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1 Introduction

Price discrimination is ubiquitous in offline markets (Varian, 1989). This is not surprising

since charging different prices for homogeneous goods to different consumers according to

their willingness-to-pay enables companies to increase profits (Tirole, 1988).

Surprisingly, however, so far price discrimination has not been implemented on a large scale in

the monetization of digital products, where ”examples remain fairly limited” (Council of Eco-

nomic Advisors, 2015). This is surprising because price discrimination could be implemented at

comparably lower costs for digital products. By the nature of the underlying technology, com-

panies can easily collect large amounts of detailed data about consumer characteristics and

behavior (Goldfarb and Tucker, 2019). The resulting (big) data could be used to determine

personalized prices for consumers with different characteristics and search or consumption

histories, that is, engage in price discrimination, to increase a company’s profit. That being

said, firms have been reported to fear consumer backlash and negative press coverage when

engaging in price discrimination (Garbarino and Maxwell, 2010; Li and Jain, 2016; DellaVigna

and Gentzkow, 2019). An example is Amazon’s early attempt to price discriminate buyers of

DVDs based on their individual purchase history, which met dramatic resistance and negative

publicity (Rosencrance, 2019). Similarly, the Wall Street Journal revealed in 2012 that Sta-

ples was charging consumers online different prices based on their location. However, there is

a growing body of evidence to suggest that, in many important industries, because of path-

dependence, imperfect information, learning, or conflicting incentives, sometimes for-profit

firms do not maximize profit (Cho and Rust, 2010; DellaVigna and Gentzkow, 2019; Fioretti,

2020; Hortaçsu et al., 2021; Huang et al., 2020; Orbach and Einav, 2007) and, indeed, Dube

and Misra (2019) estimate that, in the context of a digital recruiting firm, both profit and

consumer surplus would often increase with personalized pricing.

In this paper, we contribute to this debate by investigating the welfare consequences of price

discrimination for a mobile gaming app. Gaming accounts for over three quarters of total

app revenue in the major app stores, including Apple’s App Store and Google’s Playstore

(TechCrunch, June 11, 2019). Mobile games attracted over 150 million users worldwide and

generated almost US$100 billion in revenue in 2020 (Statista, 2021). While game developers

in this market collect around 90% of their revenues through paying customers on the basis

of freemium models1 (advertising accounts only for a small share of revenue), the efficiency

of alternative pricing strategies in this industry has not yet received much scholarly attention.

In our study, we focus on the popular category of “casual games” (games characterized by

a sequence of levels that can be solved in a short amount of time) and analyze data from

1Freemium refers to a hybrid pricing model combining free and paid features of a product—basic features
of a product can be used for free perpetually while more advanced features or more intensive use requires the
payment of a fee. Freemium is particularly common for mobile apps, where consumers strongly favor apps that
are free and monetized through in-app purchases rather than advertisement (Ghose and Han, 2014a).
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one of the most popular match-3 games of all times. The data consist of the full in-game

behavior and purchase decisions of about 300,000 players around the world for a two-week

period between the end of October and early November 2013.

In the game, players solve puzzles through levels, and while the first 40 levels are free, from

level 40 players must unlock a “pay-gate” every 20 levels to proceed (to the premium levels).

Players can unlock any of these pay-gates by purchasing a “key.” In this paper, we study

the welfare consequences—for both the game developer and players—of five alternative pric-

ing strategies to unlock pay-gates: the game developer’s observed pricing; optimal uniform

pricing; two forms of personalized pricing (third-degree price discrimination), one based on

a player’s gaming ability as measured in the free levels prior to the first pay-gate, the other

based on the GDP per capita of a player’s country; and first-degree price discrimination.

We combine experimental variation in the data with a structural model to estimate demand for

free and paid-for content (additional levels) and then simulate the above counterfactual pricing

strategies. We rely on the experimental variation in the data in two ways. First, we use it to

learn about player behavior and document that players are unsophisticated and myopic, which

greatly simplifies the specification of the structural model and the subsequent counterfactual

simulations. Second, we rely on the experimental variation to estimate the demand model,

in particular to address the standard challenges of price endogeneity and endogenous sample

selection that would otherwise complicate identification (Gandhi and Nevo, 2021). Another

helpful feature of the game is that no advertisement was displayed to players around the

time of data collection. This allows us to focus on in-app purchases as the only source of

revenue in the game. The co-existence of in-app purchases and advertisement would introduce

dynamic interactions between pricing and advertising decisions which would be extremely hard

to model, estimate, and ultimately simulate in counterfactual scenarios (Dubois et al., 2017).

Our counterfactual simulation results confirm that price discrimination will in general enable

the game developer (a monopolist in our model) to seize larger portions of consumer surplus

and thus increase profit (Varian, 1989). By comparing the relative performance of the coun-

terfactual pricing strategies, we obtain three perhaps less obvious insights. First, observed

pricing is far from optimal and the game developer could increase profit by +340% by limiting

itself to the use of uniform pricing. A possible explanation is that the game was only launched

three months before our data were collected and the game developer was probably still learn-

ing how to profitably set prices (Dube and Misra, 2019; Huang et al., 2020). Second, while

more flexible and discriminatory pricing strategies would lead to larger profit, the relative gains

are limited when compared to simple uniform pricing: first-degree price discrimination would

generate a mere 2% increase in profit over (optimal) uniform pricing. Our analysis suggests

that this is the result of unsophisticated and myopic player behavior, which limits the extra

gains of more elaborate pricing strategies. Third, each of the alternative pricing strategies

considered—including uniform pricing—would induce a transfer of surplus from the players to
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the game developer without, however, generating sizeable dead-weight losses on average.

Our first finding is consistent with the aforementioned literature documenting that, some-

times, for-profit firms do not maximize profits (Cho and Rust, 2010; DellaVigna and Gentzkow,

2019; Dube and Misra, 2019; Fioretti, 2020; Hortaçsu et al., 2021; Huang et al., 2020; Orbach

and Einav, 2007). Our second result is in line with Chu et al. (2011), who show that in the

context of a theater company, simple pricing rules can sometimes generate almost as much

profit as complex ones that would however be difficult to implement. Our second result is

also close in spirit to Levitt et al. (2016), who document limited gains of second-degree price

discrimination for a large online gaming firm, and more in general to the empirical literature

on the trade-offs of price discrimination and personalized pricing in the era of big data (Rossi

et al., 1996; Shiller and Waldfogel, 2011; Shiller, 2015; Waldfogel, 2015). Limited gains

from price discrimination may partly explain why it is rarely observed in business practice,

where—as already mentioned above—additional risks tied to consumer backlash also need to

be considered (Council of Economic Advisors, 2015; DellaVigna and Gentzkow, 2019).

In contrast to our results, however, Dube and Misra (2019) document substantial returns of

personalized pricing for a digital recruiting firm, highlighting the need for caution in drawing

general conclusions: while we do not see any evidence for this in our analysis, in other digital

contexts more complex pricing strategies may be more profitable. That said, both our results

and Dube and Misra (2019) stress the large potential of “empirical” pricing rules. In the

case of the game we study, by optimally choosing a uniform price on the basis of detailed

data and appropriate empirical methods, the game developer could increase profit more than

fourfold. Importantly, our third insight stresses that, although these increases in profit would

necessarily come at the expense of consumer surplus, the pricing strategies considered would

not generate average losses in total welfare.

Our paper contributes to a recent and growing literature investigating various aspects of

mobile apps. Due to data limitations, most researchers have either exclusively focused on the

supply side or employed very aggregate measures of demand, such as aggregate rankings or

number of downloads from app stores (Bresnahan et al., 2015; Carare, 2012; Ershov, 2018;

Ghose and Han, 2014b; Yi et al., 2019; Yin et al., 2014; Yuan, 2020; Wen and Zhu, 2019).

Our user-level panel data instead allow us to delve deeper into the in-app purchase behavior

of about 300,000 users around the world and to investigate the efficiency of discriminatory

pricing strategies in a mobile game.

Despite widespread interest amongst practitioners and scholars alike (Fudenberg and Villas-

Boas, 2006, 2012; Varian, 1989), there is relatively limited empirical evidence on the returns

of price discrimination in practical applications, and essentially none for mobile games.2 In

2Even though we focus on first-degree and third-degree price discrimination, there is a small empirical
literature investigating the returns of second-degree price discrimination (quantity discounts): in carbonated
soft drinks (Iaria and Wang, 2021), in coffee shops (McManus, 2007), in cable television (Crawford and Shum,
2007), in the yellow pages (Aryal and Gabrielli, 2020), and for an online gaming company (Levitt et al., 2016).

3



general, the extant empirical evidence is mixed, documenting limited returns in some cases

(Rossi et al., 1996; Levitt et al., 2016; Shiller and Waldfogel, 2011; Shiller, 2015; Waldfogel,

2015) but larger in others (Adams and Williams, 2019; Cho and Rust, 2010; DellaVigna

and Gentzkow, 2019; Dube and Misra, 2019; Iaria and Wang, 2021; List, 2004). Our paper

contributes to this debate by providing the first empirical investigation on price discrimination

for a mobile game. Despite the focus on a specific game, our empirical analysis speaks

to a broader audience than freemium game providers: pay-gates are important monetization

mechanisms also for other types of digital content providers including newspapers, magazines,

and streaming services (e.g., Amazon Prime and You Tube).3

From a methodological perspective, ours is one of few empirical papers that combine both

structural methods and randomized experiments (Cohen et al., 2016; Dube and Misra, 2019;

Einav and Levin, 2010; Levitt and List, 2009; Todd and Wolpin, 2020). Our structural

demand model for game content is needed to simulate the likely welfare consequences of

counterfactual pricing strategies not observed in the data, while the experimental variation

allows us to mitigate some of the standard endogeneity issues that would otherwise cripple

identification and estimation.

The paper continues as follows. Section 2 describes the game for which we have data and

discusses the way prices are set. Section 3 describes the data and the available sources of

exogenous variation. Section 4 describes how we model player behavior and Section 5 reports

our estimation results. Section 6 discusses our simulations for a number of counterfactual

pricing rules. Section 7 draws some conclusions.

2 Mobile Game

2.1 Game Description

We empirically investigate the efficiency of price discrimination in the context of a game app

which was produced by a large mobile game developer (“firm”) and launched in August 2013.

Like other popular mobile games, such as Candy Crush Saga or Bejeweled, the game we study

is a casual game characterized by a sequence of levels that can be cleared in a relatively short

amount of time. It belongs to the mobile puzzle game genre and has been downloaded around

80 million times so far, making it one of the most popular match-3 games of all time. The

goal for players is to clear levels by connecting lines of jellies of the same color in order to

“splash” them and achieve varying objectives.

3Another related emerging literature is that on algorithmic pricing. The majority of economics papers
in this literature have so far been theoretical, mainly about the potential for algorithmic pricing to facilitate
collusion (Miklós-Thal and Tucker, 2019; Calvano et al., 2020; Brown and MacKay, 2021), even though a
few studies in progress are investigating the topic empirically, such as Assad et al. (2020) for gas stations and
Hortaçsu et al. (2021) for airline companies.
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Figure 1: 3-match mobile game

The initial allocation of jellies is random and a move consists of connecting at least three

jellies of the same color; the longer the line (also called ”snake”) of connected jellies, the

more points are awarded (see Figure 1). Connected jellies are removed and replaced by a

random set of new jellies. Players must achieve different objectives to clear different levels,

for example reach a minimum score, remove slime, move diamonds from top to bottom, and

so forth, which are all achieved by connecting and removing jellies. The number of moves for

each level is capped, and the maximum number of allowed moves varies by level. In contrast

to traditional video games, the difficulty of each level does not increase as players advance.

There are occasional spikes in difficulty in certain levels, although these do not occur at

regular intervals (Debeauvais and Lopes, 2015). Levels distinguish themselves by their layout,

objectives, or features, such as the presence of obstacles, and so on. To advance, players

must clear every level. Once a level has been cleared, it can be replayed at any time.

Players are awarded a score for their performance, which largely depends on the length of the

snakes formed as well as the total number of moves needed to clear a level. Upon clearing

a level, players are awarded one, two, or three “stars” depending on their score for that level.

Stars are cumulative and, as we explain below, play an important role in the monetization of

the game, whereas the score is specific to each level and plays no role other than to determine

the number of stars.

2.2 In-App Purchases and Monetization

The game is a freemium product. A certain number of levels can be played for free (with a few

restrictions), but premium content, such as additional levels or features, need to be unlocked

via in-app purchases. Importantly for our empirical analysis, during the period of our data

collection, no in-app advertisement was displayed to players. This allows us to focus on in-
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app purchases as the only source of revenue for the firm and, in turn, to estimate a tractable

choice model useful for the simulation of counterfactual pricing strategies. The co-existence

of in-app purchases and advertisement would introduce dynamic interactions between pricing

and advertising decisions which would be extremely hard to model, estimate, and ultimately

simulate in counterfactual scenarios (Dubois et al., 2017).

In-app purchases must be paid in “virtual coins” and each player receives an initial endowment

of 70 of these. This endowment of virtual coins corresponds to approximately $1 at the time

our data collection. Once players have spent their endowment, they must purchase additional

virtual coins to buy any of the following features.4 First, players can purchase additional

“moves” if they run out of these before having successfully cleared a given level. Second,

players are initially endowed with five “lives.” A life is lost every time a player attempts to

but does not successfully clear a level. Lives replenish automatically, a life being added every

30 minutes. If a player loses all five lives, they either wait for 30 minutes before they can

continue to play, or purchase a bundle of five lives. Alternatively, a player can gain lives by

inviting friends to download the game via Facebook.

ReplayReplay

Level 1Level 1
DropoutDropout

Level 2Level 2

Level 3Level 3

DropoutDropout

Pay-Gate 40Pay-Gate 40

ContinueContinue PayPay

DropoutDropout

FriendFriend StarsStars

Level 41Level 41

Figure 2: Players’ decision tree

Figure 2 illustrates player i ’s decision tree. They start at level one and then either stop

playing immediately or clear this level. By clearing any level, i can obtain three, two, or one

star depending on the score obtained in that level. Starting from level 40, every 20 levels

player i meets a “pay-gate,” which we denote by t = 40, 60, ..., T (i.e., pay-gates appear
4Note that, since our data were collected, some of the game’s features have changed and additional

opportunities for in-app purchases were introduced.
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at level 40, 60, etc.). These pay-gates separate free levels from premium levels, and must

be unlocked for i to proceed in the game. Players have three options to unlock pay-gates

(see Figure 3): (a) purchase a “key” using 70 virtual coins, (b) invite friends on Facebook to

download the game, or (c) accumulate a sufficient number of stars.

Figure 3: Example of a pay-gate.

Regarding option (c), each pay-gate has a threshold number of stars that is pay-gate specific

and rising as the player progresses through the game. If a player gets to the pay-gate with

a number of stars equal or greater than this threshold, the pay-gate unlocks. For brevity,

we refer to the difference between i ’s number of accumulated stars through their play up to

pay-gate t and the number of stars needed to unlock pay-gate t as “star gap” and we denote

it by sgi ,t . Only players with a positive star gap (sgi ,t > 0) must unlock pay-gate t. To do so,

they can use either option (a) or (b), or alternatively can go back and re-play previous levels

to gain additional stars where they obtained less than three, a behavior called “grinding.”

At the moment of the data collection, the firm was relying on a simple uniform pricing strategy

of 70 virtual coins (approximately $1) across all pay-gates and players for the purchase of

a key to unlock a pay-gate.5 As illustrated in Figure 4, the purchase of keys to unlock the

first three pay-gates (levels 40, 60, 80) corresponded to the largest share of in-app purchases

(43%). Because of this and to maintain the econometric model and simulations practically

viable, we focus on the firm’s choice of which prices to charge for the keys to unlock these
5Some form of price discrimination was still implemented by offering features in bundles as well as by

offering quantity discounts on larger amounts of virtual coins.
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three pay-gates.6
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Notes: This figure displays the relative frequency of purchases observed in the game according to the highest level achieved. For
example, a player who reaches pay-gate 40 with a positive star gap has as highest level achieved ` = 40. If keys are purchased at
this pay-gate, we count a purchase for ` = 40. The sample includes all players (i.e, Group 20, Group 40, and Group No Star) and
concerns only purchases at or before reaching level ` = 80.

Figure 4: Spending patterns across life cycle

3 Data

3.1 Data and Variables

We have tracking data for all users around the world that installed the game between October

30th and November 4th 2013 on Apple devices (iPhones and iPads) and that played at least

one round of the game. We have a sample of 292,179 players, and for each we observe the

full history of play at an extraordinary level of detail for the 15 days following the installation

of the game, including any purchase of virtual coins.7 In particular, we rely on the following

information to describe players’ behavior and characteristics.

Level attempted and completed: For each player, we observe the level played in any given

round of playing.8 This allows us to track the sequence in which different levels are played

and re-played. We also observe whether a level was cleared or not at a given attempt. Finally,

we assume that a player drops out after the last attempt to clear a level.

6As discussed below, in Appendix A.2 we also provide supporting evidence that purchases of keys do
not appear to crowd out other in-app purchases, suggesting that the two can be studied separately without
excessive loss of generality.

7Parts of these data were also used in Wagner and Runge (2018).
8Rounds denominate the cumulative number of levels played irrespective of whether a level was played

multiple times or not.
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Score and stars awarded: We observe the score each player was awarded for clearing a level.

As discussed above, the score reflects how well a player performs in a given level. The number

of stars awarded in a level is then determined as a function of the score obtained (stars are

only awarded if a level is successfully cleared and star thresholds vary across levels).

Player’s ability: A unique feature of online games, as opposed to more traditional offline

games, is the possibility of measuring, almost in real time, a player’s gaming ability. We

measure a player’s ability as the average snake-length over the first 20 rounds played, where

the longer the average snake of connected jellies, the larger the score obtained by the player.

The larger our measure of ability, the greater the player’s skill in identifying the patterns

required to succeed in the game. As shown in Figure 5, this measure of player’s ability is

almost normally distributed with some additional concentration around the mean. It can also

be interpreted in relative terms: the top player (with a measure of 11.6) can be considered

“twice as able as” the average player (with average measure of 5.4).

Controlling for ability is important both economically and econometrically. Economically,

willingness to pay may vary with players’ ability, affecting the optimal pricing strategy of

the firm. Analogously, not controlling for players’ ability may give rise to complex forms of

endogeneity hard to address econometrically.
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Notes: This figure displays the distribution of our measure of ability across players. The mean is presented through the vertical red
line and the plot is overlaid with a normal distribution in green. The description of this variable is provided in Section 3.1. The sample
is a cross-section of all players (Group 20, Group 40, and Group No Grind).

Figure 5: Distribution of players’ ability

Star gap: As discussed above, each pay-gate is unlocked (and will not appear again) if a

player reaches it with a sufficient number of stars, what we call a non-positive star gap.

When a player reaches a locked pay-gate (i.e., with a positive star gap), they cannot proceed

in the game until they unlock it. When reaching a locked pay-gate, players can grind in an

attempt to decrease their star gap enough so to unlock the pay-gate. To simplify the analysis,

we consider a measure of star gap inclusive (or gross) of grinding, rather than considering
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grinding as a separate decision: we measure sgi ,t to be i ’s star gap at pay-gate t after all

the grinding—when they either unlock t or drop out of the game. If star gaps were measured

net of grinding, i ’s decision at pay-gate t with sgi ,t > 0 would be whether to unlock t, to

grind in order to lower sgi ,t , or to stop playing. Differently, by measuring star gaps gross of

grinding, we simplify i ’s decision at pay-gate t with sgi ,t > 0 to be only between unlocking t

or stopping to play, given that sgi ,t > 0 is already inclusive of all of i ’s grinding at t.9

Pay-gate locked and unlock mechanism: We observe whether a player reaches a locked pay-

gate and how they unlock it (or whether they drop out of the game). As mentioned above,

when approaching pay-gate t with fewer stars than those necessary to unlock it, sgi ,t > 0,

player i ’s options to unlock t are: (a) paying 70 virtual coins to purchase a key, (b) inviting

a friend on Facebook to download the game, or (c) going back to previous levels to collect

more stars (i.e., grinding). Importantly for our econometric analysis, as discussed in detail

below, players are not notified about the appearance of pay-gates every 20 levels when they

start playing.

