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more predictable owing to the disappearance of multiple equilibria. Our experimental

data provide novel evidence for this prediction: the frequency of coordination depends

systematically on (i) public information and (ii) the distribution from which public
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Figure 1: The Game

1 Introduction

Consider two players who would like to coordinate on an investment opportunity, described

by the payoff matrix in Figure 1. When a ≤ θ ≤ b, there are multiple equilibria. If the row

player believes the column player will invest, then she prefers to also invest. If the row player

believes the column player will not invest, then she prefers to not invest. How can we predict

which action the players will select? In this paper, we argue that cognitive noise corrupts a

player’s ability to compute the value of each action. Cognitive noise, thus, provides a new

source of uncertainty about the opponent’s action, as each player will be uncertain about

the noisy computation implemented by her opponent. This uncertainty eliminates multiple

equilibria and gives rise to a unique prediction about game play. Our model of cognitive

noise generates additional testable predictions that distinguish it from leading behavioral

models of strategic behavior, including Quantal Response Equilibrium (QRE; McKelvey and

Palfrey 1995, 1998) and Level-k Thinking (Nagel, 1995; Camerer, Ho and Chong, 2004).

In a pair of pre-registered experiments, we demonstrate that cognitive noise is inherent

in strategic play and that it systematically affects the probability of coordination. We

experimentally implement the game shown in Figure 1 and we find three main results. First,

behavior is consistent with the unique equilibrium that arises in the presence of cognitive

noise, whereby the probability of investing declines continuously in θ. Second, we manipulate

the level of cognitive noise and find that it causally affects both the frequency of coordination

and the sensitivity of choice to game payoffs. Third, we conduct a decomposition analysis

which reveals that cognitive noise represents a substantial source of the noise observed in

strategic behavior; we estimate that roughly 50% of noise in behavior stems from an imprecise

representation of payoffs and the subsequent cognitive processing involved in valuing each

action.

Our analyses highlight that the particular manner in which noise is modeled has impor-

tant implications for equilibrium. Thus, we are careful to ground our assumptions about

the source of noise in a recent empirical literature in economics that has begun investigating

imprecision in valuation and choice (Woodford, 2020). In particular, a series of recent indi-

vidual decision-making experiments has shown that noise arising in the subjective valuation

process exhibits clear parallels with noise in basic perceptual decisions (Polania, Woodford
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and Ruff, 2019; Khaw, Li and Woodford, 2021, 2022; Enke and Graeber, 2023; Enke, Grae-

ber and Oprea, 2023; Frydman and Jin, 2022). This conceptual link between perceptual and

economic decisions motivates our modeling approach: we assume each player holds a prior

about the fundamental parameter θ and then observes only a noisy signal of θ — even after

θ is clearly “presented” to the player. The noisy signal is meant to capture errors involved

with encoding, retrieving, and further cognitive processing of θ, when computing the value

of an action.

Our particular model of cognitive noise generates a sharp and testable prediction about

strategic behavior. In the model, while each player faces unavoidable cognitive noise, we

assume that each player can optimally choose the distribution of noise. This assumption

of efficient coding generates the following prediction: as a player’s prior about θ becomes

more concentrated, she encodes information about θ with greater precision (Barlow, 1961;

Laughlin, 1981). The intuition is that a player will be more precise in processing information

about those particular values of θ that she expects to face more frequently. This extra

precision in processing information about common values of θ will affect the player’s valuation

of investing, and hence, coordination. We, therefore, test whether cognitive noise plays an

important role in coordination games by experimentally manipulating the prior and testing

for the impact on game outcomes.

We present the details of our two experiments in the main body of the paper, but here

we preview the key aspects of the design. In our first experiment, subjects are randomly

matched on each of three hundred rounds, and play the game outlined in Figure 1. We

set the values of a = 47 and b = 63, and the only object that varies across rounds is θ.

On each round, we assume that a subject’s prior is governed by the distribution of θ that

she has experienced during the experiment. Thus, to manipulate the prior, we implement

a between-subjects treatment where half of the subjects observe values of θ drawn from a

high volatility distribution, and the other half observe values of θ drawn from a low volatility

distribution. The key prediction is that the prior affects the manner in which players process

information about θ, and this in turn, affects the subjective valuation of investing and not

investing.

In our main test, we compare the frequency that a player invests — conditional on

θ — across the two experimental treatments. Consistent with our theoretical model, we

find that for a given value of θ, the probability of investing depends on the prior to which

the player is adapted. In both treatments, behavior is consistent with subjects playing a

noisy version of the unique equilibrium threshold strategy. The smoking gun evidence for

cognitive noise, however, is that behavior exhibits significantly more randomness in the high

volatility treatment, where our model predicts that information about θ will be processed
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with more noise. This result is consistent with previous work from individual decision-making

experiments (Frydman and Jin, 2022); however, a crucial difference is that here, cognitive

noise is key to endogenously producing the equilibrium threshold strategy. Put differently,

the data we produce are consistent with a cognitive noise mechanism that endogenously

generates both the equilibrium threshold strategy and the greater degree of randomness that

subjects exhibit when implementing this strategy in the high volatility treatment. Overall,

our experimental data indicate that coordination (both players investing or neither player

investing) is more likely when players are adapted to the low volatility distribution and face

a lower amount of cognitive noise.

We emphasize that other models of noisy strategic behavior, such as QRE, do not predict

that strategic behavior depends on the agent’s prior. The intuition for this difference in

predictions is as follows. Our model of cognitive noise assumes that the agent is unable to

precisely compute the value of an action. Thus, because the prior is informative about the

value of an action, any shift in the prior will affect the subjective valuation of the action. In

contrast, QRE assumes that each agent has no problem with precisely computing the value

of each action, conditional on θ. The noise in QRE arises only during the process of action

selection, where the agent “trembles”. In this case, the prior has no bearing on behavior, as

the agent is already fully confident about the precise value of each action.

Our results highlight cognitive noise as a novel and important source of strategic un-

certainty — which refers to uncertainty about an opponent’s behavior. Typically, strategic

uncertainty is attributed to uncertainty about an opponent’s preferences, information, de-

gree of rationality, or which of multiple equilibria the opponent will select. Because cognitive

noise corrupts a player’s valuation of an action, it necessarily leads the player to be uncertain

about an opponent’s valuation and selection of an action. An important question, then, is

how much of the noise in behavior that we observe is actually driven by cognitive noise,

rather than alternative sources of strategic uncertainty?

To address this question, we conduct a second experiment that enables us to decompose

the observed noise in behavior into structural uncertainty (arising from cognitive noise) and

strategic uncertainty (arising from sources other than cognitive noise). The main innovation

in this second experiment is that we incentivize subjects to play the same series of games

as in our first experiment, except the opponent is now a computer. Crucially, we inform

subjects that the computer plays a known and deterministic strategy. This design feature

purges any strategic uncertainty that arises from sources other than cognitive noise. We find

that, even when playing against a computer, subjects still make errors that have signature

features of cognitive noise. More importantly, we estimate that roughly half of the noise in

behavior from our first experiment is driven by cognitive noise. We attribute the remaining
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noise in behavior to alternative sources of strategic uncertainty.

Taken together, the results from our two experiments emphasize the importance of ac-

counting for cognitive noise in a strategic setting. We show that the specific stage at which

noise enters the decision process will fundamentally affect equilibrium predictions. By draw-

ing on the burgeoning economics literature on cognitive noise, we take the stand that noise

arises “early” in the decision process when agents are computing the value of each action.

This modeling technique is reminiscent of the approach taken in the literature on global

games (Carlsson and Van Damme, 1993; Morris and Shin, 2003; Angeletos and Lian, 2016).

There is, however, a critical difference in interpretation between the two models. In global

games, it is often presumed that the noise is attributed to private information or some ex-

ternal source of uncertainty, which is disconnected from any errors in cognitive processing.

In contrast, our model supposes that noise arises internally within the agent’s mind due to

unavoidable information processing constraints.

The source of noise — whether it is cognitively or externally generated — turns out to

have important implications for equilibrium (Woodford, 2020). One particular and common

interpretation of private signals in global games is that they capture asymmetric information

between the players.1 This asymmetric information generates strategic uncertainty, which

in turn, produces a unique equilibrium. But under the interpretation that noise arises

cognitively, the prediction of a unique equilibrium should hold in an even broader set of

applications. To see this, note that even if a public signal becomes available – which can

restore multiple equilibria under global games – cognitive noise will prevent each player

from processing the public signal with perfect precision. Thus, cognitive noise will act as a

private signal generator that maintains the strategic uncertainty needed to support a unique

equilibrium. Thus, interpreting noisy signals as arising (at least in part) from unavoidable

errors in value computation leads to a clear prediction: the provision of explicit private

signals should have little impact on behavior. Indeed, this is exactly what Heinemann et

al. (2004) find when exogenously manipulating the provision of private information, though

they do not provide an underlying mechanism. In Section 6.1, we compare our model’s

predictions with those of global games in more detail.

Our experimental results have important implications for the modeling of incomplete

information games. Specifically, our results suggest that the class of games in which it is

appropriate to assume agents have incomplete information is likely broader than previously

thought. Even in situations where there is no explicit private information, cognitive noise

1Indeed, a majority of experimental tests of global games involve explicitly endowing subjects with noisy
signals of the fundamental value (Heinemann, Nagel and Ockenfels, 2004; Cabrales, Nagel and Armenter,
2007; Van Huyck, Viriyavipart and Brown, 2018; Avoyan, 2019; Szkup and Trevino, 2020)
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will break common knowledge about the valuation of each player’s action. In addition

to providing guidance for appropriate modeling assumptions, the idea that cognitive noise

arises near universally also has implications for experimental design. To see this, consider a

recent experiment by Goryunov and Rigos (2022) who use a clever design to explicitly inject

noise into the perception of a state variable. Subjects in their experiment observe a visual

“dot” that represents the state, and the authors rely on the inherent difficulty of visually

perceiving the exact location of the dot to generate private noise. Our results suggest that

noise in valuation arises in a much broader class of games, owing to the imprecision involved

with higher-level cognitive processing of value.2 As we demonstrate with our experiments,

even when information about the state variable is clearly communicated to subjects through

symbolic numerals, we find evidence that cognitive noise is present in value computations.

We also note that our measurements of cognitive noise are likely to represent a lower bound

relative to more complex strategic applications outside the lab.

Our results build on a set of papers that have begun testing whether principles of cognitive

noise are active in individual economic decision-making (Polania, Woodford and Ruff, 2019;

Gershman and Bhui, 2020; Khaw, Li and Woodford, 2021, 2022; Enke and Graeber, 2023;

Enke, Graeber and Oprea, 2023; Frydman and Jin, 2022). In addition to testing whether

similar mechanisms extend into strategic environments, our setting of a coordination game

enables a novel test of the hypothesis that noise arises early in the decision process during

the valuation stage. Sharp tests of this hypothesis are important because the distinction

between early and late noise can also shed light on choice biases in individual decision-

making (Woodford, 2020). Of course, one additional factor that is present in strategic

environments is the need for subjects to form beliefs about opponents’ behavior. In our

setting, it is important for equilibrium that subjects are aware that (or at least believe

that) their opponent faces cognitive noise. In the Online Appendix, we provide evidence

from an additional experiment which helps to validate such an assumption. We find that

subjects report beliefs that their opponent exhibits more errors in a discrimination task as

the distance between states gets smaller. In related work, Enke, Graeber and Oprea (2022)

demonstrate that meta-cognition of errors is important for understanding how these errors

2Goryunov and Rigos (2022) implement an interesting treatment, whereby they provide some subjects
with the ability to observe whether the dot falls on either side of a line. In this treatment, which is meant
to enable discontinuous stochastic choice, and thus the existence of multiple equilibria, observed behavior is
quite similar to the treatment in which subjects do not have the ability to implement discontinuous stochastic
choice. Thus, while theory predicts that behavior will vary considerably across treatments, those subjects
who have access to the more precise information acquisition technology “do not seem to be following multiple
equilibria, at least not more so than their [no line treatment] counterparts.” One explanation for this lack of
a treatment effect could stem from the fact that even in the treatment where it is easy to detect on which
side of the boundary the state is located, players exhibit errors in processing value – in line with the model
we propose – which would eliminate the multiple equilibria.
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aggregate at the level of institutions.

The model we propose is also closely related to a set of recent theoretical papers that

investigate endogenous information acquisition in coordination games. Yang (2015) shows

that the uniqueness result from the global games literature breaks down when players en-

dogenously acquire information about the fundamental using a mutual information cost

function. Morris and Yang (2022), instead, show that when the cost function satisfies “in-

feasible perfect discrimination” — so that signal probabilities vary continuously with the

fundamental — then uniqueness is restored. Hébert and Woodford (2021) propose a set of

“neighborhood-based” cost functions for rational inattention problems, which are motivated

in part by evidence from perceptual experiments. These cost functions satisfy the infeasible

perfect discrimination property and, thus, lead to a unique equilibrium in a coordination

game. Our model of cognitive noise also gives rise to an endogenous information structure

that satisfies infeasible perfect discrimination and leads to a unique equilibrium. Impor-

tantly, our experimental data provide novel support for infeasible perfect discrimination in

a setting where all information is represented numerically.3

2 Model

In this section, we present a model in which cognitive noise corrupts the ability of each player

to precisely compute the value of actions. We illustrate the strategic implications of noisy

valuation in the setting of a 2× 2 simultaneous move game. We focus our analysis on those

parameter values that generate the essential features of a coordination game.

Consider the game in Figure 1, where b > a. In what follows, we assume that a and

b are encoded and processed without any noise by both players, and we are interested in

how cognitive noise affects the encoding, retrieval, and subsequent cognitive processing of

θ.4 We further assume that each player has linear utility. As a benchmark, we first consider

the predictions of a model in which agents have the ability to compute the precise value of

actions conditional on θ; we then derive implications under our main assumption of cognitive

noise.

3For a given fundamental value, we also find intriguing evidence that response times are significantly
longer in the high volatility condition. This finding suggests that the implementation of strategies may be
more complex (in the spirit of Oprea 2020) in the high volatility condition. The assumption of infeasible
perfect discrimination is also consistent with evidence from an additional experiment, described in Online
Appendix D, which investigates subjects’ awareness of their and others’ imprecision in a perceptual task.

