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1 Introduction

Principals (firms, organizations, researchers, innovators) frequently have to rely on a skilled
agent to perform a task. Structuring that relationship is challenging when the task is complex
and the principal does not have all relevant information at her disposal at the time the agent is
hired. Contracts tend to be incomplete and the principal has to decide how much discretion
to leave to the agent. Conflicts of interest favor limiting discretion, while the ability to
communicate decision relevant information to the agent favors expanding discretion. This
motivates our investigation of when and how cheap talk is used as a substitute for contractual
control of the flow of information.

Typical contracts we have in mind are between a service provider (agent) and a client
(principal) in situations with specification uncertainty: an IT firm develops customized soft-
ware for a production company; a contractor oversees construction for a property owner; or, a
laboratory technician preforms experiments for a researcher. These services are performed in
highly complex environments that require a specialized language that makes it hard to write
complete contracts understandable to third parties.1 They are prone to modifications, with
new information becoming available over time: software development needs to be adopted to
changes in demand; property owners have changing needs and preferences that may require
alterations in building plans and materials; new research results may require the redesign of
experiments. While it is the agent who executes the task, the new information is typically
first observed by the principal who has advance knowledge of the overall situation.2

We propose a simple model of a principal contracting with an agent for an action she
cannot take herself. The model captures the three main features of our examples.

The first of these features is that the principal anticipates receiving private information
relevant to the action. Since hiring and explaining the task to the agent takes time, she
cannot defer hiring the agent until all information is available. Hence, the contract needs to
create a framework for delivering information to the agent.

Second, contracts are incomplete. The principal’s ability to contractually tie the agent’s
action to the state is limited – contracts fail to be fully detailed complete. Specifically, she is
constrained to writing a bounded number of clauses, each of which specifies an instruction
to be carried out by the agent and the contingencies for which that instruction applies.

Third, the principal may choose not to cover all states in the contract. If she does so,
the contract has gaps – it is obligationally incomplete.3 For states covered by the contract,

1Crocker and Reynolds (1993) observe in their study of airforce engine procurement that “In practice,
. . . , the costs of identifying contingencies and devising responses increase rapidly in complex or uncertain
environments, placing economic limits on the ability of agents to draft and implement elaborate contractual
agreements.” As a result, one sees “agreements that are left intentionally incomplete with regard to future
duties or contingencies.” Regarding the difficulty of writing contracts that third parties can comprehend,
Banerjee and Duflo (2000) observe that in the customized software industry “The extent to which contracts
can protect . . . is limited by the fact that the desired end-product tends to be complex and difficult to describe
ahead of time in a way that a court . . . would understand . . . ”

2In the context of the construction industry, for example, Chakravarty and MacLeod (2006) refer to the
owner as the principal and the contractor as the agent.

3Ayres and Gertner (1992) introduce this terminology.
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after receiving her private information, the principal issues the instructions specified by the
contract. Ex post it can be verified that the instruction was appropriate for the realized
state and that the agent followed the instruction. For states not covered by the contract,
the principal has the option to use non-binding communication (cheap talk as in Crawford
and Sobel (1982), henceforth CS) to transmit information to the agent.4

We are interested in how the interplay of contracting and (non-binding) communication
impacts the extent and structure of contracting. Obligational incompleteness in our model
is endogenous. When determining the extent of this incompleteness, the principal faces a
tradeoff: a more complete contract gives her more direct control over the agent but sacrifices
flexibility that could be exploited through communication.

We find that optimal contracts have three intuitive properties: they use the maximal
number of available clauses; if the number of available clauses gets large, contracting drives
out communication; and, conversely, if the interests of principal and agent become better
aligned, communication drives out contracting. For the frequently investigated uniform-
quadratic specification of the model (analogous to CS’s leading example), one can be more
specific: If the conflict of interest between principal and agent is large relative to the available
number of clauses, it is optimal to write an obligationally complete contract. Conversely, with
closely aligned incentives it is optimal to leave a gap. Whenever there is a gap communication
induces at least two actions (having a single action induced by communication is never
optimal) – i.e., communication is influential.

In the uniform-quadratic environment, in addition to the relative extent of contract-
ing and communication, we characterize the structure of optimal contracts. We show that
whenever an optimal contract induces influential communication, it splits the communication
region: there are at least two communication actions separated by contract actions. Opti-
mal equilibria are interval partitional; every set of types inducing a contract action forms
an interval by fiat and every set of types inducing a communication action never contains a
condition of the contract in its interior. For sufficiently closely aligned interests, it is also the
case that communication splits the contract region: there are at least two contract actions
separated by a communication action.

The rationale for our “splitting” results can be illustrated with a simple example. Suppose
the principal anticipates learning the realization of one of three possible states. For each
of those states there is a unique action she would like to be taken. The preferences of
the principal and any agent she may hire to take the action are misaligned: the agent
prefers actions to match the state, whereas the principal prefers the action matching the
nearest higher state. This preference misalignment makes truthful communication of all
states impossible. Suppose the principal can impose a simple (incomplete) contract that
mandates that the principal’s favorite action is taken for the intermediate state. With such
a contract in place, the remaining two states can now be truthfully communicated, which
explains the splitting of the communication region. In essence, splitting the communication

4Since it can be verified ex post whether an instruction that was issued was appropriate for the realized
state, the principal cannot disguise a cheap-talk message as an instruction and hope thereby to induce an
action specified in the contract.
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region this way generates common interest for communicating the extreme states. With
more states, it becomes tempting and sometimes feasible to replicate this effect for other
groupings of states; this explains the splitting of the contract region.

The paper is structured as follows. After presenting the model in Section 2, we discuss
our main assumptions. In Section 3, we introduce the communication subgame and study
properties of optimal equilibria in a general framework. We describe properties of optimal
contracts in Section 4 under the assumption of having a uniform type distribution and
quadratic payoff functions with a constant bias. Section 5 offers simple examples of optimal
contracts and extensions. We discuss related literature in Section 6. In the final section we
summarize our findings and suggest possible directions for future work. All proofs are in the
appendix.

2 Model

We consider a game between a principal, P , and an agent, A. They interact in two phases.
In the first phase, prior to receiving private information about the state of the world, the
principal writes a contract. The contract determines how information is dealt with in the
second phase. It consists of a list of contract clauses. Each clause specifies a subset of the
state space and the action to be taken by the agent for state realizations in that set.5 By
assumption, there is a finite bound on the number of clauses in any contract. The principal
may elect to write a contract that does not cover all states of the world. For states not
covered by the contract a communication game is played.

The payoff and information structure closely follows CS. The players’ payoffs, UP (y, θ, b)
for the principal and UA(y, θ) for the agent, depend on the agent’s action y ∈ R, the state
of the world θ ∈ [0, 1], and a parameter b > 0 that measures the divergence of preferences
between the principal and the agent. For notational convenience, we sometimes suppress
the dependence of the principal’s payoff on the bias parameter b and write UP (y, θ) instead
of UP (y, θ, b). The state is drawn from a common prior distribution F with continuous
density f that is positive everywhere; f(θ) > 0 for all θ ∈ [0, 1]. The payoff functions
U i, i = P,A, are assumed to be twice continuously differentiable. Denoting derivatives by
subscripts, we assume that the payoff functions are strictly concave in the agent’s action,
U i
11 < 0; the sorting conditions U i

12 > 0 hold; and, for all θ, there are actions yi(θ) such that
U i(yi(θ), θ) = 0. We assume that the principal’s ideal point exceeds the agent’s ideal point,
i.e., yP (θ) > yA(θ) for all θ ∈ [0, 1].

At the beginning of the contract-writing game G, the principal writes a contract C =
{(Ck, xk)}Kk=1. The contract specifiesK clauses (Ck, xk), k = 1, . . . , K. There is an exogenous

maximal number of clauses K̂.6 Each clause (Ck, xk) consists of a condition Ck ⊆ [0, 1] and
an instruction xk ∈ R. The interpretation is that if condition Ck holds – i.e., θ ∈ Ck is

5Note that we assume that there are no transfers, and therefore there is no incentive provision through
contingent transfers.

6This corresponds to a limiting case of having a writing cost function that is increasing in the number of
clauses (see, e.g., Dye (1985)). Writing costs are zero for the first K̂ clauses and prohibitive thereafter.
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realized – then the agent is instructed to take the action y = xk. Contracts must satisfy:
Ck′ ∩Ck′′ = ∅ for all k′ ̸= k′′ (to avoid contradictions); Ck is an interval for each k = 1, . . . , K
(motivated by keeping contracts simple);7 and

⋃K
k=1 Ck is a closed set. Denote the lower

(upper) endpoint of the interval Ck by Ck (Ck). For any δ ∈ R, we refer to the clause
(Ck + δ, xk + δ) as the δ-translation of the clause (Ck, xk) and to the condition Ck + δ as
the δ-translation of the condition Ck.

8 We allow for an empty contract without clauses, in
which case we adopt the convention that K = 0. An obligationally complete contract covers
the entire state space, in which case

⋃K
k=1 Ck = [0, 1]. Denote the set of all contracts by

C. Sometimes, it will be convenient to highlight the maximal number of clauses and the
principal’s bias, in which case we make the dependence on these parameters explicit and
write G(K̂, b) for the contract writing game.

After the contract C is written and observed by the agent, the state θ is realized and
privately observed by the principal. For any state covered by the contract – e.g., θ ∈ Ck′ –
the instruction stipulated for that state, xk′ , is implemented. For any state not covered by
the contract C, the principal sends a message m ∈ M to the agent, where M is an infinite
measurable space. After observing the principal’s message, the agent takes an action y ∈ R.

Every contract C induces a communication subgame, ΓC, in the event that the state θ
belongs to the gap L(C) := [0, 1] \

⋃K
k=1Ck in the contract, i.e., θ ∈ L(C). In this communi-

cation subgame, the commonly known type distribution F C is the prior F concentrated on
the set L(C). If the contract C is empty, we denote the resulting communication subgame
by Γ0. The game Γ0 is simply a CS game. A (behavior) strategy σ : L(C) → ∆(M) of the
principal in the communication subgame ΓC maps states to distributions over messages. A
strategy ρ : M → R for the agent in ΓC maps messages to actions. Given the strict concavity
of the agent’s utility in his action, the restriction to pure agent strategies is without loss of

generality. A strategy of the principal
(
C;
(
σC′)

C′∈C

)
in the contract-writing game G specifies

a contract C and for every possible communication subgame ΓC′
a strategy σC′

. A strategy

of the agent
((

ρC
′)

C′∈C

)
in the game G specifies a strategy ρC

′
for every possible communi-

cation subgame ΓC′
. We are interested in principal-optimal subgame-perfect equilibria of the

contract-writing game G(K̂, b), denoted by e(K̂, b). We refer to these equilibria as optimal
equilibria and to contracts chosen in them as optimal contracts.

2.1 Discussion of modeling choices

Contractual incompleteness in our model is meant to reflect the difficulty of clarifying lan-
guage to the point where it becomes comprehensible to third parties. It is difficult to describe
precisely which actions are to be taken, and for which states. In addition, it is costly to put
in place measurement and record keeping systems that make the language meaningful and
verification possible. As a result the principal economizes on contract writing.

7Sets other than intervals require more detailed and, therefore, more costly descriptions.
8Here, for any set C ⊂ R and any δ ∈ R, C + δ denotes the Minkowski sum of the sets C and {δ} – i.e.,

C + δ := {c′ ∈ R|∃c ∈ C s.t. c′ = c+ δ}.
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We focus on the case where language is an issue vis-à-vis third parties but not between
the principal and the agent. Imagine the principal hiring the agent for a research project.
Principal and agent share a common terminology that is not familiar to the population
at large. Then it takes resources to clarify details of the research in a language that is
understandable for third parties.

Contracts in our model are lists of clauses, prescribing instructions for intervals of states.
Instructions are precise; we do not consider the difficulty of writing detailed instructions.
The principal does, however, face a tradeoff when choosing the sizes of conditions to which
instructions apply. Given the finite bound on the number of instructions, having an instruc-
tion apply to a narrowly defined condition implies sacrificing accuracy for other states.

