
DISCUSSION PAPER SERIES

 

DP16581
 

Learning in Bank Runs

Eva Schliephake and Joel Shapiro

FINANCIAL ECONOMICS



ISSN 0265-8003

Learning in Bank Runs
Eva Schliephake and Joel Shapiro

Discussion Paper DP16581
  Published 26 September 2021
  Submitted 24 September 2021

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Financial Economics

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Eva Schliephake and Joel Shapiro



Learning in Bank Runs
 

Abstract

We examine a model in which depositor learning exacerbates bank runs. Informed depositors can
quickly withdraw when the bank has low-quality assets. Uninformed depositors may decide to
wait, which allows them to learn by observing informed depositors' actions. However, learning that
the bank has low-quality assets will spark a run ex-post, which increases the incentives of
uninformed depositors to run ex-ante. Moreover, when there are more informed depositors,
uninformed depositors have a fear of missing out, which also makes preemptive runs more likely.
Learning may, thus, increase the likelihood of panic runs and decrease surplus.

JEL Classification: G21, G28, L13

Keywords: information-based bank runs

Eva Schliephake - schliephake@ucp.pt
Católica Lisbon School of Business and Economics

Joel Shapiro - joel.shapiro@sbs.ox.ac.uk
Oxford University and CEPR

Acknowledgements
We would like to thank Toni Ahnert, Vladimir Asriyan, Xavier Freixas, Jens Josephson, David Skeie, Lucy White, Tanju
Yorulmazer, Peter Zimmerman and seminar participants in the Barcelona FIR workshop, Bank of England, Banque de France,
Bonn, Bristol, Católica Lisbon, Durham, the EFA, JFI-Nova SBE Conference, and KU Leuven for valuable comments and
suggestions. We also thank Daniel Quigley for excellent research assistance. Eva Schliephake acknowledges the support from FCT-
Portuguese Foundation of Science and Technology for the project "UID/GES/00407/2019".

Powered by TCPDF (www.tcpdf.org)



Learning in Bank Runs∗

Eva Schliephake†
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Introduction

Studies have indicated that bank runs are caused by signals about fundamental

insolvency risk (e.g., Chari and Jagannathan (1988); Gorton (1988)) and coordina-

tion problems among investors (e.g., Diamond and Dybvig (1983)), or both (e.g.,

Goldstein and Pauzner (2005)). But not all bank runs are marked by panicked de-

positors lined up to withdraw their money. Bank runs also have a more subtle time

dimension that involves learning.

Learning has been found to be important for early withdrawals in runs. Indi-

vidual depositor behavior is hard to observe, but Iyer et al. (2016) discovered an

increase in withdrawals by bank staff and uninsured depositors at a bank just after

the Indian Central Bank found troubling information in an audit, but before that in-

formation was released to the public.1 Blickle et al. (2019) show that in Germany in

1931, bank funding dried up first in the interbank market, followed by the wholesale

market, and then finally in the retail market. Gráda and White (2003) detail that

the panic of 1857 in the U.S. began as a run by more wealthy and experienced2 de-

positors. Michaelides (2014) documents a “slow but steady deposit run” in Cyprus,

where MFIs (monetary and financial institutions such as foreign banks) pulled their

money out of the Cypriot banks while all other depositors did nothing.3 For U.S.

money market mutual funds, Schmidt et al. (2016) find that investors with lower

expense ratios and higher minimum investments, which they term “sophisticated”

investors, withdrew earlier in response to the Lehman crisis.4

This paper analyzes the dynamics of depositors’ withdrawal behavior when there

is the possibility of learning fundamental information about the value of a bank’s

assets. There are two types of learning in the model. Informed depositors observe

the information initially for free (we later extend the model to allow for costly

1It is not surprising that bank staff (who likely have low information acquisition costs and high

incentives due to lack of diversification) and uninsured depositors (who have high incentives) ran.
2These measures of sophistication are taken from the professions of the depositors who withdrew

and their time living in the U.S.
3Artavanis et al. (2019) provide insights into the slow bank run in Greece in 2014-2015.
4There are runs in which depositor/debtholder data are unavailable and that appear to depend

on information. He and Manela (2016) argue that information acquisition played a major role

in the run on the U.S. commercial bank Washington Mutual. U.S. money market mutual funds

(MMFs) suffered outflows of about 11% over three months in 2011, just after a Moody’s review for

downgrades of BNP Paribas, Credit Agricole, and Societe Generale, due to fear about the MMF’s

eurozone holdings (Chernenko and Sunderam (2014)).
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information acquisition). Uninformed depositors can learn by waiting and seeing

whether informed depositors withdrew.

In the model, informed depositors have two advantages: (i) a timing advantage

that helps them react early whenever the bank has low-quality assets; and (ii) a

screening advantage that allows them to avoid losses from liquidating high-quality

assets.

Uninformed depositors face a trade-off between an information and a timing

disadvantage. First, they can withdraw immediately, but only based on incomplete

knowledge about the asset quality. Second, they can decide to wait, which allows

them to free-ride on the information of the informed depositors. Waiting avoids

losses from inefficiently liquidating high-quality assets. This, however, comes at the

cost that their claims become junior to the claims of the informed depositors.

