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data to create statistics of interest pertaining to uncertainty. While our approach is
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1 Introduction

Decision makers who are averse to ambiguity often start with a family of candidate models

they might consider as reasonable or plausible. In this paper we propose to use machine

learning to impose guidance and discipline on the formulation of model families. Moreover,

in a data rich environment it is fair to say that model uncertainty might be even more of

an acute problem compared to the traditional setting with only a few predictors. For this

reason, machine learning is also a natural way to proceed.

While the ideas explored in our paper are general, we focus on the cross-section of asset

returns because of the abundance of both data and potential models. More specifically, we

consider an investor who is intrigued by the appeal of artificial intelligence as guidance to

portfolio allocation but is worried about model uncertainty, despite the sophistication of

the statistical learning methods being used.1 Hence, our investor sees opportunities with

high-dimensional data but acts as an uncertainty averse Knightian decision maker using the

concepts of ambiguity (or uncertainty) in the sense of Knight (1921) and aversion towards

such uncertainty.2 According to Knight (1921) there is risk, which corresponds to situations

in which all relevant events are associated with a (objectively or subjectively) uniquely

determined probability assignment, and uncertainty – often called Knightian uncertainty –

which corresponds to situations in which some events do not have an obvious probability

assignment.

There already exists a substantial body of literature pertaining to the decision-theoretic

foundations of (portfolio choice with) ambiguity (see Section 2 for further discussion). To

make the ideas operational one has to solicit and formulate preferences, meaning (a) atti-

tudes towards risk (for a given distribution) and (b) concerns about ambiguity. Besides the

preferences, one also has to characterize the menu of probability distributions, i.e. models,

1There are now a number of papers documenting the benefits of machine learning to predict, in particular
stock returns, see e.g. Rapach, Strauss, and Zhou (2010), Kim and Swanson (2014), Gu, Kelly, and Xiu (2020),
D’Hondt, De Winne, Ghysels, and Raymond (2020), among others.

2We will use the terms (Knightian) uncertainty and ambiguity interchangeably in this paper.
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to be considered. Our paper has a number of innovations. The first, already mentioned, is

the use of machine learning. The second is the use of bootstrap histories - in our applica-

tion asset returns (and covariates) similar to Sullivan, Timmermann, and White (1999) and

White (2000) - to construct empirical measures of uncertainty.

One can think of uncertainty in terms of (a) parameter uncertainty, (b) variable selection

uncertainty and (c) functional form uncertainty. We cover all three. Suppose we fix the

functional form to be linear, but don’t know which variables to select and the value of

the associated parameters. The machine learning-bootstrap approach involving regularized

linear models accounts for both model uncertainty and variable selection uncertainty in a

data rich environment. If we throw functional form uncertainty into the mix, we need to

augment to class of models to including procedures involving deep learning or say random

forests. We cover all these possibilities. Moreover, particularly practical and appealing is the

fact that our methodology applies to any combination of assets considered in the portfolio

exercise and produces in the multi-asset case a matrix-based uncertainty measure. Moreover,

the approach put forward in our paper applies to any data-rich environment beyond the

financial application considered. For example, a number of attempts were made to capture

model uncertainty using survey data, see e.g. Anderson, Ghysels, and Juergens (2009) and

Bhandari, Borovička, and Ho (2016), among others. The use of survey data has limitations,

however, as such data only covers a small set of predictions. Our approach could notably

be used for various macroeconomic applications where concerns about robust policy making

have been widely discussed (see e.g. Hansen and Sargent (2011)).

Intuitively speaking the procedure we propose creates plausible synthetic bootstrap sam-

ples of data not seen in historical real data. The machine learning procedure can be thought

of as creating reduced form prediction models, which with a sufficient number of bootstrap

iterations allows us to create statistics of interest pertaining to uncertainty. While the pro-

cedure is intuitively appealing, we also note that there are a number of technical issues

which remain unresolved and, although briefly discussed in the paper, are left to future re-
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search. The contribution of our paper is to lay out the procedure and show that it provides

economically plausible and significant gains in asset allocation decisions.

The remainder of the paper is organized as follows. In Section 2 we discuss ambiguity

in the context of portfolio choice, which is the application of interest in the paper. Sections

3 and 4 cover machine learning methods and the bootstrap procedure respectively. Both

sections pertain to the main contributions of our paper. The empirical application appears

in Section 5 followed by conclusions.

2 Portfolio choice and ambiguity

The thought-provoking paradox formulated by Ellsberg (1961) highlighted the distinction

between risk and uncertainty and prompted researchers to search for new preference classes

to accommodate Knightian uncertainty. The focus of our paper is portfolio choice, which

of course is a dynamic decision-making problem.3 Starting from the idea that models are

approximations, Epstein and Wang (1994) use the Ellsberg (1961) paradox to motivate a

decision theory for dynamic settings based on the minimax principle with multiple priors of

Gilboa and Schmeidler (1989).

More precisely, Gilboa and Schmeidler (1989) built the axiomatic foundations for min-

max ideas formulated by, among others, Wald (1950) and Hurwicz (1951) which can be

written as follows. Let f % g mean that the decision maker weakly prefers decision f to g,

then:

f % g if and only if min
p∈P

Ep[U(f)] ≥ min
p∈P

Ep[U(g)], (1)

where P is a convex set of probability measures over outcomes, whose size can be interpreted

as representing the level of perceived ambiguity. The intuition is that – because of ambiguity

aversion – agents are considering as valid and relevant the prior which is most unfavorable.

Preferences represented by (1) have became commonly known as multiple prior preferences,

3Material in this section draws on the survey by Guidolin and Rinaldi (2013).
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given the multi-valued nature of the set P .

Anderson, Hansen, and Sargent (2003) and Hansen and Sargent (2001) noted the connec-

tion between Knightian uncertainty and the robust control theory used in engineering.4 In

that literature the set of probabilities P is characterized by taking a single “approximating

model” and statistically perturbing it, or more precisely:

f % g if and only if min
q∈∆(Ω)

Eq[U(f) + %R(q‖p)] ≥ min
q∈∆(Ω)

Eq[U(g) + %R(q‖p)], (2)

where p is the reference or baseline approximate model, ∆(Ω) is the simplex (i.e. probability

densities) based on Ω which represents the states of the world. The Kullback and Leibler

(1951) (KL) divergence measure R(q‖p) is used to assess the distance between any candidate

density/model q vis-à-vis p. The parameter % controls the appetite for robustness or model

uncertainty and can be thought of as an ambiguity aversion index since it measures the fear

of model misspecification. The lower is %, the higher is the degree of ambiguity aversion and

%R(q‖p) is a penalty term. The decision maker considers a range of models q ∈ ∆(Ω) with a

weight assigned according to the KL distance to the baseline model p. Hansen and Sargent

(2001) also show that the decision ordering scheme appearing in (2) can be reformulated as

a constrained optimization of the following type:

f % g if and only if min
q∈B

Eq[U(f)] ≥ min
q∈B

Eq[U(g)] B = {q ∈ ∆(Ω) : R(q‖p) ≤ η}, (3)

where B is a “ball” centered at the baseline model p and containing models with maxi-

mal KL divergence of η. These robust preferences have been axiomatized by Maccheroni,

Marinacci, and Rustichini (2006) who show that they are in fact a specific sub-class of so

called variational preferences (VP). VP nest many of the known ambiguity aversion prefer-

ences structures, including the Monotone Mean Variance Preferences (MMVP) that extend

outside their domain of monotonicity the classical Mean Variance Preferences of Markowitz

4See Hansen and Sargent (2011) for an elegant and detailed overview of their many papers on the topic.
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(1959).

In this paper f and g pertain to portfolio choices. Assuming there are N risky assets

and a risk-free one, this means decisions are represented by wt, the N × 1 vector of asset

allocations among the risky assets at time t where wt ∈ RN ∀ t with the constraint that

ι>Nwt = 1, with ιN the N × 1 vector of ones.5 This leaves us with the characterization

of: (a) the utility function U(·) and (b) the set of probability functions P and resulting

expectations Ep[U(·)] for each p ∈ P . Regarding the probability densities P we rely on a

commonly used assumption in the literature, which relates to a discrete time version of

the often used diffusion setting with uncertainty regarding the drift, see e.g. the textbook

coverage by Hansen and Sargent (2011):

Assumption 2.1. Let rt be the N × 1 vector of excess returns for N assets in period t

and let Ft−1 be the σ-field information filtration, then all p ∈ P are conditionally Gaussian

N(µpt ,Σt).

Assumption 2.1 tells us that all densities in the set P are conditionally Gaussian and share

a common covariance matrix Σt. Therefore, ambiguity is concentrated on the vector of ex-

pected returns µpt . Following the seminal work by Markowitz (1959) we use quadratic utility

functions and solve for the so called optimal mean variance (MV) portfolio weights for a

given density p :

max
wt

[
w>t µ

p
t −

γ

2
w>t Σtwt

]
∀t. (4)

Such preferences might be either perceived as reflecting attitudes towards risk, as in the

original setup of Markowitz, or with suitable modifications discussed shortly may represent

more sophisticated implementations which account for ambiguity.

Garlappi, Uppal, and Wang (2007) study an investor with multiple priors and aversion

to ambiguity. They characterize the multiple priors by a “confidence interval” around the

estimated expected returns and model ambiguity aversion via a minimization over such pri-

5For expositional purpose we ignore here short-selling constraints, whereas in the empirical implementa-
tion we impose them.
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ors. Although confidence intervals or significance levels are often associated with hypothesis

testing in statistics, Bewley (1988 and 2011) shows that they can also be interpreted as a

measure of the level of uncertainty associated with the parameters estimated.

The empirical analysis in our paper follows more closely Maccheroni, Marinacci, and

Ruffino (2013) who exploit the smooth model of decision making under ambiguity of Klibanoff,

Marinacci, and Mukerji (2005) to derive a tractable mean-variance model adjusted for am-

biguity. In their setting, risk aversion determines the decision maker’s reaction to expected

volatility and model uncertainty aversion determines her reaction to the variance of µpt ’s, p

∈ P . In their framework, the optimal MV portfolio allocation with Knightian uncertainty

takes the form (see equation (23) in Maccheroni, Marinacci, and Ruffino (2013)):

max
wt

[
w>t µ

p
t −

γ

2
w>t Σtwt −

δ

2
w>t Λtwt

]
, (5)

where (a) Λt is the variance matrix of expected returns, measuring the dispersion among all

probability densities q considered, (b) γ is the relative risk-aversion parameter and (c) δ is

uncertainty-aversion parameter. The solution to the above optimization problem is:

wt = (γΣt + δΛt)
−1µpt , (6)

and the challenge is how to compute Λt. As an aside, we will estimate Σt via standard

methods, such as for example Engle (2002), and denote its estimates by Σ̂t. In the remainder

of the paper, our main focus is how to estimate Λt.

3 Machine learning methods

The investor operates in a data-rich environment. This means that there is potentially

ambiguity about (a) the economic variables to select and (b) the functional form used to

predict returns given these variables and finally (c) the parameters to use in the selected
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models. We focus exclusively on univariate models for each asset i in our portfolio. To

simplify notation, we drop the subscript i referring to the asset and proceed with a single

asset case.

We start with machine learning methods which assume a linear regression functional

form, which means that ambiguity pertains to variable selection and parameter uncertainty.

We consider a number linear machine learning methods, namely: Ridge, LASSO, Elastic

Net, SCAD, and MCP. Next, we endeavor into functional form ambiguity, in addition to

variable selection and parameter uncertainty. Here we consider three nonlinear machine

learning models: random forests, gradient boosted trees and artificial neural network. A

subsection is devoted to each.

3.1 Linear models

We will use a generic notation µmt (zt, θm) to denote the expected returns where m iden-

tifies the method/model being used, zt are the covariates, and θm the model parameters,

including regularization and/or tuning parameters, required in the specification of m. For

example, µ`1t (zt, (β(λ`1), λ`1)) for LASSO with λ`1 regularization parameter involving a linear

regression with parameters β(λ`1) which determine both variable selection and estimation of

parameters for selected regressors.

