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1 Introduction

Employees need to recognize that not all numbers are created equal–some are more

reliable than others.

Shah, Horne and Capellá, “Good Data Won’t Guarantee Good Decisions”,

HBR (April 2012)

The Digital and ICT revolution has made organizations awash with data by drastically

reducing the costs of data gathering, storage, access, and analysis. It has also changed how

managers make decisions, relying less on opinions and intuition and more on insights derived

from this data.1 In spite of these improvements, the information that reaches decision

makers is still hampered by incentive conflicts: conflicts of interest over decisions result in

disagreement over which data to collect and how to analyze it, and creates frictions when

communicating its findings to decision makers. In this paper, we develop a theory of the

organization of data analytics in the face of these frictions.

To highlight the role of data, consider a CEO (principal) who decides on the scale of a

project and relies on the opinion of a manager (agent) who is inclined to overstate the quality

of his own projects. At first glance, the recent advancements in data analytics and easier

access to data could be a solution to this problem–KMPG (KPMG, 2016) and McKinsey

(McKinsey and Co, 2017) highlight the importance of using data to counterbalance biases,

and advocate the adoption of a data-driven, test-and-learn culture.2 However, evidence

shows that companies are struggling to capture value from analytics (McKinsey and Co,

2018a). One of the problems is that organizations still need to rely on people to design the

experiments, manage the data and report the results, and their preferences might not be

1Brynjolfsson, Hitt, and Kim (2011) and Brynjolfsson and McElheran (2016) report rapid and widespread

adoption of Data-Driven Decision Making (DDM) practices in organizations, where the rate of adoption

is heavily influenced by a series of complementary organizational practices. See also Goldfarb and Tucker

(2019) for a discussion on the type of cost reductions brought about by digital economic activity.
2Most data analytics is used for process or product improvement or is related to other types of innovation—

see Wu, Hitt, and Lou (2020). Earlier work by Pfe↵er and Sutton (Pfe↵er and Sutton, 2006) promotes what

they call evidence-based management: organizations should encourage trial programs, pilot studies, and

experimentation.
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aligned with the goals of the organization. These frictions in data management manifest

themselves, for example, in decision-makers’ mistrust of data–a recent survey by KPMG

reports that only one third of respondents trust the insights generated from their business

operations.3

We see data analytics as comprising two tasks: (i) experimental design that specifies

which data to collect and how to process it, and (ii) analysis whereby the actual experiment is

implemented according to the specified design. If the principal were to directly specify which

experiment to run–or could delegate this role to a trusted data scientist–while the analysis is

still performed by a biased manager, then fostering trust in analytics would call for policies

that ensure data accuracy and integrity—e.g., through regular examination of data, access

management, and audit trails—or that prevent data tampering (or minimize its e↵ect).4

The key conflict in our model is that the principal must delegate the experimental design

to a biased manager, who can potentially limit how much the organization learns from

the data. This scenario is consistent with many relevant applications. For example, if

the principal is a high-level executive of a large organization, she may lack the time or

the expertise to personally design all aspects of all the experiments.5 Even if she could

hire unbiased data scientists, empirical evidence shows that firms cannot simply delegate

experimentation to them—lack of visibility and knowledge of the business unit forces firms

to still rely on the participation of business managers when designing experiments.6 To

circumvent this problem, analytics centers typically employ “translators”–employees sourced

from the business units with business knowledge–to work with the data scientists (McKinsey

3See KPMG (2016, 2018). There are multiple factors behind this mistrust of data: data breaches and

inaccuracies–questioning the integrity of data–but also the lack of experience with certain advanced analytics

that lead managers to regard them as a “black box” and doubt the value of their results (KPMG, 2018).
4The adoption of new technologies such as blockchain can eliminate data tampering within organizations,

thus giving decision makers access to information that is known to be correct (Tapscott and Tapscott, 2017).
5For large companies implementing a new analytics program, McKinsey (McKinsey and Co, 2017) suggests

coming up with as many as 100 possible use cases.
6 McKinsey (McKinsey and Co, 2017, 2018a) finds that if a firm’s analytics team works on an island,

isolated from business, then its impact might be very limited. Pilots carried out in small labs with limited

connection to the business typically fail to provide the needed answers. Data scientists might lack a deeper

understanding of the business. Consequently, McKinsey recommends that the design of analytics solutions

needs to have business participation from the start.
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and Co., 2018b). Since these translators have a longstanding relationship with business

units and their careers depend on the latter’s success, we consider them to have the same

preferences as the biased manager.

We are interested in understanding optimal organizational practices under delegated

experimentation. We first consider a principal that “organizes to innovate:” she needs to

test a new project to decide whether to scale-up (decision dH) or toss out the project and

retain the status-quo (decision dS). The agent in our model can be interpreted as a business

unit manager who will run the test and report its results. The agent always prefers to scale-

up,7 while the principal prefers to scale-up if the state is “high” and keep the status-quo

when the state is “low.” We model data analytics as a designer-agent-principal game:8 (i)

to persuade the principal, an uninformed designer strategically designs an experiment that

reveals information about the payo↵-relevant state—as in Kamenica and Gentzkow (2011),

KG henceforth. We consider both the case in which the agent designs the experiment

(integration) or the design task is allocated to an analyst outside the business unit but with

the same preference (separation);9 (ii) the agent runs the experiment and privately observes

its outcome; before submitting his report, he finds how costly it is to misrepresent (tamper)

this outcome. This simple setup captures the main experimentation-tampering trade-o↵: the

principal needs to strike a balance between inducing the designer to select a more informative

experiment while at the same time restraining the agent from tampering.

To manage this trade-o↵, we explore several organizational levers: (i) task allocation—

namely, whether to integrate or separate the role of the designer–and (ii) data governance,

comprising two types of policies: tampering detection policies—how much to audit the agent’s

report where auditing intensity is given by the probability � 2 [0, 1] that the principal also ob-

serves the actual experimental outcome, thus both detecting tampering and muting its e↵ect

on decision making–and tampering prevention policies that raise the costs of tampering.10

7Business managers may favor scaling-up because of a preference for empire building, or because their

human capital is tied to this decision, or as a result of improved outside opportunities.
8Alternatively, borrowing from the strategic communication literature, this would be a designer-sender-

receiver game.
9As argued above, e↵ective delegation of the design of experiments requires the involvement of employees

with knowledge of the business unit (McKinsey and Co., 2018b).
10For instance, through a by-law that defines the punishment for tampering, or through data security
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Our first result highlights the role of tampering detection: for a fixed and imperfect pre-

vention policy, increasing auditing intensity reduces the informativeness of the designer’s ex-

periment. To wit, managers may gather “just enough” evidence if decision makers find them

more reliable. In fact, a perfect audit � = 1 deters tampering altogether but results in an

experiment from which the principal derives no surplus–as she observes the true experimen-

tal outcome, when she decides to scale-up she is indi↵erent between the two decisions; see

KG. With an imperfect audit, the agent tampers more but the designer must select a more

informative experiment to compensate for the tampering. Thus, and consistent with our

theme of “credible skepticism,” the principal commits to an imperfect audit (�⇤
< 1) that

optimally trades-o↵ the increased tampering with the increased informativeness.

Our second result shows that she prefers to separate the design task from the analysis task

as integrating tasks leads the designer to also incur the tampering costs, thus forcing him to

economize on them by shifting to less informative experiments. Both insights resonate with

organizations that centralize design in a Center of Excellence (CoE) while coming short of

implementing water-tight auditing measures.11

Our third result considers the optimal tampering prevention policy given an imperfect

audit. We show that the firm makes low tampering costs su�ciently likely as this incen-

tivizes tampering and provides decision makers with commitment power to reject self-serving

recommendations.

We then turn to the optimal data governance (i.e., the joint design of tampering pre-

vention and detection policies). We argue that promoting a moderate sense of mistrust can

create a culture of “healthy” skepticism in the organization: the principal can refrain from

adopting agents’ self-serving recommendations issued with weak supporting evidence, forc-

ing the latter to provide stronger evidence backing them. However, to credibly do so, the

principal both makes low tampering costs su�ciently likely and limits her auditing intensity–

tampering prevention and detection act as complements. Under this optimal scheme, the

designer always selects a fully informative experiment. That is, organizations in our model

measures that make tampering more or less costly and more or less easy to detect. All in all, these policies

shape the distribution of the tampering costs faced by the agent.
11For instance, McKinsey and Co. reports on several firms centralizing data analytics around a CoE tasked

with homogenizing data analytics and supporting the di↵erent business units. See McKinsey and Co. (2018b).
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would take actions to maximize experimentation while being subject to moderate levels of

data misrepresentation. We show that this optimal organization can be implemented through

a decoupled internal-external audit system.

Finally, we look at a principal that “organizes for scale”–i.e., she entertains both scaling-

up (dH) and down (dL) as viable alternatives to the status-quo (dS). It is still true that

separating tasks and committing to an imperfect audit leads to stronger evidence backing a

dH recommendation, but the principal must guard against “adverse switches”–i.e., a switch

from an experiment recommending dH or dL to a less informative “status-quo” experiment

recommending dH or dS– and it may now be optimal for her to integrate tasks and to perfectly

audit the agent’s report (set �⇤ = 1). Adverse switches occur because agents promoting dH

are more willing to compromise on the status quo than the principal. She can avoid such

compromise by ruling out the status-quo as an option; in fact, if the principal can commit

to ruling-out decisions (i.e., to reduce her discretion), then she prefers an imperfect audit

(�⇤
< 1). Thus, in this context, discretion and auditing intensity act as complements.

We present the model in Section 2. Section 3 characterizes the equilibrium in the com-

munication subgame for a fixed organizational structure. Sections 4 and 5 cover our main

insights on the optimal organization of data analytics for the case in which the principal or-

ganizes to innovate. Section 6 studies the case in which the principal organizes for scale. We

conclude with a discussion of the related literature in Section 7. All proofs are in the Ap-

pendices.

2 Model

To model the di↵erent tasks of data analytics, we introduce a “designer-agent-principal”

game in which the data designer (he) specifies what information the agent (he) will privately

observe and report to the principal (she) prior to making the decision.

Preferences and Prior Beliefs: Players are expected utility maximizers. The state space is

binary, with typical realization ✓ 2 ⇥ = {0, 1}, and players hold a common prior µ = Pr[✓ =
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Figure 1: Principal and Agents’ payo↵s

1]. The principal selects d from {dL, dS, dH}, and has preferences characterized by u(d, ✓), 12

u(d, ✓) =

8
>>>>>><

>>>>>>:

q
H

for d = dS,

✓ for d = dH ,

↵L for d =dL and ✓ = 0,

↵L � I{↵L�q
H
}
↵L�q

H

q
S

for d =dL and ✓ = 1,

with 0 = q
L
 q

S
< q

H
< 1. In words, the principal decides either to keep the status quo dS,

to scale-up operations by choosing dH , or to scale-down by choosing dL–Figure 1 represents

the principal’s payo↵ as a function of her posterior q. Our main focus will be on the case

that ↵L < q
H
so that the principal “organizes to innovate” as she e↵ectively chooses between

dS or dH (i.e., whether to approve the “innovation” dH), selecting dH only if q 2
h
q
H
, 1
i
.

Second, if ↵L � q
H
, then the principal “organizes for scale:” if she deviates from dS, then

she could either scale-up (dH), or scale-down (dL), selecting dL only if q 2
h
q
L
, q

S

i
. In either

case, q
i
represents the minimum posterior belief for which the principal still selects di.

We capture the conflict of interest between the agents and the principal by positing that

the designer and the agent receive a state-independent payo↵ v(di, ✓) = vi with 0 = vL <

12IA represents the indicator function of the set A; i.e., IA(x) = 1 if x 2 A and IA(x) = 0 if x /2 A.
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vS < vH , so that they benefit from persuading the principal to choose “higher” decisions.

To focus on the more interesting case, we assume that µ 2 (q
S
, q

H
) so that the principal

retains the status quo in the absence of any report, and we let �i ⌘ vH � vi, i 2 {L, S} be

the designer/agent’s gain from inducing his preferred decision dH when the alternative is di.

Strategic Experimentation, Communication and Tampering: All players process informa-

tion according to Bayes’ rule. We consider three stages to this model of data analytics.

First, in the experimental-design stage, the designer specifies which data to gather and

how it will be processed: he selects an experiment ⇡, consisting of a finite outcome space S(⇡)

and a family of likelihood functions over S(⇡), {⇡ (·|✓)}
✓2⇥, with ⇡ (·|✓) 2 �(S(⇡)). Given the

common prior, we can without loss set S(⇡) ⇢ �(⇥), so that ⇡ = {q,Pr [q]}
q2S(⇡) is expressed

as a distribution over posterior beliefs q induced by observing the experimental outcome,

with S(⇡) indexing these outcomes. We say that the designer “experiments more” when

he selects a Blackwell-more informative experiment. We make two important assumptions

regarding experimental design. First, as in KG, the designer can choose any experiment that

is correlated with the state. Second, experiments are costless to the designer. This can be

the case, for instance, if a fully informative experiment is originally available to the designer

and he can garble its outcome at no cost.

Second, the design stage is followed by an analysis/communication stage. The agent pri-

vately observes the outcome s 2 S(⇡)–we refer to s as the agent’s “type”– and sends a mes-

sage m 2 S(⇡) to the principal, which is potentially subject to misrepresentation: the agent

can tamper with the true outcome s by reporting instead s
0 2 S(⇡), s0 6= s. We will work

with a reduced-form model of tampering: the agent incurs a cost c if he tampers, with c

unknown at the design stage and distributed according to F (c), and independent of the ex-

periment ⇡. These costs are shaped by the principal’s tampering prevention policies and

can be physical costs–e.g., e↵ort in “doctoring the books” or “creating a credible alternative

story”–or represent punishments if caught misrepresenting–with the severity of the punish-

ment varying with the tampering method–or even psychic costs of misrepresentation.13 We

let F̄ (c) ⌘ 1� F (c) and f ⌘ dF/dc be its density, whenever it exists.

We make two assumptions regarding these tampering costs. First, they are always borne

13Gneezy (2005) and Abeler, Nosenzo and Raymond (2020) show experimentally that individuals have

some innate preference for honesty.
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by the agent when he tampers. In Section 5.5, we show that the main insights of our analysis

hold if the agent incurs the cost c only if tampering is uncovered through auditing. Second,

the agent bears the same cost independently of the actual message sent. In other words, the

decision of how to misrepresent the state only depends on the equilibrium inference of the

principal, rather than the costs/punishments specifically associated to di↵erent messages.

In the third stage, the decision making stage, the principal observes both the designer’s

experiment and the agent’s message. Key in our model is the principal’s ability to evaluate

the truthfulness of this message, and undo the e↵ect of any misrepresentation, by auditing

the experiment. We assume that with probability � the audit is conclusive and the principal

learns the actual experimental outcome, while with probability 1� � the audit is inconclu-

sive and she gains no new information. Importantly, what can be learned from an audit is

constrained by the informativeness of ⇡. Thus, auditing di↵ers from seeking a “second opin-

ion” in which the principal may have access to a separate information source.14 If the audit

is conclusive, the principal is informed (of s) and selects (a possibly mixed) dI(m, s) which

depends on the message m and the outcome s. If the audit is inconclusive, she is uninformed

and selects dU(m). To lighten the exposition, we say that “the message/recommendation is

(un)audited” when the audit is (in)conclusive.