The model is solved using the global games methodology (as in Goldstein and

Pauzner (2005)). All agents are risk-neutral. Uninformed depositors receive a noisy

signal about the quality of the asset, while informed depositors learn the quality

perfectly. There are two opportunities (periods) where depositors can withdraw

before their investment and the asset mature. Early withdrawals force partial costly

liquidation of the asset.

In the model, learning by both types of depositors increases the probability of

preemptive runs on the bank in two ways.

First, introducing the opportunity for uninformed depositors to gain additional

information by waiting creates a real option problem. One might expect that the

option to decide later with more information may delay runs on the bank. However,

we show that the opposite is true because of the coordination problem among de-

positors and the fact that liquidation is costly. When uninformed depositors finally

learn the true asset quality, they run when the asset is low-quality. This forces an

inefficient liquidation of the low-quality asset and, hence, decreases the payoff of

waiting, leading to a greater likelihood of a preemptive run. This seems in line with

reality: Artavanis et al. (2019) document strategic withdrawals before the resolution

of a 2015 Greek election that had the potential to affect the value of deposits.5

Second, when there are more informed depositors, uninformed depositors be-

come increasingly worried about the possibility that the informed depositors will

5The election could have affected deposits through the possibility of “Greece leaving the Euro

zone and the conversion of deposits from Euros to a new Greek currency, [and] the nationalization

of the banking sector” (Artavanis et al., 2019, p.4) .
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find out that the bank’s assets are low-quality and will grab the entire value for

themselves. Therefore, uninformed depositors have a fear of missing out and are

more likely to preemptively run on otherwise solvent banks when there are more

informed depositors.

Moreover, we demonstrate that having a fraction of depositors be informed may

be worse in terms of surplus than having all depositors informed or having them all

uninformed.

We extend the model to allow for endogenous information acquisition by de-

positors. We find that depositors overinvest in information relative to the surplus-

maximizing choice. This is the case because they (i) benefit from information giving

them a first-mover advantage and (ii) do not take into account that their information

acquisition will increase the likelihood of preemptive runs.

We also show that when banks’ assets have a higher liquidation value, the like-

lihood of runs may increase or decrease depending on the proportion of informed

depositors. The likelihood of runs increases with the liquidation value when a higher

fraction of depositors are informed. The reason is that the amount of a low-quality

asset remaining in the future is small, making immediate withdrawal more attrac-

tive. This may incentivize banks to invest in more illiquid assets and regulators to

not intervene with injections of liquidity.

If we were to replace informed depositors with a fully informative public signal in

the second period, the real option effect, with its inefficiency, would still be present.

Stress tests are prime examples of regulators revealing fundamental information

about banks; this result points out that stress tests may amplify runs before the

tests occur. This is in contrast to the finance literature, which examines stress test

design to avoid runs after the test.

Withdrawals by informed depositors are fundamental-based runs. Preemptive

withdrawals by uninformed depositors are panic-based runs brought about by co-

ordination failure when economic fundamentals are poor. Our model demonstrates

that fundamental-based runs and panic-based runs may interact in a subtle way.

The threat of a fundamental-based run can trigger a panic-based run.

In an economic environment with good fundamentals, runs on banks may be

slow-motion bank runs, where informed depositors withdraw early and uninformed

depositors withdraw late. Uninformed depositors wait because their private signal

tells them the bank assets are likely to be high-quality, but this information turns

out to be incorrect. They realize this when they observe the withdrawals of the
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informed depositors and then choose to withdraw as well.

We now summarize the related theoretical literature. In Section 2, we present

the model, and in Section 3, we solve the model. In Section 4, we examine surplus

in the model and illustrate its key mechanisms. In Section 5, we discuss the model

in the context of stress tests. In Section 6, we extend the model to make the initial

information acquisition endogenous. In Section 7, we conclude. All proofs are in

the Appendix. The Internet Appendix studies the optimal deposit contract in our

model when we add some features from Calomiris and Kahn (1991).

Theoretical Literature

Our paper is related to the literature on asymmetric information among deposi-

tors in run-type situations.

In Chari and Jagannathan (1988), some depositors receive information about

the performance of the bank’s assets. Other depositors observe the number of with-

drawals but not their cause, which could be a negative signal or a liquidity shock,

making withdrawals a noisy signal. In our paper, agents correctly deduce informa-

tion from the behavior of others, which, nevertheless, decreases surplus. We use

the global games methodology to pin down a unique equilibrium and are able to

examine comparative statics.

He and Manela (2016) study the impact of rumors and noisy information acquisi-

tion on the survival time of a bank. We also have what they call a “fear of bad-signal

agents,” which can lead to panic runs. In contrast to their model, our core result is

that the opportunity to wait and obtain better information in the future increases

preemptive uninformed runs. Moreover, we capture the interplay of fundamental

runs and preemptive runs in the absence of any negative rumors. We show that

even in situations without any adverse shock on the fundamentals, increased hard

information can reduce surplus.

Ahnert and Kakhbod (2017) analyze how investors’ endogenous information

choice can amplify financial crises. In their model, the higher frequency of crises is

driven by the fundamental, while we allow for preemptive runs that are inefficient.

