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Testing fractional doses of COVID-19 vaccines
 

Abstract

Due to the enormous economic, health, and social costs of the COVID-19 pandemic, there are
high expected social returns to investing in parallel in multiple approaches to accelerating
vaccination. We argue there are high expected social returns to investigating the scope for
lowering the dosage of some COVID-19 vaccines. While existing evidence is not dispositive,
available clinical data on the immunogenicity of lower doses combined with evidence of a high
correlation between neutralizing antibody response and vaccine efficacy suggests that half- or
even quarter-doses of some vaccines could generate high levels of protection, particularly against
severe disease and death, while potentially expanding supply by 450 million to 1.55 billion doses
per month, based on supply projections for 2021. An epidemiological model suggests that even if
fractional doses are less effective than standard doses, vaccinating more people faster could
substantially reduce total infections and deaths. The costs of further testing alternative doses are
much lower than the expected public health and economic benefits. However, commercial
incentives to generate evidence on fractional dosing are weak, suggesting that testing may not
occur without public investment. Governments could support either experimental or observational
evaluations of fractional dosing, for either primary or booster shots. Discussions with researchers
and government officials in multiple countries where vaccines are scarce suggest strong interest in
these approaches.
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Abstract

Due to the enormous economic, health, and social costs of the COVID-19 pandemic, there are high
expected social returns to investing in parallel in multiple approaches to accelerating vaccination. We
argue there are high expected social returns to investigating the scope for lowering the dosage of some
COVID-19 vaccines. While existing evidence is not dispositive, available clinical data on the
immunogenicity of lower doses combined with evidence of a high correlation between neutralizing
antibody response and vaccine efficacy suggests that half- or even quarter-doses of some vaccines could
generate high levels of protection, particularly against severe disease and death, while potentially
expanding supply by 450 million to 1.55 billion doses per month, based on supply projections for 2021. An
epidemiological model suggests that even if fractional doses are less effective than standard doses,
vaccinating more people faster could substantially reduce total infections and deaths. The costs of further
testing alternative doses are much lower than the expected public health and economic benefits.
However, commercial incentives to generate evidence on fractional dosing are weak, suggesting that
testing may not occur without public investment. Governments could support either experimental or
observational evaluations of fractional dosing, for either primary or booster shots. Discussions with
researchers and government officials in multiple countries where vaccines are scarce suggest strong
interest in these approaches.

Main Text

Introduction

Early in the COVID-19 pandemic, the IMF estimated that it would cost the world $12 trillion in short-run
GDP losses alone over a two-year period (1). Subsequent estimates including health costs and long-run
impacts are much larger (2). Based on these estimates, accelerating mass vaccination by even a month
would be worth at least $500 billion (3).

The high value of accelerating vaccination suggests that decisions early in the pandemic to invest in
multiple vaccine candidates and in installing manufacturing capacity for vaccines in parallel with research
and development, rather than in sequence, had high expected social value, despite risks that individual
investments might fail or prove redundant. For example, a rough estimate suggests that the United
States’ Operation Warp Speed (OWS) would have paid for itself if it advanced vaccination in the U.S. by
less than a day.1 Because the social value of accelerating vaccine availability so greatly exceeds the
commercial value to vaccine manufacturers, vaccine capacity investments on the scale of OWS would
likely not have occurred without public financing.

While OWS generated sufficient vaccines for the U.S., many countries still do not expect to vaccinate
large shares of their population until 2023 (5). Similar to at the beginning of the pandemic, pursuing
multiple options in parallel that have even a modest chance of accelerating mass vaccination would both
have high expected return on investment and would promote equity. This could include improving vaccine
delivery systems, investing in expanding supply, and exploring options for using existing supply more
efficiently, as insurance against a range of plausible scenarios, including against downside risk from new
variants that require booster shots, or shocks to the supply chain.

Using fractional doses of vaccines is one such option, which has been employed successfully for multiple
diseases, including in 2016-2018 when several countries used 1/5-doses of yellow fever vaccine to
combat epidemics based on advice from the WHO (6). For COVID-19 vaccines, immunogenicity data
coupled with a model-based analysis suggest that half- or even quarter-doses of some vaccines could be
almost as efficacious as currently-used doses of the same vaccines, and more efficacious than other

1 Between March and September of 2020, the COVID-19 pandemic cost the United States an estimated $16 trillion in
long-term losses, approximately $75 billion per day (2). OWS spent $18 billion (4).
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vaccines currently in use. They may also have lower side effects. Even if fractional doses are less
effective than standard doses, our epidemiological analysis suggests that increasing the speed of
vaccination would reduce total infections and deaths under a wide range of conditions. Given the large
potential benefits, investing in generating evidence on the efficacy of fractional doses and validating
processes for delivery at scale has a high expected return. Alternative dosing regimens may be beneficial
for both primary vaccination and boosters.

The emergence of variants of concern (VOCs) has shown that outbreaks can occur even in settings
where the majority of the population has been vaccinated with highly effective vaccines. However, even
the less effective vaccines are still very effective at preventing hospitalizations and deaths, even for
VOCs. Moreover, when vaccination rates are low (as is the case currently in many low- and middle-
income countries), the direct benefits of vaccination far outweigh the indirect epidemiological impacts.
This suggests that where vaccine supply is constrained or VOCs dominate, outbreaks would occur
regardless of dose size, but fractional dosing could protect more of the population from severe disease
and death.

In some countries, vaccination may no longer be constrained by supply, but rather by demand or
distribution capacity. However, in many countries, vaccine availability has been low despite surveys
suggesting high vaccine acceptance (7). There is also ongoing risk of shortages due to potential need for
boosters or seasonal vaccination, the emergence of new variants, and possible manufacturing or supply
chain disruptions. Demand is also likely to increase when cases surge or new variants emerge, as
observed, for example, in the US during the Delta wave (8).

In this paper, we first argue that the tight relationship between neutralizing antibody response and vaccine
efficacy, combined with existing evidence on immune response for lower doses, suggests there is a
realistic possibility that high levels of protection could be generated by much lower doses, potentially
dramatically accelerating vaccination. We then use an epidemiological model to assess the trade-off
between efficacy for those receiving vaccines and overall public health impact, and discuss the potential
risks of switching to fractional doses. We outline possible designs for gathering more evidence and argue
that there is a gap between the social value and commercial incentives for such research, suggesting that
it may not occur without public financing.

Potential efficacy of lower doses

Efficacy of fractional doses of COVID-19 vaccines has not been tested (except for ChAdOx1 nCoV-19,
produced by AstraZeneca, where a low dose-full dose regimen appears to have worked well).2 However,
phase 1-2 clinical trials of various vaccines measured immune response in the form of neutralizing
antibody (NAb) titers for different doses (e.g. for mRNA-1273, produced by Moderna, four doses were
tested). We summarize evidence from trials in Supplementary Material 1 (SM1) and Table S1. More
recently, NAb titers for standard doses were found to be remarkably predictive of efficacy against
symptomatic infection in phase 2-3 clinical trials (9).3 We used that modeled relationship together with
data on NAb titers in fractional doses from dose-ranging studies (Table S2) to derive their predicted
efficacy against symptomatic infection (Figure 1).