The linear models we estimate for each asset across time periods t = k, . . . , T − 1 are of

the form:

rt+1 = z′tβ + εt+1,

where zt is a P -dimensional vector of predictors. Instead of estimating this model using

OLS, we append a penalty to the original loss function:

L(β; ·) =
1

T

T∑
t=1

ε2t +
P∑
j=1

φ(βj; ·).

There are several choices for the penalty function φ(βj; ·). We consider three popular types
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of penalty: Elastic Net, SCAD and MCP. The Elastic Net penalty, proposed by Zou and

Hastie (2005), takes the form: φE(βj;λ, α) = 1
2
λ(1−α)

∑P
j=1|βj|+λα

∑P
j=1 β

2
j . It involves two

non-negative hyperparameters, λ and α, and includes two regularizers as special cases. The

α = 0 case corresponds to LASSO (Tibshirani (1996)) and uses an `1 parameter penalization.

LASSO imposes sparsity and sets coefficients on a subset of predictors to exactly zero. The

α = 1 case corresponds to Ridge (Hoerl and Kennard (1970)), which uses an `2 parameter

penalization. Ridge regression draws all coefficient estimates closer to zero but does not

impose exact zeros. For intermediate values of α, the Elastic Net encourages simple models

through both shrinkage and variable selection.

The smoothly clipped absolute deviation (SCAD), proposed by Fan and Li (2001), has a

penalty function given by:

φS(βj;λ, α) =


λ|βj|, if |βj| ≤ λ

2αλ|βj |−|βj |2−λ2
2(α−1)

, if λ < |βj| ≤ αλ

λ2(α+1)
2

, if |βj| > αλ

for α > 2 and λ > 0. For small signals |βi| < λ, it acts like LASSO; while for larger signals

|βi| ≥ αλ, the penalty flattens and leads to the unbiasedness of the regularized estimate.

The minimax concave penalty (MCP), developed by Zhang (2010), takes the form:

φM(βj;λ, α) =


λ|βj| − |βj |

2

2α
, if |βj| ≤ αλ

αλ2

2
, if |βj| > αλ

where λ > 0 amd α > 1. The penalty function is quadratic on [0, αλ] and flattens beyond

αλ. MCP starts with the same rate of penalization as LASSO but relaxes the penalization

rate as the absolute value of the coefficient increase. Finally, we estimate the regularized

regression models on the training data (details appear later) and optimize all respective

tuning parameters via 10-fold cross validation. The collection of predictions from the class
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of regularized linear models will be denoted by µ`1t for LASSO, µ`2t for Ridge, µENETt for

Elastic Net, and finally µMCP
t and µSCADt for MCP and SCAD.

3.2 Nonlinear models

Regression tree type models Regression tree is a popular nonparametric machine learn-

ing model designed to incorporate nonlinear interactions between covariates. The prediction

of a tree with K terminal nodes (called ’leaves’) and depth L, can be written as: g(zt; β,K,L)

=
∑K

k=1 βk1{zt∈Ck(L)}, where Ck(L) is the k-th partition that has at most L different branches.

A set of branches for a given partition can be represented as a product of indicators for se-

quential branches. For a given partition, then β̂k is the average of returns for all members

of that given partition. We follow the algorithm of Breiman, Friedman, Stone, and Olshen

(1984). At each step of the tree, we choose a sorting variable from the set of predictors

and the split value to maximize the information (impurity) gained. The recursive binary

splitting algorithm continues until a set of stopping criterion are met, which typically rely

on the maximal additional information gained from a split being less than a threshold, or a

max number of leaves and/or depth of a tree being reached.

Regression trees often suffer from high variance. We consider two regularization methods

for improving the predictions: Random Forest and Gradient Boosting. Random Forest

averages forecasts from many different trees. We employ the algorithm of Breiman (2001)

to estimate random forest models: each tree is built from a bootstrapped training sample

(bagging). In addition, the method de-correlates trees by only choosing a randomly drawn

subset of predictors for splitting at each potential branch. For the random forest model,

we fix the number of bootstrapped trees so that the key hyper parameters are the predictor

subset size S and the depth of each tree L.

Boosting recursively combines forecasts from many weak learners (small regression trees)

to form a ’strong learner’. In boosting, trees are grown sequentially. We adopt the Friedman

(2001) algorithm to fit gradient boosted trees: at each new step b, a shallow tree is fitted to
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the residuals from the model with b− 1 trees, and its residual forecast is added to the total

with a shrinkage weight. For the gradient boosting models, we tune the number of trees, the

depth of each tree and learning rate λ through cross validation.

Deep learning We focus our deep learning analysis on traditional “feed-forward” neural

networks. These consists of an “input layer” of raw predictors, one or more “hidden layers”

and an “output layer”. Let K(l) denote the number of neurons in each layer l = 1, . . . ,

L and x
(l)
k denote the output of neuron k in layer l. Also define the vector of outputs for

layer l as x(l) = (1, x
(l)
1 , ...x

(l)

K(l))
′. The network is initialized using the raw predictors, x(0) =

(1, z1, . . . , zN)′. Each neuron in the “hidden layer” draws information linearly from all units

in the previous layer and applies a nonlinear “activation function” to its aggregated signal

before sending its output to the next layer: x
(l)
k = h(x(l−1)′β

(l−1)
k ), where h is an activation

function. In the last layer, the results from each neuron are linearly aggregated into the

ultimate output forecast: g(z; β) = x(L−1)′β(L−1). The number of weight parameter in each

hidden layer l is K(k)(1 +K(l−1)), plus another 1 +K(L−1) weights for the output layer.

Our network architecture has one hidden layer and four neurons. All architectures are

fully connected so each unit receives an input from all units in the layer below. We use

rectified linear unit (ReLU) as the activation function and gradient descent with adaptive

learning rate backpropagation algorithm to minimize a regularized `1 objective function:

L(β;λ) = (1− λ)
1

T

T∑
t=1

ε2i,t+1 + λ
1

P ′

P ′∑
j=1

β2
j (7)

where 0 ≤ λ < 1 and P ′ is the total number of weight parameters. In addition to `1 pe-

nalization of the weight parameters, we simultaneously employ three other regularization

techniques in our estimation: learning rate shrinkage, early stopping, and ensembles. For

each deep learning tree, we tune the penalization parameter λ through 10-fold cross vali-

dation. The class of nonlinear models yields predictions µRFt for random forest, µGBRTt for

gradient boosting and finally µNNt for neural nets.
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4 Bootstrap estimation of model uncertainty

Hastie, Tibshirani, and Friedman (2017, Section 7.11) in their widely used textbook on ma-

chine learning characterize bootstrap as a general tool used for assessing statistical accuracy

used in particular to understand the properties of model prediction errors. Not surprisingly,

several authors have suggested the use of bootstrap methods in machine learning settings,

recent examples include Bach (2008), Chatterjee and Lahiri (2011), Pearce, Zaki, Brintrup,

and Neely (2018), Li, Luo, Ferrari, Hu, and Qin (2019), Kostrikov and Nachum (2020),

among others. It is also worth noting that bootstrapping is one of many resampling meth-

ods used in the machine learning literature with the widely used cross-validation method as

a close cousin.

Here we use it to construct empirical measures of uncertainty, a novel feature of our paper.

To that end we draw B = 1,000 bootstrap samples of size T for the entire cross-section of size

N. Given the nature of the data, we follow the stationary bootstrap of Politis and Romano

(1994), commonly used to generate financial returns data, see e.g. Sullivan, Timmermann,

and White (1999). More precisely, for each b = 1, . . . , B we generate the panel of individual

asset returns rit and covariates Zit for i = 1, . . . , N and t = 1, . . . , T. In our empirical

study, we set the average resampling block to be 12 months. Let im = 1, . . . , M be the

set of models. The models are grouped in G groups with ig = 1, . . . , G. In this paper, we

will work with the entire set of machine learning models as well as two groups. One group

consists of all regularized linear regression methods yielding µ`1t , µ
`2
t , µ

ENET
t , µMCP

t , µSCADt ,

the other group consists of nonlinear methods µRFt , µGBRTt , µNNt .

Recall that, following Anderson, Hansen, and Sargent (2003), Hansen and Sargent (2001),

among others, we are looking for the set of probabilities P characterized by statistical pertur-

bations of a single approximating model. Given Assumption 2.1, we care about a set of con-

ditional mean perturbations with respect to a reference model. This is achieved via the boot-

strap. More specifically, for each draw b = 1, . . . , B we estimate across all N assets for t = T0,

. . . , T, all models – which means applying the training and validation sample schemes across
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all expanding samples, assets, and methods. This yields
(
µim,bit ; t = T0, . . . , T, i = 1, . . . , N

)
,

panels of expected returns for models im = 1, . . . , M and bootstrap draws b = 1, . . . , B.

To make this clear, each model is estimated using the bootstrap sample and the real data is

used to generate µim,bit = µim,bit (Zt, θ̂
b
m).

Using these data sets, and collecting for all assets i the expected returns µim,bit into an

N -dimensional vector µim,bt , we compute the following:

Λ̂B
im,t =

[
1

B

B∑
b=1

(µim,bit − µ̄
im,B
it )(µim,bjt − µ̄

im,B
jt ) +

[
µim,pit − µ̄im,Bit

] [
µim,pjt − µ̄

im,B
jt

]]N
i,j=1

=
1

B

B∑
b=1

(µim,bt − µ̄im,Bt )(µim,bt − µ̄im,Bt )> +
[
µim,pt − µ̄im,Bt

] [
µim,pt − µ̄im,Bt

]>
µ̄im,Bit =

1

B

B∑
b=1

µim,bit , i = 1, . . . , N (8)

for a specific model class im. The second term on the right hand side of the above equation

is a bias correction which re-centers the uncertainty at the expected returns µim,pit and µim,pjt

for assets i and j for the reference model p for the class of models im. In our empirical study,

we choose the reference model p such that its asset i expected return µim,pjt is the prediction

with model im obtained from the real data sample. Hence, the uncertainty measures are

centered around the expected return series used in the portfolio optimization problem.

Take for example an investor who only looks at regularized regression models using

LASSO with a large set of covariates Zt. For µ`1t we explore model uncertainty associated

with variable selection as well as parameter estimation. The empirical sample yields an

estimate, in this case using LASSO, for the expected return for each asset i, namely µ`1,pit .

Using the LASSO procedure applied to the B bootstrap samples for each asset i yields a

distribution of expected returns [µ`1,bit , b = 1, . . . , B] and yields the empirical measure Λ̂B
`1,t

for the case of LASSO. All other model procedures proceed along the same lines.
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If our investor uses a particular group of machine learning models, she would compute:

Λ̂Big ,t =

 1

B ×Nig

∑
im∈ig

B∑
b=1

(µim,bit − µ̄ig ,Bit )(µim,bjt − µ̄
ig ,B
jt ) +

[
µ
ig ,p
it − µ̄

ig ,B
it

] [
µ
ig ,p
jt − µ̄

ig ,B
jt

]N
i,j=1

µ̄
ig ,B
it =

1

B ×Nig

∑
im∈ig

B∑
b=1

µim,bit , i = 1, . . . , N (9)

where Nig is the number of models in group ig. Here we re-center the uncertainty at the

reference measure p expected returns µim,pit using the real data averaged across all models in

ig, yielding µ
ig ,p
it . The fact that there are more linear models in the mix may tilt the measure

defined in equation (9) toward that particular group. In Appendix Section OA.3, we show

that our main findings continue to hold when the group of linear models and the group

of nonlinear models contribute equally to the expected return and composite uncertainty

estimates.