Price to unlock a gate: Any player i reaching pay-gate t with a positive star gap sgi ,t > 0

cannot proceed in the game without unlocking it. As discussed above, a way to unlock a

pay-gate is to purchase a key. In the period of our data, the price of a key was set by the

firm to pi ,t = 70 virtual coins, approximately $1, uniformly for any i and t. The appropriate

choice of pi ,t (in terms of virtual coins) by the firm, potentially discriminating across i ’s and

t’s, is the main object of our empirical analysis. Because keys are priced in virtual coins and

players can rely on their endowment of virtual coins to buy keys (thus spending potentially

less in terms of real money), we consider pi ,t as the effective or residual price of purchasing

a key: e.g., the full price of the key minus i ’s endowment of virtual coins when reaching t

(e.g., if the full price of a key is 70 virtual coins and i owns 30 virtual coins when reaching

pay-gate t with sgi ,t > 0, then pi ,t = 70− 30 = 40).

Player demographics: We observe a number of player-specific characteristics measured when

a player downloads the game. These variables are collected in a vector we call Xi throughout

the paper. Most of these characteristics relate to the device used to play the game. We know

whether the game was downloaded to a mobile phone or a tablet (iPad). We also observe

whether a player has updated their device to the latest version of the relevant operating

system (iOS7) and whether the device was “jailbroken” by its owner (Jailbroken).10 Finally,

we observe the country of a player (as indicated by the national app store used to download

the app) and relate it to its 2013 GDP per capita measured in purchasing power parity. We

assign these countries to fourteen groups which we refer to as “regions.” This assignment is

detailed in Appendix G and the share of players in each region is displayed in Figure A-26.

9This will become clearer after having formally specified the choice model in Section 5, see in particular
footnote 15 and the surrounding discussion.

10Jailbreaking means removing all restrictions imposed on the device in order to allow the installation of
software not supported by Apple.
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Table 1 reports summary statistics for Xi among the 292,179 players in the data.

mean sd min max
Maximum Level Reached 21.30 17.16 0.00 179.00
Player’s Ability 5.41 0.82 0.44 11.67
Log(GDP per Capita (PPP, 2013)) 10.55 0.48 6.54 11.85
Jailbroken Dummy 0.01 0.11 0.00 1.00
iOS7 Dummy 0.78 0.42 0.00 1.00
iPad Dummy 0.31 0.46 0.00 1.00
Num. of Players 292,179

Notes: This table provides descriptive statistics for the demographic variables. The definitions of the variables are detailed in Section
3.1. The sample includes all players (Group 20, Group 40, and Group No Grind) and the statistics are computed across this cross-
section of players.

Table 1: Descriptive statistics of players’ characteristics Xi

3.2 Exogenous Variation

In addition to the extremely detailed player-specific information described above, our data are

also unique in providing various sources of exogeneous variation helpful to characterize players’

behavior and to identify our econometric model. The first source of exogeneous variation is

represented by controlled experiments conducted by the firm during the period of our data

collection. The second is represented by a form of randomness in the degree of difficulty

faced by different players when playing any level.

3.2.1 Controlled Experiments

During the period of our data collection, the firm conducted a controlled experiment that

randomly allocated players to three different designs of the pay-gates separating free from

premium levels. Figure 3 illustrates what the firm considered the default design of the pay-

gates in the game: 40 free levels before the first pay-gate appears, with a new pay-gate

appearing every 20 levels thereafter. The default design allows for three options to unlock a

pay-gate: (a) paying 70 virtual coins to purchase a key, (b) inviting friends to download the

game via Facebook, or (c) having a non-positive star gap sgi ,t ≤ 0. About 16% of all players

were allocated to this default design (called Group 40).

The experimental variation introduced by the firm consists of two variations relative to the

default design. In the first variation (called Group 20), a subset of nearly 16% of players was

exposed to an earlier first pay-gate already after clearing level 20. This setting allows for the

same three options to unlock pay-gates as the default design. In the second variation (called

No Stars), the first pay-gate appears after clearing level 40 as in the default design, however

option (c) to unlock pay-gates with non-positive star gaps is not available. When i from this

group reaches any pay-gate t, independently of sgi ,t , they must choose either option (a) or

11



(b) to unlock it and proceed in the game. The No Stars group represents around 68% of

players in our sample. Table 2 summarizes the main features of these three groups.

Group Level Unlock with Share in
1st pay-gate sg≤0 sample

Group 40 40 Yes 0.16
Group 20 20 Yes 0.16
No Stars 40 No 0.68

Table 2: Experimental groups

Table A-15 in the Appendix provides descriptive statistics for these three groups, confirming

that player-specific characteristics are well-balanced.

Player attrition. Player attrition is a common feature in this type of game. Figure 3.2.1

shows the share of active players at the start of each level (i.e., players who have not yet

dropped out), comparing Group 20 to Group 40 (left panel) and No Stars to Group 40 (right

panel). The graph shows that attrition is high in all three groups as players progress in the

game. Overall, only about 24% of all players clear level 40 and reach pay-gate 40. Not

surprisingly, the left panel of Figure 3.2.1 reveals a slight difference in attrition rates at level

20 between Group 20 and Group 40, as only players in Group 20 face a pay-gate at level

20. However, between levels 21 and 40, the gap between the two groups closes again and

approximately 23.9% of Group 20 reaches level 40 compared to 24.5% of Group 40. The

right panel of Figure 3.2.1 shows similar attrition rates for Group 40 and the No Stars group at

level 40, suggesting that both groups are strongly affected by the appearance of the first pay-

gate. Overall, this evidence is in line with Debeauvais and Lopes (2015), who document—for

a different cohort of players—that attrition is larger in levels with pay-gates than in regular

levels. In our analysis, we discard observations beyond level 80. This is essentially without

loss of generality, in that 99.95% of all players drop out before level 80.

Choices at pay-gates. In Table 3, we summarize players’ choices at the pay-gates of levels

20 and 40. In Group 20 about 83.09% of all players reached the first pay-gate at level 20

with sufficient stars to unlock it (sg ≤ 0). The vast majority of players without sufficient

stars (sg > 0) used the initial endowment of virtual coins to purchase a key (13.93%), only

1.41% used real money, while 1.56% invited friends on Facebook to download the game.
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3.2.1. The sample includes all players.

Figure 6: Kaplan-Meier survival function (by group)

Group 20 Group 40 No Stars

1st pay-gate at level 20 1st pay-gate at level 40
Number % Number % Number %

Players reach pay-gate 20 19,183 44.38 19,367 44.35 91,394 44.49
Players unlock pay-gate 20 18,203 94.89
Unlock option
sg ≤ 0 15,126 83.09
sg > 0 Buy key: Real money 257 1.41

Buy key: Endowment 2,536 13.93
Facebook 284 1.56

Players reach pay-gate 40 10,329 23.90 10,694 24.49 50,469 24.57
Players unlock pay-gate 40 4,989 48.30 5,203 48.65 25,701 50.92
Unlock option
sg ≤ 0 1,135 22.75 1,094 21.02
sg > 0 Buy key: Real money 853 17.10 826 15.87 5,350 20.81

Buy key: Endowment 1,791 35.89 2,168 41.66 14,121 54.94
Facebook 1,210 24.25 1,115 21.42 6,230 24.24

Table 3: Comparison of unlock mechanisms between treatment and control groups

This indicates that the pay-gate at level 20 is a relatively soft monetization trigger, as most

players were able to unlock it either with sg ≤ 0 or using their initial endowment of virtual

coins. At level 40, the share of players with sg ≤ 0 is significantly lower compared to the

pay-gate at level 20, yet similar across Group 20 (22.75%) and Group 40 (21.05%). The

share of players purchasing a key using real money increases to 17.10% for Group 20 and

to 15.87% for Group 40. As expected, players in the No Stars group, which cannot unlock

pay-gate 40 using their accumulated stars, were significantly more likely than the others to

purchase a key, either using real money (20.81%) or their endowment of virtual coins (54%).

As discussed in Sections 4 and 5, we use this experimental variation to test competing hy-

potheses of players’ behaviour and specify a more appropriate choice model, such as the

degree of forward-looking behavior with respect to upcoming pay-gates (comparing Group
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20 and Group 40), and to overcome identification concerns about endogenous selection on

positive star gaps in estimation (relying on the No Stars group).

3.2.2 Randomness in the Difficulty of Levels

The structure of the game offers another useful source of exogenous variation: the difficulty

of levels. Every time a new round of the game is played, there is a random draw of jellies

which may incidentally deliver an easier or harder problem for the player to solve. A “good”

draw may lead the player to succeed at a given level, while a “bad” one may be enough to

induce the same player to fail. When a player gets closer to failing a level, they may face

more of an incentive to purchase and spend virtual coins to obtain additional lives or moves,

so to get the final boost needed to clear the level. Controlling for a player’s ability, worse

random draws of jellies will result in stronger incentives to purchase and spend virtual coins

for reasons other than a key.

Following this line of reasoning, as detailed in Section 5, we exploit i ’s “bad luck in the random

draws of jellies” as a source of exogenous variation—an instrument—for i ’s effective price of

a key pi ,t (defined as 70 virtual coins minus i ’s endowment) in the estimation of i ’s probability

to purchase a key.

4 Characterizing Player Behavior Using Exogenous Variation

4.1 The Firm’s Revenue Function

Our goal is to estimate a realistic but parsimonious model of player behavior useful to simulate

alternative pricing strategies and their returns both to the firm and to players. We focus on

the firm’s revenue from purchases of keys and ignore other in-app purchases (e.g., additional

lives or moves). This approach is motivated by the evidence shown in Figure 4 (most in-app

purchases are concentrated at pay-gates) and the absence of any in-app advertising at the

time of our data collection. We also show in Appendix A.2 that purchases of keys do not

crowd out other in-app purchases, suggesting that the two can be studied separately without

excessive loss of generality.

We aggregate player i ’s decisions between any two pay-gates into a single choice, abstracting

from the intermediate choices made at each level. Our choice model has two components.

First, the probability that i reaches pay-gate t (denoted by i → t) with a positive star gap

given that she already unlocked pay-gate t − 20:

P r i ,t(i → t, sgi ,t > 0|t + 20, ..., T ). (1)
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Second, conditional on pay-gate t being locked to i (denoted by the indicator locki ,t = 1)

and effective price pi ,t , the probability of purchasing a key at t (denoted by buyi ,t = 1, we

describe this categorical variable in Section 5 in more detail):

P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t , t + 20, ..., T ). (2)

Relying on (1) and (2), we then specify the firm’s expected revenue from player i at pay-gate

t, Ri ,t . Finally, our simulation exercises entail the maximization of Ri ,t with respect to pi ,t
across all players and pay-gates—under various constraints on the flexibility of prices (from

uniform price to first degree price discrimination). Because every additional player does not

generate any increase in the firm’s costs (at least within the range observed in our sample),

throughout the paper we assume that the firm’s marginal costs are zero, and that expected

revenue equals expected profit.

In general, probabilities (1) and (2) could be complex functions of i ’s expectations about

future realizations of any variable (e.g., sgi ,t+20 and pi ,t+40). To keep the empirical model

manageable, especially in view of our extensive simulation exercises, we propose (and then

verify empirically) the following simplifying assumption.

Assumption 1 (Myopia). Players’ decisions in t are conditionally independent of expectations
about future decisions and variables to be realized in t + 20, t + 40, ..., T .

Assumption 1 implies that player behavior can be represented by a (i , t)-specific static choice

model, so that (1) and (2) simplify to P r i ,t(i → t, sgi ,t > 0) and P r i ,t(buyi ,t = 1|locki ,t =
1, pi ,t), respectively. Importantly, the conditional independence implied by this assumption

should be intended with respected to the observable characteristics we can control for in the

data, such as i ’s demographics and ability, and various fixed effects. We discuss the details

of the empirical specification of our model in Section 5.

Denote i ’s effective prices from pay-gate t + 20 until T by pi ,>t = (pi ,t+20, pi ,t+40, ..., pi ,T ).

Then, given choice models (1) and (2) and Assumption 1, the firm’s expected revenue from

player i at pay-gate t of charging effective prices pi ,≥t , given that i already unlocked pay-gate

t − 20, can be expressed as:

Ri ,t(pi ,t |pi ,>t)

= P r i ,t(i → t, sgi ,t > 0)× P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t)× pi ,t

+ P r i ,t(i → t, sgi ,t > 0)×
�

1− P r i ,t(buyi ,t = 0|locki ,t = 1, pi ,t)
�

× Ri ,t+20(pi ,t+20|pi ,>t+20)

+ P r i ,t(i → t, sgi ,t ≤ 0)× Ri ,t+20(pi ,t+20|pi ,>t+20).

(3)
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As this expression indicates, despite the simplifying assumptions, the firm’s expected revenue

from i at pay-gate t is an intricate recursive function. Conditional on i having unlocked pay-

gate t−20, it depends on i ’s probability of reaching pay-gate t with sgi ,t > 0 (so that pay-gate
t is locked, locki ,t = 1), i ’s probability of purchasing a key (buyi ,t = 1) given locki ,t = 1, i ’s

probability of unlocking the current pay-gate (buyi ,t 6= 0) given locki ,t = 1, price pi ,t , and

finally—should i unlock the current pay-gate—the expected revenue stemming from potential

purchases of keys to unlock future pay-gates.11 The first line of model (3) denotes the firm’s

expected revenue from i ’s current purchase of a key to unlock pay-gate t, the second and

third lines instead denote the firm’s expected revenue from i ’s future purchases of keys to

unlock pay-gates t + 20, t + 40, ..., T . Before getting to the details of how we specify the

components of model (3), we rely on the exogeneous variation described above to test the

consistency of Assumption 1 with observed player behavior.

4.2 Testing Assumption 1

The validity of the expected revenue function in (3) crucially depends on the validity of

Assumption 1 for the game we study. Here we rely on the exogenous variation available in

the data to provide empirical evidence in support of this simplifying assumption.

Assumptions 1 requires that players’ current choices are not influenced by their expectations

regarding future events. The experimental variation in our data allows us to test for the

absence of forward-looking behavior in various ways. In particular, we exploit the exogenous

information shock to players in Group 20, who become aware of the existence of pay-gates

twenty levels before the other players.

If players were forward-looking, those in Group 20 could show different attrition rates com-

pared to other players. Having passed the the first pay-gate at level 20, their expected utility

from continuing the game could be lower due to the anticipation of additional pay-gates (i.e.,

entailing costs with positive probability) at future levels. As a consequence, attrition rates

could be higher. In particular, we test for differences in the total number of rounds played

between players in Group 20 that were exposed to the pay-gate at level 20 but had sgi ,t ≤ 0
and similar players in Group 40 who were not exposed to the pay-gate at level 20. These

“similar” players in Group 40 are those who had a sufficient number of stars to immediately

unlock the pay-gate at level 20 had they been allocated to treatment Group 20. We do not

find significant differences (Table 4, row 1).

11As mentioned in Section 2.2, players can unlock pay-gates not only by purchasing keys but also by asking
friends on Facebook to download the game. In this sense, as detailed in Section 5, the categorical variable
buyi ,t can take more values than only 0 (stop playing) and 1 (purchase a key), and (1−P r i ,t(buyi ,t = 0|locki ,t =
1, pi ,t)) ≥ P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t).
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Group 40 Group 20 Diff. Std. Err. Obs.
Number of rounds before drop out 121.026 122.860 -1.833 1.633 21,899
Rounds played between 21 and 40 (or drop out) 51.400 51.582 -0.181 0.509 21,899
Stars collected between 21 and 40 (or drop out) 24.014 23.951 0.063 0.149 21,899
Re-played levels between 21 and 40 (or drop out) 26.375 27.354 -0.978 0.761 21,899

Notes: This table presents evidence regarding players’ forward-looking behavior. The description of the variables is provided in Section
3.1. The sample of players includes all players in Group 20 and 40 who have crossed level ` = 20 with a non-positive star gap. Columns
“Group 40” and “Group 20” report the mean for Group 40 and 20 players, respectively. Column “Diff.” provides the (mean) difference
between the two former columns. Column “Std. Err.” presents the standard errors associated with the mean of column “Diff.”.

Table 4: Experimental evidence for myopia: Group 20 vs Group 40

Awareness of the existence of pay-gates should affect the propensity to grind of forward-

looking players (i.e., re-play past levels to collect additional stars). A player that is aware

of the existence of future pay-gates, and the possibility of unlocking them with a sufficient

number of stars, should grind more than unaware players, in order to increase the chance

of reaching the next pay-gate with a non-positive star gap. However, we find no significant

difference in the number of rounds played between levels 21 and 40 for the same groups of

players used in the previous test (Table 4, row 2). We also find no significant differences in

the number of stars collected (Table 4, row 3) and in the number of re-played levels between

levels 21 and 40 (Table 4, row 4).12

We look for evidence of forward-looking behavior in two additional ways. First, we test

for evidence of forward-looking behavior by checking whether the number of additional stars

collected after having cleared a level for the first time affects the player’s probability to re-play

that level. For example, if player i cleared level 23 for the first time with n ∈ {1, 2, 3} stars and
is able to move on to level 24, we check if their probability to re-play level 23 depends on n.

Obtaining only one or two stars leaves open the possibility to collect an additional two or one

stars, respectively, by re-playing the level, hence increasing the chance of reaching the next

pay-gate with a non-positive star gap. Table 5 shows estimation results for a multinomial

logit model of the probability to re-play any level between 21 and 40 that was cleared for

the first time with n stars (with the case of n = 3 stars as the excluded category, i.e. no

incentives to re-play those levels). In line with economic intuition, the estimated intercepts

suggest that the probability to re-play any level in 21-40 is increasing in the number of stars

a player can still collect by re-playing it. The Group 20 indicator, however, is not significantly

different from 0, providing no statistical evidence in support of forward-looking behavior. This

is also shown graphically in a more disaggregate way, level by level starting from level 1, in

Appendix Figures A-1, A-2, and A-3. These graphs confirm that players in Groups 20 and 40

have virtually identical probabilities of re-playing any specific level initially cleared with a given

number of stars, both before and—importantly—after players in Group 20 become aware of

the existence of the pay-gate at level 20.

12In additional tests (not reported, but available on request), we also check the propensity to re-play specific
levels for the same group of players and find no significant differences.
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Multinomial Logit
P r(Re-play level in 21-40,Stars = 1)
Group 20 (relative to Group 40) 0.014

(0.057)
Constant 0.602

(0.039)
P r(Re-play level in 21-40,Stars = 2)
Group 20 (relative to Group 40) 0.013

(0.053)
Constant 0.083

(0.037)
Observations 20,997

Notes: This table presents the results from multinomial logit regressions where we estimate the propensity to replay levels depending
on the number of stars collected when first clearing the level. Each observation is a case where a player re-played a level of the game
which was previously cleared. The sample includes all players in Group 40 and 20 which cleared level ` = 20 with a non-positive star
gap. The base category is (Re-play level in 21-40,Stars = 3). Standard Errors are clustered at the player-level.

Table 5: Experimental evidence for myopia: Group 20 vs Group 40

Second, we inspect the distribution of effective prices players face when they reach the pay-

gate at level 40. Remember that pi ,t is defined as 70 virtual coins (the price of a key to

unlock any pay-gate) minus i ’s residual endowment of virtual coins by the time they reach

t. Since the initial endowment provided to every player is 70 virtual coins, by not using any

of it until level 40, i would face pi ,40 = 0 and be able to purchase a key to unlock pay-gate

t = 40 without spending any real money. However, players can spend their endowment on a

number of items before reaching pay-gate t = 40 to enhance their play experience, such as

purchasing boosters, additional lives or moves, etc. Awareness of the existence of pay-gates is

expected to induce forward-looking players to save up on their endowment of virtual coins, so

to ensure a lower effective price at the next pay-gate. We then ask whether players in Group

20 with sgi ,20 ≤ 0, who are aware of the existence of pay-gates from level 20, spend their

endowment between levels 21 and 40 differently than players in Group 40, who are unaware

of the existence of pay-gates until level 40. Figure 7 illustrates the distribution of effective

prices faced by players in Group 20 and Group 40 when reaching the pay-gate at level 40.