Organizational Design: Organizational members perform two tasks—experimental design

and analysis—and the principal has several organizational levers to incentivize them. First,

she defines the firm’s data governance comprising the tampering prevention and detection

policies. In terms of tampering detection, she sets the auditing intensity � 2 [0, 1]. For

instance, she can assign resources at the outset that are used later to audit the agent’s

report, thus, dictating the likelihood of a conclusive audit. An important assumption is that

the principal can commit to an imperfect audit, i.e., to � < 1. Otherwise, once the designer

selects an experiment, she can completely eliminate the e↵ect of tampering by perfectly

auditing the agent’s message. In anticipation of a perfect audit, however, the designer would

select the perfect commitment experiment as in KG. To see this, and for future reference,

consider experiments {q
L
, q

H
} and {q

S
, q

H
} with

14See, for instance, Kolotilin (2018), Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017), and Guo and

Shmaya (2019) for information-design models where the receiver is privately informed.
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p
C

i
⌘ Pr[s = q

i
] =

q
H
� µ

q
H
� q

i

, (1)

the probability of outcome s = q
i
, i = L, S. If � = 1, then the designer selects the experiment

{q
i
, q

H
} that minimizes pC

i
�i. If the organization hopes to induce more experimentation, it

must be able to guarantee that the success rate of an audit is limited to �. Our interpretation

is that further resources cannot be deployed once the auditing intensity is announced, so

that � cannot be increased neither in reaction to the chosen experiment, nor to the reported

outcome. In terms of tampering prevention, she can enact di↵erent data encryption and

authentication systems to preserve data integrity or security measures to make access to

data storage systems costly. All these policies e↵ectively shape the distribution of tampering

costs F .

Second, the principal can choose to either integrate design and analysis, by letting the

same agent perform both tasks, or to separate them, by allocating each to a di↵erent agent.15

Let k denote the principal’s task allocation, with k 2 (I,S). Instead of changing the number

of agents for each task allocation, we keep our designer-agent-principal game throughout all

task allocations and assume that the designer also bears the tampering costs incurred by

the agent under integration (k = I), while he does not bear them under separation (k = S).

In terms of organizational structure, task separation would correspond to a firm in which

experimental design is centralized in a corporate headquarters and the designer mandates

each operating unit which analysis to perform, while the actual data collection and reporting

is decentralized to those units.16

Timing: The principal selects whether to separate or integrate tasks and data governance

15A maintained assumption of our analysis is that task allocation does not a↵ect the agents preferences

over decisions. That is, task allocation cannot be used to reduce the conflict of interest between principal

and agents.
16For instance, the design of customer surveys or the specification of which data to be collected by Enter-

prise Resource Planning (ERP) systems could be performed by an enterprise-wide data architect, while the

analysis of the results is performed at the divisional level. Integration would have both tasks been decentral-

ized to lower level units, so that local agents have discretion in deciding which data to collect and which anal-

ysis to perform. As an example in the public sector, David Cameron created the Behavioral Insights Team

(BIT) under the supervision of the Cabinet O�ce (see Alonso and Câmara, 2016 for details). In an example

of task-integration, the BIT would both design and conduct small-scale experiments for the UK Government.
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(�, F ). Then, the designer publicly selects ⇡ = {q,Pr [q]}
q2S(⇡)—this is the design subgame.

The communication subgame follows: Nature draws ✓ and the agent privately observes

outcome s 2 S(⇡), generated according to ⇡, and the cost c, and selects a message m 2 S(⇡).

The principal observes the actual outcome s with probability � and, given the outcome of

the audit and the agent’s message, she updates her beliefs according to Bayes’ rule, selects

a decision, payo↵s are realized and the game ends. We look for Perfect Bayesian Equilibria

that constitute a Perfect Bayesian Equilibrium in every subgame.

3 Communication Equilibria

We start the organizational-design analysis by studying how agents respond to a given organi-

zational structure. That is, we study the equilibria in the designer-agent-principal game cor-

responding to a fixed task allocation, cost distribution and auditing intensity. We work back-

wards by first characterizing the equilibria in the communication subgame for any ⇡, which

will determine both expected tampering and the distribution over the principal’s decisions.

3.1 Equilibrium Tampering

The agent decides whether to tamper by comparing the gain from misrepresenting his type to

the realized tampering cost. Let �̄ be the maximum gain from tampering in any equilibrium

(both on- and o↵- the equilibrium path).17 Throughout the paper, we consider pairs (�, F )

that guarantee the existence of tampering costs that make tampering unprofitable for every

17If the audit is inconclusive, the largest gain from tampering comes from inducing the principal to select

dH when truthful communication would have led to his least preferred decision. Tampering incentives are

also shaped by the principal’s decision after a conclusive audit: if the agent’s type is a “threshold” type

q
i
, i = {S,H}, then the principal may punish/reward him after a conclusive audit by randomizing di↵erently

between decisions as a function of his report. Then, the maximum gain from tampering is �̄ = (1� �)�S

if the principal organizes to innovate, but �̄ = �L � ��S if she organizes for scale. To see this last case,

consider the experiment
n
q
S
, q

o
with q > q

H
, and the following sequentially-rational decision making: after

a conclusive audit, the principal selects dH if s = q but if s = q
S
she selects dL if the agent truthfully reported

m = q
S
and dS if he tampered m = q. If the audit is inconclusive, and the only tampered outcome is q, the

principal’s consistent belief after an unaudited m = q
S
must be precisely q

S
, in which case she selects dL.

Then, the gain from tampering after s = q is �vS + (1� �)vH � vL = �L � ��S .
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agent’s type, thus ensuring a positive probability of truthful reporting for every experiment

and experimental outcome. This limits the scope of the principal to discipline the agent’s

tampering by holding “optimistic or pessimistic” beliefs after an o↵-the-equilibrium-path

message.

Assumption 1 (All messages on-path) The tampering cost distribution satisfies

F̄ (�̄) > 0. (2)

In the absence of threshold types–i.e., whenever q
i
/2 S(⇡), i = {S,H}–the agent that

tampers sends a message that induces the “highest” decision after an inconclusive audit.

Thus, if di↵erent types choose to tamper by sending di↵erent messages, it must be that they

all induce the same unaudited decision (or mixtures over decisions). With this observation,

we now characterize tampering behavior in the communication subgame.

Proposition 1. In any equilibrium of the communication subgame following the choice ⇡ =

{q,Pr [q]}
q2S(⇡) we have:

(i) For each q 2 S(⇡), there exists c̄(q), with F̄ (c̄(q)) > 0, such that m⇤(q, c) = q if c > c̄(q)

and m
⇤(q, c) 6= q if c < c̄(q);

(ii) Let MT (⇡) ⇢ S(⇡) be the set of “tampered outcomes:”

MT (⇡) = {q 2 S(⇡) : 9(qz, c), m
⇤(qz, c) = q, qz 6= q} .

If dI(m, q
i
) is independent of m whenever q

i
2 S(⇡), i = {S,H}, then for q, q

0 2 MT (⇡) (a)

dU(q) = dU(q0), and (b) c̄(q) = 0.

Proposition 1-i shows that the agent’s tampering behavior is monotonic: he reports

truthfully if the realized cost exceeds an outcome-dependent threshold, c̄(q), and will surely

tamper if the cost falls below this threshold. Proposition 1-ii(a) makes formal the above-

mentioned property that “tampered outcomes”–messages that are transmitted by some other

type with positive probability—may induce di↵erent posterior beliefs but must all lead to

the same unaudited mixture over decisions; this is true as long as the principal does not

condition his audited decision on the agent’s message. Additionally, there shouldn’t be any

gain from tampering for a “tampered-outcome” type; that is, types that others would like

to mimic always report truthfully. This is Proposition 1-ii(b).
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4 Organizing to Innovate: Equilibrium Experimenta-

tion

Suppose that the firm “organizes to innovate”–i.e., the principal decides whether to “ap-

prove” dH or retain dS. To characterize the designer’s equilibrium choice, we introduce the

set of “status-quo” experiments ⇧S: binary experiments of the form {0, q} such that, in equi-

librium, an inconclusive audit leads the principal to posterior q
H

following m = q.

Definition (Status-quo Experiments) Define the class of status-quo experiments ⇧S

indexed by ⌧ 2 [0, 1], as

⇧S =

⇢
⇡ = {0, q} : q � q

H
and F̄ (cS(⌧)) = p

C

S

✓
q

q � µ

◆
, ⌧ 2 [0, 1]

�
, (3)

with

cS(⌧) = ⌧ (1� �)�S, (4)

alongside the equilibrium behavior

dU (0) = dI (m, 0) = dS; dI (m, q) = dH ; dU (q) = ⌧dH + (1� ⌧)dS.

In equilibrium, the principal selects dH with probability ⌧ and dS with probability 1� ⌧

following m = q and an inconclusive audit. This also determines the incentives to tamper

after an unfavorable outcome—which given scale-up probability ⌧ translate to threshold

(4)—and the probability F̄ (cS(⌧)) that following s = 0 the agent reports truthfully�see (3).

This also implies that the set ⇧S depends on the auditing intensity �; for instance, if � = 1

then the commitment experiment is the only status-quo experiment. Moreover, experiments

in ⇧S can be equivalently indexed by either (i) the posterior q, (ii) the probability of outcome

s = 0, with Pr [s = 0] = q�µ

q
, (iii) the scale-up probability ⌧ , or (iv) the induced tampering

threshold cS. Finally, all experiments in ⇧S are ordered according to their informativeness:

trivially, an experiment with a higher q (equivalently higher cS, higher ⌧, or higher Pr[s = 0])

corresponds to a Blackwell-more informative experiment.

We now present our main equilibrium characterization. Given F , let vS(⌧, µ;�, k) be the

designer’s equilibrium payo↵ in a communication subgame after he selects ⇡S (⌧) 2 ⇧S, with

k 2 {S, I} the principal’s task allocation and � her auditing intensity, and let

VS (µ;�, k) ⌘ max
⌧2[0,1]

vS(⌧, µ;�, k), (5)

12



be his maximum expected utility from a status-quo experiment.

Proposition 2. Let � > 0 and µ 2 (0, q
H
). Then,

(i) there is always an equilibrium of the design subgame in which the designer selects a status-

quo experiment,

(ii) if the designer obtains payo↵ V
⇤ in some equilibrium of the design subgame, then V

⇤ =

VS (µ;�, k).

Proposition 2 justifies our restriction to status-quo experiments when analyzing the prin-

cipal’s organizational-design problem. This is based on two observations. First, there is al-

ways an equilibrium in which the designer responds by selecting an experiment in ⇧S. We

prove this claim in the appendix by constructing from an arbitrary ⇡
0 = {q,Pr [q]}

q2S(⇡0) a

status-quo experiment that gives the designer a (weakly) higher payo↵. Second, all equilib-

ria of the design subgame give the same expected payo↵; thus, to find the designer’s optimal

payo↵ we can restrict attention to status-quo experiments.

For the remainder, let {0, q⇤
S
(�, k)} 2 ⇧S be the designer’s optimal experiment, with

c̄
⇤
S
(�, k) the induced tampering threshold.

4.1 Designer’s Equilibrium Payo↵s

To solve for the designer’s optimal experiment using Proposition 2, we now characterize

vS(⌧ (c) , µ;�, k)–the designer’s payo↵ as a function of the induced tampering threshold. To

this end, define ⌘(c) as the product of the expected tampering cost conditional on tampering

times the odds of tampering,

⌘(c) ⌘ E [c|c  c]
F (c)

F (c)
=

R
c

0 cdF (c)

F (c)
. (6)

Lemma 1. For µ 2
h
0, q

H

i
, consider {0, q} 2 ⇧S that induces threshold c. Then,

vS(⌧ (c) , µ;�, k) = vH � (1� �)�S �mS(c;�, k)
⇣
q
H
� µ

⌘
, (7)

with mS the slope of the designer’s payo↵ with respect to the prior µ:

mS(c;�, k) ⌘ 1

q
H

✓
��S

F (c)
+ c+ I{k=I}⌘(c)

◆
. (8)
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Figure 2: Payo↵s for the equivalent “full commitment” game.

To understand (7), for each {0, q} 2 ⇧S we introduce an equivalent “full commitment”

game with a “modified” designer’s utility so that the designer’s payo↵ from {0, q
H
} gives

him the same expected payo↵–see Figure 2.18 This allows us to appeal to the geometric intu-

ition of the full commitment case when studying the designer’s preferences in the imperfect

commitment case. Fix ⇡(c) 2 ⇧S and define the task allocation-dependent utility ṽi,k for di,

ṽH,k ⌘ vH � (1� �) (1� ⌧ (c))�S, (9)

ṽS,k ⌘ vS � ��S

F (c)

F̄ (c)
� I{k=I}⌘(c). (10)

Figure 2 describes the relation between v(q) in the original game and the indirect utility

ṽi,k(q) in the equivalent “full commitment” game.

To show payo↵-equivalence, start with the designer’s payo↵ under full commitment from

{0, q
H
},
�
1� p

C

S

�
vH + p

C

S
vS, with p

C

S
given by (1). Equilibrium tampering alters this payo↵

in two ways. First, upon observing q
H
, the principal now keeps the status quo with proba-

18We cannot apply the concavification argument when � < 1 because the probability of a message cor-

responding to a “tampered outcome,” as well as the principal’s posterior belief when unaudited, are deter-

mined in equilibrium by the agent’s global tampering behavior, which in turn depends on the entire distri-

bution of experimental outcomes.
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bility (1� �) (1� ⌧ (c))�this explains (9). Second, tampering and auditing change the dis-

tribution of outcomes so that the probability of observing 0 increases from p
C

S
to p

C

S
/F̄ (c)—

see (3). This higher probability of a low outcome reduces the designer’s payo↵ by

�
⇥�
1� p

C

S

�
vH + p

C

S
vS

⇤
� �

✓
1� p

C

S

F̄ (c)

◆
vH +

p
C

S

F̄ (c)
vS

�
= ��S

F (c)

F̄ (c)
,

which explains (10) for k = S. Finally, tampering costs are incurred if s = 0, which occurs

with probability p
C

S
/F̄ (c), and explains (10) for k = I.

Expressions (9-10) capture the trade-o↵ that the designer faces: a higher scale-up prob-

ability ⌧ increases the payo↵ after an unaudited message q (outcome q
H

in the equivalent

“full commitment” game), but a higher scale-up probability can only result from a higher

tampering threshold. This forces the designer to o↵er a more informative experiment to sus-

tain the higher ⌧, thus increasing the likelihood of observing an unfavorable outcome.

5 Organizing to Innovate: Organizational Design

We now turn to the issue of organizational design. To understand the trade-o↵s that the

principal faces, consider her expected utility from experiment ⇡ = {0, q} 2 ⇧S:

U (�, k; ⇡) = q
H
+ Pr [s = q]�(q � q

H
). (11)

The principal benefits from ⇡ only after auditing a scale-up recommendation so that the

more convincing the evidence in favor of dH (the larger q � q
H

is) the greater her gain.

Given equilibrium behavior, her expected utility increases with both the auditing intensity

and with the odds of tampering,

U (�, k) = q
H
+
⇣
q
H
� µ

⌘
�
F (c̄⇤)

F̄ (c̄⇤)
. (12)

This expression showcases our main insight: fostering experimentation while discourag-

ing tampering are conflicting goal. The principal can always eliminate frictions in commu-

nication by perfectly auditing the experiment or making tampering su�ciently costly—for

a fixed experiment and costless auditing, she will certainly do so—but this will reduce the

information she receives regarding decision dH . In fact, a fallible data governance allows her

to credibly withhold scaling-up if the evidence in favor of dH are not convincing, forcing the
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designer to provide more compelling evidence. Thus, she would like to incentivize tamper-

ing by having a “shadow of a doubt” on the claims of the agent, but such skepticism can

only be credible if � < 1.

