. First, one could apply our
algorithm to cases where the labor supplies of spouses interact through child-
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care or home production. Second, one could also apply our algorithm to the
cases where tax units receive different source of incomes such as labor and cap-
ital incomes. Third, one could introduce general equilibrium effects. While our
algorithm is sufficiently general to tackle these problems, implementing them
would require significant changes to our simulations. We leave these problems
for further research.

Appendix

A Tax Perturbation approach

A.1 Convexity of the indifference sets

We verify that assuming convex indifference sets is equivalent to assuming
the second-order conditions of the taxpayers’ program strictly hold when the
tax schedule is linear.

On the one hand, the indifference sets are defined by c = C(u, x; w). Ap-
plying the implicit function theorem to the definition of C(u, x; w), we find the
gradient of the indifference sets:

Cxi(u, x; w) = −Uxi (C(u, x; w), x; w)

Uc (C(u, x; w), x; w)
.

The Hessian of the indifference surfaces is therefore a matrix with ith row and
jth column:

Cxi,xj = −
Uxi,xjUc −Uc,xi

Uxj

Uc
Uc −Uc,xjUxi + Uc,c

Uxj
Uc

Uxi

U 2
c

.

On the other hand, from (2), we get:

S i
xj
+ S jS i

c = −
Uxi,xjUc −Uc,xjUxi

U 2
c

+
Uxj

Uc

Uc,xiUc −Uc,cUxi

U 2
c

, (32)

The assumption that indifference sets are convex thus implies that the matrix[
S i

xj
+ S jS i

c

]
i,j

is symmetric and positive definite. If then taxes are linear, so

Txi xj = 0, Assumption 1 is fulfilled.
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A.2 Behavioral Responses

Under Assumption 1, one can differentiate (9) with respect to t, x and w to
get:[
Cxjxi + Txjxi

]
j,i
· [dxi]i =

[
Rxj(X(w))

]
j
dt −

[
S j

c

]
j

R(X(w)) dt −
[
S j

wk

]
j,k
· [dwk]k ,(33)

where the expressions are evaluated at t = 0, x = X(w) and c = C(w), and we
use (3) and (32).

From (10b), a compensated reform of the jth marginal tax rate is character-
ized by R(X(w)) = 0, Rxj(X(w)) = 1 and Rxk(X(w)) = 0 for k ̸= j. Using (33),
the matrix of compensated responses for type w is:[

∂Xi(w)

∂τj

]
i,j

=

[
∂Xj(w)

∂τi

]
i,j
=
[
Cxjxi + Txjxi

]−1

j,i
. (34a)

Since the matrix of compensated responses is the inverse of the symmetric and
positive definite matrix

[
Cxjxi + Txjxi

]
j,i

, it is also symmetric and positive defi-

nite.
From (10a), a lump-sum perturbation of the tax function is characterized by

R(X(w)) = 1 and Rxj(X(w)) = 0. Using (33), the vector of income responses of
type w is therefore given by:[

∂Xi(w)

∂ρ

]
i
= −

[
Cxjxi + Txjxi

]−1

j,i
·
[
S j

c

]
j
= −

[
∂Xi(w)

∂τj

]
i,j

·
[
S j

c

]
j
. (34b)

Multiplying both sides of (33) by the Matrix
[
Cxjxi + Txjxi

]−1

j,i
and using (34a)–

(34b) leads to (11). Finally, the implicit function theorem ensures that the map-
ping w 7→ X(w) is differentiable for all w ∈ W with a Jacobian given by:[

∂Xi(w)

∂wk

]
i,k

= −
[
Cxjxi + Txjxi

]−1

j,i
·
[
S j

wk

]
j,k

= −
[

∂Xi(w)

∂τj

]
i,j

·
[
S j

wk

]
j,k

. (34c)

Eq. (34c) shows that when the tax schedule verifies Assumption 1 and individ-
ual preferences verify Assumption 2’, the ensuing allocation w 7→ X(w) verifies
Assumption 3.

A.3 Proof of Proposition 1

To find the derivative of (12) with respect to t, we add (13) to (14). We inte-
grate the result over all types w to obtain (16). To obtain (15), we use the lump-
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sum perturbation (10a) in (16), i.e. we set R(X(w)) = 1 and Rxj(X(w)) = 0 in
(16).

We now show that a tax perturbation in the direction R(·) with t > 0 is
welfare improving if and only if the effect on the perturbed Lagrangian is pos-
itive. For all t, let ℓR(t) denote the lump-sum transfer that ensures that the fol-
lowing tax perturbation keeps the government’s budget balanced: x 7→ T(x)−
t R(x)− ℓR(t). Let (∂L̃R(t)/∂t)|t=0 denote the partial derivatives of the govern-
ment’s Lagrangian with respect to size t of the perturbation w 7→ T(x)− t R(x).
Similarly, let (∂ÕR+ℓ(t)/∂t)|t=0, (∂B̃R+ℓ(t)/∂t)|t=0 and (∂L̃R+ℓ(t)/∂t)|t=0 de-
note the partial derivatives of, respectively, the social objective, of government’s
revenue and of government’s Lagrangian with respect to size t of the budget-
balanced perturbation w 7→ T(x)− t R(x)− ℓR(t). Let finally (∂L̃ρ(ρ)/∂ρ)|ρ=0

denote the partial derivatives of the government’s Lagrangian with respect to
size ρ of the lump sum perturbation (10a). From (16), one gets that:

∂L̃R+ℓ(t)
∂t

∣∣∣∣∣
t=0

=
∂L̃R(t)

∂t

∣∣∣∣∣
t=0

+ b′(t)
∂L̃ρ(ρ)

∂ρ

∣∣∣∣∣
ρ=0

.