The distributions of effective prices faced by the two groups is very similar and indicates that

awareness of the existence of pay-gates did not lead players in Group 20 to save more of their

endowment of virtual coins in anticipation of the next pay-gate. To corroborate these results,

Appendix Figures A-4 and A-5 repeat the same exercise for pay-gates t = 60 and t = 80.
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Figure 7: Distribution of effective prices pi ,t at pay-gate t = 40

5 Choice Model: Specification and Estimation

Our model abstracts from players’ disaggregate level-specific choices and focuses on whether

they reach each pay-gate t (discrete choice model (1)) and, conditional on reaching it with

sgi ,t > 0, whether they choose to unlock it and how (discrete choice model (2)). Here we

specify the empirical counterparts of these discrete choice models and estimate them relying

on the exogenous variation described in Section 3.2.

5.1 Discrete Choice Model (1): Reaching Pay-Gates with a Positive Star Gap

We specify discrete choice model (1) as the product of two binary choice models:

P r i ,t(i → t, sgi ,t > 0) = P r t(i → t|Xi)× P r t(sgi ,t > 0|i → t, Xi), (4)

where Xi is a vector of observable i-specific characteristics such as i ’s demographics and player

ability (see Section 3.1 for a description of these variables). After having unlocked pay-gate

t − 20, player i can either clear all levels between t − 19 and t and reach the next pay-gate t,

or stop playing before reaching it. This is the first binary choice model in (4), P r t(i → t|Xi).
Upon reaching pay-gate t, we then distinguish between sgi ,t > 0 and sgi ,t ≤ 0 to determine

if i faces the next choice, discrete choice model (2), of whether and how to unlock pay-gate

t. This is the second binary choice model in (4), P r t(sgi ,t > 0|i → t, Xi).
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Neither of the binary choice models in our empirical specification (4) depends on the effective

price pi ,t of purchasing a key to unlock pay-gate t. While this is true by construction for

P r t(i → t|Xi), in that pi ,t can only be determined when i reaches pay-gate t, it may not be

true for P r t(sgi ,t > 0|i → t, Xi). Given our definition of star gap as inclusive of grinding (see

Section 3.1), this exclusion restriction may be violated for example if players were more likely

to grind (and so to lower their star gaps) when facing higher effective prices, since unlocking

pay-gates by non-positive star gaps would become relatively cheaper than by purchasing keys.

Table 6 suggests this is not the case and reports supportive empirical evidence in favor of

this exclusion restriction using the sample of players in Group 40,13 a linear probability model

for P r t(sgi ,t > 0|i → t, Xi) has an estimated coefficient on pi ,t which is very close to zero,

especially once we control for the observable i-specific characteristics Xi .

(1) (2) (3)
P r t(sgi ,t > 0|i → t) P r t(sgi ,t > 0|i → t) Prt(sgi ,t > 0|i → t, Xi)

Effective price, pi ,t 0.0000359 0.0000515* 0.0000258
(0.0000192) (0.0000206) (0.0000188)

Pay-gate fixed effects No Yes Yes
Player-specific characteristics (Xi) No No Yes
Observations 12,600 12,600 12,600
Num. of players 10,692 10,692 10,692
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table shows estimation results for the linear probability model of the effective price pi ,t on player i facing a positive star
gap at pay-gate t. The dependent variable is a dummy variable equal to one when a player has a positive star gap, as defined by
equation (1), and zero otherwise. The explanatory variable is the effective price, defined in Section 3. The sample includes all players
from Group 40 who have reached pay-gate 40, 60, or 80. Each observation is a player/pay-gate combination. In the first column,
we include no controls. In the second column, we add pay-gate fixed effects. In the third column, we include the demographics Xi
defined in Section 3.1. Standard errors are clustered at the player level.

Table 6: Linear Probability Model of Effective Price on Positive Star Gap

The exclusion of pi ,t from the empirical specification of model (4) has practical implications

for our analysis. Because of their conditional independence of pi ,t , the binary choice models

in (4) will only act as “constant weights” in any of the maximizations of the firm’s expected

revenue (3) to be performed in our simulations. We therefore do not make any further

assumption and estimate them as non-parametric functions of Xi for each pay-gate t.

We separately estimate each of the two binary choice models in (4) by a standard K-Nearest

Neighbors (kNN) estimator from the sample of players in Group 40 (the same sample used

in Table 6). We restrict the estimation of model (4) to the players in Group 40, since this

is the default design of the game.14 In Appendix B, we describe the kNN estimator of (4)

and present its estimates, while in Figure 8 we plot the two estimated binary choice models

as functions of player’s ability.

13As explained below, we focus on the players in this group to estimate model (4).
14Players in Group 20 face an additional pay-gate at level 20 which increases their attrition, while those in

No Stars cannot use their accumulated stars to unlock pay-gates; hence they have fewer incentives to obtain
non-positive star gaps.
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Figure 8: kNN Estimates of Model (4) and Player’s Ability

We see that, in line with intuition, more able players are less likely to drop out of the game

(except for the top 5% of players) (left panel) and are more likely to reach pay-gates with a

non-positive star gap (thus unlocking them without the need to purchase keys) (right panel).

5.2 Discrete Choice Model (2): Purchasing a Key to Unlock a Pay-Gate

The estimation of discrete choice model (2), P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t), presents at

least two challenges: sample selection on sgi ,t > 0 and endogenity of pi ,t .

First, given the structure of the game, only players with sgi ,t > 0 face locki ,t = 1 and can be

observed to purchase a key at pay-gate t. In the absence of experimental variation, we would

then have to estimate (2) exclusively on the sample of players observed to reach pay-gate t

with sgi ,t > 0, P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t , sgi ,t > 0). It is however possible that the

willingness to purchase a key at t differs systematically between the players observed with

sgi ,t > 0 and those observed with sgi ,t ≤ 0, so that P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t , sgi ,t >
0) 6= P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t). Fortunately, the experimental variation described in

Section 3.2 allows us to overcome this by restricting estimation of model (2) to the sample

of players in the No Stars group. Players in the No Stars group cannot use their accumulated

stars to unlock pay-gates and, independently of their observed star gap, always face locki ,t = 1.

Second, the effective price pi ,t , computed as 70 virtual coins minus i ’s residual endowment

of virtual coins at pay-gate t, depends on i ’s decision of whether to purchase and spend
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virtual coins before reaching pay-gate t. This decision, in turn, may correlate to i- and

t-specific unobservable characteristics that also drive i ’s willingness to purchase a key at pay-

gate t. We address this potential endogeneity in two ways. On the one hand, our empirical

specification of model (2) controls for i ’s ability in the game, which would otherwise be the

most worrying omitted variable. On the other, as mentioned in Section 3.2 and discussed in

more detail below, we also exploit randomness in the difficulty of each level across players as

an instrument for pi ,t : at the beginning of each level, different players get a random draw of

jellies which determines the level’s difficulty, and in turn the players’ incentives to purchase

and spend virtual coins for reasons other than a key (e.g., additional lives or moves).

Model Specification. When i reaches locked pay-gate t, locki ,t = 1, for given effective

price pi ,t , i faces three options, denoted by buyi ,t ∈ {0, 1, 2}:15

buyi ,t = 0: Do not unlock pay-gate t and stop playing.

buyi ,t = 1: Purchase a key to unlock pay-gate t at a price of pi ,t virtual coins, where

70 virtual coins cost around $1 in terms of real money.

buyi ,t = 2: Ask a friend on Facebook to download the game.

In order for our simulations to be practically viable but still capture rich forms of observed and

unobserved player-specific heterogeneity, we specify discrete choice model (2) parametrically

as a mixed logit (McFadden and Train, 2000). Player i ’s conditional indirect utility from

choosing buyi ,t when facing locked pay-gate t is:

Ubuy,i ,t(ηi) =











ε0,i ,t if buyi ,t = 0

δ1 + δ1,t + δ1,i +Xiβ1 − (α+ αt + αi +Xiπ)pi ,t + ε1,i ,t if buyi ,t = 1

δ2 + δ2,t + δ2,i +Xiβ2 + ε2,i ,t if buyi ,t = 2,
(5)

where (δbuy + δbuy,t + δbuy,i) is an intercept given by the sum of a common δbuy component

among players, a pay-gate specific shift δbuy,t equal to zero at t = 40, and an unobserved

player-specific random coefficient δbuy,i , Xi is a vector of observable i-specific characteristics

(see Section 3.1), (α+αt+αi+Xiπ) denotes i ’s sensitivity to the effective price at pay-gate t,

which is both a function of unobserved random coefficient αi and observed heterogeneity (α+

αt +Xiπ), while εbuy,i ,t is a residual error term we describe below. We allow for a particularly

flexible specification of price sensitivity, itself a function of the observable characteristics Xi ,

15Because our measure of star gaps is inclusive of grinding (see Section 3.1), any i with sgi ,t > 0 (and
consequently with locki ,t = 1) cannot—by definition—be observed to unlock pay-gate t by further grinding:
all of i ’s grinding for pay-gate t is already included in sgi ,t . We therefore do not consider the option to grind as
a further alternative to unlock pay-gates in model (10): all the grinding is captured by the second component
of model (4), P r t(sgi ,t > 0|i → t, Xi).
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to investigate the potential of pricing strategies that take advantage of the detailed player-

specific information routinely collected by the firm. We gather the three random coefficients

(δ1,i , δ2,i , αi) into the random vector ηi and assume that they are jointly normal:

ηi =







δ1,i

δ2,i

αi






∼ N













0

0

0






,







σ21 ρ12 ρ1α

− σ22 ρ2α

− − σ2α












. (6)

As is standard, we normalize the systematic component of the indirect utility of buyi ,t = 0

(the outside option of dropping out) to zero, U0,i ,t − ε0,i ,t = 0, and include the effective price

pi ,t of purchasing a key only in the indirect utility of purchasing a key, buyi ,t = 1.

Price Endogeneity and Control Function. As mentioned above, the effective price pi ,t
could correlate with the residual error term ε1,i ,t and be endogenous. Given the player-level

nature of the data, we cannot rely on the standard instrumental variable techniques to address

price endogeneity typically used in demand estimation (Berry et al., 1995; Nevo, 2001a).

However, we mitigate price endogeneity in two other ways. First, we include i ’s ability among

the observed regressors Xi—thus removing from the unobservable ε1,i ,t the most problematic

omitted variable. Second, we estimate the parameters of model (5) on the basis of a control

function approach (Blundell and Powell, 2004; Blundell et al., 2013).

Our control function relies on an instrument Zi ,t for price pi ,t obtained from the randomness in

the difficulty of each level across players (see Section 3.2). Controlling for i ’s ability, random

variation in a level’s difficulty prior to reaching pay-gate t will induce random variation in i ’s

incentives to purchase and spend virtual coins on items other than a key (e.g., more lives or

moves to clear the level), and consequently in pi ,t . In practice, we define Zi ,t as the number

of times we observe i being close to failing any of the levels between pay-gates t − 20 and t,
where we consider i “being close to failing” level ` as i ’s score in ` within a 5% interval below

the `-specific score threshold necessary to clear level `:16

Zi ,t =

t
∑

`=1

1 (0.95× Necessary Score` < Scorei ,` < Necessary Score`) . (7)

We follow Petrin and Train (2010) and implement the control function approach to estimate

model (5) as follows. Given the instrument Zi ,t in (7), we assume that pi ,t is given by:

pi ,t = ζt +Xiγ + λZi ,t + µi ,t , (8)

where ζt is an intercept and µi ,t is an unobserved component of effective price potentially
16In Appendix C.1, we discuss this instrument in more detail and report the first step estimates of equation

(8) along with alternative specifications of the instrument. Overall, estimation results are robust to alternative
specifications of Zi ,t .
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correlated with ε1,i ,t (causing price endogeneity) but independent of (ε0,i ,t , ε2,i ,t). We also

assume that the expectation of ε1,i ,t conditional on µi ,t is linear:17

ε1,i ,t = θµi ,t + ε̃1,i ,t , (9)

where θµi ,t is our control function. Finally, by substituting (9) back into (5), defining

(ε̃0,i ,t , ε̃2,i ,t) = (ε0,i ,t , ε2,i ,t), Vbuy,i ,t(ηi) = Ubuy,i ,t(ηi) − ε̃buy,i ,t for each buyi ,t ∈ {0, 1, 2},
and assuming that (ε̃0,i ,t , ε̃1,i ,t , ε̃2,i ,t) are i.i.d. Gumbel (McFadden, 1974), we obtain our

mixed logit specification of discrete choice model (2):

P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t) =
∫

exp(V1,i ,t(ηi))

1 + exp(V1,i ,t(ηi)) + exp(V2,i ,t(ηi))
φ(ηi |Σ)dηi , (10)

where φ(·|Σ) is the normal density of ηi in (6) with Σ denoting its variance-covariance matrix

and V1,i ,t(ηi) = δ1 + δ1,t + δ1,i + Xiβ1 − (α + αt + αi + Xiπ)pi ,t + θµi ,t includes control

function θµi ,t , based on (7), (8), and (9), to account for the potential endogeneity of pi ,t .

Estimation Results. In the absence of experimental variation, only players with sgi ,t > 0

face a locked pay-gate t and so the choice of whether to unlock it. This raises the concern

that P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t , sgi ,t > 0) 6= P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t), which
complicates the identification of mixed logit model (10). As mentioned above, however, the

experimental variation described in Section 3.2 allows us to overcome this form of endogenous

selection by estimating the model on the sample of players in the No Stars group, who cannot

use their accumulated stars to unlock pay-gates and always face locki ,t = 1.

Using the sample of players in the No Stars group, we address the additional concern of price

endogeneity by estimating (10) on the basis of the control function approach proposed by

Petrin and Train (2010). We first estimate (8) by OLS, compute each µ̂i ,t as the fitted

residual of that regression, then plug µ̂i ,t in V1,i ,t(ηi), and finally estimate mixed logit model

(10) by Simulated Maximum Likelihood using 100 random Halton sequences per player (Bhat,

2003). We compute the variance-covariance matrix of the estimator as in Karaca-Mandic

and Train (2003) to account for the two-step nature of the control function procedure. We

report the results for both estimation steps in Appendix C, while here we visually summarize

the implied estimated price elasticities.

Figure 9 plots the distribution of the estimated price elasticities at pay-gate 40 evaluated at

effective prices pi ,40 = 10, 30, 70, 140 virtual coins (see Appendix D.1 for the computational

details). Each panel plots the distribution of price elasticities across players when everyone

faces the same effective price pi ,40.18 Two intuitive findings emerge from Figure 9: first,

17We attempted the estimation of model (5) on the basis of various—more elaborate—specifications of
both (8) and (9), but found no substantial differences. As a consequence, we decided to stick to these simpler
and similarly effective linear specifications.

18Importantly, while we relied on the players in the No Stars for the estimation of model (10) to avoid
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for any given effective price, there is heterogeneity across players facing the same pay-gate;

second, as pi ,40 increases, a player’s demand quickly becomes extremely elastic.
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Notes: These histograms display the distribution of the price elasticity of demand at pay-gate 40 evaluated at different effective prices
pi ,40 = 10, 30, 70, 140. Price elasticity of demand is defined in Appendix D.1. In each panel, the distribution of the price elasticity is
evaluated at the same effective price pi ,40 for all players. The sample used to compute these price elasticities includes all players of
Group 40 (see footnote 19).

Figure 9: Price Elasticity of Demand at Pay-Gate 40

Figure 10 compares average price elasticities of demand across pay-gates when evaluated at

a given effective price. The left panel plots results for effective prices ranging from 0 to 40

virtual coins, while the right panel plots results for effective prices ranging from 0 to 140 virtual

coins (note the much larger scale on the y-axis). Figure 10 makes clear that price elasticity

is heterogeneous not only across players at a given pay-gate, but also across pay-gates. This

is driven by heterogeneity across players dropping out of the game and thus “surviving” at

each pay-gate. Moreover, the price elasticity seems to substantially increase (i.e., become

negative) for all pay-gates once the effective price goes beyond 50 virtual coins (right panel).

sample selection complications, here we only plot the implied price elasticities for the players in Group 40, who
face the default design of the game. See also footnote 19.
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Notes: This figure displays the average price elasticity of demand across different pay-gates for given effective price. The left panel
plots results for effective prices ranging from 0 to 40 virtual coins while the right panel for effective prices ranging from 0 to 140
virtual coins. For each given value of effective price p on the x-axis, we plot the average price elasticity of demand of each pay-gate
so that pi ,40 = pi ,60 = pi ,80 = p. The price elasticity of demand is defined in Appendix D.1. The sample includes all players of Group
40 (see footnote 19).

Figure 10: Average Price Elasticity of Demand across Pay-Gates

Finally, Figure 11 displays two binned scatter plots of the price elasticity of demand at pay-

gate 40 with respect to a player’s ability (left panel) and the log(GDP per capita) of their

country (right panel). The left panel shows a striking relationship between price elasticity and

player’s ability. Less able players are more inelastic with respect to the effective price pi ,t . For

a given increase in pi ,t , they are more likely to purchase keys using real money rather than

to stop playing or ask a friend to download the game. The right panel of Figure 11 then

confirms an intuitive positive relationship between price elasticity and GDP per capita of a

player’s country: for given increase in pi ,t , players from wealthier countries are far less price

elastic at pay-gate 40 than players from poorer countries.
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Notes: This figure shows two binned scatter plots of the price elasticity of demand at pay-gate 40 with respect to a player’s ability
(left panel) and the log(GDP per capita) of their country (right panel). Price elasticity of demand is defined in Appendix D.1. Players’
ability and log(GDP per capita) are defined in Section 3.1. In each panel, we segment the x-axis in 100 equally sized groups. For each
of these groups, we then plot the average price elasticity of demand on the y-axis. The sample includes all players of Group 40 who
reached pay-gate 40 with a positive star gap (see footnote 19). The effective prices used to calculate the price elasticity of demand
are based on the empirical distribution of effective prices as described in Appendix D.2.

Figure 11: Price Elasticity of Demand at Pay-Gate 40 by Ability and Log(GDP per Capita)
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Overall, these results suggest that, choosing effective prices on the basis of routinely collected

data may be profitable for the firm. For example, Figure 10 suggests that the firm may gain

by setting effective prices somewhere around 40-50 virtual coins, higher than the observed

average effective prices of around 35 virtual coins. In addition, Figure 11 confirms the impor-

tance of observing and controlling for player’s ability in studying the pricing strategies of the

firm, something that was not possible until a few years ago with standard offline games.

5.3 Model Validation

In Appendix E, we conduct some model validation analysis and illustrate the estimated model’s

ability to predict player behavior under counterfactual pricing strategies.

6 Simulation of Alternative Pricing Strategies

In this last Section, we rely on our estimated model to evaluate the returns of alternative

pricing strategies for the firm. To provide intuition, we first highlight some of the most salient

trade-offs faced by the firm when choosing effective prices. These trade-offs uncover the

complex nature of the optimization problem and highlight the value of the empirical methods

we employ. Second, we simulate alternative pricing strategies characterized by increasing

discrimination and compare their implied expected revenues to those observed to be earned

by the firm. While we relied on the players in Group 40 for the estimation of model (4) and on

those in No Stars for the estimation of model (10), we perform all counterfactual simulations

only with respect to the players in Group 40. Players in Group 40 face the default design of

the game, which corresponds to our discrete choice model in equation (4).19

6.1 Understanding the Firm’s Optimization Problem

Here we use our estimates of models (4) (probability of reaching the next gate) and (10)

(choice of how to unlock a gate) and the simulation procedures detailed in Appendices D.1 and

D.2 to investigate whether the per-player expected revenue of the firm is affected by dynamic

considerations (i.e., if prices at different pay-gates should be set jointly or can instead be

chosen independently) and by player heterogeneity (i.e., if the firm should condition prices on

observed ability and/or GDP per capita). In all simulations, per-player expected revenue is

averaged across the 43,660 players in Group 40 during the 15 days of our sample in 2013.

19Counterfactual simulations based on players from the other experimental groups would not be very in-
formative, in that both players in Group 20 and in No Stars face game rules incompatible with those of the
default design of the game embodied in model (4).
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Dynamics across Pay-Gates. Although we show in Section 4.2 that players behave my-

opically, it is still possible for the firm’s optimal pricing to involve dynamic considerations

across pay-gates. As we saw in Figure 10, because different players drop out of the game

at different levels, the price responsiveness of the “surviving” population changes at different

pay-gates. Potentially, the firm could then increase expected revenue by influencing this se-

lection mechanism with an appropriate choice of effective prices at different pay-gates. For

instance, Figure 12 shows how per-player expected revenue (in $) from pay-gates 40, 60, and

80 changes as the firm sets different combinations of effective prices across pay-gates 40 and

60 (keeping pi ,80 = 70). Each line represents the perimeter of an iso-revenue area, gathering

all combinations of (pi ,40, pi ,60) that deliver an identical per-player expected revenue. Darker

shades of blue are associated with lower per-player expected revenue.
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Notes: This figure compares the per-player expected revenue (in $) from pay-gates 40, 60, and 80 for different combinations of effective
prices at different pay-gates. Each line represents the perimeter of an iso-revenue area, gathering all combinations of (pi ,40, pi ,60)
(while keeping fixed pi ,80 = 70) that deliver an identical per-player expected revenue. Darker shades of blue are associated to lower
per-player expected revenue. The simulation of per-player expected revenue is based on our estimates of models (4) and (10) and the
procedure detailed in Appendices D.1 and D.2. Per-player expected revenue is averaged across the 43,660 players in Group 40 during
the 15 days of our sample in 2013.