Despite the exploratory nature of this approach and the small sample sizes involved, the results strongly
suggest that fractional doses of some vaccines produce immune responses that are similar to those
produced by larger doses and greater than those produced by standard doses of many other,

3 In addition to population-level analyses such as the one we use in our model, emerging individual-level data
(analyzing clinical trial data for mRNA-1273) also suggest strong association between neutralizing antibodies (at
second dose) and risk of disease (10).

2 Throughout the article we say efficacy in relation to either the effect of vaccines measured in clinical trials or if
hypothesized based on a model. We say effectiveness to highlight the cases when the effect has been observed in
real-world studies.
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currently-approved vaccines. For example, at fourteen days after the second dose, 50μg and 25μg doses
of the mRNA-1273 vaccine produced NAb titres not significantly different from the currently used 100μg
doses: the model-predicted efficacy of the first two and the measured efficacy of the standard dose are all
within the 90-95% range for symptomatic disease. For BNT162b2, produced by Pfizer, 10μg and 20μg
doses have model-predicted efficacy of 70-85%, versus roughly 95% for 30μg, the standard dose. Later in
the paper we will discuss evidence generated by more recent trials, as well as ongoing studies of
fractional doses.

Many of the phase 2-3 trials did not measure efficacy against VOCs, against which the levels of protection
from symptomatic disease may be lower. For example, for BNT162b2 and ChAdOx1, real-world data
suggest that effectiveness of the standard dose decreased to 88% and 67%, respectively, against the
Delta variant (11). We summarize effectiveness data in Table S4. These decreases are also predicted by
drops in NAb titres against variants. We summarize NAb data and compare it to effectiveness in SM1.2.

However, all vaccines with available data are highly effective against severe outcomes, even in the
presence of VOCs. For example, in the UK, BNT162b2 and ChAdOx1 were found to be 96% and 92%
effective against hospitalization, respectively (12); data from Chile suggests that even CoronaVac (the
least effective of the vaccines in Figure 1) is 86-88% effective against hospitalization and death (13).
Cell-mediated immunity, rather than neutralizing antibody titres, may be the basis of high levels of durable
protection from severe disease (14, 15, 16, 17). Although no clinical data exists, it is therefore reasonable
to expect that the decrease in protection against severe disease and death from fractional doses is much
smaller than for symptomatic infection.

At this stage of the pandemic, large portions of the unvaccinated population have already been exposed
to COVID-19 and acquired some immunity through infection (e.g., 18, 19). Due to age prioritization and
demographic patterns in low- and middle-income countries, the current global population of unvaccinated
individuals is also younger on average than the world population, and perhaps younger than the
populations in which vaccines were originally tested. Recent evidence suggests that previously infected
individuals may only need one vaccine dose to be highly protected against reinfection (20). Similarly,
because immune responses in younger people are stronger (Table S2), the optimal dose for children and
young adults may be lower than for older adults.

Some clinical data also suggest that fractional doses produce fewer side effects (21). If efficacy is
comparable to that of standard doses, and side effects are lower, fractional doses might even be superior
to current doses in terms of individual benefits.

Simulating public-health benefits of fractional dosing

The traditional research and development process for vaccines is designed to maximize health benefits
for the individual taking the vaccine, trading off efficacy and side effects. However, when there is a
shortage of vaccines, switching to a lower vaccine dose and vaccinating more people can increase overall
public health benefits, even if vaccine efficacy for the individuals taking vaccines is significantly reduced,
since the alternative is to leave more people completely unprotected for longer.

We use an epidemiological model to investigate under what conditions fractional dosing would be optimal
at the population level. We simulate vaccination across a range of epidemic scenarios in a modified
susceptible-exposed-infected-recovered (SEIR) model with a single epidemic peak (to focus on the
immediate impact of vaccination), which accounts for the age-varying effect of vaccination on infections
and deaths. Methods are described in SM2.

To fix ideas, we start by considering a base case of a vaccine with 95% efficacy against infection,
comparable to efficacy against symptomatic disease of the best vaccines measured in phase 3 trials
(SM1). We assume a vaccination rate of 0.25% of the population per day, approximately the recent global
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median (SM2), and that older individuals are vaccinated first. We consider a range of losses of immune
response, which we define through ratios of NAb levels. We then use the model from Figure 1 to calculate
predicted efficacy loss.4 We consider the case in which vaccination rates are constrained by supply, rather
than demand or distribution, and therefore inversely proportional to dose size (as a fraction of the current
dose).

To account for the emergence of VOCs, we also consider a vaccine with 70% efficacy against infection,
comparable to reported effectiveness of ChAdOx1 against symptomatic infection with the Delta variant
(SM1). We hold other assumptions constant.

As discussed, real-world data for COVID-19 suggest that vaccines have higher effectiveness against
severe outcomes than against infection, especially for less effective vaccines and in the presence of
VOCs. To address this, we run a third analysis varying efficacy against infection while holding efficacy
against death fixed at 95%.

The results for cases with 70% and 95% efficacy against infection are given in Table 1. We find that if half
doses are as efficacious as full doses, then switching would reduce deaths by 22-47% for a baseline 95%
efficacious vaccine and 20-35% for a 70% efficacious vaccine, compared to using a standard dose. (The
range of outcomes represent different epidemic scenarios.) Even if a half dose leads to a 5-fold reduction
in NAb titres relative to a 95% efficacious full dose, the lower dose would reduce total mortality. For a
baseline 70% effective vaccine, the threshold is a 2.5-fold reduction. We show reductions in infections
(which are similar in magnitude) and additional scenarios in SM2. Thus, our modeling suggests that even
when new variants dominate and lower-dose efficacy is significantly lower than suggested by Figure 1,
using fractional doses of the more efficacious vaccines would save lives.

The results for the model varying efficacy against infection are presented in SM3. We find that at the
vaccination rates typical in many low- and middle-income countries, even a vaccine with high efficacy
against infection does not prevent large outbreaks, simply because not enough people are vaccinated in
time. Moreover, as the recent experience of the UK shows, it is difficult to stop the spread of Delta VOC
even with high uptake of the most efficacious vaccines (22, 23). However, in these settings, accelerating
vaccination is still beneficial, as it confers direct protection against hospitalization and death to more
people. As shown in Table S4, effectiveness against these outcomes is high for all vaccines where data
are available.

Fractional doses and booster shots

In discussing health benefits we have so far focused on primary vaccination, where more data are
available. Optimizing dose size for booster shots could also have public health benefits. At the individual
level, existing experimental data suggest that a 50ug dose booster of mRNA-1273 (half of the standard
primary series dose) produces a strong immune response, comparable to peak response after the
primary vaccination with a standard dose (24).

From global health and social perspectives, despite a recommendation by the WHO to delay
administering boosters until primary vaccinations have been delivered to more people in low and middle
income countries, it is likely that some high income countries will seek to deliver booster doses to many
people in the coming months, further constraining already limited supply of vaccines to developing
countries (25, 26). Using low doses for boosters would put less strain on the global supply of vaccines. In
the UK, the Joint Committee for Vaccination and Immunisation is reported to be considering
recommending use of fractional doses of currently used vaccines for boosters (27).