5.1 Optimal Task Allocation

Expression (12) clarifies that, given equilibrium behavior, the principal is always willing to

trade-o↵ more distortions in communication for more informative experimentation. How do

the di↵erent organizational levers help her motivate experimentation? We first show that,

fixing a data governance policy, the principal weakly prefers to separate tasks as this leads

the designer to choosing a more informative experiment.

Proposition 3. We have q
⇤
S
(�,S) � q

⇤
S
(�, I).

The intuition is straightforward: assigning the tasks of experimental design and analysis

to the same agent forces him to economize on tampering costs when choosing an experiment;

when organizing to innovate, reducing tampering costs can only be achieved through a

reduction in scale-up probability, leading to a less informative experiment.19

We now consider the optimal choice of data governance. We discuss the optimal choice of

tampering detection and prevention separately before considering the optimal joint design.

5.2 Optimal Tampering Detection

Consider a fix tampering prevention policy that leads to a cost distribution F . The standard

rationale for auditing data analytics is both to ensure data integrity and to dissuade tam-

pering. This remains true in our model and implies that, for a fixed experiment, increasing

� can only increase the information that reaches the principal.

However, once experimental design is delegated, varying � also changes the designer’s

incentives to experiment. Indeed, reducing � both: (i) changes the set of status-quo experi-

ments, allowing for more informative experiments; and (ii) (weakly) reduces the principal’s

scale-up probability for each experiment. In fact, moving away from a perfect audit always

leads the designer to select a Blackwell-more informative experiment.

19Decreasing scale-up probability lowers both the equilibrium tampering threshold and the likelihood that

a tampering outcome occurs, leading to lower expected tampering costs.
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Proposition 4. Fix k 2 {S, I}. Then,

(i) vS(⌧ (c) , µ;�, k) is supermodular in (c,��).

(ii) Outcome q
⇤
S
(�, k) is non-increasing in �.

In words, increasing � : (a) decreases the designer’s incremental payo↵ from an experiment

with a higher tampering threshold; and (b) decreases the informativeness of its experiment.

To see this, consider the marginal change in the designer’s payo↵ (7) when, as a result of

intensifying auditing, scale-up probability increases to preserve the same tampering threshold

c. The designer’s marginal expected payo↵ conditional on an inconclusive audit decreases

by vS, but increases after a conclusive audit by �S Pr [s = q] + vS. Overall, the designer’s

marginal payo↵ is proportional to the probability that ⇡ generates a favorable outcome,

which decreases with c. Therefore, increasing � reduces the designer’s marginal payo↵ from

more informative experiments. Moreover, a more intense auditing also reduces the set of

status-quo experiments. Proposition 4-ii then shows that the combined e↵ect of a higher �

unambiguously discourages experimentation.

5.2.1 The Optimality of Lax Auditing

To derive properties of the optimal audit, we introduce the notion of designer’s responsiveness

to auditing.

Definition (Responsiveness) The designer under a k�allocation is responsive to ��auditing

if he strictly prefers experiment {0, q} to {0, q
H
} for some q > q

H
.

From (12), the principal gains from experimentation only if lax auditing compels the

designer to select an experiment that will be tampered with positive probability. We thus

reach one of our main results: if auditing is costless and the designer is responsive to auditing,

then in every equilibrium the principal commits to an imperfect audit, i.e. �⇤
< 1.

Proposition 5. Suppose that the principal can select � at no cost, and let �⇤ denote her

equilibrium choice. Then, �⇤
< 1 in every equilibrium if and only if the designer is responsive

to auditing. In particular, if she separates tasks and f(0) > 0, then �
⇤
< 1.

Note that the conditions for �⇤
< 1 are not too stringent: as long as there is a positive

probability that tampering is costless, the optimal audit should be imperfect.
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5.2.2 Optimal Auditing

How much should the principal audit the agent’s report given that she separates tasks? To

derive her optimal audit �⇤, we first characterize the designer’s equilibrium experiment for

any � 2 (0, 1). To this end, define L(c) ⌘ f(c)/
�
F̄ (c)

�2
and c̄FI implicitly by F̄ (c̄FI) =

p
C

S
/ (1� µ) , so that c̄FI is the threshold induced by a fully informative experiment.20

Lemma 2. Fix � 2 (0, 1) and suppose that L(c)� (�S/�) is single-crossing in [0,�S], from

negative to positive, with �S ⌘
�
1� p

C

S

�
/
�
p
C

S
�S

�
. Then, the designer under separation

selects the commitment experiment, corresponding to c̄
⇤ = 0, if L(0) � �S/�. Otherwise, he

selects an experiment that induces tampering threshold

c̄
⇤ = min

⇥
L
�1(�S/�), (1� �)�S, c̄FI

⇤
. (13)

Consistent with Proposition 4-ii, the designer’s optimal experiment induces less tamper-

ing, but is less informative, as auditing intensifies–the equilibrium tampering threshold (13)

decreases with �. The single-crossing condition on L(c) guarantees that the designer’s ex-

pected utility is quasiconcave in the tampering threshold and is always satisfied, for instance,

if the hazard rate f(c)/F̄ (c) is increasing. The equilibrium threshold c̄
⇤ is the minimum of

three possible choices. The term c̄FI = F̄
�1
�
p
C

S
/ (1� µ)

�
corresponds to a fully informa-

tive experiment, while (1� �)�S corresponds to the case that the principal rubberstamps

the agent’s recommendation. The first term in (13) reflects the designer’s choice when it

leads to a lower approval probability. In fact, if L(c) is large—in particular, L(0) � �S/�—

then the principal only approves when she audits and the designer’s experiment induces

c̄
⇤ = 0. Therefore, imperfect, albeit intense, auditing—specifically, when � � �S/f(0)—can

still completely crowd-out valuable experimentation. This imposes an upper bound on the

range of auditing intensities that the principal might entertain.

From (12), the principal’s problem for a fixed prevention policy inducing F is

�
⇤ 2 arg max

�2[0,1]
�
F (c̄⇤)

F̄ (c̄⇤)
, with c̄

⇤ given by (13). (14)

The optimal auditing will, in general, be sensitive to F and the preferences of agents. To illus-

trate (14), we study a case where F leads to tampering costs that are uniformly distributed.

20Recall that q
S
= 0 when organizing to innovate.
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Example: Uniform Distribution. Let �S = 1 with vS = 0, and suppose that c is

uniformly distributed in [0, 1], so that F̄ [(1� �)�S] = �. From (7), the designer’s utility

under separation when the experiment induces c 2 [0, 1� �] is

vS(⌧ (c) , µ;�, S) = �+ c�mS(c;�, S)
⇣
q
H
� µ

⌘
= �+

�
1� p

C

S

�
c� p

C

S

�

1� c
,

which is concave in c. Denote by ccrit ⌘ 1 �
r

�
p
C

S

1�p
C

S

its unconstrained maximum. Then,

mirroring (13), the designer’s optimal experiment leads to a tampering threshold

c
⇤ = min

(
max {0, ccrit} , 1� �,

µ

1� µ

1� q
H

q
H

)
.

We can now fully characterize the equilibrium experiment as a function of �. Recall that
1�p

C

S

p
C

S

are the approval odds of the innovation if the principal were to set � = 1. If � � 1�p
C

S

p
C

S

,

then ccrit  0 and the designer selects
n
0, q

H

o
, i.e., selects the commitment experiment.

If �  p
C

S

1�p
C

S

, then ccrit � 1 � � and the designer selects the most informative status-quo

experiment. This would lead to a fully informative experiment or to an experiment for which

the principal’s rubberstamps an unaudited scale-up recommendation. Finally, if
p
C

S

1�p
C

S



�  1�p
C

S

p
C

S

, then c
⇤ = min

h
ccrit,

µ

1�µ

1�q
H

q
H

i
and the designer limits the informativeness of the

experiment, leading to intermediate approval probabilities after an inconclusive audit.

Figure 3 describes two cases, with
1�p

C

S

p
C

S

taking values 2 and 1/2.21 If
1�p

C

S

p
C

S

= 2, then

the innovation idea is a good prospect : it is likely to be perceived after experimentation as

a profitable alternative to the current status quo. Then, the designer reacts to more intense

auditing by switching to experiments that are less informative (consistent with Proposition

4) but that lead to a higher probability of approval. Figure 3-a shows the principal’s utility,

which is maximized for � = 0.57. So, for good-prospect ideas, the principal engages in

somewhat intense auditing and the designer restricts experimentation as, for such intense

auditing, the principal is willing to rubberstamp the agent’s recommendations.

If
1�p

C

S

p
C

S

= 1/2, then the innovation idea is a poor prospect : it is unlikely that experimen-

tation will uncover evidence showing it to be more profitable than the status quo. Again,

the designer reacts to more intense auditing by experimenting less but approval probabil-

ity is now non-monotonic: it increases for low values of ��as the designer always selects a

21In both cases, we take µ = 1/4. We have q
H

= 3/8 if 1�p
C
S

p
C
S

= 2, while q
H

= 3/4 if 1�p
C
S

p
C
S

= 1/2,
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Figure 3: Equilibrium experimentation as a function of auditing for (a) a good prospect, and

(b) a poor prospect.

fully informative experiment and increased auditing simply raises approval probability—but

it monotonically decreases when the designer actually switches to a less informative exper-

iment. In fact, for � > 1/2, the designer selects the commitment experiment so that ex-

perimentation creates no value for the principal. Figure 3-b describes the principal’s utility

which is maximized for � = 0.39. So, for poor-prospect ideas, the principal seldom audits

the experiment and the designer in response does not reduce experimentation—i.e., the de-

signer’s experiment fully reveals the state. Nevertheless, such lax auditing implies that ap-

proval largely relies on the principal vetting the agent’s recommendation.

5.3 Optimal Tampering Prevention

Consider now a fixed auditing intensity � and suppose that the principal is unconstrained in

her choice of F . Consistent with our theme of “credible skepticism” to motivate experimen-

tation, she will incentivize some tampering in equilibrium by selecting a prevention policy

that actually makes low tampering costs su�ciently likely.
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Figure 4: Auditing and optimal tampering cost distribution.

Proposition 6. Fix 1/(2� q
H
) < � < 1 and suppose that tasks are separated. Then,

(i) For any prevention policy, we have

q
⇤
S
(�,S)  �

2�� 1
q
H
. (15)

(ii) There is a multiplicity of prevention policies that achieve the bound in (15), all of them

satisfying the following inequality

F (c) � c

c+ �
p
C

S
�S

1�p
C

S

for c  ��S

p(�)� p
C

S

1� p
C

S

with p(�) = 1� (2�� 1)

�
p
C

S
. (16)

We prove this proposition by solving an auxiliary problem: to find the maximum auditing

intensity that induces the selection of experiment ⇡ = {0, q} for some cost distribution.

The solution is e�S(q) = q/(2q � q
H
)–depicted in Figure 4(a)–which is obtained by ensuring

that switching to the commitment experiment {0, q
H
} is never profitable for the designer.

Inverting this relation, we then obtain the most informative experiment consistent with

auditing intensity �.

There are many di↵erent distributions that would lead the designer to select {0, �

2��1qH
}–

in all of them the distribution F (c) exceeds some lower bound–see dotted line in Figure 4-b.

That is, tampering for low realizations must be su�ciently likely so that the principal can

commit to high approval rates only if experiments are su�ciently informative. Our argument

didn’t require the distribution to be smooth or to have a density. One distribution that
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satisfies (16) is supported only on two cost realizations, 0 and ��S

p(�)�p
C

S

1�p
C

S

–see the solid-line

F
⇤
0 in Figure 4-b–with Pr [c = 0] =

�
p(�)� p

C

S

�
/p(�), and the agent only tampers if c = 0;

thus, expected tampering costs are zero.

5.4 Data Governance

Tampering prevention and detection are perfect substitutes when it comes to dissuading

tampering. Can an organization improve its performance by simultaneously controlling

both? One of our main insights is that optimal data governance calls for both a lax auditing

intensity and a fallible tampering prevention system.

Proposition 7. Consider a principal that specifies both the task allocation and data gover-

nance, then:

(i) She sets a prior-independent auditing intensity

�
⇤
opt

=
1

2� q
H

. (17)

(ii) The designer selects a fully informative experiment ⇡ = {0, 1}.

(iii) There is a multiplicity of optimal cost distributions but, among them, the following

minimizes expected tampering costs,

F
⇤
opt
(c) =

8
<

:

µ(1�q
H
)

q
H
(1�µ) for c 2 [0,

1�q
H

2�q
H

),

1 for c � 1�q
H

2�q
H

.

(18)

For this cost distribution, the principal is indi↵erent between separating and integrating tasks.

(iv) The principal can implement (18) through a dual internal-external audit: Tampering

is always costless, but an internal audit privately verifies the agent’s report with probability
q
H
�µ

q
H
(1�µ) and rectifies a tampered report.

An important principle in organizing data analytics is that, under delegated experimen-

tation, the organization must also allow, to some extent, tampering by agents. To do so op-

timally, the organization both raises the likelihood of low tampering costs and engages in

lax auditing–the optimal auditing intensity (17) is always lower than 1, but higher than 1/2,

and increases with the principal’s approval threshold.
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We prove this proposition by appealing to Proposition 6 and optimizing over �. We also

obtain that q⇤
S
(�⇤

opt
,S) = 1–this is Proposition 7-ii. To wit, under an optimal organization,

the designer has no incentive to garble an experiment that reveals the underlying state and

the principal rubberstamps any scale-up recommendation after an inconclusive audit. If the

organization wants to minimize the costs imposed upon agents—say because of concerns

with increasing hiring costs—then the optimal distribution makes tampering either costless

or completely deters tampering (see Figure 4). This distribution also makes task allocation

irrelevant, as expected tampering costs are always zero.

Our model also relates to the literature that studies optimal government regulation of

markets with externalities. This literature has pointed out that sometimes it is optimal for

the government to simultaneously impose ex ante policies (e.g., safety standards), which

constrain what can be done before the externality is generated, and ex post policies (e.g.,

exposure to tort liability), which defines what may happen after the externality is generated

--- e.g., Kolstad, Ulen, and Johnson, 1990; Marino, 1988; Shavell, 1984a, 1984b. In our

setup, the principal also finds it optimal to use a combination of an ex ante policy (tampering

prevention) and an ex post policy (tampering detection).

The optimal organization that satisfies (18) can be a↵orded an intuitive implementation:

the agent faces no cost of tampering but his report is subjected to a decoupled internal-

external audit. First, the report is internally audited, albeit the probability of elucidating the

true outcome is restricted to
q
H
�µ

q
H
(1�µ) . If the internal audit is conclusive, however, it ensures

that the report is consistent with the experimental outcome. Second, this report is subjected

to an imperfect external audit, which is conclusive with probability 1/(2� q
H
). In summary,

the organization conducts more intense internal audits for poor prospects—i.e., when scaling-

up is less likely under a perfect audit—but commits to a prior-independent external audit.

Importantly, the outcome of the internal audit must be unknown to the principal. This

decoupling of audits is essential to incentivize experimentation: if the outcome of the inter-

nal audit were known to the principal, the designer in anticipation would then select the

commitment experiment
n
0, q

H

o
. The accounting literature is also concerned with the pos-

sible e↵ects of internal control audits and, in particular, whether the public disclosure of

internal control audits should be mandatory. For example, Lennox and Wu (forthcoming)

study the e↵ects of regulation mandating the disclosure of internal control audits in China.
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They present evidence that mandatory disclosure of internal control audits can significantly

reduce the quality of information.