In this paper, the linear uncertainty estimator is calculated only using linear models

and the nonlinear uncertainty estimator is calculated only using nonlinear models. Finally,

an agnostic investor taking every model under consideration would consider the composite

uncertainty estimator with the N -vector µ̄M,B
t with elements µ̄M,B

it = 1
B×M

∑M
im=1

∑B
b=1 µ

im,b
it :

Λ̂B
M,t =

1

B ×M

M∑
im=1

B∑
b=1

(µim,bt − µ̄M,B
t )(µim,bt − µ̄M,B

t )>+
[
µM,p
t − µ̄M,B

t

] [
µM,p
t − µ̄M,B

t

]>
(10)

It is quite standard in the machine learning literature to introduce a procedure or algo-

rithm, show that it works, but not necessarily establish all its theoretical properties. The

theoretical foundations of our procedure starts with the work of White (2000). While his

emphasis is data snooping and hypothesis testing, his framework shares features with our

procedure. In particular, he is interested in estimating the covariance matrix for a number

of model predictions (see section 2.b in White (2000)). His setting is different, as he is

interested in extreme values of correlated normally distributed random variables (cfr. our

Assumption 2.1). His theoretical framework is inspired by the standard GMM asymptotics
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of Hansen (1982). It is a serious theoretical undertaking to establish the validity of the

same procedure in a high-dimensional data setting in particular for all the machine learning

procedures covered in Section 3. For a starter, the development of GMM-type estimators

in a machine learning context is still not fully developed, see e.g. Belloni, Chernozhukov,

Chetverikov, Hansen, and Kato (2018) for a recent discussion. Notably challenging is the

role of the weighting matrix (see e.g. Caner and Kock (2019) for results pertaining to linear

GMM with LASSO regularization), an object similar to our measures of uncertainty. It

would require many novel contributions beyond the scope of the current paper. The main

attraction of the procedure is its versatility and intuitive appeal and more importantly, as we

show in the remainder of the paper, yields economically plausible estimates of uncertainty as

well as economically significant improvements in asset allocation with internalized concern

for model uncertainty.

5 Empirical Study

We start with a description of the data used in our analysis, which is the subject of a first

subsection. A second subsection documents the performance of the empirical models. Next

we study the properties of the uncertainty measures obtained through the bootstrap pro-

cedure presented. A fourth subsection covers portfolio allocation with uncertainty. Finally

we conclude with a subsection on the impact of uncertainty and risk shocks on the portfolio

weights.

5.1 Data and sampling

The asset return and predictors data are obtained from a variety of sources. All the series

are monthly, and the details are provided in Section OA.1 of the Online Appendix. The

sample period spans from January 1986 to December 2019. The predictions are computed

via an expanding window scheme. Effectively, the models are re-trained annually to predict
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the monthly asset returns next year. The set of predictors considered for the purpose of

model selection, can be categorized along the following lines.

Macroeconomic series: Macroeconomic data are typically subject to future revisions and

released with delay. Ghysels, Horan, and Moench (2018) find that a sizable fraction of the

predictive information contained in final macro data is carried by data revisions. In order

to avoid introducing forward-looking bias, we use real-time macro series vintages from the

ALFRED database, with the exception of interest rates and oil prices.

Financial series: We use a set of financial predictors. Namely, asset-pricing factors related

to the Fama and French (2015) five factor models are from the data library of Kenneth French.

In addition, we use the financial predictors constructed by Welch and Goyal (2008) and the

CBOE Volatility Index (VIX) of Chicago Board Options Exchange.

Textual data: We add news attention data based on textual analysis available from Nick

Bloom’s data library. More specifically, components of the Economic Policy Uncertainty In-

dex and Categorial EPU data constructed by Baker, Bloom, and Davis (2016) are candidate

predictors, as well as category-specific Equity Market Volatility trackers provided by Baker,

Bloom, Davis, and Kost (2019).

Asset returns: A portfolio of eight assets is considered: Monthly S&P 500 Index Return

and Fama 60 month-120 month bond portfolio return data from the Center for Research in

Security Prices (CRSP), Fama-French 5 industry portfolio returns from the data library of

Kenneth French, and Gold return series obtained from FRED.

We have a total of 134 regressors which are used to build the various prediction models.

The first models are trained using data from January 1986 until December 1995 and used to

predict asset returns in 1996, so there are 120 observations in the first training sample and

the prediction sample is 12 months, and the predictions are computed according to the data
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of December 2005. Moving forward with yearly increments, we calculate predictions until

the sample is exhausted in December 2019.

5.2 Prediction model performance

It is of independent interest to report on the empirical performance of the various models

in predicting the returns of the eight assets in the portfolio. The bulk of the literature

has focused on equity return predictions using machine learning. In our mix of assets we

have fixed income and gold which have received less attention in the literature. In Table 1

we report the out-of-sample (OOS) mean squared errors (MSE) of the linear and nonlinear

prediction models. Ignoring for the moment the last row labeled EW Average we note that

for the S&P 500 index the linear models are better than the nonlinear ones and among the

linear ones LASSO, MCP and SCAD are the best, although overall the differences in OOS

MSE are small. The last row pertains to the equally weighted average of all the models

and is used as the reference model in the portfolio optimization around which we build the

model uncertainty measures. Continuing with equities, we note that the health industry

portfolio OOS MSE are similar to those of the market index, Consumer has slightly higher

prediction errors whereas the Hi Tech industry returns are the most difficult to predict. In

all cases, we find that linear models yield the best OOS return predictions. Among the

nonlinear models Deep Learning in particular produces the worst whereas Random Forest

and Gradient Boosting are typically only slightly worse than the linear models. Fixed income

returns are in comparison easy to predict and gold returns are easier to predict than equities.

Linear models turn out to be the best again. It is also worth paying attention to the last row

in Table 1 where we report the OOS MSE of linear models estimated via OLS. We note that

the performance is orders of magnitude worse that any of the machine learning methods.

For this reason we opt to ignore OLS estimation in the remainder of the paper.

Table 2 provides the OOS MSE statistics for the bootstrap data. We note that the

prediction performance in the synthetic data is much worse than with the real data and
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nonlinear models turn out to be better than linear models. In fact the OOS MSE for the

real data and bootstrap histories are comparable for nonlinear models, but much worse for

linear models. This should not be of major concern as for the uncertainty measures we care

mostly about deviation from average performance for a certain type or class of model(s).

Table 3 provides some insights about the top 10 most selected regressors by the linear

machine learning models for each of the eight assets considered in the portfolio. We are

reminded of the fact that machine learning methods are black box procedures and may

uncover some surprising patterns. This being said, among the top 10 most frequently selected

regressors for each of the eight assets there are many that make perfect sense. For example

real personal consumption, price dividend ratio, stock variance, some Fama-French factors

are among the top regressor for the equity market index as well as for the industry equity

portfolios. The lagged bond yield predict long term bond returns and mine industry returns

predict gold prices is another example. Gold is also predicted by the CPI and a measure

of inflation-related volatility. There are a few unexpected ones, perhaps most prominently

is the infectious disease EMV. This is a volatility tracker (EMV stands for equity market

volaility) based on textual analysis constructed by Baker, Bloom, and Davis (2016). Note

that the pandemic is not part of our sample and therefore this is not caused by the unusual

market movements in recent history. Online Appendix Table OA.3 provides a list of variable

definitions for the textual data and it shows that there are in fact more than 30 EMV

variables. It is therefore somewhat peculiar that this particular tracker is being selected

so often for predicting S&P 500 returns. Note that it also appears prominently among

the health industry covariates, which may seem less anomalous. Several of the other EMV

trackers appear among the selected regressors, as well, including the top predictor for the

S&P 500 index. Overall, though it appears that the prediction models obtained via the

bootstrap procedure appear as being genuine. Table 4 displays the same information for the

bootstrap samples. Overall, it seems that covariates are generally picked more often in the

synthetic data as they are in the real data, judging by the percentages appearing next to
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each of the selected predictors. The top 10 most selected regressors by the linear models,

with the real data share many predictors with the top 10 most selected regressors with the

bootstrap data.

5.3 Uncertainty measures and their properties

Figure 1 shows the time series plots of the Frobenius norm of the uncertainty measure

‖Λ̂B
ig ,t‖F appearing in equation (9) for ig representing the group of all regularized linear

prediction models against (a) the Economic Policy Uncertainty Index (EPU), (b) the financial

uncertainty index (JLN), (c) the CBOE Volatility Index (VIX), and finally (d) the Frobenius

norm of the DCC(1,1) covariance matrix ‖Σt‖F following the estimation procedure of Engle

(2002). The series in the top and bottom panels are normalized to unit length. The sample

period is from January 1996 to December 2019.

More specifically, in the top panel, we compare the Frobenius norm of the composite

uncertainty matrix with the Economic Policy Uncertainty Index (EPU) by Baker, Bloom,

and Davis (2016), the financial uncertainty Index (JLN) by Jurado, Ludvigson, and Ng

(2015) and the CBOE Volatility Index (VIX). Each uncertainty measure is normalized to

be comparable. We find a close link between our uncertainty estimator and the time series

behavior of the other measures. All four appear to be counter-cyclical and peak around

the Great Recession of 2007-2009. According to our estimator, the uncertainty is also more

pronounced during the dot-com bubble years.

Note that EPU is based on textual analysis, JLN is based on residual variation in reference

to a common factor model for macro panel data and finally the VIX is based on derivative

pricing. It is therefore quite remarkable that all measures feature such strong co-variation.

The appeal of our measure, of course, is that it can be computed for any collection of assets,

and can therefore target specific sectors of the economy. With the eight assets selected for

our portfolio analysis, we cover a rather wide range of different asset classes, which may

explain why it matches closely the broadly defined uncertainty measures.
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In the central panel, we compare the Frobenius norm of the uncertainty matrix ‖Λ̂B
ig ,t‖

for different groups of models, namely: (a) the group of regularized linear regression models

as in the top panel, (b) only using the group of nonlinear models and (c) Λ̂B
M,t appearing

in equation (10) using the entire set of machine learning models. We observe that the

uncertainty implied by the group of linear models is mostly larger and more volatile than for

the nonlinear models. Moreover, the uncertainty for both the linear and nonlinear models

tend to respond simultaneously, especially during financial crisis, with an overall correlation

of 0.88.6

The lower panel of Figure 1 compares the Frobenius norm of ‖Λ̂B
M,t‖F against that of Σ̂t,

or put differently compares uncertainty versus risk with both normalized to be comparable.

The time series pattern in the lower panel suggests that uncertainty tends to lead volatility.

The uncertainty typically spikes one month ahead of volatility, with the maximum conditional

autocorrelation for k > 0 equal to 0.58 with k = 1.

Table 5 reports the results regarding simple linear regressions of the three uncertainty

measures, namely Λ̂B
M,t and Λ̂B

ig ,t for ig respectively linear and nonlinear models, projected on

the various measures using in the figure - EPU, JLN, VIX, Volatility - in addition to Industrial

Production Growth (IP). We also report a pure time series AR(1) regression - which yields

the highest R2’s. Panel A covering Λ̂B
M,t shows that the slope coefficient estimates are mostly

positive and statistically significant at the 5% level, except for the negative beta with IP

as regressor and the insignificant slope estimate with EPU. The results for IP confirm the

counter-cyclical nature of Knightian uncertainty. Panels B and C pertain to the model group-

specific measures Λ̂B
ig ,t. The linear regression results confirm a strong relationship between

our uncertainty estimators and other uncertainty measures. It is worth noting though that

across all our measures, the regressions involving EPU result in near-zero R2’s.

To appraise the difference between risk and uncertainty we plot some of the off-diagonal

6In Appendix Section OA.3 we display the same plots as in Figure 1 but adjust the uncertainty measures
for the unbalanced number of linear versus nonlinear models, using the correction appearing in equation
(OA.2). Figure OA.1 indicates that our findings appear robust to the imbalance.
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elements of Λ̂B
M,t versus those of Σ̂t. In Figure 2 we plot a twelve month moving average of

the former against its risk counterpart (which is smooth already as a filtered estimate). We

express those off-diagonal elements in terms of correlations so that the scales are comparable.