4Our assumption that a and b are processed without noise can be justified, for example, through a
learning mechanism. In our experiment, we keep a and b constant across all rounds, so the amount of noise
in processing a and b is arguably minimal.
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2.1 Benchmark: No Cognitive Noise

Without any cognitive noise, the game is one of complete information and its Nash equilibria

depend on the true value of θ, as outlined below:

• If θ > b, then Invest is a strictly dominated action for each player, and (Not Invest,

Not Invest) is the unique Nash (and dominant strategy) equilibrium.

• If θ < a, then Not Invest is a strictly dominated action for each player, and (Invest,

Invest) is the unique Nash (and dominant strategy) equilibrium.

• If a ≤ θ ≤ b, then there are two Nash equilibria in pure strategies: (Not Invest, Not

Invest) and (Invest, Invest). There also exists one Nash equilibrium in mixed strategies.

Thus, when θ takes on values in the intermediate range [a, b], there are multiple pure

strategy Nash equilibria. This prediction relies on each player’s ability to precisely observe

and process information about θ, which generates common knowledge about θ. The common

knowledge, in turn, enables coordination and gives rise to multiple self-fulfilling equilibria.

The predictions change dramatically, however, when we relax the assumption that players

can precisely compute the value of investing and not investing, conditional on θ.

2.2 Information Processing Constraint: Cognitive Noise

Suppose now that players compute the subjective value of each action with noise. In order to

minimally depart from the rational benchmark, we assume cognitive noise only corrupts the

processing of θ. Our assumption that players exhibit noise in computing the value of investing

and not investing is based on a recent literature in economics that has uncovered evidence

of such noise in individual decision-making experiments (Polania, Woodford and Ruff, 2019;

Gershman and Bhui, 2020; Khaw, Li and Woodford, 2021, 2022; Enke and Graeber, 2023;

Enke, Graeber and Oprea, 2023; Frydman and Jin, 2022). These studies demonstrate that

even when information is displayed in the form of symbolic numbers – so that there is little

room for early-stage perceptual errors – behavior exhibits randomness that reflects errors in

the computational process of valuation.

For example, (Enke and Graeber, 2023) show that valuation of risky lotteries becomes

less sensitive to state probabilities as cognitive noise is increased. Even in less cognitively

demanding tasks, there is evidence that humans exhibit cognitive noise when simply com-

paring which of two symbolically presented numerical quantities is greater (Dehaene, 2011).

Given that the game we analyze is arguably at least as complex as the individual decision-

making tasks cited above, we hypothesize that cognitive noise should also operate in the
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strategic setting we consider here. Building on this previous literature, we model cognitive

noise through the assumption that each player has access only to a noisy signal of θ.

Assumption 1 (Cognitive Noise) Each player i, i = {1, 2}, has a common prior belief

that θ is distributed normally, θ ∼ N (µθ, σ
2
θ). Conditional on the realized value of θ, each

player observes a noisy internal representation, Si = m(θ)+ϵi, where each ϵi is independently

and normally distributed: ϵi ∼ N (0, σ2
S) with σ

2
S > 0.

The prior belief about θ, which we denote by f(θ), can represent public information or

past experience in a similar environment that is common to both players. Assumption 1

reflects noise in the computation of the subjective values of each action. This noise could

arise from errors in encoding θ, retrieving θ from short-term memory, or integrating θ with

other parameters in the game. To be clear, our assumption does not imply that if a subject

were asked to repeat the value of θ back to the experimenter (verbally or through written

form), that she would exhibit errors. Our framework is consistent with the view that subjects

can have conscious access to the presented value of θ, but that there is noise in judgments

and computations that take θ as an input.

It is worth highlighting how Assumption 1 introduces uncertainty into various aspects of

the decision process. To illustrate, we derive the condition under which each player chooses

to invest. Player i will invest if and only if:

EU[Not Invest |Si] < EU[Invest |Si]

E[θ|Si] < a+ [b− a]E[p(a, b, θ)|Si]∫
θf(θ|Si)dθ < a+ [b− a]

∫
p(a, b, θ)f(θ|Si)dθ, (1)

where f(θ|Si) is player i’s posterior belief about the distribution of θ after observing signal

Si. The function, p(a, b, θ), maps the game payoffs into a belief about the probability that the

opponent invests. When we derive equilibria of the game, p will be pinned down endogenously

by rational expectations but, for now, it is instructive to consider p as exogenous.

In inequality (1), the noisy internal representation, Si, appears on both sides of the

expression. On the left-hand side, Si induces uncertainty about player i’s own payoff from not

investing, which is referred to as structural uncertainty. In our setting, structural uncertainty

can arise from noisy encoding of θ or noise in computing the utility of θ. On the right-

hand side, Si induces uncertainty about the opponent’s probability of investing, which is

referred to as strategic uncertainty. If, for example, player i believes the opponent uses a

cutoff rule, then her belief about the opponent investing depends on her belief about the

opponent’s signal. Since Si and S−i are drawn conditional on θ, player i′s belief about her
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opponent’s perception of θ will depends on Si. Both sources of uncertainty will be important

for our theoretical results: strategic uncertainty will be responsible for generating a unique

equilibrium, whereas structural uncertainty will generate a continuous relationship between

θ and the probability of investing.

Having shown how the noisy internal representation can lead to multiple types of uncer-

tainty, we now draw on principles from psychology to put further structure on the distribution

of Si. Following Khaw, Li and Woodford (2021), we constrain the encoding of information

so that the mean signal, m(θ), is a linear function of θ and has a bounded variance:5

Assumption 2 (Encoding Function) The encoding function is linear: m(θ) = ξ + ψθ.

In addition, there is a power constraint, E[m2] ≤ Ω2 <∞.

The power constraint captures the idea that the brain cannot encode an arbitrarily large

set of values. Without the power constraint, the player could choose the noisy internal

representation, Si = m(θ) + ϵi, to be arbitrarily precise by making the variance of m(θ)

as large as needed. By introducing the power constraint, it becomes harder for a player to

discriminate between two fundamental values as they become closer together. Specifically,

for any two fundamental values θ1 < θ2, it is more difficult for the player to discriminate

between the two values as |θ1 − θ2| approaches zero. This assumption is in the spirit of the

cost functions proposed by Hébert and Woodford (2021) and Morris and Yang (2022).

Given the cognitive constraints summarized by Assumptions 1 and 2, we allow the player

to choose the encoding function parameters, (ξ, ψ). In this manner, the player can effi-

ciently code information about the fundamental to achieve a performance objective. Thus,

the conditional distribution of noisy internal representations can vary across environments,

depending on the player’s prior belief about the fundamental in that environment. Our

assumption of efficient coding is built on substantial empirical evidence from the literature

on sensory perception, which finds that the distribution of noisy internal representations

is optimally adapted to the statistical regularities of the environment.6 In addition to the

evidence from sensory perception, recent work has empirically documented effects of efficient

coding in economic choices (Polania, Woodford and Ruff, 2019; Frydman and Jin, 2022).

To close the efficient coding model, we need to specify the performance objective which

drives the players’ optimal choice of the encoding function parameters.

Assumption 3 (Performance Objective) Players choose the encoding function which

minimizes the mean squared error between θ and its conditional mean, E[θ|Si].
5Khaw, Li and Woodford (2021) assume a slightly different specification of the encoding function, which

is linear in the logarithm of a payoff value. See their Appendix C for details.
6For example, see work by (Girshick, Landy and Simoncelli, 2011; Wei and Stocker, 2015; Payzan-

LeNestour and Woodford, 2022)
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With the player’s performance function in hand, we can now derive the efficient coding

function that each player optimally chooses, given her cognitive constraints.7

Proposition 1 (Efficient Coding) Given Assumptions 1-3, the optimal encoding function

features ξ⋆ = − Ω
σθ
µθ and ψ⋆ = Ω

σθ
. Consider the transformed internal representation, Zi ≡

(Si − ξ⋆)/ψ⋆. The conditional distribution of Zi is N (θ, ω2σ2
θ), where ω = σS/Ω. The

variance of Zi is proportional to the variance of θ.

Proposition 1 says that the player chooses the slope of the encoding function, ψ⋆, such

that it becomes steeper as the variance of the prior shrinks. Intuitively, for a given change in

θ, a good encoding function is one that exhibits a large change in signal. As the variance of

the prior shrinks, signals can become more sensitive to a change in θ while still satisfying the

power constraint. Indeed, the important implication of Proposition 1 for our purposes is that

the noisy signal distribution is normalized by the prior variance. While this “normalization”

result is derived from our three specific assumptions, it is a robust implication of efficient

coding that arises in a more general class of models (Polania, Woodford and Ruff, 2019;

Khaw, Li and Woodford, 2021; Frydman and Jin, 2022; Payzan-LeNestour and Woodford,

2022).8

Given the optimal encoding function in Proposition 1, we can now solve for the equilibria

of the game. We restrict our analyses to monotone equilibria of the incomplete informa-

tion game, that is, equilibria in which actions are monotonic in the transformed internal

representation, Zi. In such a monotone equilibrium, a player’s mutual best response is to

choose Invest if and only if her transformed internal representation is below a threshold k⋆.

To derive the equilibrium, we adapt results from the global games literature (Carlsson and

Van Damme, 1993; Morris and Shin, 2003; Morris, 2010) to the game in Figure 1, with the

further assumption that µθ = (a+ b)/2 (as in the experiment described in the next section).

We can then establish there exists a monotone equilibrium such that player i invests if and

only if Zi ≤ µθ, for any value of σθ, σS and Ω. Furthermore, if the noise in the transformed

internal representation is sufficiently small, this is the unique monotone equilibrium.9

Proposition 2 (Equilibrium Existence and Uniqueness) Suppose Assumptions 1-3 and

µθ = (a + b)/2. There exists an equilibrium of the game where each player invests if and

7In Section 6.4 and Online Appendix B, we show that our theoretical predictions are robust to different
assumptions about the players’ performance objective.

8The differences across efficient coding models stem from alternative specifications of the encoding con-
straint and the performance objective (Ma and Woodford, 2020). While model predictions will differ as a
function of higher moments of the prior, the prediction of higher precision for lower variance priors is shared
among the majority of efficient coding models.

9In deriving the equilibrium, we assume common knowledge of the distribution of internal representations.
In Section 6.5, we discuss how the equilibrium can arise under weaker assumptions about common knowledge.
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Figure 2: Probability of Investing and Coordination as a Function of θ. Note:
The upper panel displays the predicted probability of investing. The bottom panel displays
the predicted probability of coordination – where coordination is defined as both players
investing or both players not investing. In both panels, the solid line denotes the prediction
for a low volatility distribution with θ ∼ N(55, 20); the dashed line denotes the prediction
for a high volatility distribution with θ ∼ N(55, 400); we set the following parameter values:
a = 47, b = 63, and ω = 0.85.

only if Zi ≤ µθ (or, equivalently, E[θ|Zi] ≤ µθ). Moreover, if ω
√
1+ω2√
2+ω2 <

√
2π

(b−a)σθ, this is the

unique monotone equilibrium of the game.

Proposition 2 implies a rich set of comparative statics with respect to θ. The probability

of investing is pinned down by the distribution of the transformed internal representation:

11



Pr[Invest|θ] = Pr [Zi ≤ µθ|θ] = Φ
(
µθ−θ
ωσθ

)
, where Φ(·) is the cumulative density function of

the standard normal. This result indicates that, in the unique monotone equilibrium, the

probability of investing is continuous and monotonically decreasing in θ. If we operationalize

coordination as both players investing or both players not investing, then it follows that

coordination will also be systematically related to θ. In particular, the model predicts that

the probability of coordination is a continuous and U-shaped function of θ, which has its

minimum at θ = 55. We emphasize that the prediction of a systematic relationship between

θ and the probability of coordination does not arise in the complete information version of

the game.

We can make an even starker prediction about equilibrium outcomes by exploiting the

malleability of the encoding function. The probability of investing depends not only on θ,

but also on the prior distribution from which θ is drawn. Specifically, σθ modulates the

optimal encoding function and, therefore, the precision with which a player detects whether

a fundamental crosses the equilibrium threshold. It follows that, when ω is sufficiently small

(so that a unique equilibrium obtains regardless of σθ), the probability of investing declines

more rapidly in θ as the prior volatility decreases. This prediction is summarized in the

following proposition.

Proposition 3 (Comparative Statics) Suppose Assumptions 1-3, µθ = (a + b)/2, and
ω
√
1+ω2√
2+ω2 <

√
2π

(b−a)σθ. In the unique monotone equilibrium of the game, the probability that each

player invests for a given value of θ is Pr[Invest|θ] = Φ
(
µθ−θ
ωσθ

)
. Decreasing the variance of

θ will increase the sensitivity of choices to θ (that is, the rate at which Pr[Invest|θ] decreases
with θ) for values of θ close to µθ.

In Figure 2, we illustrate the implications of Proposition 3 for investment behavior and

coordination. The upper panel shows that, in both conditions, the probability of investing

declines continuously in θ. The negative relationship is a consequence of the unique monotone

equilibrium where each player invests if and only if Zi ≤ 55. We also see that the prior

distribution of θ strongly affects the rate at which the probability of investing declines in

θ. This dependence of equilibrium behavior on the prior distribution of θ motivates our

experimental design. The bottom panel shows that the probability of coordination is a

function of both θ and the distribution from which θ is drawn.

3 Experimental Design of Coordination Game

We test the cognitive noise model by incentivizing subjects to play a simultaneous move

game, and we manipulate the distribution that generates the fundamental payoff, θ. We pre-
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register the experiment and recruit 300 subjects from the online data collection platform,

Prolific.10 We restrict our sample to subjects who, at the time of data collection, (i) were UK

nationals and residents, (ii) did not have any previous “rejected” submissions on Prolific, and

(iii) answered all comprehension quiz questions correctly. Subjects are paid 2 GBP (∼ 2.8

USD) for completing the experiment, and they have the opportunity to receive additional

earnings based on their choices and the choices of other participants.

The experiment consists of 300 rounds, and each subject participates in all rounds. In

each round, a subject is randomly matched with another subject and, together, they play

the simultaneous move game in Figure 1. We hold constant the payoff parameters a = 47

and b = 63 across all rounds. The only feature of the game that varies across rounds is

the value of θ, which is drawn from the condition-specific distribution f(θ). In each round,

both subjects observe the same realization of θ. In order to shut down learning about other

participants’ behavior, we choose not to provide subjects with feedback about their earnings

or their opponent’s choice in a given round. At the end of the experiment, one round is

selected at random, and subjects are paid according to the number of points they earned in

that round, which in turn, depends on their action, their opponent’s action, and the (round-

specific) value of θ. Points are converted to GBPs using the rate 20:1. The average duration

of the experiment was ∼ 25 minutes and average earnings, including the participation fee,

were ∼ 5.5 GBP (∼ 7.7 USD).