5.5 Tampering costs incurred only if audit is conclusive.

A conclusive audit reveals both the true experimental outcome and whether tampering took

place. Suppose then that tampering costs are only borne if the agent is found to have

tampered. We can adjust our analysis by setting the expected tampering cost to �c when

the cost realization is c. A full analysis of this case can be found in the online Appendix B.

For a fixed � < 1, Proposition 1 and 2 still apply, albeit with di↵erent threshold values

c̄(q). To see how this a↵ects the designer’s payo↵, consider {0, q} 2 ⇧S that induces tam-

pering threshold c. Then, expressions (3-4) translate to

F̄ (c) p = p
C

S
with p =

q � µ

q
,

c =
1� �

�
⌧�S.

The first condition is identical to (4): the tampering threshold determines the probability

of truthful reporting given an unfavorable outcome–i.e., F̄ (c)– so that the probability of

observing message m = 0 must be equal to p
C

S
, irrespective of whether expected tampering

costs are c or �c. However, the second condition shows that the corresponding scale-up

probability must be lower to account for the lower tampering cost.

Nevertheless, the comparative statics of experimentation with respect to the two orga-

nizational levers remain the same: separating tasks or decreasing auditing intensity always

increases experimentation.22 What are the organizational implications if the agent’s tam-

pering cost reduces to �c? It is still true that the principal prefers to separate tasks and to

commit to an imperfect audit whenever the designer is responsive to auditing–however, the

conditions for designer responsiveness are now more stringent. Moreover, if the principal can

freely shape the distribution of tampering costs through tampering prevention policies and

can commit to ruling out decisions, then the same organizational design as in Proposition 7

remains optimal-see online Appendix B.

22The only notable di↵erence with respect to Proposition 4 is that the designer’s payo↵ is no longer

supermodular in (minus) the tampering threshold and the auditing intensity.
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6 Organizing for Scale

Suppose now that the firm “organizes for scale:” the principal’s alternative to scaling-up is

either to retain the status-quo or to scale-down. We show in Section 6.1 that the designer

may now select an experiment recommending dH or dL instead of one recommending dH or

dS, and in Section 6.2 we discuss how this extra choice a↵ects data governance.

6.1 Equilibrium Experimentation and Designer’s Payo↵s

Looking at the communication subgame, the fact that all messages are on-path–see Assump-

tion 1– does not rule out multiple equilibria as the principal may randomize after a con-

clusive or inconclusive audit. For instance, if the designer selects {q
S
, q} then the principal

could choose di↵erent (mixed) decisions as a function of the agent’s report after a conclusive

audit yields s = q
S
, or as a function of the audit after the agent reports m = q

S
. Thus, the

designer’s payo↵ from experiment {q
S
, q} varies with the equilibrium in the communication

subgame, which a↵ects the designer’s preferences over experiments.

To characterize the designer’s equilibrium choice, we introduce the set of robust experi-

ments ⇧R

i
, i 2 {L, S}. These are binary experiments of the form {q

i
, q} such that the princi-

pal when indi↵erent–e.g., after message m = q
i
or after a conclusive audit determines s = q

i
–

selects the most favorable action to the agent.

Definition (Robust Experiments) Define the class i 2 {L, S} of robust experiments ⇧R

i

indexed by ⌧ 2 [0, 1], as

⇧R

i
=

⇢
⇡ = {q

i
, q} : q � q

H
and F̄ (ci(⌧)) = p

C

i

✓
q � q

i

q � µ

◆
, ⌧ 2 [0, 1]

�
(19)

with ci(⌧) given by

cS(⌧) = ⌧ (1� �)�S and cL(⌧) = cS(⌧) + (1� �) (�L ��S) , ⌧ > 0, (20)

and ci(⌧) = 0 if ⌧ = 0, alongside the equilibrium behavior

dU

⇣
q
i

⌘
= dI

⇣
m, q

i

⌘
= di; dI (m, q) = dH ; dU (q) = ⌧dH + (1� ⌧)dS.

Finally, let ⇧R ⌘ ⇧R

L
[ ⇧R

S
denote the set of robust experiments.
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We will refer to ⇧R

S
as “status-quo” (robust) experiments and to ⇧R

L
as “up-or-down”

(robust) experiments23 and describe “up-or-down” experiments ⇧R

L
as the “more informative”

class.24 To present our main equilibrium characterization, let vi(⌧, µ;�, k) i 2 {L, S}, be the

designer’s equilibrium payo↵ after he selects ⇡i (⌧) 2 ⇧R

i
, and let

Vi (µ;�, k) ⌘ max
⌧2[0,1]

vi(⌧, µ;�, k),

V̄ (µ;�, k) ⌘ max {VS (µ;�, k) , VL (µ;�, k)} .

Proposition 8. Let � > 0 and µ 2 (q
S
, q

H
). Then,

(i) there is always an equilibrium of the design subgame in which the designer selects a robust

experiment,

(ii) if the designer obtains payo↵ V
⇤ in some equilibrium of the design subgame, then V

⇤ �

V̄ (µ;�, k). If V ⇤
> V̄ (µ;�, k) and ⇡

⇤ is an equilibrium experiment, then q
S
2 S(⇡⇤).

Proposition 8 justifies our restriction to robust equilibria when the principal organizes

for scale. First, there is always an equilibrium in which the designer responds by selecting

an experiment in ⇧R. Second, the designer can always guarantee himself V̄ (µ;�, k) in any

equilibrium. Indeed, experiment {q
S
+", q}, with " small, results in a unique designer’s payo↵

as the principal never randomizes after a conclusive audit. This uniqueness of equilibrium

payo↵ guarantees that V ⇤ � V̄ (µ;�, k). However, if q
S
2 S(⇡), the principal could use her

indi↵erence after a conclusive audit shows s = q
S
to minimize tampering by announcing

that she would treat favorably truth-telling and unfavorably tampering. In fact, whenever

� � �S/�L the designer can obtain the commitment payo↵ from experiment {q
S
, q

H
}–this

is the case if the principal threatens to scale-down if the agent is caught tampering. This

proves that V ⇤
> V̄ (µ;�, k) in this case. We defer to Section 6.3 a discussion of organizational

design with non-robust experiments.

Lemma 3 extends the payo↵ characterization in Lemma 1 to this case.

Lemma 3. For µ 2
h
q
i
, q

H

i
, consider {q

i
, q} 2 ⇧R

i
that induces threshold c. Then,

vi(⌧ (c) , µ;�, k) = vH � (1� �)�i + c�mi(c;�, k)(q
H
� µ), (21)

23To streamline the exposition, we drop the qualifier “robust” in this section when describing experiments

in ⇧R.
24This terminology captures the fact that for each experiment in ⇧R

S
there is always an experiment in ⇧R

L

that is Blackwell-more informative.
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Figure 5: Designer’s equilibrium payo↵ for di↵erent experiment classes.

with mi the slope of the designer’s payo↵ with respect to the prior µ:

mi(c;�, k) ⌘ �i

q
H
� q

i

✓
�

F (c)
+

c

�i

+ I{k=I}
⌘(c)

�i

◆
. (22)

Figure 5 depicts the designer’s payo↵ under separation if he selects a status-quo experi-

ment, VS (µ;�,S), and an up-or-down experiment VL (µ;�,S), for some � < 1. V̄ (µ;�,S) is

then computed as the upper envelope of these payo↵s. These graphs highlight a feature that

distinguishes our model with tampering from a model with commitment: while in the com-

mitment case this payo↵ is always concave, here the designer’s equilibrium payo↵ is (locally)

strictly convex in the prior for µ 2
h
q
S
, q

H

i
. This is a reflection that he actually changes the

experiment (switching to one with a higher ⌧ and hence higher c) as µ increases. In fact, as

shown in Figure 5-b, a higher prior can lead to switches in the optimal class of experiment.

Indeed, in spite of an “up-or-down” experiment being optimal in Figure 5-b when � = 1, if

� < 1 then the designer may actually switch to a less informative “status-quo” experiment.

For the remainder, we let c̄⇤
i
(�, k) be the agent’s optimal tampering threshold when re-

stricted to an experiment in ⇧R

i
and i

⇤(�, k) be the class of the designer’s optimal experiment.
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6.2 Organizing for Scale: Organizational Design

To understand the trade-o↵s in organizational design, consider the principal’s expected utility

from experiment ⇡ = {q
i
, q} 2 ⇧R

i
:

U (�, k; ⇡) = q
H
+ Pr [s = q]�(q � q

H
) +

+Pr[s = q
i
][1� (1� �) Pr[m = q|s = q

i
]](Eq

i

[u(di, ✓)]� q
H
). (23)

The principal now benefits from ⇡ in two ways. First, she selects dH after auditing a

scale-up recommendation. Second, when ⇡ 2 ⇧R

L
, she selects dL after s = q

L
except when the

agent tampers and her audit is inconclusive. Therefore, the gain from scaling-down can be

increased by discouraging tampering. Thus, she needs to strike a balance between inducing

the designer to experiment more while restraining at the same time the agent from tampering.

Using (23), we can write the principal’s equilibrium expected utility before the design

subgame:25

U (�, k) = q
H
+
⇣
q
H
� µ

⌘ 
�
F (c̄⇤)

F̄ (c̄⇤)
+ I{i⇤=L}

✓
1 + �

F (c̄⇤)

F̄ (c̄⇤)

◆ 
↵L � q

H

q
H
� q

L

!!
. (24)

Expression (24) clarifies that, given equilibrium behavior, the principal is again always

willing to trade-o↵ more distortions in communication for more informative experimentation.

The reason is twofold. First, she strictly benefits from selecting dH only if the audit is

conclusive, thus making any distortion in communication irrelevant. Second, an experiment

with a higher tampering threshold c̄
⇤ lowers her expected utility conditional on s = q

L
,

but also makes this outcome more likely; the combined e↵ect on her expected utility is

proportional to 1 + �F (c̄⇤) /F̄ (c̄⇤) which increases in c̄
⇤.

6.2.1 Optimal Task Allocation and Tampering Detection

How should the principal allocate tasks and design data governance? From (24), it remains

true that she would separate tasks and commit to an imperfect audit in an e↵ort to incen-

tivize experimentation. When organizing for scale, however, she must guard against adverse

25Recall that for a k�allocation and ��auditing, i
⇤ = i

⇤ (�, k) is the class of the designer’s optimal

experiment, and c̄
⇤ = c̄

⇤
i⇤(�, k) the agent’s tampering threshold.
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class switches—namely, a designer’s switch from an “up-or-down” experiment to a “status-

quo” experiment—in response to an imperfect audit. This terminology is motivated by the

following observation: under task separation, a switch to a “status-quo” experiment makes

the principal (weakly) worse o↵.

Lemma 4. Let �i ⌘
�
1� p

C

i

�
/
�
p
C

i
�i

�
, i = L, S, and suppose that L(c) � (�i/�) is single-

crossing in [0,�i], and a perfect audit leads the designer to select an “up-or-down” exper-

iment. Then, if tasks are separated, for any � < 1 the principal is weakly better o↵ if the

designer is constrained to “up-or-down” experiments.

The concern with adverse class switches underlies the main di↵erences between organizing

to innovate and organizing for scale. First, to ensure that the designer selects an “up-or-

down” experiment, she may now prefer to integrate tasks. Second, she may still favor an

imperfect audit as long as it does not trigger an adverse class switch.

Proposition 9. (i) Fix � and F and, letting

W (�, c̄) ⌘
R

c̄

0 cdF (c)

��+ c̄F [c̄]
, (25)

suppose that W (�S, (1� �)�S) > W (�L, (1� �)�L). Then, there exist q
S
and µ with

q
S
< µ < q

H
such that the principal integrates tasks.

(ii) Suppose that either (ii-a) p
C

L
> (�S/�L) pCS and f(0) > 0, or (ii-b) p

C

L
< (�S/�L) pCS ,

the designer is responsive to auditing and i
⇤ (k,�) = L. Then �

⇤
< 1 in every equilibrium of

the organizational design game.

Integration can be optimal if the principal’s auditing leads the designer under separa-

tion to select a status-quo experiment while he would instead select an “up-or-down” ex-

periment under integration. Proposition 9-i provides a su�cient condition for such case.

Proposition 9-ii provides su�cient conditions for optimal auditing to be imperfect. First, if

p
C

L
> (�S/�L) pCL then the designer already selects an status-quo experiment under a per-

fect audit, eliminating any concern that an imperfect audit might trigger a switch; then, a

similar argument as in Proposition 5 guarantees that �⇤
< 1. If pC

L
< (�S/�L) pCL , however,

the designer selects experiment {q
L
, q

H
} when the audit is perfect and lowering auditing in-

tensity might induce an adverse switch. In this case, �⇤
< 1 obtains as long as there is an

auditing intensity that avoids a switch to a status-quo experiment.

29



6.2.2 Discretion, Auditing, and Experimentation.

The only reason for setting �
⇤ = 1 is that any imperfect audit that motivates valuable ex-

perimentation also leads to an adverse class switch. Nevertheless, the principal can always

avoid adverse switches if she can commit ex-ante to ruling out the status-quo, thus commit-

ting to selecting from extreme options.

Corollary 1. Suppose that f(0) > 0. If the principal can ex-ante commit to ruling out

decisions, then in every equilibrium we have �⇤
< 1 and the principal prefers to separate tasks.

This result resonates with insights from the delegation literature in which the principal

rules out intermediate decisions to improve the informational content of delegated decision

making (see, e.g., Szalay (2005) and Alonso and Matouschek (2008)). For example, Szalay

(2005) shows that, to boost incentives to acquire information, a principal may rule out

the (agent’s) optimal decision if uninformed. In our case, agents interested in promoting a

specific option (i.e., scaling up) are more willing to compromise on the status quo than the

principal. Then, limiting discretion boosts experimentation by eliminating such compromise.

Note also that restricting the principal’s choice is accompanied by less intense monitoring:

i.e., she sets �⇤
< 1 if she is able to rule-out decisions. Thus, in this context, discretion and

monitoring act as complements.

6.2.3 Data Governance

If pC
L
< (�S/�L) pCS , so that the designer selects an up-or-down experiment when � = 1, then

we show below that the optimal data governance in Proposition 7 remains optimal. If pC
L
�

(�S/�L) pCS , however, then to optimally induce an “up-or-down” experiment the principal

integrates tasks and the optimal cost distribution must make tampering strictly costly. The

reason is that, if tasks are separated, the designer always selects a status-quo experiment if

he prefers the status-quo experiment when � = 1 (see discussion in Online Appendix B). The

principal must then incentivize a class switch by integrating tasks and equilibrium tampering

must be strictly costly. Nevertheless, and consistent with Corollary 1, if she can commit

to ruling out decisions–so that she can induce an “up-or-down experiments” by ruling out

decision dS– then the optimal organization would always lead to full experimentation and

rely on an internal-external dual audit.
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Proposition 10. Suppose that either (i) p
C

L
< (�S/�L) pCS , so that the designer selects an

up-or-down experiment when data governance is perfect, or, (ii) p
C

L
� (�S/�L) pCS and she

can ex-ante commit to ruling out decisions. Then, the optimal data governance satisfies (17)

and (18) in Proposition 7 and induces full experimentation by the designer.

6.3 Organizing for scale with non-robust experimentation.

Our analysis has focused on equilibria in which the principal resolves any indi↵erence after

a conclusive audit by selecting the agents’ preferred decision. While this is without loss

when the principal organizes to innovate, these equilibria provide only a lower bound on

the designer’s equilibrium payo↵ when organizing for scale–see Proposition 8. Thus, one

wonders if our insights may change if the principal instead conditions her audited decision

on whether the agent tampered. We show that, while optimal auditing intensity may vary,

our main qualitative results hold when we allow for “non-robust” equilibria.