Figure 12: Dynamic Pricing and Iso-Revenue Lines

The per-player expected revenue iso-quants depicted in Figure 12 reveal two findings. First,

there is some dynamic connection between the effective prices across pay-gates. For example,

for fixed pi ,60 = 50 virtual coins, the firm can achieve the largest per-player expected revenue

by setting 10 ≤ pi ,40 ≤ 55 virtual coins. For 10 > pi ,40 > 55, the firm would decrease

per-player expected revenue because keys to unlock pay-gate 40 would be either too cheap or

too expensive, so that too many players would not unlock pay-gate 40 and drop out of the

game. Second, per-player expected revenue appears to be more responsive to changes in pi ,60
than to changes in pi ,40, stressing that not all pay-gates carry the same weight in terms of

per-player expected revenue for the firm. Despite all this, it is however important to highlight
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that Figure 12 does not exclude the possibility that optimal effective prices across pay-gates

may coincide, so that pi ,40 = pi ,60.

The potential dynamics of the problem faced by the firm can also be directly seen by look-

ing at the per-player expected revenue function presented in equation (3). The effective

price pi ,t plays two roles: (i) it affects i ’s expected revenue from pay-gate t, P r i ,t(buyi ,t =

1|locki ,t = 1, pi ,t)× pi ,t and (ii) it also affects i ’s expected revenue from future pay-gates by

changing the probability of a player dropping out, (1 − P r i ,t(buyi ,t = 0|locki ,t = 1, pi ,t)) ×
Ri ,t+20(pi ,t+20|pi ,>t+20). In this sense, the effective price pi ,t must be chosen by the firm

to balance the per-player expected revenue from current pay-gate t and that from future

pay-gates t ′ > t. In Figure 13, we separately illustrate these by plotting the current (i) and

future (ii) components of per-player expected revenue (in $) from pay-gate 40 as a function

of pi ,40, holding fixed (pi ,60, pi ,80) = (70, 70).
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Notes: This figure displays the current and future components of per-player expected revenue (in $) from pay-gate 40 as a function
of pi ,40, as described in equation (3). On the x-axis we report different values of the effective price at pay-gate 40 (pi ,40) and on the
y-axis we show: on the left, the per-player expected revenue from pay-gate 40 denoted by P ri ,40(buysi ,t = 1|locki ,40 = 1, pi ,40)×pi ,40);
on the right, the per-player expected revenue from future pay-gates 60 and 80 evaluated at (pi ,60, pi ,80) = (70, 70) and denoted by
(1 − P ri ,40(buysi ,t = 0|locki ,40 = 1, pi ,40)) × Ri ,60(pi ,60 = 70|pi ,80 = 70). The simulation of per-player expected revenue is based on
our estimates of models (4) and (10) and the procedure detailed in Appendices D.1 and D.2. Per-player expected revenue is averaged
across the 43,660 players in Group 40 during the 15 days of our sample in 2013.

Figure 13: Current and Future Components of Per-Player Expected Revenue

On the one hand, by increasing pi ,40, per-player expected revenue from future pay-gates

60 and 80 decreases due to a decrease in the probability of purchasing a key which is not

compensated by an increased probability to ask a friend to download the game to unlock

pay-gate 40, (1 − P r i ,40(buyi ,40 = 0|locki ,40 = 1, pi ,40)). On the other, by increasing pi ,40,

per-player expected revenue from current pay-gate 40 increases up to pi ,40 = 50 and quickly

falls afterward. Importantly though, note that the scale of the y-axis on the right-hand side of

Figure 13 is of an order of magnitude smaller than that on the left-hand side. This suggests
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that the per-player expected revenue from current pay-gates could be what really matters

when choosing effective prices, and that ignoring this inter-pay-gates trade-off may not be

very costly for the firm.

Player Heterogeneity. Any given price change will not impact homogeneously the expected

revenue from different players. As pointed out in Figure 11, this is due to player heterogeneity

in terms of ability and GDP per capita, which translates into heterogeneous price sensitivities.

We explore this in Figure 14 by comparing the per-player expected revenue from pay-gates

40, 60, and 80 for various effective prices across players with different ability (left panel) and

from countries with different GDP per capita (right panel). In each panel, we set effective

prices across all pay-gates and players to be uniform and equal to, in turn, 10, 30, and 70.

Each point represents the average simulated per-player expected revenue for the 5% of players

closest to the value of ability or log(GDP per capita) on the x-axes.

By looking at any binned scatter plot of the same color, we note that any uniform effective

price leads to a different per-player expected revenue depending on a player’s ability or log(GDP

per capita). In addition, by comparing the vertical distances among plots of different colors,

we also observe that different uniform effective prices will differently impact players with

heterogeneous levels of ability or log(GDP per capita). For example, while the three uniform

prices considered lead to similar per-player expected revenues for players with lower ability

(up to 5), more able players (with ability larger than 5) generate up to double the amount of

per-player expected revenue when the uniform price is 30 as opposed to 10 or 70.
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Notes: These binned scatter plots compare the per-player expected revenue from pay-gates 40, 60, and 80 for various effective prices
across players with different ability (left panel) and from countries with different GDP per capita (right panel). In each panel, we
set effective prices across all pay-gates and players to be uniform and equal to, in turn: 10, 30, and 70. Each point represents the
average simulated per-player expected revenue for the 5% of players closest to the value of ability or log(GDP per capita) on the
x-axis. Ability and log(GDP per capita) are described in Section 3.1. The simulation of per-player expected revenue is based on our
estimates of models (4) and (10) and the procedure detailed in Appendices D.1 and D.2. Per-player expected revenue is averaged
across the 43,660 players in Group 40 during the 15 days of our sample in 2013.

Figure 14: Per-Player Expected Revenue by Ability and GDP per Capita for Alternative Prices
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6.2 Simulation Results

Next, we combine our estimates of models (4) (probability of reaching the next gate) and (10)

(choice of how to unlock a gate), as well as the simulation procedures detailed in Appendices

D.1 and D.2 to investigate the welfare effects of alternative pricing strategies, each requiring

different levels of sophistication and amounts of data. All simulations are based on the 43,660

players in Group 40 during the 15 days of our sample in 2013.

We simulate alternative pricing strategies in which the firm directly chooses p∗
i ,t

for all players

and pay-gates t = 40, 60, 80 by maximizing per-player expected revenue from the perspective

of level zero (just before players start the game) under various constraints on the flexibility

of prices across players and/or pay-gates.20 We compare the relative performance of the

following pricing strategies, ordered in terms of increasing discrimination from uniform to

first-degree price discrimination (see Appendix D.2 for the details):

� Observed. The observed pricing chosen by the firm, where each p∗
i ,t

equals 70 virtual coins

minus i ’s remaining endowment when facing pay-gate t.

� Uniform (70). All players face the same effective price p∗
i ,t
= 70. This amounts to setting

everybody’s endowment of virtual coins to zero from the beginning of the game.

� Uniform (Optimal). The firm optimally chooses either only one effective price p∗ for all

players and pay-gates (static) or an effective price p∗t common across players but specific

to each pay-gate t (dynamic).

� GDP per Capita. Third-degree price discrimination based on the observed GDP per capita

of a player’s country. As for “Uniform (Optimal),” we consider both a static version in

which the effective prices are identical across pay-gates and a dynamic version in which the

effective prices are also allowed to change across pay-gates.

� Ability. Third-degree price discrimination based on the observed gaming ability of each

player.21 We again consider both a static (identical effective prices across pay-gates) and

a dynamic version (potentially different effective prices across pay-gates).

� Individual Level. First-degree price discrimination where the firm is free to choose a different

effective price for each player. We again consider both a static (identical effective prices
20The fact that in our counterfactuals the firm directly chooses effective prices corresponds to restricting

players’ freedom to use the initial endowment of 70 virtual coins. Independently of i ’s endowment at pay-gate
t, to progress in the game, i must use real money to purchase a key at the effective price of pi ,t virtual coins.
This greatly simplifies our model and simulations because we can proceed without specifying and estimating a
further choice model for the allocation of the initial endowment of virtual coins. We believe this assumption
is without loss of generality: the firm could always change any feature of the initial endowment, such as
restricting the way players are allowed to use it, changing its magnitude (allowing players to have more or less
than 70 virtual coins), or even removing it altogether (every player gets an endowment of zero virtual coins).

21As described in Section 3.1, we compute ability from each player’s performance during the first 20 rounds
of the game, something observed by the firm by the time the player reaches the first pay-gate at level 40.
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Static Pricing Dynamic Pricing

Pricing Strategy Effective Price Per-Player Revenue ($) Effective Price Per-Player Revenue ($)

mean s.d. mean s.d. % mean s.d. mean s.d. %
Observed 35.566 34.529 0.011 0.108 - - - - - -
Uniform (70) 70.000 - 0.022 0.012 93.8% - - - - -
Uniform (Optimal) 45.000 - 0.049 0.024 340.0% 10.000 2.449 0.051 0.026 358.9%
GDP per Capita 44.500 1.500 0.049 0.025 340.7% 51.167 11.950 0.051 0.026 359.7%
Ability 44.500 3.841 0.049 0.025 343.7% 52.833 12.429 0.051 0.026 362.8%
Individual Level 45.166 5.065 0.050 0.025 346.9% 52.617 12.756 0.052 0.026 368.1%

Notes: This table summarizes our counterfactual simulation results in terms of effective prices and per-player expected revenues. Each
row refers to a pricing strategy and summarizes the simulated effective prices chosen by the firm (in virtual coins, where $1 ≈ 70
virtual coins) and the corresponding per-player expected revenues (in $). The columns denoted by “%” report the percentage increase
in per-player expected revenue implied by the row pricing strategy with respect to the observed pricing chosen by the firm (i.e., 0%
means same average as the observed pricing). All pricing strategies are briefly described in the text and explained in more detail in
Appendix D.2. The left panel summarizes results for the case in which effective prices do not change among pay-gates (static pricing).
The right panel instead summarizes results for the case in which effective prices are allowed to change also among pay-gates (dynamic
pricing). All simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40 during the 15 days
of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Table 7: Counterfactual Pricing Strategies, Effective Prices and Expected Revenues

Static Pricing Dynamic Pricing

Pricing Strategy ∆ Consumer Surplus ($) ∆ Total Surplus ($) ∆ Consumer Surplus ($) ∆ Total Surplus ($)

mean s.d. mean s.d. mean s.d. mean s.d.
Uniform (70) -0.0187 0.0137 -0.0083 0.0121 - - - -
Uniform (Optimal) -0.0369 0.0211 0.0008 0.0079 -0.0346 0.0203 0.0052 0.0097
GDP per Capita -0.0376 0.0223 0.0002 0.0090 -0.0344 0.0211 0.0055 0.0105
Ability -0.0383 0.0227 -0.0002 0.0069 -0.0334 0.0204 0.0068 0.0086
Individual Level -0.0380 0.0241 0.0005 0.0089 -0.0336 0.0224 0.0072 0.0108

Notes: This table summarizes our counterfactual simulation results in terms of per-player consumer surplus and per-player total
surplus, computed as the sum between changes in per-player expected revenue and in per-player consumer surplus. Each row refers to
a pricing strategy and summarizes the simulated change in per-player consumer surplus and in per-player total surplus (both in $) with
respect to the observed pricing. All pricing strategies are briefly described in the text and explained in more detail in Appendix D.2.
The left panel summarizes results for the case in which effective prices do not change among pay-gates (static pricing). The right
panel instead summarizes results for the case in which effective prices are allowed to change also among pay-gates (dynamic pricing).
All simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40 during the 15 days of our
sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Table 8: Counterfactual Pricing Strategies, Consumer Surplus and Total Surplus

across pay-gates) and a dynamic version (potentially different effective prices across pay-

gates).

Tables 7 and 8 summarize our counterfactual simulation results. Table 7 reports results of

counterfactual effective prices and expected revenues. Table 8 reports changes in consumer

surplus and total surplus, computed as the sum between changes in expected revenues and

in consumer surplus. Each row of Table 7 refers to a pricing strategy and reports mean and

standard deviation of the simulated effective prices chosen by the firm (in virtual coins) and

of the corresponding per-player expected revenues (in $). The columns denoted by “%” report

the percentage increase in per-player expected revenue implied by the row pricing strategy with

respect to the observed pricing chosen by the firm (0% means same average as the observed

pricing). Analogously, each row of Table 8 refers to a pricing strategy and summarizes the

simulated change in per-player consumer surplus and in per-player total surplus (both in $)

with respect to the observed pricing. Figures 15–18 visualize these results by plotting the

simulated distributions of effective prices, per-player expected revenue, changes in per-player
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consumer surplus, and changes in per-player total surplus for the “static” pricing strategies

considered in the left panels of Tables 7 and 8. Appendix Figures A-13, A-14, A-18, and A-23

plot analogous simulated distributions for the “dynamic” pricing strategies considered in the

right panels of Tables 7 and 8.
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Notes: This figure shows the simulated distribution of effective prices (in virtual coins, where $1 ≈ 70 virtual coins) across players and
pay-gates for the “static” pricing strategies considered in the left panel of Table 7. All pricing strategies are briefly described in the
text and explained in more detail in Appendix D.2. Static pricing strategies are those in which effective prices do not change among
pay-gates. All simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40 during the 15
days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Figure 15: Distribution of Effective Prices in Static Pricing Strategies

Our counterfactual simulation results accord with intuition: more flexible and discriminatory

pricing strategies lead to larger per-player expected revenue at the expense of lower per-player

consumer surplus. Uniform pricing is associated with lower per-player expected revenue than

discriminatory pricing strategies. Similarly, dynamic pricing strategies that allow effective

prices to vary across pay-gates lead to higher per-player expected revenue than their more

restrictive static counterparts. While it is well known that price discrimination will in general

enable a monopolist to seize larger portions of consumer surplus and thus increase profit at

the expense of consumer surplus (Varian, 1989), Tables 7 and 8 provide three striking and

perhaps less obvious insights.

First, by comparing the first three rows of Table 7, from the firm’s perspective the free

endowment of 70 virtual coins given to players when they begin playing is too large. The

resulting average observed effective price of 35.6 virtual coins is too low. If the firm were

to remove this free endowment and charge a uniform effective price of 70 virtual coins (as

in “Uniform (70),” second row of Table 7), per-player expected revenue would almost double

(+93.8%). In addition, if it were also to optimally adjust the uniform effective price to 45
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virtual coins (as in “Uniform (Optimal),” third row of Table 7), per-player expected revenue

would more than quadruple (+340%). Observed pricing seems far from maximizing profit

and the firm could substantially be better-off by limiting itself to the use of uniform pricing.

A possible explanation is that the game was only launched three months before our data were

collected, while the firm was probably still learning how to profitably set effective prices (Dube

and Misra, 2019; Huang et al., 2020). The fact that the firm may behave sub-optimally does

not affect the validity of our counterfactual simulations. Indeed, because the marginal cost

of each additional player is zero, we only rely on the estimation of demand for game content

(which does not require any profit-maximization assumption).22

Second, while more flexible and discriminatory pricing strategies lead to larger per-player

expected revenue, the relative gains from their implementation are limited when compared

to a simple uniform pricing strategy. This can be seen by comparing the third with the

last three rows (fourth to sixth) of Table 7. Despite the different distributions of effective

prices implied by each pricing strategy (Figure 15), the corresponding distributions of per-

player expected revenues are remarkably similar (Figure 16), with the relative gains of static

“Individual Level” (45, 2 of average effective price) with respect to static “Uniform (Optimal)”

(a unique effective price) being essentially negligible ($0.050− $0.049 = $0.001). Appendix
Figure A-15 further stresses this point: we construct 20 groups of players based on players’

ability (left panel) and GDP per capita (right panel) and plot the average group-specific

difference in per-player expected revenue. Remarkably, “Uniform (Optimal)” performs almost

as well as any discriminatory pricing strategy not only on average (left panel of Table 7) but

also conditional on player’s ability and GDP per capita (Appendix Figure A-15).

The right panel of Table 7 and Appendix Figures A-13, A-14, and A-16 tell a similar story

also for dynamic versions of these pricing strategies, underlying that even when the effective

prices can change across pay-gates, “Uniform (Optimal)” (three prices p∗40, p
∗
60, p

∗
80) still seizes

most of the potential revenue of “Individual Level” (three prices p∗
i ,40
, p∗
i ,60
, p∗
i ,80

for each

i = 1, ..., 43660). Appendix Figure A-17 then compares the relative gains of implementing a

dynamic versus a static version of each pricing strategy by ability group and GDP per capita.

Consistent with the findings that players behave myopically and that inter-pay-gates trade-offs

may not be very relevant for the firm (Section 4.2 and Figures 12 and 13), Appendix Figure

A-17 shows that while dynamic pricing strategies slightly outperform their static counterparts,

the implied relative gains are in practice very limited (note the smaller order of magnitude of

the y-axis with respect to Appendix Figures A-15 and A-16).

22Deviations from profit-maximization instead represent a problem when the simulation of counterfactuals
also requires the estimation of marginal cost functions, which typically hinges on the correct specification of
the optimization problem solved by the firm (Berry et al., 1995; Nevo, 2001b).
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Notes: This figure shows the simulated distribution of per-player expected revenue (in $) across players for the “static” pricing strategies
considered in the left panel of Table 7. All pricing strategies are briefly described in the text and explained in more detail in Appendix
D.2. Static pricing strategies are those in which effective prices do not change among pay-gates. All simulations are based on our
estimates of models (4) and (10) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the
formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Figure 16: Distribution of Per-Player Expected Revenue, Static Pricing Strategies

Mirroring these findings, Table 8 illustrates that each of the alternative pricing strategies

would lead to a loss in per-player consumer surplus. This can be clearly seen in Figure 17,

which shows that the distribution of changes in per-player consumer surplus associated to

each alternative pricing strategy would always have negative support. This makes intuitive

sense, in that each alternative pricing strategy would imply a higher average effective price

than the observed one (of around 10 virtual coins, see left panel of Table 7), enabling the firm

to extract more of the players’ surplus. Importantly, mixed logit model (10) allows players to

drop out of the game at any pay-gate t (by choosing buyi ,t = 0) if, for example, effective

prices were “too high.” In other words, this simulated extraction of consumer surplus is not

conditional on the players being held “captive” in the game, but it is rather based on a more

effective exploitation of their preferences. Appendix Figures A-18– A-22 visualize additional

dimensions of heterogeneity. Although also dynamic counterfactual pricing strategies induce

losses in consumer surplus (Appendix Figure A-18), they usually generate smaller decreases

than their static counterparts (Appendix Figure A-19).