4 We use fold-reductions rather than simply reducing efficacy by a set amount, as this allows us to appropriately
account for the shape of the curve in Figure 1. For example, a 2.5-fold reduction in mean neutralization level has a
very small impact on efficacy for a 95% effective vaccine (drop to 87% efficacy) than for a 70% effective vaccine
(drop to 49%).
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Risks of using lower doses

Our modeling does not consider the rate of immunity loss, which has been established for currently used
vaccines (e.g., 28, 29) and will likely be impacted by modifying dose size. Protection from severe
outcomes of COVID-19 may be longer lasting (30). However, even assuming duration of immunity is
proportional to dose, it will likely be optimal to improve vaccine coverage in the short-term by switching to
lower doses and then using future supply as boosters. Moreover, shortages are likely to ameliorate over
time as more production comes online, production techniques are optimized, and more countries will have
made primary vaccination available to those who seek it, decreasing the infection risk.

Another potential risk is that fractional dosing would increase the probability of new variants arising due to
a prolonged period of partial immunity increasing the risk of immune escape. However, many
epidemiologists now believe that accelerating vaccination may instead reduce the probability of immune
escape, since the greatest risk to immune escape likely comes from the unvaccinated (31, SM1.3). The
mutation rate of the Delta variant has also been lower in countries that have vaccinated faster (32).

Vaccination programs that make use of lower doses could also be criticized as inequitable. However, if
there is little efficacy loss and a reduction in side effects, lower doses may actually be superior to
standard doses from the standpoint of individuals who would be vaccinated in either case. Even if not,
vaccinating a greater number of people with a somewhat less efficacious vaccine is still more equitable
than the status quo. Moreover, reduced doses of some vaccines, such as the mRNA vaccines, are likely
more efficacious than the standard of care in many low- and middle-income countries. As suggested by
the analysis depicted in Figure 1, existing evidence suggests that a ½ dose of mRNA-1273 may be more
efficacious than a standard dose of ChAdOx1, and similarly that a ½ dose of ChAdOx1 could be more
efficacious than a standard dose of CoronaVac. Hence, fractional dosing may improve the quality of care
by increasing supply of more effective vaccines. Third, increased supply will cut wait times the most for
those who have the longest to wait to receive vaccinations. (For example, doubling the speed of a
year-long vaccination program cuts the wait time by a week for someone two weeks from the front of the
queue, but by six months for the person at the end of the queue.)

Another risk would be that switching to fractional doses could contribute to vaccine hesitancy. However, if
lower doses of high-efficacy vaccines are safer, reduce side effects relative to existing standard doses,
and are more effective than the low-efficacy vaccines currently used in many countries with short supply,
fractional dosing might even be helpful in combating vaccine hesitancy. Surveys suggest that while
vaccine acceptance in low- and middle-income countries is higher than in many high-income countries,
side effects remain the most common concern among individuals who remain undecided or opposed to
vaccination (9). For the yellow fever outbreak in the DRC and Angola in 2016, the WHO concluded that
the rationale for switching to lower doses was well-understood by the target population: while there were
questions raised, there was no significant resistance or misinformation specific to fractional dosing
observed, and overall uptake was high (98% of the target population) (33).

Testing fractional doses

To date, no regulatory agency or immunization advisory group has recommended fractional dosing for
COVID-19 vaccines. The recent WHO SAGE interim statement on fractional dosing (10 August 2021)
encourages more research (34). However, despite the global shortage of vaccines, high expected value
of testing, and promising clinical trial data being available since autumn of 2020, very few studies of
fractional dosing have been conducted since. One exception is the mRNA-1273 vaccine, where we are
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aware of three results suggesting safety, strong immune response to primary and booster doses, and
durability of protection in lower doses.5

As of September 2021, a few studies of fractional doses are ongoing. We are aware of an observational
study of efficacy of primary vaccination with half-doses of ChAdOx1 nCoV-19 in Brazil (37)6 and two
randomized trials of immunogenicity comparing low doses with full doses for BNT162b2 (39) and
mRNA-1273 (35). A randomized evaluation of several low-dose boosters is ongoing in the United
Kingdom (40). None of these studies are sponsored by vaccine makers.

Large sample size trials of efficacy against disease were needed for the initial regulatory approvals for
COVID-19 vaccines. However, given recent advances in establishing correlates of protection against
infection (11, 41), data on immunogenicity of fractional doses may provide sufficient evidence for some
policymakers (in particular, national immunization advisory groups) to recommend their use in national
vaccination campaigns, especially for younger adults or other low-risk groups. Considering small sample
sizes of existing dosing trials and lack of data on protection from VOCs, decision makers are likely to
request additional data.

Additional immunogenicity trials can be conducted for many doses in a matter of months, at low cost, and
even when risk of COVID-19 infection is low (as is the case for the three ongoing immunogenicity trials
we cited).7 Given this time frame, immunogenicity trials may be optimal for policymakers looking to reduce
global shortages or to improve the safety profile of vaccines in the medium term. In the longer term,
randomized trials of efficacy may also offer useful data to the policymakers, but they are more
time-consuming to run and require much larger sample sizes, which, given recent difficulties in procuring
vaccines for clinical research (42) may also contribute to delays.

Alternatively, where short-term supply is limited and infection risk is high, some policy-makers may decide
to roll out the vaccine dose which offers the highest expected health benefit based on the latest available
data and use data from the rollout to assess effectiveness and safety (43, 44). The UK did something
similar when they extended the gap between doses of BNT162b2 and ChAdOx1 nCoV-19 to twelve
weeks in December 2020 based on limited data (45).8 The roll-out can be limited to certain areas or to
lower-risk age groups. Observational data can then be collected in prospective cohort or case-control
studies, used to estimate effectiveness and guide further decisions. In parallel, immunogenicity data can
also be collected for a smaller subset of the population. If evidence suggests that changing doses is not
effective or if supply increases rapidly, the approach can be adjusted or even reversed, just as the UK
reduced the interval between doses for some adults to maximize protection against the Delta variant. For
fractional dosing, reversibility would mean increasing the second dose size or providing booster shots.

8 Real-world evidence, including observational studies of effectiveness which we cited earlier and immunogenicity
data, has since emerged supporting the UK decision; this led several countries to delay second doses. Relatedly,
existing vaccines were also used at standard dose against the Delta variant, before there was evidence of
effectiveness of standard doses against this variant. As viral evolution outstrips the pace of vaccine trials, more such
decisions will have to be made under uncertainty.

7 Both primary vaccination and boosters can be studied. The primary endpoint can be measured within weeks of
completing primary vaccination or receiving booster and immunological assays can be conducted in another few
weeks. Since small sample size (on the order of 100 subjects per study arm) is sufficient to precisely measure
immune responses, it is easy to study subpopulations of interest, e.g. further stratifying the subjects by age,
immunocompromised status or, in the case of booster studies, vaccination history. Meta-analysis (including
hierarchical mechanistic modeling) can be used to synthesise data across multiple studies, including combining new
data with previous phase 1-2 studies.

6 Preliminary results show that 88% of the subjects with no previous exposure to the virus that received half a dose
developed neutralizing antibodies (38). Additionally, NAb titres among subjects that received half and full doses were
similar (findings still need to be confirmed by ongoing tests).