Having conditions be intervals captures the intuition that it is easier to write contracts
that treat similar circumstances similarly. Intervals are fully described by their boundaries.
This motivates our focus on the number of conditions, rather than their size. Our main
results, in Section 4, on splitting the communication region and splitting the contract region
would not change if we assumed a writing cost function that is increasing in the number
of clauses, starts from a low level, and is unbounded; this could also accommodate some
dependence of costs on the size of conditions. Our results on splitting the communication
region would remain equally unaffected if we permitted limited precision of instructions in
the form of noisy instructions or instructions that are sets of states.

A key feature of our model is that the principal can vary the degree of obligational com-
pleteness by choosing which contingencies to cover by the contract. In the terminology of
Crocker and Reynolds (1993), our principal may choose “agreements that are left intention-
ally incomplete.” Bajari and Tadelis (2001) and Banerjee and Duflo (2000) suggests that in
procurement contracting design uncertainty gives rise to endogenous incompleteness.

We assume that the details of the contract and its implementation can be verified by a
court ex post. Establishing a language for contract clauses serves precisely to make these
clauses verifiable. By contrast, cheap-talk messages from communication subgames are not
verifiable, either because they are insufficiently documented or the language is not shared
with the court. Thus, the key idea is that the act of writing the contract makes the details
of the contract and its implementation verifiable ex post. In this sense, we propose a model
of endogenous verifiability.9 Note that only conditions need to be made verifiable ex post,
not the exact states.

At the interim stage, when the principal communicates with the agent, nothing is verifi-
able: the principal can not prove the state to the agent, regardless of whether it is governed
by the contract or not. She either issues an instruction or she recommends an action to the
agent; knowing the contract the players can differentiate these. Only ex post can the court
verify whether appropriate instructions were given and actions matched those instructions.
Ex post verifiability makes it possible that contracts are enforced and adhered to.

We assume that the contract is written before the principal observes the state. The agent

9Kvaløy and Olsen (2009) note that that “careful contracting” can improve verifiability. Like in our
model, endogenous verifiability is a source of endogenous contractual incompleteness. In their model private
information is absent and hence, only verifiability of actions is at issue.
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needs to be present when the action has to be taken, and the hiring process takes time. This
provides the incentive for having a long-term contract, rather than waiting for the state to be
realized and then writing a spot contract.10 In addition, it may be necessary for the principal
to provide the agent with job-specific training and/or with firm-specific information prior to
the agent taking the action. This can be seen as a relationship specific investment that the
contract helps protect. The training or information also helps explain why bargaining power
shifts to the agent in those states not covered by the contract: it makes the agent more
valuable after being hired. The agent has no private information and the principal has no
problem observing the agent’s action. Hence, there are no adverse selection or moral hazard
problems.

The timing of uncertainty in our model is characteristic of many procurement problems,
including jet engine procurement (Crocker and Reynolds (1993)), the customized software
industry (Banerjee and Duflo (2000)), and the construction industry (Bajari and Tadelis
(2001)). According to Bajari and Tadelis “. . . uncertainty about many important design
changes that occur after the contract is signed and production begins . . . ” is a common
feature of procurement contracting. They note that because of this design uncertainty “the
procurement problem is primarily one of ex post adaptations rather than ex ante screening.”

The role assignment of principal and agent is guided by the main applications we have
in mind and it helps us organize results. It is not crucial for some of the key results that
characterize the form of optimal contracts. Our results on splitting the communication
region go through if we switch the roles of principal and agent or have the contract designer
maximize social surplus. Likewise, a version of our result on splitting the contract region
holds if the roles of the players are switched (we indicate in the paper where this is the case).

3 General features of optimal equilibria

3.1 Communication subgames

For every possible contract C, the corresponding communication subgame ΓC satisfies all
the assumptions of CS, except that the type distribution does not have full support (on
[0, 1]). As a result, key characteristics of equilibria that do not depend on the full support
assumption carry over. Since we make use of these characteristics throughout, we list them
here for convenience.

For a strategy profile (σC, ρC) in communication subgame ΓC, we say that a communication
action y is induced by that profile if there is a type θ and a message m in the support of
σC(θ) such that ρC(m) = y. If, in addition, (σC, ρC) is an equilibrium profile, we say that
action y is induced in equilibrium. Given any measurable set Φ ⊆ [0, 1] with Prob(Φ) > 0,

10Spot contracting is also not free from language concerns. Therefore, it may not be possible to write a
satisfactory spot contract at a moment’s notice. If instead the language for the spot contract is developed in
advance, it will be necessary to endow it with the ability to prescribe different actions in advance. This raises
the complexity of spot contracts, making them more akin to the types of long-term contracts we consider
here.
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we define y∗i(Φ) := argmaxy
∫
Φ
U i(y, θ)dF (θ), the optimal action for i = A,P given prior

beliefs concentrated on Φ.
As in CS, because of the conflict of interest between principal and agent, full revelation

of information is ruled out in equilibrium. Moreover, since the principal’s bias is everywhere
bounded away from zero, there has to be a minimal distance between equilibrium actions:
types of the principal meant to induce the lower of two sufficiently close equilibrium actions
otherwise would have an incentive do deviate and induce the higher action. Hence, there
is a finite upper bound on the number of equilibrium actions that does not depend on the
contract C and the type distribution F C that the contract induces.11

If the actions that are induced in equilibrium are 0 < y1 < y2 < . . . < yn−1 < yn < 1,
there are n + 1 critical types 0 = θ0 < θ1 < θ2 < . . . < θn−1 < θn = 1 such that type θj
is indifferent between actions yj and yj+1 for j = 1, . . . , n − 1. We follow the convention of
referring to the indifference requirement for critical type θj, j = 1, . . . , n− 1, as that type’s
arbitrage condition

UP
(
y∗A ((θj−1, θj) ∩ L(C)), θj, b

)
− UP

(
y∗A ((θj, θj+1) ∩ L(C)), θj, b

)
= 0.

In an equilibrium that induces n actions, we refer to the interval (θj−1, θj) as step j, for
j = 1, . . . , n. We call an equilibrium that induces n actions an n-step equilibrium and say
that it is influential if n > 1.

Observe that a critical type may belong to a condition and therefore, unlike in CS, critical
types do not necessarily bound the sets of types who induce a communication action. Given
a communication action y, inf{θ ∈ [0, 1]|θ induces y} bounds the set of types who induce y
from below, and sup{θ ∈ [0, 1]|θ induces y} bounds it from above. We refer to the interval
with these bounds as endpoints as a communication interval. For an illustration, see Figure
1. The critical type θ2 belongs to the condition C1 and the communication intervals are
given by (0, θ1), (θ1, C1), (C1, θ3), and (θ3, C4). Note that the set of types inducing action
y3 is a strict subset of the step (θ2, θ3), and the set of types inducing action y4 is a strict
subset of the communication interval (θ3, C4).

3.2 Contract-writing games

Optimal equilibria of contract writing games have three intuitive properties: they make use of
the maximal number of available clauses; as the maximal number of clauses grows large, they
crowd out communication; and, conversely, with strongly aligned preferences communication
drives out contracting. The following proposition formalizes these observations. For the third
part, we impose the following continuity property: for any sequence of biases {bi}∞i=1 with
limi→∞ bi = 0 and any sequence {e(bi)}∞i=1 of optimal equilibria in the games {Γ0(bi)}∞i=1, the
principal’s payoffs in those equilibria converge to

∫
[0,1]

UP (yP (θ), θ, 0)dF (θ).12

11This is formalized as Lemma A.1 in the appendix.
12Spector (2000), Agastya, Bag and Chakraborty (2015), and Dilmé (2018) provide conditions on primitives

that ensure that this continuity property holds.
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Figure 1: Contract with conditions Ci and instructions xi for i = 1, 2, 3, 4, 5 and induced
4-step equilibrium with critical types θ1, θ2, θ3 and actions yj for j = 1, 2, 3, 4.

Proposition 1 For every K̂ and b > 0, let LK̂,b be a gap arising in an optimal equilibrium

of the contract-writing games G(K̂, b) and C = {(Ck, xk)}Kk=1 be an optimal contract. Then,

(1) K = K̂;
(2) limK̂→∞ Prob(LK̂,b) = 0,∀b > 0; and,

(3) limb→0 Prob(LK̂,b) = 1,∀K̂ ≥ 1.

The first property (use of the maximal number of available clauses) follows from two simple
observations: In the absence of any clause, the principal can replace one of the steps of any
equilibrium in the communication subgame Γ0 by a condition and replace the correspond-
ing equilibrium action by her favorite action for that condition. If, instead, the candidate
optimal contract already includes at least one clause, she can split the corresponding con-
dition and prescribe her favorite actions for each of the newly created conditions. In both
cases, the incentive constraints for communication remain satisfied and there is a strict payoff
improvement for the principal.13

13It is perhaps worth noting that the literature has found that, sometimes, prima facie useful and readily
available clauses will not be included in a contract. Allen and Gale (1992) and Spier (1992) have pointed out
that in the presence of asymmetric information agents may prefer non-contingent contracts. This is the case
when proposing a contingent contract would send an unfavorable signal. Bernheim and Whinston (1998)
observe that if some aspects of performance are non-verifiable, it may be advantageous not to include other,
verifiable, aspects in a contract. In essence, once a contract needs to be incomplete in some dimensions, the
contract will give rise to some form of strategic interaction. In that case, there can be instances in which
the quality of that strategic interaction can be improved by not specifying some obligations, even when they
are verifiable. In our case, the signaling aspect is absent and while there is strategic interaction for states
not covered by the contract, any given contract that does not use all available clauses can be improved upon
without impacting the strategic interaction.
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To understand the second property (contracting crowds out communication), note that
as the number of clauses grows without bound, one can approximate the principal’s first-best
(full information) payoff with obligationally complete contracts. On the other hand, since
there is an upper bound on the number of actions that can be induced with communication,
for any set of types that has positive probability the payoff from communication is bounded
away from the first-best payoff. Hence, the sizes of the gaps in optimal contracts cannot
remain bounded away from zero.

The intuition for the third property (communication drives out contracting) is similar:
When the bias gets small, one can approximate the principal’s first best with equilibria in
the communication subgame Γ0, without any contract clauses. In contrast, with only a finite
number of possible contract actions, on any contract region that has positive probability the
payoff is bounded away from the first best.

4 Optimal contracts in the uniform-quadratic environ-

ment

The previous section highlights key forces driving endogenous incompleteness: with greater
ease of contracting, contracts substitute for communication, and with closer incentive align-
ment communication substitutes for contracting. The interplay of contracting and communi-
cation, however, impacts not only the extent but also the structure of optimal contracts and
of communication in optimal equilibria. In this section we examine these structures under
the assumptions that payoff functions are quadratic with the principal having a constant
positive bias, that is, UP (y, θ, b) = −(θ + b − y)2 and UA(y, θ) = −(θ − y)2, and that the
type distribution is uniform on [0, 1].

Given a contract C = {(Ck, xk)}Kk=1, we call a union of conditions Ck that is connected
and not contained in a larger connected union a condition cluster, C. We find that whenever
the optimal contract induces influential communication, it splits the communication region:
there are at least two communication intervals that are separated by condition clusters.
Intuitively, splitting the communication region removes the temptation for small misrepre-
sentations of the state. At the same time, since interests are partially aligned, both principal
and agent benefit from communication to convey large differences between states. Condition
clusters can be used as a wedge between two communication regions, so that it becomes in
the common interest of principal and agent to indicate whether the state belongs to one or
the other.

4.1 Contracts split communication

A sufficient condition for a single condition cluster to be optimal is that K̂ ≥ 1
2b
. In that

case any optimal contract is obligationally complete and all K̂ conditions are of equal size. A
necessary and sufficient condition for optimality requiring influential communication is that

9



K̂ < 1
2b
, and as a consequence it is never optimal to have one-step communication.14 The

following proposition shows that no condition cluster can be strictly inside of a communica-
tion interval. Moreover, if there is influential communication, there is at least one condition
cluster that contains an interior critical type.

Proposition 2 Suppose that the contract C = {(Ck, xk)}K̂k=1 is optimal in the contract-
writing game G, and the equilibrium eC is optimal in the communication subgame ΓC. Then,
for every condition cluster C, there is a critical type θ ∈ C. If, in addition, the equilibrium
eC is influential, then there is a condition cluster C and a critical type θ ̸= 0, 1 with θ ∈ C.