Subjects are randomized into one of two experimental conditions: a high volatility con-

dition or a low volatility condition, which differ only based on the distribution of θ. In the

high volatility condition, f(θ) is normally distributed with mean 55 and variance 400. In

the low volatility condition, f(θ) is normally distributed with mean 55 and variance 20. In

both conditions, after drawing θ from its respective distribution, we round θ to the nearest

integer, and we re-draw θ if the rounded value is less than 11 or greater than 99. We imple-

ment these modifications to the normal distribution to control complexity and ensure that

θ is a two-digit number on each round. We do not give subjects any explicit information

about f(θ) in the instructions, as our intention is to test whether a subject can adapt to the

statistical properties of the environment without explicit top-down information. Moreover,

we believe that such a design is more natural than explicitly telling subjects the distribu-

tion of parameters they will experience, as this could artificially direct their attention to

the distribution. Each condition contains an identical set of instructions and comprehension

quiz.11 As outlined in our pre-registration, we exclude the first 30 rounds from our analyses,

in order to allow subjects time to adapt to the distribution of θ.

10The pre-registration document is available at https://aspredicted.org/IHU_KCE.
11The experimental instructions are available in Online Appendix E.
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Figure 3: Sample Screenshot Shown to Participants in Experiment 1. Note: In this
round, the realized value of θ is 45, which is clearly and explicitly displayed to both subjects.
Subjects choose “Option A” or “Option B” by pressing one of two keys on the keyboard.

Recall that, in the complete information version of the game, there are multiple equilibria

when θ is in the range [47, 63]. We therefore focus our analyses on games for which θ lies

in this range. We pre-register that our main analyses are restricted to those rounds for

which θ ∈ [47, 63] and we call these “common rounds.” This is a crucial feature of our

design, because it allows us to compare behavior across conditions using the exact same set

of games and varying only the context, that is, the distribution of past games.

In choosing the parameters for our design (a, b and the two condition-specific values

of σθ), we strike a balance among three competing objectives: (i) generating a substantial

number of common rounds to analyze, (ii) creating a large predicted treatment effect, and

(iii) guaranteeing the empirical distributions of θ approximate the distributions that we

assume in the theory. There is a tension between the first objective and each of the latter

two. First, a natural way to create a large predicted treatment effect is to set a large value

of σθ in the high volatility condition. However, if this parameter is too large, there will

be relatively few draws for which θ ∈ [47, 63] and, thus, few common rounds to analyze in

this condition. Second, theory requires us to choose an [a, b] range which is not too large.

Specifically, equilibrium uniqueness requires that, in both conditions, subjects believe there

is some chance of observing games with dominant strategies, that is, games with θ < a and

game with θ > b. At the same time, reducing the distance between a and b — e.g., choosing

a = 50 and b = 60 — would reduce the number of common rounds to analyze.

Figure 3 provides a screenshot of a single round shown to subjects. In order to avoid

framing effects, we label the two options “Option A” and “Option B”, and the left-right

location of each option is randomized across rounds. The number “45” is the realized value
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of θ on the specific round shown in Figure 3. We emphasize that — while the number

is clearly displayed to all subjects and, thus, would traditionally be interpreted as public

information — here we rely on cognitive noise to transform the fundamental value into

private information. In other words, we assume that cognitive constraints prevent each

player from processing the fundamental value and combining it with other information from

the game in a precise manner.

Finally, we intentionally choose the visual display of the experiment to be as simple as

possible, so that we only present the values of a, b, and θ once on each experimental screen.12

An alternative approach would be to display the game in matrix form, similar to the display

in Figure 1. While the matrix approach is more standard in experimental economics, it

may also be interpreted by subjects as more complex compared to our design in Figure 3.

Importantly, the complexity of how information is presented has recently been shown to affect

the level of cognitive noise (Enke and Graeber, 2023). Thus, we do not believe one display

strictly dominates another. On the contrary, differences in display may systematically affect

cognitive noise which could motivate modifications of our design to assess the impact on

coordination.

4 Experimental Results from Coordination Game

4.1 Choice Behavior

Following our pre-registration, we restrict our analysis to common rounds in which subjects

execute a decision with a response time greater than 0.5 seconds, which generates a sample

of 50,129 decisions. Across both conditions, subjects choose to invest on 58.9% of rounds.

In the upper panel of Figure 4, we plot the probability of investing as a function of

the fundamental, separately for the two experimental conditions. One can see that, in

both conditions, the aggregate data are consistent with the prediction from cognitive noise

that subjects implement strategies that are continuous and monotone in θ. The data are

therefore consistent with the predicted relationship between θ and the probability of investing

from Proposition 3. Importantly, the smooth decreasing relationship between θ and the

probability of investing obtains even without introducing any explicit private signals about

θ, which are typically implemented in global games experiments. Our interpretation is

that subjects generate their own “homegrown” private signals about θ, because cognitive

12Heinemann, Nagel and Ockenfels (2009) use a similar visual display of a coordination game (see their
Figure 1). Note also that our experimental instructions emphasize that the subject’s opponent views the
same screen as she does, and our comprehension quiz tests subjects’ understanding of how choices translate
into earnings for both subjects in the game.
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Figure 4: Empirical Frequency of Investing and Coordination as a Function θ.
Note: In the Upper Panel, for each value of θ between 47 and 63, we plot the proportion
of rounds on which a subject chooses to invest, separately for each of the two conditions.
Data are pooled across subjects and are shown for rounds 31-300, after an initial 30-round
adaptation period. Vertical bars inside each data point denote two standard errors of the
mean. Standard errors are clustered by subject. In the Lower Panel, we plot the proportion
of games for which the pair of subjects coordinate (both subjects invest or neither subject
invests). Data are shown for rounds 31-300. Vertical bars inside each data point denote two
standard errors of the mean. Standard errors are clustered by subject pair.
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constraints prevent them from precisely processing θ. In the bottom panel of Figure 4, we

plot the frequency of coordination outcomes as a function of θ. In both conditions, we

observe a systematic relationship between the likelihood of coordination and θ: coordination

is more likely as θ becomes farther from 55.

In order to provide a more targeted test of cognitive noise, we focus on the second

prediction from Proposition 3, which implies that the distribution of noisy signals should vary

systematically across our two experimental conditions. Specifically, efficient coding predicts

context-dependent behavior, where subjects in the low volatility condition can more precisely

detect whether the fundamental crosses the unique equilibrium threshold. The upper panel of

Figure 4 provides evidence consistent with this prediction: the frequency of investing is more

sensitive to the fundamental in the low volatility condition. The differential slopes shown in

the upper panel of Figure 4 represent our main experimental result, which separates cognitive

noise from a broad class of game-theoretic models that do not predict context-dependence.

To formally test the difference in slope, we estimate a series of mixed effects linear regres-

sions which account for the fact that each subject contributes more than one observation to

the dataset. Column (1) of Table 1 confirms our main result: the coefficient on the interac-

tion term (θ−55) x Low is significantly negative (p < 0.001), indicating that the probability

of investing decreases in the fundamental more rapidly when a subject is adapted to the

low volatility condition. Columns (2) and (3) show that this result holds in both early (first

50 trials after adaptation) and late (last 50 rounds of the session) subsamples (both with

p < 0.001). Column (4) indicates that the treatment effect becomes moderately stronger

over the course of the experiment, as the coefficient on the triple interaction is negative

(p = 0.024). The strengthening of the treatment effect over the course of the experiment

suggests that subjects have not fully adapted to the distribution by round 80 and that

additional rounds of play provide the opportunity for further adaptation.

The bottom panel of Figure 4 shows that coordination also exhibits a strong degree of

context-dependence. Subjects in the low volatility condition are significantly more likely to

coordinate their behavior than subjects in the high volatility condition (63.8% vs. 60.5%; p <

0.001 for a difference in means). Moreover, this difference in coordination frequency is more

pronounced for games where θ is farther from 55, consistent with the theoretical prediction

shown in the bottom panel of Figure 2. The difference in coordination frequency across

conditions also holds (and becomes moderately stronger) when we control for θ. In sum, our

main results in Figure 4 demonstrate that (i) coordination frequency depends systematically

on θ and that (ii) increasing the precision with which subjects process information about θ

increases the likelihood of coordination.

While subjects do not receive feedback after each round, it is still possible that they learn
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Dependent Variable: Pr(Invest) (1) (2) (3) (4)

(θ − 55) -0.040∗∗∗ -0.042∗∗∗ -0.040∗∗∗ -0.042∗∗∗

(0.002) (0.003) (0.003) (0.003)

(θ − 55) x Low -0.022∗∗∗ -0.018∗∗∗ -0.024∗∗∗ -0.018∗∗∗

(0.004) (0.004) (0.004) (0.004)

Low -0.040 -0.032 -0.018 -0.028

(0.028) (0.030) (0.030) (0.028)

Late 0.001

(0.008)

(θ − 55) x Late 0.003

(0.002)

Low x Late 0.092

(0.154)

Low x (θ − 55) x Late -0.007∗∗

(0.003)

Constant 0.624∗∗∗ 0.618∗∗∗ 0.607∗∗∗ 0.614∗∗∗

(0.018) (0.020) (0.021) (0.019)

Observations 50,129 9,425 9,201 18,626

Rounds 31-300 31-80 251-300 (31-80)

& (251-300)

Table 1: Treatment Effect Estimates. Note: Table displays results from mixed effects
linear regressions. Observations are at the subject-round level. The dependent variable takes
the value 1 if the subject chooses to Invest and 0 otherwise. The variable Low takes the
value 1 if the round belongs to the low volatility condition and 0 otherwise. The variable
Late takes the value 1 if the round number is 251 or greater and 0 otherwise. Only data
from rounds where 46 < θ < 64 are included in the regressions. There are random effects on
(θ − 55) and the intercept. Standard errors of the fixed effect estimates are clustered at the
subject level and shown in parentheses. ***, **, * denote statistical significance at the 1%,
5%, and 10% levels, respectively.
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about the strategic environment through repeated exposure to the game, as in Weber (2003)

and Rick and Weber (2010). Moreover, our experimental design implies that subjects in

different conditions will experience the same game, characterized by θ, a different number

of times (e.g., games characterized by a value of θ close to 55 will occur more frequently in

the low volatility condition). This raises the potential concern that our observed treatment

effect is due to the differential ability to learn, rather than to cognitive noise.13

To investigate the learning explanation, Table 2 presents subsample results where we

restrict to rounds for which subjects have identical experience with a given game in both

conditions. In particular, the first column restricts to those rounds on which subjects in the

low and high volatility conditions have previously observed 3 games with the same value

of θ as in the current round. Columns (2) – (4) further restrict the data based on more

and more experience with a given game. The regression results indicate that our treatment

effect obtains among each of the different subsamples (at the 1% significance level). Thus,

learning cannot explain the entire treatment effect we observe. Moreover, while learning

could potentially modulate the strength of the relationship between θ and the probability

of investing, we emphasize that another theory is still needed to explain why there is a

continuous and monotonic relationship in the first place. Cognitive noise generates both the

monotonicity and the context-dependence.

It is important to point out that the results in Figure 4 are aggregated across subjects.

Therefore, while the data are consistent with the prediction that, at the individual subject

level, signals are drawn from a noisier distribution in the high volatility condition, there

is another potential explanation based on aggregation. Specifically, suppose that subjects

perceive θ perfectly and that they use a potentially non-equilibrium cutoff strategy. Further

suppose that there is heterogeneity with respect to the cutoff that each subject adopts. If

some subjects use low cutoffs, while others use high cutoffs, then this heterogeneity would

give rise to the decreasing relationship observed in both aggregate curves in Figure 4. In

addition, if the variance in cutoff strategies across subjects is larger in the high volatility

condition, then this alternative hypothesis could explain the weaker relationship between θ

and the probability of investing in the high volatility condition. To investigate this alternative

hypothesis, based on heterogeneity of cutoff strategies, we structurally estimate the model

to obtain subject-specific cutoffs and measures of cognitive noise.

13For related theoretical work on learning about payoffs in coordination games and the resulting contagion,
see Steiner and Stewart (2008).
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Dependent Variable: Pr(Invest) (1) (2) (3) (4)

(θ − 55) -0.039∗∗∗ -0.040∗∗∗ -0.042∗∗∗ -0.044∗∗∗

(0.003) (0.003) (0.003) (0.004)

(θ − 55) x Low -0.017∗∗∗ -0.018∗∗∗ -0.017∗∗∗ -0.019∗∗∗

(0.004) (0.004) (0.004) (0.005)

Low -0.042 -0.038 -0.045 -0.056

(0.026) (0.028) (0.028) (0.030)

Constant 0.625∗∗∗ 0.614∗∗∗ 0.624∗∗∗ 0.629∗∗∗

(0.019) (0.021) (0.020) (0.022)

Observations 4249 4001 3582 3065

Rounds of Experience with Game (θ) 3 4 5 6

Table 2: Controlling for Experience with θ. Note: Table displays results from mixed
effects linear regressions. Observations are at the subject-round level. The dependent vari-
able takes value 1 if the subject chooses to Invest and 0 otherwise. The variable Low takes
value 1 if the round belongs to the low volatility condition and 0 otherwise. Only data from
rounds where 46 < θ < 64 are included in the regressions. There are random effects on
(θ − 55) and the intercept. Standard errors of the fixed effect estimates are clustered at the
subject level and shown in parentheses. ***, **, * denote statistical significance at the 1%,
5%, and 10% levels, respectively.

4.2 Structural Estimation

According to the model described in Section 2, subject i chooses the parameters of the

encoding rule, mi(θ) = ξi + ψiθ. She then observes a noisy internal representation, Si =

mi(θ) + ϵi. If we define a transformed version of the noisy internal representation as Zi =

(Si− ξi)/ψi, then, for a cutoff Z⋆
i , our model predicts that she invests if and only if Zi ≤ Z⋆

i .

In the unique monotone equilibrium of the game with cognitive noise, all subjects in the same

treatment choose the same (ξi, ψi, Z
⋆
i ). Here, we allow subjects to make heterogeneous (non-

equilibrium) choices and we structurally estimate these parameters using behavior observed

in the experiment.