5 The studies find that intradermal administration of 10ug dose induces antibody responses comparable to that of
convalescent individuals (35); a 50ug booster shot induces antibody levels similar or higher than those observed after
primary vaccination with the standard dose (24); and primary vaccination with two 25ug doses elicits antibody and
cellular protection comparable to that of convalescent individuals, with the cellular protection persisting even after 6
months (36).
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Ultimately, the decisions will depend on factors that are unique to each country. Between June and
August 2021, we reached out to clinical researchers, decision makers in individual countries, and vaccine
manufacturers to better understand prospects for testing fractional doses and changing of current
recommendations. There was substantial interest from policymakers and researchers in lower and
middle-income countries. Different groups expressed interest in pursuing different approaches, depending
on their countries’ current vaccination rates and expected future supply. In some cases, where the
majority of a country’s population might have received a low-efficacy vaccine, policymakers wanted to
explore fractional dosing for booster shots. In other cases, where vaccine supplies are very low, they were
interested in exploring fractional dosing for primary vaccination. There was also variation in preferred
approach to testing, with some policy makers considering proceeding with limited roll-outs and collecting
observational data while others looked to first sponsor immunogenicity trials, but all agreed that more data
should be collected. We are aware of several more immunogenicity trials that are being planned in
middle-income countries, but no efficacy studies.

In addition to testing efficacy and safety of alternative doses, logistical questions regarding their
administration will also have to be answered through validation studies. Some vaccines could potentially
be used off-label in their current formulations. In that case studies must test how many times a vial can be
punctured and whether smaller volumes of vaccine can be administered consistently and with which
syringes. In all of the studies so far, the same vials and dilution procedure were used as in general
practice, and lower doses were obtained by drawing less volume into syringes. Other vaccines may need
changes to fill and finish processes. Any modifications to supply chains and delivery systems can proceed
in parallel to testing.

Gaps between commercial incentives and social value

In previous research, we estimated the social value of an additional course of vaccine to be $500-1000
(depending on when it was available), which dwarfs the $6-$40 price that manufacturers receive in
current contracts (3). We have argued in previous work that this gap leads to significant underinvestment
by private companies in manufacturing capacity, compared to the social optimum (3). It may also lead to
private underinvestment in research on other ways to accelerate vaccination. This suggests that such
research may not be carried out without public funding (46).

Our limited outreach to manufacturers suggests low enthusiasm for testing lower doses. Although some
vaccine manufacturers are studying fractional doses of vaccines for children and as boosters (21, 47, 48),
private companies may even have disincentives to conduct research on fractional dosing for primary
vaccination. First, if countries decided to use lower doses off-label and they paid the same amount per
vial, total demand would decrease. Switching doses while maintaining current prices could create
communications or public relations risks, so a switch to lower doses would likely result in lost revenue.
Second, manufacturing vials with specific doses involves substantial sunk costs. Seeking regulatory
approval for a new dose is also a costly and slow process. Manufacturers may prefer to focus on products
that can be sold at much higher prices in high-income countries, such as booster shots that have been
modified to address variants, or combination COVID-19 and flu vaccines. Manufacturers may see testing
of lower doses of existing products as interfering with this strategy. Finally, firms face a reputational risk if
something goes wrong with a lower dose.

Government investment in accelerating the development of first-generation COVID-19 vaccines created
benefits in the trillions of dollars (3). Similar investments in testing fractional dosing could also have
extremely high payoffs: for a rough sense of the magnitude of the effect, a simple calculation based on
manufacturer’s production estimates suggests that implementing fractional dosing globally for the most
promising vaccines could potentially increase vaccine supply by 450 million to 1.55 billion doses per
month in the last quarter of 2021 (Supplementary Materials, SM4).

Even at the government level, no single country internalizes the total global benefit of testing, because the
information generated by testing is a global public good. For example, following the UK’s successful
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experimentation with a longer delay between first and second doses, many other countries adopted the
same dosing schedule (49). Likewise, evidence on fractional dosing could inform decision-making in
multiple countries, suggesting a role for global institutions to invest in and coordinate studies.

Conclusion

There are risks to using fractional doses, and logistical questions that remain to be answered. However,
the reversibility and large potential benefits of fractional doses suggest that testing - in the short term
most likely achieved either via immunogenicity studies or rigorously evaluated rollouts of fractional dosing
regimens - has tremendous informational value. Clinical data and epidemiological modeling suggest that
switching to fractional doses of some COVID-19 vaccines could potentially save lives by accelerating
vaccination in countries still facing supply constraints. Fractional doses may be more efficacious than the
current standard of care in many countries and may also have weaker side effects.

Given the substantial risks of status quo policies, as recent outbreaks in Southeast Asia and elsewhere
have illustrated, the expected value of testing fractional doses is high even with only a modest chance
that they will be effective. Furthermore, the risk of changing doses is lower when the unvaccinated
population is young or when a higher share of the population has already acquired immunity through
infection, as is increasingly the case around the world. If lower doses are found to be effective, they have
the potential to save lives. If not, the policy can be reversed. The social value of such testing is
significantly greater than the private value, suggesting a role for public funding.
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Figures and Tables

Figure 1. Efficacy associated with mean neutralization levels for fractional doses. The curve follows
the model derived by Khoury et al. (10) linking NAb levels (horizontal axis) to protection from symptomatic
infection (vertical axis) for standard doses of eight vaccines and in convalescents, with the shaded area
corresponding to the 95% confidence interval of the model. Lighter data points represent the mean
(normalized) immune response and clinical efficacy against symptomatic infection of specific vaccines
(referred to by colors) at standard doses, collected by Khoury et al. (10); response in convalescents is
also plotted. NAb levels for vaccines are normalized to those of convalescents using clinical trial data for
each vaccine. We calculate the ratios of mean NAb responses for fractional versus standard doses using
data from clinical trials that tested different doses. We then plot the fractional doses on the
immunogenicity-efficacy curve as darker shapes. Doses for the elderly are represented by diamonds
while doses for non-elderly adults (or all adults, where data is not available by age) are represented by
circles. For consistency, if multiple age groups were compared, we use the immune response to the
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standard dose in younger adults to normalise mean NAb levels. We note small sample sizes, typical of
early stage trials, and do not include measures of uncertainty.
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Switching from 95% effective full dose

Dose

NAb ratio (efficacy) 1 1/2 1/3 1/4

1.0 (95%) 0 22 to 47 32 to 69 37 to 80

0.8 (94%) -2 to -1 21 to 45 31 to 67 37 to 79

0.4 (87%) -12 to -4 18 to 34 28 to 59 34 to 73

0.2 (76%) -29 to -10 13 to 22 23 to 44 29 to 60

Switching from 70% effective full dose

1.0 (70%) 0 20 to 35 30 to 52 35 to 64

0.8 (65%) -6 to -3 18 to 31 27 to 45 33 to 57

0.4 (49%) -27 to -13 -1 to 15 17 to 32 24 to 40

0.2 (34%) -52 to -24 -26 to -5 -12 to 12 -3 to 21

Table 1. Deaths averted by switching to hypothetical fractional dosing regimens. Values are
. Ranges correspond to different1 − (# 𝑑𝑒𝑎𝑡ℎ𝑠 𝑤𝑖𝑡ℎ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑜𝑠𝑒/# 𝑑𝑒𝑎𝑡ℎ𝑠 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑜𝑠𝑒)

epidemic scenarios (see SM2) from R=0.99 to R=2. Positive values (white background) favour switching
to the lower dose. Vaccination rate is proportional to reciprocal of dose.