Third, by summing the increases in expected revenue and the decreases in consumer surplus,

Table 8 shows that, on average, the per-player total surplus implied by most of the alternative

pricing strategies would be non-negative (with the exception of “Uniform (70)” and of the

static version of "Ability"). On average, these counterfactual pricing strategies would gen-

erate enough additional expected revenue to compensate the corresponding loss in consumer
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surplus. As the right panel of Table 8 illustrates, the dynamic pricing strategies would perform

slightly better than their static counterparts as a result of a slightly larger increase in expected

revenue (Appendix Figure A-17) and a slightly smaller decrease in consumer surplus (Appendix

Figure A-19). The fact that average per-player total surplus is non-negative suggests that

these pricing strategies would not only enable the firm to extract more of the players’ surplus,

but that they would also not lead to sizeable dead-weight losses—despite the increase in av-

erage effective price of around 10 virtual coins. Figure 18 and Appendix Figure A-23 highlight

the distributional content of this result, stressing that—despite the non-negative average—,

there would always be groups of players associated to negative changes in total surplus.
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Notes: This figure shows the simulated distribution of changes in per-player consumer surplus (in $) across players for the “static”
pricing strategies considered in the left panel of Table 7 as opposed to the observed pricing. All pricing strategies are briefly described
in the text and explained in more detail in Appendix D.2. Static pricing strategies are those in which effective prices do not change
among pay-gates. All simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40 during
the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Figure 17: Distribution of ∆ Per-Player Consumer Surplus, Static versus Observed Pricing

To summarize, our counterfactual simulation results suggest that (i) observed pricing is far

from profit maximizing and leaves a lot of surplus in hands of players, (ii) optimal uniform

pricing would generate most of the returns associated with more complex pricing strategies,

and (iii) each of the pricing strategies considered—including optimal uniform pricing—would

induce a transfer of surplus from the players to the firm without, however, generating any

sizeable dead-weight loss on average.
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Notes: This figure shows the simulated distribution of changes in per-player total surplus (in $) across players for the “static” pricing
strategies considered in the left panel of Table 8 as opposed to the observed pricing. Changes in per-player total surplus are computed
as the sum between changes in per-player expected revenues and in per-player consumer surplus. All pricing strategies are briefly
described in the text and explained in more detail in Appendix D.2. Static pricing strategies are those in which effective prices do not
change among pay-gates. All simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40
during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1
and D.2.

Figure 18: Distribution of ∆ Per-Player Total Surplus, Static versus Observed Pricing

Findings consistent with (i) have been documented in other industries: because of path-

dependence, imperfect information, learning, or conflicting incentives, sometimes for-profit

firms do not maximize profit (Cho and Rust, 2010; DellaVigna and Gentzkow, 2019; Dube

and Misra, 2019; Fioretti, 2020; Hortaçsu et al., 2021; Huang et al., 2020; Orbach and Einav,

2007). Finding (ii) is in line with Chu et al. (2011), who show in the context of a theater

company that simple pricing rules can sometimes generate almost as much profit as complex

ones that would however be hard to implement. Finding (ii) is also close in spirit to Levitt

et al. (2016), who document limited gains of second-degree price discrimination for a large

online gaming firm, and more in general to the empirical literature on the trade-offs of price

discrimination and personalized pricing in the era of big data (Rossi et al., 1996; Shiller and

Waldfogel, 2011; Shiller, 2015; Waldfogel, 2015). Limited gains from price discrimination

may partly explain why it is rarely observed in business practice, where additional risks tied to

consumer backlash and regulatory scrutiny also need to be considered (Council of Economic

Advisors, 2015; DellaVigna and Gentzkow, 2019).

In contrast to our results, however, Dube and Misra (2019) document substantial returns of

personalized pricing for a digital recruiting firm, highlighting the need for caution in drawing

general conclusions. While we do not find any such evidence, in other digital contexts more

complex pricing strategies may be much more profitable. That being said, both our results
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and Dube and Misra (2019) stress the large potential of “empirical” pricing rules. In our

context, the firm could increase per-player expected revenues more than fourfold by optimally

choosing a uniform effective price on the basis of detailed data and appropriate empirical

methods. Importantly, finding (iii) stresses that, although these increases in profit would

necessarily come at the expense of decreases in consumer surplus, the pricing strategies

considered would not generate average losses in total welfare.

6.3 Robustness Checks

In Appendix F.1, we repeat all counterfactual simulations accounting for the predictive biases

of our estimated model as documented in Appendix E. We do this by limiting our counter-

factual simulations to the sub-sample of players in Group 40 for which the estimated model

has the best predictive power. These checks show no qualitative difference in our results and

suggest that theses predictive biases do not play a crucial role for our simulations exercises.

7 Conclusion

Our results indicate that the game developer can substantially increase profit by using basic

information it has readily available on player characteristics and in-game behavior. As ex-

pected, the increase in profit largely results from a transfer of surplus from players to the

firm (Varian, 1989). However, most of the pricing strategies considered do not decrease total

surplus on average. Our results also show that a simple uniform pricing strategy may already

guarantee most of the profit implied by elaborate forms of price discrimination (Chu et al.,

2011), which might help explain why price discrimination has been used sparsely in online

markets.

Our study analyzes price setting in a popular mobile game that, during the period of data

collection, had a number of specific features. While these features and some of our modelling

choices facilitate our empirical analysis, they may also limit the generality of our findings.

First, no advertisement was shown in the game during data collection. With advertisement,

the problem of the firm would differ, in that it could decide to trade-off revenue from in-app

purchases in favor of consumption of game content, possibly by reducing the prices for in-app

purchases. Second, our data show no evidence of a trade-off for the firm between revenue

from pay-gates and other in-app purchases. Similar to advertisement, in other freemium apps

this trade-off may be more prominent and lead to a more complex maximization problem for

the firm. Third, similar to Dube and Misra (2019), our counterfactual simulations treat the

firm as a monopolist and this may cause an overestimation of its market power when choosing

prices for premium content. We believe this assumption to be appropriate in freemium games

such as the one we study, where competition among mobile games occurs mostly before players
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download the game (for free) and then substantially softens after a player has downloaded

and started to play the game (when the prices for premium content are incurred). However,

this may be less applicable to non-freemium contexts in which competing firms charge positive

prices already for the download of their apps.
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APPENDIX

For Online Publication

Discrimination and Big Data: Evidence from a Mobile Puzzle Game

A Appendix: Assumptions

A.1 Further Evidence in Support of Assumption 1
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Notes: This figure compares the propensity to replay a level according to the number of available stars and according to being in
Group 40 or 20. The y-axis variable is, for a given level `, the share of replays which were done when only a single star had previously
been collected at this level (i.e, there are two remaining stars). The sample includes players who have crossed pay-gate 20 but have
no gone beyond pay-gate 40. Among these, we keep only players of Group 40 and 20 who hit pay-gate 20 with a non-positive star
gap. The definition for stars is provided in Section 3.1.

Figure A-1: Group 20 vs Group 40: Prob. to re-play level initially cleared with one star
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Notes: This figure compares the propensity to replay a level according to the number of available stars and according to being in
Group 40 or 20. The y-axis variable is, for a given level `, the share of replays which were done when two stars had previously been
collected at this level (i.e, there are one remaining stars). The sample includes players who have crossed pay-gate 20 but have no
gone beyond pay-gate 40. Among these, we keep only players of Group 40 and 20 who hit pay-gate 20 with a non-positive star gap.
The definition for stars is provided in Section 3.1.

Figure A-2: Group 20 vs Group 40: Prob. to re-play level initially cleared with two stars
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Notes: This figure compares the propensity to replay a level according to the number of available stars and according to being in
Group 40 or 20. The y-axis variable is, for a given level `, the share of replays which were done when three stars had previously been
collected at this level (i.e, there are zero remaining stars). The sample includes players who have crossed pay-gate 20 but have no
gone beyond pay-gate 40. Among these, we keep only players of Group 40 and 20 who hit pay-gate 20 with a non-positive star gap.
The definition for stars is provided in Section 3.1.

Figure A-3: Group 20 vs Group 40: Prob. to re-play level initially cleared with three stars
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Notes: This histogram displays the effective price distribution at pay-gate 60 for Group 20 and Group 40. Each observation is a player
who faces pay-gate 60 with a positive star gap. The sample includes all players of Group 40 and 20 who satisfy this condition.

Figure A-4: Distribution of effective prices pi ,t at pay-gate t = 60
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Notes: This histogram displays the effective price distribution at pay-gate 80 for Group 20 and Group 40. Each observation is a player
who faces pay-gate 80 with a positive star gap. The sample includes all players of Group 40 and 20 who satisfy this condition.

Figure A-5: Distribution of effective prices pi ,t at pay-gate t = 80
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A.2 Relationship between Pay-Gate Purchases and Non-Pay-Gate Purchases

This Appendix provides evidence that purchases outside of pay-gates (i.e., non-pay-gate pur-

chases within the game) are not affected by purchases at pay-gates (i.e., purchases of keys

to unlock pay-gates). This is important to justify our focus on the firm’s revenue from pur-

chases at pay-gates (see Section 4.1). The evidence presented in this appendix suggests that

purchases at pay-gates do not crowd out non-pay-gate purchases. This allows us to analyze

revenue from purchases at pay-gates separately from other in-game purchases.

We do this by relying on the experimental design described in Section 3.2.1 and used to test

Assumption 1 in Section 4.2. In particular, we compare non-pay-gate purchases by players

in Group 20 who faced an additional pay-gate at level 20 with those of players in the other

experimental groups who did not. We consider players in Group 20 with a positive star gap

at pay-gate t = 20 to be “treated” with an additional pay-gate. Players of Group 40 and No

Star with a positive star gap at pay-gate t = 20 are instead considered as the control group,

because they did not face any pay-gate t = 20. We implement this test using two alternative

measures of payment outside of pay-gates. We define two alternative variables measuring

the non-pay-gate purchases by players: “Accumulated Purchases” as the total number of

purchases made by a player between level ` = 21 and level ` = 39 and “Indicator of Purchase”

as a dummy equal to one if “Accumulated Purchases” is greater than zero.

We start by comparing non-pay-gate purchasing behaviors on the basis of t-tests. Table A-1

compares the purchasing behavior of players in Group 20 versus players in No Star, while

Table A-2 compares Group 20 with Group 40. In both cases and for both variables, we find

no statistically significant differences.

(1) (2) (3)
No Star Group 20 No Star−Group 20

mean SE mean SE diff. t-test
Accumulated Purchases 0.061 0.671 0.053 0.506 -0.008 -1.207
Indicator of Purchase 0.023 0.151 0.023 0.149 -0.001 -0.352
Observations 39102 7409 46511

Notes: This table presents evidence on whether facing an additional pay-gate affects the future non-pay-gate purchasing behavior of
Group 20 players relative to No Star players. The variable “Accumulated Purchases” is the number of times a player made a purchase
between levels ` = 21 and ` = 39. The variable “Indicator of Purchase” is instead a dummy equal to one if “Accumulated Purchases” is
positive. The sample includes all 7,409 players in Group 20 and 39,102 in No Star who reached level 20 with a positive star gap, case
in which players in Group 20 faced a pay-gate but those in No Star did not. Columns “No Star” and “Group 20” report the means and
standard errors, respectively, for the players in No Star and Group 20. Column “No Star−Group 20” reports the difference in mean
and associated t-test between the two previous columns. The t-test is calculated assuming unequal variances.

Table A-1: T-test on Non-Pay-Gate Purchases: Group 20 VS No Star

iv



(1) (2) (3)
Group 40 Group 20 Group 40−Group 20

mean SE mean SE diff. t-test
Accumulated Purchases 0.056 0.521 0.053 0.506 0.003 0.330
Indicator of Purchase 0.021 0.143 0.023 0.149 -0.002 -0.840
Observations 8252 7409 15661

Notes: This table presents evidence on whether facing an additional pay-gate affects the future non-pay-gate purchasing behavior of
Group 20 players relative to No Star players. The variable “Accumulated Purchases” is the number of times a player made a purchase
between levels ` = 21 and ` = 39. The variable “Indicator of Purchase” is instead a dummy equal to one if “Accumulated Purchases” is
positive. The sample includes all 7,409 players in Group 20 and 8,252 in Group 40 who reached level 20 with a positive star gap, case
in which players in Group 20 faced a pay-gate but those in Group 40 did not. Columns “Group 40” and “Group 20” report the means
and standard errors, respectively, for the players in Group 40 and Group 20. Column “No Star−Group 20” reports the difference in
mean and associated t-test between the two previous columns. The t-test is calculated assuming unequal variances.

Table A-2: T-test on Non-Pay-Gate Purchases: Group 20 VS Group 40

Next, we compare non-pay-gate purchasing behaviors on the basis of a non-parametric Kolmogorov-

Smirnov test. The Kolmogorov-Smirnov test detects whether the distribution of a variable

differs between two samples. On the basis of the same variables and samples as above, Ta-

bles A-3 and A-2 report the Kolmogorov-Smirnov test results. For each variable, the first

row assesses whether the players in No Star (or in Group 40) have smaller values than the

players in Group 20. The second row instead performs the opposite comparison, assessing

whether the players in Group 20 have smaller values than the players in No Star (or in Group

40). The third row “Combined K-S” is the overall test, which is the maximum between the

previous two rows. In all cases and for both variables, we observe very high p-values suggest-

ing the absence of any significant difference between the players in No Star (or in Group 40)

and those in Group 20. Overall, based on our t-tests and Kolmogorov-Smirnov tests, we do

not find evidence that facing the additional pay-gate at t = 20 affects players’ non-pay-gate

purchasing behavior between levels ` = 21 and ` = 39.

Largest diff. p-value
Accumulated Purchases
No Star 0 1
Group 20 0,001121 0,984466
Combined K-S 0,001121 1
Indicator of Purchases
No Star 0 1
Group 20 0,000667 0,994474
Combined K-S 0,000667 1

Notes: This table presents evidence on whether facing an additional pay-gate affects the future non-pay-gate purchasing behavior of
Group 20 players relative to No Star players. The variable “Accumulated Purchases” is the number of times a player made a purchase
between levels ` = 21 and ` = 39. The variable “Indicator of Purchase” is instead a dummy equal to one if “Accumulated Purchases”
is positive. The sample includes all 7,409 players in Group 20 and 39,102 in No Star who reached level 20 with a positive star gap,
case in which players in Group 20 faced a pay-gate but those in No Star did not. Columns “Largest diff.” and “p-value” report,
respectively, the largest difference and associated p-value for each row on the basis of the Smirnov-Kolmogorov test (where zero
means “no difference”). The first row considers the largest difference between the players in No Star and in Group 20. The second row
considers the largest difference between the players in Group 20 and in No Star. The last row considers the largest overall difference.

Table A-3: Kolmogorov-Smirnov test on Non-Pay-Gate Purchases: Group 20 VS No Star
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Largest Diff. p-value
Accumulated Purchases
Group 40 0,001967 0,970253
Group 20 -0,00125 0,987925
Combined K-S 0,001967 1
Indicator of Purchases
Group 40 0,001967 0,970253
Group 20 0 1
Combined K-S 0,001967 1

Notes: This table presents evidence on whether facing an additional pay-gate affects the future non-pay-gate purchasing behavior
of Group 20 players relative to Group 40 players. The variable “Accumulated Purchases” is the number of times a player made a
purchase between levels ` = 21 and ` = 39. The variable “Indicator of Purchase” is instead a dummy equal to one if “Accumulated
Purchases” is positive. The sample includes all 7,409 players in Group 20 and 8,252 in Group 40 who reached level 20 with a positive
star gap, case in which players in Group 20 faced a pay-gate but those in Group 40 did not. Columns “Largest diff.” and “p-value”
report, respectively, the largest difference and associated p-value for each row on the basis of the Smirnov-Kolmogorov test (where
zero means “no difference”). The first row considers the largest difference between the players in Group 40 and in Group 20. The
second row considers the largest difference between the players in Group 20 and in Group 40. The last row considers the largest
overall difference.

Table A-4: Kolmogorov-Smirnov test on Non-Pay-Gate Purchases: Group 20 VS Group 40

As a final piece of evidence, we estimate the correlation between pay-gate purchases and non-

pay-gate purchases for players in Group 40 (i.e., those who play the standard version of the

game). In Table A-5, we regress measures of non-pay-gate purchases on a dummy variable

equal to one if the player unlocked pay-gate t by purchasing a key. In the first column, we

use as dependent variable the number of non-pay-gate purchases made by the player in the

nineteen levels between the two subsequent pay-gates t and t+20. In the second column, we

instead use a dummy equal to one if the first dependent variable is greater than zero (i.e., the

player makes at least one non-pay-gate purchase in these nineteen levels between pay-gate

t and t + 20). Both regressions include player fixed effects and dropout-level fixed effects

(these control for the specific levels at which players are observed to drop out of the game).

Because of the player fixed effects, the sample includes only the players observed to reach at

least two pay-gates with a positive star gap. In both regressions, the estimated coefficient is

slightly positive but largely non-significant. Both regressions suggest that once we control for

a player’s propensity to make in-app purchases (i.e., player fixed effects), pay-gate t purchases

do not affect subsequent non-pay-gate purchases between levels ` = t + 1 and ` = t + 19.
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Nb. purchases in t < ` < t + 19 Any purchase in t < ` < t + 19

Purchase key at t 0.123 0.0256
(0.178) (0.0252)

Player FE Yes Yes
Dropout-level FE Yes Yes
Observations 2,438 2,438
Nb. Players 1,170 1,170

* p < 0.05, ** p < 0.01, *** p < 0.001
Notes: This table presents evidence regarding the relationship between pay-gate purchases (i.e., purchases of keys to unlock pay-gates)
and non-pay-gate purchases (i.e., other in-app purchases) for the players in Group 40 (i.e., those who play the standard version of the
game). Each column presents OLS estimates of a measure of non-pay-gate purchases on a dummy variable equal to one if the player
unlocked pay-gate t by purchasing a key. The first column reports estimation results for the first measure of non-pay-gate purchases:
the number of non-pay-gate purchases made by the player in the nineteen levels between the two subsequent pay-gates t and t + 20.
The second column instead reports estimation results for the second measure: a dummy equal to one if the first measure is greater
than zero (i.e., the player makes at least one non-pay-gate purchase in these nineteen levels between pay-gate t and and t + 20).
Both regressions include player fixed effects and dropout-level fixed effects (these control for the specific levels at which players drop
out of the game). Because of the player fixed effects, the sample includes the players in Group 40 observed to reach at least two
pay-gates with a positive star gap. Standard errors are clustered at the player level.

Table A-5: Correlation Between Non-Pay-Gate Purchases and Pay-Gate Purchases
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B Appendix: kNN Estimator of Model (4)

B.1 Theory

This description of the kNN procedure we use to estimate each of the two binary choice

models in (4) is based on Altman (1992).

We observe an i.i.d. sample of data {Xi , Yi} for i = 1, ..., N, whereXi is a vector of explanatory
variables and Yi is a binary dependent variable taking values in {0, 1}. The objective is to

estimate the probabilities P r(Yi = 1|Xi) and P r(Yi = 0|Xi) = 1 − P r(Yi = 1|Xi) associated
with explanatory variables Xi without making parametric assumptions. To this end, we select

a neighborhood N(Xi) of points, with cardinality k = |N(Xi)| around Xi and estimate the

sample counter-parts of these probabilities as

ÓP r(Yi = 1|Xi) =

∑

k∈N(Xi ) Yk

k
. (11)

The neighborhood of points N(Xi) for each observed value of Xi depends on two features.

First, the size of the neighborhood denoted generically by the integer k ∈ [1, N]. Second,

the distance between any two points Xj and Xs , denoted by dj,s , is calculated using a metric.

Examples of such metrics include the Euclidean distance (dj,s = (Xj − Xs)(Xj − Xs)′), the
Mahalanobis distance (dj,s = (Xj−Xs)V −1(Xj−Xs)′ where V is the covariance matrix of the

matrix X which stacks the vectors of differences), or more generally the Minkowski distance

(dj,s =
�

∑N
s=1 |Xj −Xs |

p
�1/p

for p ∈ N).23 To make variables comparable, we standardize

(by subtracting the mean and dividing by the standard deviation) each explanatory variable in

Xi . This makes our analysis robust to scale and location distortions.

B.2 Implementation

To select a sufficient number of neighbors k and an appropriate metric d , we search through

various possible combinations. In particular, we follow the approach taken in Mitchell (1997)

and discussed in Mullin and Sukthankar (2000) by selecting the combination that provides

the smallest 5-fold cross validation loss based on the Mean Squared Error MSE(d, k) =
∑N
j=1

�

Yi − Ŷj
�

, where Ŷj is the model’s predicted outcome. The final distance (d), number of

neighbors (k), and 10-fold cross validation error rate for equation (4) are reported in Tables

A-6 and A-7. We observe a 10-fold cross validation error rate between 15% and 30% which

suggests the models are predicting relatively well the underlying probabilities.