Since (15) is equivalent to (∂L̃ρ(ρ)/∂ρ)|ρ=0, we thus get:

∂L̃R+ℓ(t)
∂t

∣∣∣∣∣
t=0

=
∂L̃R(t)

∂t

∣∣∣∣∣
t=0

.

Finally, since the perturbation w 7→ T(x)− t R(x)− ℓR(t) is budget balanced,
one gets that (∂B̃R+ℓ(t)/∂t)|t=0 = 0, so that (1/λ)(∂ÕR+ℓ(t)/∂t)|t=0 = (∂L̃R+ℓ(t)/∂t)|t=0

and eventually:

1
λ

∂ÕR+ℓ(t)
∂t

∣∣∣∣∣
t=0

=
∂L̃R

∂t

∣∣∣∣∣
t=0

.

The above derivations are valid if Assumption 1 holds, regardless of n ⋚ p.

A.4 Optimal Tax for given isotax curves, Proof of Proposition

2

We decompose the tax schedule x 7→ T(x) in two consecutive mappings:
the first mapping defines a taxable income y = Γ(x) ∈ R for each combination of
incomes x; the second mapping denoted T assigns a tax liability to each taxable
income y. The tax liability at incomes x thus equals T(x) = T (Γ(x)).

We first consider tax perturbations that preserve the isotax curves. Applying
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Eq. (11) to the tax perturbation x 7→ T (Γ(x))− t R (Γ(x)) leads to:

∂X̃R
i (w, t)
∂t

∣∣∣∣∣
t=0

=
∂Xi(w)

∂ρ
R(Γ(X(w))) +

n

∑
i=1

∂Xi(w)

∂τj
Γxj(w) R′ (Γ(X(w))) .

(35)
The definition of perturbed taxable income ỸR(w, t) = Γ

(
X̃R(w, t)

)
implies

that
∂ỸR(w, t)

∂t

∣∣∣∣∣
t=0

=
n

∑
i=1

Γxi(X(w))
∂X̃R

i (w, t)
∂t

∣∣∣∣∣
t=0

. (36)

Applying (35) to the tax liability perturbation R(y) = 1 and using (36) leads
to (17a). Applying (35) and (36) to the compensated perturbation R(y) = y −
Y(w) leads to (17b). Combining (17a), (17b), (35) and (36), the response of tax-
able income to a generic tax perturbation R(·) is given by:

∂ỸR(w, t)
∂t

∣∣∣∣∣
t=0

=
∂Y(w)

∂ρ
R(Y(w)) +

∂Y(w)

∂τ
R′(Y(w)).

The response of tax liability to a tax perturbation in the direction R(·) is thus:

∂
(
T
(

ỸR(w, t)
)
− t R

(
ỸR(w, t)

))
∂t

∣∣∣∣∣∣
t=0

= −R(Y(w)) + T ′(Y(w))
∂ỸR(w, t)

∂t

∣∣∣∣∣
t=0

=

[
−1 + T ′(Y(w))

∂Y(w)

∂ρ

]
R(Y(w))

+ T ′(Y(w))
∂Y(w)

∂τ
R′(Y(w)).

Using (14), the response of the perturbed Lagrangian (12) then is:

∂LR(t)
∂t

∣∣∣∣
t=0

=
∫∫

w∈W

{[
g(w)− 1 + T ′(Y(w))

∂Y(w)

∂ρ

]
R(Y(w))

+ T ′(Y(w))
∂Y(w)

∂τ
R′(Y(w))

}
f (w)dw

=
∫

y∈R+

{∫
Y(w)=y

{[
g(w)− 1 + T ′(y)

∂Y(w)

∂ρ

]
R(y)

+ T ′(y)
∂Y(w)

∂τ
R′(y)

}
f (w|Y(w) = y)dw

}
m(y)dy,(37)

where m(·) denotes the density of taxable income Y as before. Denote the mean
of the compensated responses among taxpayers earning Y(w) = y as:

∂Y(y)
∂τ

def≡
∫

Y(w)=y

∂Y(w)

∂τ
f (w|Y(w) = y)dw. (38a)

Similarly, denote the mean of the income responses among taxpayers earning
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Y(w) = y as:

∂Y(y)
∂ρ

(y)
def≡
∫

Y(w)=y

∂Y(w)