16



Supplementary Information for Testing Fractional Doses of
COVID-19 Vaccines

Witold Więcek, Amrita Ahuja, Esha Chaudhuri, Michael Kremer, Alexandre Simoes Gomes,

Christopher M. Snyder, Alex Tabarrok, and Brandon Joel Tan

1. Summary of Available Evidence

1.1. Clinical Trial Data

Table S1 lists clinical trials for vaccines discussed in the paper.

In early stage clinical trials, lower dosages of COVID-19 vaccines were often found to stimulate

a strong NAb response, at least in non-elderly patients. Evidence on the immunogenicity of a range

of dose sizes of each vaccine is summarized in Table S2. Note that in some later trials, such as

those for JNJ-78436735 (Johnson & Johnson) and NVX-CoV2373 (Novavax), Phase 3 clinical

trials proceeded with the smaller of two dose options tested in early trials after those trials found

no statistically significant difference in immune response between the doses.

As discussed in the paper, Khoury et al. (10) find a “remarkably predictive” logistic rela-

tionship between neutralizing antibody (NAb) levels and vaccine efficacy against symptomatic

infection, with Spearman ρ of 0.905 (10). Authors base their analysis on publicly available data

from phase 1-2 clinical trials for NAb data and from phase 3 for vaccine efficacy for subsequently

approved vaccines. We assume the relationship between immune response and efficacy holds for

all doses tested in phase 1-2 trials and plot additional points based on immune response for all

doses of currently used vaccines (Figure 1 in the main text). We use immunogenicity data from

phase 1-2 trials that tested different doses (Table S2). Where available, we use the same studies

referenced by Khoury et al. (10). The exceptions were: the 25µg dose of mRNA-1273 (Moderna)

(34); BBV152 (the vaccine developed and manufactured by Bharat Biotech, sold under brand name

Covaxin) (35); ChAdOx1 nCoV-19 (AstraZeneca-Oxford) (14).

We use the data from those trials to calculate the ratio of mean NAb levels for alternative

versus standard doses in each study. In some of the trials multiple age groups were tested, so

for consistency we always use in the denominator the NAb levels for standard doses among non-

elderly adults (under 55, 59 or 65 years old depending on the study). We then multiply the ratio

of alternative versus standard doses by the ratio of standard doses versus convalescents (reported
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by Khoury et al. (10)) for each vaccine to make our estimates of efficacy comparable to those

calculated by the authors of the original study.

Our results show that for some vaccines, immune responses associated with high efficacy can

be obtained even with much smaller doses. For mRNA-1273 (Moderna), for example, doses 1/2

and 1/4 of the standard both have immune response levels associated with 90-95% efficacy, com-

pared to 94.1% initially reported in phase 3 trials (36) for the standard dose. For BNT162b2

(Pfizer) there is no significant decrease in NAb level for a 2/3 dose in non-elderly populations (al-

beit with a very small sample size), while NAb levels are associated with efficacy between roughly

70% and 85% for other dose-age combinations, compared to 95% initially reported in phase 3 tri-

als (37) for the standard dose. For other vaccines, we also sometimes observe unexpected trends,

where lower doses lead to NAb levels associated with higher efficacy (e.g., NVX-CoV2373 (the

vaccine developed by Novavax and not yet approved for distribution) and ChAdOx1 nCoV-19

(AstraZeneca-Oxford). While these results are not necessarily unrealistic, they may be a conse-

quence of limitations of the modeling approach or of uncertainty inherent in early-stage clinical

trials (especially the small sample sizes), or both.

1.2. Viral Variants

Recent studies have found a significant decrease in immune response from vaccines for newer

variants such as the Delta variant of concern, first detected in India in December 2020. A summary

of effectiveness studies is presented in Table S4. Here, we briefly summarise existing evidence on

effectiveness of vaccines against variants.

The purpose of this is two-fold: first, to provide a basic validation of the approach of deriv-

ing effect based on reductions in NAb levels we described above; second, to motivate choice of

parameters in the simulations.

Wall et al. (4, 38) use a live-virus SARS-CoV-2 neutralisation assay to determine NAb titres

for different variants in 250 participants from the Legacy study. They report a 5.8-fold reduction

in NAb levels after two doses of BNT162b2 (Pfizer) when comparing the wild type to the Delta

variant and 2.6-fold decrease when comparing Alpha to wild type. This implies a 2.2-fold reduction

between Alpha and Delta (5.8/2.6=2.2).

Other studies report the variation in vaccine effectiveness for different variants. Bernal et
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al. (11) report estimates of effectiveness against symptomatic infection using observational

data on vaccinated individuals in the UK and conclude that effectiveness against the Alpha

variant for BNT162b2 was 94%, dropping to 88% for the Delta type, for ChAdOx1 nCoV-19

(AstraZeneca/Oxford) the drop is from 75% to 67%. Sheikh et al. (39) analyse data from Scotland

and report a decrease in effectiveness against symptomatic infection from 92% with the Alpha

variant to 83% with the Delta variant for BNT162b2, and from 81% to 61% for ChAdOx1

nCoV-19.

Combining both types of data provides some measure of external validation of Khoury et al.’s

model from Figure 1. For example, according to the model, a decrease in efficacy from 92% to

83% (39) is associated with a 2.2-fold drop in NAb levels; a decrease from 94% to 88% (11)

is associated with a 2.0-fold drop. We can see that these values are comparable to the 2.2-fold

drop reported in (4). Moreover, focusing on the Delta variant alone, Wall et al. report a 2.5-

fold drop in NAb levels from ChAdOx1 nCoV-19 when compared to BNT162b2 (38). Sheikh

et al. report a 83% effectiveness for BNT162b2 against Delta while ChAdOx1 nCoV-19 is 61%

effective. In Khoury et al.’s model, this is associated with an 3.1-fold drop in NAb levels, once

again comparable to the decrease reported in observational studies.