Proposition 2 establishes an interesting interaction between contracts and communica-
tion. The principal uses contract clauses to separate events that induce distinct communica-
tion actions. This is beneficial because it relaxes incentive constraints in the communication
subgame, and the relaxation of incentive constraints makes it possible to equalize the size
of communication intervals relative to pure cheap talk.15 This highlights the dual role of
contracting as both substituting for and facilitating communication.

To prove the first part of Proposition 2, we start with any contract that does not satisfy
the properties indicated in the proposition. We proceed by modifying that contract in several
steps. We ensure in each step that the principal’s payoff increases: the typical argument is
that properly translating a condition cluster increases shorter communication intervals while
it decreases longer intervals. Once all steps are completed, we check that we have obtained
an equilibrium.

In the first step, we use the fact that there can be no more than one condition in any
communication interval (see Lemma A.3 in the appendix). We consider a candidate for
an optimal contract C and a corresponding equilibrium eC with a communication interval
containing a single condition in its interior. We then translate that condition to the lower
bound of the communication interval. The new contract is C0. In the second step, we adjust
the strategies in the communication game such that, locally (between any two adjacent
condition clusters), incentive compatibility is restored. The resulting game is called ΓC1 ,
with contract C1 = C0. We sketch steps one and two in Figure 2.

In order to restore incentive compatibility locally, we have to raise the action yi+2. This
makes the action less attractive for the type θ̃ that is at the top at the newly created condition
cluster (see Figure 3 for an illustration). In fact, it may make action yi+1 more attractive
than yi+2. In the third step, we address incentive-compatibility problems of this kind – that
is, for types that are separated by condition clusters. To do so, we identify the highest
condition cluster such that a type θ̃ at the upper boundary of that cluster prefers to deviate
to a message inducing an action below the cluster. In multiple steps that maintain the local
equilibrium conditions, we properly translate the respective condition cluster upwards to
restore incentive compatibility for type θ̃. The resulting contract is C2. We iterate the third
step for all lower condition clusters to obtain a global equilibrium.

14We verify these two facts in Proposition A.1 in the appendix.
15A similar effect arises in Kolotilin, Li and Li (2013). There the agent has the power to commit a set of

actions from which to chose.
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Step 0: C
θ

θi θi+1 θi+2

yi yi+1 yi+2 yi+3

Step 1: C0
θ

θi θi+1 θi+2

yi yi+1 yi+2 yi+3

Step 2: C1
θ

θi θi+2

yi yi+1 yi+2 yi+3

Figure 2: Sketch of the first two steps in the first part of the proof of Proposition 2.

Step 2: C1
θ

θ̃θi θi+2

yi yi+1 yi+2 yi+3

Step 3: C2
θ

θi θi+2

yi yi+1 yi+2 yi+3

Figure 3: Sketch of the third step in the first part of the proof of Proposition 2.

To prove the second part of Proposition 2, we show that the principal’s payoff can be
increased when more than one action is induced in equilibrium and all condition clusters are
at the extremes. For an illustration of the steps in the argument, see Figure 4.

The first panel of Figure 4 shows a contract C with a single condition located at the left
extreme of the type space and a corresponding three-step communication equilibrium. We
replace contract C by a new contract C ′ that translates the condition upwards such that the
first critical type θ1 becomes its new upper boundary. Since we do not change the length
of any communication interval, payoffs remain the same. However, type θ1 now strictly
prefers action y2 over y′1. Moreover, the length of the communication interval inducing
action y′1 is smaller than the length of the communication interval inducing y2. Together,
this implies that we can translate the condition further upwards to Cλ while maintaining
incentive compatibility and increasing payoffs. This shows that the contract C that we
started with cannot be optimal.

As a consequence of Proposition 2, we obtain that optimal equilibria of the contract-
writing game G are partitional and monotonic:

Corollary 1 Suppose that the contract C = {(Ck, xk)}K̂k=1 is part of an optimal equilibrium
eG in the contract-writing game G and induces an optimal n-step equilibrium eC in the
communication subgame ΓC. Then, the equilibrium eG is

1. partitional – there is a partition T =
{
T1, T2, . . . , TK̂+n

}
of the type space [0, 1] into
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C:
θ

0 1

x

θ1 θ2

y1 y2 y3

C′:
θ

0 1

x′

θ1 θ2

y′1 y2 y3

Cλ:
θ

0 1

xλ

θλ1 θλ2

yλ1 yλ2 yλ3

Figure 4: Second part of proof: payoff improvement by translations.

intervals such that each T ∈ T is either a condition of C or a communication interval
in eC; and,

2. monotonic – for any two partition elements T, T ′ ∈ T , with T ̸= T ′ and inf(T ′) ≥
sup(T ), the actions a(T ′) and a(T ) taken for states in T ′ and T satisfy a(T ′) > a(T ).

While the partitional structure given in Part 1. is an immediate consequence of Propo-
sition 2, monotonicity requires slightly more thought. The relevant case to consider is the
one in which a communication interval T ′ is directly above a condition T . For this case,
we show in the appendix, if we had a(T ′) ≤ a(T ) (and keeping in mind that a(T ′) is the
agent-optimal action on T ′ and a(T ) is the principal-optimal action on T ), we could form a
new contract clause (T ∪ T ′, a(T ) + ϵ) that, for sufficiently small ϵ, would result in a payoff
improvement for the principal, resulting in a contradiction. This implies that any optimal
equilibrium of G is monotonic.

Proposition 2 and Corollary 1 continue to hold under alternative assumptions about the
allocation of bargaining power between the principal and the agent and about the nature of
instructions. Both remain true if the contract, instead of maximizing the principal’s payoff,
maximizes either the agent’s payoff or weighted social surplus. The same is true if we replace
instructions that specify single actions by instructions that specify sets of possible actions or
allow for randomness in the specification of actions. To see this, recall that the proposition
is proved by translating condition clusters of contracts that violate the properties stated in
the proposition. We can decompose the ex ante payoff of whoever writes the contract into
a contract payoff, which is derived from states governed by the contract, and a communi-
cation payoff, which is derived from the remaining states. Translating condition clusters
affects only the communication payoff and ex ante, as long as the size of the communication
region remains fixed, principal and agent have the same preferences over communication
payoffs. Therefore, the properties of instructions influence the proportion of states allocated
to communication and contracting, but not the structure of optimal equilibria.

12



4.2 Communication splits contracts

The next result shows that with close enough incentive alignment, communication splits the
contract region: not all condition clusters can be composed of more than three conditions.
Hence, when K̂ > 3, there are at least two condition clusters that are separated by one or
more communication intervals. Intuitively, when a condition cluster is large, in the sense of
being composed of more than three conditions, there is considerable slack in the incentive
constraints relevant for the nearest communication actions above and below the cluster.
That makes it tempting to break up the cluster and use the conditions made thus available
to relax incentive constraints elsewhere, where they were binding before the breakup.

Proposition 3 For sufficiently small b > 0, any optimal contract contains a condition clus-
ter with no more than three conditions.

The following corollary is an immediate consequence of Proposition 3.

Corollary 2 With K̂ > 3 and sufficiently small b > 0, in any optimal contract there are at
least two condition clusters.

To prove the proposition, we start by considering the problem of the principal maximiz-
ing her expected payoff subject to the conditions that each cluster is composed of at least
four conditions and that incentive constraints for communication hold between but not nec-
essarily across clusters. Since this problem ignores some of the incentive constraints, we call
it the “relaxed problem.” We show that one can improve on the solution to the relaxed prob-
lem by splitting up one of the clusters and that this improvement respects global incentive
constraints.

The argument proceeds as follows. For sufficiently small b > 0, for any solution of the
relaxed problem there is at least one communication area with two or more communication
steps. We ‘zoom in’ on a cluster adjacent to such a communication area. We then consider a
scaled version of the relaxed problem with one cluster bordered by one or two communication
areas. We take the communication area with more than two steps and switch the step that
is adjacent to the cluster with the adjacent condition. We show, that after the switch we
have incentive compatibility across clusters and that all incentive constraints across clusters
are slack. This is immediate for the new one-condition cluster. For the remaining cluster
it follows from two facts: (1) the cluster is is composed of three or more conditions and
(2) the solution of the relaxed problem imposes constraints on the lengths of conditions.
The incentive constraints across clusters being slack makes it possible to translate clusters
in a way that leads to more equal lengths of communication intervals. This improves the
principal’s expected payoff. For an illustration, see Figure 5.

To establish the corollary, we only need to show that having a single cluster cannot be
optimal. For any solution of the relaxed problem with only a single cluster, we can switch
the communication area below and above the cluster and still have a solution. We can
therefore assume that for sufficiently small bias there is at least two-step communication
below the cluster in a solution to the relaxed problem. In this case, the proof of Proposition
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Step 0: C
θ

Zooming in:
θ

0 1

Switching:
θ

0 1

Translating:
θ

0 1

Improvement:
θ

Figure 5: Sketch of the steps in the proof of Proposition 3.

3 goes through, when either the agent writes the contract or the principal only specifies
the conditions and not the actions in the contract. Thus, the corollary continues to hold if
instead of the principal the agent writes the contract, leaving all else unchanged. The same
is true for the case in which the principal only specifies the conditions in the contract, but
the agent is free to choose an action for each condition.

5 Examples and extensions

Suppose that payoff functions are quadratic and the type distribution is uniform on [0, 1].

Consider G(K̂, b) = G
(
1, 1

3

)
, the contracting game with maximally one clause and a bias

b = 1
3
. Let C∗

n(K, b) denote a contract that is optimal among contracts that have K con-
ditions and induce n-step communication, and let C∗(K, b) be an overall optimal contract
with K conditions. For biases b > 1

4
there is no contract in the game G(1, b) that induces

an equilibrium with more than two communication actions. The reason is that any two
equilibrium actions in an induced cheap-talk game ΓC must be at least a distance 2b apart.
Therefore, there are four candidates for optimality: a standard cheap talk game with no
contract; an obligationally complete contract with no communication; and contracts with
1-step, or 2-step communication. An optimal contract in this example maximizes the prin-
cipal’s expected payoff among the optima of these four options.

We find that the optimal contract with 2-step communication C∗
2(1,

1
3
) is unique and

dominates the two optimal contracts with 1-step communication, which are better than the
optimal obligationally complete contract, which improves upon having no contract.

The overall optimal contract C∗(1, 1
3
) = C∗

2(1,
1
3
) solves the following maximization prob-

lem:
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C +

(
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)
4

− b ∈ [C,C].

The first and the third term in the objective function are the principal’s expected pay-
offs conditional on the lower and the upper communication action being taken; the middle
term is the principal’s expected payoff conditional on the contract action being taken. By
Proposition 2, the condition cannot be in the interior of a communication interval and thus
θ1 ∈ [C,C].

The solution is unique and given by C∗(1, 1
3
) = {([0.157, 0.843], 0.833)}, where C =

[0.157, 0.843] is the condition and x = 0.833 the corresponding instruction. See the top
left panel of Figure 6, for an illustration. The optimal contract induces two communication
actions, y1 and y2, while without a contract, the maximal feasible number of communication
actions would be one. In this sense, contracting facilitates communication. Notice that the
two communication intervals are of equal length. This can be achieved because the contract
relaxes incentive constraints for types adjacent to the contract condition. As long as those
constraints are slack, it pays to shift the condition in the direction of equalizing the lengths of
communication intervals. Note further that the possibility of equalizing the intervals depends
on the bias: for b = 1

13
for example, the optimal contract is such that all communication

intervals are of different length. Moreover, as illustrated in the bottom left panel in Figure 6,
they are not monotonically increasing. This contrasts with non-trivial communication in CS
equilibria, where higher communication actions are associated with longer communication
intervals.

C∗(1, 13): θ
0 1

xy1 y2

θ1

C∗(2, 13): θ
0 1

x1 x2

C∗(1, 1
13): θ

0 1

xy1 y2 y3

θ1 θ2

C∗(2, 16): θ
0 1

x1 x2y1 y2 y3

θ1 θ2

Figure 6: Left: optimal contracts, with K̂ = 1 and b = 1
3 ,

1
13 . Right: optimal contracts with K̂ = 2 and

b = 1
3 ,

1
6 .