23In our implementation, other metrics include the correlation distance, the hamming distance, the cosine
distance, the Chebychev, the Jaccard distance, and the Spearman distance.
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Observations k Distance Error Rate

Pay-gate 40 7,812 62 Standardized Euclidean 14%
Pay-gate 60 1,433 55 Standardized Euclidean 21%
Pay-gate 80 129 10 Hamming 23%

Table A-6: kNN Estimation : P ri ,t(sgi ,t > 0|i → t) for Group 40

Observations k Distance Error Rate

Pay-gate 40 43,660 256 Minkowski 18%
Pay-gate 60 5,205 1,996 Cityblock 28%
Pay-gate 80 917 374 Correlation 14%

Table A-7: kNN Estimation : P ri ,t(i → t + 20) for Group 40

B.3 Validation

To validate our kNN estimates, we first compare their accuracy with respect to the underlying

data. In Figure A-6, we show that the kNN estimates match, on average, the empirical

transition probabilities of equation (4). Moreover, as a sanity check, we display in Figure A-7

the relationship across pay-gates between the estimated probabilities at pay-gate 40 and at

pay-gate 60. As expected, players who are more likely to reach pay-gate 40 are also more

likely to reach pay-gate 60 (conditional on unlocking pay-gate 40) and those who are more

likely to have a positive star gap at pay-gate 40 (conditional on reaching pay-gate 40) are

also more likely to have a positive star gap at pay-gate 60 (conditional on reaching pay-gate

60).
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Notes: This figure displays the average probability of reaching the next pay-gate (left panel) and of having a positive star gap
conditional on having reached a pay-gate (right panel). These probabilities are displayed based on the data (in blue) and based on
the kNN estimates (in red) (described in the main text around equation (4) and above in this Appendix). The sample used is made
of all players in Group 40 who have cleared the previous pay-gates.

Figure A-6: Comparing Observed and kNN Estimates of Probabilities in Model (4)
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Notes: This figure displays the relationship between the probabilities at pay-gate 40 and 60 of reaching the next pay-gate (left panel)
and having a positive star gap (right panel). These binned scatter plots rely on the kNN estimates described in the main text around
equation (4) and above in this Appendix. The sample includes all players in Group 40.

Figure A-7: Binned scatter plot of kNN Estimates of model (4) across Pay-gates
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C Appendix: Demand Estimates

C.1 First Step Estimates, Equation (8)

In this Appendix, we report the first step estimates of equation (8) and then assess the

robustness of our instrument by considering two alternatives.

Figure A-8 shows that the distribution of the instrument Zi ,t based on equation (7) has fat

tails, confirming the presence of wide sample variation.
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Notes: This histogram displays the dispersion of the instrument Zi ,t (based on equation (7)) used to estimate equation (8). The
sample includes all observations in which a player from Group “No Star” faced a pay-gate.

Figure A-8: Histogram of the Instrument (Zi ,t)

Figure A-9 displays a kink in the probability of a non pay-gate purchase when the player

nears the necessary score cut-off, clarifying the type of variation leveraged by the proposed

instrument.
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Notes: This binned scatter plot displays the relationship between the probability of a purchase at a level ` against the instrument Zi ,t .
The instrument Zi ,t is constructed on the basis of equation (7) but adapted for visual inspection as the ratio between the player’s
score and the minimum required to pass the level attempted. On the y-axis, we plot the probability of making a purchase (outside of a
pay-gate) for different values of the instrument on the x-axis. The sample includes all observations of all groups excluding observations
corresponding to pay-gates.

Figure A-9: Binned Scatter Plot of Purchase Probability on the Instrument

Figure A-10 confirms the intuition of the instrument: the left panel shows that the more

often a player marginally failed a level, the more likely she is to face a lower effective price

at the following pay-gate. The right panel illustrates that this is the result of players being

pushed to purchase virtual coins to obtain additional lives or moves while trying to clear those

challenging levels they marginally failed.
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Notes: These binned scatter plots display (left panel) the relationship between the average effective price pi ,t against the instrument
Zi ,t and (right panel) the probability of purchasing virtual coins before reaching the next pay-gate against the instrument Zi ,t . The
instrument Zi ,t is constructed on the basis of equation (7). On the y-axis, we plot residualized averages (i.e, the average residual
from a regression on pay-gate fixed effects) for various values of the instrument on the x-axis. The sample includes all observations
in which players of Group “No Star” faced a pay-gate.

Figure A-10: Binned Scatter Plot of Effective Price on the Instrument

Table A-8 reports the first step estimates of equation (8), which confirms the intuitive patterns
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from Figure A-10. Conditional on controlling for pay-gate fixed effects and player-specific

characteristics Xi (including i ’s ability), there is a negative and highly statistically significant

relationship between the number of times a player marginally failed a round of the game

(Zi ,t) and the effective price (pi ,t). In particular, each marginal failure is found to lower the

effective price by 0.457 virtual coins. The strength of the instrument is reflected in the large

F-statistics. All in all, this Table suggests the instrument to be highly informative.

(1) (2)
Effective Price Effective Price

Instrument Zi ,t (δ) -0.329∗∗∗ -0.457∗∗∗

(0.0355) (0.0359)
Pay-gate fixed effects (ζt) Yes Yes
Player-specific characteristics Xi (γ) No Yes
Observations 44,385 44,385
Num. of players 37,025 37,025
F-statistic 941.9 179.4
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table reports estimates of equation (8), a regression of the instrument Zi ,t based on equation (7) on the effective price
pi ,t . In the first column, we control for pay-gate fixed effects, while in the second we also control for player-specific characteristics
Xi (described in Section 3.1). The specification in the second column is the one we use to construct the control function (equation
(9)) for the estimation of mixed logit (10). The sample includes all observations in which a player in the Group “No Star” faced a
pay-gate: 37,025 different players who faced a total of 44,385 pay-gates. Standard errors are clustered at the player level.

Table A-8: First-Step Estimation, Equation (8)

We now repeat the first step estimation of equation (8) by using two alternatives instru-

ments. We denote by Z(1)
i ,t

our first alternative instrument, which also counts levels the player

marginally cleared:

Z(1)
i ,t
=

t
∑

`=1

1 (0.95× Necessary Score` < Scorei ,` < 1.05× Necessary Score`) (12)

and by Z(2)
i ,t

the second alternative instrument, which decreases the threshold below which a

player is considered to have marginally failed to pass a given level:

Z(2)
i ,t
=

t
∑

`=1

1 (0.90× Necessary Score` < Scorei ,` < Necessary Score`) . (13)

Estimation results are reported in Table A-9, which broadly confirm the robustness of the

instrument Zi ,t to alternative specifications. Varying the definition of the instrument does

not qualitatively affect the negative and significant relationship with pi ,t , as also confirmed

by the stability of the F-statistic across regressions. The magnitude of the estimated coeffi-

cient halves as a consequence of doubling the length of the interval used for the alternative

instruments compared to Zi ,t .
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(1) (2) (3)
Effective Price Effective Price Effective Price

Instrument Zi ,t (δ) -0.457∗∗∗

(0.0359)
Alternative instrument Z(1)

i ,t
-0.267∗∗∗

(0.0196)
Alternative instrument Z(2)

i ,t
-0.231∗∗∗

(0.0189)
Pay-gate fixed effects (ζt) Yes Yes Yes
Player-specific characteristics Xi (γ) Yes Yes Yes
Observations 44,385 44,385 44,385
Num. of players 37,025 37,025 37,025
F-statistic 179.4 181.3 178.8
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Notes: This table reports additional estimation results of equation (8), using alternative definitions of the instrument as in equations
(12) and (13). In the first column, we report estimates using the basic definition of the instrument Zi ,t , while in the second and third
we report estimates using the alternative definitions of the instrument Z(1)

i ,t
and Z(2)

i ,t
. The sample includes all observations in which a

player in the Group “No Star” faced a pay-gate: 37,025 different players who faced a total of 44,385 pay-gates. Standard errors are
clustered at the player level.

Table A-9: Robustness of First Step Estimation, Equation (8)

C.2 Second Step Estimates, Equation (10)

Here we report the second step estimates of mixed logit model (10) and then assess their

robustness using two alternative instruments described by equations (12) and (13) in Table

A-11.

Table A-10 presents our main estimates of the parameters in equation (10). In terms of the

utility of purchasing a key using virtual coins (buyi ,t = 1), we observe that the constant price

coefficient α is negative and statistically significant. The coefficient θ on µi ,t , where θµi ,t
is the control function and µi ,t is estimated using (8) (see Appendix C.1), is positive and

significant (t ≈ 11.28)—confirming the presence of endogeneity in the effective prices.

We asses the robustness of these estimates using two alternative instruments. These in-

struments are described by equations (12) and (13) in Appendix C.1. For each of these

instruments, we re-estimate both the first step equation (8) and the mixed logit model (10).

Table A-11 reports our estimates. Compared with the estimates presented in Table A-10,

we do not observe any change in the signs across the different specifications for coefficients

that are statistically significant. Both the constant associated with the price coefficient (α)

and the control function (θ) are within a 95% confidence interval based on the estimates

of Table A-10 (i.e, respectively [−1.01;−0.68] and [−0.51;−0.36]) suggesting limited differ-

ences across specifications. We conclude that our model estimates are robust to alternative

specifications of the instrument for effective prices.
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Table A-10: Second Stage Estimates

Variable Coefficient Standard Error

Purchase (buyi ,t = 1)

Intercepts (δ1)
Constant (δ1) 64,620 6,365

Intercepts Pay-Gate Shifters (δ1,t)
Pay-Gate 60 (δ1,60) -4,680 0,628

Pay-Gate 80 (δ1,80) 4,054 0,132

Demographics (β1)
Australia and New Zealand -0,452 0,043

Southern Asia -1,455 0,170

Southern Europe -0,112 0,088

Sub Saharan Africa -3,830 0,370

West Asia -3,315 0,372

Eastern Asia 0,258 0,014

Eastern Europe -0,302 0,022

Latin American and Caribbean 2,266 0,189

Northern Africa -5,614 0,536

Northern America -2,489 0,256

Northern Europe -1,976 0,184

Other -4,925 0,568

South Eastern Asia 0,334 0,052

Control Function (θ) 0,440 0,039

Log(GDP per Capita) -1,768 0,179

iOS7 -2,225 0,126

iPad 1,487 0,116

Jailbroken 0,490 0,062

Ability -3,929 0,350

Effective Price Intercept (α)
Constant (α) -0,852 0,083

Effective Price Pay-Gate Shifters
Pay-Gate 60 (α60) 0,036 0,007

Pay-Gate 80 (α80) 0,053 0,008

Effective Price Demographic (π)

Australia and New Zealand 0,017 0,001

Southern Asia 0,019 0,002

Southern Europe 0,004 0,001
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Table A-10: Second Stage Estimates

Variable Coefficient Standard Error

Sub Saharan Africa -0,014 0,000

West Asia -0,015 0,001

Eastern Asia -0,007 0,000

Eastern Europe 0,020 0,003

Latin American and Caribbean 0,022 0,002

Northern Africa -0,222 0,017

Northern America 0,007 0,001

Northern Europe 0,005 0,000

Other 0,005 0,000

South Eastern Asia 0,018 0,002

Log(GDP per Capita) 0,020 0,002

iOS7 -0,002 0,000

iPad -0,001 0,000

Jailbroken -0,018 0,002

Ability 0,006 0,001

Ask a Friend (buyi ,t = 2)

Intercepts (δ2)
Constant (δ2) -43,650 6,696

Intercepts Pay-Gate Shifters (δ2,t)
Pay-Gate 60 (δ2,60) -8,078 1,100

Pay-Gate 80 (δ2,80) -4,662 0,612

Demographics (β2)
Australia and New Zealand -4,307 0,611

Southern Asia -4,406 0,379

Southern Europe -1,531 0,206

Sub Saharan Africa -7,681 0,724

West Asia -3,578 0,456

Eastern Asia -6,415 0,865

Eastern Europe -6,631 0,958

Latin American and Caribbean -1,158 0,108

Northern Africa 0,998 0,312

Northern America -5,635 0,810

Northern Europe 0,334 0,055

Other -3,531 0,281

South Eastern Asia 3,459 0,544
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Table A-10: Second Stage Estimates

Variable Coefficient Standard Error

Log(GDP per Capita) 4,458 0,668

iOS7 1,850 0,248

iPad -1,509 0,223

Jailbroken 1,447 0,109

Ability -0,348 0,036

Covariance Matrix
σδ2,i 10,025 1,491

ρδ2,i ,δ1,i 0,432 0,081

σδ1,i 3,241 0,485

ρδ2,i ,αi -0,043 0,004

ρδ1,i ,αi -0,035 0,003

σαi -0,001 0,000

Notes: This table reports estimation results of equation (10). Standard errors are calculated using the method by Karaca-Mandic
and Train (2003) to account for the two-step nature of the estimation procedure. The estimation procedure is described in Section
5.2 and uses 100 Halton draws per player as detailed by Bhat (2003). Each variable is defined in Section 3.1. The reference region
is Western Europe. The sample includes all observations in which a player in the Group “No Star” faced a pay-gate: 37,025 different
players who faced a total of 44,385 pay-gates.
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Table A-11: Robustness of Second Stage Estimates

Alternative Instrument Z(1)
i ,t

Alternative Instrument Z(2)
i ,t

Variable Coefficient Standard Error Coefficient Standard Error

Purchase (buyi ,t = 1)

Intercepts (δ1)
Constant (δ1) 69,907 4,767 57,527 4,329

Intercepts Pay-Gate Shifters (δ1,t)
Pay-Gate 60 (δ1,60) -5,653 0,470 -4,481 0,175

Pay-Gate 80 (δ1,80) 4,268 0,645 4,384 1,058

Demographics (β1)
Australia and New Zealand -0,677 0,055 -0,643 0,119

Southern Asia -1,748 0,109 -1,424 0,094

Southern Europe -0,419 0,098 -0,181 0,059

Sub Saharan Africa -4,257 0,252 -3,464 0,244

West Asia -3,613 0,196 -2,716 0,128

Eastern Asia 0,061 0,035 -0,014 0,047

Eastern Europe -0,312 0,064 -0,319 0,054

Latin American and Caribbean 2,141 0,571 2,024 0,337

Northern Africa -5,905 0,542 -4,822 0,268

Northern America -2,645 0,030 -1,983 0,095

Northern Europe -2,168 0,106 -1,809 0,101

Other -5,296 0,645 -4,658 0,241

South Eastern Asia 0,277 0,192 0,223 0,055

Control Function (θ) 0,483 0,060 0,418 0,047

Log(GDP per Capita) -1,746 0,281 -1,406 0,055

iOS7 -2,452 0,239 -2,209 0,344

iPad 1,536 0,197 1,321 0,079

Jailbroken 0,601 0,070 0,513 0,037

Ability -4,324 0,614 -3,644 0,351

Effective Price Intercept (α)
Constant (α) -0,913 0,006 -0,742 0,042

Effective Price Pay-Gate Shifters
Pay-Gate 60 (α60) 0,045 0,001 0,030 0,005

Pay-Gate 80 (α80) 0,058 0,001 0,038 0,007

Effective Price Demographic (π)

Australia and New Zealand 0,021 0,001 0,018 0,001

Southern Asia 0,019 0,011 0,011 0,001

Southern Europe 0,004 0,004 0,002 0,002
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Table A-11: Robustness of Second Stage Estimates

Alternative Instrument Z(1)
i ,t

Alternative Instrument Z(2)
i ,t

Variable Coefficient Standard Error Coefficient Standard Error

Sub Saharan Africa -0,012 0,018 -0,012 0,003

West Asia -0,015 0,005 -0,013 0,002

Eastern Asia -0,006 0,010 -0,005 0,001

Eastern Europe 0,025 0,000 0,019 0,000

Latin American and Caribbean 0,025 0,005 0,017 0,001

Northern Africa -0,297 2599 -0,623 5660246

Northern America 0,009 0,002 0,009 0,000

Northern Europe 0,006 0,001 0,005 0,001

Other 0,010 0,005 0,003 0,004

South Eastern Asia 0,017 0,003 0,011 0,001

Log(GDP per Capita) 0,019 0,010 0,015 0,000

iOS7 -0,003 0,000 -0,003 0,000

iPad 0,000 0,001 0,000 0,001

Jailbroken -0,017 0,002 -0,015 0,001

Ability 0,007 0,002 0,004 0,000

Ask a Friend (buyi ,t = 2)

Intercepts (δ2)
Constant (δ2) -65,547 28,772 -51,045 7,597

Intercepts Pay-Gate Shifters (δ2,t)
Pay-Gate 60 (δ2,60) -10,966 2,887 -8,690 0,982

Pay-Gate 80 (δ2,80) -5,752 0,919 -4,531 0,219

Demographics (β2)
Australia and New Zealand -6,424 2,581 -5,020 0,879

Southern Asia -5,733 2,715 -4,081 3,227

Southern Europe -2,080 0,645 -1,700 0,268

Sub Saharan Africa -10,525 5,170 -9,185 5,016

West Asia -5,090 1,872 -3,992 0,572

Eastern Asia -8,789 2,244 -7,007 0,943

Eastern Europe -9,015 1,214 -7,260 0,814

Latin American and Caribbean -1,515 0,203 -1,301 0,335

Northern Africa 1,655 0,567 0,678 1,019

Northern America -8,222 3,084 -6,457 1,013

Northern Europe 0,433 0,095 0,315 0,032

Other -4,723 1,013 -3,657 0,426

South Eastern Asia 5,072 1,795 4,104 0,617
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Table A-11: Robustness of Second Stage Estimates

Alternative Instrument Z(1)
i ,t

Alternative Instrument Z(2)
i ,t

Variable Coefficient Standard Error Coefficient Standard Error

Log(GDP per Capita) 6,554 2,743 5,109 0,724

iOS7 2,622 0,876 2,114 0,343

iPad -2,234 0,858 -1,752 0,318

Jailbroken 1,459 0,672 1,501 0,682

Ability -0,469 0,176 -0,377 0,078

Covariance Matrix
σδ2,i 15,174 5,826 11,948 2,230

ρδ2,i ,δ1,i 1,756 0,103 1,639 0,084

σδ1,i -3,346 1,741 1,719 0,883

ρδ2,i ,αi -0,061 0,004 -0,053 0,013

ρδ1,i ,αi 0,029 0,026 -0,013 0,024

σαi 0,001 0,003 0,000 0,007

Notes: This table reports estimation results of equation (10). Standard errors are calculated using the method by Karaca-Mandic
and Train (2003) to account for the two-step nature of the estimation procedure. The estimation procedure is described in Section
5.2 and uses 100 Halton draws per player as detailed by Bhat (2003). Each variable is defined in Section 3.1. The reference region
is Western Europe. The sample includes all observations in which a player in the Group “No Star” faced a pay-gate: 37,025 different
players who faced a total of 44,385 pay-gates.
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D Appendix: Price Elasticities and Counterfactual Simulations

D.1 Formulae

In this Appendix, we detail the formulae used to compute all our model predictions and

simulations.

Price Elasticity of Demand. For player i at pay-gate t and given ηi , we refer to the

multinomial logit formula as:

MNLi ,t(ηi) =
exp(V1,i ,t(ηi))

1 + exp(V1,i ,t(ηi)) + exp(V2,i ,t(ηi))
,

where, as described in Section 5.2, V1,i ,t(ηi) = δ1 + δ1,t + δ1,i + Xiβ1 − (α + αt + αi +
Xiπ)pi ,t + θµi ,t includes control function θµi ,t , based on (7), (8), and (9), to account for

the potential endogeneity of pi ,t , and V2,i ,t(ηi) = δ2 + δ2,t + δ2,i + Xiβ2. Then, mixed logit

model (10) implies the following price elasticity of demand:

pi ,t

P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t)
∂P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t)

∂pi ,t
=

−pi ,t(α+ αt +Xiπ)
∫

MNLi ,t(ηi)φ(ηi |Σ)dηi

∫

αiMNLi ,t(ηi) (1−MNLi ,t(ηi))φ(ηi |Σ)dηi ,

(14)

where φ(·|Σ) is the normal density of ηi in (6) with Σ denoting its variance-covariance matrix.