1.3. Immune Escape Risk

One serious concern about modified vaccination approaches is that they might lead to weak im-

mune responses and immune escape through mutation (40). In considering such risks it is impor-

tant to also consider the risks of the status quo. Without a modified vaccination approach there

is a higher probability of more infections. A non-vaccinated person who becomes infected goes

through a period of “partial immunity” when there is also a higher risk of immune escape. Indeed,

variants of the SARS-CoV-2 virus are already circulating that are more transmissible and might

be less vulnerable to vaccines but these arose before widespread vaccination (41). Additionally,

we should also take into account the fact that there is some indication that alternative doses of

some vaccines can lead to immune responses comparable to that of currently approved vaccine-

dosage combinations, as presented above, and that milder and less symptomatic infections lead to

less transmission (42). Thus, it isn’t clear whether the balance of probabilities on immune escape

favors or disfavors the modified approach.
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2. Epidemiological Simulations

2.1. Epidemiological Model

Since the evidence on alternative dose efficacy is not dispositive, we model the potential impact

on the pandemic of a range of efficacy levels using a standard epidemiological model. The model

we use extends the canonical susceptible-exposed-infectious-recovered (SEIR) model, which is

widely used in mathematical epidemiology to characterize the spread of an infectious disease in

a closed population (43, 44). The SEIR model assumes individuals flow between disease and

vaccination states over time, with sizes of population in each state changing according to a set of

differential equations. We extend the canonical SEIR model to allow for death and vaccination

(which is ineffective for some individuals), yielding the following equations:

Ṡi(t) =−λi(t)Si(t)− vi(t)δiS̃i(t) (1)

Ėi(t) = λi(t)[Si(t)+Ni(t)]− γ
′Ei(t) (2)

İi(t) = γ
′Ei(t)− γ

′′
i Ii(t) (3)

Ḋi(t) = piγ
′′Ii(t) (4)

Ṙi(t) = (1− pi)γ
′′Ii(t)− vi(t)δiR̃i(t) (5)

Ṗi(t) = vi(t)δi
[
eS̃i(t)+ R̃i(t)

]
(6)

Ṅi(t) = vi(t)δi(1− e)S̃i(t)−λi(t)Ni(t). (7)

Dots denote derivatives with respect to time. Uppercase letters denote population compart-

ments (i.e., the fraction of the population in a given state): S for susceptible, E for exposed (in-

dividuals carrying the virus, but who are not yet contagious), I for infectious, R for recovered,

D for dead, P for protected by vaccine, and N for vaccinated but not protected. The population is

divided into G age cohorts, indexed by i = 1, . . . ,G, with respective sizes ni. Subscripting compart-

ments by i allows for different epidemic evolution across age cohorts. Tildes denote the size of the

compartment in proportion to both compartments receiving vaccines (susceptible and recovered)

i.e.,

S̃i(t) =
Si(t)

Si(t)+Ri(t)
(8)
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R̃i(t) =
Ri(t)

Si(t)+Ri(t)
. (9)

Figure S1 depicts the population flows between the compartments described in equations (1)–

(7). For simplicity, we consider the case of either a single dose vaccine or a two-dose vaccine where

efficacy does not change between doses. Lowercase letters denote model parameters governing the

evolution of compartments. All parameters except e are age-specific, as denoted by subscript i. γ ′

and γ ′′ are, respectively, the hazard rates of moving from exposed to infected and from infected

to recovered or dead. These are estimated as the reciprocals of the durations of the virus’s incu-

bation period and of the infectious period, respectively. The rate of new infections equals λi(t),

described in further detail below. Parameter pi is the mortality risk. Vaccine efficacy, denoted e, is

the probability the vaccine protects from infection. The model makes no distinction between the

vaccine’s efficacy (performance measured in clinical trials) and effectiveness (performance in prac-

tice in the population); e is used to denote both interchangeably. We assume recovered individuals

(compartment R) are perfectly protected by vaccination and that exposed or infectious individuals

(compartments E and I) are not vaccinated.

To account for vaccine prioritization, we introduce an indicator variable vi(t), switching from

0 to 1 on the day age cohort i becomes eligible for vaccination and to 0 again at the point where

all willing members of the cohort have been vaccinated. Reflecting common practice, we assume

older cohorts must finish vaccinations before the next cohort becomes eligible. When vi(t) = 1, age

cohort i is vaccinated at a constant rate δi, drawing on a continuous stream of vaccine production

from a given capacity. To keep track of cumulative doses distributed, we introduce the auxiliary

compartment V , where V̇i(t) = δivi(t), and where V (t) is the proportion vaccinated in the entire

population.

The rate of new infections, λi(t), depends on the number of daily contacts a susceptible in-

dividual has with currently infectious individuals. To reflect differences in interaction across age

cohorts, we use a contact matrix C, where entry c(i, j) ≥ 0 denotes the number of contacts made

by an individual in cohort i with an individual in cohort j. To derive the proportion of each age

group infected at time t, each contact is scaled by the probability of virus transmission on contact,
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q, and probability that the contacted person is infected, I j(t), yielding

λi(t) = q
G

∑
j=1

c(i, j)I j(t). (10)

For a given C, q can be adjusted to match any desired reproductive number R for the virus (i.e., the

number of secondary cases produced by a single infection).

The initial conditions of the system (1)–(7) require specifying the proportion of the population

that is susceptible S(0), immune R(0), and infectious I(0) at the outset of the epidemic. We

generally take I(0) to be small and for simplicity take E(0) = I(0). We assume that the proportion

of each age cohort in each initial compartment is the same as in the overall population.

2.2. Initial Conditions

We run simulations for three illustrative epidemic scenarios designed to span a range of cases. The

slow decrease scenario sets the initial effective reproduction rate to R= 0.99 and initial infectious

proportion to I(0) = 1%. Since we assume 20% of pre-existing protection in people aged 20

and over, the initial effective reproductive number R is lower than R0, the basic reproductive

number in a fully susceptible population. The slow decrease scenario may capture a situation in

which non-pharmaceutical interventions (NPIs) are introduced following an epidemic wave but

are only effective enough to decrease cases slowly. The slow growth scenario sets R = 1.1 and

I(0) = 0.5%, perhaps reflecting a situation in which NPIs are not effective enough to prevent a

subsequent wave of infections, such as the one experienced by the United States in late 2020. The

fast growth scenario sets R = 2 and I(0) = 0.1%, e.g., a case when a new virus strain suddenly

emerges, thwarting previously effective NPIs (such as the one observed in the United Kingdom in

December 2020, or the emergence of the P.1 variant in Brazil in late 2020 (45). In both growth

scenarios, I(0) is adjusted so that the peak of infections occurs three to four months from the start

of vaccinations.

We choose parameters for initial immunity that broadly reflect the state of the COVID-19

pandemic in early 2021. We assume 20% of people aged 20 and over have immunity acquired

from infection, leaving 80% susceptible. To reflect the lower clinical case rate in the younger

population (46, 47), we assume only 50% of under 20s are susceptible.
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2.3. Parametrization

Each simulation runs for T = 365 days. This is sufficient time for the epidemic to die out in the

scenarios considered but, we assume, not long enough for unmodeled factors to come into play,

such as the alleviation of supply constraints with expanded capacity or the waning of vaccine

protection from initial doses, perhaps warranting booster shots. Similarly, we assume that there is

no natural loss of immunity (no flow from recovered to susceptible) during the simulation period.

We use a social contact matrix c(i, j) based on a large cross-country study of contacts between

different age groups, primarily in European countries (48). Our matrix is therefore more repre-

sentative of high-income countries, but we are not aware of comparable data on social mixing in

low-income countries. Cohort size (ni) and mortality risk (pi) for different age cohorts is consis-

tently based on data for high-income countries. Throughout the age distribution, the risk of death

from COVID-19 increases rapidly with age, about three-fold per decade (49).

The model assumes that contact frequencies are independent of infection risk, precluding be-

havioral changes in response to changes in infection risk as the epidemic progresses. We also

assume that epidemics always have a single peak and fade out when the virus’s effective repro-

ductive number satisfies R ≤ 1, which happens when a sufficiently high fraction of population is

protected, either by vaccination or recovery from natural infection.

