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1 Introduction

The poor in poor countries generally face large risks, especially when it comes to health (ill-

nesses, accidents) and livelihood (climate events), see Banerjee and Duflo (2011). These risks

are a major source of stress and reduced well-being, as well as a likely cause of poverty traps.

Many such risks could, in principle, be covered by formal insurance, like public universal

health coverage and the production insurance provided by insurance companies or NGOs.

In the past 40 years, governments and development institutions have worked hard to make

formal insurance accessible to households in need. Disappointingly, however, these efforts

have generally encountered low take-up, e.g. Cole et al. (2013). One likely explanation for

such limited adoption of formal insurance in high-risk contexts is informal safety nets, which

may act as barriers to formal insurance.1 There is widespread evidence that social networks

help individuals and households cope with negative shocks, through informal financial trans-

fers and gifts in kind. These transfers and assistance are motivated, to a large extent, by

altruism, as individuals give to others they care about. How do effective altruism networks,

then, affect the demand for formal insurance? Does altruism always reduce the adoption of

formal insurance? These questions have, so far, been neglected; we review the scant literature

on the interaction between formal and informal insurance below.

This paper provides the first analysis of how altruism networks affect the demand for

formal insurance. We consider a community of agents who care about each other. Agents face

both a common and an idiosyncratic risk and can buy formal insurance to cover the common

risk. Once shocks are realized, agents make private transfers to each other to support friends

in need. We find that altruism networks have a profound impact on demand for formal

insurance. Under altruism, an agent anticipates that her own insurance decision will affect

the outcomes of others she cares about and that the insurance decisions of others who care

about her will affect her outcome. Ex-post altruistic transfers thus induce interdependence

in ex-ante decisions to buy formal insurance. Under standard assumptions on preferences

toward risk, we show that the insurance game involves strategic substitutes: an agent is less
1Other explanations include price effects, liquidity constraints, mistrust, and psychological costs of adopt-

ing an unfamiliar product. These explanations are not mutually exclusive, and we study below how price
effects and a utility cost of adoption interact with altruism networks in determining the demand for formal
insurance.
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likely to adopt formal insurance when the number of other adopters increases. We show

that this yields a unique number of adopters in equilibrium. We then contrast demand for

formal insurance with and without altruism. We find that formal insurance and altruism

networks are substitutes at relatively low prices and complements at relatively high prices.

Altruism networks thus reduce adoption when the price of insurance is not too high, and

increase adoption under high prices. Overall, our analysis demonstrates that an appropriate

description of the way informal safety nets operate is key to understanding the determinants

and impacts of formal insurance adoption.

We introduce formal insurance into the model of altruism in networks studied in Bourlès,

Bramoullé and Perez-Richet (2017, 2021). Agents are embedded in a fixed altruism network,

describing the structure of social preferences in the community. An agent’s altruistic utility

is a linear combination of her private utilities and the private utilities of others she cares

about. We consider a connected altruism network: any agent can be reached from any other

agent through a directed path of caring relationships. In our benchmark model, we assume

that private utilities display Constant Absolute Risk Aversion (CARA). We assume that the

common and the idiosyncratic shocks are binary and independent, and that the idiosyncratic

shock is large and only affects one agent at a time. This guarantees that a directed path of

transfers flows from any other agent to the affected agent in equilibrium, a key simplifying

assumption (Assumption 1). We develop our analysis in several stages.

We first obtain an explicit characterization of the Nash equilibria of the insurance game

(Theorem 1). We find that there is a generically unique number of adopters in equilibrium.

Moreover, any profile with this equilibrium number is a Nash equilibrium, implying that

agents’ positions in the altruism network do not affect adoption.2 We build on this charac-

terization and analyze comparative statics with respect to the main parameters of the model.

We find that the equilibrium number of formal insurance adopters increases weakly following

an increase in the magnitude or likelihood of the common shock, or a decrease in insurance

price. Moreover, the number and proportion of adopters is higher in larger communities.

Second, we compare the demand for formal insurance with and without altruism. We
2Still, equilibrium payoffs depend on the network positions of adopters, and network positions also affect

adoption in the presence of a fixed utility cost from adopting.
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show that there exists a price threshold such that formal insurance adoption is lower under

altruism when the insurance price is below the threshold and higher when the price is above

the threshold (Theorem 2). This result confirms and qualifies the intuition that informal

safety nets can curtail the adoption of formal insurance. We uncover two countervailing

effects at play, both induced by effective altruistic transfers. On the one hand, altruism

networks help smooth consumption, which reduces the demand for formal insurance. On

the other hand, altruism networks enable the costs of formal insurance to be shared, which

increases the demand for formal insurance. Substitution effects dominate for low prices, while

complementarities induced by cost-sharing dominate for high prices.

Third, we analyze welfare and we show that the Nash equilibria of the insurance game

are constrained Pareto efficient (Proposition 3). Conditional on the constraint that agents

cannot be fully insured on both risks, individual incentives to adopt formal insurance are thus

aligned with social welfare. This remarkable feature relies on a property of multiplicative

separability, which guarantees that payoffs all move in the same direction. This provides a

new context where a counterpart to the first welfare theorem holds in the presence of strategic

interactions.

Fourth, we extend our benchmark analysis in two ways. In the first extension, we assume

that private utilities display Constant Relative Risk Aversion, CRRA, rather than CARA.

We show that key properties of equilibrium behavior (strategic substitutes, generic unique-

ness, Pareto efficiency) hold under CRRA utilities. One main difference is the emergence of

wealth effects. Under CRRA, the demand for formal insurance under altruism depends on

aggregate wealth, while the demand in the absence of altruism depends on the full wealth

distribution.3 The relationship between these two demand curves is more complex, and we

provide a simple example where the two curves cross three times in the interior domain. In

the second extension, we introduce a fixed utility cost from adopting. We characterize Nash

equilibria in that case and find that adoption may now depend on network position. We show

that agents with more links, who are closer to others in the network and whose neighbors

are also closer to others are, in a sense, more likely to adopt.
3Under CARA, by contrast, there is no wealth effect and the demand for formal insurance with or without

altruism does not depend on wealth levels.
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Our analysis contributes, first, to a literature studying the impact of informal risk sharing

arrangements on formal insurance.4 Several studies look at index insurance, an innovative

financial product where an agent receives transfers depending on an objective index, such

as the amount of rainfall measured at a weather station. Index insurance carries basis risk,

i.e., the risk an agent suffers the shock but does not receive transfers.5 These studies find

empirical evidence that the demand for index insurance rises with increased informal insur-

ance, see Mobarak and Rosenzweig (2012), Mobarak and Rosenzweig (2013), Dercon et al.

(2014), Berg, Blake, and Morsink (2020). These studies also develop models where indi-

viduals informally share risk in a group, and the complementarity between index insurance

and informal risk-sharing arises because informal insurance helps cover the basis risk. By

contrast, we consider standard indemnity insurance and agents make informal transfers to

each other through an altruism network. We analyze how the demand for formal insurance is

affected by the altruism network and show that complementarities between formal insurance

and altruism can appear even in the absence of basis risk.

De Janvry, Dequiedt, and Sadoulet (2014) look at incentives to contract full formal in-

surance when individual utility depends on individual and aggregate wealth. They highlight

the strategic interactions and free-riding emerging in individual decisions to adopt formal

insurance. While our setup differs in important ways, our analysis confirms the key insight

that in the presence of informal transfer arrangements, individual decisions to adopt formal

insurance are interdependent.6 We show that these strategic interactions do not necessar-

ily lead to free-riding, however. In our context, while individual decisions to adopt formal

insurance involve strategic substitutes, Nash equilibria coincide with the constrained Pareto

optima.

Kinnan and Townsend (2012) analyze data on formal and informal loans in rural Thailand.