Per-Player Expected Revenue. Here we derive the formulae we use to compute the per-

player expected revenue at level 0 in all our simulations with the exception of Figure 13 (which

we instead discuss in the next sub-section). We calculate the per-player expected revenue at

level 0 from pay-gate 40 (and none of the next pay-gates) as:

Ei ,0[Ri ,40(pi ,40)] = P r i ,0(i → 40, sgi ,40 > 0)× P r i ,40(buyi ,40 = 1|locki ,40 = 1, pi ,40)× pi ,40

where P r i ,0(i → 40, sgi ,40 > 0) is i ’s probability of reaching pay-gate 40 with a positive star

gap given that the player is at the beginning of the game, at level 0. This can be simply

expressed in terms of the estimated probabilities in equation (4) as P r i ,0(i → 40, sgi ,40 >
0) = P r i ,40(i → 40, sgi ,40 > 0), given that t = 40 is the first pay-gate i can encounter in

the game. Per-player expected revenue at level 0 from pay-gate 60 (and none of the next

pay-gates) is equal to:

Ei ,0[Ri ,60(pi ,40, pi ,60)] = P r i ,0(i → 60, sgi ,60 > 0)×P r i ,60(buyi ,60 = 1|locki ,60 = 1, pi ,60)×pi ,60.
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where P r i ,0(i → 60, sgi ,60 > 0) is i ’s probability of reaching pay-gate 60 with a positive

star gap given that she is at level 0. We can again express this in terms of the estimated

probabilities in models (4) and (10) as:

P r i ,0(i → 60, sgi ,60 > 0) = P r i ,60(i → 60, sgi ,60 > 0)× P r i ,40(i → 40)×
�

P r i ,40(sgi ,40 > 0|i → 40)× (1− P r i ,40(buyi ,40 = 0|locki ,40 = 1, pi ,40) + (1− P r i ,40(sgi ,40 > 0|i → 40))
�

,

where P r i ,60(i → 60, sgi ,60 > 0) denotes i ’s probability of reaching pay-gate t = 60 with a

positive star gap given that she unlocked pay-gate t = 40, and so on for the other probabilities.

Similarly, we can write the per-player expected revenue at level 0 from pay-gate 80 as:

Ei ,0[Ri ,80(pi ,40, pi ,60, pi ,80)] = P r i ,0(i → 80, sgi ,80 > 0)×P r i ,80(buyi ,80 = 1|locki ,80 = 1, pi ,80)×pi ,80.

where P r i ,0(i → 80, sgi ,80 > 0) is i ’s probability of reaching pay-gate 80 with a positive star

gap given that she is at level 0. This can be expressed in terms of the estimated probabilities

in models (4) and (10) as:

P r i ,0(i → 80, sgi ,80 > 0) = P r i ,80(i → 80, sgi ,80 > 0)×

P r i ,40(i → 40)×
�

P r i ,40(sgi ,40 > 0|i → 40)× (1− P r i ,40(buyi ,40 = 0|locki ,40 = 1, pi ,40) + (1− P r i ,40(sgi ,40 > 0|i → 40))
�

×

P r i ,60(i → 60)×
�

P r i ,60(sgi ,60 > 0|i → 60)× (1− P r i ,60(buyi ,60 = 0|locki ,60 = 1, pi ,60) + (1− P r i ,60(sgi ,60 > 0|i → 60))
�

.

Finally, we calculate the per-player expected revenue from player i at level 0 (from all pay-

gates) given effective prices pi = (pi ,40, pi ,60, pi ,80) as:

Ri ,0(pi) = Ei ,0[Ri ,40(pi) + Ri ,60(pi) + Ri ,80(pi)]. (15)

This is the central expression at the basis of our counterfactual simulations, i.e. what the

firm maximizes when choosing effective prices, and the main focus of the simulation method

described in Appendix D.2.

Revenue Decomposition in Figure 13. Here we derive the formulae used in Figure 13.

While the computation of P r i ,40(buyi ,40 = 1|locki ,40 = 1, pi ,40)× pi ,40 is immediate from the

estimates of model (10), the computation of (1 − P r i ,40(buyi ,40 = 0|locki ,40 = 1, pi ,40)) ×
Ri ,60(pi ,60|pi ,80) requires the calculation of Ri ,60(pi ,60|pi ,80). This in turn can be expressed

as a function of the probabilities estimated in models (4) and (10) as:

Ri ,60(pi ,60|pi ,80) = P r i ,40(i → 60, sgi ,60 > 0)× P r i ,60(buyi ,60 = 1|locki ,60 = 1, pi ,60)× pi ,60

+P r i ,60(i → 60)×
�

P r i ,60(sgi ,60 > 0|i → 60)× (1− P r i ,60(buyi ,60 = 0|locki ,60 = 1, pi ,60) + (1− P r i ,60(sgi ,60 > 0|i → 60))
�

×P r i ,80(i → 80, sgi ,80 > 0)P r i ,80(buyi ,80 = 1|locki ,80 = 1, pi ,80)× pi ,80,

Per-Player Consumer Surplus. Here we derive the formulae we use to compute changes in

per-player consumer surplus at level 0 in all our simulations. The derivations follow closely
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those for the per-player expected revenue above and here we rely on some of the objects

defined there. We calculate the per-player consumer surplus at level 0 from pay-gate 40 (and

none of the next pay-gates) as:

Ei ,0[CSi ,40(pi ,40)] = P r i ,0(i → 40, sgi ,40 > 0)× CSi ,40(locki ,40 = 1|Xi , pi ,40).

Based on standard formulae for mixed logit models (Train, 2009), the per-player consumer

surplus at level 40 from pay-gate 40 is given by:

CSi ,40(locki ,40 = 1|Xi , pi ,40) = Ci ,40 + Ei ,40
�

ln(1 + exp(V1,i ,40(ηi)) + exp(V2,i ,40(ηi)))

(α+ α40 + αi +Xiπ)

�

where Ci ,40 is an unknown player-specific constant. Similarly, per-player consumer surplus at

level 0 from pay-gate 60 (and none of the next pay-gates) is equal to:

Ei ,0[CSi ,60(pi ,40, pi ,60)] = P r i ,0(i → 60, sgi ,60 > 0)× CSi ,60(locki ,60 = 1|Xi , pi ,60),

where

CSi ,60(locki ,60 = 1|Xi , pi ,60) = Ci ,60 + Ei ,60
�

ln(1 + exp(V1,i ,60(ηi)) + exp(V2,i ,60(ηi)))

(α+ α60 + αi +Xiπ)

�

.

In turn, we can write the per-player consumer surplus at level 0 from pay-gate 80 as:

Ei ,0[CSi ,80(pi ,40, pi ,60, pi ,80)] = P r i ,0(i → 80, sgi ,80 > 0)× CSi ,80(locki ,80 = 1|Xi , pi ,80).

where

CSi ,80(locki ,80 = 1|Xi , pi ,80) = Ci ,80 + Ei ,80
�

ln(1 + exp(V1,i ,80(ηi)) + exp(V2,i ,80(ηi)))

(α+ α80 + αi +Xiπ)

�

.

We calculate the per-player consumer surplus at level 0 (from all pay-gates) given effective

prices pi = (pi ,40, pi ,60, pi ,80) as:

CSi ,0(pi) = Ei ,0[CSi ,40(pi ,40) + CSi ,60(pi ,60) + CSi ,80(pi ,80)]. (16)

Finally, for any given two vectors of effective prices pi and p′i , we compute the associated

change in per-player consumer surplus simply as:

∆CSi ,0(pi , p
′
i) = CSi ,0(pi)− CSi ,0(p

′
i).

Note that this difference at the player-level has the important advantage of removing, for

each i , the unknown constants Ci ,40,Ci ,60, and Ci ,80.
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D.2 Simulation Method

Here we describe our simulation procedure both in the case of the observed pricing strategy

chosen by the firm and in the case of the counterfactual pricing strategies we investigate.

In general, to simulate the model, one needs to specify each player’s effective price pi ,t and

corresponding residual µi ,t from equation (8) at each possible pay-gate t.

Observed Pricing Strategy. Even in the case of the observed pricing strategy, because some

players may have dropped out before reaching pay-gate 80, we cannot back out (pi ,t , µi ,t)

directly from the data for all players and pay-gates. To address this missing data problem,

we follow the approach by Jacobi and Sovinsky (2016) and treat the unobserved (pi ,t , µi ,t)

as random effects to be integrated over their empirical distribution.

We are interested in simulating the firm’s expected revenue (16) from player i before they

start to play (at t = 0) for any given vector of effective prices pi = (pi ,40, pi ,60, pi ,80) and

corresponding residuals from equation (8), µi = (µi ,40, µi ,60, µi ,80). To stress the dependence

on both pi and µi , due to the control function in mixed logit model (10), we extend the

notation of per-player expected revenue (16) to explicitly account also for µi , Ri ,0(pi , µi).

For those players who did not reach pay-gate t, we cannot directly back out (pi ,t , µi ,t) but

assume that it follows the same empirical distribution F̂p,µ,t as among those players observed

to reach pay-gate t. In particular, we compute the joint distribution F̂p,µ,t as F̂p,t F̂µ|p,t , the

product of the unconditional distribution of pi ,t and the conditional distribution of µi ,t given

pi ,t . We then approximate the per-player expected revenue

EF̂p,µ [Ri ,0(pi , µi)] =
∫

Ri ,0(pi , µi)dF̂p,µ,40(pi ,40, µi ,40)dF̂p,µ,60(pi ,60, µi ,60)dF̂p,µ,80(pi ,80, µi ,80)

(17)

by taking 10,000 draws of (pd , µd) from F̂p,µ = F̂p,µ,40F̂p,µ,60F̂p,µ,80 for each i and computing

the average:

ÊF̂p,µ [Ri ,0(pi , µi)] =
1

10, 000
×
10,000
∑

d=1

Ri ,0(pd , µd), (18)

where Ri ,0(pi , µi) is derived above in Appendix D.1, equation (16).

Counterfactual Pricing Strategy. In each of the counterfactual pricing strategies described

in Section 6.2 and detailed below, the firm chooses effective prices so to maximize the sum of

per-player expected revenue Ri ,0(pi , µi) in equation (16) (see Appendix D.1) across players

subject to some constraints. To simulate these counterfactuals, we assume that µi is also

unobserved to firm and that its distribution is invariant to the specific pricing strategy used.

More precisely, we assume that µi ,t follows the same empirical distribution F̂µ,t as among

those players observed to reach pay-gate t and that the firm uses F̂µ,t to form expectations
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with respect to µi ,t . We then approximate the per-player expected revenue for a given vector

of effective prices pi

EF̂µ [Ri ,0(pi , µi)] =
∫

Ri ,0(pi , µi)dF̂µ,40(µi ,40)dF̂µ,60(µi ,60)dF̂µ,80(µi ,80) (19)

by taking 10,000 draws of µd from F̂µ = F̂µ,40F̂µ,60F̂µ,80 for each i and computing the

average:

ÊF̂µ [Ri ,0(pi , µi)] =
1

10, 000
×
10,000
∑

d=1

Ri ,0(pi , µd). (20)

Counterfactual Pricing Strategies. Here we detail the optimization problem of the firm

in the simulation of each of the counterfactual pricing strategies described in Section 6.2.

All counterfactuals are computed for the 44, 660 players in Group 40 (those who play the

standard version of the game) over pay-gates 40, 60, and 80.

� Uniform (Optimal) Static Pricing:

(p∗, p∗, p∗) = argmax
p

44,660
∑

i=1

ÊF̂µ [Ri ,0(p, p, p, µi)] .

� Uniform (Optimal) Dynamic Pricing:

(p∗40, p
∗
60, p

∗
80) = argmax

p40,p60,p80

44,660
∑

i=1

ÊF̂µ [Ri ,0(p40, p60, p80, µi)] .

� GDP per Capita Static Pricing for players in ventile G = 1, ..., 20 of GDP per capita:

(p∗G , p
∗
G , p

∗
G) = argmax

pG

∑

i∈G
ÊF̂µ [Ri ,0(pG , pG , pG , µi)] ,

where each ventile G gathers 5% of players in terms of the observed distribution of GDP

per capita.

� GDP per Capita Dynamic Pricing for players in ventile G = 1, ..., 20 of GDP per capita:

(p∗G,40, p
∗
G,60, p

∗
G,80) = argmax

pG,40,pG,60,pG,80

∑

i∈G
ÊF̂µ [Ri ,0(pG,40, pG,60, pG,80, µi)] ,

where each ventile G gathers 5% of players in terms of the observed distribution of GDP

per capita.
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� Ability Static Pricing for players in ventile A = 1, ..., 20 of ability:

(p∗A, p
∗
A, p

∗
A) = argmax

pA

∑

i∈A
ÊF̂µ [Ri ,0(pA, pA, pA, µi)] ,

where each ventile A gathers 5% of players in terms of the observed distribution of ability.

� Ability Dynamic Pricing for players in ventile A = 1, ..., 20 of ability:

(p∗A,40, p
∗
A,60, p

∗
A,80) = argmax

pA,40,pA,60,pA,80

∑

i∈A
ÊF̂µ [Ri ,0(pA,40, pA,60, pA,80, µi)] ,

where each ventile A gathers 5% of players in terms of the observed distribution of ability.

� Individual Static Pricing for player i = 1, ..., 43660:

(q∗i , q
∗
i , q
∗
i ) = argmax

qi
ÊF̂µ [Ri ,0(qi , qi , qi , µi)] .

� Individual Dynamic Pricing for player i = 1, ..., 43660:

p∗i = argmax
pi
ÊF̂µ [Ri ,0(pi , µi)] .

For simplicity, we solve each of these optimization problems using a simple grid search over

effective prices. For each effective price the firm can choose, we specify a grid with intervals of

5 virtual coins going from 0 to 100, [0, 5, 10, ..., 95, 100]. For example, in Uniform (Optimal)

Static Pricing this results in 21 possible combinations of effective prices, while in Individual

Dynamic Pricing in 213 = 9, 261 combinations for each player i = 1, ..., 43660. We then

evaluate the per-player expected revenue for each combination of effective prices and player

and solve the above optimization problems. We do not extend the support of the optimizations

above 100 virtual coins as we never found any optimal effective price to be larger than 70

virtual coins (which is also the maximum value we observe in the data). The step size of 5

virtual coins was selected as a trade-off between precision and required computational time.
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E Appendix: Model Validation

Our simulation exercises rely on the estimated model’s ability to predict player behavior under

counterfactual pricing strategies. In this section, we investigate the predictive power of the

estimated model in terms of a player’s expected revenue. As mentioned at the beginning of

Section 6, while we relied on the players in Group 40 for the estimation of model (4) and on

those in No Stars for the estimation of model (10), we test the model’s predictive power and

perform all counterfactual simulations only with respect to the players in Group 40. Players

in Group 40 face the default design of the game, which corresponds to our discrete choice

model in equation (4).

As can be seen in equation (3), to compute the per-player expected revenue at pay-gate t,

we need to know the effective prices they would face at t and later pay-gates. However, for

those players that drop out of the game before pay-gate t, we do not observe these effective

prices. We address this “missing data” problem as in Jacobi and Sovinsky (2016) and treat the

effective prices as another dimension of unobserved heterogeneity to be integrated over when

calculating expectations. We assume the true t-specific distribution of pi ,t across players,

Ft(pi ,t), can be consistently estimated as the empirical distribution of the observed effective

prices at t, F̂t(pi ,t), and then integrate per-player expected revenue over F̂t(pi ,t) for each i .

In Appendix D.1 we report the formulae used to compute per-player expected revenue (used

also in the counterfactual simulations) and in Appendix D.2 we describe the details of this

simulation procedure (and of the procedure used for the counterfactual simulations). Below

we report our validation results comparing the per-player average observed revenue with its

counterpart as predicted by the estimated model.

The estimated model is very good at predicting the average observed per-player revenue of

$0.011 (from purchases of keys to unlock pay-gates), delivering a t-test as small as −0.09249.
Note that this result is not mechanical, in that the estimated parameters are not chosen to

minimize the distance between observed and predicted revenue, but rather the probabilities of

models (4) and (10). Importantly for the investigation of price discrimination, Figures A-11

and A-12 illustrate the accuracy of the estimated model in predicting revenues for specific

profiles of the observed player-specific characteristics Xi .

Figure A-11 compares the total revenue by geographical region (in $) as observed in the data

against that as predicted by the estimated model across different geographical regions. We

calculate observed total revenue as the sum over 43,660 players in Group 40 of the revenue

collected at pay-gates 40, 60, and 80 in each geographical region during the 15 days of our

sample in 2013. The figure confirms the presence of geographical heterogeneity in total

revenue and that the estimated model is good at capturing it. In general, the geographical

regions for which more revenue is observed (and so for which we have more observations) are

also those for which the estimated model delivers more accurate predictions.
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Notes: This figure compares the total revenue by geographical region (in $) as observed in the data against that as predicted by the
estimated model across different geographical regions. We calculate the observed total revenue as the sum over 43,660 players in
Group 40 of the revenue collected at pay-gates 40, 60, and 80 in each geographical region during the 15 days of our sample in 2013.
The expected total revenue as predicted by our estimated model is based on the simulation procedure detailed in Appendices D.1 and
D.2. The geographical regions are described in Section 3.1 and Appendix G.

Figure A-11: Observed Against Simulated Total Revenue by Region

Figure A-12 compares the total revenue (in $) as observed in the data against that as predicted

by the estimated model across players with different ability (left panel) and from countries

with different GDP per capita (right panel). In particular, the left panel reports results by

deciles (D1 being the lowest and D10 the highest decile) of ability while the right panel by

deciles of log(GDP per capita). We calculate observed total revenue as the sum over 43,660

players in Group 40 of the revenue collected at pay-gates 40, 60, and 80 in each decile during

the 15 days of our sample in 2013. The left panel shows that, when it comes to ability, the

estimated model does a good job at predicting total revenue for 50% of players, those with

ability between the third and the seventh decile. However, it tends to under-predict for most

able players (the top three deciles) and to over-predict for the least able ones (the bottom two

deciles). The right panel of Figure A-12 confirms that, with the exception of the bottom two

deciles of poorest countries, the estimated model is overall good at predicting total revenue

in terms of players’ log(GDP per capita). As we discuss at the end of Section 6 in the main

text, in robustness checks reported in Appendix F.1, we account for these predictive biases

by limiting our counterfactual simulations to the sub-sample of players in Group 40 for whom

the estimated model has better predictive power (deciles D3-D7 of ability and D3-D10 of

GDP per capita).
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Notes: These figures compare the total revenue (in $) as observed in the data against that as predicted by the estimated model across
players with different ability (left panel) and from countries with different GDP per capita (right panel). In particular, the left panel
reports results by deciles (D1 is the lowest decile and D10 the highest) of players’ ability while the right panel by deciles of log(GDP
per capita). Ability and log(GDP per capita) are described in Section 3.1. We calculate the observed total revenue as the sum over
43,660 players in Group 40 of the revenue collected at pay-gates 40, 60, and 80 in each decile during the 15 days of our sample in
2013. The expected total revenue as predicted by our estimated model is based on the simulation procedure detailed in Appendices
D.1 and D.2.

Figure A-12: Observed Against Predicted Revenue by Ability and GDP per Capita
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F Appendix: Additional Simulation Results
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Notes: This figure shows the simulated distribution of effective prices (in virtual coins, where $1 ≈ 70 virtual coins) across players
within each pay-gate for the “dynamic” pricing strategies considered in the right panel of Table 7. All pricing strategies are decreibed
in detail in Appendix D.2. Dynamic pricing strategies are those in which effective prices are allowed to change among pay-gates. All
simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40 during the 15 days of our sample
in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Figure A-13: Distribution of Effective Prices in Dynamic Pricing Strategies
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Notes: This figure shows the simulated distribution of per-player expected revenue (in $) across players for the “dynamic” pricing
strategies considered in the right panel of Table 7. All pricing strategies are described in detail in Appendix D.2. Dynamic pricing
strategies are those in which effective prices are allowed to change among pay-gates. All simulations are based on our estimates of
models (4) and (10) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and
simulation procedures used can be found in Appendices D.1 and D.2.

Figure A-14: Distribution of Per-Player Expected Revenue, Dynamic Pricing Strategies
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Notes: These binscatters display the average gains in per-player expected revenue (in $) of engaging in the “static” pricing strategies
considered in the left panel of Table 7 as opposed to the observed pricing. For each static pricing strategy, we construct 20 groups
of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average group-specific difference in
per-player expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 3.1. All pricing
strategies are briefly described in the text and explained in more detail in Appendix D.2. Static pricing strategies are those in which
effective prices do not change among pay-gates. All simulations are based on our estimates of models (4) and (10) and on the 43,660
players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found
in Appendices D.1 and D.2.