Proposition 8-ii shows that if the designer’s equilibrium payo↵ exceeds that of a robust

experiment, then q
S
2 S(⇡⇤), i.e., the designer’s experiment is (possibly a mixture involving)

an experiment {q
S
, q}. The following lemma shows that the designer’s maximum payo↵ from

an experiment {q
S
, q} comes when the principal punishes, to some extent, tampering.

Lemma 5. Suppose that the designer selects {q
S
, q} and let cS be the tampering threshold

associated with the robust experiment {q
S
, q} 2 ⇧R; i.e., cS satisfies F̄ (cS) = p

C

S

⇣
q�q

S

q�µ

⌘
–see

(19). If ⌧I(q) denotes the probability that the principal selects dS after the agent is found

tampering, then at the equilibrium of {q
S
, q} which maximizes the designer’s payo↵ we have

⌧I(q) = ⌧
⇤
I
(q) with

⌧
⇤
I
(q) ⌘ min {⌧I(q) : cS = (1� �)⌧U(q)�S � �(1� ⌧I(q))(�L ��S), ⌧U(q) 2 [0, 1]} .

In particular, if the principal rubberstamps a scale-up recommendation for {q
S
, q} 2 ⇧S, then

⌧
⇤
I
(q) = 1.

If ⌧ ⇤
I
(q) < 1 then the principal punishes tampering by lowering the probability of selecting

dS if the agent tampered. The designer then obtains a higher payo↵ from {q
S
, q} not because

it reduces the tampering threshold–indeed, the tampering threshold cS is the same as that

of the robust status-quo experiment–but rather because it allows the principal to scale-up
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more often after an unaudited scale-up recommendation. In turn, the principal could use

the designer’s preference for equilibria with ⌧I(q) = ⌧
⇤
I
(q) as follows: she punishes tampering

(i.e. sets ⌧I(q) = ⌧
⇤
I
(q)) if the designer’s experiment is su�ciently informative–i.e., if the

designer selects {q
S
, q}–while she is lenient if the designer selects a less informative status-

quo experiment (i.e., ⌧I(q0) = 1, if q0 < q). While moving to non-robust experiments may

lead the principal to choose a di↵erent auditing intensity, our main qualitative results of

Section 5 nevertheless hold for non-robust experimentation.

Proposition 11. Suppose that we restrict attention to PBE of the design subgame that

maximize the principal’s expected payo↵. Then: (i) relative to Proposition 9, the principal is

now more likely to set �⇤
< 1 and to separate tasks, and (ii) the auditing intensity and cost

distribution in Proposition 7 remain optimal.

The only reason for the principal to set �⇤ = 1 is to avoid an adverse class switch. How-

ever, the principal can induce a (weakly) more informative non-robust status-quo experi-

ments for the same �, so that the previous class switch may now be profitable for the prin-

cipal. This explains Proposition 11-i. Moreover, the principal can increase the designer’s

payo↵ from experiment {q
S
, q} only if she does not rubberstamp a scale-up recommendation

for a robust experiment–i.e., only if ⌧U(q) < 1 for ⌧I(q) = 1. Nevertheless, the optimal orga-

nization in Proposition 7 is based on finding cost distributions that implement {q
S
, q} with

⌧U(q) = 1, thus the principal cannot increase the designer’s payo↵ for such experiments by

punishing tampering. That is, if the principal can shape the distribution of tampering costs

through tampering prevention policies and select her preferred PBE for each subgame, then

the auditing intensity (17) and cost distribution (18) remain optimal.

7 Discussion and Concluding Remarks

In this paper, we develop a model of data analytics and argue that organizations that delegate

experimentation to their agents must also create a culture of “credible skepticism” by limiting

decision-makers’ ability to assess the truthfulness of the information they receive. We now

discuss these findings in the context of several strands of the literature, after which we

conclude.
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7.1 Related Literature

Literature on decision-making processes in organizations:

Our analysis contributes to the study of decision making processes in organizations and,

in particular, to how organizations optimally react to the incentive conflicts that members

face (see Gibbons, Matouschek, and Roberts (2013) and Bolton and Dewatripont (2013)

for excellent surveys of this literature). For instance, in models of strategic delegation, the

organization would like to assign authority to a party whose preferences may di↵er from

those of the organization as these a↵ects the production and communication of information

(for instance, in Dessein, 2002, delegation to a biased intermediary can improve cheap-talk

communication with experts).26 One recent example is Nayeem (2017), who quantifies the

value of appointing a decision maker that is harder to convince to approve a project–e.g., as

his preference for a “good project” are weaker than those of the organization. That is, there

is value in appointing a “skeptic” for project approval. In our model, however, the principal

cannot credibly delegate the decision to someone else nor commit to biasing decisions in

favor of agents. Skepticism arises not because of di↵ering preferences, but as an attitude to

(rationally) doubt the claims made by others.

Our paper also contributes to the literature that studies how “light monitoring” of agents’

recommendations may avoid crowding-out their e↵orts to experiment (see, e.g., Aghion and

Tirole (1997)). In our case, imperfect auditing allows the principal to refrain from adopting

the agent’s self-serving recommendation, thus, spurring experimentation.

The literature on task allocation has emphasized that task separation can allow for the

provision of higher power incentives in each task (Holmstrom and Milgrom, 1991, Dewa-

tripont, Jewitt, and Tirole, 2000) or improve information acquisition (Dewatripont and Ti-

role, 1999). Moreover, in sequential tasks, task separation may increase the information gen-

erated in the first task to incentivize the second (Lewis and Sappington, 1997, Landier, Sraer,

and Thesmar (2009)), or can be optimal under e↵ort externalities between tasks (Schmitz,

2013). We also find that task separation allows for stronger incentives to experiment, even

though we do not allow for explicit incentives, as separation provides a “coarse” instrument

26More generally, decision makers may be able to commit to ex-post biasing decisions in favor of experts,

e.g., in a relational setting as in Alonso and Matouschek, 2007.
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to lower the costs of experimentation.

Literature on Information acquisition and Communication

We contribute to the literature that studies models of delegated expertise (Demski and

Sappington (1987))–in particular, models in which a decision maker relies on the information

actively gathered and communicated by experts. For instance, Pei (2015), Argenziano,

Severinov, and Squintani (2016), and Deimen and Szalay (2019) consider models where an

agent decides what information to gather if communication with the principal takes the form

of cheap talk, while Che and Kartik (2009) considers certifiable disclosure.27 Argenziano et

al. (2016) and Deimen and Szalay (2019) use the threat of o↵-path “bad” communication

(e.g., a reversion to a “babbling” equilibrium) if the expert acquires less information to

motivate information acquisition. In Pei (2015), communication is “frictionless:” the agent

reveals all the information gathered if acquiring a less informative signal is always feasible

(and less costly) (see also Gentzkow and Kamenica (2016)). In Che and Kartik (2009),

incentives to acquire information come from players having di↵erent priors: an expert has a

stronger incentive to be informed relative to the common prior case as he expects that better

information will lead the principal to, on average, embrace his point of view.28

A main insight in these papers is that frictions in communication can be used to discipline

agents if they underinvest in information acquisition.29 While this insight resonates with our

main finding, our mechanism is markedly di↵erent. In contrast to Pei (2015), Argenziano

et al. (2016), and Che and Kartik (2009), the agent faces no explicit cost in acquiring more

information in our model–this matches our main application where data becomes available

to the organization automatically through its normal operation. In contrast to Deimen and

Szalay (2019), we consider an explicit cost of misrepresentation when the agent communicates

the results, as well as the principal’s ability to audit the agent’s message and to allocate

tasks to di↵erent agents.

27Our communication stage is also related to models of communication with lying costs–e.g., Kartik,

Ottaviani, and Squintani (2007) and Kartik (2009). Relative to these models, our communication model is

simpler, as we consider a message independent tampering cost, but we incorporate an information acquisition

stage prior to communication.
28Alonso and Câmara, 2016 also show that di↵erences of opinion generically give rise to incentives to

persuade a principal.
29Frictions in communication can also improve information transmission, see e.g., Blume et al (2007)
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Literature on relaxing the commitment assumption in models of Bayesian persuasion.

Our paper contributes to the literature that relaxes the sender-commitment assumption

in Kamenica and Gentzkow’s model of Bayesian Persuasion.30 Papers in this recent literature

di↵er on the modeling of imperfect commitment. For instance, Guo and Shmaya (Forthcom-

ing) consider a model of costly miscalibration: the sender decides the statistical properties of

an experiment and can deviate from the “asserted” meaning for each outcome at a cost re-

lated to the di↵erence between the asserted meaning and its true meaning. That is, they allow

for a sender’s private experimental design rather than our public experimental design sub-

ject to private output-tampering. Min (2020) considers the output-tampering case but tam-

pering only occurs with some exogenous probability and explores the e↵ect of changes in this

probability in Crawford and Sobel (1982) uniform-quadratic case. In these papers, there is no

tampering or misrepresentation in equilibrium.31 Instead, in our paper tampering is a generic

equilibrium phenomenon resulting from the principal’s choice of auditing intensity. Perez-

Richet and Skreta (2021) study test design under costly state falsification: a designer selects a

test and an agent can change its input at a cost. That is, in contrast to our setup with output-

tampering, the agent engages in input-tampering. Fréchette, Lizzeri, and Perego (2019) an-

alyze experiments in which the level of commitment can vary across treatments, albeit the

ability to tamper is exogenously given, while it is an equilibrium outcome in our paper.

Closest to our modeling of limited commitment are Lipnowski, Ravid, and Shishkin

(2018) and Nguyen and Tan (2018). Lipnowski et al. (2018) consider an information design

setup with output-tampering where the tampering probability depends on the actual mes-

sage/state and provide an elegant geometric characterization of the sender’s value of persua-

sion. While in our setup the tampering probability is also message/state dependent, it arises

endogenously from the agent’s equilibrium incentives to tamper. Furthermore, while they

characterize the optimal level of credibility from the sender’s perspective, our focus lies on

the receiver/principal’s perspective. Nguyen and Tan (2018) also study public experimen-

30See also the literature on strategic sample selection, e.g., Tillio, Ottaviani, and Sørensen (2017), Tillio,

Ottaviani, and Sørensen (2021), Adda, Decker, and Ottaviani (2020), Felgenhauer and Loerke (2017) and

Libgober (Forthcoming).
31Tampering-proof equilibria are the focus of Min (2020), while Guo and Shmaya (Forthcoming) show that

there is always a Sender-optimal equilibrium with a calibrated strategy–i.e., such that receiver correctly antic-

ipates its meaning. See also Sobel (2020) for an analysis that distinguishes between “lying” and “deception”.
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tation subject to private output-tampering. They consider a setup with a fixed experimen-

tal outcome space and message space, and a communication technology where each message

carries a cost that depends both on the message and the experimental outcome. They fo-

cus on conditions on this technology for the Sender’s preferred equilibrium to be supported

without tampering (Condition 1 in Nguyen and Tan (2018)). Out setup does not satisfy

Condition 1 (as the tampering cost is the same regardless of the message sent) and, thus, we

cannot apply their results.

One overarching theoretical di↵erence with this literature is that we endogenize the

sender’s commitment power by allowing the receiver to select among di↵erent organizational

practices; for instance, how much to audit the sender’s message. Thus, while the literature

shows that exogenously relaxing the sender’s commitment can be beneficial for the receiver,

we show the extent to which imperfect commitment is an equilibrium outcome of the re-

ceiver’s organizational practices.

7.2 Concluding Remarks

The ICT revolution–by lowering the costs of data acquisition, storage and processing–has

made managers more reliant on the insights derived from analyzing these data rather than the

intuitions and opinions of other members of the organization. It would then seem that many

of the trade-o↵s that drive the optimal organization to process information are no longer

relevant. We argue that unresolved conflict still makes organizational structure meaningful

as members handling data still decide which data to use and how to analyze it. We show

that this poses a fundamental trade-o↵: dissuading misrepresentation also reduces data

utilization, limiting the insights that agents derive from the data. Optimal organizations

are then based on a culture of “credible skepticism:” decision makers have limited ability

to audit the data and analytics behind the recommendations issued by agents, which invites

tampering and misrepresentation in equilibrium.

The adoption of new technologies such as blockchain can eliminate tampering by e↵ec-

tively imposing an infinitely high tampering cost (Tapscott and Tapscott, 2017). Neverthe-

less, under delegated experimentation, this is never optimal for the firm as the optimal dis-

tribution of tampering costs must lead to some tampering in equilibrium. We showed that
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this optimal organization can be implemented through a decoupled internal-external audit:

tampering is costless, but an internal (imperfect) audit can limit its e↵ect by rectifying the

tampered outcome with the true outcome. Then, an external audit is triggered with some

probability without knowing whether the internal audit rectified the report. This system

of consecutive audits strikes a perfect balance between experimentation and tampering and

minimizes the tampering costs of agents. Importantly, under an optimal internal-external

audit, the designer engages in full experimentation.

To focus on the trade-o↵ between experimentation and misrepresentation, we o↵er a

streamlined model. In particular, decision makers do not have access to alternative sources

of information (i.e., they do not “seek a second opinion”) nor do they induce competition

between agents to persuade them. We see these extensions as promising and leave them for

future work.
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A Appendix

Proof of Proposition 1: Given ⇡ = {q,Pr [q]}
i2S(⇡), with type space S(⇡), consider a

PBE of the communication subgame where the agent’s reporting strategy is m⇤(q, c), which

leads to decisions d⇤
I
(m, s) and d

⇤
U
(m). Proposition 1-i follows immediately as the gain from

tampering is the same for all agents that observe the same experimental outcome: if type

(q, c) finds it profitable to send qz 6= q instead of q, all types with c
0
< c will strictly prefer

to tamper.

For part (ii), consider the set of tampered outcomes MT defined in the proposition.

Suppose that q, q
0 2 MT but the distributions d

⇤
U
(q) and d

⇤
U
(q0) lead to di↵erent expected
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payo↵s for the agent.32 If q
i
/2 S(⇡), i 2 {S,H}, then the principal never mixes after a

conclusive audit and the agent’s payo↵ in this event is independent of the message sent. This

is also the case if the audited decision d
⇤
I
(m, q

i
) is independent of m whenever q

i
2 S(⇡), i 2

{S,H}. This implies that the agent only benefits from tampering in the event that the audit

is inconclusive, but if d⇤
U
(q) and d

⇤
U
(q0) yield a di↵erent payo↵, then m

⇤(q, c) cannot be part

of an equilibrium. Therefore, we must have that d
⇤
U
(q) = d

⇤
U
(q0) for q, q

0 2 MT . Finally,

suppose that q 2 MT , q 6= q
i
, i 2 {S,H}. Then, the sender never gains from tampering, as

the audited decision is independent of m and the unaudited decision would be the same if

he had instead truthfully reported his type. ⌅
Proof of Proposition 2: (i) Consider an arbitrary finite experiment ⇡̃ = {q,Pr [q]}

q2S(⇡̃).

Then, we show that there exists e⇡S 2 ⇧S that (weakly) improves the designer’s payo↵ rela-

tive to ⇡̃. Therefore, if ⇡⇤ maximizes the designer’s payo↵ when restricted to ⇧S, then se-

lecting ⇡
⇤ is a PBE of the design subgame, as the designer’s expected utility cannot be im-

proved by any alternative ⇡̃.