We indicate how the optimal contract changes with the parameters b and K̂ in the right
panels of Figure 6. In the top panel, we keep b = 1

3
and relax the constraint on the number

of conditions by letting K̂ = 2. In that case, the unique optimal contract is obligationally
complete with the two conditions dividing the state space into two equal-length intervals,
C∗(2, 1

3
) = {([0, 0.5), 0.583) , ([0.5, 1] , 1.083)}.
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In the bottom panel, we lower the bias to b = 1
6
and keep K̂ = 2. There is a unique opti-

mal contract C∗(2, 1
6
) = {([0.101, 0.449] , 0.442) , ([0.551, 0.899] , 0.891)}, which induces three

communication actions. This is, again, more than the maximal number of two actions that
can be induced in an equilibrium of the communication game without contracting. Hence,
if we keep the bias fixed while increasing the bound on the number of clauses, contracting
drives out communication. If, instead, we lower the bias while fixing the upper bound on
the number of contract clauses, communication replaces contracting.

5.1 Non-constant Bias

Suppose that instead of the principal’s bias being constant at b = 1
3
, it is state dependent

and of the form b(θ) = 1
3
+ 1

30
θ. Continue to assume that the players’ loss functions are

quadratic and the state is uniformly distributed on [0, 1].
The structure of the optimal contract is the same as for a constant bias, it allows for two

communication actions. In particular, we have C∗
b

(
1, 1

3
+ θ

30

)
= {([0.183, 0.905], 0.895)}.

C∗ (1, 13):
C∗
b

(
1, 13 + θ

30

)
: θ

0 1

x

xb

y1 y2
y1b y2b

θ1

θ1b

Figure 7: Optimal contracts with constant bias b = 1
3
on top (blue) and with state-dependent

bias b(θ) = 1
3
+ 1

30
θ below (black).

For an illustration see Figure 7. The condition on top of the axis refers to the optimal
contract with constant bias while the condition below the axis indicates the optimal contract
with state-dependent bias. The figure illustrates the intuitive impact of an increasing bias:
the optimal condition shifts upwards and the size of the condition increases. The principal
prefers covering states with a higher bias to covering states with a smaller bias, because
under communication the agent’s action diverges more from the principal’s preferred one.

Note that for a larger increase of the bias, the upper communication interval can vanish.
For example, with b(θ) = 1

3
+ 1

10
θ the optimal contract C∗

b

(
1, 1

3
+ θ

10

)
= {([0.284, 1], 1.040)}

induces one communication step that is below the condition.

5.2 Nonuniform Distribution

Instead of the state being uniformly distributed, assume now that it is distributed on [0, 1]
with density f(θ) = 9

10
+ 2

10
θ. Maintain that the players’ loss functions are quadratic and

that there is a constant bias b = 1
3
.

The optimal contract has one communication action below and one above the condition
and is given by C∗

f

(
1, 1

3

)
= {([0.184, 0.885], 0.876)}. For an illustration, see Figure 8 the

contract below the axis.
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Figure 8: Optimal contracts for a uniform distribution on top and with distribution f(θ) =
9
10

+ 2
10
θ below.

For the distribution with an increasing density compared to a uniform distribution, the
optimal instruction as well as the optimal condition shift upwards. The principal prefers
covering states that occur more frequently in the contract rather than states that have a
lower probability: for states covered by the condition the principal gets her preferred action
rather than the agent’s preferred action. The contract is used to relax incentive constraints,
and thereby makes communication feasible, when otherwise it would not be.

5.3 Transfers

For the main analysis, we abstain from modeling transfers from the principal to the agent.
Two common uses of transfers in the literature do not apply to our setup. Under moral
hazard, the agent needs to be incentivized to take particular actions; here, however, actions
that are governed by the contract are fully under the control of the principal. Under screen-
ing, the principal tries to gather information about the agent’s private type, whereas in our
setup the agent does not have private information. The following example considers the case
in which the principal needs to pay a fixed wage to hire the agent. The wage payment is a
non-contingent transfer agreed upon as part of the contract offer and acceptance.

If we assume that both the principal’s and and agent’s payoffs are quasi-linear in the
wage and that the principal’s wage offer needs to meet an individual rationality constraint
for the agent, it follows that the principal’s problem reduces to maximizing weighted social
surplus. That is, the principal maximizes W (y, θ, b) = −(1− α)(θ + b− y)2 − α(θ − y)2 for
some α ∈ (0, 1). The weight α is a function of the importance that principal and/or agent
attach to the wage payment relative to the payoffs UP and UA, which derive from the action
taken. If, for example, the agent cares primarily about the wage and little about the action
utility UA, then, all else equal, α will be small, and we approximate the setup used in the
rest of the paper.

Consider, for example, a bias of b = 1
3
and a weight α = 0.01 on the agent’s payoff, which

corresponds to a slight departure from the setup without transfers that we consider in our
main analysis. The optimal contract with transfers allows for two-step communication and is
given by C∗

t (1,
1
3
) = {([0.160, 0.840], 0.830)}. For an illustration see Figure 9. The condition

on top of the axis refers to the optimal contract without transfers while the condition below
the axis indicates the optimal contract with transfers.

Since the introduction of a transfer changes the principal’s problem to one closer to
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Figure 9: Optimal contract with transfers for b = 1
3
and α = 0.01.

joint-surplus maximization, the principal has to take the agent’s payoff into account. It
is, therefore, intuitive that the optimal instruction decreases in the direction of the agent-
preferred action, which is at the midpoint of the condition. Moreover, the trade-off between
communication (agent-optimal action) and contract (principal-optimal instruction) becomes
less extreme. As a result, the length of the condition shrinks.16

6 Related Literature

Simon (1951) is the first to draw attention to the importance of contractual incompleteness.
He notes that many contracts take the form of an “employment contract.” An employment
contract, in exchange for a fixed wage, transfers authority to the principal rather than
providing a detailed specification of the agent’s action. In our setting, also, the principal
forgoes a detailed specification of the agent’s actions, but unlike in Simon (1951), for actions
not controlled by the contract, authority resides with the agent, and the principal resorts to
communication to influence the agent’s action.

Writing costs are sometimes used to rationalize contractual incompleteness. Dye (1985)
is the first to make writing and monitoring cost explicit. He notes that contracts with
specifications so detailed that they are sensitive to every state are prohibitively expensive to
write. The contracts he considers consist of finite lists of clauses, with conditions partitioning
the state space. The cost of writing a contract is increasing in the number of clauses.

Battigalli and Maggi (2002) explore the foundations of writing costs by making the
language in which contracts are written explicit. A contract specifies a list of clauses and a
transfer. Clauses map contingencies into instructions. More elaborate clauses require more
“primitive sentences” and are therefore more costly. This results in two types of contractual
incompleteness: rigidity – insufficient dependence on the state of the world; and discretion
– insufficient precision in the prescription of behavior. Our environment also gives rise to
rigidity and discretion: whenever the optimal contract does not cover all states, the state
space splits into a contracting region and a communication region. We have rigidity in

16For the case of joint-surplus maximization, i.e., α = 1
2 , the optimal contract is C∗

t (1,
1
3 ) =

{[0.104, 0.646], 0.542}. As expected, the condition is shorter and the instruction closer to the midpoint
of the condition, compared to a contract with smaller α. Note that the clause is not at the center of the
state space; the length of the condition is short relative to the size of the bias, and therefore to maintain
incentive compatibility the condition has to be moved towards zero.
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the contracting region and discretion in the communication region. Greater alignment of
interests, which facilitates communication, favors discretion, and vice versa.

Shavell (2006) (see also Schwartz and Watson (2013)) studies the impact of contract
interpretation by courts on the writing of contracts. Again, contracts are lists of clauses,
each comprised of a condition and an instruction.17 Because of writing costs, contracts may
contain gaps – sets of states not covered by any condition. One role of interpretation is to
fill gaps, another to replace stated with interpreted clauses. The prospect of interpretation,
like the prospect of communication in our setting, shapes how contracts are written.

Since Simon (1951), the interplay of information and authority has played an important
role in the study of organizations. Aghion and Tirole (1997) distinguish the right to make
a decision (formal authority) from the power to influence a decision (real authority). Either
the principal or the agent has formal authority. Real authority requires information that
players can acquire at a cost. There is no explicit model of communication.

Dessein (2002) examines the conditions under which an uninformed principal cedes au-
thority to a better-informed agent.18 He adopts an incomplete contracting approach in which
authority, but not actions, can be contracted upon. The principal has a choice between dele-
gating decision rights to the agent and making decisions herself after communicating with the
agent. In our setting, the principal has the informational advantage but may cede authority
to the agent if sufficiently closely aligned incentives make communication attractive.

In Deimen and Szalay (2019) the principal can choose whether to delegate decision rights
to an agent or to rely on communication with the agent. Depending on the principal’s choice,
the agent decides how much and what kind of information to acquire. In contrast, in our
setup there is communication when the decision rights are left with the agent, and it is from
the principal to the agent.

Aumann and Hart (2003), Golosov, Skreta, Tsyvinski and Wilson (2014), and Krishna
and Morgan (2004) examine different versions of models with repeated cheap talk. One
feature that these models have in common with ours is that new communication opportunities
may arise as the result of subsets of types having been removed: if at some stage the sender
sends a message that is only used by a strict subset of types, at the following stage the
receiver can concentrate beliefs on the remaining types. Removing types may facilitate
communication for the remaining types since fewer incentive constraints have to be dealt
with. In Aumann and Hart (2003) and Krishna and Morgan (2004) types exit because they
prefer not to take their chances in a jointly controlled lottery. In Golosov et al. (2014)
types are induced to exit by receiver actions that follow each communication round. In our
setting, types are removed from the communication game by being covered by a condition
in the contract.

In Krishna and Morgan (2008) an uninformed principal contracts with an informed agent.

17Heller and Spiegler (2008) allow for contradictory clauses, in which conditions overlap, but the corre-
sponding instructions differ.

18In the literature on optimal delegation (See, for example, Holmström (1977), Holmström (1984),
Melumad and Shibano (1991), Szalay (2005), Alonso and Matouschek (2008), Kováč and Mylovanov (2009),
and Amador and Bagwell (2013)), the uninformed principal decides how to optimally constrain the decision
rights of the informed agent.
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Like in our setup, the assumptions about the type distribution and payoff functions follow
CS. Unlike in CS and unlike in our setup, the principal writes a contract with message
contingent payments. Under full commitment the contract specifies both payments and
decisions as functions of messages. Under partial commitment the contract specifies only
message contingent payments, and the principal retains decision making power. With full
commitment full revelation is possible, but not optimal. The principal distorts decisions in
order to reduce transfers. With partial commitment, full revelation remains possible and
not optimal. In the uniform-quadratic example, there is full revelation on a portion of the
state space combined with no separation and no payment on the remainder. With strong
misalignment of preferences, contracts are of no use with only partial commitment.

We abstain from modeling transfers explicitly in the main analysis, consistent with Bat-
tigalli and Maggi (2002), Shavell (2006), Dessein (2002), and others. In our environment,
transfers play no role in providing incentives to supply information or to induce actions.

7 Conclusion

Our exploration suggests that when it is difficult to write detailed contracts, there may be
a role for non-binding communication. The communication option affects both the scope
and the form of contracts that we expect to observe. Greater ease of writing contracts and
stronger divergence of incentives favor expanding the scope of optimal contracts. With suffi-
ciently strong divergence of interests, contracts will tend to be obligationally complete. With
more closely aligned interests, in contrast, we expect influential communication. Contracts
of the appropriate form can help create and enhance a role for communication: The insertion
of contract clauses between communication events relaxes incentive constrains for communi-
cation. Separating communication events in this manner effectively creates common interest
between the contracting parties to have (at least) those events be communicated.