The shaded areas correspond to NBER recessions (in particular the Great Recession). The

top panel covers all equity assets (namely S&P 500 and Fama-French five industry portfolios

specified in Online Appendix Table OA.4) combined against the LT bond risk versus uncer-

tainty. The latter is either positive or close to zero. This means that uncertainty about bond

and stock returns typically co-move together. Risk starts out positive but turns negative

for most of the sample. Hence, the conditional correlations between equity and bond return

fluctuations tend to go in opposite direction. Uncertainty trends towards zero, however,

except for upticks during recessions, which means stock and bond uncertainty appear to

become more disentangled.

Moving the the second panel, we see that both uncertainty between equities and gold

and risk are mostly negative. The third panel shows that uncertainty can flip signs as well,

as we see that happen for bonds and gold. In this case conditional risk correlations are with

only a few exceptions always positive.

In Table 6, we report the summary statistics of the Frobenius norm of our uncertainty

measure for the entire sample and three subsamples: pre-crisis (from January 1996 to Novem-

ber 2007), crisis (from December 2007 to June 2009), and post-crisis (July 2009 to December

2019). Not surprisingly, uncertainty is high during the crisis, almost three times the over-

all sample mean. In contrast, post-crisis uncertainty is extremely low. The volatility of

uncertainty is high during the crisis and low afterwards as well.

The comparisons with alternative measures, namely the Economic Policy Uncertainty In-

dex of Baker, Bloom, and Davis (2016), the financial uncertainty Index of Jurado, Ludvigson,

and Ng (2015) and the CBOE Volatility Index, may leave the impression that uncertainty

is driven by a single factor. The plot in Figure 3 suggests otherwise, however. We plot

the Frobenius norm of our uncertainty measure against a single uncertainty factor extracted
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from off-diagonal elements of Λ̂B
M,t, following Bai and Ng (2002). A single factor appears

inadequate capturing the temporal variation in uncertainty.

5.4 Portfolio allocation with ambiguity

A number of papers have studied portfolio choice with uncertainty, including Garlappi, Up-

pal, and Wang (2007) and Anderson and Cheng (2016), among others. Our approach is

distinct from the previous literature in important ways and offers advantages along sev-

eral dimensions. First, our machine learning-bootstrap approach accounts for both model

uncertainty and variable selection uncertainty in a data rich environment. Second, our

methodology produces a matrix-based uncertainty measure. Third, we pin down the port-

folio weights through a clean optimization problem by extending Maccheroni, Marinacci,

and Ruffino (2013). Although the problem can only be solved numerically with weight con-

straints (short sale constraint for example), the unconstrained problem has a closed form

solution with both a risk-return and uncertainty-return trade-off. Fourth, our uncertainty

estimator can be applied to any asset class with time series data for the variable of interest

and predictors.

Our prime focus is the extent of uncertainty changing a representative investor’s optimal

asset allocation in a mean-variance-uncertainty setting. Let us first recall the setting in

equation (5), namely the investor solves portfolio weights vector wt according to,

max
wt

[
w>t µ̂t −

γ

2
w>t Σ̂twt −

δ

2
w>t Λ̂twt

]

subject to wt ≥ 0, i = 1, . . . , N and
∑N

i wt = 1 where we add an additional short-sale

constraint. The portfolio is re-balanced every month.

While we write the above equation in terms of generic estimators, we consider a rich class

of models for expected returns, and associated model uncertainty measures while adopting a

standard approach for risk. To streamline the analysis, we focus on uncertainty estimators
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calculated from (a) only using the group of linear machine learning models, (b) only using

the group of nonlinear machine learning models, and (c) using both the linear and nonlinear

models. For each of three cases, we apply the same group of machine learning models with

the real data and then estimate µ̂t by averaging the return predictions.

In Tables 7 and 8, we compare the out-of-sample performance of the Markowitz with un-

certainty portfolio (“UNC”) with two benchmark portfolios: the standard Markowitz mean-

variance (“MV”) portfolio and the equally weighted (“EW”) portfolio. The out-of-sample

tests use the utility specification appearing in equation (5), hence the investor cares about

both risk and uncertainty when (s)he optimizes portfolio weights. All portfolio strategies are

based on the same out-of-sample inputs: (a) asset returns rt+1, (b) conditional covariance

matrices Σt and (c) uncertainty matrices Λt, while the optimal weights of course are different.

Panel A reports the ratio of average out-of-sample utility with the composite uncertainty

estimator (“Composite UNC”) computed as in equation (10), using the entire set of machine

learning models. In Table 7, the Composite UNC portfolio has a higher average utility than

the MV portfolio under all relative risk aversion (γ) and uncertainty aversion parameter (δ)

pairs, except the first column. This is because when δ = 0, the investor is indifferent to the

Knightian uncertainty so the Composite UNC is equivalent to the MV. In Panel A of Table 8

we present the ratio of average utility between the Composite UNC and the EW portfolios.

It has been well documented that the EW portfolio often outperforms more complicated

rules, especially for cases involving a large dimension of assets (see DeMiguel, Garlappi, and

Uppal (2009)). With our uncertainty measure, the Composite UNC portfolio beats the EW

portfolio in terms of the average out-of-sample utility, except when γ = 2 and δ < 2.

The gains from internalizing uncertainty in the portfolio optimization are both econom-

ically meaningful and statistically significant. For example, the average utility of the Com-

posite UNC portfolio is about 63% higher than of the MV portfolio and 38% higher than of

the EW portfolio when γ = 4 and δ = 4. For investors who are less uncertain averse (γ = 4

and δ = 2) for example, they still benefit from the Composite UNC portfolio by having 27%
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higher utility than the MV portfolio and 21% higher utility than the EW portfolio. The

Diebold and Mariano (2002) statistic is used in Tables 7 and 8 to assess whether the utility

differences are statistically significant. The null hypothesis - meaning equal average utility

- is rejected at the 5% level for all specifications in Panel A of Table 7. We also reject the

null hypothesis at 10% level for most values of γ and δ in Panel A of Table 8.

Next we turn our attention to Figure 4 where in the first panel we find a heat map for

the equity, bond and gold weight differences between the “UNC” and the “MV” portfolio

for the case where we set both γ and δ equal to four. The two other panels show results

already discussed but repeated here for the purpose of facilitating the presentation and

interpretation. The second panel displays the the Frobenius norm of ‖Λ̂B
M,t‖F as well as the

part that is orthogonal to the norm of Σ̂t. The third panel displays the off-diagonal elements

of ‖Λ̂B
M,t‖F appearing in each of the three subplots of Figure 2 into a single plot. The color

code in the first panel is such that hot (red) means tilting toward a particular asset when

comparing the “MV” versus “UNC” allocations. Looking across the three panels we see

that bonds appear as hot when uncertainty spikes, and in particular when uncertainty not

correlated with risk spikes. The shift occurs between equities and bonds, as the top equity

panel turns cold (blue). There is also some movement into gold, but this looks more as short-

lived bursts. From the third panel we learn, as noted earlier, that uncertainty comovements

between stocks and bonds tend to tapper off toward zero at the end of the sample. This

translates into the heatmap showing less frequent occurrences of shifts out of the equity

markets into fixed income.

After documenting the superior performance of Markowitz with uncertainty portfolio,

we now turn to addressing the following question: is there any difference in the portfolio

performance when linear or nonlinear uncertainty estimators are used? In other words,

the exercise needs to be repeated by substituting the uncertainty estimator with the one

calculated using only the linear models or only the nonlinear models. We conduct this

analysis for two reasons. First, given the substantial difference in the magnitude of linear
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uncertainty estimator and nonlinear uncertainty estimator, we wish to study whether our

result is driven by a particular group of machine learning models. Second, investors may have

a preference over one group of machine learning models over the other. For example, some

investors may believe in regularized regressions while others may think that the nonlinear

regression trees and deep learning methods are more suitable.

As seen in Panels B of Tables 7 and 8, using the linear uncertainty estimator does not

affect our main results in any meaningful way. The “Linear UNC” portfolio has higher aver-

age out-of-sample utility under all (γ, δ) pairs, compared to the MV and the EW portfolio.

In Panel C Tables 7 and 8, we find that the “Nonlinear UNC” portfolio outperforms the MV

portfolio under all of (γ, δ) pairs and beats EW portfolio when the investor has a high degree

of risk aversion (γ > 6). Therefore, the results in Panel A continue to hold in most cases

when we restrict our model choices to one particular group of machine learning models.

In Figure 5 we plot the ratio of average out-of-sample utility between the UNC portfolio

and the benchmarks over a grid of (γ, δ). In the top panel, the utility ratio between the

“Composite UNC” portfolio and benchmarks is always greater than 1, indicating that the

“Composite UNC” portfolio has a better risk and uncertainty adjusted performance. From

the top left panel, we find that the utility ratio between the “Composite UNC” portfolio and

the MV portfolio monotonically increases when the investor is more uncertainty-averse. On

the other hand, when the investor is more risk-averse, the utility ratio between the “Compos-

ite UNC” portfolio and the MV portfolio decreases because the risk hedging incentives start

to dominate in the portfolio optimization. In the top right panel, the utility ratio between

the “Composite UNC” portfolio and the EW portfolio rises both when the δ and γ is higher.

The result suggests that both the risk-return and the uncertainty-return trade-off channel

bring benefits for the investor in terms of relative utility. For a suffciently high risk and

uncertainty averse investor, the average utility of the “Composite UNC” portfolio can be

almost 5 times higher than the EW portfolio. In the middle and bottom panel, we plot the

utility ratio between the “Linear UNC” and “Nonlinear UNC” portfolio and the benchmark
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portfolios over a grid of (γ,δ), and the result is consistent with the findings with the compos-

ite uncertainty estimator. The only notable difference is that the utility ratio between the

“Nonlinear UNC” portfolio and the “MV” portfolio first increases and then decreases when

the investor is more risk-averse.

Finally, although our main result is robust to both different group of machine learning

models, we do uncover differences across the different types of uncertainty estimators re-

garding the portfolio performance. In Table 8 we find that the “Linear UNC” performs the

best, the “Nonlinear UNC” has the worst performance, and the “Composite UNC” is, not

surprisingly, in between. In our case, the inclusion of nonlinear machine learning models

actually lower the average out-of-sample utility of the investor.

In Figure 6, the cumulative return of three portfolios rules: the Markowitz with uncer-

tainty (UNC) portfolio, the Markowitz mean variance (MV) portfolio and the Equal Weight

(EW) portfolio are plotted. We set both the relative risk aversion γ and uncertain aversion δ

to four, but our main conclusions hold for a relatively wide range of parameters. By investing

$100 in the initial period, Figure 6 shows the wealth accumulation of each portfolio from

January 1996 to December 2019.

Compared with EW portfolio, the introduction of risk and uncertainty management

alters the picture dramatically. The MV portfolio has a higher cumulative return in the

sample period, compared to the EW portfolio. In addition, an investor can further benefit

from accounting for uncertainty in portfolio allocation: the terminal market value of UNC

portfolio is about 33% higher than that of MV portfolio. The wealth growth of UNC portfolio

is similar to the MV portfolio in general. The UNC portfolio is more conservative before

2008 because of the relatively high and volatile uncertainty but drops less during the financial

crisis, compared to the MV portfolio.
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5.5 Portfolio Weights and Uncertainty Shock

How do portfolio weights respond to uncertainty versus risk shocks? To uncover the relation-

ship between uncertainty (risk) shocks and portfolio weights, we estimate a structural VAR

model with four variables: the natural log of equity weight in the UNC portfolio, the natural

log of the bond weight in the same portfolio, the Frobenius norm of composite uncertainty

matrix, and the Frobenius norm of the DCC(1,1) covariance matrix. We also experimented

with other specifications but use this particular case as the most illustrative and at the same

time representative of our findings.7 The structural VAR takes the form:

Y i
t =

L∑
s=1

Bi
sY

i
t−s + Cεit (11)

for i = 1 and 2 corresponding to different orders of the entries to the vectors, namely: Y 1
t =

(‖Σ̂t‖F , ‖Λt‖F , ln(wbondt ), ln(wequityt ))> or Y 2
t = (‖Λt‖F , ‖Σ̂t‖F , ln(wbondt ), ln(wequityt ))> and

with the following structural matrix C :

C =



1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1


(12)

In the VAR with Y 1
t , we isolate the uncertainty shock that is orthogonal to the risk since

in the Cholesky-type C matrix we have a shock to ‖Λt‖F placed second to the risk shock.