Calomiris and Kahn (1991) have endogenous information acquisition by investors

for the purpose of monitoring a bank. They do not allow for spillover effects from

this information. Chen (1999) models a negative payoff externality among deposi-

tors that makes uninformed investors more sensitive to noisy signals about solvency

(coming from the failure of other banks) and more likely to run. In contrast to

Chen’s paper, uninformed agents in our model already deduce information from
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withdrawal behavior before the actual failure of institutions. Moreover, while we

focus on panic-driven preemptive runs, his model considers only fundamental and,

therefore, efficient runs.

Schotter and Yorulmazer (2009) present an experimental study of the dynamics

of bank runs. In their experiment, the presence of a small fraction of insiders who

know the quality of the bank’s assets mitigates the severity of runs, as uninformed

agents delay their withdrawal decision to learn from the actions of the insiders. Aside

from technical points, the key difference with respect to our model is that Schotter

and Yorulmazer (2009) assume that there is no cost/inefficiency of liquidating assets.

This cost drives our main results.

A growing literature studies the effect of information acquisition in global games.

Angeletos et al. (2006) show that endogenous signaling by a policy maker can lead

to multiple equilibria. In contrast to their model, the public information in our

model is not a decision by one agent, but an outcome of the choices of many in-

finitesimal agents (the informed investors). Dasgupta (2007) introduces the option

to delay an investment decision in a global game. In contrast to our results, the

option to delay reduces the incidence of coordination failure in equilibrium relative

to the standard case. This is because, unlike in our model, the reduction of payoffs

due to the delay is exogenous and independent of the behavior of the other agents.

Angeletos et al. (2007) analyze a global game with multiple rounds, with updating

in each round due to the knowledge that the regime survived past attacks and newly

arriving information. Szkup and Trevino (2015) study endogenous information ac-

quisition in a global game and show that strategic complementarities in actions do

not always translate into strategic complementarities in information choices. Ahnert

and Bertsch (2015) investigate the contagion of a crisis from one region to another

based on agents’ endogenous decisions to gather more information about the nature

of the shock.

1 The Model

We consider an economy in which there exists one good that is used for consumption

and investment. We consider two types of risk-neutral agents: a bank and depositors.

There is no deposit insurance in the model. Therefore, deposits resemble short-term

debt.

We begin by writing down the basic timing of the model, and subsequently dis-
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cuss each aspect in detail. There are five periods t ∈ {−1, 0, 1, 2, 3}. For simplicity,

we do not allow for discounting between periods.

t= -1 Nature draws the fundamental θ, which determines the ex ante fraction p(θ)

(1− p(θ)) of assets that have quality H (L).

t= 0 The bank attacts deposits and invests in an asset drawn randomly from the

pool of assets.

Informed depositors observe the asset quality Q ∈ {L,H} directly.

Uninformed depositors observe a private noisy signal of θ (denoted for depos-

itor i by θi).

t= 1 All depositors decide to withdraw or keep their money in the bank (wait). The

number of withdrawals are observable.

The bank liquidates a fraction of the asset to serve any withdrawals.

t= 2 The remaining depositors decide to withdraw or keep their money in the bank

(wait).

The bank liquidates a fraction of the asset to serve withdrawals.

t= 3 The remaining fraction of the asset matures.

The bank repays remaining deposits if solvent.

1.1 Actions and Payoffs

1.1.1 The bank and the asset

The bank has no funds of its own but has access to an asset with a positive net

expected value when it matures (t = 3). We assume that depositors cannot directly

invest in the long-term asset but can invest in the bank’s short-term debt. This

maturity transformation is the main role of the financial intermediary in our model.6

6We show in the Internet Appendix that intermediation by a short-term deposit-funded bank

is optimal when the banker may abscond with funds, as in Calomiris and Kahn (1991). The
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There is a pool of assets that the bank has access to. The pool has a fraction p(θ)

of risky assets that are high-quality (Q = H) and have a return of RH at t = 3. The

remaining fraction 1− p(θ) are low-quality (Q = L) and have a return of RL < RH .

The bank draws an asset from this pool at random.

We assume that p(θ) is continuous and strictly increasing in the fundamental θ,

which realizes at t = −1 and reflects the economic state. We assume that the prior

over θ is uniformly distributed in the interval [0, 1] and define p := E[p(θ)] as the ex

ante probability that the bank has a high-quality asset.

There are two types of depositors. Uninformed depositors receive a signal (de-

tailed below) about the quality of the asset pool. Given that they receive a signal,

these depositors are not fully “uninformed,” but are uninformed in a relative sense.

Informed depositors perfectly learn the quality of the asset the bank has drawn.

Portions of the asset can be prematurely sold (at t = 1, 2), but in that case,

the value of the amount sold shrinks to a fraction λ < 1 of the final return.7 This

embeds two assumptions. First, we assume that, like the informed depositors, those

who invest in the firm’s liquidated assets can distinguish between the high and low-

quality asset.8 Second, we assume that the liquidation costs result from the general

illiquidity of the bank’s financial assets. This liquidity discount may arise from cash-

in-the-market pricing, banks being the most efficient holders of the assets (due to

monitoring or risk management), and/or outside investors being unwilling to park

their money in long-term assets. The assumption that the early liquidation of assets

reduces their value has an important implication for surplus: when the asset quality

is low, there are fundamental runs at t = 2 that decrease the expected return and

make preemptive runs more likely at t = 1.