The base case for vaccination is a 95% effective vaccine, when used as tested in Phase 3 trials

(standard dosing, with a delay between two doses). We assume that those under 20 (constituting

22% of population in our base case simulations) receive no vaccination. To account for vaccine

hesitancy, we assume 20% in each age group refuse vaccination. We assume that the vaccine

becomes effective 10 days after it is administered. We achieve this by treating vaccinated compart-

ments in the model as “effectively vaccinated”. Hence if vaccinations in a given age group start of

day t1 and end of t2, we start the flow into vaccinated compartments on date t1 +10 and stop it on

t2 +10.

As of early May 2021, countries were vaccinating at a median rate of approximately 0.25% of

the population per day (50), our base case immunization speed. At the high end, countries such

as the United Kingdom, United States, Canada, Chile, and Israel have all managed to vaccinate

at rates well above 0.8% of the population per day; however, the current median global rate of
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vaccination (as of July 10, 2021) is approximately 0.31% of the population per day, up from exactly

0.25% in May 2021 when we ran our simulations (50). Thus, at a global level, supply rather than

delivery logistics or demand (e.g., vaccine hesitancy) seem likely to constrain full vaccination well

into 2022, and perhaps for considerably longer.

Accordingly, our model is intended to apply to contexts in which vaccination rates are con-

strained primarily by the available supply. While this may not apply for some countries, this seems

broadly to be the case globally in the sense that increases in vaccine supply could effectively be

used. The model could be extended to consider other scenarios where, for example, delivery con-

straints might at some point be binding.

Additionally, while we treat efficacy as a scalar, in reality it is multidimensional: vaccines may

differ in efficacy against different variants, in duration of protection, or in their protection against

infection and disease.

2.4. Simulation Method

We generate a simulation run for each configuration of parameters by finding the deterministic

solution of the differential-equation system consisting of these equations (1)–(7) using standard

numerical methods. We solve all differential-equation systems using the odin package, version

1.0.8, and generate exhibits using R, version 4.0.2. All code used in this project is available at

https://github.com/wwiecek/covstretch.

Figure S2 illustrates the evolution of vaccinations and infections for the various epidemic sce-

narios and vaccination rates analyzed. With no vaccination, we find that from 8% (slow decrease

scenario) to 55% (fast growth scenario) of the population get infected during the simulation period.

Individuals aged 20 to 49 are responsible for between 55% and 59% (depending on the scenario)

of all infections, assuming no vaccine. This is consistent with recent estimates (51) that three quar-

ters of infections in the US originated from individuals in that age bracket (albeit in a period with

school closures).

The outcome variables for our simulations are the burden of infection, defined as the proportion

of the total population that develop new infections during the simulation period, and the burden of

death, defined as the proportion of the total population that die during the simulation period.
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2.5. Simulations

We consider the case in which the pace of immunization is subject only to a supply constraint,

therefore the vaccination rate is proportional to the reciprocal of dose size. So, for example, using

half rather than full doses would double the vaccination rate. We analyze the impact of alternative

dosing on the burden of infections and deaths while varying three variables: dose fractions, efficacy

reductions associated with moving to alternative dosing, and epidemic scenarios.

We run scenarios with two different baseline assumptions for vaccine efficacy with full dose

vaccine efficacy. First we assume that a full dose has 95% efficacy, compatible with the verified

efficacy of mRNA vaccines. Second, to account for the overall drop in effectiveness against some

viral variants we repeat our analysis assuming a 70% efficacy for full doses. (This case can also be

used to evaluate less effective vaccines in general.)

In order to make the 95% and 70% cases comparable, we define alternative doses efficacy

in terms of relative reduction in NAb levels compared to the baseline. To do this, we follow

the previously-cited model by Khoury et al.. This allows us to make a “fair” comparison, since

comparable fold-reductions in NAb titres will have different impacts on efficacy, due to the concave

shape of the curve in Figure 1 in the main text. For example, if starting from the base case of 95%

efficacy, a 5-fold reduction in NAb titres is associated with a drop of efficacy to 76%. If starting

from 70%, a 5-fold reduction in NAb is associated with efficacy of 34%.

We use ratios of 1, 0.8, 0.4 and 0.2 (1.25, 2.5, 5-fold reductions respectively) to derive the

new results. For comparison with measured data, the NAb ratios for fractional doses among non-

elderly adults range from 0.43 (1/3 dose of BNT162b2) to 0.91 (1/2 dose of mRNA-1273), the

exact values are presented in Table S2. Therefore, despite the exploratory nature of this approach,

we find it illustrative to consider a ratio of 0.8 (1.25-fold reduction) with 1/2 dose and a ratio of 0.4

(2.5-fold reduction) with 1/3 dose to guide intuition on expected impact of using alternative doses.

5-fold reduction may correspond to using much lower doses than what was previously tested in

dose ranging studies. The results are shown in Figure S3 and summarised in Table 1 of the main

text.

We find that for a 95% efficacious vaccine the burden of mortality relative to status quo (risk

ratio) is 0.55-0.79 with 1/2 dose and 0.8 NAb ratio and 0.41-0.72 with 1/3 dose and 0.4 NAb ratio,
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suggesting large benefits of switching to fractional dosing. The ranges correspond to different

epidemic scenarios. With 70% baseline efficacy we find a higher but still lower than the status quo

relative burden, of 0.69-0.82 with 1/2 dose and 0.8 NAb ratio and 0.68-0.83 with 1/3 dose and 0.4

NAb ratio (drop to 49% efficacy).

3. Differential Vaccine Impact on Mortality and Infection

The initial SEIR model assumes that efficacy of the vaccine against mortality was the same as

against infection. However, observational data for multiple vaccines (including mRNA) suggests

a differential impact on deaths and infection (and therefore transmission). Therefore we modify

the model by adding extra compartments, allowing for differential efficacies against infection and

death. A reproducible version of this simple calculation are available in the code repository we

referenced earlier.

Let us focus on reducing mortality as the primary objective of a vaccination programme and

use the fast growth scenario from earlier simulations. In an extreme (and purely theoretical) case,

vaccines have no impact on infection, while providing very good protection against death. In other

words, there are no indirect benefits of vaccination and herd immunity can never be achieved.

Conversely, when the impact on infection is high, indirect benefits eventually start to outweigh the

direct ones.

However, in the current pandemic setting the indirect benefits also depend on speed of vacci-

nations in relation to infection risk. If only a low proportion of the population can be vaccinated

during the exponential growth phase of the epidemic, the impact of infection is low. We illustrate

this in Figure S4, where we assume 95% efficacy against mortality and varying efficacy against

infection from 0% to 95% (differently coloured lines) and speed of vaccination (x axis). For sim-

plicity we use the fast growing epidemic scenario, but the overall result carries across all scenarios.

We find that at lower vaccination speeds like 0.1 to 0.25% per day (similar to the speed in

many lower and middle income countries) the direct effects will outweigh indirect effects. This

can be seen in the right panel of Figure S4 (mortality rate), where the lines (corresponding to

different levels of sterilising immunity) do not diverge until higher vaccination rates (>= 0.50%)

are reached. For example, at 0.25% vaccinated per day we have 54% infected if there is no impact

on infection and 45% if the level of protection is 95%. In terms of mortality, we find 17 deaths per
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10,000 if there is 50% efficacy against infection, 16 if 95%, and 20 if 0%. We should note that the

absolute benefits are very sensitive to the assumption of how far in the future the peak of infections

is: here we assume that it is about 3 months as per the fast epidemic growth scenario depicted in

Figure S2.