When we flip the order of the first two variables, i.e. we use Y 2
t in the VAR, we obtain

the reverse which is a risk shock that is orthogonal to uncertainty. We estimate both VAR

models with one lag (selected according to BIC) using the optimal composite UNC portfolio

weights when the relative risk aversion parameter γ and the uncertainty aversion parameter

7We sum up the portfolio weight of S&P500 ETF and five Fama-French industry portfolios to get the
total weight of equity.
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δ are both equal to four (our findings are robust to various parameter specifications).

We compute impulse response functions (IRF) for both VAR specifications and only look

at two cases which are of direct interest to us: (a) from the VAR with Y 1
t we examine

the IRF of a shock to uncertainty orthogonal to risk and its impact on equity and bond

holdings, and (b) from the VAR with Y 2
t we examine the IRF for a shock to risk orthogonal

to uncertainty and its impact on equity and bond holdings. In Figure 7 we report the IRFs

as well as 90% confidence intervals. Starting with the IRF for a shock to uncertainty we see

that equity initially increase but then decrease and remain negative for 12 lags/months. In

contrast, the same shock has a immediate positive impact on bond holdings. These findings

are consistent with the heat map of Figure 4. The IRF to a risk shock yields a decline

in equity holdings which tapers off after 12 lags/months and a short-lived negative impact

on bonds. The scales in both plots indicate that the response to risk shocks are larger in

magnitude than the responses to uncertainty shocks. Using the confidence intervals, we

clearly see a significant difference between uncertainty versus risk shocks on bond holdings.

For equity holdings the distinction is not so clear.

6 Conclusion

We presented a general methodology for dealing with ambiguity guided by model selection

procedures popularized by the machine learning literature and demonstrated its use in the

context of optimal portfolio allocation with risk and uncertainty. We build a set of sta-

tistical perturbations of a model via bootstrap samples to characterize model uncertainty

associated with variable selection as well as parameter estimation in a high-dimensional date

environment. In the specific application of portfolio selection this means we are interested in

expected return uncertainty. Our empirical study involves an allocation problem involving

eight assets and we find model perturbations featuring a selection of commonly used predic-

tors in the finance literature. Moreover, we find that the comovements of the different pairs
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of asset expected return uncertainties behave very differently from their corresponding joint

risk profiles. Interestingly we find that equity market index versus government bonds un-

certainty trends towards zero during our sample, except for upticks during recessions, which

means stock and bond uncertainty appear to become more disentangled. Broadly speaking,

across all eight assets, our findings suggest that the time series pattern of uncertainty tends

to lead that of risk.

We compare the out-of-sample performance of the Markowitz with uncertainty portfolio

with the standard Markowitz mean-variance portfolio. Overall the portfolios taking into

account uncertainty have a higher average out-of-sample utility. The gains from internalizing

uncertainty in the portfolio optimization are both economically meaningful and statistically

significant. Comparing the allocations we find that the ambiguity-sensitive investor moves

out of equities into fixed income and to a certain degree gold when uncertainty spikes. In

terms of terminal wealth we find that over our sample period a $100 initial investment has

a 33% higher terminal wealth for a robust investor compared to the MV portfolio. Finally,

we also construct a VAR model to study the impact of shocks to risk and uncertainty onto

portfolio weights. A shock to uncertainty results in reduced equity allocations and a positive

impact on bond holdings. Responses to risk shocks, however, are in comparison larger in

magnitude than the responses to uncertainty shocks.

We limited our attention to eight representative assets. Our methodology can easily be

adopted to handle a larger set of assets, or for that matter any prediction problem beyond

that of expected returns. The computational burdens increase as well and progress on

numerical implementations is certainly an area where more research is needed.
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Table 1: Out-Of-Sample Model MSE with Real Data

S&P 500 LT Bond Gold Cnsmr Manuf HiTec Hlth Other
LASSO 18.22 1.96 11.88 15.92 18.93 40.49 17.93 33.70
RIDGE 19.49 1.97 13.60 15.68 18.98 41.39 18.04 28.69
Elastic Net 19.50 1.94 11.93 15.85 19.46 41.34 18.23 28.91
MCP 18.22 1.96 11.88 15.93 18.93 40.49 17.93 33.46
SCAD 18.22 1.96 11.88 15.92 18.93 40.49 17.93 33.70
Random Forest 18.95 1.92 12.69 15.41 19.67 42.87 18.40 28.32
Gradient Boosting 19.08 2.04 12.54 15.79 19.74 42.50 18.58 28.24
Deep Learning 22.61 2.12 14.29 19.25 22.84 52.83 23.29 33.79
ML Model EW Average 18.74 1.92 12.03 15.69 19.08 41.85 18.05 30.12
OLS 108.62 19.37 50.51 103.67 207.83 149.75 161.55 139.86

Notes - The table reports the Out-Of-Sample (OOS) Mean Squared Error (MSE) of asset return
predictions for each asset and each machine learning model (including the equal weighted average
of all machine learning model predictions) and the ordinary least squares (OLS) model. The models
are trained with the real data. The sample period is between January 1996 and December 2019 for
the machine learning models and is between January 1998 and December 2019 for the OLS.

Table 2: Out-Of-Sample Model MSE with Bootstrap Data

S&P 500 LT Bond Gold Cnsmr Manuf HiTec Hlth Other
LASSO 36.36 4.27 17.85 31.70 34.49 78.44 39.71 55.39
RIDGE 34.20 3.81 18.64 28.34 31.58 74.50 34.91 50.50
Elastic Net 36.38 4.07 18.28 30.84 34.52 78.24 37.55 53.40
MCP 39.39 4.54 18.37 34.57 37.32 83.58 42.82 58.76
SCAD 44.28 4.80 19.50 39.41 42.24 95.45 49.05 62.78
Random Forest 19.89 1.98 13.15 15.98 20.57 44.71 19.24 29.04
Gradient Boosting 23.75 2.36 14.09 19.78 24.38 53.64 23.86 33.81
Deep Learning 33.81 3.25 18.13 28.44 31.56 73.33 34.84 48.33

Notes - The table reports the Out-Of-Sample (OOS) Mean Squared Error (MSE) of asset return
predictions for each asset and each machine learning model. The models are trained with the
bootstrap data and the numbers in the table are averaged across bootstrap repetitions. The sample
period is between January 1996 and December 2019.
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Table 3: Most Selected Regressors For Linear Machine Learning Models -
Real Data

S&P 500 Long Term Bond
1 Government Sponsored Enterprises EMV 0.275 Long Term Yield 0.717
2 Real Personal Consumption 0.250 Oil Price 0.700
3 Industrial Production 0.242 Regulation EPU 0.700
4 Dividend Price Ratio 0.242 Restaurants Hotels Industry Return 0.675
5 Stock Variance 0.242 Oil Industry Return 0.675
6 Robust Minus Weak Profitability Factor 0.242 Mines Industry Return 0.667
7 Conservative Minus Aggressive Factor 0.242 Momentum 0.517
8 Infectious Disease EMV 0.242 Market Portfolio Minus Risk-Rree Factor 0.500
9 Intellectual Property Matters EMV 0.242 Conservative Minus Aggressive Factor 0.475
10 Food Drug Policy EMV 0.242 Consumer Price Index 0.458

Consumer Goods Industry Manufacturing Industry
1 Government Sponsored Enterprises EMV 0.417 Government Sponsored Enterprises EMV 0.258
2 Real Personal Consumption 0.408 Real Personal Consumption 0.233
3 1 Year Treasury Minus Federal Funds Rate 0.408 Real Personal Income 0.208
4 Stock Variance 0.408 Housing Starts 0.208
5 Small Minus Big Factor 0.408 Consumer Price Index 0.208
6 Infectious Disease EMV 0.408 Earnings Price Ratio 0.208
7 Policy-related EPU 0.408 Dividend Payout Ratio 0.208
8 Dividend Yield 0.392 Stock Variance 0.208
9 Conservative Minus Aggressive Factor 0.392 Default Return Spread 0.208
10 Industrial Production 0.383 Trading Industry Return 0.208

High Technology Industry Healthcare Industry
1 Infectious Disease EMV 0.275 Term Spread 0.317
2 Stock Variance 0.258 Earnings Price Ratio 0.292
3 Industrial Production 0.250 Real Personal Consumption 0.283
4 Real Personal Consumption 0.250 M1 0.283
5 Dividend Yield 0.250 5 Year Treasury Minus Federal Funds Rate 0.283
6 Robust Minus Weak Profitability Factor 0.250 10 Year Treasury Minus Federal Funds Rate 0.283
7 Steel Industry Return 0.250 Stock Variance 0.283
8 Utilities Industry Return 0.250 Conservative Minus Aggressive Factor 0.283
9 Wholesale Industry Return 0.250 Momentum 0.283
10 Labor Markets EMV 0.250 Oil Price 0.283

Other Industry Gold
1 Oil Price 0.358 Mines Industry Return 1.000
2 Conservative Minus Aggressive Factor 0.350 Finance Industry Return 0.900
3 Earnings Price Ratio 0.342 Inflation EMV Indicator 0.900
4 Stock Variance 0.342 Dollar Index 0.867
5 Default Return Spread 0.342 Consumer Price Index 0.775
6 Exchange Rates EMV 0.342 Food Products Industry Return 0.700
7 Monetary Policy EPU 0.342 Labor Regulations EMV 0.608
8 Agricultural Policy EMV 0.333 Long Term Yield 0.600
9 Fiscal Policy EPU 0.325 Energy Environmental Regulation EMV 0.600
10 Dividend Payout Ratio 0.317 Retail Industry Return 0.575

Notes - The table summarizes the top 10 most selected covariates in the linear machine learning
models described in Section 3.1 for each of the 8 assets considered in the portfolio. The first
column of each asset reports the name of the covariates and second column reports the percentage
of time periods where the covariate is selected. Models are trained with the real data. The variable
description is in the online Appendix OA.1, OA.2, OA.3, and OA.4.
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Table 4. Most Selected Regressors For Linear Machine Learning Models - Bootstrap Data

S&P 500 Long Term Bond
1 Real Personal Consumption 0.882 Long Term Yield 0.916
2 Infectious Disease EMV 0.821 Utility Industry Return 0.914
3 Small Minus Big Factor 0.798 Government Sponsored Enterprises EMV 0.881
4 Agricultural Policy EMV 0.785 Mines Industry Return 0.870
5 Default Return Spread 0.776 Oil Orice 0.860
6 Oil Price 0.763 Trans Infras Util EMV 0.851
7 Industrial Production 0.759 Industrial Production 0.838
8 Conservative Minus Aggressive Factor 0.757 M2 0.836
9 Steel Industry Return 0.757 Housing Land Management EMV 0.830
10 Earnings Price Ratio 0.749 Agricultural Policy EMV 0.819

Consumer Goods Industry Manufacturing Industry
1 Real Personal Consumption 0.846 Real Personal Consumption 0.828
2 Default Return Spread 0.824 Default Return Spread 0.794
3 Conservative Minus Aggressive Factor 0.813 Agricultural Policy EMV 0.739
4 Agricultural Policy EMV 0.812 Intellectual Property Matters EMV 0.731
5 Small Minus Big Factor 0.803 Infectious Disease EMV 0.719
6 Infectious Disease EMV 0.790 Government Sponsored Enterprises EMV 0.713
7 Food Drug Policy EMV 0.784 Oil Price 0.713
8 Steel Industry Return 0.780 Momentum 0.712
9 Oil Price 0.776 Dollar Index 0.711
10 Earnings Price Ratio 0.773 Stock Variance 0.705