Consider subject i who adopts a cutoff value of Z⋆
i and, in round t, receives a noisy

internal representation Sit = ξi + ψiθt + ϵit. The probability that subject i invests in round

t is the probability that her transformed noisy internal representation is below her cutoff:

IP(Invest|θt, σS, ψi, Z⋆
i ) = Φ

(
Z⋆
i − θt
σS/ψi

)
(2)

We structurally estimate the model using maximum likelihood estimation. In particu-

lar, for each subject, we estimate the standard deviation of the transformed noisy internal
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representation, σi = σS/ψi, and the cutoff Z⋆
i .

14 We maximize the following log-likelihood

function over (σi, Z
⋆
i ), using behavior in rounds 31 – 300:

LL (σi, Z
⋆
i ,yi) =

300∑
t=31

yit · log (IP(Invest|θt, σi, Z⋆
i )) + (1− yit) · log(1− IP(Invest|θt, σi, Z⋆

i )),

(3)

where yi ≡ {yit}300t=31 and yit denotes the subject’s choice in round t, with yit = 1 if the

subject chooses to invest and yit = 0 if the subject chooses not to invest. We maximize the

log-likelihood function in (3) by searching over grid values of [σi, Z
⋆
i ] ∈ [0.1, 50.1]× [11, 99],

in increments of 0.5 along each dimension.

Figure 5 plots the distribution of estimated parameters for the 300 subjects (150 in each

condition). Beginning with the upper panel, we see that, for most subjects, the estimated

cutoff lies between 50 and 60. The mean cutoff in the high volatility condition is 58.5 and

the mean cutoff in the low volatility condition is 57.2. These means are not significantly

different from one another (p = 0.15). The average cutoff in each condition is, however,

significantly greater than 55. As can be seen from the figure, this difference relative to 55 is

driven mainly by the right tail of the distribution, which captures a small fraction of subjects

who almost always choose to invest.

More importantly, we find that the standard deviation of estimated cutoffs is not signif-

icantly different across conditions (8.4 in high volatility vs. 7.5 in low volatility, p = 0.43

Levene’s test). This suggests that heterogeneity in cutoffs is not driving the treatment effect.

If it were, we would have observed a more concentrated distribution of cutoffs in the low

volatility condition and, thus, a significantly lower standard deviation of estimated cutoffs

in the low volatility condition.

Instead, the lower panel of Figure 5 reveals that the difference in behavior across con-

ditions stems from the standard deviation of the noisy internal representations. The mean

estimated value of σi is significantly higher in the high volatility condition (14.4 vs. 5.9,

p < 0.001). One can easily see from the figure that this effect holds not only on average,

but across the whole distribution. In summary, while the aggregate data in Figure 4 are

consistent with subjects in the high volatility condition exhibiting (i) a wider dispersion of

cutoffs or (ii) a higher amount of noise in the internal representation of the fundamental, our

structural estimation indicates that the effect is coming only through the second channel, as

14We cannot separately identify σS and ψi since these two parameters are perfect substitutes in the
conditional density of Zi. At the same time, while ψi is an endogenous variable, we interpret σS as an
exogenous parameter, capturing the degree of a subject’s cognitive capacity. In Section 2, we assume σS
is homogeneous. Even if we allow for heterogeneity across subjects, the randomization into experimental
conditions guarantees a similar distribution of σS in the two sub-populations. For this reason, we attribute
any difference in the distribution of the estimated σi’s across conditions to differences in ψi.
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Figure 5: Empirical CDFs of Subject-Level Structural Estimates. Note: Upper panel
is the empirical CDF of estimated cutoffs. Lower panel is the empirical CDF of estimated
standard deviations of noisy internal representations.

predicted by the theory developed in Section 2.

4.3 Response Times

Here we analyze the distribution of response times in both conditions. The response time

variable is defined at the round level, and measures how long it takes a player to execute

a decision after the game is presented on the screen. As outlined in our pre-registration,

we test two hypotheses regarding the distribution of response times. First, response times

should peak at the unique equilibrium cutoff level of 55. Second, conditional on θ, response
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Figure 6: Average Response Time as a Function of θ. Note: Response times are
averaged across subjects and across rounds. Vertical bars denote two standard errors of the
mean. Standard errors are clustered by subject.

times should be longer in the high volatility condition. Our hypotheses are motivated by the

literature on sequential sampling models (Ratcliff, 1978; Bogacz, Brown, Moehlis, Holmes

and Cohen, 2006), which robustly predict that response times become longer as the values

of two items under comparison become closer together. Thus, the tests we present in this

section are joint tests of cognitive noise, which predicts that subjects use a unique threshold

strategy, and sequential sampling models, which predicts how long it takes to implement the

threshold strategy on each round.

In many sequential sampling models (see, e.g., Krajbich, Armel and Rangel 2010), the

agent will execute a decision as soon as a stream of incoming signals has reached a pre-defined

reliability threshold. Because signals are sampled sequentially, response times increase with

the number of signals drawn. While the model we present in Section 2 only allows the

agent to draw a single noisy signal, Si, one could generalize the model to allow a sequence

of independent noisy signals. For every additional noisy signal that the player collects,

her posterior will become narrower, and, thus, the entire stream of signals provides more

reliable evidence about whether θ is less than 55. As signals become more informative about

whether θ is below the (equilibrium) threshold, the agent will reach the pre-defined reliability
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threshold with fewer signals, and thus response times will be shorter.

In our setting, there are two particular ways in which a signal can provide more informa-

tion about whether θ is less than 55. First, recall that in our model, the mean of Si varies

monotonically with θ. Thus, Si provides cardinal information about θ, and not just ordinal

information about whether θ is below 55. It follows that as |θ − 55| increases, Si provides
a more informative signal about whether θ < 55. Second, as the precision of Si increases,

this naturally provides more information about whether θ < 55. Taken together, sequential

sampling models predict that, when a player is tasked with implementing a cutoff strategy

(which is derived as the equilibrium strategy under cognitive noise), response times should

decrease as (i) |θ − 55| increases and (ii) the precision of Si increases. We can test the first

prediction by relying on variation in θ within an experimental condition. We can test the

second prediction by relying on the variation in signal precision across conditions, which is

endogenously generated by efficient coding.

Figure 6 plots the average response time, conditional on θ, for each of the two experi-

mental conditions. We highlight two features of the figure. First, we see that in the high

volatility condition, the peak response time is at θ = 55; in the low volatility condition, the

peak is not far away, at θ = 54. Moreover, response times fall almost monotonically as θ

moves away from the equilibrium threshold of 55 (p = 0.001 in a mixed-effects regression of

response time on |θ − 55| for each of the two conditions). Second, there is a clear separa-

tion of the curves across conditions: conditional on θ, response times are longer in the high

volatility condition compared to the low volatility condition (unconditionally, the average

response time is significantly longer in the high volatility condition, p < 0.001). These two

features of the data are roughly consistent with the predictions outlined above.

One caveat to our analysis of response times is that the precision of Si is chosen by the

player according to efficient coding, but under the assumption that she can only draw one

signal. The predictions may change if one were to endogenize the signal precision and the

number of signals to be drawn (or the reliability threshold). That said, the data shown in

Figure 6 provide suggestive evidence that subjects are implementing threshold strategies in

a manner that is consistent with core predictions of sequential sampling models. In this

manner, the response time data help validate our model assumptions about the cognitive

constraints that subjects face when playing the game.
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5 Experiment on Decomposing Structural Uncertainty

and Strategic Uncertainty

In our model, all noise in behavior stems from uncertainty about a game payoff (i.e., struc-

tural uncertainty) that is induced by cognitive noise. As shown in inequality (1), cognitive

noise also generates strategic uncertainty — that is, uncertainty about the opponent’s valua-

tion and behavior — which is key to pinning down a unique equilibrium. We emphasize that

in the model, the only source of strategic uncertainty is cognitive noise, but in reality, there

are surely other sources of strategic uncertainty. For example, there may be uncertainty

about the opponent’s degree of rationality, the opponent’s preferences, or which of multi-

ple equilibria (of the complete information version of the game) the opponent is playing.

The stochastic behavior we observe in Figure 4 can therefore be a consequence of noise in

processing θ or alternative sources of strategic uncertainty. Our objective in this section is

to quantitatively assess how much of the observed noise in behavior can be attributed to

cognitive noise and how much is driven, instead, by other sources of strategic uncertainty.

To address this question, we conduct a second experiment in which a new sample of

subjects plays the same simultaneous move game as in the previous experiment. The only

difference is that, here, subjects are told that their opponent is a computer that plays a known

and deterministic strategy. In particular, we tell subjects that the computerized opponent

chooses to invest if and only if θ < 55. Thus, the computerized opponent’s strategy coincides

with the unique equilibrium strategy in the game where each player has a small amount of

cognitive noise about θ.15 This treatment should, therefore, eliminate strategic uncertainty

— except for the strategic uncertainty that is induced by a subject’s own imprecision of θ.

5.1 Experimental Design and Procedures

As in the previous experiment, we incentivize subjects to play the simultaneous move game

described in Figure 1. In the previous experiment, we manipulated the distribution from

which θ is drawn in each round. Here, we use the distribution from the high volatility con-

dition in the previous experiment, where θ ∼ N(55, 400), but we tell subjects that their

15In the game where each human player has cognitive noise, player i is indifferent between investing and
not investing when (a) E[θ|Zi] = 55 and (b) player i believes his human opponent follows the strategy
prescribed by the unique equilibrium from Proposition 2. Because our goal here is to completely remove
any uncertainty about the opponent’s strategy that is not induced by noisy perception of θ, we design the
computerized opponent to play a deterministic strategy when θ = 55, namely, not invest with probability 1.
As a consequence, in the game where θ = 55, the best response of a human subject who perceives θ without
noise is not to invest. This is consistent with the (indeterminate) best response to equilibrium beliefs in the
game where each human player has cognitive noise. Because our design choice for the computer strategy
when θ = 55 is arbitrary, we show below that our results are robust to removing games for which θ = 55.
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opponent is a computer. Subjects play three hundred rounds of the game, where the only

difference across games is the random value of θ. Because we tell subjects that the comput-

erized opponent will invest if and only if θ < 55, the subject has a dominant strategy for all

θ: invest if and only if her perception of θ is greater than 55.16

We pre-register the experiment and recruit 100 subjects from Prolific.17 We apply the

same recruitment restrictions as in the previous experiment. The experimental instructions

are in Online Appendix E. Subjects are paid 2 GBPs for completing the experiment and are

also paid according to the outcome on one randomly drawn round. Unlike in the previous

experiment, here, the outcome depends exclusively on the subject’s own decision since the

computerized opponent plays a known and deterministic strategy. The median duration of

the experiment was around 21 minutes and the average earnings, including the participation

fee, were 6.30 GBPs.

5.2 Experimental Results

Following our pre-registration, we restrict our analysis to rounds where θ ∈ [47, 63] and where

the subject executes a decision with a response time greater than 0.5 seconds. Our focus

is on comparing behavior when subjects play against a computerized opponent (Algorithm)

with behavior from the high volatility condition from the previous experiment (Human). By

fixing the prior distribution across conditions, we control for any efficient coding effects.

Figure 7 plots the data from both the Algorithm and Human conditions. If subjects were

precisely implementing the threshold strategy with a threshold of 55, then we should observe

a step function around θ = 55. Instead, one can see that there is obviously noise in both

conditions. However, behavior appears less noisy in the Algorithm condition compared to

the Human condition.

To formally investigate the difference in noise across conditions, we run a linear mixed

effects regression where the dependent variable is a dummy that takes on the value 1 if the

subject invests and is 0 otherwise. The independent variables are θ, the dummy variable

Human which indicates whether the observation is in the Human condition, and the inter-

action between θ and Human. There are random effects on the intercept and on θ. Column

(1) of Table 3 shows that the estimated coefficient on θ is significantly negative while the

coefficient on the interaction term is significantly positive. These results indicate that the

probability of investing declines with θ in both conditions, but also that this probability

16For other experiments where a game is reduced to an individual decision problem by using computerized
opponents, see Roth and Murnighan (1978), Fehr and Tyran (2001), Esponda and Vespa (2014), and Koch
and Penczynski (2018).

17The pre-registration document is available at: https://aspredicted.org/339 B5N.
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Figure 7: Empirical Frequency of Investing as a Function of Opponent Type Note:
For each value of θ between 47 and 63, we plot the proportion of rounds on which a subject
chooses to invest. The Algorithm condition denotes the data collected in the additional
experiment where the subject plays against a computerized opponent. The Human condition
denotes the data collected in the high volatility condition from our main experiment. Data
are pooled across subjects for all rounds 1-300. Vertical bars inside each data point denote
two standard errors of the mean. Standard errors are clustered by subject.

declines more rapidly in the Algorithm condition. This, in turn, suggests that subjects are

implementing the threshold strategy with significantly less noise when they play against a

computer compared to when they play against a human.

One concern with the previous test about existence of noise in the Algorithm condition is

that, even under the null hypothesis of zero noise in the Algorithm condition, the estimated

coefficient on θ would be negative (as long as there is some measurement error). This

is because the probability of investing drops from 1 to 0 when θ crosses 55. However,

continuing under the null hypothesis of zero noise, there should be no variation in behavior

when conditioning on values of θ > 55; similarly, there should be no variation in behavior

when conditioning on values of θ < 55. In columns (2) and (3) of Table 3, we show that

the coefficient on θ remains significantly negative in both subsamples. Therefore, in the

Algorithm condition, the probability of investing declines for θ ∈ [47, 54] and it also declines

27



for θ ∈ [56, 63]. This is consistent with the predictions of our model of cognitive noise.

In sum, there are two main takeaways from Table 3: when subjects play a simultaneous

move game against a computerized opponent, (i) we continue to detect substantial noise in

behavior (and the pattern of noise is consistent with our model) and (ii) the noise is smaller

compared to when subjects play against a human opponent. We attribute the reduction of

noise to alternative sources of strategic uncertainty that are present in our original experiment

and are not driven by imprecision over θ.18

To quantitatively assess how much noise in behavior can be attributed to noise in encoding

and processing θ compared to other sources of noise, we estimate the amount of noise in

each condition non-parametrically. For each subject and each round, we code behavior as

“consistent” if and only if the subject chooses the action prescribed by the threshold strategy

of “choose invest if and only if θ < 55”. If a decision is not coded as consistent, we attribute

the decision to noise.19 We find that, in the Human condition, 31.8% of decisions are driven

by noise. In the Algorithm condition, noisy behavior drops significantly to 15.3% of decisions

(and the difference is statistically significant at the 0.1% level).20 Thus, about half of the

noise from the Human condition appears to be driven by imprecision in θ while the other

half is driven by alternative factors outside our model. Our interpretation is that noise in

encoding and processing values of θ drives a substantial portion of observed noise in the

Human condition, but that there are clearly other important sources of noise that reflect

uncertainty about the human opponent’s strategy, preferences, or information. These latter

sources of uncertainty are shut down by design in our Algorithm condition.