Define ST (⇡̃) as the set of tampering types:

ST (⇡̃) = {q 2 S(⇡̃) : Pr [m⇤(q, c) 6= q] > 0} , (A.1)

and recall that, from Proposition 1, MT (⇡̃) is the set of tampered outcomes. Thus, type

q 2 ST (⇡̃) will tamper with positive probability while some tampering type will report

q
0 2 MT (⇡̃) with positive probability. Since d

⇤
I
(m, 0) = dS whenever 0 2 S(⇡), Proposition

1 shows that ST (⇡̃) \ MT (⇡̃) = ;. We first show that tampering types correspond to low

realizations of the experiment while tampered outcomes are associated with high realizations,

i.e.,

qST
⌘ max {q : q 2 ST (⇡̃)} < min {q : q 2 MT (⇡̃)} ⌘ qMT

. (A.2)

To see this, let d0
U
be the decision following an unaudited tampered outcome—see Propo-

sition 1-ii(a)—and suppose, by contradiction, that there are q
0
< q

00 with q
0 2 MT (⇡̃) and

q
00 2 ST (⇡̃). Assumption 1 implies that message m = q

00 is sent with positive probability

and, as q
00
/2 MT (⇡̃), we must have that the posterior belief of the principal if the audit

32As the principal only mixes after an inconclusive audit when her posterior is either q
S
(thus, mixing

between dL and dS) or q
H

(thus, mixing between dS and dH), the agent must obtain a di↵erent expected

payo↵ after an inconclusive audit when reporting q and q
0 if these distributions are di↵erent.
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is inconclusive must be q
00. Since q

0
< q

00  qST
, and Proposition 1-ii(b) shows that type

s = q
0 2 MT (⇡̃) sends m = q

0, the principal’s posterior belief after an unaudited m = q
0

must be strictly lower than qST
. But then, we must have qST

/2 ST (⇡̃) as type qST
prefers to

induce decision dU (qST
) rather than tamper to induce d

0
U
, thus reaching a contradiction.

Next, partition S(⇡̃) by definingXS(⇡̃) = S(⇡̃)\
⇣
q
S
, q

H

⌘
andXH(⇡̃) = S(⇡̃)\[q

H
, 1]. We

now show that (A.2) implies that all messages in Xi(⇡̃) lead to the same unaudited (mixture

over) decision(s)–which means that all types in Xi(⇡̃) face the same gain from tampering

and must therefore have the same tampering threshold. Proposition 1-ii(a) implies that this

is true if Xi(⇡̃) ⇢ MT (⇡̃). We will show by contradiction that there cannot be tampered

outcomes as well as non-tampered outcomes in Xi(⇡̃). To see this, suppose that qMT
defined

in (A.2) satisfies qMT
2 Xi(⇡̃) and there is some q

0 2 Xi(⇡̃) but q0 /2 MT (⇡̃). Then we must

have q
0
< qMT

, but d
⇤
U
(q0) = di as the posterior after an unaudited message q

0 is precisely

q
0. However, the posterior after unaudited qMT

2 MT (⇡̃) must be strictly lower than qMT
.

But then we must have that d⇤
U
(qMT

) = di, otherwise tampering types would send message

q
0 instead of qMT

. Thus, for all q, q0 2 Xi(⇡̃), d⇤U(q) = d
⇤
U
(q0).

We now construct the binary experiment ⇡̃c = {q̃XS , q̃
XH} that in equilibrium gives

the designer the same expected utility as the equilibrium of ⇡̃. We do so by replacing all

realizations in Xi(⇡̃), i = S,H, with a realization s = q̃
Xi that is its conditional expectation,

i.e.,

q̃
Xi =

P
q2Xi(⇡̃)

Pr [q] q
P

q2Xi(⇡̃)
Pr [q]

, Pr
⇥
q̃
Xi

⇤
=

X

q2Xi(⇡̃)

Pr [q] ,

and adjusting the equilibrium (mixture over) messages to

mc(q̃
Xi , c) =

P
q2Xi(⇡̃)

Pr [q]
⇣P

j={S,H}
P

q02Xj(⇡̃)
Pr [m(q, c) = q

0] q̃Xj

⌘

P
q2Xi(⇡̃)

Pr [q]
.

That is, the probability that type s = q̃
Xi sends message m = q̃

Xj when the cost realization

is c, is the conditional probability that a type in Xi(⇡̃) would send a message corresponding

to a type in Xj(⇡̃). We complement the definition by having threshold type q
H
send message

m = q̃
XS whenever they were sending a message m 2 XS(⇡̃). As all messages in Xi(⇡̃) led to

the same unaudited decision, the same decision must now be optimal for the principal with
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experiment ⇡̃c, as the tampering threshold corresponding to q̃
Xi is the same as the threshold

for q 2 Xi. Thus, the designer’s expected payo↵ from ⇡̃ and ⇡̃c coincide.

Finally, we construct an experiment ⇡̃S 2 ⇧S that weakly improves upon ⇡̃c. First, we

can obtain an improvement whenever q̃XS > 0 by lowering q̃
XS–thus raising the probability

of realization q̃
XH–in a way that tampering incentives remain constant but this transformed

experiment raises the designer’s payo↵ by raising the probability of the favorable outcome

s = q̃
XH .

Second, we can improve upon ⇡ = {0, q} whenever the unaudited posterior after m = q

exceeds q
H
. To see this, define p ⌘ Pr[s = 0] = (q � µ)/q and suppose that ⇡ induces a

scale-up probability ⌧ after an unaudited m = q. The expected gain from tampering is then

(1� �) ⌧ (vH � vS) and this establishes the tampering threshold c̄S = (1� �) ⌧ (vH � vS). If

⌧ > 0, this requires that the principal’s posterior after an unaudited m = q must not fall

below q
H
, so that Bayesian updating requires that

(1� p) q

(1� p) + pF (c̄S)
� q

H
,

which, giving the Bayesian consistency constraint (1� p) q = µ, leads to pF̄ (c̄S) q
H
� q

H
�µ,

and, using (1), can be expressed as

p
F̄ (c̄S)

p
C

S

� 1. (A.3)

If this constraint is slack, then the unaudited posterior is strictly above q
H

and the

principal’s sequential rationality implies that ⌧ = 1. But then, experiment {0, q � "} such

that (A.3) is still slack (so that ⌧ 0 = 1) leads to the same tampering thresholds and decisions–

implying that conditional on each realization the designer’s expected utility has not changed–

but the favorable outcome s = q�" is now more likely. Note that every status-quo experiment

satisfies (A.3) with equality–this is also represented in (3). Therefore, any ⇡ = {0, q} can be

weakly improved upon by some status-quo experiment.

(ii) The proof of part i shows that there is always a status-quo experiment with a unique

equilibrium that gives the designer a (weakly) higher payo↵ than any other experiment. This

establishes V ⇤ = VS(µ;�, k). ⌅
Proof of Lemma 1: For experiment ⇡ = {0, q} 2 ⇧S with p ⌘ Pr[s = 0], the designer’s
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utility can be written as

vS(⌧ (c) , µ;�, k) = � [(1� p) vH + pvS]

+ (1� �)
⇥
pF̄ (c̄) vS +

�
1� pF̄ (c̄)

�
(⌧vH + (1� ⌧) vS)

⇤
}

�I{k=I}p

Z
c

0

F̄ (c) dc

= vH � (1� �) (1� ⌧)�S � p

⇢
��S + c̄F̄ (c̄)� I{k=I}

Z
c

0

F̄ (c) dc

�

= vH � (1� �)�S + c̄� pF̄ (c̄)

⇢
��S

F̄ (c̄)
+ c̄F̄ (c̄)� I{k=I}⌘(c̄)

�
,

in which we have used (4) for c̄ and the definition of ⌘(c) in (6). Noting from (3) that

p
C

S
=

q
H
�µ

q
H

and that the Bayesian updating constraint (A.3) is satisfied with equality gives

(7-8). ⌅
Proof of Proposition 3: Suppose that F admits a density so that ⌘(c) is di↵erentiable.

Using (7) and (8), the di↵erence in the designer’s marginal payo↵ from a higher tampering

threshold c when moving from integration to separation is

@ (vS(⌧ (c) , µ; I)� vS(⌧ (c) , µ;S))
@c

=
@ (mS(c; I)�mS(c;S))

@c

⇣
q
H
� µ

⌘
= �p

C

S
⌘
0 (c)  0.

Therefore, the optimal tampering threshold under integration is lower than under separation,

c̄
⇤
S
(�, I)  c̄

⇤
S
(�,S), which implies q⇤

S
(�,S) � q

⇤
S
(�, I). ⌅

Proof of Proposition 4: (i) Consider experiment {0, q (c)} inducing tampering thresh-

old c. Using (7) and (8), we have

@mS(c;�, k)

@�
=

�S

F (c)

 
µ� q

H

q
H

!
= �p

C

S
�S

F (c)
, k 2 {S, I} ,

implying
@vS(⌧ (c) , µ;�, k)

@�
= �S � p

C

S

�i

F (c)
= �S Pr [s = q (c)] ,

which is non-increasing in c. Therefore, @2
vS/@ (��) @c � 0.

(ii) Define the feasible set of tampering thresholds

CS ⌘ [0, (1� �)�S] \ [0, F
�1
(pC

S
/p

FI

S
)], (A.4)

with p
FI

S
= Pr[s = 1] for the fully informative experiment {0, 1}. To understand CS, note that

c 2 CS must satisfy two conditions. First, it must correspond to some scale-up probability
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⌧ 2 [0, 1]–from (4) this implies that c 2 [0, (1� �)�S] . Second, the experiment {0, q(c)}

must be feasible–i.e., q(c)  1–which requires F̄ (c) /pC
S
� 1

1�µ
= 1/pFI

S
–see (3).

We can write the designer’s problem in terms of selecting c
⇤ that solves

max
c

vS(⌧ (c) , µ;�, k), s.t. c 2 CS. (A.5)

The feasible set CS is increasing in the strong set order with respect to �� and, from part

(i), vS(⌧ (c) , µ;�, k) is supermodular in (c,��). Theorem 4’ in Milgrom-Shannon (1994)

then implies that the set of maximizers of (A.5) increases in the strong set order sense with

��. From (3), for a fixed threshold c the experiment {0, q (c)} is independent of �, so the

set of optimal experiments q⇤
S
(�, k) decreases in the strong set order sense with �. ⌅

Proof of Proposition 5: Applying (11), the principal’s equilibrium expected utility

when organizing to innovate is

U (�, k) = q
H
+ Pr [s = q

⇤
S
(�, k)]�

⇣
q
⇤
S
(�, k)� q

H

⌘
.

Proposition 3 shows that q⇤
S
(�,S) � q

⇤
S
(�, I) implying U (�,S) � U (�, I) .

Note that for � = 1 the designer always selects the commitment experiment, thus, re-

gardless of the task-allocation, q⇤
S
(1, k) = q

H
. By the definition of designer’s responsiveness

to auditing, there exists 0 < � < 1 with q
⇤
S
(�, k) > q

H
and U (�, k) > U (1, k). Therefore,

�
⇤
< 1. Conversely, if �⇤

< 1 then, for some k�allocation, U (�⇤
, k) > U (1, k) which implies

q
⇤
S
(�⇤

, k) > q
H

meaning that the designer is responsive to auditing.

We now show that if f(0) > 0 then the designer is responsive to auditing under separation.

If f(0) > 0, then whenever � < 1 the principal never approves without a conclusive audit if

the designer selects {0, q
H
}. In other words, ⌧ = 0 for experiment {0, q

H
} and

vS(0, µ;�, k) = vH � (1� �)�S + cS(0)�mS(cS(0);�, k)
⇣
q
H
� µ

⌘
,

with cS(0) = 0. We now study conditions such that (a) there exists an experiment that

leads to a positive scale-up probability, and (b) the designer’s incremental payo↵ from an

experiment that approves with positive probability is positive. These conditions ensure that

the designer is responsive to auditing.

Consider first (a). The infimum tampering probability among experiments with ⌧ > 0 is

F [ci(0)] = F [0]. The experiment that induces the highest posterior if unaudited is {0, 1},
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and, for this experiment, Pr [s = 0] = 1 � µ = p
FI

S
. Therefore, there exists an experiment

with a positive scale-up probability, i↵

p
C

S

F (0)
< p

FI

S
() F (0) >

p
C

S

p
FI

S

(< 1) .

If F admits a density at zero, this condition is always satisfied for any � 2 [0, 1].

Consider now (b). Noting from (4) that cS(⌧) = ⌧ (1� �)�S, we can di↵erentiate (7)—

taking into account (8) and the definition of pC
S
in (1)—to obtain

@vS(⌧, µ;�, k)

@⌧

����
⌧=0

= (1� �)�S

"
�
1� p

C

S

�
� p

C

S

f (cS(0))�
F (cS(0))

�2��S

#
.

Since cS(0) = 0, the condition @vS(⌧, µ;�, k)/@⌧ |⌧=0 > 0 translates to

1� p
C

S

p
C

S
�S

> �
f (0)
�
F (0)

�2 ,

and there is always a 0 < � < 1 that satisfies this condition. ⌅
Proof of Lemma 2: Setting k = S in (7) and (8) we have

vS(⌧ (c) , µ;�,S) = vH � (1� �)�S + c��S

q
H
� µ

q
H
� q

S

✓
�

F (c)
+

c

�S

◆

= vH � (1� �)�S +
�
1� p

C

S

�
c� �

p
C

S
�S

F (c)
.

Program (A.5) defines the designer’s problem and the feasible set of tampering thresholds

CS = [0, (1� �)�S] \ [0, F
�1
(pC

S
/p

FI

S
)] is defined in (A.4). Whenever it exists, the marginal

payo↵ from increased tampering is

@vS(⌧ (c) , µ;�,S)
@c̄

=
�
1� p

C

S

�
� �p

C

S
�S

f(c)
�
F (c)

�2 = �p
C

S
�S

✓
�S

�
� L(c)

◆
.

The single-crossing condition implies that vS(⌧ (c) , µ;�,S) is quasiconcave in c. Suppose first

that @vS(⌧ (0) , µ;�,S)/@c̄ = �p
C

S
�S ((�S/�)� L(0))  0, implying @vS(⌧ (c) , µ;�,S)/@c̄ 

0, for c̄ � 0. In this case, we have c̄
⇤ = 0, and the designer selects the commitment

experiment
n
0, q

H

o
. Suppose now that �p

C

S
�S ((�S/�)� L(0)) > 0, and let c̄crit be the

minimum threshold that satisfies @vS(⌧ (c̄crit) , µ;�,S)/@c̄ = 0 (and set c̄crit = 1 if no such

threshold exists). Then, the solution to the designer’s problem satisfies

c̄
⇤(�) = min [c̄crit(�), (1� �)�S, c̄FI ] .
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⌅
Proof of Proposition 6: (i) For a fixed F and �, suppose that the designer under

separation selects ⇡ = {0, q} 2 ⇧S, with p = Pr [s = 0] = (q � µ)/q .33 We first show that

there is an upper bound on � that does not depend on F :

�  1� p
C

S

1� p
C

S
+ p� p

C

S

⌘ e�S(p). (A.6)

To see this, we express vS(⌧ (p) , µ;�,S) as a function of p: using (3) we have F̄ (cS(p)) =

p
C

S
/p and we can write (7-8) for k = S as

vS(⌧ (p) , µ;�,S) = vH � (1� �)�S + cS(p)� p
C

S

✓
��S

F (cS(p))
+ cS(p)

◆

= vS + ��S + cS(p)� �
p
C

S
�S

F (cS(p))
� p

C

S
cS(p)

= vS + ��S (1� p) +
�
1� p

C

S

�
F

�1
(pC

S
/p).