At t = 0, the bank issues short-term debt that is uniformly distributed among

a measure-one continuum of depositors. We assume a sequential service constraint,

banking literature offers several alternative explanations of why households invest in short-term

liquid debt rather than directly investing in long-term risky assets such as anticipated liquidity

shocks (Diamond and Dybvig (1983)), asymmetric information (Diamond (1984) and Gorton and

Pennacchi (1990)), or a maturity rat race (Brunnermeier and Oehmke (2013)).
7For simplicity, we assume that λ does not vary with the asset quality. However, allowing the

liquidation value parameter λ to depend on the asset quality - i.e., λL 6= λH - does not affect our

results as long as our general assumptions on the parameters hold.
8As we will demonstrate in the text, observing the withdrawals from t = 1 at t = 2 provides full

information about the asset quality in equilibrium. Therefore, this assumption is necessary only

for liquidations that occur at t = 1.
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which creates a coordination problem among depositors. The bank promises to pay

ρ at t = 3. If the value of the bank’s asset at t = 3 is lower than the promised

repayment - i.e., if the assets have low-quality and ρ > RL - the bank is declared

insolvent and the residual value is allocated evenly to the remaining depositors.9 We

assume that depositors, if indifferent between current and future expected payoffs,

prefer immediate consumption.

We assume that depositors can withdraw at any time before the asset matures,

receiving a short-term payment D < ρ. This is meant to represent uninsured10 short-

term liabilities such as wholesale debt. In the Internet Appendix, we endogenize

the liability structure using the logic of Calomiris and Kahn (1991); short-term

debt/withdrawable deposits are optimal, as runs prevent the bank manager from

absconding. In that specification, we demonstrate that ρ = RH and that parameters

can be found for which D can take any value in the set (λRL, RH).11 Henceforth,

to save on notation, we will set ρ = RH .

To further simplify the analysis, we will restrict the value of D such that:

Assumption 1: RL < D ≤ λRH .

This assumption implies that the bank can always make the promised repayment

in each period if the bank asset quality is high. However, a low-quality asset can

not cover all deposits.

We assume that without any information on the asset quality, not withdrawing

deposits until the asset matures (t = 3) is optimal, as the bank’s asset has positive

expected net value to depositors in every period: pRH + (1− p)RL > D. As we will

show later, in equilibrium, the low-quality asset is always completely liquidated be-

fore it matures. Therefore, we impose a slightly stricter assumption on the expected

value of the asset - i.e., that the asset has a positive expected net value when the

low-quality asset is fully liquidated:

Assumption 2: pRH + (1− p)λRL > D.

9Any asset value not paid out to depositors will go to the bank’s owners.
10He and Manela (2016) argue that even insured depositors may withdraw their deposits pre-

maturely if they fear the illiquidity or insolvency of their bank. Such insured withdrawals could

be driven by the fear that the supervisor will temporarily freeze their accounts, or that the de-

posit insurance simply cannot cover the liabilities of a large bank. Furthermore, in reality, large

depositors will only have a fraction of their deposits insured.
11As we discuss in the Internet Appendix , Assumption 2 must also be satisfied, which restricts

the upper bound of D further.
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This assumption implies that depositors who anticipate the liquidation of the

low-quality asset find it worth investing in the bank in the first place. This requires

that, ex-ante, the probability that the asset is high-quality must be sufficiently large

- i.e., p > D−λRL
RH−λRL

.

We make an additional assumption to guarantee a unique equilibrium:

Assumption 3: pRH < pD + (1− p)λRL.

This assumption implies that without any additional information, a depositor

prefers to withdraw if he expects everyone else to withdraw as well. The right-

hand side is the value of withdrawing if everyone else withdraws. If the asset is

high-quality, the depositor gets a payment of D because of Assumption 1. If the

asset is low-quality, the asset is fully liquidated, and we assume that the liquidation

value is evenly allocated among depositors. The left-hand side is the highest value

that a depositor can obtain from waiting if everyone else withdraws. If the asset

is high-quality, the depositor gets, at most, RH in expectation. If the asset is low-

quality, the entire asset is liquidated immediately, leaving the waiting depositor with

nothing.

Assumptions 1 to 3 guarantee that strategic complementarities exist among the

uninformed depositors. That is, we show below that the expected payoffs of unin-

formed depositors from waiting compared to withdrawing immediately increases the

more other agents also wait.

The three assumptions combined together imply that λRL
D

> 1
2
. In other words,

we assume that early liquidation is costly, but the liquidated low-quality asset still

has considerable value. We use this implication explicitly in the proof of Lemma 7.

We now formalize depositors’ payoffs and how they depend on the other deposi-

tors’ actions.

In period t = 1, there is a mass 1 of risk-neutral depositors who could be one

of two types z ∈ {U, I}: a proportion π are informed depositors (z = I), and the

remaining proportion 1 − π are uninformed depositors (z = U). In periods t = 1

and t = 2, depositors can choose to withdraw or keep their deposit at the bank.