6 Discussion

6.1 Connection with Global Games

One theme that emerges from both our theoretical and experimental analyses is that the

noise in global games models can be interpreted literally as irreducible error stemming from

18We find that response times in the Algorithm condition decrease as θ approaches 55 (p < 0.001 in a
mixed effects linear regression of response time on |θ − 55|). This “distance effect” is similar to the results
shown for the Human condition in Figure 6. We do not find any significant difference in average response
time across the Human and Algorithm condition. Together with the choice data shown in Figure 7, this
indicates that subjects implement the threshold strategy with more precision in the Algorithm condition
without taking significantly more time to execute these decisions.

19For the remaining analyses in this section, we discard observations for which θ = 55. This restriction is
outlined in our pre-registration and is due to the fact that there is no way to unambiguously code behavior
in the human condition (because subjects should be indifferent when θ = 55).

20When lifting the restriction that θ ∈ [47, 63], we find that, in the Human condition, 18.0% of decisions
are driven by noise, compared to 11.9% in the Algorithm condition and the difference remains statistically
significant (p = 0.011).
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Dependent Variable: Pr(Invest) (1) (46 < θ < 64) (2) (55 < θ < 64) (3) (46 < θ < 55)

θ -0.063∗∗∗ -0.010∗∗∗ -0.007∗∗∗

(0.004) (0.003) (0.002)

θ x Human 0.023∗∗∗

(0.004)

Human -1.122∗∗∗

(0.243)

Constant 3.958∗∗∗ 0.765∗∗∗ 1.231∗∗∗

(0.206) (0.162) (0.108)

Observations 24,966 4,639 4,717

Table 3: Comparing Behavior Across Human and Algorithm Condition Note: Table
displays results from mixed effects linear regressions. Observations are at the subject-round
level. The dependent variable takes value 1 if the subject chooses to Invest and 0 otherwise.
The variable Human takes value 1 if the round belongs to the Human condition and 0
otherwise. Column (1) includes data from both the Human and Algorithm conditions and
results are robust to excluding games where θ = 55. Columns (2) and (3) include data only
from the Algorithm condition. There are random effects on θ and the intercept. Standard
errors of the fixed effect estimates are clustered at the subject level and shown in parentheses.
***, **, * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

cognitive constraints. This theme is related to the idea from Heinemann, Nagel and Ockenfels

(2009) that behavior in a complete information coordination game can be interpreted as if

players are observing a fundamental parameter with noise. Like us, Heinemann, Nagel and

Ockenfels (2009) structurally estimate a global games model and find a sizable standard

deviation of private signals. However, Heinemann, Nagel and Ockenfels (2009) argue that

the only source of the estimated standard deviation of private signals is strategic uncertainty

that does not arise from structural uncertainty.21 In contrast, we argue that the standard

deviation of private signals is driven by cognitive noise. By adopting an “as is” interpretation

of noise in private signals, we are able to generate and test novel hypotheses about how the

standard deviation of private signals varies across environments.

Another important implication for the literature on global games has to do with the role

of public vs. private signals. A series of papers has argued that when an institution like

the government or a financial market can generate public signals, then a unique equilibrium

may no longer obtain in a global games model (Atkeson, 2000; Angeletos and Werning,

2006; Hellwig, Mukherji and Tsyvinski, 2006). The argument is that a sufficiently precise

21Heinemann, Nagel and Ockenfels (2009) argue that “Of course, players know the true payoff. Their
uncertainty about others’ behavior makes them behave as if they are uncertain about payoffs” (p. 203).

29



public signal can act as a coordination device, and thus restore multiple equilibria. However,

our theory and experimental results suggest that there is an important difference between

access to a public signal and precise processing of a public signal. Specifically, even if all

players have access to the public signal, each player may encode the same public signal with

noise and thus interpret it slightly differently. This friction, driven by constraints that arise

internally in the agent’s mind, transforms the public signal into private information and

makes it difficult to use the public signal as a coordination device. Our results, therefore,

imply that the provision of a public signal is not enough to overturn the classic global games

result. The ability to precisely perceive and process public information is also necessary and,

as we have shown, this cannot be taken for granted.

6.2 Comparison with Other Behavioral Game Theory Models

Behavioral game theorists have proposed a variety of models which relax the standard as-

sumptions of perfect maximization and rational beliefs. For example, Quantal Response

Equilibrium assumes imperfect maximization but retains the rational beliefs assumption;

Level-K Thinking relaxes the rational expectations assumption but maintains best responses;

M equilibrium relaxes both the rational expectations and perfect maximization assumptions.

Below, we derive predictions from these three behavioral game theory models and demon-

strate how our model differs in terms of both assumptions and predictions. As we will see,

one important conclusion is that none of the theories predict the context-dependent behavior

we observe experimentally.

Quantal Response Equilibrium

In our model of cognitive noise, noisy encoding of θ generates stochastic strategic behavior.

As such, our model is related to Quantal Response Equilibrium (McKelvey and Palfrey, 1995,

1998; Goeree, Holt and Palfrey, 2016), which is a leading model of stochastic behavior in

experimental game theory.22 For some parameter values, the models of QRE and cognitive

noise deliver similar predictions, in that both theories predict that the probability of investing

is stochastic and decreases smoothly and monotonically in θ. However, there are fundamental

differences in the assumptions of the two theories, which generate distinguishing predictions.

The key difference in assumptions comes from the stage at which noise enters the decision

process.23 In our model, noise arises early in the decision process, before each player has

22For other models of strategic interaction with stochastic choice, see Goeree and Holt (2004), Friedman
and Mezzetti (2005), and Gonçalves (2022). We discuss Goeree and Louis (2021) later in this sub-section.

23We are grateful to Michael Woodford for emphasizing this point in an illuminating discussion of our
paper.
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computed the expected utility of each action. In contrast, under QRE, noise arises late in

the decision process, after each player has perfectly perceived all parameters of the game

and precisely computed the expected utility of each action.

In the coordination game we study in this paper, QRE predicts that a player invests if

and only if:

EU[Not Invest] + η1 < EU[Invest] + η2

θ + η1 < a+ p[b− a] + η2

θ < a+ p[b− a]− (η1 − η2), (4)

where p is the belief about the probability the opponent invests, and η1 and η2 are the late

noise perturbations to payoffs. Before making her choice, each player receives a perfectly

informative signal about η1 and η2 (uncorrelated with the opponent’s perturbations to pay-

offs). If we assume that these perturbations are independently and normally distributed

with mean 0 and variance σ2
η > 0, we have:

IP(Invest) = ϕ(p, θ) = Φ

(
a+ p[b− a]− θ√

2ση

)
.

A quantal response equilibrium then requires that p is a fixed point, conditional on θ; i.e., a

QRE is a solution to p = ϕ(p, θ).

It is useful to compare the condition for investing under QRE (displayed in inequality

(4) above) with the analogous condition for investing under cognitive noise (displayed in

inequality (1) in Section 2). Inequality (1) indicates that, with cognitive noise, players

remain uncertain about the true value of θ even after θ is realized; the residual uncertainty

comes from the fact that players only have access to a noisy representation of θ. As a

consequence, player i believes that player j’s signal about θ is centered at i’s perceived value

of θ (which is a function of i’s signal about θ). In contrast, the true value of θ appears in

inequality (4), which implies that, in QRE, the player has no uncertainty about θ. It follows

that, in QRE, player i believes that player j’s signal about θ is centered at the true value of

θ.

The difference in assumptions about when noise enters the decision process leads to

two important distinguishing predictions. The first difference is that, in QRE, each player

encodes θ precisely, and thus there is no role for a prior belief over θ. The prior belief does,

however, play a key role in our model of cognitive noise. Specifically, our model predicts

that the prior belief affects the precision of perceiving θ through efficient coding. Our

model therefore endogenizes the noise structure and generates context dependent behavior
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in equilibrium.24 The main experimental result in our paper, displayed in Figure 4, clearly

shows that the prior distribution has a systematic effect on behavior. The result supports the

prediction of cognitive noise and is at odds with the prediction of QRE (unless the researcher

is allowed to assume a different and ad hoc distribution of payoff perturbations in the QRE

model for each experimental condition).

The second difference between QRE and cognitive noise involves the theoretical conditions

that are sufficient to generate a unique equilibrium. As shown in Proposition 3, cognitive

noise generates a unique equilibrium when the variance of noise is sufficiently small. One

interpretation of this condition is that when players pay sufficient attention to the coordi-

nation game, so that the variance of the internal representation Zi is sufficiently small, then

uniqueness obtains under our theory of cognitive noise. In contrast, QRE delivers a unique

equilibrium when the variance of the shock to payoffs is sufficiently large (Ui, 2006). While

our data do not enable us to test between this difference in conditions for uniqueness, one

implication is that when players devote a substantial amount of attention to the coordina-

tion game, the multiplicity of equilibria is more likely to be eliminated under cognitive noise,

compared with QRE.

Level-k Thinking

Our results also relate to another behavioral theory of games called Level-k Thinking (Stahl

and Wilson, 1994, 1995; Nagel, 1995; Camerer, Ho and Chong, 2004). In one prominent

version of this theory, there are different types of players, and each type best responds to

another type who exhibits one less degree of strategic sophistication. For example, a Level-0

type would be characterized by no strategic sophistication and, thus, would exhibit purely

random behavior. A Level-1 type would then best respond to a Level-0 player, and a Level-2

player would best respond to a Level-1 player, and so on. What are the predictions of Level-k

Thinking for the game in our experiment? Following the analysis in Kneeland (2016) and

given that Level-0 players randomize, the expected utility of a Level-1 player from Invest is

EUL1(Invest) =
1

2
a+

1

2
b

Thus, EUL1(Invest) > EU(Not Invest) if and only if θ < (a+ b)/2. Next, under the assump-

tion that Level-2 players believe they are facing a Level-1 opponent, the expected utility

24In QRE, the noise structure is usually taken to be exogenous. Friedman (2020) proposes a model that
endogenizes the precision parameter in QRE through the set of payoffs in the current game.
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from Invest for a Level-2 player is

EUL2(Invest) =

b if θ < (a+ b)/2

a if θ > (a+ b)/2

When θ < (a + b)/2, then EUL2(Invest) = b > θ. Conversely, when θ > (a + b)/2, then

EUL2(Invest) = a < θ. Thus, Level-2 players choose Invest if and only if θ < (a + b)/2.

Using the same logic, we obtain the same prediction for all higher levels.

In sum, the fraction of subjects who choose Invest is:

Pr[Invest] =

Pr[L0]
1
2
+ (1− Pr[L0]) if θ < (a+ b)/2

Pr[L0]
1
2

if θ > (a+ b)/2

where Pr[L0] is the fraction of Level-0 players in the population. The theory therefore pre-

dicts that, in the aggregate, the probability of investing is monotone in θ and exhibits a sharp

decrease at θ = (a + b)/2. We do not observe such a discontinuity in our data. Moreover,

Level-k Thinking does not predict any difference across our experimental treatments; thus

the theory would need to be augmented with some extra feature in order to explain the clear

context-dependence we observe in our data.

M Equilibrium

Finally, we discuss how our theoretical predictions relate to a recent and appealing behavioral

game theory model, called “M equilibrium” (Goeree and Louis, 2021). M equilibrium replaces

the assumptions underlying Nash equilibrium with two plausible behavioral postulates. First,

instead of perfect best response, M equilibrium assumes monotonicity. Second, instead

of perfectly correct beliefs about others’ strategies, M equilibrium assumes consequential

unbiasedness. Monotonicity allows non-best-response actions to be chosen with positive

probability but prescribes that more costly mistakes are less likely to occur (similar to QRE).

Consequential unbiasedness allows beliefs to be incorrect (in contrast to QRE), as long as

they generate the correct ranking of expected payoffs from actions.

M equilibrium is a a set-valued equilibrium concept and, as such, is characterized by a

set of predicted choices and a set of predicted beliefs (where the set of predicted beliefs does

not coincide with, but includes, the set of predicted choices). In our game, when θ ∈ [a, b],

M equilibrium does not make a determinate prediction about how θ affects the probability

of investing — or even about which action is most likely to be played. In particular, when

θ ∈ [a, (a+ b)/2], there are two M-choice sets: one where Pr[Invest] ∈ [1/2, 1] and one where
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Pr[Invest] ∈ [0, (θ − a)/(b − a)].25 If instead, θ ∈ [(a + b)/2, 1], there are also two M-choice

sets, one where Pr[Invest] ∈ [0, 1/2] and one where Pr[Invest] ∈ [(θ − a)/(b− a), 1]. Besides

generating indeterminate predictions about behavior when θ ∈ [a, b], M equilibrium does not

predict any effect of our experimental manipulation across volatility conditions.

6.3 The Effect of Experience Through the Prior Alone

When presenting our experimental results in Section 4.1, we discussed whether an alterna-

tive hypothesis based on learning about the strategic environment could explain the context

dependence shown in Figure 4. Holding experience with a particular game constant across

conditions, we still found evidence that the probability of investing is more sensitive to funda-

mentals in the low volatility condition. Here, we discuss whether an alternative specification

of learning can generate the observed treatment effect.

The alternative specification we have in mind still allows the player’s prior over θ to re-

flect past experience — as in our model of cognitive noise. Thus, subjects in each condition

learn their way to different priors, which reflect the statistical properties of the environment

they have experienced. However, here we shut down the efficient coding channel, so that the

conditional noisy signal distribution remains fixed across conditions. To illustrate, suppose

that in both experimental conditions, we set the distribution of Zi to an arbitrary distribu-

tion. In particular, suppose it is the distribution that arises under efficient coding in the high

volatility condition. How does the model prediction of this alternative learning hypothesis

compare with the prediction from our model summarized in Figure 2?

It turns out that even when the priors are allowed to differ — for example, based on

experience — the predictions for behavior in equilibrium will be identical across conditions.