∂ρ
f (w|Y(w) = y)dw. (38b)

Finally, denote the mean of welfare weights among taxpayers earning Y(w) = y
as:

g(y)
def≡
∫

Y(w)=y
g(w) f (w|Y(w) = y)dw. (38c)

Eq. (37) then simplifies to:

∂LR(t)
∂t

∣∣∣∣
t=0

=
∫

y∈R+

{[
g(y)− 1 + T ′(y)

∂Y(y)
∂ρ

]
R(y) + T ′(y)

∂Y(y)
∂τ

R′(y)

}
m(y)dy.(39)

Integrating by parts leads to:

∂LR(t)
∂t

∣∣∣∣
t=0

=
∫

y∈R+

{∫ ∞

z=y

[
g(z)− 1 + T ′(z)

∂Y(z)
∂ρ

]
m(z)dz + T ′(y)

∂Y(y)
∂τ

m(y)

}
R′(y)dy

−R(0)
∫

y∈R+

[
g(y)− 1 + T ′(y)

∂Y(y)
∂ρ

]
m(y)dy. (40)

The effect of the perturbation on the Lagrangian is nil for all directions R if and
only if (18b) and the following Equation:

∀y : T ′(y)
∂Y(y)

∂τ
m(y) =

∫ ∞

z=y

[
1 − g(z)− T ′(z)

∂Y(z)
∂ρ

]
m(z)dz, (41)

are valid. Rearranging terms using (18c) leads to (18a) if T ′(y) < 1.

The definition of the two mappings x Γ−→ y T−→ R is not unique. Let α(·)
be a differentiable and increasing mapping, let Γ̂(x)

def≡ α (Γ(x)) be an alter-

native definition of taxable income that we denote ŷ = α(y) and let T̂ (ŷ)
def≡

T
(
α−1(ŷ)

)
be the associated assignment of tax liability to taxable income. Fi-

nally, let m̂(·) and M̂(·) be the PDF and CDF of ŷ. We get

T̂ ′ (ŷ) =
T ′ (α−1(ŷ)

)
α′ (α−1(ŷ))

=
T ′ (y)
α′ (y)

.

Differentiating both sides of M̂ (α(y)) = M (y) leads to:

m̂(ŷ) =
m(y)
α′(y)

.
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Applying respectively (17) and (17b) to Ŷ(w) = α (Y(w)) leads to:

∂Ŷ(w)

∂ρ
= α′(Y(w))

∂Y(w)

∂ρ
and

∂Ŷ(w)

∂τ
=
(
α′(Y(w))

)2 ∂Y(w)

∂τ
.

Hence

T̂ ′ (ŷ)
∂Ŷ(ŷ)

∂ρ
= T ′(y)

∂Y(y)
∂ρ

and T̂ ′ (ŷ)
∂Ŷ(ŷ)

∂τ
m̂(ŷ) = T ′(y)

∂Y(y)
∂τ

m(y).

Therefore (41) and (18b) are equivalent in terms of y or in terms of ŷ.

A.5 Proof of Proposition 3

In Appendix A.3, we show that (16) holds under Assumption 1. We rewrite
(16) in terms of the income density h(·) (which is well defined under Assump-
tion 2):

∂L̃R(t)
∂t

∣∣∣∣∣
t=0

=
∫∫

X

{[
g(X(w))− 1 +

n

∑
i=1

Txi(x)
∂Xi(x)

∂ρ

]
R (x) (42)

+ ∑
1≤i,j≤n

Txi(x)
∂Xi(x)

∂τj
Rxj (x)

}
h(x)dx.

Using the divergence theorem to integrate the term on the second line of this
equation by parts and rearranging, yields:

∂L̃R(t)
∂t

∣∣∣∣∣
t=0

=
∮

∂X
∑

1≤i,j≤n
Txi(x)

∂Xi(X(w))

∂τj
h(x) ej(x) R (x)dΣ(x) (43)

−
∫∫

X


[

1 − g(X(w))−
n

∑
i=1

Txi(x)
∂Xi(x)

∂ρ

]
h(x) +

n

∑
j=1

∂

[
n
∑

i=1
Txi(x)

∂Xi(X(w))

∂τj
h(x)

]
∂xj

 R (x)dx.

If the tax schedule T(·) is optimal, (43) must equal 0 for all possible directions
R(·). This is only possible if the Euler-Lagrange Partial Differential Equation
(19a) and the boundary conditions (19b) are both satisfied.