Whenever a proportion of depositors withdraws the promised amountD in period

t, they force the bank to liquidate some fraction of the bank’s asset, causing a

liquidation loss. Define the number of withdrawals of type z ∈ {U, I} depositors in

period t given the (not necessarily known) asset quality Q ∈ {L,H} as:

nzt (Q)

9



Moreover, denote the total number of withdrawals at time t as:

Nt(Q) = nIt (Q) + nUt (Q).

As depositors are risk-neutral, their objective is to maximize their expected con-

sumption by withdrawing at the time when the return is highest. Thus, the amount

each agent is able to consume in each period depends on the realized asset quality

of the bank and, if the asset is low-quality, on the actions of the other depositors.

At t = 3, all asset cash flows are allocated to residual depositors. If the asset

quality is high, depositors receive ρ = RH . If the asset quality is low, given that

ρ = RH > RL, the remaining value is allocated evenly to the depositors.

The payoff structure is summarized in Table 1. Consider first a bank with a

high-quality asset. A depositor withdrawing at date t = 1 or t = 2 receives D. The

bank has to liquidate a fraction Nt(H)D
λRH

of the asset to serve the withdrawn liabilities

Nt(H)D. Given Assumption 1, the liquidation value of the high-quality asset is

larger than or equal to the liability claim D, such that the bank is always able to

cover all early deposits.12 The fraction of the asset that has not been liquidated

produces an amount when it matures that is strictly greater than the outstanding

deposits at that time.13 Depositors that did not withdraw earlier, therefore, receive

RH at t = 3 as contracted. Consequently, no negative externality exists between

depositors if the bank’s asset quality is high; the high-quality bank will not be

forced into insolvency by early withdrawals. If the asset quality was known to be

high, there would be no self-fulfilling runs.

In contrast, if the asset quality turns out to be low, the bank may not be able

to pay all deposit withdrawals. Note that λRL
D

is the default threshold of the bank

- i.e., the number of withdrawals that forces the low asset quality bank to liquidate

the entire asset.14

If only a fraction of depositors withdraw D at dates t = 1 and t = 2 - i.e.,

12The value of bank equity actually strictly increases with early withdrawals when D < λRH .

If D = λRH , the bank passes through all cash flows, and the value of bank equity is not affected

by early withdrawals.
13This is easy to see: (λRH−(N1(H)+N2(H))D

λRH
)RH > (1− (N1(H) +N2(H)))RH ⇔ D < λRH .

14Note that Assumption 1 implies that a bank with a low quality asset is not able to repay its

liability holders, even at asset maturity (t = 3). A bank with a low quality asset can, therefore,

not only become illiquid once the amount of withdrawals exceeds the liquidation value of the asset,

but will also be insolvent at t = 3, as the promised repayment ρ = RH exceeds the value of assets

at maturity (RL) independent of any early liquidation.
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Table 1: Asset-quality-dependent expected payoffs at time t

Quality Aggregate Withdrawals t=1 t=2 t=3

H D D RH

L

(1) N1(L) +N2(L) ≤ λRL
D

D D
RL−(N1(L)+N2(L))D

λ

(1−N1(L)−N2(L))

(2) N1(L) ≤ λRL
D

< N1(L) +N2(L) D λRL−N1(L)D
N2(L)

0

(3) λRL
D

< N1(L) λRL
N1(L)

0 0

N1(L)+N2(L) ≤ λRL
D

- the liquidation value of the asset suffices to cover the promised

payment D to all withdrawing depositors, which is described in Case (1) in Table

1. To satisfy withdrawals, the bank had to liquidate a fraction (N1(L)+N2(L))D
λRL

of the

low-quality asset. The remaining asset returns (1− (N1(L)+N2(L))D
λRL

)RL, once the asset

matures. This residual asset value is strictly lower than the long-term return RH

promised to the 1− (N1(L) + N2(L)) remaining depositors. Therefore, the bank is

declared insolvent at t = 3, and the residual value is allocated evenly among the

remaining depositors, who receive
RL−(N1(L)+N2(L))D

λ

1−(N1(L)+N2(L))
< D.15

Whenever more than λRL
D

depositors withdraw before maturity, the bank be-

comes illiquid and the bank’s entire assets are liquidated. This can happen at

t = 2 (Case (2)) or at t = 1 (Case (3)) in Table 1. Due to the sequential ser-

vice constraint, the depositor’s (random) position in the waiting line of withdrawing

depositors determines his payoff. If the bank is liquidated in a period, the first de-

positors approaching the bank receive D , while the later depositors receive nothing.

The ex ante probability of being among the first in the line is λRL−N1(L)D
N2(L)D

in case

(2) and λRL
N1(L)D

in case 3. This creates a coordination problem among depositors

and strategic complementarity between the withdrawal decisions of depositors. A

low-asset-quality bank is vulnerable to a bank run in each period.

Depositors who know the realized asset quality would always want to wait until

the high-quality asset matures and withdraw immediately from a bank with a low-

quality asset. We will show formally that this is, indeed, the dominant strategy of

an informed depositor, independent of the strategies of all other depositors.

Uninformed depositors, however, receive only a private noisy signal about the

15Insolvency will occur at t = 3 for any number of previous withdrawals as the low-asset-quality

repayment in t = 3 is decreasing in the number of previous withdrawals due to the liquidation cost.