They find evidence of large network spillovers: having an indirect connection to a household

with a formal loan has the same, strong impact on consumption smoothing for a household
4A recent literature looks at how the introduction of formal insurance affects existing informal arrange-

ments, see, e.g., Takahashi, Barrett, and Ikegami (2019), Boucher, Delpierre, and Verheyden (2016).
5According to accounting standards, an adverse effect on the policyholder should be a contractual pre-

condition for payment in an insurance contract. According to these standards, index insurance should then
be classified as a derivative contract rather than an insurance contract, see Clarke (2016).

6In our setup, formal insurance only covers the common shock rather than overall wealth fluctuations and
individual utility does not depend on individual and aggregate wealth.
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than having a formal loan. These findings are consistent with our theoretical results. When

one agent adopts formal insurance, every agent indirectly connected in the altruism network

benefits. Overall, we provide the first analysis of demand for formal insurance when agents

make informal transfers through networks.

Our analysis also contributes to a literature on informal transfers and networks.7 Ambrus,

Mobius, and Szeidl (2014) characterize Pareto-constrained risk-sharing arrangements when

transfers flow through networks and links can be used as social collateral. Ambrus, Gao,

and Milán (forthcoming) analyze Pareto-constrained risk-sharing arrangements under local

informational constraints. Bourlès, Bramoullé, and Perez-Richet (2017) consider a network

of altruistic relationships and characterize the Nash equilibria of the game of transfers for

non-stochastic incomes. Bourlès, Bramoullé, and Perez-Richet (2021) look at the impact of

altruism networks and transfers when incomes are stochastic. None of these studies consider

formal insurance, however. We introduce formal insurance into this literature, and provide

the first analysis of the interplay between formal insurance and informal transfers through

networks. We find that altruism networks have a first-order impact on demand for formal

insurance.

Finally, our analysis contributes to a large literature on the interactions between formal

and informal institutions.8 Gagnon and Goyal (2017) develop a model where agents choose a

network and a market binary action. They assume that the two actions are either substitutes

or complements, and analyze equilibria, welfare, and inequality. By contrast, we look at

how altruism networks affect the adoption of formal insurance.9 We show that the demand

for formal insurance is lower under altruism when insurance is low-priced and higher when

insurance is high-priced.

The remainder of the paper is organized as follows. We introduce our framework in

Section 2. We analyze the game of formal insurance adoptions in Section 3. We extend our

analysis to CRRA utilities and to a fixed utility cost of adoption in Section 4 and conclude

in Section 5.
7One branch of the literature analyzes the stability of risk-sharing networks, see e.g. Bloch, Genicot, and

Ray (2008), Bramoullé and Kranton (2007).
8See, e.g., Arnott and Stiglitz (1991), Kranton (1996), Montgomery (1991).
9While the market action - adopting or not adopting - is binary, as in Gagnon and Goyal (2017), network

actions - transfers - are continuous and multidimensional in our setup.
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2 Framework

We introduce formal insurance into the model of altruism in networks analyzed by Bourlès,

Bramoullé and Perez-Richet (2017, 2021). Consider a community of n ≥ 2 altruistic agents.

Incomes are stochastic, and subject to a community-level shock and to an individual-level

shock. Formal insurance covering the community-level shock is available. Each agent decides,

ex-ante, whether to buy formal insurance. Once incomes are realized, altruistic agents make

informal transfers to each other. The model thus has 3 stages. In stage 1, agents decide

whether to buy formal insurance. In stage 2, income shocks are realized. In stage 3, agents

make private transfers, conditional on realized incomes and on formal insurance decisions.

Stochastic Incomes. Agents have potentially different baseline income, or wealth, levels

and face both a common and an idiosyncratic shock. Formally, agent i has stochastic income

yi0 − µ̃c − λ̃i (1)

where yi0 represents i’s baseline non-stochastic income, µ̃c represents a common random

shock, and λ̃i an individual random shock.

For simplicity, we consider binary shocks. More precisely, µ̃c is equal to µ > 0 with prob-

ability qc ∈ (0, 1) and to 0 with probability 1− qc. This shock affects all agents, for instance,

a local weather event, such as heavy rainfalls or a drought. In contrast, the idiosyncratic

shock λ̃i affects only one agent at a time: λi = λ > 0 with probability qi ∈ (0, 1) and 0 with

probability 1 − qi, and λi = λ ⇒ λj = 0 for j 6= i. Since one agent is affected,
∑

i qi = 1.

We will assume below that the individual shock, λ, is relatively large, a serious adverse event

such as an accident or an illness. Probabilities may differ across agents, capturing poten-

tial heterogeneities in agents’ exposure to the idiosyncratic shock. Finally, we assume that

common and idiosyncratic shocks are independent.

Formal insurance. An external institution offers insurance contracts that fully cover the

common risk −µ̃c. This formal insurance is available at price p ≥ 0. We assume that this

price is exogenous and focus on the demand for formal insurance in our analysis. Formally,
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p ∈ [0, µ].10 The price level of course reflects supply side features. The actuarial price p = qcµ

is an important benchmark, reflecting a competitive insurance market with no frictions and

no administrative costs. However, the price could be lower, p < qcµ, for instance if formal

insurance is subsidized by the government or by a non-governmental organization. It could

also be higher, p > qcµ, in the presence of market power or administrative costs.

If an agent buys formal insurance, the stochastic shock −µ̃c is replaced by the non-

stochastic price −p. Let xi ∈ {0, 1} denote the insurance decision of agent i, where xi = 1

when agent i buys formal insurance and xi = 0 otherwise. Let x ∈ {0, 1}n denote the

profile of insurance decisions. Agent i’s stochastic income at the end of period 1, after formal

insurance decisions but before informal transfers, is thus equal to ỹ1
i = y0

i − p− λ̃i if xi = 1

and to ỹ1
i = y0

i − µ̃c − λ̃i if xi = 0.

Informal transfers. Once insurance decisions are taken and shocks are realized, altruistic

agents make informal transfers to each other. We now describe how these informal transfers

are determined. For this third stage, we adopt the framework of Bourlès, Bramoullé and

Perez-Richet (2017). Let yi denote the final income level, or consumption, of agent i after

informal transfers are realized. Let y−i denote the profile of final incomes of the other agents.

Agents may care about each other. Preferences have a private and a social component. Agent

i’s private preferences are represented by utility function ui : R → R displaying Constant

Absolute Risk Aversion (CARA):

ui(y) = −e−Ay. (2)

Agent i may be altruistic towards others and her preferences are represented by the social

utility function vi : Rn → R such that

vi(yi,y−i) = ui(yi) +
∑
j 6=i

αijuj(yj) (3)

where αij ∈ [0, 1] represents the strength of the altruistic relationship between i and j.

By convention, αii = 0. The altruism network is represented by the matrix α = (αij)i,j,
10If p > µ, agents have no incentives to buy the insurance.
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describing the structure of social preferences in the community.

Agent i can give tij ≥ 0 to agent j. By convention, tii = 0. The collection of bilateral

transfers defines a network of transfers, represented by the matrix t ∈ Rn2

+ . Agent i’s final

income level is equal to

yi = y1
i +

∑
j 6=i

(tji − tij) (4)

Since there is no transfer cost, informal transfers redistribute aggregate income among agents:∑
i yi =

∑
i y

1
i .

In this third stage, agents play a non-cooperative transfer game. Each agent makes

informal transfers to others in order to maximize her altruistic utility, conditional on transfers

made by others. We assume that the network of informal transfers is a Nash equilibrium of

the transfer game. The transfer network is therefore characterized by the following conditions,

see Bourlès, Bramoullé and Perez-Richet (2017) for details. If αij > 0, define cij = −ln(αij)

as a virtual cost associated with the link between i and j. Stronger links have lower virtual

cost. Then, t is a Nash equilibrium of the transfer game if and only if

∀i, j, yi ≤ yj +
cij
A

and tij > 0⇒ yi = yj +
cij
A

(5)

An agent does not let the consumption of someone she cares about fall too much below her

own consumption.