The solid curve in Figure 2 will become flatter and lie directly on top of the dashed curve.

The intuition for why the predicted treatment effect vanishes is as follows. In our design,

we set the prior mean in both conditions to be the average of the two potential payoffs from

investing: µθ = (a + b)/2. Further, in both conditions, the equilibrium threshold in the

space of posterior means does not depend on the prior variance and is equal to the prior

mean (which, by design, is the same across conditions). Any mental representation Zi that is

below the prior mean leads to a posterior mean that is strictly smaller than the equilibrium

threshold. Thus, in our design, it is only the distribution of Zi that governs behavior when

subjects play the equilibrium threshold strategy. When the distribution of Zi is identical

across conditions, there will be no predicted difference in behavior across conditions. In

summary, our design gives rise to an environment in which we can cleanly test for the effect

25See Online Appendix A for a graphical construction of the M equilibria in our game.
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of context dependence generated by efficient coding. A difference in the prior alone is not

sufficient to generate our main experimental result in Figure 4.

6.4 Performance Objective for Efficient Coding

Here we revisit the assumption about efficient coding in our model. The specific performance

objective that we assume in Section 2 is only one of several plausible specifications (Ma and

Woodford, 2020). In particular, there are other possible objective functions that players

may have, besides minimizing the mean squared error of the estimate of θ. For example, a

prominent alternative efficient coding objective from the literature on sensory perception is

to maximize the mutual information between the state and its noisy internal representation.

In the proof of Proposition 1, we confirm that the coding rule we use in our model is robust

to this alternative objective.

Yet another alternative objective that has been examined in the economics literature

is maximization of expected reward. In Online Appendix B, we show that the result in

Proposition 1 is robust to using this alternative objective function. Specifically, we maintain

the constraints in Assumption 2 and we analyze a two-stage game. In the first stage, each

player optimally chooses, simultaneously and independently, the parameters of the encoding

function. In the second stage, players choose strategies in the simultaneous move game, con-

ditional on their chosen encoding function from the first stage. We show that the optimal

encoding function still takes the form characterized in Proposition 1. Thus, our theoret-

ical predictions are robust to three performance objectives: (i) minimizing mean squared

error of the estimate of θ, (ii) maximizing mutual information between the noisy internal

representation and θ and (iii) maximizing expected reward.

6.5 Common Knowledge of Internal Representation Distribution

In deriving Proposition 2, we assume common knowledge of the distribution of internal

representations. However, precise knowledge of the underlying information structure is not

necessary for this equilibrium to arise. As evident from the statement of Proposition 2, the

equilibrium exists regardless of the value of σθ, σS and Ω. It follows that the equilibrium exists

even when players have incorrect beliefs about the information structure (maintaining the

common knowledge assumption). This is important considering that, while we manipulate

σθ in the laboratory, we do not control or measure σS and Ω.

As we show in Online Appendix C, the equilibrium from Proposition 2 is robust to

relaxing the assumption that players have common knowledge of the exact functional forms

of the prior and noisy signal distributions. In a model where the coding function is exogenous
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and equal to m(θ) = θ, it is enough to assume that (i) µθ = (a + b)/2, (ii) E[ϵi] = 0, (iii)

the distribution of ϵi is symmetric, quasiconcave and independent of the realized value of

θ, (iv) the distribution of θ is symmetric and continuous on R, and that there is common

knowledge of (i) – (iv). At the same time, the lack of a closed form solution for the posterior

distribution of θ under these more general assumptions prevents us from deriving conditions

for the equilibrium to be unique (when the variance of noise is finite but positive). More

importantly, the lack of a closed form solution prevents us from deriving predictions for the

treatment effect. For these reasons, our theoretical analysis is based on a model with a

normally distributed prior and normally distributed likelihood function.

It can also be shown that the equilibrium from Proposition 2 is not sensitive to beliefs

about one’s own or one’s opponent’s degree of imprecision. Consider the case where µθ =

(a + b)/2 (as in the statement of Proposition 2 and in both experimental conditions). If

player i (exogenously and possibly incorrectly) believes that the probability player j invests

is greater than or equal to 50% for any θ ≤ µθ and smaller than or equal to 50% for any

θ ≥ µθ, then player i’s best response is to invest if and only if E[θ|Zi] < µθ. In other words,

as long as player i believes that player j is noisily implementing a cutoff strategy with cutoff

µθ, his best response is to use the same cutoff strategy, independent of his beliefs about his

own and his opponent’s degree of imprecision. At the same time, we emphasize that, within

our theoretical framework, the differential sensitivity of actions to payoffs across conditions

requires that subjects are more precise in detecting whether the fundamental crosses the

equilibrium threshold in the low volatility condition.

Apart from the demanding assumption of common knowledge of cognitive noise, here

we briefly discuss whether it is plausible to assume that subjects know they are imprecise

and that others are imprecise. To investigate the validity of this assumption, we conduct

an additional experiment, where subjects are asked to classify whether a two-digit number

is greater than a reference level of 55 (which we choose to be the same as the threshold

in the unique equilibrium of the game in our main experiment). We incentivize subjects to

report their beliefs about (i) the average accuracy of all other subjects in the experiment and

(ii) their own accuracy. We find that subjects are aware of their own errors and of others’

errors in the classification task. We refer the reader to Online Appendix D for a detailed

presentation of the experimental design and results for this additional experiment.

7 Conclusion

In this paper, we have experimentally tested the hypothesis that cognitive noise systemat-

ically affects coordination. Cognitive noise plays two important roles in our experiments.
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First, a small amount of cognitive noise is sufficient to generate a unique equilibrium whereby

each player chooses to invest once the fundamental crosses a threshold. Importantly, the ex-

istence of cognitive noise leads to more predictable behavior, compared to the case in which

there is no cognitive noise (as the strategic uncertainty induced by cognitive noise will elim-

inate multiple equilibria). The data are consistent with this prediction, as we observe that

the frequency of investing predictably and continuously declines in θ. Importantly, our data

also demonstrate that the frequency of coordination systematically depends on θ – which is

not readily predicted under the complete information version of the game. The second role

that cognitive noise plays is to modulate the probability of coordination conditional on θ,

through an efficient coding mechanism. Our data are also consistent with this prediction, as

we observe significantly less randomness in behavior when θ is drawn from a more concen-

trated distribution. In sum, our experimental results are consistent with a cognitive noise

and efficient coding mechanism that produces context-dependent equilibrium behavior.

Our paper pushes forward the broader agenda on cognitive noise in economics by demon-

strating that a small amount of cognitive noise can fundamentally alter the information

structure and equilibria of a game. The data that we generate provide a proof of principle

that such cognitive noise is empirically relevant in a simple coordination game. This result

holds even in our treatment where subjects play against a computerized opponent and, thus,

any other source of strategic uncertainty is shut down by design.

We believe our analysis paves the way for at least two directions of future work on

cognitive noise in games. First, there are additional theory-guided manipulations of cognitive

noise which have recently been deployed in individual decision-making experiments, that

could be explored in a strategic environment. For example, Polania, Woodford and Ruff

(2019) show that cognitive noise can be amplified by imposing time pressure on decisions, and

Enke and Graeber (2023) ramp up cognitive noise by increasing the complexity of an action.

In our setting, a clear untested prediction is that imposing time pressure should lead the

distribution of actions in equilibrium to be compressed towards 50-50, so that the probability

of coordination can be modulated by the experimenter. The second direction is along a

more theoretical route. Our current framework is confined to a stylized 2 × 2 coordination

game, but we believe there may be much richer implications of cognitive noise in more

general strategic environments. In particular, the idea that public signals are universally

processed with noise due to cognitive errors is likely to have important implications for

strategic behavior in a much broader class of games.
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Appendix

Proof of Proposition 1

Here we adapt the theoretical derivation of efficient coding from Khaw, Li and Woodford

(2021) to our framework where the distribution of θ is normal rather than lognormal. Ac-

cording to Assumption 1, the internal representation S of θ is drawn from

S|θ ∼ N(m(θ), σ2
S) (5)

where the encoding rule, m(θ), is a linear transformation of θ, m(θ) = ξ+ψθ, which satisfies

the power constraint in Assumption 2. Parameters ξ and ψ are endogenous while the preci-

sion parameter σS is exogenous. The efficient coding hypothesis requires that the encoding

rule m(θ) is chosen (among all linear functions satisfying the constraint) so as to maximize

the system’s objective function, for a given prior distribution of θ. As in Khaw, Li and

Woodford (2021), we assume that the system produces an estimate of θ on the basis of S,

θ̃(S), and that the goal of the design problem is to have a system that achieves as low as

possible a mean squared error of this estimate. Given a noisy internal representation, the

estimate which minimizes the mean squared error is E[θ|S] for all S. The goal of the design
problem is, thus, to minimize the variance of the posterior distribution of θ.

Consider the transformed internal representation, Z ≡ (S − ξ)/ψ. The distribution of

the transformed internal representation conditional on θ is Z|θ ∼ N(θ, σ2
S/ψ

2). Thus, the

distribution of θ given the transformed internal representation is

θ|Z ∼ N

(
µθ +

σ2
θ

σ2
θ + (σ2

S/ψ
2)
(Z − µθ),

σ2
θ(σ

2
S/ψ

2)

σ2
θ + (σ2

S/ψ
2)

)
(6)

The variance of the posterior distribution of θ is strictly increasing in the variance of

Z, σ2
S/ψ

2. Thus, it is desirable to make ψ as large as possible (in order to make the mean

squared error of the estimate as small as possible) consistent with the power constraint.

When the distribution of θ is normal, we have

E[m2] = ξ2 + ψ2E[θ2] + 2ξψE[θ] = (ξ + ψµθ)
2 + ψ2σ2

θ ≤ Ω (7)

The largest value of ψ consistent with this constraint is achieved when

ξ = −ψµθ , ψ =
Ω

σθ
(8)
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Thus, m⋆(θ) = − Ω
σθ
µθ +

Ω
σθ
θ and

Z|θ ∼ N

(
θ,
σ2
S

Ω2
σ2
θ

)
(9)

The same optimal coding rule obtains under an alternative goal of the system. Consider

the more conventional hypothesis from sensory perception literature, whereby the encoding

rule is assumed to maximize the Shannon mutual information between the objective state

θ and its subjective representation S. Denote with ρθ the precision of θ and with ρS the

precision of S. We have θ ∼ N
(
µx,

1
ρθ

)
, S|θ ∼ N

(
ξ + ψθ, 1

ρS

)
, Z|θ ∼

(
θ, 1

ρZ

)
, and θ|Z ∼

N
(
ρθµθ+ρZZ
ρθ+ρZ

, 1
ρθ+ρZ

)
, where Z = S−ξ

ψ
and ρZ = ψ2/σ2

S. The Shannon mutual information

between θ and Z is

I(θ, Z) =
1

2
log2

(
σ2
θ

σ2
θ|Z

)
=

1

2
log2

(
1 +

ρZ
ρθ

)
(10)

which is strictly increasing in ρZ and, thus, strictly decreasing in σ2
Z . This means that, as for

the previous goal, it is desirable to make ψ as large as possible (consistent with the power

constraint).

Proof of Proposition 2

First, we show that, when the conditions in the statement of the Proposition are satisfied,

there exists a unique monotone equilibrium of the game. Remember that Zi ∼ N (θ, σ2
Z),

where σ2
Z = ω2σ2

θ = (σ2
S/Ω

2)σ2
θ . Thus, player 1’s posterior distribution of θ given Z1 is

θ|Z1 ∼ N
(

σ2
Z

σ2
θ + σ2

Z

µθ +
σ2
θ

σ2
θ + σ2

Z

Z1,
σ2
θσ

2
Z

σ2
θ + σ2

Z

)
Therefore, we have:

EU [Not Invest|Z1] = E[θ|Z1] =
σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

On the other hand, player 1’s expected utility from investing is

EU [Invest|Z1] = a+ (b− a)Pr[Opponent Invests|Z1]

Assume player 1 believes his opponent uses a monotone strategy with threshold k. In

this case, player 1’s expectation that the opponent invests is Pr[Z2 ≤ k|Z1]. Player 1’s belief

about the distribution of Z2 given Z1 is:
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Z2|Z1 ∼ N
(
E[θ|Z1] =

σ2
Z

σ2
θ + σ2

Z

µθ +
σ2
θ

σ2
θ + σ2

Z

Z1,
2σ2

θσ
2
Z + σ4

Z

σ2
θ + σ2

Z

)
Thus, we have:

Pr[Z2 ≤ k|Z1] = Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ1√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

where Φ(·) is the cumulative distribution of the standard normal.

Player 1’s best response is to invest if and only if

σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

≤ a+ (b− a)Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ1√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)
(11)

If we write Z(k) for the unique value of Z1 such that player 1 is indifferent between

investing and not investing (this is well defined since player 1’s expected payoff from not

investing is strictly increasing in Z1 and player 1’s expected payoff from investing is strictly

decreasing in Z1), the best response of player 1 is to follow a monotone strategy with threshold

equal to Z(k), that is, to invest if and only if Z1 ≤ Z(k).

Observe that as k → −∞ (that is, player 2 never invests), EU [Invest|Z1, k] tends to a,

so Z(k) tends to
(σ2

θ+σ
2
Z)a−σ2

Zµθ

σ2
θ

. As k → ∞ (that is, player 2 always invests), EU [Invest|Z1]

tends to b, so Z(k) tends to
(σ2

θ+σ
2
Z)b−σ2

Zµθ

σ2
θ

. A fixed point of Z(k) — that is a value k⋆ such

that Z(k⋆) = k⋆ — is a monotone equilibrium of the game where each player invests if and

only if his signal is below k⋆. Since Z(k) is a mapping from R to itself and is continuous

in k, there exists k ∈
[
(σ2

θ+σ
2
Z)a−σ2

Zµθ

σ2
θ

,
(σ2

θ+σ
2
Z)b−σ2

Zµθ

σ2
θ

]
, such that Z(k) = k and a threshold

equilibrium of this game exists.