Even if no depositor withdrew in t = 1 or t = 2, the left-hand side is RL, which, by assumption,

is smaller than D.
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asset’s quality, which we discuss in the next subsection in more detail. Based on

that signal, depositors can choose to either withdraw immediately or to wait and

observe the informed depositors’ withdrawal behavior from which they will be able to

learn about the asset quality. Postponing the withdrawal decision has the advantage

that uninformed depositors free-ride on the information of informed depositors and

withdraw only if the asset is of low-quality. However, waiting comes at a cost: other

depositors may have moved first and forced the partial or full liquidation of the

bank’s asset. Postponing the withdrawal decision, thus, makes the depositor’s claim

junior to depositors who withdraw earlier, leaving a small or zero payoff when the

asset is low-quality. This cost may outweigh the gain of learning the asset quality.

As a result, uninformed depositors may withdraw in the first period, based on their

noisy signal only.

1.2 Incomplete Information

We assume that the fundamental θ realizes at t = −1 and determines the fraction

p(θ) of the asset pool that are high-quality. This may be thought of as fundamen-

tal information about the economy or the financial system. However, uninformed

depositors observe that information only in t = 0 and with noise. More formally, in

period t = 0, every uninformed depositor i obtains a private noisy signal about θ:

θi = θ + εi,

where the εi are arbitrarily small error terms that are independently and uniformly

distributed over [−ε, ε]. The private signal influences a depositor’s decision to keep

their money in the bank in two ways. First, a higher signal increases the poste-

rior belief of the depositor that RH has realized, implying a larger incentive to not

withdraw. Second, a higher signal provides (imperfect) information about the in-

formation of the other depositors and their respective actions. Observing a high

signal makes the depositor believe that other uninformed depositors have seen high

signals as well, which makes it less attractive to withdraw and more likely that other

depositors will not withdraw either.

2 Analysis

We consider perfect Bayesian equilibria. A perfect Bayesian equilibrium is defined

by a strategy profile such that each depositor chooses the best action (withdraw

12



or wait) given their information and the strategies of the other uninformed and

informed depositors.

2.1 Period 2 decisions

At t = 2, given that the bank is still liquid (i.e., N1(L)D < λRL if the asset value

is low), all remaining depositors have to decide whether or not to withdraw. The

withdrawal decision at t = 2 clearly depends on the number of withdrawals at t = 1

and the information inferred from those withdrawals.

We begin by placing some structure on the number of withdrawals and the

information transmitted. We show in the following lemmas that informed depositors

have dominant strategies at t = 1 that are independent of the proportion nU1 (Q) ∈
[0, 1− π] of uninformed depositors withdrawing.

Lemma 1 If the asset is high-quality, all informed depositors do not withdraw until

the asset matures (t = 3), such that nI1(H) = nI2(H) = 0 and nI3(H) = π .

When the asset quality is high, the bank will not fail due to a panic run. If a

depositor knows that the bank’s asset is high-quality, it can be inferred that the

bank is able to serve all liabilities. Keeping their money in the bank until maturity,

when they can collect the full promised repayment of RH , becomes the dominant

strategy for informed depositors.

Now consider the optimal decision of a depositor who receives information that

the quality of the asset is low.

Lemma 2 If the asset is low-quality, nI1(L) = π and nI2(L) = nI3(L) = 0, all in-

formed depositors withdraw at t = 1.

If the asset is low-quality, the short-term payment D is larger than the value of

the asset per depositor and the value of the liquidated asset per depositor, so the

informed depositors withdraw immediately.

Note that informed depositors do not benefit from hiding their information. As

a result, these depositors always withdraw if they know that the asset is low-quality

and do not withdraw if they know that the bank’s asset is high-quality. Therefore,

if uninformed depositors at t = 2 were able to directly observe the actions of the

informed depositors, they would perfectly infer the quality of the asset.

Nevertheless, we assume that uninformed depositors observe only the aggregate

amount of withdrawals at t = 2. Given that uninformed depositors may have also

13



withdrawn at t = 1, observing the aggregate amount of withdrawals at t = 2 may

be a noisy signal. We now examine the information that may be inferred from these

withdrawals.

In order to do so, we posit that there is a unique threshold fundamental θ′ at

t = 1 that determines the t = 1 decision of uninformed depositors: for depositor i,

if θi ≤ θ
′
, the depositor withdraws, and if θi > θ

′
, the depositor waits. We will later

prove that there is indeed a unique threshold.

Given the threshold, and acknowledging that ε is assumed to be arbitrarily small,

we compute the proportion of depositors n1(θ, θ′, L) that withdraw at t = 1 given:

that the fundamental is θ; that there is a threshold for uninformed withdrawals θ′;

and that the asset quality is L:

n1(θ, θ′, L) =


1 if θ < θ′ − ε
π + (1− π)

(
1
2

+ θ′−θ
2ε

)
if θ′ − ε < θ < θ′ + ε

π if θ′ + ε < θ

(1)

Similarly, the proportion of depositors n1(θ, θ′, H) that withdraw at t = 1, given:

that the fundamental is θ; that there is a threshold for uninformed withdrawals θ′;

and that the asset quality is H:

n1(θ, θ′, H) =


1− π if θ < θ′ − ε
(1− π)

(
1
2

+ θ′−θ
2ε

)
if θ′ − ε < θ < θ′ + ε

0 if θ′ + ε < θ

(2)

We now examine the decision of all depositors that remain at t = 2. We make

the following assumption (where we define P (θ) = 1
2
p(θ−2ε π

1−π ) + 1
2
p(θ)), which we

explain in detail below:

Assumption 4: P (p−1
(

D
RH

)
+ε 2π

1−π )RH+(1−P (p−1
(

D
RH

)
+ε 2π

1−π ))
λRL− 1

2
D

1
2

< D.