For all profiles of incomes before transfers, a Nash equilibrium exists and the profile

of equilibrium incomes after transfers is unique. This yields a well-defined mapping from

incomes before transfers y1 to incomes after transfers y. With CARA utilities, this mapping

has a complex piecewise linear shape which generally depends on details of the structure of

the altruism network.

For tractability, and since we are interested here in how operative informal transfers affect

formal insurance take-up, we make the following simplifying assumption. Say that agent i0

receives informal support from the full community if for any i 6= i0, there exists a path of

informal transfers connecting i to i0, i.e., a set of distinct agents j1 = i, j2,..., jl = i0 such

that for any s < l, tjsjs+1 > 0. While amounts transferred are not necessarily large, every

8



other agent in the community is involved in transfers eventually reaching agent i0.

Assumption 1. For any realization of income shocks and any profile of formal insurance

decisions, the agent hit by the idiosyncratic shock receives informal support from the full

community.

We show in the Appendix that for any connected altruism network α, there exists a threshold

level on the magnitude of the idiosyncratic shock, λ̄, such that Assumption (1) holds if λ ≥ λ̄.

This threshold may be quite low when altruistic ties are strong and baseline nonstochastic

incomes are homogeneous. It may be quite high, by contrast, when ties are weak or under

baseline income heterogeneity. In any case, Assumption (1) holds (1) when the altruism

network is connected and the magnitude of the individual shock is large enough. In our

analysis, we thus focus on situations where the individual shock always induces informal

support from the full community.

A key implication of Assumption (1) is that we can simply express how incomes after

transfers depend on incomes before transfers. Let ĉij denote the virtual cost of a least-cost

path connecting i to j in α and let α̂ij = −ln(ĉij). Transfers must flow through such least-

cost paths in a Nash equilibrium. Note that when the altruism network is connected, there

is a path connecting any two agents in it and these least costs are well defined for any pair

of agents. Let ȳ1 = 1
n

∑
i y

1
i denote the average income before transfers in the community.

Lemma 1. Suppose that agent i0 suffers from the individual shock and receives informal

support from the full community. Then, for all i,

yi = ȳ1 +
ĉii0
A
− 1

n

∑
j

ĉji0
A

We provide the proof of Lemma 1 and of all other results in the Appendix. Lemma 1 shows

that income after transfers is equal to the sum of average income before transfers and of

an amount that only depends on positions in the altruism network. In particular, income

after transfers is lower for agents who are “closer” to i0 in the altruism network. To see why,

consider a binary altruism network where all links have the same strength, αij ∈ {0, α}. Then

ĉij is simply proportional to the network distance between i and j in the altruism network,
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i.e., the number of links in a shortest path between them. In that case, yi if higher when i is

more distant from i0.

The insurance game. In the first stage, each agent decides whether to adopt formal

insurance, anticipating how informal transfers will operate ex-post. A profile of insurance

decisions x∗ is a Nash equilibrium of the insurance game if Evi(x∗i , x∗−i) ≥ Evi(xi, x∗−i) for

all i ∈ N and xi ∈ {0, 1}. The expected utility is computed over all possible realizations

of common and individual shocks. In what follows, our main objectives are to characterize

the Nash equilibria of the insurance game and to analyze their main properties (comparative

statics, welfare).

3 Analysis

3.1 Equilibrium characterization

We start by characterizing the Nash equilibria of the insurance game. In our first main

result, we show that the insurance game involves strategic substitutes: individual incentives

to adopt formal insurance decrease with the number of adopters in the community. Further,

an agent’s decision to adopt does not depend on her position in the altruism network. We

find that this yields a unique number of adopters in equilibrium and we derive an explicit

formula relating the equilibrium number of adopters to the model’s primitives.

To prove this result, consider some profile of insurance decisions x ∈ {0, 1}n. Denote by

x =
∑

i xi the number of insurance adopters in profile x. Similarly, let y0 =
∑

i yi0 denote the

aggregate baseline income. Average income in the community at the end of stage 2, following

insurance decisions and shocks but before informal transfers, is equal to

ȳ1 =
1

n
(y0 − λ− xp− (n− x)µc). (6)

Average income before transfers is thus a simple linear function of the number of insurance

adopters.

Next, we express how expected private utility Eui and expected altruistic utility Evi
depend on x. The expectations are taken over the 2 possible realizations of the common
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shocks and over the n possible realizations of the individual shock. To do this, we combine

Lemma 1 on incomes after transfers and equation (6) and obtain (see Appendix)

Lemma 2. There exist Vi > 0 such that

Evi(x) = −Vi(1− qc + qce
A
n
µ(n−x))e

A
n
xp.

Lemma 2 shows that an agent’s expected utility can be decomposed as the product of two

terms: one that depends on network positions and other parameters, but not on insurance de-

cisions, and one that depends on insurance decisions through the overall number of adopters,

but not on network positions. This result captures a form of multiplicative separability. Let

dxe denote the smallest integer higher than or equal to x if x is not an integer and either one

of the two possible values {x, x+ 1} if x is an integer. Introduce

x∗ = n

[
1− 1

Aµ

(
ln

1− qc
qc

+ ln(e
Ap
n − 1)− ln(1− e−A

µ−p
n )
)]
. (7)

We can now state our first main result.

Theorem 1. An individual is less likely to adopt formal insurance when the number of other

adopters increases. A profile of insurance decisions is a Nash equilibrium of the insurance

game if and only if the overall number of adopters is equal to min(max(0, dx∗e), n).

Theorem 1 has several noteworthy implications. It shows, first, that the insurance game

involves strategic substitutes. When an agent adopts formal insurance, stochastic −µ̃ is

replaced by non-stochastic −p in her income before transfers. Altruistic transfers then redis-

tribute incomes among agents. Under Assumption (1), another agent’s income after transfer

is equal to average income before transfer plus a stochastic term that only depends on the

altruism network and on who suffers from the individual shock, see Lemma 1. When an

agent adopts formal insurance, stochastic − µ̃
n
is then replaced by non-stochastic − p

n
in other

agents’ income after transfers. This reduces income variability and the incentives to also

adopt formal insurance.

Second, as long as the altruism network stays connected and sufficiently strong and As-

sumption (1) holds, Nash equilibria are unaffected by the network’s structure and by agents’
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network positions. Any profile where the number of adopters is equal to the equilibrium value

is a Nash equilibrium, regardless of who adopts. And these Nash equilibria do not change

following changes in α that respect Assumption (1).11 These unexpected properties follow

from the multiplicative separability identified in Lemma 2.

Third, the equilibrium number of adopters is generically unique. The only exception is

when x∗ is an integer, in which case the equilibrium number of adopters can be x∗ or x∗+ 1.

This notably implies that the demand for formal insurance is well defined: for any price

of formal insurance p, there is a generically unique level of overall adoption x(p). In the

next Section, we study how this demand for insurance varies with price and with the other

parameters of the model.

3.2 Comparative statics

We now focus on comparative statics. We obtain three results. We first analyze how the

demand for formal insurance varies with price, both in the absence of altruism and in an

altruistic community. We then contrast the demand for formal insurance in the two cases.

This allows us to establish when formal and informal insurance are substitutes and when

they are complements. Third, we study how the demand for formal insurance under altruism

varies with respect to risk aversion, group size, and features of the common shock.