In our formalization of these ideas we have maintained a clean distinction of contracts
and communication. For states governed by contracts there is no further cheap-talk com-
munication and for the remaining states there is a well-defined cheap-talk game that can
be analyzed in isolation. In future work, one may want to relax this complete decoupling
of contracts and communication. With imperfect enforcement of contract clauses, for ex-
ample, at the interim stage the principal would sometimes prefer to send one of the cheap
talk messages, rather than insist on having the applicable contract clause enforced. One
may also want to allow for contract clauses that leave room for communication in states
where the clauses apply. We expect the takeaway from our paper, that optimal contracts
reflect concerns with communication incentives and sometimes facilitate communication, to
go through. Working out the details will be more delicate when contracts no longer induce
isolated cheap-talk games.
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A Appendix

Lemma A.1 There exists an ε > 0, uniform over all communication subgames ΓC, such that
for every equilibrium in ΓC and all actions y and y′ induced in that equilibrium, |y − y′| ≥ ε.
There is an upper bound on the number of actions that are induced in equilibrium that is
uniform across all communication subgames

Proof. This is essentially a restatement of CS’s Lemma 1. That ε is uniform over all
communication subgames follows from the fact that the type distribution plays no role in
the proof. 2

Lemma A.2 For all b ≥ 0 and all η > 0, there exists a γ > 0 such that for all Φ ⊆ [0, 1]
with Prob(Φ) ≥ η,∫

Φ

UP (yP (θ), θ, b)dF (θ)−
∫
Φ

UP (y∗P (Φ), θ, b)dF (θ) > γ.

Proof. By continuity of f and compactness of [0, 1], f is bounded. Therefore, for all δ > 0
there is an ε0 > 0 such that for all Φ ⊆ [0, 1] with Prob(Φ) > δ, ℓ(Φ) > ε0 (where ℓ denotes
Lebesgue measure). Hence, for all δ > 0 there is an ε1 > 0 such that for all Φ ⊆ [0, 1] with
Prob(Φ) > δ, for all θ ∈ [0, 1] there exists Ψ ⊆ Φ such that |θ − θ′| > ε1 for all θ′ ∈ Ψ and
ℓ(Ψ) > ε1. This and the fact that y∗P (Φ) is the ideal point of some type θ(Φ) ∈ [0, 1] imply
that for all δ > 0 there is an ε1 > 0 such that for all Φ ⊆ [0, 1] with Prob(Φ) > δ, there
exists Ψ ⊆ Φ such that |θ(Φ)− θ′| > ε1 for all θ′ ∈ Ψ and ℓ(Ψ) > ε1.

Since the derivative of yP is strictly positive and continuous it has a strictly positive
lower bound. Therefore, for all ε1 > 0 we can find ε2 > 0 such that for all θ, θ′ ∈ [0, 1] with
|θ− θ′| > ε1, we have |yP (θ)− yP (θ′)| > ε2. This and the continuity of UP imply that for all
ε1 > 0 we can find ε3 > 0 such that for all θ, θ′ ∈ [0, 1] with |θ−θ′| > ε1, we have U

P (yP (θ), θ)
- UP (yP (θ′), θ) > ε3. This, the fact that f is everywhere positive, and the observation at the
end of the previous paragraph imply the statement. 2

Proof of Proposition 1.
Part (1) Suppose C is an optimal contract in G(K̂, b). If the contract is empty, K = 0, or
the union of conditions has probability zero, then ΓC is a CS game. Hence, each equilibrium
action in an equilibrium of ΓC is induced by an interval of types. Consider an optimal
equilibrium eC of ΓC. Since there are only finitely many equilibrium actions, there is an
action ŷ that is induced with positive probability. Let [θ, θ] be the closure of the set of types
who induce action ŷ in eC. For every ε > 0 such that τ +ε < θ, there is a set [τ, τ +ε] ⊂ [θ, θ]
with y∗A([τ, τ + ε]) = ŷ. Evidently, also y∗A

(
[θ, θ] \ [τ, τ + ε]

)
= ŷ. Since yP (θ) ̸= yA(θ)

and both yP and yA are continuous and [0, 1] is compact, there exists ε0 > 0 such that
|yP (θ) − yA(θ)| > ε0 for all θ ∈ [0, 1]. Continuity of yP and yA and compactness of [0, 1]
further imply that there exists δ > 0 such that |yP (θ) − yA(θ + δ)| > ε0 for all θ ∈ [0, 1].
Hence, if we choose ε < δ then y∗P ([τ, τ + ε]) > y∗A([τ, τ + ε)] = ŷ. Hence, the alternative
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contract C ′ = {(C1, x1)}, where C1 = [τ, τ +ε)] and x1 = y∗P ([τ, τ +ε]) allows an equilibrium
eC

′
in ΓC′

in which types outside of [τ, τ + ε] induce the same actions and receive the same
payoffs as in the equilibrium eC in ΓC, while the principal is strictly better off if condition
C1 is realized. It follows that K ≥ 1, and therefore an optimal contract is never empty.

Consider any contract C with K < K̂ and an optimal equilibrium in the communication
game ΓC. Consider replacing the contract C by a contract C ′ that splits the condition
CK = [CK , CK ] (taking the condition CK to be closed is without loss of generality) into

two conditions C̃K = [CK , C̃) and ˜̃CK = [C̃, CK) with CK < C̃ < CK and leaves all other

clauses unchanged. Then UP
11 < 0 and UP

12 > 0 imply that y∗P (C̃K) < y∗P (CK) < y∗P ( ˜̃CK),
which implies that the principal is strictly better off under the new contract, conditional on
the event CK being realized, while incentives in the communication games ΓC′

and ΓC are
identical. This implies that optimal contracts must have K = K̂.

Part (2) Suppose not. Then there is a b > 0 and a sequence of gaps (LK̂,b)
∞
K̂=1

arising

in optimal equilibria e(K̂, b) of G(K̂, b) with a subsequence (LK̂i,b
)∞i=1 and κ > 0 such that

Prob(LK̂i,b
) > κ for all i. From Lemma A.1, there is an upper bound N̂ on the number of

actions induced in any equilibrium of any communication subgame. Hence for every K̂i,
i = 1, . . . , there is an action that is induced by a subset ΦK̂i

of LK̂i,b
that has at least

probability κ

N̂
. Hence, by Lemma A.2 there exists ε > 0 such that∫

Φ
K̂i

UP (yP (θ), θ)dF (θ)−
∫
Φ

K̂i

UP (y∗P (ΦK̂i
), θ)dF (θ) > ε

for all i = 1, . . . . This implies that for every i = 1, . . . the principal’s payoffs in e(K̂i, b) are
bounded from above by ∫

[0,1]

UP (yP (θ), θ)dF (θ)− ε.

Continuity of yP follows from the maximum theorem and uniform continuity from the
fact that [0, 1] is compact. By assumption UP is continuous. Uniform continuity of UP

follows from compactness of
[
minθ∈[0,1] y

P (θ),maxθ∈[0,1] y
P (θ)

]
× [0, 1]. For any K̂, partition

the interval [0, 1] into K̂ equal length intervals I1 := [θ0, θ1] and Ik := (θk−1, θk], k = 2, . . . , K̂.

For each K̂ = 1, 2, . . ., define the function UP
K̂

: [0, 1] → R by the property that UP
K̂
(θ) =

UP (yP (θk), θ) for all θ ∈ Ik and all k = 1, . . . , K̂. Then
∫
[0,1]

UP
K̂
(θ)dF (θ) is the principal’s

payoff from writing the contract CK̂ = {(Ck, xk)}K̂k=1 where Ck = Ik and xk = yP (θk). Uniform

continuity of yP and UP imply that for any ε̃ > 0 we can choose K̂ sufficiently large (and
therefore δ := θk − θk−1 appropriately small) such that 0 ≤ UP (yP (θ), θ)−UP

K̂
(θ) < ε̃ for all

θ ∈ [0, 1]. Therefore we have

lim
K̂→∞

∫
[0,1]

UP
K̂
(θ)dF (θ) =

∫
[0,1]

UP (yP (θ), θ)dF (θ),

22



which contradicts the supposition that e(K̂i, b) is optimal in G(K̂i, b) for all i = 1, 2, . . . .

Part (3) Suppose not. Then there is an ε0 > 0 and a sequence of gaps (LK̂,bj
)∞j=1 arising in

optimal equilibria e(K̂, bj) of G(K̂, bj) with bj → 0 and Prob(LK̂,bj
) < 1−ε0 for all j. Hence,

for every j there is a condition Cj in the contract Cj that is part of the optimal equilibrium
e(K̂, bj) with Prob(Cj) ≥ ε0

K̂
. By Lemma A.2 there is an ε1 > 0 such that∫

Cj

US(yS(θ), θ, 0)dF (θ)−
∫
Cj

US(y∗S(Cj), θ, 0)dF (θ) > ε1

for all j. The space of intervals of length ℓ, ε0
K̂

≤ ℓ ≤ 1 is compact. Hence, the sequence

{Cj}∞j=1 has a convergent subsequence. After reindexing, use {Cj}∞j=1 to denote that subse-
quence in the sequel, and denote the limit by C. By continuity,∫

C

UP (yP (θ), θ, 0)dF (θ)−
∫
C

UP (y∗P (C), θ, 0)dF (θ) ≥ ε1.

Hence, appealing to continuity again, for sufficiently large j,∫
Cj

UP (yP (θ), θ, bj)dF (θ)−
∫
Cj

UP (y∗P (Cj), θ, bj)dF (θ) ≥ ε1
2
.

This implies that for sufficiently large j in this sequence the principal’s payoffs in the equi-
libria e(K̂, bj) are bounded away from

∫
[0,1]

UP (yP (θ), θ, 0)dF (θ). This contradicts optimality

of the equilibria in the sequence {e(K̂, bj)}, since by the continuity property the communica-
tion games Γ0(bj) have equilibria whose payoffs converge to

∫
[0,1]

UP (yP (θ), θ, 0)dF (θ) with
j → ∞. 2

The remainder of the appendix establishes the results in Section 4. We begin by showing
that optimal contracts are either obligationally complete or induce influential communica-
tion. We also characterize the conditions for either to be the case in terms of the parameters
b and K̂.

Proposition A.1 (1) If K̂ ≥ 1
2b
, then any optimal contract is obligationally complete.

(2) Optimality requires influential communication if and only if K̂ < 1
2b
.

Proof. (1) In any communication subgame, for any strategy profile, the agent’s payoff equals
the expected conditional variance and the principal’s payoff differs from that by a constant
−λb2 when the communication region has size λ. Therefore, the principal’s expected payoff
from a contract with K̂ conditions that specifies a communication region of size λ is bounded
from above by

−λb2 − K̂

∫ 1−λ

K̂

0

(
x− 1− λ

2K̂

)2

dx = −λb2 − 1

12

1

K̂2
(1− λ)3.
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The derivative of this expression with respect to λ, −b2 + (1−λ)2

4K̂2
, is negative for b2 ≥ 1

4K̂2
.

Therefore, for K̂ ≥ 1
2b

it is optimal to reduce the size λ of the communication region to zero.

(2) Consider K̂ < 1
2b
. The principal’s expected payoff under an obligationally complete

contract with K̂ conditions is

K̂ ·
∫ 1

K̂

0

−
(

1

2K̂
− s

)2

ds = − 1

12K̂2
.

The principal’s expected payoff under one-step communication, where l denotes the length
of the communication interval, is given by

−
∫ l

0

(
l

2
− b− s

)2

ds− K̂ ·
∫ 1−l

K̂

0

(
1− l

2K̂
− s

)2

ds = −lb2 − l3

12
− (1− l)3

12K̂2
.

The first-order condition for the optimal length l∗ of the communication interval implies

that l∗ =
K̂
√

1−4b2(K̂2−1)−1

K̂2−1
for K̂ > 1 and l∗ = 1

2
− 2b2 for K̂ = 1. The second derivative is

−1+l(K̂2−1)

2K̂2
< 0. The optimal length satisfies l∗ > 0 for b < 1

2K̂
, the case we are considering.

Inserting the optimal length l∗ into the one-step-communication payoff and comparing
it to the payoff from the obligationally complete contract, we find that the obligationally
complete contract yields a lower payoff when K̂ = 1 and b < 1

2K̂
, and when K̂ > 1 and

b ≤ 1

2
√

K̂2−1
. The latter inequality is satisfied for the case we are considering since K̂ < 1

2b
is

equivalent to b < 1

2K̂
and because 1

2K̂
< 1

2
√

K̂2−1
.