The following Lemma demonstrates how all depositors act at t = 2.

Lemma 3 At t = 2,

1. All remaining depositors do not withdraw if they know the high asset quality

has realized.

2. All remaining depositors withdraw if they know the low asset quality has real-

ized.
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3. All remaining depositors who are uncertain about the quality of the asset with-

draw, given that Assumption 4 holds.

The uninformed depositors who remain at t = 2 observe the number of with-

drawals at t = 1 and their own personal signal θi about the likelihood that the asset

quality is H. Combining this information allows some to perfectly infer the asset

quality. Similar to Lemmas 1 and 2, those who infer the asset quality will have a

dominant strategy: withdraw if the asset quality is L, and wait if it is H. Given

the withdrawals at t = 1 and projected withdrawals at t = 2 from those who infer

the asset quality, the Lemma proves that if the asset quality is low, a minimum of

one half of all depositors have already withdrawn/will withdraw by the end of t = 2

. Assumption 4 states that, given that one half of all depositors will have with-

drawn when the asset is low-quality, an uninformed depositor who has not inferred

the asset quality will prefer to withdraw. This pins down a unique equilibrium at

t = 2.16 This permits us to write down the payoffs at t = 1 and solve for the unique

equilibrium in that period.

Nonetheless, Assumption 4 is not necessary for our main results to hold. At the

end of the proof of Lemma 3, we demonstrate that if we assumed, instead, that all

remaining depositors who were uncertain about the quality of the asset wait until

t = 3, our main results would still hold. The utility of Assumption 4 is to be able to

write down the payoffs; once we write down the payoffs, the number of uninformed

depositors who do not infer the asset quality at t = 2 will go to zero when we

take the noise ε to zero; that is, when there is no noise, all uninformed depositors

will perfectly infer the quality of the asset at t = 2, and Assumption 4 will not be

relevant.17

2.2 Period 1: The decision of uninformed depositors

At t = 1, uninformed depositors observe only their private noisy signals about

asset quality and have to decide on their action at the same time as the informed

depositors. Uninformed depositors correctly anticipate that all informed depositors

16Note that Dasgupta (2007) introduces a second source of noise to pin down a unique equilibrium

in the second period.
17We also note in the proof of Lemma 3 that when π > 1

2 , for any amount of noise, all uninformed

depositors will infer the quality of the asset perfectly.
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will not withdraw when the asset is high-quality and withdraw when the asset is low-

quality. The uninformed depositors compare the expected payoffs from withdrawing

immediately with the payoff from proceeding to the next period, based on their

private signal and the higher-order expectations on the behavior of other uninformed

depositors derived from this signal.

The ex-post payoff of uninformed depositors depends on the fundamental θ, the

proportion of informed depositors π and the proportion of uninformed preemptive

withdrawals nU1 . We now examine this payoff.

Payoff for uninformed depositors from withdrawing immediately: Note

that the consumption of the uninformed depositor who withdraws depends only on

the number of withdrawals when the asset quality is low (L); when it is high (H),

withdrawals and the resulting asset liquidation does not affect payoffs. The expected

consumption of this depositor at t = 1 is:

E[p(θi)]D + (1− E[p(θi)]) min

[
D,

λRL

N1(L)

]
. (3)

Early withdrawal secures an equal share of the residual value for the uninformed

depositor if the bank is liquidated. The expected consumption from equation (3) is

weakly decreasing in N1(L).

Payoff for uninformed depositors who wait until t=2: Uninformed depos-

itors can also form expectations about their payoff from waiting. In order to write

out this payoff, we define q(θi, θ
′, ε) ≡ Pr(θ′ − ε < θ < θ′ + ε|θi).

E[p(θi)][q(θi, θ
′, ε)D+ (1− q(θi, θ′, ε))RH ] + (1−E[p(θi)]) max

[
λRL −N1(L)D

1−N1(L)
, 0

]
.

(4)

We prove that this is the correct payoff at the end of the proof of Lemma 3. The

first term is the benefit of waiting if the asset quality is high. In this case, with

probability q(θi, θ
′, ε), the depositor is uncertain about the quality of the asset and,

by Assumption 4, will decide to withdraw. Otherwise, with probability 1−q(θi, θ′, ε),
the depositor will learn at t = 2 that the asset quality is high and decide to wait

(with a payoff of RH). The second term is the payoff when the asset quality is

low. In this case, from Lemma 3 and Assumption 4, we know that all remaining

depositors at t = 2 will withdraw. The depositors split the liquidated asset evenly,

if there is any residual asset value to split.

The expected payoff of waiting in equation (4) is also weakly decreasing in N1(L).
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Figure 1: Expected utility from early and late withdrawal.