High Technology Industry Healthcare Industry
1 Infectious Disease EMV 0.820 Agricultural Policy EMV 0.916
2 Real Personal Consumption 0.779 Dollar Index 0.872
3 Robust Minus Weak Factor 0.775 Real Personal Consumption 0.860
4 Intellectual Property Matters EMV 0.762 Conservative Minus Aggressive Factor 0.826
5 Energy Environmental Regulation EMV 0.751 Earnings Price Ratio 0.820
6 Labor Regulation EMV 0.750 Infectious Disease EMV 0.811
7 Agricultural Policy EMV 0.746 Tobacco Products Industry Return 0.810
8 Oil Price 0.737 Momentum 0.782
9 Stock Variance 0.735 Stock Variance 0.778
10 Industrial Production 0.735 Food Drug Policy EMV 0.777

Other Industry Gold
1 Conservative Minus Aggressive Factor 0.912 Mines Industry Return 0.999
2 Real Personal Consumption 0.858 Finance Industry Return 0.909
3 Oil Price 0.818 Inflation EMV 0.907
4 Default Return Spread 0.818 Dollar Index 0.880
5 Agricultural Policy EMV 0.808 Trans Infras Util EMV 0.823
6 Dollar Index 0.802 Energy Environmental Regulation EMV 0.810
7 Manuf And Trade Industry Sales 0.797 CPI 0.805
8 Infectious Disease EMV 0.796 Other Financial Indicator EMV 0.799
9 Small Minus Big Factor 0.792 Coal Industry Return 0.792
10 Intellectual Property Matters EMV 0.767 Agricultural Policy EMV 0.774

Notes - The table summarizes the top 10 most selected covariates in the linear machine learning
models described in Section 3.1 for each of the 8 assets considered in the portfolio. The first
column of each asset reports the name of the covariates and second column reports the percentage
of bootstrap repetitions where the covariate is selected. The variable descriptions appear in the
Online Appendix Tables OA.1 through OA.4.
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Table 5: Knightian Uncertainty and EPU, JLN, VIX, Volatility and IP

AR(1) EPU JLN V IX ‖Σ̂‖F IP

Panel A: ‖Λ̂B
M,t‖F

Slope 0.63∗∗∗ 4.47∗ 0.11∗∗∗ 4.78∗∗∗ 0.51∗∗∗ −0.07∗

(0.05) (2.53) (0.01) (0.47) (0.04) (0.04)

R2 0.40 0.01 0.25 0.26 0.34 0.08

Panel B: ‖Λ̂B
ig ,t‖F with ig the group of linearized regressions

Slope 0.61∗∗∗ 2.58 0.07∗∗∗ 3.09∗∗∗ 0.34∗∗∗ −0.04∗∗

(0.05) (1.73) (0.01) (0.33) (0.03) (0.02)

R2 0.37 0.01 0.23 0.24 0.32 0.06

Panel C: ‖Λ̂B
ig ,t‖F with ig the group of non-linear models

Slope 0.74∗∗∗ 18.90∗∗∗ 0.29∗∗∗ 13.32∗∗∗ 1.29∗∗∗ −0.22∗∗

(0.04) (6.31) (0.03) (1.14) (0.11) (0.11)

R2 0.55 0.03 0.26 0.32 0.35 0.12

Notes - The table reports the statistics from regressing the Frobenius norm of uncertainty measures
Λ̂BM,t and Λ̂Big ,t for ig respectively linear and non-linear models, projected on the Economic Policy

Uncertainty Index (EPU) by Baker, Bloom, and Davis (2016), the financial uncertainty Index (JLN)
by Jurado, Ludvigson, and Ng (2015) and the CBOE Volatility Index (VIX), (d) the Frobenius

norm of the DCC(1,1) covariance matrix Σ̂t, and (e) industrial production growth (IP).
The uncertainty measures are multiplied by one hundred, except for the autoregression and the
regression involving ‖Σ̂‖F . Standard errors are reported in brackets, all data is monthly frequency.
One, two, and three stars denote statistical significance at the 1%, 5%, and 10% level respectively.

Table 6: Summary Statistics of Uncertainty

Mean Volatility Corr(-1)
Pre-Crisis 78.72 64.36 0.49
Crisis 182.68 186.27 0.68
Post-Crisis 44.56 56.85 0.43
All 70.63 82.43 0.63

Notes - The table reports the mean, volatility and the lag one autocorrelation of the Frobenius norm
of uncertainty measures ‖Λ̂BM‖F in the entire sample and three subsamples: pre-crisis (January 1996
to November 2007), crisis (December 2007 to June 2009) and post-crisis (July 2009 to December
2019). The uncertainty measures are scaled by ten thousand.
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Table 7: Out-of-Sample Utility: UNC Portfolio versus MV Portfolio

δ = 0 δ = 2 δ = 4 δ = 6 δ = 8

Panel A: UNC with Λ̂B
M,t / MV

γ = 2 1.00 1.30∗∗ 1.80∗∗∗ 2.81∗∗∗ 6.84∗∗∗

γ = 4 1.00 1.27∗∗ 1.63∗∗∗ 2.26∗∗∗ 3.67∗∗∗

γ = 6 1.00 1.18∗∗ 1.40∗∗∗ 1.70∗∗∗ 2.20∗∗∗

γ = 8 1.00 1.15∗∗∗ 1.29∗∗∗ 1.48∗∗∗ 1.77∗∗∗

γ = 10 1.00 1.11∗∗∗ 1.21∗∗∗ 1.35∗∗∗ 1.53∗∗∗

Panel B: UNC with Λ̂B
ig ,t, ig linear models / MV

γ = 2 1.00 1.23∗∗∗ 1.46∗∗∗ 1.99∗∗∗ 3.52∗∗∗

γ = 4 1.00 1.12∗∗∗ 1.33∗∗∗ 1.73∗∗∗ 2.61∗∗∗

γ = 6 1.00 1.11∗∗∗ 1.29∗∗∗ 1.60∗∗∗ 2.19∗∗∗

γ = 8 1.00 1.08∗∗∗ 1.21∗∗∗ 1.41∗∗∗ 1.72∗∗∗

γ = 10 1.00 1.07∗∗∗ 1.18∗∗∗ 1.33∗∗∗ 1.54∗∗∗

Panel C: UNC with Λ̂B
ig ,t, ig nonlinear models / MV

γ = 2 1.00 1.01∗∗∗ 1.06∗∗∗ 1.14∗∗∗ 1.24∗∗∗

γ = 4 1.00 1.05∗∗∗ 1.18∗∗∗ 1.39∗∗∗ 1.66∗∗∗

γ = 6 1.00 1.14∗∗ 1.30∗∗∗ 1.50∗∗∗ 1.74∗∗∗

γ = 8 1.00 1.10∗∗ 1.20∗∗∗ 1.32∗∗∗ 1.45∗∗∗

γ = 10 1.00 1.06∗∗∗ 1.13∗∗∗ 1.21∗∗∗ 1.29∗∗∗

Notes - The table compares the average out-of-sample utility for an uncertainty/risk averse versus
risk averse portfolio under different relative risk aversion parameters γ and uncertainty aversion
parameters δ, where the investor uses different machine learning models and associated uncertainty
measures Λ̂BM,t and Λ̂Big ,t for ig respectively linear and nonlinear models. Out-of-sample returns

are at monthly frequency. One, two, and three stars denote statistical significance of Diebold and
Mariano (2002) test at the 1%, 5%, and 10% level respectively.
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Table 8: Out-of-Sample Utility: UNC Portfolio versus EW Portfolio

δ = 0 δ = 2 δ = 4 δ = 6 δ = 8

Panel A: UNC with Λ̂B
M,t / EW

γ = 2 0.91∗∗∗ 1.02∗∗∗ 1.14∗∗∗ 1.26∗∗ 1.44
γ = 4 1.04∗∗∗ 1.21∗∗ 1.38 1.58 1.85
γ = 6 1.29∗ 1.50 1.74 2.05∗∗ 2.53∗∗

γ = 8 1.59 1.91∗∗ 2.30∗∗∗ 2.93∗∗∗ 4.12∗∗∗

γ = 10 2.10∗∗ 2.65∗∗∗ 3.54∗∗∗ 5.42∗∗∗ 12.31∗∗∗

Panel B: UNC with Λ̂B
ig ,t, ig linear models / EW

γ = 2 1.30∗∗∗ 1.47∗∗∗ 1.55 1.72 2.04
γ = 4 1.44∗∗∗ 1.56 1.76 2.11 2.74∗

γ = 6 1.61 1.83 2.20∗∗ 2.89∗∗∗ 4.43∗∗∗

γ = 8 1.91 2.31∗∗∗ 3.06∗∗∗ 4.84∗∗∗ 12.98∗∗∗

γ = 10 2.43∗∗∗ 3.26∗∗∗ 5.34∗∗∗ 17.32∗∗∗ −

Panel C: UNC with Λ̂B
ig ,t, ig nonlinear models / EW

γ = 2 0.86∗∗∗ 0.82∗∗∗ 0.80∗∗∗ 0.80∗∗∗ 0.80∗∗∗

γ = 4 0.74∗∗∗ 0.73∗∗∗ 0.76∗∗∗ 0.81∗∗∗ 0.87∗∗∗

γ = 6 0.83∗∗∗ 0.90∗∗∗ 0.98∗∗∗ 1.05∗∗ 1.13
γ = 8 1.10 1.20 1.30 1.41 1.53
γ = 10 1.49 1.63 1.79∗ 2.00∗∗ 2.25∗∗∗

Notes - The table compares the average out-of-sample utility for an uncertainty/risk averse ver-
sus equally weighted portfolio under different relative risk aversion parameters γ and uncertainty
aversion parameters δ, where the investor uses different machine learning models and associated
uncertainty measures Λ̂BM,t and Λ̂Big ,t for ig respectively linear and nonlinear models. Out-of-sample

returns are at monthly frequency. One, two, and three stars denote statistical significance of Diebold
and Mariano (2002) test at the 1%, 5%, and 10% level respectively. In Panel B, the EW portfolio
has negative utility value when γ = 10 and δ = 8. We omit the negative utility ratio from the table
under this (γ, δ) specification.
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Fig. 1. Knightian Uncertainty versus Other Uncertainty Indices and Volatility. The top

and bottom panel of the figure plot the Frobenius norm ‖Λ̂BM,t‖F appearing in equation (10) against

(a) the Economic Policy Uncertainty Index (EPU), (b) the Jurado et al. financial uncertainty index
(JLN), (c) the CBOE Volatility Index (VIX), and finally (d) the Frobenius norm of the DCC(1,1)
covariance matrix ‖Σt‖F following the estimation procedure of Engle (2002). The series in the top

and bottom panel are normalized. The middle panel plots the Frobenius norm ‖Λ̂BM,t‖F appearing

in equation (10) against the Frobenius norm ‖Λ̂Big ,t‖F appearing in equation (9) for ig representing

the group of all regularized linear models or the group of all nonlinear machine learning models.
The sample period is from January 1996 to December 2019.
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Fig. 2. Off-diagonal elements of Λ̂BM,t versus Σt expressed as correlations. Equities refers
to the combination of all equity assets, namely S&P 500 and Fama-French five industry portfolios
specified in Online Appendix Table OA.4.
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Fig. 3. Overall Uncertainty versus Uncertainty Correlation Factor The figure plots the