Evidently, splitting the one-step communication interval in half raises the principal’s
payoff – as long as incentive compatibility is satisfied. Consider two communication intervals,[
0, l

∗

2

]
and

[
1− l∗

2
, 1
]
. The relevant incentive constraint is

l∗

2
+ b− l∗

4
≤ 1− l∗

4
− b− l∗

2

⇔ l∗ ≤ 1− 2b ⇔ b ≤ 1

2
√

K̂2 − 1
.

Since we are considering the case b < 1

2K̂
, this condition is satisfied. 2

The following two observations record simple facts that we refer to in the proofs. The
first of these notes that both players gain from reducing variance.

Observation A.1 Suppose that, given any distribution over [θ, θ] ⊆ [0, 1], either the prin-
cipal or the agent takes an optimal action. Then, the principal’s and the agent’s expected
payoffs are decreasing in the variance of that distribution.

The next observation records the fact that all else equal, the principal gains from equal-
izing the size of communication intervals.
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Observation A.2 Let θi < θi ≤ θj < θj and θj − θj − δ > θi − θi + δ. Suppose that the

agent takes action yδi =
θi+θi+δ

2
for types in

(
θi, θi + δ

)
and action yδj =

θj+θj+δ

2
for types in(

θj + δ, θj
)
. Then, the expected payoff of the principal conditional on

(
θi, θi + δ

)
∪
(
θj + δ, θj

)
is increasing in δ.

Lemma A.3 notes that inside any communication interval there can be at most a single
condition. Intuitively, when there are more conditions inside a communication interval we
can translate the outermost conditions further to the extremes in a way that does not affect
the agent’s optimal action in that interval, and therefore does not upset the principal’s
communication incentives. Doing so reduces variance and therefore raises the principal’s ex
ante payoff.

Lemma A.3 For any optimal contract C and any communication interval (θ, θ) of an op-
timal equilibrium eC of the communication subgame ΓC there is no more than one condition
C with C ⊂ (θ, θ).

Proof. Suppose that for an equilibrium eC there is a communication interval
(
θ, θ
)
for which

the conditions Cℓ, ℓ = 1, . . . , k, are the ones satisfying Cℓ ⊂
(
θ, θ
)
. Then the communication

action induced by the types in
(
(θ, θ

)
∩ L(C)) solves

max
y

−
∫ C1

θ

(s− y)2 ds−
k−1∑
ℓ=1

∫ Cℓ+1

Cℓ

(s− y)2 ds−
∫ θ

Ck

(s− y)2 ds,

with the solution given by

y∗R
(
(θ, θ

)
∩ L(C)) = 1

2

θ
2 −

∑k
ℓ=1C

2

ℓ +
∑k

ℓ=1C
2
ℓ − θ2

θ −
∑k

ℓ=1Cℓ +
∑k

ℓ=1Cℓ − θ
.

Since C1 > θ, and Ck < θ, for sufficiently small ε the (−ε)-translation C ′
1 of C1 and the

δ-translation C ′
k of Ck satisfy C ′

1, C
′
k ⊂

(
θ, θ
)
. Consider the contract C ′ that is obtained from

C by replacing the condition C1 by C ′
1, replacing the condition Ck by C ′

k, and – in case C1

and/or Ck belong to a condition cluster – forming the closure of the union of conditions thus
obtained.

Then, y∗R
(
(θ, θ

)
∩ L(C ′)) =

1

2

θ
2 −

∑
l ̸=1,k C

2

l −
(
C1 − ε

)2 − (Ck + δ
)2

+
∑

l ̸=1,k C
2
l + (C1 − ε)2 + (Ck + δ)2 − θ2

θ −
∑

l ̸=1,k C l −
(
C1 − ε

)
−
(
Ck + δ

)
+
∑

l ̸=1,k C l + (C1 − ε) + (Ck + δ)− θ
.

If we require that y∗R
(
(θ, θ

)
∩L(C ′)) = y∗R

(
(θ, θ

)
∩L(C)), we find that this is equivalent to

letting δ = ε
C1−C1

Ck−Ck
.

This implies that the game ΓC′
has an equilibrium eC

′
in which the agent’s strategy is the

same as in eC, the principal’s strategy is the same for all types in L(C ′) \ (θ, θ), and types
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in (θ, θ) ∩ L(C ′) send a common message not sent by any of the other types. The change in
payoffs from replacing the contract-equilibrium pair (C, eC) by the pair (C ′, eC

′
) is given by:

−
∫ C1

C1−ε
(s+ b− ŷ)2 ds+

∫ C1

C1−ε
(s+ b− ŷ)2 ds−

∫ Ck+δ

Ck

(s+ b− ŷ)2 ds+

∫ Ck+δ

Ck

(s+ b− ŷ)2 ds

= ε
C1 − C1

Ck − Ck

((
Ck + Ck − C1 − C1

) (
Ck − Ck

)
+ ε

(
Ck − Ck + C1 − C1

))
.

This expression is strictly positive since ε > 0, C1−C1 > 0, Ck−Ck > 0, and Ck+Ck >
C1 + C1. 2

Proof of Proposition 2. Part I. We want to show that under the assumptions of the
proposition, for every condition cluster C, there is a critical type θ ∈ C.

Since for every equilibrium in which the principal mixes there is an outcome equivalent
equilibrium in which her strategy is pure, it is without loss of generality to have the principal’s
strategy be pure in the equilibrium eC. Denote the strategy profile corresponding to the
equilibrium eC by fC =

(
σC, ρC

)
. It follows from Lemma A.3 that it suffices to look at the

case where the interior of each communication interval of the equilibrium eC contains at most
one condition. Hence, it suffices to show that for any k = 1, . . . , K̂, the condition Ck does
not belong to the interior of a communication interval for the equilibrium eC.

Suppose otherwise, i.e., for the contract C and the equilibrium eC there is at least one
communication interval with a condition in its interior. We will gradually replace the contract
C by other contracts and the strategy profile fC by other strategy profiles. At each iteration,
we will ensure that the principal’s payoffs strictly increase. At the end, we will verify that
the strategy profile we obtain is an equilibrium profile.

Let the equilibrium eC have n steps, and therefore n communication intervals Ij, j =
1, . . . , n. For each communication interval Ij let the principal send message mj and denote
the action induced by types in Ij by yj. Denote the critical types from equilibrium eC by
θCj , j = 0, 1, . . . , n. At each replacement of the prevailing contract and strategy profile, the
number of steps as well as the number communication intervals remains constant at n. Types
in communication interval Ij continue to send message mj after each replacement and the
agent best responds to the replacement of the principal’s strategy. After all unsent messages,
have the agent use the same response as after message m1. As the response to m1 changes
with each replacement, change the response to unsent messages in the same way.

Step 1. Replace the contract C and the strategy profile fC by a new contract C0 and a
new strategy profile fC0 :

(a) Change the contract as follows: Consider any condition Ck such that there is a commu-
nication interval Ij = (θj, θj) with Ck ⊂ (θj, θj). If θj does not belong to a condition,
replace Ck by its −(Ck − θj)-translation. If θj does belong to a condition, replace Ck

by the −(Ck − θj)-translation of the left-open interval Ck \ {Ck}.
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(b) Change the principal’s strategy as follows: For any communication interval Ij that was
affected by a translation (i.e., there was a condition Ck ⊂ (θj, θj)), after the translation

have the principal send message mj for types θ with θj + (Ck −Ck) < θ < θj. For any
communication interval Ij that was not affected by a translation have the principal
continue to send message mj.

(c) Change the agent’s strategy as follows: Let the agent best respond to the new strategy
of the principal and respond to all unsent messages the same way he responds to
message m1.

We make no claim that the new strategy profile fC0 is an equilibrium profile of the
communication game ΓC0 . The question of equilibrium is addressed after the final iteration.
By Observation A.1, we have a strict payoff improvement for the principal over the payoff
from eC in ΓC if players adopt the strategy profile fC0 in the communication game ΓC0 .

After the replacement of the contract C by the contract C0 there is some number L ≤ K̂
of condition clusters Cℓ, ℓ = 1, . . . , L. Denote the minimal (maximal) type in each con-
dition cluster Cℓ by Cℓ (Cℓ). Refer to the communication interval with lower bound
Cℓ by I+(Cℓ, f

C0) and let y+(Cℓ, f
C0) be the agent’s best reply to beliefs concentrated

on I+(Cℓ, f
C0). Similarly, let I−(Cℓ, f

C0) stand for the communication interval with upper
boundCℓ and let y−(Cℓ, f

C0) be the agent’s best reply to beliefs concentrated on I−(Cℓ, f
C0).

Note that type Cℓ (weakly) prefers action y−(Cℓ, f
C0) to action y+(Cℓ, f

C0): y−(Cℓ, f
C0)

is no further from Cℓ than that type’s preferred equilibrium action under the original equi-
librium eC and y+(Cℓ, f

C0) is no closer to Cℓ than that type’s preferred equilibrium action
under eC.

Step 2. As noted before, the strategy profile fC0 will generally violate incentive com-
patibility for the principal given the contract C0 and the agent’s strategy. With the ultimate
goal of reestablishing equilibrium, we begin by restoring incentive compatibility locally by
replacing the strategy profile fC0 by a new strategy profile fC1 while leaving the prevailing
contract unchanged, i.e., C1 = C0.

Between any two condition clusters Cℓ and Cℓ+1 with ℓ < L, and similarly between CL

and 1, restore equilibrium locally. In order to obtain a local equilibrium between Cℓ and
Cℓ+1, alter the principal’s strategy in that range and the agent’s responses to messages sent
by types in that range, so that the agent best responds to those messages and the principal’s
types in that range have no incentive to mimic other types in that range. For now, ignore
incentives to mimic types between other condition clusters. We address those incentives
later. To this end, modify strategies as follows:

(a) If none of the critical types θC from the equilibrium eC satisfy Cℓ < θC < Cℓ+1, leave
the principal’s and the agent’s strategies unchanged – they already satisfy the local-
equilibrium condition. Otherwise, suppose that the critical types θC satisfying Cℓ <
θC < Cℓ+1 are θCi , . . . , θ

C
i′ . Note that given the postulated agent behavior in fC0 , type

θCi is the only critical type in the range
(
Cℓ,Cℓ+1

)
for which incentive compatibility is

violated. Define λC := θCi −Cℓ.
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(b) In order to restore equilibrium locally between Cℓ and Cℓ+1, replace θCi , . . . , θ
C
i′ in the

specification of the principal’s strategy by θi, . . . , θi′ , where θi = Cℓ+λ and θj+1−θj =

θCj+1 − θCj − λ−λC

i′+1−i
, j = i, . . . , i′ − 1, and λC ≤ λ ≤

(
θCi+1 − θCi

)
(i′ +1− i) + λC. The last

condition ensures that the length of the second step θi+1 − θi (and thus all subsequent
steps) remains positive. For types in the range

(
Cℓ,Cℓ+1

)
, have the new strategy

of the principal prescribe that the principal send message mi in the interval (Cℓ, θi),
message mj in (θj−1, θj) , j = i + 1, . . . , i′, and message mi′+1 for types in

(
θi′ ,Cℓ+1

)
.

Otherwise, leave the principal’s strategy unchanged. Adjust the agent’s strategy so
that the agent best responds to messages mj, j = i, . . . , i′ + 1, given the new strategy
of the principal, leaving all other responses unchanged.

(c) For λ = λC, type θi (weakly) prefers the action that is induced by types in the interval
(Cℓ, θi) to the action that is induced by types in the interval (θi, θi+1). If θi is indifferent,
we are done. Otherwise, it must be the case that the length of the interval (θi, θi+1)
exceeds that of (Cℓ, θi). Consider increasing λ from λ = λC to the value λ′′ at which the
lengths of these two intervals become the same. At that point type θi strictly prefers
the action that is induced by types in the interval (θi, θi+1) to the action that is induced
by types in the interval (Cℓ, θi). Therefore, existence of a λ′ with λ′′ ≥ λ′ ≥ θi − Cℓ

that restores equilibrium locally between Cℓ and Cℓ+1 follows from continuity the
payoff function, the intermediate value theorem, and the fact that as we vary λ in
the manner described, the arbitrage conditions for types θj, j = i + 1, . . . , i′ continue
to be satisfied, since the lengths of adjacent intervals (θj−1, θj) , j = i + 1, . . . , i′, and(
θi′ ,Cℓ+1

)
, continue to differ by 4b.