Figure A-15: ∆ Per-Player Expected Revenue, Static versus Observed Pricing
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Notes: These binscatters display the average gains in per-player expected revenue (in $) of engaging in the “dynamic” pricing strategies
considered in the right panel of Table 7 as opposed to the observed pricing. For each static pricing strategy, we construct 20 groups
of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average group-specific difference in
per-player expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 3.1. All pricing
strategies are described in detail in Appendix D.2. Dynamic pricing strategies are those in which effective prices are allowed to change
among pay-gates. All simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40 during
the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Figure A-16: ∆ Per-Player Expected Revenue, Dynamic versus Observed Pricing
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Notes: These binscatters display the average gains in per-player expected revenue (in $) of engaging in the “dynamic” versus the
“static” versions of each of the pricing strategies considered in Table 7. For each pricing strategy, we construct 20 groups of players
based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average group-specific difference in per-player
expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 3.1. All pricing strategies
are briefly described in the text and explained in more detail in Appendix D.2. Static pricing strategies are those in which effective
prices do not change among pay-gates. Dynamic pricing strategies are instead those in which effective prices are also allowed to
change among pay-gates. All simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40
during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1
and D.2.

Figure A-17: ∆ Per-Player Expected Revenue, Dynamic versus Static Pricing
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Notes: This figure shows the simulated distribution of changes in per-player consumer surplus (in $) across players for the “dynamic”
pricing strategies considered in the right panel of Table 8. All pricing strategies are briefly described in the text and explained in more
detail in Appendix D.2. Dynamic pricing strategies are those in which effective prices change among pay-gates. All simulations are
based on our estimates of models (4) and (10) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013.
Details of the formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Figure A-18: Distribution of ∆ Per-Player Consumer Surplus, Dynamic versus Observed
Pricing
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Notes: This figure shows the simulated distribution of changes in per-player consumer surplus (in $) across players of engaging in the
“dynamic” versus the “static” versions of each of the pricing strategies considered in Table 8. All pricing strategies are briefly described
in the text and explained in more detail in Appendix D.2. Dynamic pricing strategies are those in which effective prices change among
pay-gates. Static pricing strategies are those in which effective prices do not change among pay-gates. All simulations are based on
our estimates of models (4) and (10) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the
formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Figure A-19: Distribution of ∆ Per-Player Consumer Surplus, Dynamic versus Static Pricing
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Notes: These binscatters display the average change in per-player consumer surplus (in $) of engaging in the “static” pricing strategies
considered in the left panel of Table 8 as opposed to the observed pricing. For each static pricing strategy, we construct 20 groups
of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average group-specific difference
in per-player expected consumer surplus on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 3.1.
All pricing strategies are briefly described in the text and explained in more detail in Appendix D.2. Static pricing strategies are those
in which effective prices do not change among pay-gates. All simulations are based on our estimates of models (4) and (10) and on
the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can
be found in Appendices D.1 and D.2.

Figure A-20: ∆ Per-Player Consumer Surplus, Static versus Observed Pricing
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Notes: These binscatters display the average change in per-player consumer surplus (in $) of engaging in the “dynamic” pricing
strategies considered in the right panel of Table 8 as opposed to the observed pricing. For each dynamic pricing strategy, we construct
20 groups of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average group-specific
difference in per-player consumer surplus on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section
3.1. All pricing strategies are briefly described in the text and explained in more detail in Appendix D.2. Dynamic pricing strategies
are those in which effective prices change among pay-gates. All simulations are based on our estimates of models (4) and (10) and
on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used
can be found in Appendices D.1 and D.2.

Figure A-21: ∆ Per-Player Consumer Surplus, Dynamic versus Observed Pricing
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Notes: These binscatters display the average change in per-player consumer surplus (in $) of engaging in the “dynamic” versus the
“static” versions of each of the pricing strategies considered in Table 8. For each pricing strategy, we construct 20 groups of players
based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average group-specific difference in per-player
consumer surplus on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 3.1. All pricing strategies
are briefly described in the text and explained in more detail in Appendix D.2. Dynamic pricing strategies are those in which effective
prices change among pay-gates. Static pricing strategies are those in which effective prices do not change among pay-gates. All
simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40 during the 15 days of our sample
in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Figure A-22: ∆ Per-Player Consumer Surplus, Dynamic versus Static Pricing
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Notes: This figure shows the simulated distribution of changes in per-player total surplus (in $) across players for the “dynamic”
pricing strategies considered in the right panel of Table 8 as opposed to the observed pricing. Changes in per-player total surplus are
computed as the sum between changes in per-player expected revenues and in per-player consumer surplus. All pricing strategies are
briefly described in the text and explained in more detail in Appendix D.2. Dynamic pricing strategies are those in which effective
prices change among pay-gates. All simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group
40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1
and D.2.

Figure A-23: Distribution of ∆ Per-Player Total Surplus, Dynamic versus Observed Pricing
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Notes: These binscatters display the average gains in per-player total surplus (in $) of engaging in the “static” pricing strategies
considered in the left panel of Table 8 as opposed to the observed pricing. For each static pricing strategy, we construct 20 groups
of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average group-specific difference in
per-player expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 3.1. All pricing
strategies are briefly described in the text and explained in more detail in Appendix D.2. Static pricing strategies are those in which
effective prices do not change among pay-gates. All simulations are based on our estimates of models (4) and (10) and on the 43,660
players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found
in Appendices D.1 and D.2.

Figure A-24: ∆ in Per-Player Total Surplus, Static versus Observed Pricing
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Notes: These binscatters display the average gains in per-player total surplus (in $) of engaging in the “dynamic” pricing strategies
considered in the right panel of Table 8 as opposed to the observed pricing. For each dynamic pricing strategy, we construct 20 groups
of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average group-specific difference in
per-player expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 3.1. All pricing
strategies are described in detail in Appendix D.2. Dynamic pricing strategies are those in which effective prices are allowed to change
among pay-gates. All simulations are based on our estimates of models (4) and (10) and on the 43,660 players in Group 40 during
the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices D.1 and D.2.

Figure A-25: ∆ in Per-Player Total Surplus, Dynamic versus Observed Pricing

F.1 Robustness Checks

In this Appendix, we repeat all counterfactual simulations limiting the sample of players in

Group 40 to those for whom the estimated model displays the best predictive power in terms

of expected revenue, namely the players with ability in deciles D3-D7 and GDP per capita in

deciles D3-D10. We do this in order to account for the predictive biases of our estimated

model as documented in Appendix E. Overall, these robustness checks show no qualitative

difference in any of our results and suggest that the predictive biases documented in Appendix

E do not play a crucial role in our simulations exercises.
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Static Pricing Dynamic Pricing

Pricing Strategy Effective Price Per-Player Revenue ($) Effective Price Per-Player Revenue ($)

mean s.d. mean s.d. % mean s.d. mean s.d. %
Observed 35,566 34,529 0,014 0,120 - - - - - -
Uniform (70) 70,000 - 0,028 0,008 98.1% - - - - -
Uniform (Optimal) 45,000 - 0,056 0,020 292.4% 10,000 2,450 0,057 0,021 302.3%
GDP per Capita 44,385 1,642 0,056 0,020 292.2% 51,451 11,839 0,058 0,021 304.8%
Ability 45,001 0,075 0,056 0,020 292.4% 53,323 12,059 0,058 0,021 305.1%
Individual Level Pricing 45,603 3,086 0,056 0,020 294.1% 53,418 12,073 0,058 0,021 308.1%

Notes: This table summarizes our counterfactual simulation results in terms of effective prices and per-player expected revenues using
a restricted sample. Each row refers to a pricing strategy and summarizes the simulated effective prices chosen by the firm (in virtual
coins, where $1 ≈ 70 virtual coins) and the corresponding per-player expected revenues (in $). The columns denoted by “%” report the
percentage increase in per-player expected revenue implied by the row pricing strategy with respect to the observed pricing chosen by
the firm (i.e., 0% means same average as the observed pricing). All pricing strategies are briefly described in the text and explained in
more detail in Appendix D.2. The left panel summarizes results for the case in which effective prices do not change among pay-gates
(static pricing). The right panel instead summarizes results for the case in which effective prices are allowed to change also among
pay-gates (dynamic pricing). All simulations are based on our estimates of models (4) and (10). The sample excludes players in Group
40 who are below the 2nd decile in terms of GDP per Capita, below the third decile in terms of ability, and above the seventh decile
in ability. There are 17,719 remaining players. Details of the formulae and simulation procedures used can be found in Appendices
D.1 and D.2.

Table A-12: Robustness Check : Simulation of Effective Prices and Expected Revenue with
Restricted Sample

Static Pricing Dynamic Pricing

Pricing Strategy ∆ Consumer Surplus ($) ∆ Total Surplus ($) ∆ Consumer Surplus ($) ∆ Total Surplus ($)

mean s.d. mean s.d. mean s.d. mean s.d.
Uniform (70) -0,0227 0,0128 -0,0088 0,0115 - - - -
Uniform (Optimal) -0,0441 0,0187 -0,0025 0,0059 -0,0417 0,0181 0,0014 0,0068
GDP per Capita -0,0451 0,0202 -0,0035 0,0077 -0,0412 0,0192 0,0022 0,0085
Ability -0,0441 0,0187 -0,0025 0,0059 -0,0396 0,0178 0,0038 0,0066
Individual Level -0,0443 0,0215 -0,0025 0,0079 -0,0397 0,0207 0,0042 0,0094

Notes: This table summarizes our counterfactual simulation results in terms of per-player consumer surplus and per-player total
surplus, computed as the sum between changes in per-player expected revenue and in per-player consumer surplus using a restricted
sample. Each row refers to a pricing strategy and summarizes the simulated change in per-player consumer surplus and in per-player
total surplus (both in $) with respect to the observed pricing. All pricing strategies are briefly described in the text and explained in
more detail in Appendix D.2. The left panel summarizes results for the case in which effective prices do not change among pay-gates
(static pricing). The right panel instead summarizes results for the case in which effective prices are allowed to change also among
pay-gates (dynamic pricing). All simulations are based on our estimates of models (4) and (10). The sample excludes players in Group
40 who are below the 2nd decile in terms of GDP per Capita, below the third decile in terms of ability, and above the seventh decile
in ability. There are 17,719 remaining players. Details of the formulae and simulation procedures used can be found in Appendices
D.1 and D.2.

Table A-13: Robustness Check : Simulation of Consumer Surplus and Total Surplus with
Restricted Sample
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G Appendix: Data

Table A-14: Countries and Region Assignment

Country Region

Afghanistan Southern Asia

Ãland Islands Northern Europe

Albania Southern Europe

Algeria Northern Africa

American Samoa Other

Andorra Southern Europe

Angola Sub-Saharan Africa

Anguilla Latin America and the Caribbean

Antarctica Other

Antigua and Barbuda Latin America and the Caribbean

Argentina Latin America and the Caribbean

Armenia Western Asia

Aruba Latin America and the Caribbean

Australia Australia and New Zealand

Austria Western Europe

Azerbaijan Western Asia

Bahamas Latin America and the Caribbean

Bahrain Western Asia

Bangladesh Southern Asia

Barbados Latin America and the Caribbean

Belarus Eastern Europe

Belgium Western Europe

Belize Latin America and the Caribbean

Benin Sub-Saharan Africa

Bermuda Northern America

Bhutan Southern Asia

Bolivia (Plurinational State of) Latin America and the Caribbean

Bonaire, Sint Eustatius and Saba Latin America and the Caribbean

Bosnia and Herzegovina Southern Europe

Botswana Sub-Saharan Africa

Bouvet Island Latin America and the Caribbean

Brazil Latin America and the Caribbean

British Indian Ocean Territory Sub-Saharan Africa

Brunei Darussalam South-eastern Asia

Bulgaria Eastern Europe

Burkina Faso Sub-Saharan Africa

Burundi Sub-Saharan Africa

Cabo Verde Sub-Saharan Africa

Cambodia South-eastern Asia

Cameroon Sub-Saharan Africa

Canada Northern America

Cayman Islands Latin America and the Caribbean
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Central African Republic Sub-Saharan Africa

Chad Sub-Saharan Africa

Chile Latin America and the Caribbean

China Eastern Asia

Christmas Island Australia and New Zealand

Cocos (Keeling) Islands Australia and New Zealand

Colombia Latin America and the Caribbean

Comoros Sub-Saharan Africa

Congo Sub-Saharan Africa

Congo, Democratic Republic of the Sub-Saharan Africa

Cook Islands Other

Costa Rica Latin America and the Caribbean

Cote d’Ivoire Sub-Saharan Africa

Croatia Southern Europe

Cuba Latin America and the Caribbean

Curacao Latin America and the Caribbean

Cyprus Western Asia

Czechia Eastern Europe

Denmark Northern Europe

Djibouti Sub-Saharan Africa

Dominica Latin America and the Caribbean

Dominican Republic Latin America and the Caribbean

Ecuador Latin America and the Caribbean

Egypt Northern Africa

El Salvador Latin America and the Caribbean

Equatorial Guinea Sub-Saharan Africa

Eritrea Sub-Saharan Africa

Estonia Northern Europe

Eswatini Sub-Saharan Africa

Ethiopia Sub-Saharan Africa

Falkland Islands (Malvinas) Latin America and the Caribbean

Faroe Islands Northern Europe

Fiji Other

Finland Northern Europe

France Western Europe

French Guiana Latin America and the Caribbean

French Other Other

French Southern Territories Sub-Saharan Africa

Gabon Sub-Saharan Africa

Gambia Sub-Saharan Africa

Georgia Western Asia

Germany Western Europe

Ghana Sub-Saharan Africa

Gibraltar Southern Europe

Greece Southern Europe

Greenland Northern America

Grenada Latin America and the Caribbean
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Guadeloupe Latin America and the Caribbean

Guam Other

Guatemala Latin America and the Caribbean

Guernsey Northern Europe

Guinea Sub-Saharan Africa

Guinea-Bissau Sub-Saharan Africa

Guyana Latin America and the Caribbean

Haiti Latin America and the Caribbean

Heard Island and McDonald Islands Australia and New Zealand

Holy See Southern Europe

Honduras Latin America and the Caribbean

Hong Kong Eastern Asia

Hungary Eastern Europe

Iceland Northern Europe

India Southern Asia

Indonesia South-eastern Asia

Iran (Islamic Republic of) Southern Asia

Iraq Western Asia

Ireland Northern Europe

Isle of Man Northern Europe

Israel Western Asia

Italy Southern Europe

Jamaica Latin America and the Caribbean

Japan Eastern Asia

Jersey Northern Europe

Jordan Western Asia

Kazakhstan Other

Kenya Sub-Saharan Africa

Kiribati Other

Korea (Democratic People’s Republic of) Eastern Asia

Korea, Republic of Eastern Asia

Kuwait Western Asia

Kyrgyzstan Other

Lao People’s Democratic Republic South-eastern Asia

Latvia Northern Europe

Lebanon Western Asia

Lesotho Sub-Saharan Africa

Liberia Sub-Saharan Africa

Libya Northern Africa

Liechtenstein Western Europe

Lithuania Northern Europe

Luxembourg Western Europe

Macao Eastern Asia

Madagascar Sub-Saharan Africa

Malawi Sub-Saharan Africa

Malaysia South-eastern Asia

Maldives Southern Asia
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Mali Sub-Saharan Africa

Malta Southern Europe

Marshall Islands Other

Martinique Latin America and the Caribbean

Mauritania Sub-Saharan Africa

Mauritius Sub-Saharan Africa

Mayotte Sub-Saharan Africa

Mexico Latin America and the Caribbean

Other (Federated States of) Other

Moldova, Republic of Eastern Europe

Monaco Western Europe

Mongolia Eastern Asia

Montenegro Southern Europe

Montserrat Latin America and the Caribbean

Morocco Northern Africa

Mozambique Sub-Saharan Africa

Myanmar South-eastern Asia

Namibia Sub-Saharan Africa

Nauru Other

Nepal Southern Asia

Netherlands Western Europe

New Caledonia Other

New Zealand Australia and New Zealand

Nicaragua Latin America and the Caribbean

Niger Sub-Saharan Africa

Nigeria Sub-Saharan Africa

Niue Other

Norfolk Island Australia and New Zealand

North Macedonia Southern Europe

Northern Mariana Islands Other

Norway Northern Europe

Oman Western Asia

Pakistan Southern Asia

Palau Other

Palestine, State of Western Asia

Panama Latin America and the Caribbean

Papua New Guinea Other

Paraguay Latin America and the Caribbean

Peru Latin America and the Caribbean

Philippines South-eastern Asia

Pitcairn Other

Poland Eastern Europe

Portugal Southern Europe

Puerto Rico Latin America and the Caribbean

Qatar Western Asia

Reunion Sub-Saharan Africa

Romania Eastern Europe
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Russian Federation Eastern Europe

Rwanda Sub-Saharan Africa

Saint Barthelemy Latin America and the Caribbean

Saint Helena, Ascension and Tristan da Cunha Sub-Saharan Africa

Saint Kitts and Nevis Latin America and the Caribbean

Saint Lucia Latin America and the Caribbean

Saint Martin (French part) Latin America and the Caribbean

Saint Pierre and Miquelon Northern America

Saint Vincent and the Grenadines Latin America and the Caribbean

Samoa Other

San Marino Southern Europe

Sao Tome and Principe Sub-Saharan Africa

Saudi Arabia Western Asia

Senegal Sub-Saharan Africa

Serbia Southern Europe

Seychelles Sub-Saharan Africa

Sierra Leone Sub-Saharan Africa

Singapore South-eastern Asia

Sint Maarten (Dutch part) Latin America and the Caribbean

Slovakia Eastern Europe

Slovenia Southern Europe

Solomon Islands Other

Somalia Sub-Saharan Africa

South Africa Sub-Saharan Africa

South Georgia and the South Sandwich Islands Latin America and the Caribbean

South Sudan Sub-Saharan Africa

Spain Southern Europe

Sri Lanka Southern Asia

Sudan Northern Africa

Suriname Latin America and the Caribbean

Svalbard and Jan Mayen Northern Europe

Sweden Northern Europe

Switzerland Western Europe

Syrian Arab Republic Western Asia

Taiwan, Province of China Eastern Asia

Tajikistan Other

Tanzania, United Republic of Sub-Saharan Africa

Thailand South-eastern Asia

Timor-Leste South-eastern Asia

Togo Sub-Saharan Africa

Tokelau Other

Tonga Other

Trinidad and Tobago Latin America and the Caribbean

Tunisia Northern Africa

Turkey Western Asia

Turkmenistan Other

Turks and Caicos Islands Latin America and the Caribbean
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Tuvalu Other

Uganda Sub-Saharan Africa

Ukraine Eastern Europe

United Arab Emirates Western Asia

United Kingdom of Great Britain and Northern Ireland Northern Europe

United States of America Northern America

United States Minor Outlying Islands Other

Uruguay Latin America and the Caribbean

Uzbekistan Other

Vanuatu Other

Venezuela (Bolivarian Republic of) Latin America and the Caribbean

Viet Nam South-eastern Asia

Virgin Islands (British) Latin America and the Caribbean

Virgin Islands (U.S.) Latin America and the Caribbean

Wallis and Futuna Other

Western Sahara Northern Africa

Yemen Western Asia

Zambia Sub-Saharan Africa

Zimbabwe Sub-Saharan Africa
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Figure A-26: Share of Players per Region
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1st gate at level 20 1st gate at level 40 Differences

Stars Stars No stars
(1) (2) (3) (1)-(2) (1)-(3) (2)-(3)

Mean Std. dev. Mean Std. dev. Mean Std. dev.
Avg. Snake Length 5,226 0,817 5,221 0,810 5,223 0,811 0,005 0,003 -0,002
Avg. Move Count 10,399 2,331 10,398 2,315 10,388 2,319 0,002 0,012 0,010
Avg. Final Score 24973,640 6554,295 24963,570 6544,456 24940,420 6570,346 10,070 33,220 23,150
Avg. Rounds per Level 3,932 5,665 3,989 5,787 3,934 5,703 -0,058 -0,002 0,055*
Number of Players 43,218 43,660 205,415

* p < 0.10, ** p < 0.05, *** p < 0.01.
Notes: This table provides evidence of balance between the different experimental groups. The sample includes all players in each
group, as explained in section 3.2. It provides averages and associated t-tests (with unequal variances) across these groups. For the
purposes of comparison, averages are calculated across the first 20 levels of the game, dropping rounds of the game spent on levels
already previously cleared. The average snake length is the per-player average number of consecutive jellies assembled in a round of
the game. The average move count counts instead the number different moves played in the game. The average final score reflects
the aggregate performance of a player in a given round of the game. The average rounds per level is the number of attempts before
first success.

Table A-15: Balance test: Comparison across groups
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