Frobenius norm ‖Λ̂BM,t‖F appearing in equation (10) against the uncertainty correlation factor,

which is extracted from off-diagonal elements of Λ̂BM,t, following Bai and Ng (2002). Both series are
normalized. The sample period is from January 1996 to December 2019.
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Fig. 4. Portfolio Weight Difference Heatmap The figure plots the equity, bond and gold
weight difference between the “UNC” and the “MV” portfolio for the case where we set both γ
and δ equal to four. The three subplots share the same x-axis range. The sample period is from
January 1996 to December 2019.
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Fig. 5. Out-of-Sample Utility: UNC versus MV and EW The figure reports the ratio of
average out-of-sample utility between portfolio rules over a grid of γ and δ. “Composite UNC”,
“Linear UNC” and “Nonlinear UNC” refers to the Markowitz with uncertainty portfolio allocation
with composite, linear model and nonlinear model uncertainty estimator. MV refers to the mean-
variance portfolio, and EW refers to the equal-weight portfolio. γ refers to the relative risk aversion
parameter and δ refers to the uncertainty aversion parameter. The out-of-sample spans from
January 1996 to December 2019.
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Fig. 6. Portfolio Cumulative Return The figure shows the wealth accumulation process of
three portfolio rules between January 1996 and December 2019. Portfolios are rebalanced every
month. The yellow line represents the Markowitz with uncertainty (UNC) portfolio, the red line
represents the Markowitz mean-variance (MV) portfolio and the blue line represents the Equal
Weight (EW) portfolio. We set both the relative risk aversion γ and uncertain aversion δ to four.
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Fig. 7. IRF of portfolio weights to shocks The figure reports the impulse response of portfolio

weights to the uncertainty and risk shocks along with the 90% confidence intervals. We set both

the relative risk aversion γ and uncertain aversion δ to four. The structural VARs take the form

appearing in equation (11) with different orders of the entries to the vectors, namely: Y 1
t = (‖Σ̂t‖F ,

‖Λt‖F , ln(wbondt ), ln(wequityt ))> or Y 2
t = (‖Λt‖F , ‖Σ̂t‖F , ln(wbondt ), ln(wequityt ))>. We compute im-

pulse response functions (IRF) for both VAR specifications and only look at two cases which are

of direct interest to us: (a) from the VAR with Y 1
t we examine the IRF of a shock to uncertainty

orthogonal to risk and its impact on equity and bond holdings, and (b) from the VAR with Y 2
t we

examine the IRF for a shock to risk orthogonal to uncertainty and its impact on equity and bond

holdings.The number of lags in the VARs is set to one.
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OA.1 Variable Description and Construction

Table OA.1: Macroeconomic series

No. Description Source T-code

1 Chicago Fed National Activity Index ALFRED 1
2 All Employees, Total Nonfarm ALFRED 5
3 Industrial Production Index ALFRED 5
4 Real Personal Income ALFRED 5
5 Real Manufacturing and Trade Industries Sales ALFRED 5
6 Real Personal Consumption ALFRED 5
7 Housing Starts: Total New Privately Owned ALFRED 4
8 Consumer Price Index: All Item ALFRED 5
9 Producer Price Index for All Commodities ALFRED 5
10 M1 Money Stock ALFRED 5
11 M2 Money Stock ALFRED 5
12 Trade Weighted U.S. Dollar Index ALFRED 5
13 Effective Federal Funds Rate FRED 2
14 3-Month Treasury Minus FEDFUNDS FRED 1
15 6-Month Treasury Minus FEDFUNDS FRED 1
16 1-Year Treasury Minus FEDFUNDS FRED 1
17 5-Year Treasury Minus FEDFUNDS FRED 1
18 10-Year Treasury Minus FEDFUNDS FRED 1
19 Spot Crude Oil Price: West Texas Intermediate FRED 5

Note: The column T-code denotes the data transformation applied to a
time-series, which are: (1) Not transformed, (2) ∆xt, (3) ∆2xt, (4) log(xt),
(5) ∆log(xt).
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Table OA.2: Finance series

No. Description Source T-code

Fama-French Factors
1 Market Portfolio Minus Risk-Rree Bond Ken French Data Library 1
2 Small Minus Big Ken French Data Library 1
3 Value Minus Growth Ken French Data Library 1
4 Robust Minus Weak Operating Profitability Ken French Data Library 1
5 Conservative Minus Aggressive Investment Ken French Data Library 1
6 Risk Free Rate Ken French Data Library 1
7 Momentum Factor Ken French Data Library 1

Welch-Goyal Financial Predictors
8 Dividend Price Ratio Welch & Goyal (2008) 1
9 Dividend Yield Welch & Goyal (2008) 1
10 Earnings Price Ratio Welch & Goyal (2008) 1
11 Dividend Payout Ratio Welch & Goyal (2008) 1
12 Stock Market Variance Welch & Goyal (2008) 1
13 Book-to-Market Ratio Welch & Goyal (2008) 1
14 Net Equity Expansion Welch & Goyal (2008) 1
15 3 Month Treasury Bill Rate Welch & Goyal (2008) 1
16 Long Term Yield Welch & Goyal (2008) 1
17 Long Term Rate of Return Welch & Goyal (2008) 1
18 Term Spread Welch & Goyal (2008) 1
19 Default Yield Spread Welch & Goyal (2008) 1
20 Default Return Spread Welch & Goyal (2008) 1
21 CBOE S&P 100 Volatility Index FRED 1

Fama-French 49 Industries Portfolio Return
22 Agriculture Ken French Data Library 1
23 Food Products Ken French Data Library 1
24 Candy & Soda Ken French Data Library 1
25 Beer & Liquor Ken French Data Library 1
26 Tobacco Products Ken French Data Library 1
27 Recreation Ken French Data Library 1
28 Entertainment Ken French Data Library 1
29 Printing and Publishing Ken French Data Library 1
30 Consumer Goods Ken French Data Library 1
31 Apparel Ken French Data Library 1
32 Healthcare Ken French Data Library 1
33 Medical Equipment Industry Return Ken French Data Library 1
34 Pharmaceutical Products Ken French Data Library 1
35 Chemicals Ken French Data Library 1
36 Rubber and Plastic Products Ken French Data Library 1
37 Textiles Ken French Data Library 1
38 Construction Ken French Data Library 1
39 Construction Materials Ken French Data Library 1
40 Steel Ken French Data Library 1
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41 Fabricated Products Ken French Data Library 1
42 Machinery Ken French Data Library 1
43 Electrical Equipment Ken French Data Library 1
44 Automobiles and Trucks Ken French Data Library 1
45 Aircraft Ken French Data Library 1
46 Shipbuilding, Railroad Equipment Ken French Data Library 1
47 Defense Ken French Data Library 1
48 Precious Metals Ken French Data Library 1
49 Mines Ken French Data Library 1
50 Coal Ken French Data Library 1
51 Petroleum and Natural Gas Ken French Data Library 1
52 Utilities Ken French Data Library 1
53 Telecommunication Ken French Data Library 1
54 Personal Services Ken French Data Library 1
55 Business Services Ken French Data Library 1
56 Computer Hardware Ken French Data Library 1
57 Computer Software Ken French Data Library 1
58 Electronic Equipment Ken French Data Library 1
59 Measuring and Control Equipment Ken French Data Library 1
60 Business Supplies Ken French Data Library 1
61 Shipping Containers Ken French Data Library 1
62 Transportation Ken French Data Library 1
63 Wholesale Ken French Data Library 1
64 Retail Ken French Data Library 1
65 Restaurants, Hotels, Motels Ken French Data Library 1
66 Banking Ken French Data Library 1
67 Insurance Ken French Data Library 1
68 Real Estate Ken French Data Library 1
69 Trading Ken French Data Library 1
70 Other Industries Ken French Data Library 1
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Table OA.3: Textual Data series

No. Description Source T-code
Economic Policy Uncertainty (EPU) Index

1 News Coverage about Policy-related Economic Uncertainty Baker, Bloom & Davis (2016) 1
2 Tax Code Expiration Index Baker, Bloom & Davis (2016) 1
3 CPI Forecast Disagreement Baker, Bloom & Davis (2016) 1
4 Federal/State/Local Purchases Disagreement Baker, Bloom & Davis (2016) 1

U.S. Categorical EPU Data
5 Monetary Policy Baker, Bloom & Davis (2016) 1
6 Taxes Baker, Bloom & Davis (2016) 1
7 Fiscal Policy Baker, Bloom & Davis (2016) 1
8 Government Spending Baker, Bloom & Davis (2016) 1
9 Health Care Baker, Bloom & Davis (2016) 1
10 National Security Baker, Bloom & Davis (2016) 1
11 Entitlement Programs Baker, Bloom & Davis (2016) 1
12 Regulation Baker, Bloom & Davis (2016) 1
13 Financial Regulation Baker, Bloom & Davis (2016) 1
14 Trade Policy Baker, Bloom & Davis (2016) 1
15 Sovereign Debt, Currency Crises Baker, Bloom & Davis (2016) 1

Equity Market Volatility (EMV) Trackers
16 Policy-Related EMV Baker, Bloom, Davis & Kost (2019) 1
17 Infectious Disease EMV Baker, Bloom, Davis & Kost (2019) 1
18 Macroeconomic News and Outlook EMV Baker, Bloom, Davis & Kost (2019) 1
19 Macro – Broad Quantity Indicators EMV Baker, Bloom, Davis & Kost (2019) 1
20 Macro – Inflation EMV Indicator Baker, Bloom, Davis & Kost (2019) 1
21 Macro – Interest Rates EMV Baker, Bloom, Davis & Kost (2019) 1
22 Macro – Other Financial Indicators EMV Baker, Bloom, Davis & Kost (2019) 1
23 Macro – Labor Markets EMV Baker, Bloom, Davis & Kost (2019) 1
24 Macro – Real Estate Markets EMV Baker, Bloom, Davis & Kost (2019) 1
25 Macro – Trade EMV Baker, Bloom, Davis & Kost (2019) 1
26 Macro – Business Investment and Sentiment EMV Baker, Bloom, Davis & Kost (2019) 1
27 Macro – Consumer Spending and Sentiment EMV Baker, Bloom, Davis & Kost (2019) 1
28 Commodity Markets EMV Baker, Bloom, Davis & Kost (2019) 1
29 Financial Crises EMV Baker, Bloom, Davis & Kost (2019) 1
30 Exchange Rates EMV Baker, Bloom, Davis & Kost (2019) 1
31 Healthcare Matters EMV Baker, Bloom, Davis & Kost (2019) 1
32 Litigation Matters EMV Baker, Bloom, Davis & Kost (2019) 1
33 Competition Matters EMV Baker, Bloom, Davis & Kost (2019) 1
34 Labor Disputes EMV Baker, Bloom, Davis & Kost (2019) 1
35 Intellectual Property Matters EMV Baker, Bloom, Davis & Kost (2019) 1
36 Fiscal Policy EMV Baker, Bloom, Davis & Kost (2019) 1
37 Taxes EMV Baker, Bloom, Davis & Kost (2019) 1
38 Government Spending, Deficits, and Debt EMV Baker, Bloom, Davis & Kost (2019) 1
39 Entitlement and Welfare Programs EMV Baker, Bloom, Davis & Kost (2019) 1
40 Monetary Policy EMV Baker, Bloom, Davis & Kost (2019) 1
41 Regulation EMV Baker, Bloom, Davis & Kost (2019) 1
42 Financial Regulation EMV Baker, Bloom, Davis & Kost (2019) 1
43 Competition Policy EMV Baker, Bloom, Davis & Kost (2019) 1
44 Intellectual Property Policy EMV Baker, Bloom, Davis & Kost (2019) 1
45 Labor Regulations EMV Baker, Bloom, Davis & Kost (2019) 1
46 Immigration EMV Baker, Bloom, Davis & Kost (2019) 1
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47 Energy and Environmental Regulation EMV Baker, Bloom, Davis & Kost (2019) 1
48 Lawsuit and Tort Reform, Supreme Court Decisions EMV Baker, Bloom, Davis & Kost (2019) 1
49 Housing and Land Management EMV Baker, Bloom, Davis & Kost (2019) 1
50 Other Regulation EMV Baker, Bloom, Davis & Kost (2019) 1
51 National Security Policy EMV Baker, Bloom, Davis & Kost (2019) 1
52 Government-Sponsored Enterprises EMV Baker, Bloom, Davis & Kost (2019) 1
53 Trade Policy EMV Baker, Bloom, Davis & Kost (2019) 1
54 Healthcare Policy EMV Baker, Bloom, Davis & Kost (2019) 1
55 Food and Drug Policy EMV Baker, Bloom, Davis & Kost (2019) 1
56 Transportation Infrastructure Utilities EMV Baker, Bloom, Davis & Kost (2019) 1
57 Elections and Political Governance EMV Baker, Bloom, Davis & Kost (2019) 1
58 Agricultural Policy EMV Baker, Bloom, Davis & Kost (2019) 1
59 Petroleum Markets EMV Baker, Bloom, Davis & Kost (2019) 1
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Table OA.4: Portfolio Asset Return series