Consider first the demand for formal insurance when agents are not altruistic. In the

absence of altruism, an agent’s decision to buy formal insurance does not depend on others’

decisions. Agent i’s stochastic income is then equal to yi0 − p− λ̃i if she buys insurance and

to yi0 − µ̃− λ̃i if she does not. Introduce the following price level.

pN =
1

A
ln(1− qc + qce

Aµ) (8)

We show in the Appendix that price pN makes a nonaltruistic agent indifferent between

buying or not buying formal insurance. In addition, it is higher than the actuarial price,

pN > qcµ. The demand for formal insurance in the absence of altruism is therefore all or

nothing: every agent adopts if p < pN , while no agent adopts if p > pN .
11For instance, we can show that if Assumption (1) holds for α, it also holds for α′ where α′ij ≥ αij . Nash

equilibria thus do not change following increases in the strength of altruistic ties.
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Consider next an altruism network under Assumption (1). In our next result, we establish

that the demand for formal insurance under altruism is well-behaved, that is, downward

sloping. Introduce the following two threshold values for the price:

p =
n

A
ln(1− qc + qce

Aµ
n )

p =
n

A
ln(

1− qc + qce
Aµ

1− qc + qce
A(1− 1

n
)µ

)

Proposition 1. The equilibrium demand for formal insurance x(p) decreases weakly with

price and is such that x = n iff p < p and x = 0 iff p > p. At the actuarial price, p = qcµ < p

and all agents adopt formal insurance in equilibrium.

We can now assess the impact of altruism networks on demand for formal insurance.

Theorem 2. We have: p < pN < p. If p ∈ (p, pN), adoption of formal insurance is lower

under altruism. If p ∈ (pN , p), adoption of formal insurance is higher under altruism.

Theorem 2 clarifies the interactions between formal insurance and altruism networks.

When the price of formal insurance is not too high, altruism networks reduce the take up of

formal insurance. Formal and informal insurance are then substitutes. In contrast, when the

price of formal insurance is high, altruism networks increase its take-up. Formal and informal

insurance are then complements. To understand why these interactions depend on price,

note that altruistic transfers play two roles here: they help reduce income variability, thus

providing a source of informal insurance, and they also lead agents to share non-stochastic

incomes, such as the price of formal insurance. When this price is not too high, the first

effect dominates: since altruistic agents share risk informally, they have lower incentives to

adopt formal insurance. In contrast, the second effect dominates when the price of insurance

is high. Since the cost of buying formal insurance is shared with the community, adopting

becomes relatively more attractive under high price.

We illustrate Proposition 1 and Theorem 2 in Figure 1. This Figure depicts the demands

of formal insurance as a function of price for the following parameters: n = 10, A = 1, qc = 0.2

and µ = 6. The demand when agents are not altruistic (dashed) is 10 if p < pN = 4.2 and 0

13



Figure 1: Demand for formal insurance

if p > pN . The demand for formal insurance under altruism (plain) is 10 if p < p ≈ 1.5 and

then decreases unit by unit, becoming 0 if p > p ≈ 5.9. The dashed gray curve depicts how

x∗ from equation (7) varies with p. Consistently with Theorem 2, we see that the demand

for formal insurance is lower under altruism when p < p < pN but higher when pN < p < p.

We now analyze how formal insurance adoption depends on the other parameters of the

model. Building on Theorem 1, we analyze how x∗ and x varies with the parameters.

Proposition 2. The equilibrium number of formal insurance adopters increases weakly fol-

lowing an increase in common shock probability qc, common shock magnitude µ, absolute risk

aversion A, or community size n. In addition, x∗

n
increases weakly following an increase in

community size n.

The effects of qc and µ on the number of adopters are intuitive, and qualitatively similar to

effects on insurance demand for non-altruistic agents.12 In the absence of altruism, however,

insurance demand becomes all or nothing. Contrastingly, under altruism, insurance demand
12Indeed from equation (8), we can verify that ∂pN

∂A > 0, ∂pN
∂qc

> 0 and ∂pN
∂µ > 0. Thus, the demand for

formal insurance for non-altruistic agents increases weakly in A, qc and µ.
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takes intermediate values and Theorem 1 can be leveraged to measure the precise quantitative

impacts of changes in parameters.

Without altruism, demand for formal insurance does not depend on community size. By

contrast, Proposition 2 shows that demand for formal insurance under altruism is greater in

larger communities, and this demand grows more than proportionally with community size.

These effects provide another illustration of the impacts of altruistically induced interactions

in adoption decisions.

Finally, the comparative statics with respect to absolute risk aversion A turn out to be

difficult to assess, see Appendix. Without altruism, parameter A plays a single, unambiguous

role and more risk-averse agents demand more insurance. By contrast, parameter A plays

two roles under altruism, since the curvature of the utility function affects both preferences

toward uncertainty and altruistic transfers in the absence of uncertainty. By Lemma 1, we

see that for any incomes before transfers, income dispersion after transfers drops when A

increases, since |yi − ȳ1| = |ĉii0−
1
n

∑
j ĉji0 |

A
. In this sense, an increase in A yields more informal

support, and this can lead to a decrease in the demand for formal insurance. We show in

the Appendix that these this second effect is dominated and that the demand for formal

insurance under altruism is also weakly increasing in absolute risk aversion.

3.3 Welfare

Finally, we analyze the welfare properties of the insurance game. By Lemma 2, we know

that there exists a common function, w(.), such that for every agent i, Evi(x) = Viw(x) with

Vi > 0. This implies that agents’ interests are aligned. When one agent takes a decision

which increases her utility, the utility of all other agents also increases. As a consequence,

individual incentives are fully aligned with social welfare. More precisely, say that x ∈ {0, 1}n

is a Pareto optimum of the insurance game if there is no other profile x′ ∈ {0, 1}n such that

∀i,Evi(x′) ≥ Evi(x) and ∃i,Evi(x′) > Evi(x).

Proposition 3. The Pareto optima of the insurance game coincide with its Nash equilibria.

In general, informal transfers generate externalities in decisions to take up formal insur-

ance. When an agent adopts formal insurance, her income stream changes; through informal
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transfers, this affects others’ income streams and utilities. Under our assumptions, however,

and quite remarkably, individual incentives are aligned with social welfare. This is due to

the multiplicative separability identified in Lemma 1. Proposition 3 can thus be viewed as a

form of second-best welfare theorem. Note that the Nash equilibria of the insurance game are

not first-best efficient. Since agents are risk-averse, first best outcomes would involve perfect

insurance over both risks at actuarial prices. However, Proposition 3 shows that, conditional

on the fact that the idiosyncratic risk is imperfectly insured by altruistic transfers, the Nash

equilibria of the insurance game are constrained Pareto-efficient.

4 Extensions

In this Section, we analyze two extensions of our benchmark framework. We first consider

utilities displaying Constant Relative Risk Aversion (CRRA) and then introduce a fixed

utility cost of adopting formal insurance.

4.1 CRRA utilities

Assume that preferences toward risk are now represented by CRRA utility functions with

coefficient of relative risk aversion γ > 0:

ui(y) = ln(y) if γ = 1 and ui(y) =
y1−γ

1− γ
if γ 6= 1. (9)

CRRA and CARA utilities both represent benchmark preferences towards risk. A distinctive,

well-known feature of CRRA utilities is that they display decreasing absolute risk aversion:

richer agents are less risk-averse. By contrast, risk aversion does not depend on wealth, or

baseline income, under CARA.

To analyze the adoption of formal insurance under CRRA utilities, we retrace the different

steps of our analysis. We first derive the counterpart to Lemma 1, relating incomes after

transfers to incomes before transfers under Assumption 1. We then extend Lemma 2 and

show that, remarkably, a form of multiplicative separability also holds under CRRA. This

allows us to extend Theorem 1 and Proposition 3 to CRRA utilities. By contrast, the presence
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of wealth effects complicates the extension of Theorem 2, as the demand for formal insurance

without altruism now depends on the entire wealth distribution.

As with CARA, Assumption (1) allows us to simply express incomes after transfers.