A.6 Proof of Proposition 4

Equations (21) and (43) are valid when Assumption 1 and Assumption 2
hold true. According to (5), (6) and (14), removing the term g(X(w)) from (43)
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provides the effects of a tax perturbation on government’s revenue:

∂B̃R(t)
∂t

∣∣∣∣∣
t=0

=
∮

∂X
∑

1≤i,j≤n
Txi(x)

∂Xi(X(w))

∂τj
h(x) ej(x) R (x) dΣ(x)

−
∫∫

X


[

1 −
n

∑
i=1

Txi(x)
∂Xi(x)

∂ρ

]
h(x) +

n

∑
j=1

∂

[
n
∑

i=1
Txi(x)

∂Xi(X(w))

∂τj
h(x)

]
∂xj

 R (x) dx,

which, given (21), can be simplified to:

∂B̃(t)
∂t

∣∣∣∣∣
t=0

=
∮

∂X
∑

1≤i,j≤n
Txi(x)

∂Xi(X(w))

∂τj
h(x) ej(x) R (x)dΣ(x)−

∫∫
X

ĝ(x) R(x) h(x)dx,(44)

Note that the right-hand side of (21), and thus also ĝ(·), is continuous with
respect to x. Let x⋆ be an income bundle in the interior of X such that ĝ(x⋆) < 0.
By continuity of ĝ(·), there exists r > 0 such that the ball of radius r around
x⋆ remains in the interior of X and ĝ(·) remains negative everywhere in this
ball. Consider then a tax perturbation x 7→ T(x)− t R(x) where R(·) is twice
continuously differentiable, positive inside the ball of radius r around x⋆ and
nil otherwise. Hence, ĝ(x) R(x) is negative inside the ball of radius r around x⋆

and nil outside.
The first term on the right-hand side of (44) is nil, because the tax schedule

is unperturbed on the boundary ∂X of X , while the second term is positive.
Implementing this tax perturbation with t > 0 therefore generates tax revenue.
Moreover, for incomes x inside the ball of radius r around x⋆, utility increases
since there R(x) is positive so perturbed tax liability T(x) − t R(x) < T(x)
decreases. Finally, utility is unchanged outside the ball. Consequently, im-
plementing this tax perturbation and rebating the extra revenue in a lump-
sum way strictly increase the welfare for all taxpayers and is thereby Pareto-
improving. This ends the proof of Part i) of Proposition 4. If a tax schedule
is Pareto efficient, then such Pareto improving reform should not exist, which
requires ĝ(x) ≥ 0 for all x ∈ X .

A.7 Proof of Lemma 1

Given that X is defined as the range of the typeset W under the allocation
w 7→ X(w), it is sufficient to show that the mapping w 7→ X(w) is injective to
establish that it is a bijection. Assume there exists x ∈ X and w, ŵ ∈ W such

42



that X(w) = X(ŵ) = x. From Assumption 1, the first-order conditions (3) must
be verified both at (c, x; w) and at (c, x; ŵ), so we get S i(c, x, w) = S i(c, x, ŵ)

for all i ∈ {1, ..., n}. According to Part iii) of Assumption 2’, these n equalities
imply that w = ŵ. Differentiability of w 7→ X(w) is ensured under Assumption
1 by the implicit function theorem applied to (3). Part ii) of Assumption 2’ then
ensures the Jacobian of w 7→ X(w) is invertible (see (34c) in Appendix A.2).

Because the mapping w 7→ X(w) is injective, we get that g(X(w)) = g(w),
∂Xi(X(w))/∂τj = ∂Xi(w)/∂τj and ∂Xi(X(w))/∂ρ = ∂Xi(w)/∂ρ. According to
Equations (7), (34a) and (34b), g(w), ∂Xi(w)/∂τj and ∂Xi(w)/∂ρ are continu-
ously differentiable functions of c, x, w and, for the latter two, of the terms Txixj

in the Hessian of the tax schedule. Hence, because the mapping w 7→ X(w) is
continuously differentiable and invertible, and because of Part iv) of Assump-
tion 2’, ∂Xi(x)/∂τj, ∂Xi(x)/∂ρ and g(x) are continuously differentiable in x. Fi-
nally, the income density is given by:

h(X(w)) = f (w)

∣∣∣∣∣∣det

[
∂Xi(w)

∂wj

]
i,j

∣∣∣∣∣∣
−1

, (45)

which ensures the income density is also continuously differentiable in income.
Hence Assumption 2 holds.

A.8 Optimal tax formula in the type space

To get an optimal tax formula in the type space, we need to rewrite the
derivative of the perturbed Lagrangian, (16), in the type space rather than in the
income space. To reparametrize the direction of a tax perturbation as a function

of types, define R̂(w)
def≡ R(X(w)). Differentiating both sides with respect to wj

yields:

R̂wj(w) =
n

∑
i=1

(∂Xi(w)/∂wj) Rxi(X(w)).