The total change of behavior required to restore equilibrium locally between Cℓ and Cℓ+1,
as just described, can be decomposed into i′ + 1 − i steps. In the kth step λ is increased
by λ′−λC

i′+1−i
, the intervals (θi+(k′−1), θi+k′) with 1 ≤ k′ < k are all shifted up by that amount,

and the interval (θi+k−1, θi+k) is reduced in size by the same amount by keeping θi+k fixed
while θi+k−1 increases. In the final step the interval whose size is reduced is

(
θi′ ,Cℓ+1

)
. By

Observation A.2 we have a payoff improvement at every step. Denote the strategy profile
that results from restoring local equilibria in the game ΓC1 between all pairs of adjacent
condition clusters by fC1 .

Step 3. We next turn to addressing incentive constraints that involve types that are
separated by condition clusters.

Observe that when we replace fC0 by fC1 in ΓC1 , for any condition cluster Cℓ, we have∣∣I+(Cℓ, f
C1)
∣∣ ≥ ∣∣I+(Cℓ, f

C0)
∣∣ and ∣∣I−(Cℓ, f

C1)
∣∣ ≤ ∣∣I−(Cℓ, f

C0)
∣∣. In combination with type

Cℓ having preferred action y−(Cℓ, f
C0) to action y+(Cℓ, f

C0) prior to the strategy-profile
replacement, this implies that none of the types equal to or less than Cℓ, have an incentive
to induce any action greater than y−(Cℓ, f

C1) available to them given the profile fC1 . There-
fore, if none of the types Cℓ, ℓ = 1, . . . , L have an incentive to induce an action less than
y+(Cℓ, f

C1) available to them given the profile fC1 , the combination of local equilibria forms
an equilibrium overall.
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If instead there is a type Cℓ who prefers inducing an action less than y+(Cℓ, f
C1) that is

available given the profile fC1 , let ℓ̂ be the maximal ℓ such that this is the case. Consider
the set of actions that are induced by types θ > C ℓ̂. Refer to the types who are indifferent

among adjacent actions in this set of actions as ℓ̂-critical types. Use ℓ̃ to denote the minimal
ℓ > ℓ̂ such that there is an ℓ̂-critical type θ̃ ∈

[
Cℓ,Cℓ

)
, if there is such a type. If there is no

ℓ̂-critical type θ̃ ∈
[
Cℓ,Cℓ

)
for all ℓ > ℓ̂, proceed without introducing ℓ̃. Note that if this

case we have that either Cℓ is an ℓ̂-critical type for all ℓ > ℓ̂ or Cℓ̂ is the rightmost condition

cluster (ℓ̂ = L).
Note that if θj−1, θj and θj+1 are ℓ̂-critical types such that θj = Cℓ and neither θj−1 nor

θj+1 belong to a condition cluster, then we have

θj + b− θj−1 + (θj − (Cℓ −Cℓ))

2
=

θj+1 + θj
2

− θj − b,

which is equivalent to

θj+1 − θj = θj − θj−1 + 4b+ (Cℓ −Cℓ). (1)

This is the standard arbitrage condition in the CS uniform quadratic example extended to
the case where the ℓ̂-critical type θj is the upper endpoint of a condition cluster. If θj−1

belongs to the condition cluster Cℓ−1, replace θj−1 by Cℓ−1 in the above expression, and if
θj+1 belongs to the condition cluster Cℓ+1, replace θj+1 by Cℓ+1.

Consider replacing the condition cluster Cℓ̂ by its λ translation (for notational conve-
nience also denoted by Cℓ̂) for values λ > 0 that make it possible to

(a) maintain local equilibrium for types in the range (C ℓ̂−1,C ℓ̂) (if ℓ̂ > 1, and in the range
(0,C ℓ̂) otherwise) (this is achieved by choosing λ sufficiently small and increasing the
length of each communication interval in this range by λ divided by the number of
communication intervals in this range), and

(b) maintain local equilibrium in the range (C ℓ̂,C ℓ̃) and preserve indifference for all types

θ such that θ = Cℓ with ℓ̂ < ℓ < ℓ̃ (by condition (1), this is achieved by choosing
λ sufficiently small and reducing the sizes of communication intervals in the range
(C ℓ̂,C ℓ̃) all by λ divided by the number of communication intervals in this range).

For each λ, denote the strategy that maintains local equilibrium for types θ > C ℓ̂−1 by
fλ.

Note that if, prior to the λ translation of Cℓ̂, type C ℓ̂ prefers inducing an action less
than y+(Cℓ̂, f

C1) that is available given the profile fC1 , as postulated, it has to be the case
that

∣∣I+(Cℓ̂, f
C1)
∣∣ > ∣∣I−(Cℓ̂, f

C1)
∣∣. As a consequence of replacing Cℓ̂ by its λ translation

and maintaining local equilibria in the ranges specified above, the lengths of communication
intervals in the range (C ℓ̂−1,C ℓ̂) increase and the lengths of communication intervals in the

range (C ℓ̂,C ℓ̃) decrease. It is easily checked that for all λ between λ = 0 and the value of
λ that equalizes

∣∣I+(Cℓ, f
λ)
∣∣ and ∣∣I−(Cℓ, f

λ)
∣∣ the local equilibria in the ranges (C ℓ̂−1,C ℓ̂)
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and (C ℓ̂,C ℓ̃) can be preserved, as described above. Hence by payoff continuity and the
intermediate value theorem, there exists a value of λ for which we have an equilibrium in
the auxiliary game that is obtained by restricting the type space to (C ℓ̂−1,C ℓ̃), leaving all

condition clusters Cℓ with ℓ ̸= ℓ̂ unchanged, and replacing Cℓ̂ by its λ-translation. Denote
this value of λ by λ′. Monotonicity of type C ℓ̂’s payoff differential from actions y+(Cℓ̂, f

λ)
and y−(Cℓ̂, f

λ) implies that λ′ is unique. By a similar argument there exists a unique value
of λ such that local equilibria in the ranges (C ℓ̂−1,C ℓ̂) and (C ℓ̂,C ℓ̃) are preserved as above

and, in addition, we have θ̃ = C ℓ̃. Denote this value of λ by λ′′.
Define λmin := min{λ′, λ′′} and note that with the λmin translation of Cℓ̂ we have θ̃ ∈[

Cℓ,Cℓ

]
. Let n1 be the number of communication intervals in the range (C ℓ̂−1,C ℓ̂) and

n2 the number of communication intervals in the range (C ℓ̂,C ℓ̃). If we replace Cℓ̂ by its
λmin translation while preserving local equilibria in the ranges (C ℓ̂−1,C ℓ̂) and (C ℓ̂,C ℓ̃) as
indicated above, this increases the length of each communication interval Ij, in the range
(C ℓ̂−1,C ℓ̂) by λmin

n1
and lowers the length of each communication interval Ij in the range

(C ℓ̂,C ℓ̃) by
λmin

n2
.

We can decompose the replacement of Cℓ̂ by its λmin-translation and the corresponding
preservation of local equilibria in the ranges (C ℓ̂−1,C ℓ̂) and (C ℓ̂,C ℓ̃) into n1 ·n2 steps of size
λmin

n1·n2
. Define Ij(0) := Ij. At the rth step, r = 1, . . . , n1 · n2,

(1) identify two intervals Ij′(r) ⊆ (C ℓ̂−1,C ℓ̂) and Ij′′(r) ⊆ (C ℓ̂,C ℓ̃) among those that

have been established by step r − 1 and which satisfy |Ij′(r)| < |Ij′ + λmin

n1
| and |Ij′′(r)| >

|Ij′′ − λmin

n2
|,

(2) increase the length of the former by λmin

n1·n2
by changing its right endpoint,

(3) reduce the length of the latter by the same amount by changing its left endpoint,
(4) replace all intervals Ij(r) ⊆ (C ℓ̂−1,C ℓ̂) with j > j′ by their λmin

n1·n2
-translation,

(5) replace all intervals Ij(r) ⊆ (C ℓ̂,C ℓ̃) with j < j′′ by their λmin

n1·n2
-translation,

(6) replace the Cℓ̂ that resulted from step r − 1 by its λmin

n1·n2
-translation,

(7) have the principal send the same message in Ij(r) that she sent in Ij(r− 1) for all j,
(8) have the agent best respond to the new strategy of the principal.

By Observation A.2 we have a strict payoff improvement at every step.

Denote the contract that results from replacing Cℓ̂ by its λmin-translation by C2. Denote
the strategy profile that results from preserving local equilibria in the ranges (C ℓ̂−1,C ℓ̂) and

(C ℓ̂,C ℓ̃) as described above while otherwise being identical with fC1 by fC2 .
If λmin = λ′, identify the maximal ℓ such that type Cℓ prefers inducing an action less

than y+(Cℓ, f
C2) that is available given the profile fC2 , if there is such an ℓ. Otherwise we

are done. Note that this ℓ necessarily satisfies ℓ < ℓ̂. Make this ℓ the new ℓ̂ and repeat the
construction that, starting with C1 and the strategy profile fC1 , gave us C2 and fC2 .

If instead λmin = λ′′, identify the minimal ℓ > ℓ̂ such that there is a critical type θ̃ in the
set
[
Cℓ,Cℓ

)
(note that this ℓ, if it exists, is necessarily larger than ℓ̃). If there is no such ℓ

we are done. Make this ℓ the new ℓ̃ and repeat the construction that, starting with C1 and
the strategy profile fC1 , gave us C2 and fC2 .

30



Starting with any Ci and fCi obtained in this manner construct Ci+1 and fCi+1 using the
same procedure. Since there are finitely many indices ℓ and at each step either ℓ̂ drops or
ℓ̃ rises, this process terminates and that at that point we have an equilibrium with a strict
payoff improvement.

Part II. We want to show that if the equilibrium eC induces at least two communication
actions, then there is a condition cluster C and a critical type θ ̸= 0, 1 with θ ∈ C. :

In order to reach a contradiction, suppose that the equilibrium eC induces at least two
communication actions, and that for all critical types θ̃ ̸= 0, 1 and all condition clusters C,
it is the case that θ̃ /∈ C. Let n > 1 be the number of communication intervals in eC. Then,
from Part I, any condition cluster C satisfies either 0 ∈ C or 1 ∈ C, and there is a critical
type θ1 ∈ (0, 1).

Consider the case where 0 ∈ C for a condition cluster C. Let the contract C ′ only differ
from C by replacing the condition cluster C by its (θ1 −C)-translation, C ′. Evidently, the
game ΓC′

has an equilibrium eC
′
in which types θ ∈ (0, θ1−C) send the message sent by types

in (C, θ1) in equilibrium eC, and all other types behave as they did before in equilibrium
eC. The principal’s expected payoff in the equilibrium eC

′
is the same as in eC, type θ1 −C

strictly prefers the action that is induced by types in (0, θ1 − C) to all other equilibrium
actions and type θ1 strictly prefers the action that is induced by types in the communication
interval that is bounded below by θ1 to all other equilibrium actions.

Since the incentive constraints of types C ′ = θ1 −C and C
′
= θ1 in the new equilibrium

eC
′
are slack, for sufficiently small λ > 0 we can replace the contract C ′ by a contract Cλ

that only differs from C ′ by replacing the condition cluster C ′ by its λ-translation, Cλ, so
that the game ΓCλ

has an equilibrium eC
λ
, in which, relative to eC

′
, the length of the first

communication interval increases by λ and the lengths of all the remaining communication
intervals are reduced by λ

n−1
. Combining this with the fact that in eC, and therefore in eC

′
,

the first is the smallest communication interval, repeated application of Observation A.1
implies that for any sufficiently small λ > 0 the principal’s expected payoff from eC

λ
strictly

exceeds that from eC. It follows that eC cannot have been optimal.
For the case in which 1 ∈ C for a condition cluster C, consider the contract C ′′ that only

differs from C by replacing the condition cluster C by its −(C − θn−1)-translation, C
′′. In

this case, the game ΓC′′
has an equilibrium eC

′′
in which types θ ∈ (1− (C − θn−1), 1) send

the message sent by types in (θn−1,C) in equilibrium eC and all other types behave as they
did before in equilibrium eC. Similar to the previous case, the incentive constraints of types

C ′′ and C
′′
are slack,

(
C

′′
, 1
]
= (1− (C − θn−1), 1] is the largest communication interval,

and therefore for sufficiently small λ > 0 one can increase equilibrium payoffs by replacing
C ′′ by its λ-translation. 2

Proof of Corollary 1. Part 1 is an immediate consequence of Proposition 2. For Part 2,
note that it suffices to prove the claim for T and T ′ that are adjacent to each other. If T ′ is
a condition of C, or both T and T ′ are communication intervals, the result is an immediate
consequence of our assumptions on the payoff functions U i, i = P,A.
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Suppose, therefore, that T ′ is a communication interval and T a condition of C with
inf(T ′) ≥ sup(T ). For each T ∈ T use x(T ) to denote the principal’s preferred action given
T and y(T ) to denote the agent’s preferred action given T. In order to derive a contraction,
suppose that we have that a(T ′) ≤ a(T ) – i.e., y(T ′) ≤ x(T ). The cross-partial condition
implies that x(T ′) > x(T ).