When is there a unique equilibrium? Define W (Z(k), k) as

W (Z(k), k) =
σ2
Zµθ + σ2

θZ(k)

σ2
θ + σ2

Z

− a− (b− a)Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ(k)√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

At a fixed point, Z(k⋆) = k⋆. Thus, we have:

W (k⋆) =
σ2
Zµθ + σ2

θk
⋆

σ2
θ + σ2

Z

− a− (b− a)Φ

(
σ2
Z√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

(k⋆ − µθ)

)
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Then,

∂W (k⋆)

∂k⋆
=

σ2
θ

σ2
θ + σ2

Z

− ϕ

(
σ2
Z√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

(k⋆ − µθ)

)
σ2
Z(b− a)√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

And there is a unique fixed point if and only if ∂W (k⋆)
∂k⋆

> 0 at the fixed point. When
∂W (k⋆)
∂k⋆

< 0, there are at least three fixed points. Since ϕ(y) ≤ 1√
2π
, this is a sufficient

condition for ∂W (k⋆)
∂k⋆

> 0:

σ2
θ

σ2
θ + σ2

Z

>
1√
2π

σ2
Z(b− a)√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

σ2
θ

√
2σ2

θσ
2
Z + σ4

Z

(b− a)σ2
Z

√
σ2
θ + σ2

Z

>
1√
2π

√
2π >

(b− a)σ2
Z

√
σ2
θ + σ2

Z

σ2
θ

√
2σ2

θσ
2
Z + σ4

Z

The condition ω
√
1+ω2√
2+ω2 <

√
2π

(b−a)σθ is obtained by replacing σZ = ωσθ in the condition above

and re-arranging terms. Thus, this shows that, when the conditions in the statement of the

Proposition are satisfied, there exists a unique monotone equilibrium of the game.

Second, we show that, when µθ =
(a+b)

2
, there exists a monotone equilibrium of the game

where k⋆ = µθ for any value of σθ, σS and ω (or, equivalently, for any value of σθ and σZ).

Assume player 2 uses a threshold strategy where he invests if and only if Z2 ≤ k = µθ. Is

this an equilibrium, that is, is Z(µθ) = µθ? Z(µθ) is the value of Z1 such that the following

equation is satisfied with equality:

σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

= a+ (b− a)Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ1√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)
σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

= a+ (b− a)Φ

(
σ2
θµθ − σ2

θZ1√
2σ2

θσ
2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

If we set Z1 = µθ, we get:

µθ = a+ (b− a)Φ (0)

µθ =
(a+ b)

2

which is true by one of the assumptions in the statement of the Proposition.
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Proof of Proposition 3

From Proposition 2 and the condition in the statement of Proposition 3, we know that there

exists a unique monotone equilibrium of the game where each player invests if and only if his

transformed internal representation is smaller than µθ. In this equilibrium, Pr[Invest|θ] =
Pr [Zi ≤ µθ|θ] = Φ

(
µθ−θ
ωσθ

)
and

∂Pr[Invest|θ]
∂θ

= −ϕ
(
µθ−θ
ωσθ

)(
1
ωσθ

)
. Thus, Pr[Invest|θ] grows

with σθ if θ < µθ and it decreases with σθ is θ > µθ. Moreover, the sensitivity of choices to

θ decreses with σθ for values of θ around the cutoff.

Indeed, we have

∂Pr [Invest|θ]
∂θ∂σθ

= ϕ

(
µθ − θ

ωσθ

)(
1

ωσ2
θ

)
+ ϕ′

(
µθ − θ

ωσθ

)(
µθ − θ

ωσ2
θ

)(
1

ωσθ

)
= ϕ

(
µθ − θ

ωσθ

)(
1

ωσ2
θ

)
−
(
µθ − θ

ωσθ

)
ϕ

(
µθ − θ

ωσθ

)(
µθ − θ

ωσ2
θ

)(
1

ωσθ

)
= ϕ

(
µθ − θ

ωσθ

)(
1

ωσ2
θ

)
− ϕ

(
µθ − θ

ωσθ

)(
(µθ − θ)2

ω3σ4
θ

)
= ϕ

(
µθ − θ

ωσθ

)(
ω2σ2

θ − (µθ − θ)2

ω3σ4
θ

)
which is positive if and only if (µθ − θ)2 < ω2σ2

θ .

(In the second line, we used the fact that ϕ′(x) = −xϕ(x).)
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Online Appendix

A Construction of M Equilibria

In this Appendix, we follow the graphical procedure from Goeree and Louis (2021) to con-

struct the set of all M equilibria in our game. We note also that the M -choice sets we

characterize through this procedure contain all Quantal Response Equilibria of our game.

Let p and q denote the probabilities with which Player 1 and Player 2 choose Invest. Let ν

and ω denote Player 1’s and Player 2’s beliefs that the other player chooses Invest, respec-

tively. Since Not Invest is chosen with complementary probability, the sets of choice and

belief profiles can be summarized by unit squares consisting of the pairs (p, q) and (ν, ω)

respectively. These unit squares are displayed in the top row of Figures A1 and A2 for,

respectively, games with θ < (a + b)/2 and games with θ > (a + b)/2. In the left panel of

each figure’s top row, the quadrants reflect the four possible orderings of choice probabili-

ties. In the right panel of each figure’s top row, π1 and π2 denote the expected payoffs for

Player 1 and Player 2. The vertical line at ω = θ−a
b−a indicates the belief for which Player 2 is

indifferent and the horizontal line at ν = θ−a
b−a does the same for Player 1.

These “indifference curves” divide the unit square in four rectangles where expected

payoffs are strictly ordered. To check for monotonicity, we match each of these four rectangles

with a quadrant in the left panel. For instance, consider Figure A1: the largest rectangle on

the right for which the expected payoff of Invest exceeds that of Not Invest for both players

is matched with the north-east quadrant on the left. Likewise, the smallest rectangle on the

right for which the expected payoff of Not Invest exceeds that of Invest for both players is

matched with the south-west quadrant on the left. These matchings are such that the choice

probabilities on the left are ranked the same way as the payoffs given beliefs on the right.

Consequential unbiasedness requires that the ranking of expected payoffs based on beliefs is

the same as that based on choices.

Graphically, this equilibrium condition is implemented by superimposing the rectangles

of the right panel on the left unit square. The intersection of any quadrant with the matched

rectangle determines the M -choice and M -belief sets. For instance, superimposing the rect-

angle of the right panel where Player 1’s expected payoff of Invest exceeds that of Not Invest

but the opposite is true for Player 2 on the left panel yields an empty intersection, i.e. there

is no M equilibrium in which Player 1 is more likely to choose Invest while Player 2 is more

likely to choose Not Invest. In contrast, superimposing the largest rectangle of the right

panel on the left panel yields a non-empty intersection indicated by the red M -choice set in

the bottom-left panel of Figure A1. The corresponding M -belief set is simply the large rect-
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angle itself, as indicated by the red set in the bottom-right panel. Repeating this procedure

for the different payoff rankings yields two full-dimensional M equilibria that are colorable,

see the bottom panels of Figures A1 and A2.
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Figure A1: Construction of M-Choice and M-Belief Sets for Games with θ ∈
[a, (a+ b)/2]. The top panel show partitions of the unit square based on orderings of choice
probabilities (left) and expected payoffs (right). There are two M-choice sets for which these
orderings match, see the lower-left panel, which can be labeled or colored by the ordering
they represent. The colored sets in the lower-right panel show the beliefs that generate the
same ordering of expected payoffs as choices of the same color.
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Figure A2: Construction of M-Choice and M-Belief Sets for Games with θ ∈
[(a+ b)/2.b]. The top panel show partitions of the unit square based on orderings of choice
probabilities (left) and expected payoffs (right). There are two M-choice sets for which these
orderings match, see the lower-left panel, which can be labeled or colored by the ordering
they represent. The colored sets in the lower-right panel show the beliefs that generate the
same ordering of expected payoffs as choices of the same color.
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B Alternative Model of Efficient Coding

Assumption 4 (Alternative Performance Objective) Players choose the encoding func-

tion which maximizes their expected reward in the simultaneous move game.

Consider the following two-stage game: in stage 1, each player i = {1, 2} chooses simul-

taneously and independently the parameters of his encoding function, (ξi, ψi), to maximize

the performance objective in Assumption 4 under the constraints in Assumption 2; in stage

2, players participate to the simultaneous move game endowed with the encoding functions

chosen in the previous stage. We solve this game by backward induction.

Stage 2: Simultaneous move Game (with Exogeneous Encoding Functions)

For each player i = {1, 2}, we have Si|θ ∼ N (mi(θ), σ
2
S), where mi(θ) = ξi + ψiθ.

Consider the transformed internal representation Zi = (Si − ξi)/ψi. We have:

Zi|θ ∼ N
(
θ, β2

i

)
where βi = (σS/ψi).

Proposition 4 Suppose Assumptions 1, 2, 4 and µθ = (a + b)/2. Regardless of σθ, σS,

(ξ1, ψ1), and (ξ2, ψ2), there exists an equilibrium of the game where each player invests if

and only if Zi ≤ µθ. Moreover, if
σ2
θ

√
β2
i (2σ

2
θ+β

2
i )

(b−a)β2
i

√
σ2
θ+β

2
i

> 1√
2π

for all i = {1, 2}, this is the unique

monotone equilibrium of the game.

Proof. Since the likelihood function of Zi is conjugate to the prior distribution of θ, we have

a closed form solution for the distribution of player i’s posterior beliefs over θ. In particular,

player 1’s posterior distribution of θ given Z1 is

θ|Z1 ∼ N
(
β2
1µθ + σ2

θZ1

σ2
θ + β2

1

,
σ2
θβ

2
1

σ2
θ + β2

1

)
Thus, we have:

EU [Not Invest|Z1] = E[θ|Z1] =
β2
1µθ + σ2

θZ1

σ2
θ + β2

1

On the other hand, player 1’s expected utility from investing is

EU [Invest|Z1] = a+ (b− a)Pr[Opponent Invests|Z1]
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Assume player 1 believes his opponent uses a monotone strategy with threshold k2. In

this case, player 1’s expectation that the opponent invests is Pr[Z2 ≤ k2|Z1]. Player 1’s belief

over the distribution of Z2 conditional on Z1 is:

Z2|Z1 ∼ N
(
β2
1µθ + σ2

θZ1

σ2
θ + β2

1

,
σ2
θ (β

2
1 + β2

2) + β2
1β

2
2

σ2
θ + β2

1

)
Thus, we have:

Pr[Z2 ≤ k2|Z1] = Φ

(
k2 (σ

2
θ + β2

1)− β2
1µθ − σ2

θZ1√
σ2
θ + β2

1

√
σ2
θ (β

2
1 + β2

2) + β2
1β

2
2

)

where Φ(·) is the cumulative distribution of the standard normal.

Player 1’s best response is to invest if and only if

β2
1µθ + σ2

θZ1

σ2
θ + β2

1

≤ a+ (b− a)Φ

(
k2 (σ

2
θ + β2

1)− β2
1µθ − σ2

θZ1√
σ2
θ + β2

1

√
σ2
θ (β

2
1 + β2

2) + β2
1β

2
2

)

Assume k2 = µθ. We want to show that player’s best response is to use the same cutoff.

In this case, player 1’s best response is to invest if and only if

E
β2
1µθ + σ2

θZ1

σ2
θ + β2

1

≤ a+ (b− a)Φ

(
σ2
θ (µθ − Z1)√

σ2
θ + β2

1

√
σ2
θ (β

2
1 + β2

2) + β2
1β

2
2

)

First, note that the LHS is a convex combination of µθ and Z1 and that, thus, it is a) equal

to µθ when Z1 = µθ, b) smaller than µθ when Z1 < µθ, and c) larger than µθ when Z1 > µθ.

Second, remember that µθ = (a + b)/2 and note that the RHS is a) equal to µθ when the

argument of Φ(·) is 0 (that is, when Z1 = µθ, since the denominator is strictly positive); b)

larger than µθ when the argument of Φ(·) is strictly positive (that is, when Z1 < µθ), and c)

smaller than µθ when the argument of Φ(·) is strictly negative (that is, when Z1 > µθ). This

means that, when player 2 invests if and only if Z2 ≤ k2 = µθ, then player 1’s best response

is to invest if and only if Z1 ≤ µθ. This proves that there exists an equilibrium where both

players use a monotone strategy with cutoff equal to µθ for any value of (ξ1, ψ1), (ξ2, ψ2),

σS and σθ. Finally, to show that, when the condition in the statement of the proposition is

satisfied, this is the unique equilibrium of the game, we can use the same steps in the proof

of Proposition 2 to show that the best response mapping is a contraction (and that, thus, we

can apply the contraction mapping theorem). In particular, it is sufficient to show that the

derivative of the best response function of player 1 with respect to k2 and the derivative of

the best response function of player 2 with respect to k1 have both an absolute value strictly
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smaller than 1.

Stage 1: Encoding Function Choice

When deriving the optimal choice of the encoding function in stage 1, we assume that, in

stage 2, players use the cutoff strategy in the (unique) equilibrium from Proposition 4.

Proposition 5 Suppose Assumptions 1, 2, 4, and µθ = (a + b)/2. The optimal encoding

function is the same for both players and is given by m⋆(θ) = ξ⋆ + ψ⋆θ = −Ωµθ
σθ

+ Ω
σθ
θ.

Proof. In stage 2, each player i = {1, 2} invests if and only if Zi ≤ µθ. Given the conditional

distribution of Zi, the probability player i invests for a given θ and encoding function is

IPi(Invest|θ, ψi) = Φ

(
µθ − θ

σS/ψi

)
Thus, the expected utility player i gets from the game with a given value of θ is

EUi(θ, ψi) = IPi(Invest|θ, ψi) (a+ IP−i(Invest|θ, ψ−i)(b− a)) + (1− IPi(Invest|θ, ψi))θ

= θ + Φ

(
µθ − θ

σS/ψi

)(
a+ Φ

(
µθ − θ

σS/ψ−i

)
(b− a)− θ

)
where we use −i to denote i’s opponent. How does this expected utility change with ψi

(taking ψ−i as given)?

∂EUi(θ, ψi)

∂ψi
= ϕ

(
µθ − θ

σS/ψi

)(
µθ − θ

σS

)(
a+ Φ

(
µθ − θ

σS/ψ−i

)
(b− a)− θ

)
(12)

Since ϕ(·) is strictly positive for any argument, the sign of equation (12) is determined

by the product of its second and third term. First, note that the second term is a) equal

to 0 when θ = µθ, b) strictly positive when θ < µθ and c) strictly negative when θ > µθ.

Second, note that — since IP−i(Invest|θ, ψ−i) is greater than 1/2 if and only if θ < µθ and

µθ = (a+ b)/2) — the third term is a) strictly positive when θ < µθ and b) strictly negative

when θ > µθ. This means that the product of the second and third term of equation (12) is

always positive, with the exception of the case when θ = µθ, in which case it is 0.