In matrix notation, the latter equality becomes:

[
R̂wj(w)

]T

j
= [Rxi(X(w))]Ti ·

[
∂Xi(w)

∂wj

]
i,j

⇔ [Rxi(X(w))]Ti =
[

R̂wj(w)
]T

j
·
[

∂Xi(w)

∂wj

]−1

i,j

,

where we use Parts i) and ii) of Assumption 2’ and Eq. (34c) to ensure that
matrix

[
∂Xi(w)/∂wj

]
i,j is invertible. Using the symmetry of the matrix of com-
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pensated effects
[
∂Xi(w)/∂τj

]
i,j, we can rewrite the last term of (16):

∑
1≤i,j≤n

Txi(X(w))
∂Xi(w)

∂τj
Rxj(X(w)) =

[
Rxj(X(w)

]T

j
·
[

∂Xi(w)

∂τj

]
i,j

· [Txi(X(w))]i

=
[

R̂wj(w)
]T

j
·
[

∂Xi(w)

∂wj

]−1

i,j

·
[

∂Xi(w)

∂τj

]
i,j

· [Txi(X(w))]i

= −
[

R̂wj(w)
]T

j
·
[
S i

wj

]−1

i,j
· [Txi(X(w))]i ,

where the last Equality follows from (34c). Using the definition of matrix Ai,j(w)

in (30c), Eq. (16) can be rewritten as:

∂L̃R(t)
∂t

∣∣∣∣∣
t=0

=
∫∫
W

{[
g(w)− 1 +

n

∑
i=1

Txi(X(w))
∂Xi(w)

∂ρ

]
R̂ (w)

− ∑
1≤i,j≤n

Txi(X(w)) Aj,i(w) R̂wj(w)

}
f (w)dw.

Using the Divergence theorem to perform integration by parts, we get:

∂L̃(t)
∂t

∣∣∣∣∣
t=0

= −
∮

∂W
∑

1≤i,j≤n
Txi(X(w)) Aj,i(w) ej(w) f (w) R̂(w) dΣ(w)

−
∫∫
W

{[
1 − g(w)−

n

∑
i=1

Txi(X(w))
∂Xi(w)

∂ρ

]
f (w)

−
n

∑
j=1

∂

(
n
∑

i=1
Txi(X(w)) Aj,i(w) f (w)

)
∂wj

 R̂ (w) dw.

This partial derivative equals zero for any direction of tax perturbation R̂(·) if
and only if Euler-Lagrange Equation (30a) and Boundary conditions (30b) are
verified.

B First-Order Mechanism Design approach (FOMD)

B.1 Proof of Proposition 5

Let R be a twice differentiable function defined over W into R. We consider
the effects of perturbing the utility profile w 7→ U(w) in the direction R. Con-
sider the perturbed Lagrangian, with the unperturbed Lagrangian defined by
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(27):

L̃R(t)
def≡
∫∫

W
L
(

U(w) + t R(w), Uw1(w) + t Rw1(w), ..., Uwp(w) + t Rwp(w); w, λ
)

dw.

(46)
Applying the chain rule and denoting ⟨w⟩ as a shortcut to denote that a function
is evaluated at

(
U(w), Uw1(w), ..., Uwp(w); w, λ

)
, we obtain:

∂L̃R(t)
∂t

∣∣∣∣∣
t=0

=
∫∫

W

{
Lu ⟨w⟩ R(w) +

p

∑
j=1

Lzj ⟨w⟩ Rwj(w)

}
dw.

Applying integration by parts using the divergence theorem leads to:

∂L̃R(t)
∂t

∣∣∣∣∣
t=0

=
∫∫

W

{
Lu ⟨w⟩ −

p

∑
j=1

∂Lzj ⟨w⟩
∂wj

}
R(w)dw+

∮
∂W

p

∑
j=1

Lzj ⟨w⟩ ej(w) R(w) dΣ(w).

At the optimal allocation, the latter expression is nil for any perturbation R. Us-
ing (29d), we find boundary conditions (29c), and the Euler-Lagrange Equation:

∀w ∈ W :
p

∑
j=1

∂θj(w)

∂wj
= −Lu ⟨w⟩ . (47)

Using incentive compatibility constraint (24), we can rewrite Lagrangian
(27):[

p

∑
i=1

Xi(w)− C(U(w), X(w); w) +
Φ(U(w); w)

λ

]
f (w) = (48)

L (U(w),Uw1 (C(U(w), X(w); w), X(w); w) , ...,Uwn (C(U(w), X(w); w), X(w); w) ; w, λ) .

Differentiating both sides of (48) with respect to Xi(w) and using (2) and
(29d): (

1 − S i ⟨w⟩
)

f (w) = −
p

∑
j=1

θj(w)
[
Uxiwj ⟨w⟩+ S i ⟨w⟩ Ucwj ⟨w⟩

]
,

which leads to (29a) given that S i
wj

= (UcwjUxi −UxiwjUc)/U 2
c = −

[
Uxiwj + S i Ucwj

]
/Uc.