Lemma 3. Consider CRRA utilities. Suppose that agent i0 suffers from the individual shock

and receives informal support from the full community. Then,

yi =
nα̂
− 1
γ

ii0∑
j α̂
− 1
γ

ji0

ȳ1

Under CRRA and Assumption (1), income after transfers is proportional to average income

before transfers. This proportion depends on agents’ positions in the altruism network,

relative to the agent in need. Even though expressions for incomes after transfers differ for

CRRA and CARA utilities,13 we show next that they both induce multiplicative separability

in decisions to adopt formal insurance.

Lemma 4. Under CRRA utilities, there exist Vi > 0 and V ′i such that

Evi(x) = Vi[(1− qc)u(y0 − λ− px) + qcu(y0 − λ− px− (n− x)µ)] if γ 6= 1 and

Evi(x) = Vi[(1− qc)u(y0 − λ− px) + qcu(y0 − λ− px− (n− x)µ)] + V ′i if γ = 1.

Therefore, the altruistic expected utilities of all agents are affected by the number of

adopters through a common function. We show in the Appendix that, as under CARA,

this common function is concave. As a consequence, Theorem 1 and Proposition 3 directly

extend. The insurance game involves strategic substitutes, Nash equilibria are characterized

by a generically unique number of adopters, adoption does not depend on network position,

and Nash equilibria coincide with the Pareto optima of the insurance game. Under CRRA,

however, the equilibrium number of adopters cannot be expressed as a simple explicit function

of the parameters. Moreover, in contrast to CARA and due to wealth effects, Nash equilibria

also depend on overall baseline income y0 and on the size of the individual shock λ.

Formally, let w(x) = (1 − qc)u(y0 − λ − px) + qcu(y0 − λ − px − (n − x)µ). We show in

the Appendix that w(.) is strictly concave, and hence the function X → w(X + 1) − w(X)

13Note that under CARA, the difference between income after transfers and average income before transfers
depends on relative network positions.
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is strictly decreasing. Define x∗CRRA as follows: x∗CRRA = 0 if w(1) − w(0) < 0, x∗CRRA = n

if w(n) − w(n − 1) > 0 and otherwise x∗CRRA = dXe where X is the unique solution of the

equation w(X + 1)− w(X) = 0.

Theorem 3. Consider CRRA utilities. An individual is less likely to adopt formal insurance

when the number of other adopters increases. An insurance profile is a Nash equilibrium if

and only if the number of adopters is equal to x∗CRRA. The Pareto optima of the insurance

game coincide with its Nash equilibria.

Theorem 3 shows that key features of equilibrium behavior uncovered in Section 3 under

CARA also hold under CRRA. By contrast, analysis of the demand for formal insurance is

complicated by the presence of wealth effects. Under CARA, regardless of altruism, demand

for insurance does not depend on initial levels of wealth, yi0. Under CRRA, Theorem 3

shows that the demand for insurance under altruism depends on the aggregate level of initial

wealth, y0 =
∑

i yi0. By contrast, the demand for insurance of agent i in the absence of

altruism depends on her initial wealth yi0. Since absolute risk aversion is decreasing with

wealth, the threshold price below which an individual buys insurance is higher for poorer

agents. Overall demand for insurance in the absence of altruism then depends on the full

distribution of wealth levels, y0.

We illustrate three possible outcomes in Figure 2. We depict the demand for formal

insurance with and without altruism under three scenarios, and for the following parameter

values: n = 10, γ = 1, µ = 35, qc = 0.5, qi = 0.1 and y0 = 415. In the Upper panel, all

agents have the same initial wealth. Demand for insurance without altruism has the same

all or nothing shape as under CARA. Theorem 2 extends: demand for formal insurance

under altruism is lower at low prices and higher at high prices. In the Middle panel, agents

have different wealth levels but wealth variance is low.14 Demand for formal insurance in

the absence of altruism now decreases step by step. However, Theorem 2 still extends, as

the demand without altruism crosses the demand with altruism once from above in the

intermediate price range. In the Lower panel, agents are either poor or rich, and wealth

variance is high. We now see that Theorem 2 does not extend. The two demand curves cross
14We describe in the Appendix the wealth levels in scenarios 2 and 3.
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(a) No wealth variance

(b) Low wealth variance

(c) High wealth variance

Figure 2: Demand for formal insurance under CRRA utilities
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three times in the intermediate range. As the insurance price increases, formal and informal

institutions are, successively, substitutes, complements, substitutes, and complements again.

4.2 Fixed utility cost of adoption

In this second extension, we introduce a fixed utility cost from adopting formal insurance,

aiming to capture psychological or cognitive costs entailed in adopting a new, unknown in-

surance product. The presence of such costs could help explain the documented low adoption

rates, see Introduction.

Formally, assume that adopting formal insurance entails a utility cost C > 0 and otherwise

maintain the assumptions of our benchmark model. By Lemma 2, the expected altruistic

utility earned by agent i when the adoption profile is (xi,x−i) is now equal to Evi(xi,x−i) =

Viw(
∑

j xj)− Cxi with Vi > 0 and w(x) = −(1− qc + qce
A
n
µ(n−x))e

A
n
xp.

In our next result, we extend Theorem 1. We show that the number of adopters is still

uniquely pinned down - and this number of course decreases weakly with C. We also show

that network positions now matter. In particular, agents with the highest Vi’s always adopt

while agents with the lowest Vi’s never adopt. Formally, order agents through decreasing

values of Vi: V1 ≥ V2 ≥ ... ≥ Vn. Define k∗ as follows: k∗ = 0 if V1(w(1)−w(0)) < C, k∗ = n

if Vn(w(n)− w(n− 1)) > C and otherwise, k∗ = max{k ∈ N : Vk(w(k)− w(k − 1)) ≥ C}.

Theorem 4. Consider the model with a fixed utility cost of adoption. Order agents through

decreasing values of Vi’s. An agent is less likely to adopt if adoption by other agents increases.

The equilibrium number of adopters is generically unique and equal to k∗. Moreover, there

exist k1 ≤ k2 such that a profile is a Nash equilibrium if and only if agents 1 to k1 adopt; of

the k1 + 1 to k2 agents, k∗ − k1 adopt; and agents k2 + 1 to n do not adopt.

As Theorem 4 demonstrates, a key implication of the utility cost is that the decision to

adopt may now depend on the individual’s position in the altruism network. To illustrate,

consider the following particular case. Assume that every agent has the same probability of

facing the idiosyncratic shock, qi = 1
n
, and that every altruistic link has the same intensity,

αij > 0⇒ αij = α. Let dij be the network distance between i and j, i.e., the number of links

in a shortest path from i to j, with the convention that dii = 0. In this case, the virtual cost
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1

C=0.01 C=0.005

Figure 3: Adoption with a utility cost

of a least cost path connecting i to j is equal to ĉij = cdij with c = −ln(α). Let d̄i = 1
n

∑
j dij

be the average distance from i to others in the network.

From the computations leading to Lemma 2, in the Appendix, we can show that there

exists U > 0 such that Vi = Ui +
∑

j αijUj and Ui = U
∑

j e
−c(dij−d̄j). Therefore, an agent

has a higher value of Vi, and is more likely to adopt formal insurance, when she has more

altruistic links, when she is closer to others in the network, and when her neighbors are also

closer to others. An agent at a shorter distance from others is more involved in informal

support and obtains a lower income after transfers, on average. By concavity, this yields

greater variations in expected private utility. Through altruism, being connected with an

agent at a shorter distance from others also yields greater variations in expected altruistic

utility. This leads to a higher incentive to adopt, in the presence of a fixed utility cost.