We have shown that the expected payoff in a game with a given θ is strictly increasing

in ψi for any value of θ ̸= µθ and it is constant in ψi for θ = µθ. This means that, from an

ex-ante perspective (that is, when a player knows the distribution of θ but does not know its

actual realization), each player’s expected reward from the simultaneous move game — that

is, EUi(ψi) =
∫
EUi(θ, ψi)f(θ)dθ — is strictly increasing in ψi. Therefore, it is desirable to
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make ψi as large as possible consistent with the power constraint. When the distribution of

θ is normal, we have

E[m2] = ξ2 + ψ2E[θ2] + 2ξψE[θ] = (ξ + ψµθ)
2 + ψ2σ2

θ ≤ Ω

The largest value of ψ consistent with this constraint in Assumption 2 is achieved when

ξ = −ψµθ , ψ =
Ω

σθ

Thus, m⋆(θ) = − Ω
σθ
µθ +

Ω
σθ
θ.
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C Robustness of Monotone Equilibrium with k⋆ = µθ

Let us introduce the following definitions from Chambers and Healy (2012):

Definition 1 A random variable with cumulative density function F and mean µ is sym-

metric if, for every a ≥ 0, F (µ+ a) = 1− limx→a− F (µ− a).

Definition 2 A random variable is quasiconcave (or unimodal) if it has a density function

f such that for all x, x′ ∈ R and λ ∈ (0, 1), f(λx+ (1− λ)x′) ≥ min{f(x), f(x′)}.

Definition 3 The error term ϵi satisfies symmetric dependence with respect to the ran-

dom variable θ if, for each realization of θ, ϵi|θ has a continuous density function fϵi|θ satis-

fying fϵi|θ(ϵi|µθ + a) = fϵi|θ(ϵi|µθ − a) for almost every ϵi and a in R. (Note that error terms

that are independent of θ satisfy this definition).

Consider the following assumptions:

(A1) Si = θ + ϵi

(A2) E[θ] = µθ <∞

(A3) θ is a symmetric random variable and its density is continuous on R

(A4) E[ϵi|θ] = 0 for each θ

(A5) ϵi is a symmetric and quasiconcave random variable

(A6) ϵi satisfies symmetric dependence with respect to θ

Lemma 1 (Chambers and Healy 2012, Proposition 2) Assume A1-A6. A Bayesian

agent updates his beliefs over θ in the direction of the signal, that is, for almost every Si ∈ R,
there exists some α ≥ 0 such that E[θ|Si] = αSi + (1− α)µθ.

Proposition 6 Assume common knowledge of both A1-A6 and µθ = (a+ b)/2. There exists

a monotone equilibrium of the game where k⋆ = µθ.

Proof of Proposition 6 The proof can be carried out with general values for a and b

(such that b > a). For ease of exposition, we focus on the experimental parameters: a = 47,

b = 63, µθ = 55. Assume that player j uses threshold kj = 55, that is, he invests if and

only if Sj < 55. We want to show that player i’s best response is to use the same threshold,

ki = 55. Player i prefers to invest if and only if EU [Not Invest|Si] < EU [Invest|Si, kj].
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Thus, we want to show that (1) when Si = 55, EU [Not Invest|Si] = EU [Invest|Si, kj = 55];

(2) when Si < 55, EU [Not Invest|Si] < EU [Invest|Si, kj = 55]; and (3) when Si > 55,

EU [Not Invest|Si] > EU [Invest|Si, kj = 55].

By Lemma 1, EU [Not Invest|Si] = E[θ|Si] = αSi+(1−α)µθ where α ≥ 0. Note also that

EU [Invest|Si, kj = 55] = 47 + (63 − 47)Pr[Sj < kj = 55|Si]. First, we prove (1). Assume

Si = 55. We want to show that EU [Not Invest|Si] = EU [Invest|Si, kj = 55]. By Lemma 1,

EU [Not Invest|Si = 55] = αSi + (1 − α)µθ = α(55) + (1− α)(55) = 55. Thus, the equality

we want to show becomes 55 = 47 + (63 − 47)Pr[Sj < kj = 55|Si = 55]. This equality is

satisfied if and only if Pr[Sj < kj = 55|Si = 55] = 1/2. By A1 and A4 (and linearity of

expectation), E[Sj|Si] = E[θ|Si] = 55. By A5, the density of of Sj|Si is symmetric. Thus,

the probability Sj takes a value below its posterior mean (55) is 1/2. This proves (1).

Second, we prove (2). Assume Si < 55. By Lemma 1, EU [Not Invest|Si] = αSi +

(1 − α)55. This is smaller than 55 for any positive α. This also means that, by A1 and

A4, E[Sj|Si] = E[θ|Si] < 55. The probability that the opponent invests is the posterior

probability that his signal is below 55 (given Si). Since the conditional distribution of the

opponent’s signal is symmetric around its mean (by A5), the median is equal to the mean.

This means that the conditional CDF of the opponent signal equals 1/2 at the posterior

mean, is greater than 1/2 for values of Sj above the mean and is lower than 1/2 for values of

Sj below the mean. Since the posterior mean of the opponent’s signal is lower than 55, the

probability that player j’s signal is lower than 55 (conditional on Si < 55) is greater than

1/2. Thus, EU [Invest|Si, kj = 55] = 47 + (63 − 47)Pr[Sj < kj = 55|Si] > 55. This proves

that EU [Invest|Si, kj = 55] > 55 > EU [Not Invest|Si]. (3) can be proven analogously.
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D Experiment on Awareness of cognitive noise

Here we report results from an additional experiment that is designed to investigate whether

subjects are aware of their own imprecision and the imprecision of others. If subjects are

not aware of the cognitive noise of others, then this would shut down the channel that

generates strategic uncertainty in our model, which is key to generating the unique threshold

equilibrium.

Experimental Design

Our method for studying awareness of imprecision is to create a simplified version of the

coordination game experiment in the main text, but one that retains the core individual

decision-making prediction that subjects play a threshold strategy. We employ a task from

the numerical cognition literature where subjects are incentivized to quickly and accurately

classify whether a two-digit number is larger or smaller than the number 55. Note that

this threshold strategy is identical to the equilibrium strategy in the main experiment; the

important difference is that here, we exogenously impose the strategy on subjects without

any strategic considerations or equilibrium requirements. We then incentivize subjects to

report beliefs about errors in their own classification and in the classification of others. These

beliefs are the main object of study in this experiment.

We recruit 300 subjects from Prolific who did not participate in the main experiment. We

pay subjects 1 GBP for completing the study, in addition to earnings from three phases of

the experiment. In Phase 1, on each of 150 rounds, subjects are incentivized to quickly and

accurately classify whether a two-digit Arabic numeral on the experimental display screen is

larger or smaller than 55. Subjects earn (1.5×accuracy−1× speed) GBPs, where ‘accuracy’

is the percentage of trials where the subject classifies the number correctly, and ‘speed’ is

the average response time in seconds.26 As in the main experiment, there are two conditions,

and the only difference across conditions is the distribution from which the two-digit Arabic

numeral (which we again denote by θ) is drawn. We use the same two distributions as in the

main experiment: in the high volatility condition, θ ∼ N (55, 400), and in the low volatility

condition, θ ∼ N (55, 20). We then round each value of θ to the nearest integer and re-draw

if the rounded integer is less than 11 or greater than 99 (again, to ensure that each number

contains exactly two digits).

We note that one difference in incentives compared to the main experiment involves

decision speed. Here, we penalize subjects for the time it takes them to respond. The

reason we impose the speed incentive comes from the well known “speed-accuracy tradeoff”

26The experimental instructions are available in Online Appendix E.
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in perceptual decision-making: one can obtain higher accuracy in classification as decision

speed slows down. Thus, in order to increase statistical power to detect how accuracy differs

for values of θ close and far from the threshold, we jointly reward speed and accuracy.

In Phase 2 of the experiment, we incentivize subjects to report beliefs about others’

performance in the task. Furthermore, we collect data on whether subjects believe that

others are more imprecise when the number on screen is closer to the reference level of 55,

compared to when the number is farther from the reference level. This feature of beliefs

is important because the equilibrium predictions from our previous experiment depend on

the noise structure in perception. In particular, recent theoretical work has shown that an

important property of the noise structure for determining equilibrium is that discriminating

between nearby states is harder than discriminating between far away states (Morris and

Yang, 2022; Hébert and Woodford, 2021)27. We ask subjects to consider the 149 other

participants in their experimental condition of the study, who also just completed Phase 1.

We then ask subjects the following two questions:

1. Consider only trials where the number on screen was equal to 47. In what percentage

of these trials do you think the other participants gave a correct answer, that is, they

correctly classified whether the number was smaller or larger than 55?

2. Consider only trials where the number on screen was equal to 54. In what percentage

of these trials do you think the other participants gave a correct answer, that is, they

correctly classified whether the number was smaller or larger than 55?

For each of the two questions, we pay the subject 0.5 GBP if their forecast is within

1% of the true percentage.28 Question 1 elicits beliefs about others’ imprecision when the

distance between the number is far from the threshold (47 vs. 55), whereas Question 2 elicits

beliefs about others’ imprecision when the distance is close (54 vs. 55). While we could

have asked subjects about their beliefs about others’ imprecision for a range of numbers —

rather than the single numbers 47 and 55 — this would have introduced a confound, since

the distribution of numbers is different across conditions.

In Phase 3, we ask subjects about their own performance on the number classification

task (that they completed in Phase 1). This question is not trivial because we do not provide

subjects with feedback after any round in Phase 1 (nor after the end of Phase 1). Here, we

27For example, an alternative model of imperfect perception that does not feature the property that
nearby states are harder to distinguish than far away states is proposed in Gul, Pesendorfer and Strzalecki
(2017).

28Following Hartzmark, Hirshman and Imas (2021), we choose this elicitation procedure as opposed to
a more complex mechanism such as the Binarized Scoring Rule (BSR) due to recent evidence showing that
the BSR can systematically bias truthful reporting (Danz, Vesterlund and Wilson, 2022).
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are also interested in subjects’ awareness of their own imprecision for numbers that are close

and far from the threshold. Specifically, we ask subjects the following two questions:

1. Consider only trials where the number on screen was between 52 and 58. In what

percentage of these trials do you think you correctly classified whether the number was

smaller or larger than 55?

2. Consider only trials where the number on screen was less than 52 or greater than 58.

In what percentage of these trials do you think you correctly classified whether the

number was smaller or larger than 55?

For each of these two questions, we again reward subjects with 0.50 GBP if they provide

an answer that is within 1% of their true accuracy. All subjects first go through Phase 1,

and the order of Phase 2 and Phase 3 is randomized across subjects. We note that one

potential concern with our design, is that when asking subjects about their performance in

Phase 1, we are testing memory, not ex-ante beliefs. This is a reasonable concern, and an

alternative is to have subjects forecast their performance before undertaking the classification

task. However, under this alternative design, subjects’ classification performance would be

endogenous to their beliefs, and would invalidate the incentive compatibility of our belief

elicitation procedure. For this reason, we opt to implement Phase 1 first for all subjects.

Experimental Results

The upper panel of Figure A3 replicates the classic result from previous experiments on num-

ber discrimination, whereby subjects exhibit errors, and these errors increase as the number

on screen approaches the threshold (Dehaene, Dupoux and Mehler, 1990). Moreover, we see

that, for numbers between 47 and 63, errors are systematically higher in the high volatil-

ity condition (Frydman and Jin, 2022). Similar patterns are reflected in the response times

shown in the lower panel of Figure A3: response times increase as the number approaches the

threshold of 55, and response times are systematically longer in the high volatility condition.

The purpose of Phase 1 is to create a dataset about performance, over which we can ask

subjects about their beliefs in Phases 2 and 3. In the left panel of Figure A4, we see that

subjects believe their behavior in the classification task exhibits imprecision (that is, beliefs

about accuracy are less than 100%). Moreover, we see that subjects are aware that mistakes

are more likely for numbers closer to the threshold (greater than 52 and less than 58) than

for numbers farther from the threshold (less than 52 or greater than 58; p < 0.001).

The results in the middle panel of Figure A4 help validate a crucial assumption in our

model. Specifically, we see that subjects are aware of other subjects’ imprecision. Moreover,
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Figure A3: Accuracy and Response Times in the Classification Task. Note: Upper
panel shows the proportion of rounds on which subjects correctly classify θ as greater than
or less than the reference level of 55. Lower panel shows the average response time on rounds
where subjects correctly classify θ. In both panels, the vertical bars denote two standard
errors of the mean. Standard errors are clustered by subject.

subjects believe that others are less accurate when discriminating 54 vs. 55 compared with

discriminating 47 vs. 55 (p < 0.001). When embedded in a game, these beliefs are sufficient

to generate strategic uncertainty: if player i believes that player j perceives θ with error,

then player i is uncertain about player j’s perception. The data in the middle panel of Figure

A4 therefore provide support for the mechanism that generates strategic uncertainty in our
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Figure A4: Beliefs about Own and Others’ Accuracy in the Classification Task.
Note: Left panel shows the average belief about own accuracy for values of θ that are far
(θ < 52 or θ > 58) and close (51 < θ < 59) to the threshold 55. Middle panel shows the
average belief about others’ accuracy for values of θ that are far (θ = 47) and close (θ = 54)
to the threshold 55. Right panel shows the average belief about others’ accuracy when
θ = 54, split by experimental condition. In all panels, vertical bars denote two standard
errors of the mean.

model.

Finally, our data also enable us to test one other feature of beliefs about others’ impre-

cision. As outlined in our pre-registration, we test whether beliefs about others’ accuracy

on rounds when θ = 54 is higher for those subjects who experience the low volatility dis-

tribution in Phase 1.29 Such a test investigates the hypothesis that subjects are aware that

others’ perception of a given number varies as a function of the experienced distribution.

Indeed, the right panel of Figure A4 shows that, for θ = 54, subjects who experience the

high volatility distribution in Phase 1 report that others make more errors, compared to

those subjects who experience the low volatility distribution in Phase 1 (p = 0.048).

29Pre-registration document is available at https://aspredicted.org/OGG_XNK.
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E Experimental Instructions

Main Experiment (Coordination Game)
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Experiment 2 (Human vs. Algorithm)
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Experiment 3 (Awareness of cognitive noise)
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