Differentiating (48) with respect to U(w) and using Cu = 1/Uc and (29d) leads
to: (

− 1
Uc ⟨w⟩ +

Φu(U(w); w)

λ

)
f (w) = Lu ⟨w⟩ −

p

∑
j=1

θj(w)
Uc,wj ⟨w⟩
Uc ⟨w⟩ . (49)

Substituting (47) into (49) yields (29b).
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B.2 Derivation of the optimal tax formula in the type space

Using (3), Eq. (29a) leads to:

Txi(X(w)) f (w) =
p

∑
j=1

µj(w) S i
wj
⟨w⟩ , (50)

where we denote µj(w)
def≡ θj(w) Uc (C(w), X(w); w). This can be rewritten

[Txi(X(w))]i f (w) =
[
S i

wj

]
i,j
·
[
µj(w)

]
j in matrix notation, which leads to:

[
µj(w)

]
j =[

S i
wj

]−1

i,j
· [Txi(X(w))]i f (w). Using (30c), we therefore get:

∀w ∈ W , ∀i ∈ {1, ..., p} µi(w) =
n

∑
j=1

Ai,j(w) Txj(X(w)) f (w). (51)

Combining (29c) with (51) thus leads to (30b). Using (7), Eq. (29b) implies that:
p

∑
j=1

∂µj(w)

∂wj
= (1 − g(w)) f (w)−

p

∑
j=1

θj(w) Ucwj ⟨w⟩

+
p

∑
j=1

θj(w)

[
Ucc ⟨w⟩ ∂C(w)

∂wj
+

n

∑
i=1

Ucxi ⟨w⟩ ∂Xi(w)

∂wj
+ Ucwj ⟨w⟩

]

= (1 − g(w)) f (w) +
p

∑
j=1

θj(w)

[
Ucc ⟨w⟩ ∂C(w)

∂wj
+

n

∑
i=1

Ucxi ⟨w⟩ ∂Xi(w)

∂wj

]
.(52)

Differentiating C(w) = C(U(w), X(w); w) with respect to wj and using Cu =

1/Uc, Cxi = −Uxi /Uc, Cwj = −Uwj /Uc and (24) leads to:

∂C(w)

∂wj
=

Uwj ⟨w⟩
Uc ⟨w⟩ −

n

∑
i=1

Uxi ⟨w⟩
Uc ⟨w⟩

∂Xi(w)

∂wj
−

Uwj ⟨w⟩
Uc ⟨w⟩ = −

n

∑
i=1

Uxi ⟨w⟩
Uc ⟨w⟩

∂Xi(w)

∂wj
.

Plugging this equality into (52) leads to
p

∑
j=1

∂µj(w)

∂wj
= (1 − g(w)) f (w) +

p

∑
j=1

n

∑
i=1

θj(w)

[
Ucxi ⟨w⟩ −

Uxi ⟨w⟩
Uc ⟨w⟩ Ucc ⟨w⟩

]
∂Xi(w)

∂wj

= (1 − g(w)) f (w)−
p

∑
j=1

n

∑
i=1

µj(w) S i
c ⟨w⟩ ∂Xi(w)

∂wj
. (53)

Substituting (34c) into (53) yields:
p

∑
j=1

∂µj(w)

∂wj
= (1 − g(w)) f (w) +

p

∑
j=1

n

∑
i=1

n

∑
k=1

µj(w) S i
c ⟨w⟩ ∂Xi(w)

∂τk
Sk

wj
(w). (54)
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Substituting (34b) into (54) and using ∂Xi(w)
∂τk

= ∂Xk(w)
∂τi

yields:

p

∑
j=1

∂µj(w)

∂wj
= (1 − g(w)) f (w)−

p

∑
j=1

n

∑
k=1

µj(w) Sk
wj
(w)

∂Xk(w)

∂ρ
. (55)

Plugging (50) into (55) leads to:

p

∑
j=1

∂µj(w)

∂wj
=

(
1 − g(w)−

n

∑
k=1

Txk(X(w))
∂Xk(w)

∂ρ

)
f (w). (56)

Plugging (51) into (56) leads to (30a). The last equality in (30c) follows from
(34c).

B.3 Proof of Proposition 6

If (u, z) 7→ L(u, z; w, λ) is concave then for any perturbation p, the function
t 7→ L̃R(t) defined in (46) is concave. Let w 7→ U(w) be another utility profile
that verifies (29a) and take the perturbation R(w) = U(w) − U⋆(w). As the
utility profile w 7→ U(w) verifies (29), we get that function t 7→ L̃R(t) admits a
zero derivative at t = 0 and is concave. So L̃R(0) > L̃R(1) and U⋆(·) provides a
strictly higher welfare than U(·).

If two distinct allocations w 7→ U⋆(w) and w 7→ U(w) verify (29) then,
following the reasoning above, U(·) strictly dominates U⋆(·) and U⋆(·) strictly
dominates U(·), a contradiction. So at most one allocation can verify (29).
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Supplementary materials

C Total versus Direct Responses

We define “direct responses” as the behavioral responses to a tax pertur-
bation or to a change in the taxpayer’s type if the tax schedule were linear.
Let ∂X⋆

i (w)/∂ρ and ∂X⋆
i (w)/∂τj denote the direct income and compensated re-

sponses of the incomes and let ∂X⋆
i (w)/∂wj denote the direct responses to a

change in types.
We now clarify the difference between direct and total responses. Let ∆1x

denote the change in income induced by a tax perturbation or a perturbation in
types if we assume the tax schedule is linear. This vector is obtained by setting
[Txixj ]i,j = 0 in (33). We thus get direct responses ignoring the effects due to the
non-linearity of the tax schedule:

∆1x =
[
Cxixj

]−1

i,j
· dB,

where dB is the column vector on the right-hand side of (33).
When the tax function is nonlinear, this “first” change ∆1x in income in-

duces a change [Txi,xj ]i,j · ∆1x in the vector of marginal tax rates that generates a
“second” change in income through compensated responses that are given by:

∆2x = −
[

∂X⋆
i

∂τj

]
i,j

· [Txixj ]i,j · ∆1x,

which in turn generates a further change in marginal tax rates. Hence, the kth

change in income ∆kx is related to k − 1th change in income ∆k−1x by:

∆kx = −
[

∂X⋆
i

∂τj

]
i,j

· [Txixj ]i,j · ∆k−1x,

and so:

∆kx =

−
[

∂X⋆
i

∂τj

]
i,j

· [Txixj ]i,j

k−1

· ∆1x.

Adding all the effects and assuming convergence leads to a total effect:

∆x =
∞

∑
k=1

∆kx =
∞

∑
k=1

−
[

∂X⋆
i

∂τj

]
i,j

· [Txixj ]i,j

k−1

· ∆1x =

In +

[
∂X⋆

i
∂τj

]
i,j

· [Txixj ]i,j

−1

· ∆1x

1



=

(
In +

[
Cxixj

]−1

i,j
· [Txixj ]i,j

)−1

·
[
Cxixj

]−1

i,j
· dB =

[
Cxixj + Txixj

]−1

i,j
· dB,

where In denotes the identity matrix of rank n. We thus retrieve (33), which
we showed in Appendix A.2 leads to (11), and we thus obtain total responses
including the effects due to the non-linearity of the tax schedule:[

∂Xi(w)

∂τj

]
i,j

=

In +

[
∂X⋆

i
∂τj

]
i,j

· [Txixj ]i,j

−1

·
[

∂X⋆
i (w)

∂τj

]
i,j

, (57a)

[
∂Xi(w)

∂ρ

]
i

=

In +

[
∂X⋆

i
∂τj

]
i,j

· [Txixj ]i,j

−1

·
[

∂X⋆
i (w)

∂ρ

]
i
, (57b)

[
∂Xi(w)

∂wj

]
i,j

=

In +

[
∂X⋆

i
∂τj

]
i,j

· [Txixj ]i,j

−1

·
[

∂X⋆
i (w)

∂wj

]
i,j

. (57c)

Equations (34a) and (57a) imply that Part ii) of Assumption 1 is equivalent to
assuming that the matrix In +

[
∂X⋆

i /∂τj
]

i,j · [Txixj ]i,j is positive definite despite
the nonlinearity of the tax schedule.

D Appendix on the Numerical Simulations

In this section, we document the simulations for the unrestricted tax sched-
ule. The simulations for the individual and joint tax schedules are more stan-
dard; we include their documentation with the source code of the simulations.

We assume n = p = 2. Denote the tax liability assigned to type w as

T (w)
def≡ T(X(w)). Let J (w) denote the inverse of the Jacobian matrix as-

sociated with the mapping w 7→ X(w):

J (w)
def≡


∂X1(w)

∂w1

∂X1(w)

∂w2
∂X2(w)

∂w1

∂X2(w)

∂w2


−1

.

Given the mapping w 7→ T (w) and the allocation w 7→ X(w), we find the
marginal tax rates for a type-w taxpayer:

Txi(X(w)) =
n

∑
k=1

Twk(w)Jk,i(w). (58)

Considering that individual preferences (31) do not feature income effects, we
rewrite optimal tax condition (30a) in the type space:

2



(1 − g(w)) f (w) =
p

∑
j=1

∂

(
∑

1≤i,k≤n
Twk(w) Jk,i(w) Aj,i(w) f (w)

)
∂wj

,

with boundary conditions:

∀ w ∈ ∂W : ∑
1≤i,j,k≤n

Twk(w)
∂X−1

k (X(w))

∂xi
Aj,i(w) ej(w) = 0.

The simulation algorithm then works as follows. We start from some initial
value of the government budget multiplier λ.

1. Start a loop from an initial tax function. Denote the tax function in iter-
ation ℓ by x 7→ T(ℓ)(x). Starting from the tax function x 7→ T(ℓ)(x), we
use the individual first-order conditions to calculate the corresponding
allocation w 7→ X(ℓ)(w), and the corresponding inverse Jacobian w 7→
J (ℓ)(w)

def≡ ∂
(

X(ℓ)
k

)−1
(X(w))/∂xi.