We illustrate Theorem 4 in Figure 3. We consider a network with n = 6 agents. Agent

1 is central and connected to every other agent, agents 2, 3 and 4 are connected to agent 1

and to each other, while agents 5 and 6 are peripheral and only connected to agent 1. We

consider the following parameter values: A = 0.21, λ = µ = 10, qc = 0.5, qi = 1/n, α = 0.9

and y0 = 100. This yields V1 > V2 = V3 = V4 > V5 = V6. In the Left panel, C = 0.01 and we

obtain k∗ = k1 = 1 while k2 = 4. At these values, the utility cost is relatively high and the

center alone adopts. This is a case where adoption is fully determined by network positions.

In the Right panel, there is a drop in utility cost, with C = 0.005. In this case, k∗ = 2 while

k1 = 0 and k2 = 4. There are now 2 adopters, who can be any pair of agents 1 to 4. Agents
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5 and 6 do not adopt, however. Adoption is now partly determined by network positions.

5 Conclusion

We provide the first analysis of the introduction of formal insurance into a community con-

nected through altruistic ties. Agents face both a community-level and an individual-level

shock and can adopt formal insurance to cover the community shock. We assume that the

altruism network is connected and that every member is involved in informal support. Under

altruism, the decisions to adopt formal insurance become interdependent and we characterize

the Nash equilibria of the insurance game. Adoption decisions involve strategic substitutes

and lead to a generically unique number of adopters. The demand for insurance under al-

truism is lower at relatively low prices, but higher at relatively high prices due to the fact

that insurance costs end up being shared with others. Nash equilibria are constrained Pareto

efficient. We then consider CRRA utilities and a utility cost of adoption.

There are a number of natural directions that future research would take. Incomes could

have a more complex stochastic structure, with non-binary and non-independent shocks.

Informal support may not always involve the full community. Agents could also, at a cost,

reduce the risks faced, giving rise to endogenous risk-taking and moral hazard, as in Belhaj

and Deroïan (2012) and Alger and Weibull (2010). Developing a full-fledged analysis of the

demand for formal insurance under complex income shocks, general altruism networks, and

moral hazard would be potentially fruitful and certainly challenging.
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6 Appendix A: Proofs
Proof of statements on Assumption (1). From Proposition 4 in Bourlès, Bramoullé and Perez-
Richet (2020), we know that if the altruism network is connected, then for any realization
of the idiosyncratic shock i0, any realization of the common shock and any profile of formal
insurance, there exists a threshold level such that Assumption (1) holds if the size of the
idiosyncratic shock is greater than this threshold level. Then, define λ̂ as the maximum of
these threshold levels over the finite realizations of shocks and insurance profiles.

Proof of Lemma 1. From Assumption (1) and Bourlès, Bramoullé and Perez-Richet (2017),
we know that u′(yi) = α̂iju

′(yi0) for every i 6= i0. This is equivalent to

yi − yi0 =
ĉii0
A

for every i 6= i0. Conservation of income then implies that∑
i

yi = nyi0 +
∑
i 6=i0

ĉii0
A

=
∑
i

y1
i

Therefore, yi0 = ȳ1 − 1
n

∑
i 6=i0

ĉii0
A

while yi = yi0 +
ĉii0
A
.

Proof of Lemma 2. By Lemma 1 and equation (6), the income after transfers of agent i is
equal to

yi =
1

n
(y0 − λ− xp− (n− x)µc) +

ĉii0
A
− 1

n

∑
j

ĉji0
A

Taking the expectation over realizations of the common shock and the individual shocks
yields

Eui = (1−qc)(−
∑
i0

qi0e
−A( 1

n
(y0−λ−xp)+

ĉii0
A
− 1
n

∑
j

ĉji0
A )+qc(−

∑
i0

qi0e
−A( 1

n
(y0−λ−xp−(n−x)µ)+

ĉii0
A
− 1
n

∑
j

ĉji0
A )

which can be rewritten

Eui = [−
∑
i0

qi0e
−A( 1

n
(y0−λ)+

ĉii0
A
− 1
n

∑
j

ĉji0
A

)]e
A
n
xp[1− qc + qce

A
n

(n−x)µ]

And define Ui =
∑

i0
qi0e

−A( 1
n

(y0−λ)+
ĉii0
A
− 1
n

∑
j

ĉji0
A

) > 0 such that Eui = −Uie
A
n
xp[1 − qc +

qce
A
n

(n−x)µ]. Next, we have

Evi = Eui +
∑
j

αijEuj

Define Vi = Ui +
∑

j αijUj > 0. This yields
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Evi = −Vie
A
n
xp[1− qc + qce

A
n

(n−x)µ]

Proof of Theorem 1. By Lemma 2, we have:

Evi(0,x−i) = −Vie
A
n
x−ip[1− qc + qce

A
n

(n−x−i)µ]

and
Evi(1,x−i) = −Vie

A
n
x−ipe

A
n
p[1− qc + qce

A
n

(n−x−i)µe−
A
n
µ]

Agent i adopts formal insurance iff Evi(1,x−i) ≥ Evi(0,x−i). Simplifying and rearranging,
this is equivalent to

e
A
n

(n−x−i)µ ≥ 1− qc
qc

e
A
n
p − 1

1− e−An (µ−p)

Note that the left hand side is a decreasing function of x−i, which shows that agent i is less
likely to adopt as x−i increases. Moreover, let x∗ ∈ R denote the unique value for which
equality holds. This shows that Evi(1,x−i) ≥ Evi(0,x−i)⇔ x−i ≤ x∗.

If x∗ > n − 1, then this condition is always satisfied. All agents adopt and a Nash
equilibrium is such that

∑
i xi = n.

If x∗ < 0, then this condition is never satisfied, no agent adopts and a Nash equilibrium
is such that

∑
i xi = 0.

If x∗ ∈ [0, n−1], a Nash equilibrium x is such that xi = 1⇒ x−i ≤ x∗ and xi = 0⇒ x−i ≥
x∗. Since xi = 1⇒ x−i = x− 1 and xi = 0⇒ x−i = x, this is equivalent to x∗ ≤ x ≤ x∗ + 1.

Proof of Proposition 1. Compute the derivative of x∗ with respect to p:

∂x∗

∂p
= − 1

µ

(
e
A
n
p

e
A
n
p − 1

+
e
A
n

(p−µ)

1− eAn (p−µ)

)
and we see that ∂x∗

∂p
< 0. Therefore, x∗ is decreasing in p and hence equilibrium demand is

weakly decreasing in p.
The two threshold values of prices are defined by x∗(p) = n−1 and x∗(p) = 0. Substituting

into the formula for x∗ and solving for the price levels yields the result.
Finally, note that qcµ < p is equivalent to

e
A
n
qcµ < (1− qc)e0 + qce

A
n
µ

and since (1 − qc)(0) + qc(
A
n
µ) = A

n
qcµ, this holds by strict convexity of the exponential

function.

Proof of Theorem 2. A nonaltruistic agent adopts formal insurance if and only if
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−e−Ayi0 [(1− qc)(1− qi + qie
Aλ) + qc((1− qi)eAµ + qie

A(λ+µ))] ≤ −e−Ayi0 [(1− qi)eAp + qie
A(p+λ)]

Simplifying and rearranging, this is equivalent to

p ≤ 1

A
ln(1− qc + qce

Aµ) = pN

In addition, pN > qcµ is equivalent to 1 − qc + qce
Aµ > eAqcµ, which holds by strict

convexity of the exponential function.
Next, show that p < pN . This inequality is equivalent to

n

A
ln(1− qc + qce

Aµ
n ) <

1

A
ln(1− qc + qce

Aµ)

and hence to
(1− qc + qce

Aµ
n )n < 1− qc + qce

Aµ

This holds if the function
f(n) = (1− qc + qce

Aµ
n )n

is decreasing with n. Treating n as a continuous variable, it is sufficient to show that ∂f(n)
∂n

< 0.
Taking the derivative and simplifying, this amounts to show that

ln(1− qc + qce
Aµ
n ) < qc

Aµ

n

e
Aµ
n

1− qc + qce
Aµ
n

Let y = e
Aµ
n , so that y > 1. The previous inequality is equivalent to

φ(qc) = (1− qc + qcy) ln(1− qc + qcy)− qcy ln y < 0.