∫
T ′ U

P (x, θ)dθ is an integral over strictly concave functions and,
therefore, itself strictly concave. This implies that

∫
T ′ U

P (x, θ)dθ is strictly increasing for all
x < x(T ′). Therefore, since y(T ′) ≤ x(T ) < x(T ′), and

d

dx

(∫
T

UP (x, θ)dθ

)∣∣∣∣
x=x(T )

= 0,

we obtain that for sufficiently small ε > 0,∫
T

UP (x(T ), θ)dθ +

∫
T ′
UP (y(T ′), θ)dθ <

∫
T∪T ′

UP (x(T ) + ε, θ)dθ.

This, however, implies that there exists ε > 0 such that the principal would strictly prefer to
have a single condition T ∪ T ′ with instruction x(T ) + ε (of course, a further improvement
could be achieved by replacing the instruction x(T )+ ε by the instruction x

(
T ∪ T ′

)
if they

differ). This gives us the desired contradiction. 2

Proof of Proposition 3. Suppose that K̂ > 3 (otherwise the proposition holds vacuously).
Refer to any set of types bounded by two adjacent condition clusters (or bounded by a
condition cluster and either 0 or 1) as a “communication area.”

Consider the problem of maximizing the principal’s payoff subject to the constraints
that each cluster has at least four conditions and that the principal’s strategy restricted to
any communication area below or above a cluster is an equilibrium strategy for the game
restricted to that communication area. Call this the “relaxed problem.” The payoff from
a solution to the relaxed problem is at least as high as the payoff from a contract that is
optimal in the class of contracts in which each cluster has at least four conditions, since the
latter has to respect additional incentive constraints. The additional constraints are that
types in any communication area do not prefer to mimic types in some other communication
area. We will show that one can strictly improve on the solution to the relaxed problem by
breaking up one of the condition clusters and that this improvement respects global incentive
constraints. This implies that one can strictly improve on the optimal contract in the class
of contracts in which each cluster has at least four conditions.

If b > 0 converges to zero it is possible to approximate the principal’s first-best payoff in
the relaxed problem. To see this, note that without using any of the conditions, the optimal
communication equilibrium converges to the first best as b > 0 converges to zero. Taking
advantage of the conditions while respecting the constraints of the relaxed problem cannot
lead to a lower payoff (we always have the option to simply replace communication intervals
by conditions, in which case the requirement that there are always at least four conditions
in a cluster is easily met). If we placed an upper bound on the number of communication
steps in the relaxed problem, then as b converges to zero, the principal’s payoff in the relaxed
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problem would remain bounded away from the first best. Therefore, in order to approximate
the first best as b > 0 converges to zero, the number of communication intervals has to grow
without bound. This implies that for small b > 0 the solution to the relaxed problem has
the property that there is at least one cluster adjacent to a communication area with at least
two communication intervals.

For any condition cluster with a communication interval I+ above the cluster and a
communication interval I− below the cluster, the lengths of these intervals satisfy |I−| ≥ |I+|.
This follows from repeated application of Observation A.2. Otherwise we would have all (say
m) communication intervals in the communication area below the cluster be shorter than
all (say n) communication intervals in the communication area above the cluster. Then we
could translate the cluster to the right by some small ϵ, increase the size of each of the
communication intervals in the communication area below the cluster by ϵ

m
, reduce the size

of each of the communication intervals in the communication area above the cluster by ϵ
n
,

and thereby increase expected payoffs.
Fix a condition cluster C̃ from the solution to the relaxed problem that is adjacent to a

communication area with at least two communication intervals. Use K̃ to denote the number
of conditions in the cluster C̃. Use

˜
θ to denote the infimum of the communication area

below C̃ and θ̃ to denote the supremum of the communication area above C̃. The solution
of the relaxed problem induces a solution of the following “restricted relaxed problem” with
the same cluster C̃ as part of the solution: maximize the principal’s payoff with the type
distribution restricted to the interval [

˜
θ, θ̃], subject to the constraints that there is a single

cluster with K̃ conditions and that the principal’s strategy restricted to any interval in the
communication area below or above the cluster is an equilibrium strategy.

Let ι denote the length of the interval [
˜
θ, θ̃]. Up to rescaling (i.e., replacing the interval

[
˜
θ, θ̃] by [0, 1], replacing the bias b by b

ι
and identifying every type θ in [

˜
θ, θ̃] with a type

θ−
˜
θ

ι
in [0, 1]) the restricted relaxed problem is equivalent to the problem of maximizing the

principal’s payoff over the original type space [0, 1] subject to the constraints that there

is a single cluster with K̃ conditions and that the principal’s strategy restricted to any
communication area below or above the cluster is an equilibrium strategy. That is, the
rescaled problem has a solution in which each communication interval and each condition
corresponds to a communication interval or condition of the original problem up to rescaling
by the factor 1

ι
.

To economize on notation, it is convenient to work with the rescaled version of the
restricted relaxed problem. We continue to use θ to denote types and b to denote the bias,
keeping in mind that they have been rescaled. Continuing with our slight abuse of notation,
we also use C̃ to denote the cluster that is part of the solution of the the rescaled restricted
relaxed problem. We use C1 to indicate the lower endpoint of the first condition and CK̃ to

indicate the upper endpoint of the K̃’s condition in the cluster C̃.
All conditions in the cluster C̃ will be of equal length. This follows from repeated

application of Observation A.2. Denote that length by ℓ.
Suppose the solution to the relaxed problem has m communication intervals below the

cluster and n communication intervals above the cluster. In that case, there is a correspond-
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ing solution to the restricted relaxed problem that has m communication intervals below
the cluster and n communication intervals above the cluster. Either m > 1, in which case
n ≥ 1, or n > 1, in which case m ≥ 1. Hence there is a maximal communication interval
below the cluster and a least communication interval above the cluster. Denote the maximal
communication interval below the cluster by I− (= (θm−1, C1)) and the minimal communica-
tion interval above the cluster by I+

(
=
(
CK̃ , θm+1

))
. As noted before, the lengths of these

communication intervals satisfy |I−| ≥ |I+|.
To simplify notation, define ϕ := C1 and L := ϕ+ ℓ. Fix L. It has to be the case that ϕ

solves the problem of optimally dividing the interval [0, L] into a communication area of size
ϕ with m communication steps and one condition of length ℓ. That is ϕ solves the problem

max
ϕ,θ0,θ1,...,θm−1

m−1∑
i=1

−
∫ θi

θi−1

(
s+ b− θi−1 + θi

2

)2

ds−
∫ ϕ

θm−1

(
s+ b− θm−1 + ϕ

2

)2

ds−
∫ L

ϕ

(
s− ϕ+ L

2

)2

ds

s.t. θi + b− θi−1 + θi
2

=
θi+1 + θi

2
− θi − b for i = 1, . . . ,m− 2,

θm−1 + b− θm−2 + θm−1

2
=

ϕ+ θm−1

2
− θm−1 − b, and

θ0 = 0.

The FOC for a solution to this problem is

−1

3
b2(m2 + 2) +

1

4

(
L2 − 2Lϕ+

(
1− 1

m2

)
ϕ2

)
= 0.

One checks easily that the SOC is satisfied. Using the fact that L = ϕ+ ℓ and rearranging,
we find that

9(lm2 + ϕ)2 = m2
(
9(l + ϕ)2 + 12b2(m4 +m2 − 2)

)
,

which is equivalent to

ϕ =

√
ℓ2m2 − 4

3
b2(m2 + 2)m2.

First, suppose that m > 1. Split the cluster C̃ by switching the mth communication
interval with the lowest condition in the cluster. For the modified strategy of the principal
to be an equilibrium strategy given the rearrangement of conditions on the state space of
the (rescaled) restricted relaxed problem, it suffices that types in the moved communication
interval do not have an incentive to mimic types above the maximal condition and vice
versa. The latter requirement is satisfied since |I−| ≥ |I+|. Let γ := |I−|. Then the former
requirement is satisfied if

ϕ+ ℓ+ b−
(
ϕ+ ℓ+ (ϕ+ ℓ− γ)

2

)
< ϕ+ ℓ+ (K̃ − 1)ℓ− (ϕ+ ℓ+ b). (2)

This inequality is equivalent to
γ < 2(K̃ − 1)ℓ− 4b.
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Using the standard communication game calculations for the lengths of communication in-
tervals, we obtain that ϕ = mθ1+2m(m−1)b and γ = θ1+(m−1)4b. Therefore our sufficient
condition for incentive compatibility is equivalent to

ϕ

m
+ 2(m− 1)b < 2(K̃ − 1)ℓ− 4b.

Using the fact that ϕ < ℓm, this is implied by

ℓm < 2m((K̃ − 1)ℓ− b(m+ 1)).

Using the fact that 2m(m− 1)b < ϕ < ℓm, this inequality holds if

ℓ < 2

(
(K̃ − 1)ℓ− ℓ(m+ 1)

2(m− 1)

)
,

which is equivalent to

K̃ >
1 + m+1

m−1

2
+ 1.

The right-hand side of this inequality is no larger than 3. Therefore the sufficient condition
for incentive compatibility (2) holds as long as K̃ > 3.

Second, suppose instead that m = 1 (and therefore n > 1 ). Then

ϕ =
√
ℓ2 − 4b2. (3)

In this case split the cluster C̃ by switching the second communication interval (i.e., the first
above the cluster) with the highest condition in the cluster. For the modified strategy of the
principal to be an equilibrium strategy given the rearrangement of conditions on the state
space of the (rescaled) restricted relaxed problem, it suffices that types below ϕ do not have
an incentive to mimic types in the moved communication interval and vice versa. The latter
requirement is satisfied since |I−| ≥ |I+|. Note that |I−| = ϕ. The former requirement is
satisfied if

ϕ+ b− ϕ

2
< ϕ+ (K̃ − 1)ℓ− (ϕ+ b). (4)

Since ϕ < ℓ and b < ℓ
2
(both from (3)), this holds as long as K̃ ≥ 3.

Returning to the original relaxed problem, to ensure that switching a condition in the
cluster C̃ with a communication interval, as described above, results in an equilibrium
on the entire state space, we need to verify in addition that for every other cluster C ′

with K ′ conditions types immediately below that cluster have no incentive to mimic types
immediately above that cluster, and vice versa. The latter condition, as before, follows from
|I−| ≥ |I+|. In case the number of communication intervals m below C ′ satisfies m > 1 the

former condition is satisfied if inequality (2) holds with K ′ replacing K̃−1, which is the case

if K ′ > 2. If instead m = 1, we need inequality (4) to hold, again with K ′ replacing K̃ − 1,
which is the case if K ′ ≥ 2. Note that in this case we do not (need to) require that n > 1.
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Denote the condition that was translated by C̃. Notice that all the incentive constraints
we checked are slack. In the case in which m > 1, this implies that we can reduce the length
of the (new) communication interval above C̃ by some small ϵ > 0, increase the lengths of

each of the m−1 communication intervals below C̃ by ϵ
m−1

and still have an equilibrium. By
Observation A.2 this equilibrium has a strictly higher payoff than the solution of the relaxed
problem, and therefore a strictly higher payoff than from any contract in which every cluster
has more than three conditions. An analogous argument applies to the case in which m = 1.

2
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