Designer’s optimality of ⇡S requires

�
F (cS(p)) =

� pC
S

p
 F ((1� �)�S),

vS(⌧ (p
0) , µ;�,S)  vS(⌧ (p) , µ;�,S) for p0 2

⇥
p
C

S
, p
⇤
.

The first condition follows from cS(p)  (1� �)�S, as the gain from tampering is bounded

by (1� �)�S, while the second is the designer’s incentive compatibility constraint when

comparing ⇡ to status-quo experiments that are less informative than ⇡.34 Setting p
0 = p

C

S

above, and obviating the common term vS, incentive compatibility implies

��S

�
1� p

C

S

�
 ��S (1� p) +

�
1� p

C

S

�
F

�1
(pC

S
/p)  ��S (1� p) +

�
1� p

C

S

�
(1� �)�S,

from which we obtain (A.6). Inverting (A.6), any experiment that can be implemented with

auditing intensity � > 1/(2� q
H
) must satisfy

p  2pC
S
� 1 +

1� p
C

S

�
⌘ p(�)

33Recall that, regardless of the cost distribution, the principal prefers to separate tasks when organizing

to innovate–see Proposition 3.
34If ⌧(p) = 1, the designer cannot improve scale-up probability by switching to a status-quo experiment

that is more informative than ⇡ = {0, q} so that trivially vS(⌧ (p0) , µ;�,S)  vS(⌧ (p) , µ;�,S) for p0 > p.

When implementing ⇡(p) with auditing intensity e�S(p) we will look at cost distributions for which ⌧(p) = 1.
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Taking into account q = µ/(1 � p), and after some calculations, this implies that the

most informative experiment implementable with auditing � is

q(�) =
�

2�� 1
q
H
.

(ii) We now derive the cost distributions that would lead the designer to select ⇡S(�) =

{0, q(�)}, with Pr[s = 0] = p(�), when auditing is �. Suppose that experiment ⇡S(�) leads

to the principal’s rubberstamping, ⌧ = 1, so that cS = F
�1
(pC

S
/p(�)) = (1��)�S. Incentive

compatibility requires that for any p
0 2
⇥
p
C

S
, p(�)

⇤
,

�
1� p

C

S

�
F

�1
(pC

S
/p

0)  ��S (p
0 � p) +

�
1� p

C

S

�
(1� �)�S.

Using F
�1
(pC

S
/p

0) = F
�1(
�
p
0 � p

C

S

�
/p

0) and simplifying we have

p
0 � p

C

S

p0
 F

✓
��S

p
0 � p

C

S

1� p
C

S

◆
.

Alternatively, letting c = ��S

�
p
0 � p

C

S

�
/
�
1� p

C

S

�
, we have

F (c) � c

c+ �
p
C

S
�S

1�p
C

S

=
c

c+
p
C

S
�S

1�2pC
S
+p(�)

for c  ��S

p(�)� p
C

S

1� p
C

S

. (A.7)

That is, the likelihood of low tampering costs must be su�ciently high to allow the principal

to approve with low probability if the experiment is not very informative. Note that our

argument didn’t require the distribution to be smooth or to have a density. One distribution

that satisfies (A.7) is supported only on two cost realizations, 0 and ��S

p(�)�p
C

S

1�p
C

S

, with

Pr [c = 0] =
�
p(�)� p

C

S

�
/p(�), (A.8)

and, in equilibrium, the agent only tampers if c = 0 so that expected tampering costs are

zero. ⌅
Proof of Proposition 7: From (11), for each ⇡S(�) = {0, q(�)}, with p(�) = Pr[s = 0],

auditing �, and cost distribution satisfying (A.7), the principal’s utility is

U (⇡S(q)) = q
H
+ (1� p)�

⇣
q(�)� q

H

⌘
= q

H
+

⇣
q(�)� q

H

⌘
µ

2q � q
H

,

which is increasing in q(�). Thus, the principal optimally sets q(�opt) = 1 which re-

quires �opt = 1/(2 � q
H
). Setting p(�) = (1� µ) in (A.8), we obtain Pr [c = 0] = µ(1 �
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q
H
)/(q

H
(1� µ)) for the cost distribution supported on 0 and ec = �opt�S

1�µ�p
C

S

1�µ�p
C

S

= (1 �

q
H
)/(2 � q

H
); this distribution minimizes tampering costs among all those inducing a fully

informative experiment. As this distribution induces zero costs on the agent, the designer

under integration and separation would select the same experiment. ⌅
Proof of Proposition 8: (i) Let⇧⌃ be the set of experiments with outcomes

n
q
L
, q

S
, q

o
,

indexed by (pL, pS, p) with pL, pS, p � 0 and pL + pS = 1, and defined as follows:

⇧⌃ ⌘
nn

q
L
, q

S
, q

o
: q � q

H
and Pr [q] = 1� p,Pr

h
q
L

i
= p ⇤ pL,Pr

h
q
S

i
= p ⇤ pS

o
,

and equilibrium decision making

dU

⇣
q
i

⌘
= dI

⇣
m, q

i

⌘
= di; dI (m, q) = dH ; dU (q) = ⌧dH + (1� ⌧)dS,

and note that ⇧R ⇢ ⇧⌃.

Consider an arbitrary finite experiment ⇡̃ = {q,Pr [q]}
q2S(⇡̃) and suppose that players

follow a PBE of the communication subgame in which the principal, if indi↵erent after a

conclusive audit–which only applies if either q
S
2 S(⇡̃) or q

H
2 S(⇡̃)–always selects the

agents’ preferred decision–i.e., d⇤
I
(m, q

i
) = di i = {S,H}. We show that there exists ⇡̃R 2 ⇧R

that (weakly) improves the designer’s payo↵ relative to ⇡̃. Therefore, if ⇡⇤ 2 ⇧R maximizes

the designer’s payo↵ when restricted to ⇧R, then selecting ⇡⇤ is a PBE of the design subgame,

as the designer’s expected utility cannot be improved by any alternative ⇡̃.

We proceed in two steps. In step 1 we derive an experiment ⇡̃⌃ 2 ⇧⌃ that improves the

designer’s payo↵ relative to ⇡̃. In step 2, we show that the designer’s maximum expected

payo↵ in ⇧⌃ is achieved by an experiment in ⇧R.

Step 1: Let ST (⇡̃) be the set of tampering types as in (A.1) and recall that, from Propo-

sition 1, MT (⇡̃) is the set of tampered outcomes. Proposition 1 shows that, if d⇤
I
(m, q

i
) = di

whenever q
i
2 S(⇡), i = {S,H}, then ST (⇡̃) \MT (⇡̃) = ;.

Partition S(⇡̃) by defining XL(⇡̃) = S(⇡̃) \ (q
L
, q

S
), XS(⇡̃) = S(⇡̃) \

⇣
q
S
, q

H

⌘
and

XH(⇡̃) = S(⇡̃)\[q
H
, 1]. Following the same logic as in the proof of Proposition 2 we can show

that tampering types correspond to low realizations while tampered outcomes are associated

with high realizations of the experiment, i.e.,

qST
⌘ max {q : q 2 ST (⇡̃)} < min {q : q 2 MT (⇡̃)} ⌘ qMT

. (A.9)
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and that (A.9) implies that all messages in Xi(⇡̃) lead to the same unaudited (mixture

over) decision(s).

We now construct ⇡̃c that has an equilibrium that gives the designer the same expected

utility as the equilibrium of ⇡̃. We do so by replacing all realizations in Xi(⇡̃), i = L, S,H,

with a realization s = q̃
Xi that is its conditional expectation, i.e.,

q̃
Xi =

P
q2Xi(⇡̃)

Pr [q] q
P

q2Xi(⇡̃)
Pr [q]

, Pr
⇥
q̃
Xi

⇤
=

X

q2Xi(⇡̃)

Pr [q] ,

and adjusting the equilibrium (mixture over) messages to

mc(q̃
Xi , c) =

P
q2Xi(⇡̃)

Pr [q]
P

j={L,S,H}
P

q02Xj(⇡̃)
Pr [m(q, c) = q

0] q̃Xj

P
q2Xi(⇡̃)

Pr [q]
.

We complement the definition by having threshold types q
i
send message m = q̃

Xjwhenever

they were sending a message m 2 Xj(⇡̃). As all messages in Xi(⇡̃) led to the same unaudited

decision, the same decision must now be optimal for the principal with experiment ⇡̃c, as

the tampering threshold corresponding to q̃
Xi is the same as the threshold for q 2 Xi. Thus,

the designer’s expected payo↵ from ⇡̃ and ⇡̃c coincide.

To obtain an improvement within the set ⇧⌃
, suppose thatXL(⇡̃) orXS(⇡̃) is non-empty–

otherwise ⇡̃c 2 ⇧⌃. By either lowering q̃
XL > q

L
or q̃XS > q

S
, we can raise the probability

of realization q̃
XH in a way that tampering incentives remain constant but this transformed

experiment raises the designer’s payo↵ by raising the probability of the favorable outcome

s = q̃
XH . Therefore, if XL(⇡̃) or XS(⇡̃) is non-empty, there is an experiment in ⇧⌃ that

gives the designer a higher payo↵.

Step 2: Let ⇡̃⌃ 2 ⇧⌃, described by (pL, pS, p) with associated scale-up probability ⌧ after

an unaudited m = q. As the principal will select the agents’ preferred decision after a conclu-

sive audit reveals s = q
i
, the expected gain from tampering is (1� �) (⌧vH + (1� ⌧) vS � vi)

and this establishes the tampering threshold

c̄i ⌘ c̄(q
i
) = (1� �) (⌧vH + (1� ⌧) vS � vi) = (1� �) [⌧�S + (�i ��S)] . (A.10)

Suppose first that ⌧ > 0. This requires that the principal’s posterior after an unaudited

m = q must not fall below q
H
, so that Bayesian updating requires that

(1� p) q + p
P

i=L,S
piF (c̄i) qi

(1� p) + p
P

i=L,S
piF (c̄i)

� q
H
,
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which, giving the Bayesian consistency constraint (1� p) q = µ� p
P

i=L,S
piqi, leads to

µ� p

X

i=L,S

piqi + p

X

i=L,S

piF (c̄i) qi � q
H

 
(1� p) + p

X

i=L,S

piF (c̄i)

!

p

 
q
H

 
1�

X

i=L,S

piF (c̄i)

!
�
X

i=L,S

pi (1� F (c̄i)) qi

!
� q

H
� µ,

p

 
X

i=L,S

piF̄ (c̄i)
⇣
q
H
� qi

⌘!
� q

H
� µ,

which, using (1) can be expressed as

p

X

i=L,S

pi
F̄ (c̄i)

p
C

i

� 1. (A.11)

Note that if this constraint is slack, then the unaudited posterior is strictly above q
H
and

the principal’s sequential rationality implies that ⌧ = 1. But then, experiment ⇡̃⌃ cannot be

optimal for the designer. Indeed, consider ⇡0 2 ⇧⌃, described by (p0
L
, p

0
S
, p

0), that di↵ers from

⇡̃
⌃ only in that p

0
< p, while p

0
i
= pi, but such that the constraint (A.11) is still slack (so

that ⌧ 0 = 1). As tampering thresholds and decisions have not changed, conditional on each

realization the designer’s expected utility has not changed, but the favorable outcome s = q

is now more likely, thus reaching a contradiction. Thus, in a designer’s optimal experiment

in ⇧⌃, (A.11) must hold with equality.

We now show that the maximum expected utility of the designer is attained on the

boundary of ⇧⌃, i.e., by setting pi = 0 or pi = 1. But these are precisely the experiments in ⇧.

Let

Wi(c̄i;�, k) = ��i + c̄iF̄ (c̄i)� I{k=I}

Z
ci

0

F̄ (c) dc. (A.12)
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For experiment ⇡̃⌃
, the designer’s utility can be written as

V
�
⇡̃
⌃;�, k

�
=

X

i=L,S

pi{� [(1� p) vH + pvi]

+ (1� �)
⇥
pF̄ (c̄i) vi +

�
1� pF̄ (c̄i)

�
(⌧vH + (1� ⌧) vS)

⇤
}

�I{k=I}p
X

i=L,S

pi

Z
ci

0

F̄ (c) dc

=
X

i=L,S

pi

⇢
vi + �(1� p)�i +

�
1� pF̄ (c̄i)

�
c̄i � I{k=I}p

Z
ci

0

F̄ (c) dc

�

= vH � (1� �) (1� ⌧)�S � p

X

i=L,S

pi

⇢
��i + c̄iF̄ (c̄i)� I{k=I}

Z
ci

0

F̄ (c) dc

�

= vH � (1� �) (1� ⌧)�S � p

X

i=L,S

piWi(c̄i;�, k). (A.13)

in which we have used (A.10) for c̄i. Fix an scale-up probability ⌧ > 1–which also determines

the tampering thresholds c̄i, see (A.10)–and consider the optimal ⇡̂ 2 ⇧⌃ that maximizes

V (⇡;�, k) among experiments in ⇧⌃ with scale-up probability ⌧ . Then, replacing p with the

binding Bayesian updating constraint (A.11), experiment ⇡̂ solves

max
(pL,pS)

P
i=L,S

piWi(c̄i;�, k)
P

i=L,S
pi

F̄ (c̄i)
p
C

i

, s.t. pL + pS = 1,

which is a quasiconcave program as the objective function is quasilinear—since it is the

ratio of linear functionals—and the constraint set is convex (see Boyd and Vandenberghe

2004). Then, there is always an extreme point of the simplex that solves this program. In

other words, there is always a robust experiment that maximizes the designer’s payo↵ when

selecting experiments in ⇧⌃. This concludes the proof of part i of the Proposition.

(ii) Note that the payo↵ from any experiment in ⇧R can be approximated by experiments

of the form
n
q
i
+ ✏, q

o
which have a unique communication equilibrium–i.e., we can express

V̄ (µ;�, k) as V̄ (µ;�, k) = supV (⇡;�, k) , s.t., ⇡ =
n
q
i
+ ✏, q

o
, ✏ > 0, i 2 {L, S}. Thus, we

must have V
⇤ � V̄ (µ;�, k). The proof of part 1 showed that for any experiment ⇡̃ such

that the principal is never indi↵erent after a conclusive audit there is a robust experiment

that gives the designer a (weakly) higher payo↵. Since V
⇤
> V̄ (µ;�, k) implies that the

principal must be indi↵erent after a conclusive audit, then we must have q
S
2 S(⇡⇤) for any

equilibrium experiment ⇡⇤ that yields a payo↵ V
⇤
> V̄ (µ;�, k). ⌅
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Proof of Lemma 3: Setting pS = 0 and pL = 0 in (A.13) and using (A.12) we obtain

vi(⌧ (c) , µ;�, k) for i 2 {L, S}. Noting from (19) that Pr
h
s = q

i

i
= q�µ

q�q
i

gives (21-22).

⌅
Proof of Lemma 4: Note first that if the designer selects an “up-or-down” experiment

when � = 1, so that pC
L
�L < p

C

S
�S, then we must have �L > �S. Indeed, since 1�p

C

S
< 1�p

C

L

then

p
C

L
�L < p

C

S
�S ) p

C

S
�S

p
C

L
�L

> 1 >
1� p

C

S

1� p
C

L

) �L > �S.

We now show that if L(c)�(�i/�) is single-crossing in [0,�i] and �L > �S then c̄
⇤
S
(�,S) 

c̄
⇤
L
(�,S); that is, the tampering threshold under separation is larger when the designer’s

experiment is restricted to ⇧R

L
rather than restricted to ⇧S. Then, (24) implies that the

principal’s is weakly better-o↵ when the designer is restricted to ⇧R

L
rather than ⇧R

S
.