The function φ(.) is a strictly convex function of qc, since φ′′(qc) = (y−1)2

1−qc+qcy > 0. Moreover,
φ(0) = φ(1) = 0 and therefore φ(qc) < 0 for qc ∈]0, 1[. This implies that p < pN .

Finally, we show that p > pN . This inequality is equivalent to

n

[
1− ln(1− qc + qce

n−1
n
Aµ)

ln(1− qc + qceAµ)

]
> 1

and hence to

(1− qc + qce
Aµ)

n−1
n > (1− qc + qce

n−1
n
Aµ)

Introduce the function ψ such that

ψ(µ) = (1− qc + qce
Aµ)

n−1
n − (1− qc + qce

n−1
n
Aµ)
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This function satisfies ψ(0) = 0 and ψ′(µ) > 0. Indeed,

ψ′(µ) =
n− 1

n
qcAe

Aµ(1− qc + qce
Aµ)−

1
n − n− 1

n
qcAe

n−1
n
Aµ

and ψ′(µ) > 0 if eAµ > 1 − qc + qce
Aµ. This last condition is always met. Thus ψ(µ) > 0

which implies p > pN .

Proof of Proposition 2. Compute the derivatives of x∗ in equation (7) with respect to the
various parameters and under the assumption that 0 ≤ x∗ ≤ n. Recall, also, that 0 ≤ p ≤ µ.

∂x∗

∂qc
=

n

Aµ

(
1

1− qc
+

1

qc

)
> 0

∂x∗

∂µ
=

1

µ
(n− x∗) +

1

µ

e−A
µ−p
n

1− e−Aµ−p
n

> 0

∂ x
∗

n

∂n
= − 1

Aµ

[
− Ap

n2

e
Ap
n

e
Ap
n − 1

− A(p− µ)

n2

e
A(p−µ)

n

1− e
A(p−µ)

n

]
∂ x

∗

n

∂n
=

e
Ap
n

µn2(e
Ap
n − 1)(1− e

A(p−µ)
n )

(p− µe
A(p−µ)

n − (p− µ)e
−Aµ
n )

The first part of the right hand side is positive. Introduce f(n) = p−µe
A(p−µ)

n −(p−µ)e
−Aµ
n .

Since f ′(n) = Aµ(µ−p)
n2 [e

−Aµ
n − e

A(p−µ)
n ] < 0 and limn→∞f(n) = 0, this implies that f(n) > 0.

Therefore, ∂
x∗
n

∂n
> 0 and hence ∂x∗

∂n
> 0.

Finally, we consider the impact of parameter A. Rewrite x∗ as follows:

x∗ = n− 1 +
p

µ
− n

Aµ

(
ln

1− qc
qc

+ ln
e
Ap
n − 1

e
A(µ−p)

n − 1

)

For convenience, we denote β = 1−qc
qc
,∆ = lnβ + ln e

Ap
n −1

e
A(µ−p)

n −1
, f(x) = x

1−e−x , and note that f

is increasing over ]0,+∞[. Consider the following three conditions:
First, x∗ ≥ 0 if and only if

∆ ≤ Ap

n
+
Aµ(n− 1)

n
(10)

Second, x∗ ≤ n− 1 if and only if

∆ ≥ Ap

n
(11)
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Third,
∂x∗

∂A
=

n

A2µ
∆− n

Aµ

(
p

n

e
Ap
n

e
Ap
n − 1

− µ− p
n

e
A(µ−p)

n

e
A(µ−p)

n − 1

)
which yields ∂x∗

∂A
< 0 if and only if

∆ < f
(Ap
n

)
− f

(A(µ− p)
n

)
(12)

We next show that (10), (11) and (12) cannot hold simultaneously. For this, we partition
the set of parameter possible values in three regions, and we prove our statement for each of
the three cases.

Case 1: µ− p > p. Then ∆ < 0 by (12), but ∆ > 0 by (11), which is impossible.
Case 2: µ − p < p and qc ≤ 1

2
. Here we have β ≥ 1. Equation (12) can also be written,

using the exponential function:

β
e
Ap
n − 1

e
A(µ−p)

n − 1
< e

f

(
Ap
n

)
e
−f
(
A(µ−p)

n

)

That is, denoting h(x) = (ex − 1)e−f(x),

βh
(Ap
n

)
< h

(A(µ− p)
n

)
(13)

We observe that function h is increasing: indeed, h > 0 and (ln(h))′ = xe−x

(1−e−x)2
> 0. Hence,

(13) does not hold since β ≥ 1 and A(µ−p)
n

< Ap
n
, and thus ∂x∗

∂A
> 0.

Case 3: µ− p < p et qc > 1
2
. We now have 0 < β < 1 and A(µ−p)

n
< Ap

n
. It is sufficient to

show that

h
(
A(µ−p)

n

)
h
(
Ap
n

) < e
Ap
n

(
e
A(µ−p)

n − 1

e
Ap
n − 1

)
(14)

By equation (14), equations (11) and (12) cannot hold simultaneously. Indeed, equation (11)

is equivalent to β ≥ e
Ap
n

(
e
A(µ−p)

n −1

e
Ap
n −1

)
, while equation (12) is equivalent to β <

h

(
A(µ−p)

n

)
h

(
Ap
n

) .

Now, given function h, (14) is equivalent to:

e−f
(
A(µ−p)

n

)
< e−f

(
Ap
n

)
e
Ap
n

Taking the logs, this is equivalent to

f
(Ap
n

)
− Ap

n
< f

(A(µ− p)
n

)
(15)
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Note that f(x)− x = xe−x

1−e−x . Let 0 < y = x− δ < x.
Equation (15) holds if

f(x)− x < f(y)

which is equivalent to
x

ex − 1
<

(x− δ)e(x−δ)

e(x−δ) − 1

I.e.,
ex − eδ

x− δ
<
ex − 1

x
ex

Let ϕ(δ) = ex−eδ
x−δ . We have ϕ(0) = ex−1

x
, ϕ increasing and limδ→x ϕ(δ) = ex. At the limit,

which is sufficient, the equation requires ex − x − 1 > 0, which holds. Thus equation (15) -
and hence equation (14) - holds. In this case, we also have ∂x∗

∂A
> 0.

Proof of Proposition 3. Show, first, that Pareto optima are the maxima of the function w(.).
If x is not a Pareto optimum, there exists x′ and i such that Evi(x′) > Evi(x). This implies
that Viw(x′) > Viw(x) and hence x is not a maximum of w(.). Reciprocally, suppose that
x is not a maximum of w(.) and let x′ be such that w(x′) > w(x). Then, for every i,
Viw(x′) > Viw(x) and hence Evi(x′) > Evi(x) and x is not a Pareto optimum.

Next, show that the Nash equilibria are also the maxima of the function w(.). Consider
a Nash equilibrium where 0 < x < n. Agent i who plays xi = 1 plays a best-response if
Evi(1,x−i) ≥ Evi(0,x−i). By Lemma 1, this is equivalent to w(x) ≥ w(x − 1). Similarly,
agent i who plays 0 plays a best response if Evi(0,x−i) ≥ Evi(1,x−i), which is equivalent
to w(x) ≥ w(x + 1). Therefore x is a maximum of w(.) over {x − 1, x, x + 1}, i.e., a local
maximum. Finally, note that w(.) is the sum of two strictly concave functions and hence is
strictly concave. Its local maxima therefore coincide with its global maxima.