No. Description Source T-code

1 S&P 500 Index Return CRSP 1
2 Fama Bond Portfolio Return: 60month-120month CRSP 1
3 Gold Price: 3:00 P.M London FRED 5

Fama-French 5 Industries Portfolio Return
4 Consumer Goods Ken French Data Library 1
5 Manufacturing Ken French Data Library 1
6 High Technology Ken French Data Library 1
7 Healthcare Ken French Data Library 1
8 Other Industry Ken French Data Library 1

Note: The column T-code denotes the data transformation applied to a time-series, which
are: (1) Not transformed, (2) ∆xt, (3) ∆2xt, (4) log(xt), (5) ∆log(xt). SPDR S&P 500
ETF Trust starts from 1993 January, so we use SP500 Index return as a proxy for S&P500
ETF return. iShares 7-10 Year Treasury Bond ETF starts from 2002 July, so we use Fama
long-term bond portfolio return as a proxy for long-term treasury bond ETF return. SPDR
Gold Shares ETF starts from 2004 November, so we use the gold commodity return as a
proxy for the gold ETF return.
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OA.2 Machine Learning Models and Tuning Parame-

ter

Table OA.5: Machine Learning Models and Hyperparameters

Model Name Hyperparameters

Linear Models:
LASSO (Tibshirani (1996)) L1 penalty λ
RIDGE (Hoerl and Kennard (1970)) L2 penalty λ
Elastic Net (Zou and Hastie (2005)) penalty λ, and α
SCAD (Fan and Li (2001)) penalty λ, and α
MCP (Zhang (2010)) penalty λ, and α

Nonlinear Models:
Random Forest (Breiman (2001)) depth, max# of features each split
Gradient Boosted Trees (Friedman (2001)) depth, learning rate, #Trees=500
Deep Learning (Goodfellow, Bengio, and Courville (2016)) L1 penalty λ

#hidden Layers=1, #neurons=4
activation function: ReLU
ensemble=10
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Fig. OA.1. Alternative Knightian Uncertainty versus other Uncertainty Index and

Volatility The top and bottom panel of the figure plot the Frobenius norm ‖Λ̂BM,t‖F appearing

in equation (10) against (a) the Economic Policy Uncertainty Index (EPU), (b) the Jurado et
al. financial uncertainty index (JLN), (c) the CBOE Volatility Index (VIX), and finally (d) the
Frobenius norm of the DCC(1,1) covariance matrix ‖Σt‖F following the estimation procedure of
Engle (2002). The series in the top and bottom panel are normalized. The middle panel plots the

Frobenius norm ‖Λ̂BM,t‖F appearing in equation (10) against the Frobenius norm ‖Λ̂Big ,t‖F appearing

in equation (9) for ig representing the group of all regularized linear models or the group of all
nonlinear machine learning models. The sample period is from January 1996 to December 2019.
The alternative uncertainty estimator is computed via equation OA.1.
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OA.3 Alternative Uncertainty Measure: Properties and

Portfolio Performance

In the main text of the paper, we calculate the bootstrap-based composite uncertainty estimator by treating
all machine learning models symmetrically. The expected return vector is also estimated by averaging the
model return forecasts. However, given that the number of linear machine learning models we consider is
larger than the number of nonlinear models, the expected return and conditional uncertainty estimate may
be skewed towards the linear model predictions.

In this section, we show that our main findings continue to hold when the group of linear models and the
group of nonlinear models contribute equally to the expected return and composite uncertainty estimates.
Specifically, we first compute Λ̂B

L,t following equation 19 only using the group of linear machine learning

models, and Λ̂B
NL,t only using the group of nonlinear models, and then calculate the alternative composite

uncertainty estimator via

Λ̂B
L,t =

1

2
Λ̂B
L,t +

1

2
Λ̂B
NL,t (OA.1)

To be consistent, we compute the expected return µ̂L,t by first averaging the linear model predictions on the
actual data and µ̂NL,t by averaging the nonlinear model predictions on the actual data, and then estimate
the alternative expected return following

µ̂t =
1

2
µ̂L,t +

1

2
µ̂NL,t (OA.2)

The time series plot of the alternative composite uncertainty estimator versus other uncertainty indices
and volatility is reported in Figure OA.1. The out-of-sample utility ratio between the Markowitz with
uncertainty portfolio and the “MV” and “EW” portfolio is presented in Tables OA.6 and OA.7. Note that
although the linear and nonlinear uncertainty estimator is computed in the same way as in the main text,
the utility ratio between the “Linear UNC” and “Non-linear UNC” portfolio and the benchmark portfolios
is not identical to the results in Tables 7 and 8, because the portfolio optimization involves a new expected
return estimator.
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Table OA.6. Out-of-Sample Utility: UNC Portfolio versus MV Portfolio, Alternative Un-
certainty and Expected Return Estimator

δ = 0 δ = 2 δ = 4 δ = 6 δ = 8

Panel A: UNC with Λ̂A
M,t / MV

γ = 2 1.00 1.23∗∗∗ 1.68∗∗∗ 2.68∗∗∗ 5.97∗∗∗

γ = 4 1.00 1.23∗∗∗ 1.60∗∗∗ 2.24∗∗∗ 3.53∗∗∗

γ = 6 1.00 1.16∗∗∗ 1.40∗∗∗ 1.71∗∗∗ 2.19∗∗∗

γ = 8 1.00 1.13∗∗∗ 1.30∗∗∗ 1.50∗∗∗ 1.77∗∗∗

γ = 10 1.00 1.12∗∗ 1.25∗∗∗ 1.40∗∗∗ 1.60∗∗∗

Panel B: UNC with Λ̂A
ig ,t, ig linear models / MV

γ = 2 1.00 1.23∗∗∗ 1.46∗∗∗ 1.99∗∗∗ 3.52∗∗∗

γ = 4 1.00 1.12∗∗∗ 1.33∗∗∗ 1.73∗∗∗ 2.61∗∗∗

γ = 6 1.00 1.11∗∗∗ 1.29∗∗∗ 1.60∗∗∗ 2.19∗∗∗

γ = 8 1.00 1.08∗∗∗ 1.21∗∗∗ 1.41∗∗∗ 1.72∗∗∗

γ = 10 1.00 1.07∗∗∗ 1.18∗∗∗ 1.33∗∗∗ 1.54∗∗∗

Panel C: UNC with Λ̂A
ig ,t, ig nonlinear models / MV

γ = 2 1.00 1.01∗∗∗ 1.06∗∗∗ 1.14∗∗∗ 1.24∗∗∗

γ = 4 1.00 1.05∗∗∗ 1.18∗∗∗ 1.39∗∗∗ 1.66∗∗∗

γ = 6 1.00 1.14∗∗ 1.30∗∗∗ 1.50∗∗∗ 1.74∗∗∗

γ = 8 1.00 1.10∗∗ 1.20∗∗∗ 1.32∗∗∗ 1.45∗∗∗

γ = 10 1.00 1.06∗∗∗ 1.13∗∗∗ 1.21∗∗∗ 1.29∗∗∗

Notes - The table compares the average out-of-sample utility for an uncertainty/risk averse versus
risk averse portfolio under different relative risk aversion parameters γ and uncertainty aversion
parameters δ, where the investor uses different machine learning models and associated uncertainty
measures Λ̂BM,t and Λ̂Big ,t for ig respectively linear and nonlinear models. The alternative uncertainty

estimator is computed via equation OA.1 and the alternative expected return estimator is computed
via equation OA.2. Out-of-sample returns are at monthly frequency. One, two, and three stars
denote statistical significance of Diebold and Mariano (2002) test at the 1%, 5%, and 10% level
respectively.
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Table OA.7. Out-of-Sample Utility: UNC Portfolio versus EW Portfolio, Alternative Un-
certainty and Expected Return Estimator

δ = 0 δ = 2 δ = 4 δ = 6 δ = 8

Panel A: UNC with Λ̂A
M,t / MV

γ = 2 0.82∗∗∗ 0.87∗∗∗ 0.96∗∗∗ 1.10∗∗∗ 1.25∗∗

γ = 4 0.94∗∗∗ 1.06∗∗∗ 1.21∗ 1.39 1.60
γ = 6 1.19∗∗ 1.34 1.56 1.80 2.14∗∗

γ = 8 1.48 1.73 2.07∗∗ 2.53∗∗∗ 3.27∗∗∗

γ = 10 1.93∗ 2.39∗∗∗ 3.08∗∗∗ 4.29∗∗∗ 7.21∗∗∗

Panel B: UNC with Λ̂A
ig ,t, ig linear models / EW

γ = 2 1.30∗∗∗ 1.47∗∗∗ 1.55 1.72 2.04
γ = 4 1.44∗∗∗ 1.56 1.76 2.11 2.74∗

γ = 6 1.61 1.83 2.20∗∗ 2.89∗∗∗ 4.43∗∗∗

γ = 8 1.91 2.31∗∗∗ 3.06∗∗∗ 4.84∗∗∗ 12.98∗∗∗

γ = 10 2.43∗∗∗ 3.26∗∗∗ 5.34∗∗∗ 17.32∗∗∗ −

Panel C: UNC with Λ̂A
ig ,t, ig nonlinear models / EW

γ = 2 0.86∗∗∗ 0.82∗∗∗ 0.80∗∗∗ 0.80∗∗∗ 0.80∗∗∗

γ = 4 0.74∗∗∗ 0.73∗∗∗ 0.76∗∗∗ 0.81∗∗∗ 0.87∗∗∗

γ = 6 0.83∗∗∗ 0.90∗∗∗ 0.98∗∗∗ 1.05∗∗ 1.13
γ = 8 1.10 1.20 1.30 1.41 1.53
γ = 10 1.49 1.63 1.79∗ 2.00∗∗ 2.25∗∗∗

Notes - The table compares the average out-of-sample utility for an uncertainty/risk averse ver-
sus equally weighted portfolio under different relative risk aversion parameters γ and uncertainty
aversion parameters δ, where the investor uses different machine learning models and associated
uncertainty measures Λ̂BM,t and Λ̂Big ,t for ig respectively linear and nonlinear models. The alternative

uncertainty estimator is computed via equation OA.1 and the alternative expected return estimator
is computed via equation OA.2. Out-of-sample returns are at monthly frequency. One, two, and
three stars denote statistical significance of Diebold and Mariano (2002) test at the 1%, 5%, and
10% level respectively. In Panel B, the EW portfolio has negative utility value when γ = 10 and
δ = 8. We omit the negative utility ratio from the table under this (γ, δ) specification.
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OA.4 Uncertainty Estimator using only Ordinary Least

Squares Model
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Fig. OA.2. Machine Learning Model Uncertainty Estimator versus OLS Model Uncer-

tainty Estimator The figure plots the Frobenius norm ‖Λ̂BM,t‖F appearing in equation (10) and

‖Λ̂Big ,t‖F appearing in equation (9) for ig representing the group of all regularized linear predictions

or the group of all nonlinear machine learning predictions, against the Frobenius norm ‖Λ̂Bim,t‖F
appearing in equation (8) for im representing the ordinary least squares model. The series in the
top are normalized from 1998 and the series in the bottom are normalized from 2005.
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