2. We use the Partial Differential Equation toolbox 3.5 in MATLAB R2020b
to find the mapping w 7→ T (ℓ+1)(w) that solves the Partial Differential
Equation using the finite element method:

(1 − g(w)) f (w) =
p

∑
j=1

∂

(
∑

1≤i,k≤n
T (ℓ+1)

wk (w) J (ℓ)
k,i (w) Aj,i(w) f (w)

)
∂wj

,

(59a)
with boundary conditions:

∀ w ∈ ∂W : ∑
1≤i,j,k≤n

T (ℓ+1)
wk (w) J (ℓ)

k,i (w) Aj,i(w) ej(w) = 0. (59b)

In (59), welfare weights g(w) are computed endogenously through (7),
and matrices A(w) through (30c), both as functions of the allocation w 7→
X(w). The allocation is computed from marginal tax rates x 7→ Txi(x).
Marginal tax rates are deduced from w 7→ T (ℓ+1)

wk (w) and from w 7→
J (ℓ)(w) using (58). By keeping the Jacobian w 7→ J (ℓ)(w) fixed, the
Partial Differential Equation remains solvable by MATLAB.

3. We repeat these steps until the process converges to a fixed point x 7→
T(x). As convergence criterion, we require that for more than 99.9% of all

3



points on the simulation mesh, the difference of the tax liability with the
previous iteration is smaller than 0.5% or 50 USD, whichever is larger.13

We repeat this algorithm for various values of λ until the budget constraint
(4) is fulfilled.

While solving the partial differential equation (59a) for T (ℓ+1), MATLAB’s
solver will inspect different candidate solutions T (ℓ+1) with corresponding par-
tial derivatives T (ℓ+1)

wj . Unavoidably, some candidates will correspond through

(58) to marginal tax rates T(ℓ+1)
xl which are larger than one for at least some

taxpayers. Since the individual optimization problem yields no solution when
T(ℓ+1)

xl > 1, the algorithm halts when such a point is reached. Since we can-
not control the candidate solutions T (ℓ+1) inspected by MATLAB, we need a
way to guide the solver past any points that imply T(ℓ+1)

xl > 1. Suppose that
straightforward application of (58) yields candidate marginal tax rates denoted
by T∗(ℓ+1)

xj . We then use instead the following marginal tax rates to solve the
individual optimization problem and to compute g(w) and A(w):

∀w : T(ℓ+1)
xj (X(w)) ≡


T∗(ℓ+1)

xj (X(w))

T∗(ℓ+1)
xj (X(w)) + 1 − T(ℓ)

xj (X(w))
if T∗(ℓ+1)

xj (X(w)) ≥ 0,

T∗(ℓ+1)
xj (X(w)) if T∗(ℓ+1)

xj (X(w)) < 0.
(60)

Eq. (60) ensures that T(ℓ+1)
xj (X(w)) < 1, given that T(ℓ)

xl < 1. Moreover,

T(ℓ+1)
xj (X(w)) is continuous and increasing in T⋆(ℓ+1)

xj (X(w)). Finally, if the al-
gorithm converges, it converges to the correct schedule w 7→ T (w), i.e. if
T⋆(ℓ+1)

xj (X(w)) = T(ℓ)
xj (X(w)), then one has T(ℓ+1)

xj (X(w)) = T⋆(ℓ+1)
xj (X(w)) =

T(ℓ)
xj (X(w)).

The Partial Differential Equation Toolbox creates an evenly spaced mesh for
the skills of the individuals. It is not possible to directly increase the detail of the
mesh in certain regions. To have sufficient detail where necessary, for example
near the boundaries and where most households are, we use a transformation
of the types. We use the following utility function:

U (c, x; w) = c − ∑
i=m, f

εi

1 + εi
x

1+εi
εi

i [Wi(wi)]
− 1

εi ,

where Wi(wi) are transformations of the individual abilities wi. For given ob-

13Given that the lower bound for the income space equals 3.000 USD in the empirical baseline,
and the upper bound equals 500.000 USD, this is a high level of precision for practical purposes.
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servations of the incomes and for given marginal tax rates, we find for an opti-
mizing individual:

Wi(wi) = xi(1 − Txi)
−εi .

An appropriate choice of the transformations Wi(wi) allows increasing the de-
tail of the mesh grid where desired. We use the following transformations:

Wi(wi) =

∫ wi
wi

1
Di(ŵi)

dŵi∫ wi
wi

1
Di(ŵi)

dŵi
(wi − wi) + wi,

where Di(wi) are functions that determine the detail of the mesh grid. Note
that Wi(wi) = wi and Wi(wi) = wi. The transformations wi 7→ Wi(wi) thus
maintain the domain of the types. Furthermore:

dWi(wi)

dwi
=

1
Di(wi)∫ wi

wi

1
Di(ŵi)

dŵi
(wi − wi) + wi > 0.

With an evenly spaced grid for w, the grid for W(w) will be more detailed
where dWi(wi)/dwi is smaller, and thus Di(wi) is larger. We increase the detail
of the simulation grid near the lower bounds, where the income densities are
larger, by choosing the detail functions:

Di(wi) = 5
(wi − wi)

8

maxwi [(wi − wi)8]
+ 0.1.

We approximate he inverse Jacobian matrices J (w) of the allocation w 7→
X(w) for distances dwk = 10−7 in the skill domain. We smooth the resulting
inverse Jacobian by interpolating one fourth of the nodes of the mesh in each
dimension using a spline method and by extrapolating linearly for the bottom
0.16% of the population.
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