Proof of Lemma 3. Recall, under Assumption 1, u′(yi) = α̂iju
′(yi0) for every i 6= i0. This is

equivalent to yi−γ = α̂ijyi0
−γ and hence yi = α̂

− 1
γ

ij yi0 . Conservation of incomes then implies

that
∑

j yj =
∑

j α̂
− 1
γ

ji0
yi0 = nȳ1, which yields the result.

Proof of Lemma 4. The income after transfers of agent i is thus equal to

yi =
α̂
− 1
γ

ii0∑
j α̂
− 1
γ

ji0

(y0 − λ− px− (n− x)µ)

If γ 6= 1, taking expectations over realizations of shocks yields

Eui(x) = (
∑
i0

qi0(
α̂
− 1
γ

ii0∑
j α̂
− 1
γ

ji0

)1−γ)[(1− qc)u(y0 − λ− px) + qcu(y0 − λ− px− (n− x)µ)]
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Setting Ui =
∑

i0
qi0(

α̂
− 1
γ

ii0∑
j α̂

− 1
γ

ji0

)1−γ and Vi = Ui +
∑

j αijUj yields the result.

If γ = 1, we have:

Eui(x) =
∑
i0

qi0ln(
α̂−1
ii0∑
j α̂
−1
ji0

) + (1− qc)ln(y0 − λ− px) + qcln(y0 − λ− px− (n− x)µ).

Setting Ui =
∑

i0
qi0ln(

α̂−1
ii0∑
j α̂

−1
ji0

), Vi = Ui +
∑

j αijUj and V
′
i = 1 +

∑
j αij yields the result.

Proof of Theorem 3. In what follows, let w(x) = (1− qc)u(y0 − λ− px) + qcu(y0 − λ− px−
(n− x)µ)]. Compute the derivatives of w with respect to x.

w′(x) = (1− qc)(−p)(y0 − λ− px)−γ + qc(µ− p)(y0 − λ− px− (n− x)µ)−γ

w′′(x) = −γ[(1− qc)p2(y0 − λ− px)−γ−1 + qc(µ− p)2(y0 − λ− px− (n− x)µ)−γ−1]

Therefore, w′′(x) < 0 and w is strictly concave.
Next, a profile x is a Nash equilibrium if and only if xi = 1 ⇒ Evi(1,x−i) ≥ Evi(0,x−i)

and xi = 0⇒ Evi(0,x−i) ≥ Evi(1,x−i). By Lemma 3, this is equivalent to xi = 1⇒ w(x) ≥
w(x − 1) and xi = 0 ⇒ w(x) ≥ w(x + 1). Therefore, a Nash equilibrium is interior if and
only if the overall number of adopters x is a local maximum of the function w(.) over the set
{x− 1, x, x+ 1}.

By strict concavity of w(.), the function X → w(X + 1) − w(X) is strictly decreasing.
This implies that an agent is less likely to adopt when the number of other adopters increases.
There are 3 mutually exclusive cases. (1) If w(1) − w(0) < 0, then x = 0 (no adoption) is
the only Nash equilibrium. (2) If w(n)−w(n− 1) > 0, then x = 1 (full adoption) is the only
Nash equilibrium. (3) There exists a unique x∗ ∈ [0, n− 1] such that w(x∗ + 1)−w(x∗) = 0.
Then a profile is a Nash equilibrium if and only if x∗ ≤ x ≤ x∗ + 1. Generically, x∗ is not an
integer and then x is the smallest integer larger than or equal to x∗. By contrast if x∗ is an
integer, the number of adopters in equilibrium can be equal to x∗ or x∗ + 1.

Thank to Lemma 3 and to the strict concavity of w(.), the proof of Proposition 3 directly
extends to the CRRA case: Nash equilibria and Pareto optima coincide, and are such that
the overall number of adopters is a maximum of the function w(.) over {0, 1, ..., n}.

Wealth levels underlying Figure 2. Wealth levels in the low variance scenario (Middle Panel)
are equal to y1 = 37; y2 = y1 +2.4+1/3; y3 = y1 +3.2+1/3; y4 = y1 +3.9+1/3; y5 = y1 +4.5+
1/3; y6 = y1+5+1/3; y7 = y1+5.4+1/3; y8 = y1+5.7+1/3; y9 = y1+5.9+1/3; y10 = y1+6+1/3.

Wealth levels in the high variance scenario (Right Panel) are equal to y1 = ... = y4 =
37; y5 = ... = y10 = 44.5.
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Proof of Theorem 4. A profile x is a Nash equilibrium iff xi = 1⇒ Vi(w(x)−w(x− 1)) ≥ C
and xi = 0⇒ Vi(w(x+ 1)− w(x)) ≤ C.

Suppose first that V1(w(1) − w(0)) < C. Then, w(1) − w(0) < C
V1
≤ C

Vi
for any i. If

x > 0, then w(x)−w(x− 1) ≥ Vi
C

for some i. However, w(x)−w(x− 1) ≤ w(1)−w(0) < C
Vi

a contradiction. Therefore, the profile where no one adopts is the only Nash equilibrium.
Similarly, if Vn(w(n) − w(n − 1)) > C, the profile where everyone adopts is the only Nash
equilibrium.

Assume, then, that V1(w(1)−w(0) ≥ C and Vn(w(n)−w(n−1)) ≤ C. Let k∗ = max{k ∈
N : Vk(w(k) − w(k − 1)) ≥ C} and k̄ = max{k ∈ N : w(k) − w(k − 1) ≥ 0}. The function
k → Vk(w(k)−w(k−1)) is decreasing over {0, 1, ..., k̄} since it is the product of one function
which is positive and weakly decreasing and another which is positive and strictly decreasing.
Then, it crosses zero precisely between k̄ and k̄ + 1, and stays negative above k̄. Moreover,
Vk(w(k)− w(k − 1)) ≥ C ⇒ w(k)− w(k − 1) ≥ 0. This implies that k∗ ≤ k̄ and, moreover,
k ≤ k∗ ⇒ Vk(w(k)− w(k − 1)) ≥ C while k ≥ k∗ + 1⇒ Vk(w(k)− w(k − 1)) < C.

Suppose that Vk∗(w(k∗) − w(k∗ − 1)) > C, which is generically true. Let us show that
the equilibrium number of adopters x =

∑
i xi is equal to k∗. Suppose that x < k∗. Then,

there exists i ≤ k∗ such that xi = 0. This implies that Vi(w(x + 1) − w(x)) ≤ C. Since
x + 1 ≤ k∗, w(x + 1) − w(x) ≥ w(k∗) − w(k∗ − 1) > 0 and hence Vi(w(x + 1) − w(x)) ≥
Vi(w(k∗)−w(k∗ − 1)) ≥ Vk∗(w(k∗)−w(k∗ − 1)) > C, a contradiction. Suppose that x > k∗.
Then there exists i ≥ k∗ + 1 such that Vi(w(x) − w(x − 1)) ≥ C. Since i ≥ k∗ + 1,
Vi ≥ Vk∗+1 and since x ≥ k∗ + 1, w(k∗ + 1) − w(k∗) ≥ w(x) − w(x1) ≥ 0. Therefore,
Vk∗+1(w(k∗ + 1) − w(k∗)) ≥ Vi(w(x) − w(x − 1) ≥ C which contradicts the definition of k∗.
Thus, all Nash equilibria must have size k∗.

When is a profile with k∗ adopters a Nash equilibrium? Define k1 such that k1 + 1 =
min{k ≤ k∗ + 1 : Vk(w(k∗ + 1) − w(k∗)) ≤ C}. Note that, conditional of the profile having
k∗ adopters, if i ≤ k1, then i cannot play xi = 0 while any i > k1 can potentially play xi = 0.
Define k2 such that k2 = max{k ≥ k∗ : Vk(w(k∗) − w(k∗ − 1)) ≥ C}. Then, any i ≤ k2 can
potentially play xi = 1 while if i > k2, then i cannot play xi = 1.
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