Maximizing over c̄ for k = S in (21-22) for each i 2 {L, S} and recalling that F̄�1
�
p
C

i
/p

FI

i

�

is the threshold induced by experiment {q
i
, 1} we can write–see lemma 2,

c̄
⇤
i
(�,S) = min

⇥
L
�1(�i/�), (1� �)�i, F̄

�1
�
p
C

i
/p

FI

i

�⇤
.

Since pC
i
/p

FI

i
=

q
H
�µ

q
H
�q

i

1�q
i

1�µ
increases in q

i
, we have F̄�1

�
p
C

S
/ (1� µ)

�
< F̄

�1
�
p
C

L
/ (1� µ)

�
.

Second, if L(c) � (�i/�) is single crossing and �L > �S, we must have L
�1(�S/�) <

L
�1(�L/�). Combining both observations with �S < �L, we must have c̄⇤

S
(�,S)  c̄

⇤
L
(�,S).

⌅
Proof of Proposition 9: (i) We can adapt the proof of Proposition 3 to show that the

principal prefers to separate tasks if task allocation does not change the optimal class of the

designer’s experiment (i.e., if i⇤ (S,�) = i
⇤ (I,�)). Therefore, for integration to be optimal,

we must have an adverse switch so that i
⇤ (S,�) = S and i

⇤ (I,�) = L. We show that if

W (�S, (1� �)�S) > W (�L, (1� �)�L) then we can find a range of parameters so that

the principal strictly prefers to integrate tasks. To economize on notation, let

T (�i, ⌧) ⌘
��i

F (ci(⌧))
+ ci(⌧),

so that W (�i, c̄) defined in (25) simplifies to W (�i, c̄) = ⌘(c̄)/T (�i, ⌧ (c̄)) .

We first derive a su�cient condition for adverse switches when restricted to high scale-

up probabilities, i.e., such that for all ⌧ � ⌧̃ we have

vS(⌧, µ;�,S) � vL(⌧, µ;�,S) and vS(⌧, µ;�, I)  vL(⌧, µ;�, I).
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Using (21), (22), and the definition of ci(⌧) in (20) these two conditions translate to

p
C

S
T (�S, ⌧)  p

C

L
T (�L, ⌧) , and

p
C

S
(T (�S, ⌧) + ⌘ (cS(⌧))) � p

C

L
(T (�L, ⌧) + ⌘ (cL(⌧))) ,

which simplifies to
T (�S, ⌧) + ⌘ (cS(⌧))

T (�L, ⌧) + ⌘ (cL(⌧))
� p

C

L

p
C

S

� T (�S, ⌧)

T (�L, ⌧)
. (A.14)

Note that a necessary condition for (A.14) is that T (�L, ⌧) ⌘ (cS(⌧)) � T (�S, ⌧) ⌘ (cL(⌧)),

which is implied by

W (�S, cS(⌧)) � W (�L, cL(⌧)) . (A.15)

The condition W (�S, (1� �)�S) > W (�L, (1� �)�L) is equivalent to (A.15) setting ⌧ =

1. Continuity of W and ci(⌧) implies that there is ⌧̃ < 1, so that (A.15) is satisfied for ⌧ > ⌧̃ .

In fact, since p
C

L
/p

C

S
=
⇣
q
H
� q

S

⌘
/

⇣
q
H
� q

L

⌘
and W does not depend on the prior µ, then

we can find q
S
with q

L
< q

S
< q

H
so that pC

L
/p

C

S
is closed to 1 and (A.14) holds for ⌧ > ⌧̃ .

Finally, we have that both under separation and integration, the designer’s optimal ex-

periment tends to the maximum scale-up probability as µ ! q
H
, i.e., ⌧ (c̄⇤

i
(�, k)) ! 1 as

µ ! q
H
. Then we can find µ, with q

S
< µ < q

H
so that the principal’s optimal experiment

satisfies ⌧ (c̄⇤
i
(�, k)) > ⌧̃ , k = S, I. This implies that we have an adverse switch for �: the

designer under separation would select i⇤ (S,�) = S but under integration he would select

i
⇤ (I,�) = L. For large ↵L, so that “up-or-down” experiments are more valuable to the prin-

cipal, then she would optimally integrate tasks.

(iii) If pC
L

> (�S/�L) pCL , then setting � = 1 leads to experiment {q
S
, q

H
} regardless

of task allocation and the principal derives no surplus. Then, Proposition 5 shows that if

f(0) > 0, then �
⇤
< 1 .35 If pC

L
< (�S/�L) pCL , however, the designer selects

n
q
L
, q

H

o
if

� = 1 and setting � < 1 may trigger an adverse switch. If, however, the designer under a

k�allocation is sensitive to auditing for some �
0 and i

⇤ (k,�0) = L, then

�
0F (c̄⇤S(�

0; i⇤))

F̄ (c̄⇤S(�
0; i⇤))

> 0

✓
=

F (0)

F̄ (0)

◆

and (24) shows that the principal’s utility increases when reducing � from 1 to �
0. ⌅

35As shown in the Online Appendix B, the designer will always select a status-quo experiment if he does

so when � = 1. Therefore, the principal can only gain from an imperfect audit if the designer selects a more

informative status-quo experiment.
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Proof of Corollary 1: Suppose that the designer is responsive to auditing but �⇤ = 1.

Then, from Proposition 9-ii we must have that p
C

L
< (�S/�L) pCS but for each � so that

he prefers some experiment {q
L
, q}, q > q

H
to {q

L
, q

H
} it must be that i

⇤ (k,�) = S.

Since p
C

L
< (�S/�L) pCS , then Lemma 4 implies that for any � the designer’s choice under

separation improves the principal’s utility, and she cannot be worse-o↵ by committing to rule

out the status-quo. But in this case, the principal’s problem converts to a situation in which

she organizes to innovate (as she selects from two decisions, dL and dH) and Proposition 9-ii

implies �⇤
< 1. ⌅

Proof of Proposition 10: Suppose first that p
C

L
< (�S/�L) pCS , so that the designer

selects {q
L
, q

H
} = {0, q

H
} if � = 1. We prove the optimality of (17) and (18) in two steps.

First, we show that the cost distributions (16) satisfy the designer’s incentive compatibility

for experiments {0, q(�)} 2 ⇧R

L
which now must also account for the possibility of switching

to an status-quo experiment. Second, after deriving the optimal auditing and cost distribu-

tion, we show that the principal cannot do better by instead inducing the designer to select

a status-quo experiment.

Consider ⇡L(p) = {q
L
, q} (= {0, q}) with p = Pr

h
s = q

L

i
= (q � µ)/(q � q

L
). Then, by

a similar reasoning as in the proof of Proposition 6, if the designer under separation selects

⇡L when auditing is � then we must have

�  1� p
C

L

1� p
C

L
+ p� p

C

L

⌘ e�L(p).

Consider a cost distribution supported on 0 and c̄
⇤ ⌘ e�L(p)�L

p�p
C

L

1�p
C

L

, with

Pr [c = 0] =
�
p� p

C

L

�
/p. (A.16)

The argument in the proof of Proposition 6 showed that if the auditing intensity is e�L(p), the

designer, when restricted to ⇧R

L
, selects experiment ⇡L(p). We now show that the designer

does not wish to switch and select instead {q
S
, q

0} 2 ⇧R

S
. Using (A.16) we first note that

any {q
S
, q

0} that leads to a positive scale-up probability must satisfy

Pr
h
s = q

S

i
� p

C

S

1� Pr [c = 0]
= p

p
C

S

p
C

L

,

as the agent always tampers when c = 0. Moreover, all robust experiments satisfying this

condition lead to the principal rubberstamping the agent’s recommendation. Recalling that
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vL = 0, experiments in ⇧S are dominated by ⇡L(p) i↵

vS + �(1� Pr[s = q
S
])�S + (1� �)

�
1� p

C

S

�
�S

 �(1� p)�L + (1� �)
�
1� p

C

L

�
�L.

Rearranging and noting that vS +�S ��L = vL = 0, then incentive compatibility requires

0  �Pr[s = q
S
]�S � �p�L + (1� �) pC

L
�L � (1� �) pC

L
�L.

Since we assumed that pC
L
�L < p

C

S
�S, then

�Pr
h
s = q

S

i
�S � �p�L + (1� �) pC

S
�S � (1� �) pC

L
�L

� �p
p
C

S

p
C

L

�S � �p�L + (1� �) pC
L
�L � (1� �) pC

L
�L

=

✓
�p

p
C

L

+ (1� �)

◆�
p
C

S
�S � p

C

L
�L

�
� 0.

Therefore, the designer subject to auditing e�L(p) and the two-point cost distribution above

would optimally select ⇡L(p) with Pr[s = q
L
] = p.

From (24), the principal’s utility is

U (⇡L(p)) = q
H
+
⇣
q
H
� µ

⌘ 
e�L(p)

p� p
C

L

p
C

L

+

✓
1 + e�L(p)

p� p
C

L

p
C

L

◆ 
↵L � q

H

q
H
� q

L

!!

= q
H
+
⇣
q
H
� µ

⌘ 1� p
C

L

p
C

L

p� p
C

L

1� 2pC
L
+ p

+

✓
1 +

1� p
C

L

p
C

L

p� p
C

L

1� 2pC
L
+ p

◆ 
↵L � q

H

q
H
� q

L

!!

where we have used F (c̄⇤) /F̄ (c̄⇤) = Pr[c = 0]/ (1� Pr[c = 0]) =
�
p� p

C

L

�
/p

C

L
. This expres-

sion is increasing in p, so that the principal sets p = 1� µ —and the designer selects in re-

sponse a fully informative experiment—implying that �opt = e�L(1� µ) = 1/
⇣
2� q

H

⌘
.

To end the case when p
C

L
< (�S/�L) pCS , we show that the principal cannot improve her

payo↵ by instead inducing the designer to select an experiment in ⇧R

S
. To see this, suppose

that the designer were restricted to select experiments in ⇧R

S
. Then, using e�S(p) in (A.6)

expressed as a function of q,

e�S(q) =
q � q

S

q � q
S
+ q � q

H

.

Replacing this auditing intensity in (23), we see that the principal’s maximum expected
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utility is obtained from (23) by setting q = 1. But then we have

U (⇡S(q = 1)) = q
H
+

⇣
1� q

H

⌘⇣
µ� q

S

⌘

2� q
S
� q

H

 q
H
+

⇣
1� q

H

⌘⇣
µ� q

L

⌘

2� q
L
� q

H

 U (⇡L(q = 1)) .

(A.17)

Suppose now that p
C

L
> (�S/�L) pCS , so that the designer selects a status-quo robust

experiment if � = 1. Equation (A.17) shows that the principal’s maximum payo↵ when the

designer is restricted to “up-or-down” experiments is greater than her maximum payo↵ if

the designer is restricted to a status-quo experiment. Therefore, the principal would rule out

the status-quo decision dS, and (17) and (18) would again be an optimal data governance.

⌅
Proof of Lemma 5: Suppose that the principal organizes for scale and consider exper-

iment {q
S
, q}, q > q

H
. The principal is indi↵erent between decisions dL and dS both after

a conclusive audit determines s = q
S
and after an unaudited message m = q

S
. Let ⌧I(m)

be the probability of choosing dS after message m and a conclusive audit finds s = q
S
and

⌧U(m) be (i) the probability of selecting dS after an unaudited m = q
S
, and (ii) the proba-

bility of selecting dH after an unaudited m = q. Then,

vI(q
S
, q

S
) = vL + ⌧I(q

S
)(vS � vL)

vU(q) = vS + ⌧U(q)(vH � vS)

are, respectively, the payo↵ from truthtelling after a conclusive audit if s = q
S
and the payo↵

after an inconclusive audit if m = q. Note that the gain from tampering after s = q
S
is

ec ⌘ (1� �)[(1� ⌧U(q
S
))(�L ��S) + ⌧U(q)�S] + �(⌧I(q)� ⌧I(q

S
))(�L ��S), (A.18)

so that the probability of truthful communication conditional on s = q
S
is F̄ (ec). The

designer’s equilibrium payo↵ from a non-robust status-quo experiment V
NR

S
can then be

written as

V
NR

S
⌘ Pr[s = q

S
]
⇣
vI(q

S
, q

S
) + F (ec)ec

⌘
+ Pr[s = q] (�vH + (1� �)vU(q)) . (A.19)

Recall that cS, defined in (3), is the tampering gain that leads the designer’s posterior

to q
H

after an unaudited message m = q, and it satisfies F̄ (cS) = p
C

S

⇣
q�q

S

q�µ

⌘
. Therefore,

principal’s sequential rationality requires ⌧U(q) = 1 if ec < cS and ⌧U(q) = 0 if ec > cS.
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To find the designer’s maximum payo↵, fix ⌧I(q
S
), which pins down the payo↵ under an

audited truthful report vI(q
S
, q

S
). Suppose that ec < cS. Then, ⌧U(q) = 1 and vU(q) = vH ,

so that (A.19) increases in ec. Likewise, if ec > cS then ⌧U(q) = 0 and vU(q) = vS, so

that (A.19) again increases with ec. In other words, the designer’s payo↵ increases with the

tampering gain whenever it is di↵erent from the threshold for a robust experiment. Suppose

now that ec = cS. Then, to maintain (A.18) constant we must decrease scale-up probability

⌧U(q) whenever ⌧I(q) increases, but this reduces vU(q) and so V
NR

S
decreases with ⌧I(q)–see

(A.19). Therefore, for fixed ⌧I(q
S
) the maximum payo↵ to the designer is either achieved in

an equilibrium in which ec = cS or an equilibrium which maximizes ec –which, if maxec > cS

is attained by setting ⌧I(q) = 1.

We now show that the maximum payo↵ to the designer is obtained when ec = cS and

vI(q
S
, q

S
) = vU(q

S
) = vS so that the principal rewards truthtelling. First, note that for

vI(q
S
, q

S
) = vU(q

S
) = vS there is always an equilibrium in which the principal scales-up

with positive probability after an unaudited m = q. This follows as setting ⌧U(q) at the

level of a robust experiment and adjusting ⌧I(q) < 1 would give ec ⌘ (1 � �)[⌧U(q)�S] +

�(⌧I(q) � 1)(�L ��S) < c. This also implies that the designer’s payo↵ exceeds vS + �pvH

as the principal scales-up also when the audit is inconclusive. However, if ec > cS, then the

maximum payo↵ to the designer cannot be above vS + �pvH , as the principal scales-up only

if a conclusive audit yields s = q. It follows that the designer’s optimal is achieved when

ec = cS. Finally, suppose that the optimal is achieved for vI(q
S
, q

S
) < vS or vU(q

S
) < vS

so that the principal (partially) punishes truthtelling when m = q
S
. Increasing either value

while maintaining ec = cS raises the payo↵ vU(q) and thus increasing V
NR

S
. Therefore at the

maximum we must have vI(q
S
, q

S
) = vU(q

S
) = vS

In summary, the designer’s maximum payo↵ from experiment {q
S
, q} is achieved by

choosing dS after the agent truthfully sends m = q
S
but punishing tampering with the lowest

⌧I(q) consistent with a tampering gain of ec = cS. Note that if the principal rubberstamps

the agent’s recommendation for a robust experiment, then the lowest ⌧I(q) consistent with

ec = cS is precisely ⌧I(q) = 1. Therefore, a robust status-quo experiment {q
S
, q} achieves the

designer’s maximum payo↵ in any PBE following {q
S
, q} if the principal rubberstamps the

agent’s recommendation. ⌅
Proof of Proposition 11: In the text. ⌅
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