4. Increase in Vaccine Supply from Fractional Doses

While it is hard to predict with precision the increase in supply resulting from the adoption of

alternative doses, we present a range of estimates based on the projected supply in 2021 for some

of the main vaccines being currently distributed. The results are shown in Table S3.

We use the best projections currently available for vaccine supply in 2021. This includes data

from press releases (52, 53) and third-party publications (54, 55) when updated information di-

rectly from the manufacturers is not available. This leads to an expected supply for 2021 of 3

billion doses for BNT162b2 (Pfizer), 800 million doses for mRNA-1273 (Moderna), and 2.1 bil-

lion doses for ChAdOx1 nCoV-19 (Oxford/AstraZeneca).

We combine the projected supply with the number of doses already delivered according to

official statements from vaccine developers UNICEF (56–58) (as of September 3, 2021). We

subtract doses delivered from projected supply and assume that the remaining quantity will be

delivered uniformly during the remaining months of the year. Based on these values, we estimate

the number of extra doses that would be generated with the adoption of alternative dosing regimens,

as shown in Table S3.

The dosing regimens represented here capture a range of scenarios with varying degrees of

optimism. We include only dose sizes that demonstrate NAb levels correlated with high efficacy or

comparable to the efficacy of the standard dose in our initial analysis (Figure 1). We observe that

for the scenarios considered here, it is possible to produce 450 million to 1.55 billion extra doses

per month in the last quarter of 2021.
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Table S1: Summary of Clinical Trials for COVID-19 Vaccines.*Trial reports immunogenicity at least three weeks
after dose administration, before a second dose (if planned) has been administered, and has a comparable outcome (in
terms of age group, dose, and day measured) for second doses. **Treatment arms also included groups in which each
vaccine dose arm was administered with and without 50µg of Matrix-M adjuvant.

Vaccine Phase Date posted 1st
dose
re-
sults*

Doses Dose
interval

(days)

Treatment arms Age
group

N Clinical
trials.gov
number

ChAdOx1
nCoV-19

1/2 3/27/2020 Yes 2 28, 56 • 1× 5e10 v.p.
• 2× 5e10
• 5e10, 2.2e10
• 5e10, 3.5-6.5e10

18-55 1090 NCT04324
606

1/2 6/23/2020 No 2 28 2× 5-7.5e10 v.p. 18-65 2130 NCT04444
674

2/3 5/26/2020 Yes 2 28-42 • 1× 5e10 v.p.
• 2× 3.5-6.5e10
• 5e10, 2.2e10
• 5e10, 3.5-6.5e10

18-70+ 12390 NCT04400
838

3 9/2/2020 Yes 2 28-84 • 1× 5e10 v.p.
• 5-10, 3.5-6.5e10

18+ 10300 NCT04536
051

JNJ-
78436735

1 6/18/2020 Yes 1 n/a • 1× 5e10 v.p.
• 1× 1e11

18-55 25 NCT04436
276

1/2a 6/18/2020 Yes 2 56 • 1× 5e10 v.p.
• 2× 5e10
• 1× 1e11
• 2× 1e11

18-55,
65+

1085 NCT04436
276

3 8/10/2020 Yes 1 n/a 1× 5e10 v.p. 18+ 44325 NCT04505
722

mRNA-
1273

1 2/25/2020 No 2 28 • 2× 25µg
• 2× 50
• 2× 100
• 2× 250

18+ 120 NCT04283
461

2a 5/28/2020 No 2 28 • 2× 50µg
• 2× 100

18+ 660 NCT04405
076

NVX-
CoV2373**

1/2 4/30/2020 Yes 2 21 • 2× 5µg
• 2× 25
• 5, 25

18-59/
18-84

131/
1500

NCT04368
988

BNT162b2
1 4/20/2020 No 2 21 • 2× 10µg

• 2× 20
• 2× 30
• 2× 100

18-55,
65-85

195 NCT04368
728

2/3 4/20/2020 No 2 21 30µg 12-15,
16-55,
55+

43548 NCT04368
728
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Table S3: Increase in Vaccine Supply from Fractional Doses. Panel 1 shows the total supply projected for 2021.
Panel 2 shows the number of doses already delivered by July 2021. Based on the previous values, panel 3 shows the
projected baseline supply per month for the remaining 4 months of the year. Finally, panel 4 shows the size of the
alternative dose relative to the standard used to estimate the number of extra doses shown in panel 5, where we assume
fractional doses would be adopted starting in October.

BNT162b2
(Pfizer)

mRNA-1273
(Moderna)

ChAdOx1 nCoV-19
(Oxford/AstraZeneca)

Total

1. Projected Supply in 2021 (billions of doses)

3.00 0.80 2.10 5.90

2. Doses Delivered by September 2021

1.30 0.20 1.10 2.60

3. Projected Baseline Monthly Supply (billion doses/month) = [1]−[2]
4

0.43 0.15 0.25 0.83

4. Dose Regimen (relative to standard) 5. Extra Doses
(billions/month)

1/3 1/4 1/2 1.55

2/3 1/2 1/2 0.61

2/3 1/2 3/4 0.45
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Table S4: Comparison of Efficacy and Effectiveness Data for COVID-19 Vaccines. Values represent point es-
timates of efficacy and effectiveness. Efficacy against symptomatic infection is derived from phase 2/3 trials data.
Estimates of effectiveness against symptomatic infection, hospitalization and death come from various observational
studies. Viral variants referred to as "non-VOC" includes all variants that are not classified as Variant of Concern,
therefore excluding B.1.617.2, B.1.1.7, and B.1.351.
*Study combines data from individuals vaccinated with both BNT162b2 and mRNA-1273.
**Estimates include occurrences of either hospitalization or death.
***Estimates include occurrences of any severe, critical or fatal disease.

Vaccine Efficacy Effectiveness

Symptomatic
Infection

Source Location Variant Symptomatic
Infection

Hospitalization Death Source

ChAdOx1
nCoV-19

64% (63) UK

Scotland

B.1.1.7
B.1.617.2
B.1.1.7
B.1.617.2
B.1.1.7
B.1.617.2

75%
67%

81%
61%

86%
92%

(11)

(12)

(39)

CoronaVac 51%
84%

(64)
(65)

Chile Various 66% 88% 86% (13)

BNT162b2 95% (37) UK

Scotland

Israel
Qatar

B.1.1.7
B.1.617.2
B.1.1.7
B.1.617.2
B.1.1.7
B.1.617.2
Various
B.1.1.7
B.1.351

94%
88%

92%
83%
97%
90%
75%

95%
96%

97%
100%
100%

97%
100%
100%

(11)

(12)

(39)

(66)
(67)

mRNA-
1273

94% (68) USA
Canada

Qatar

Various
B.1.1.7
Non-VOC
Various
B.1.617.2

94%
91%
91%
99%
86%

94%**

96%**

96%***

100% 100%

(69)*

(70)
(70)
(71)
(72)
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