The parameters used are D = 1, RH = 1.3, RL = 0.9, λ = 0.9, and p = 0.5 .

2.3 Benchmark: One-period game in which uninformed de-

positors do not receive private signals

We now define a benchmark where there is no period t = 2, and uninformed depos-

itors do not receive private signals θi (we set θi = θ). This gives the depositors one

period in which to withdraw early. All depositors have symmetric information.

In this setting, we demonstrate that multiple equilibria exist. This provides

intuition for the value of the global games setting in refining the set of equilibria.

Lemma 4 There exists a unique value N̂1 for which an uninformed depositor prefers

to withdraw immediately if N1(L) > N̂1 and wait otherwise.

Figure 1 illustrates the expected utility from withdrawing immediately and from

waiting. The expected utility from withdrawing immediately is constant as long

as the bank is expected to be still liquid. The expected utility from waiting is

higher than early withdrawal if no other agent withdraws but is decreasing in the

withdrawals of other agents when the quality of the asset is low. There exists

strategic complementarity among uninformed agents if π ∈ (0, N̂1) - i.e., agents’

actions reinforce each other. Uninformed depositors prefer to wait if they expect

other depositors to wait. If an uninformed depositor expects all other depositors

to withdraw, choosing to withdraw maximizes the uninformed depositor’s expected

payoff. This leads to multiple equilibria, which are summarized in the following

lemma.

Lemma 5 When uninformed depositors do not receive private signals, there are

multiple equilibria if π < N̂1:
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1. An equilibrium in which uninformed depositors do not withdraw at t = 1, with

nU1 (H) = nU1 (L) = 0 such that N1(H) = 0, N2(H) = 0, N3(H) = 1

and N1(L) = π, N2(L) = 1− π.

2. An equilibrium in which uninformed depositors withdraw at t = 1, with

nU1 (H) = nU1 (L) = 1 − π such that N1(H) = 1 − π, N2(H) = 0, N3(H) = π

and N1(L) = 1, N2(L) = 0.

If π ≥ N̂1, (2) would be the unique equilibrium.

Two equilibria exist: one in which none of the uninformed depositors withdraws

at t = 1, and another in which all uninformed depositors withdraw at t = 1. We

note that mixed-strategy equilibria are ruled out by our assumption that a depositor

withdraws when indifferent between withdrawing in two periods.

2.4 Uninformed depositors receive private signals

In our setup, in which uninformed depositors receive private signals, the realization

of θ determines whether uninformed depositors withdraw their investment. Since

withdrawing early is not a dominant strategy for moderate realizations of θ, un-

informed depositors may withdraw their investment if they believe that the asset

quality is low and that others will withdraw as well. We will show that in the unique

equilibrium, at t = 1, uninformed agents wait if fundamentals are high and withdraw

otherwise.

Taking the proportion of informed depositors as given, we first define the extreme

realizations of the fundamentals for which uninformed depositors have a dominant

strategy. A very low fundamental defines the lower dominance region θ < θ(π), for

which an uninformed agent has a dominant strategy to withdraw no matter what

other depositors do. The lower dominance region increases in the proportion of

informed depositors. We also define the upper dominance region θ > θ, for which an

uninformed agent has a dominant strategy to wait no matter what other depositors

do. This region does not depend on the fraction of informed depositors.

Lemma 6 There exists:

1. A lower dominance region θ ≤ θ(π) where uninformed depositors have a dom-

inant strategy to withdraw, and
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2. An upper dominance region θ ≥ θ where uninformed depositors have a domi-

nant strategy to wait.

For realizations of θ between the lower dominance region and the upper domi-

nance region, the expected payoff of an individual depositor depends on the actions

of the other depositors; there exists strategic complementarity among uninformed

depositors’ actions if not too many depositors are informed.

If, however, too many depositors become informed, uninformed depositors prefer

to withdraw instead of waiting, no matter what the other uninformed depositors do.

The strategic complementarity among uninformed depositors decreases the more

depositors become informed. Uninformed depositors correctly anticipate that the

large amount of informed depositors will withdraw if the low asset quality has re-

alized, thereby reducing the expected return from waiting. In other words, if the

fraction of informed depositors is sufficiently large, the strategic complementarity

among uninformed depositors vanishes, such that the depositors’ optimal decision

of whether or not to withdraw becomes independent of the other depositors’ ac-

tions. We will formally define the amount of informed depositors for which strategic

complementarity vanishes as π̂ in Lemma 7 (later in the text).

We can make the following statement for π ∈ (0, π̂): The uninformed depositor’s

optimal action is uniquely determined by the signal: the uninformed depositor with-

draws at t = 1 if and only if the signal is below a unique threshold. We define θ∗(π)

as the critical fundamental realization that makes uninformed depositors indiffer-

ent between waiting or withdrawing immediately for a given amount of informed

depositors.

Proposition 1 At t = 1, uninformed depositors have a unique equilibrium strategy

to preemptively withdraw if they observe a signal below threshold θ∗(π) and wait if

they observe a signal above the threshold.

The proof is in Appendix A and follows Goldstein and Pauzner (2005). Our

setup is similar to theirs, with the main differences being that in our model, (1)

the low realization yields strictly positive returns, and (2) there are no impatient

depositors but, rather, informed depositors with dominant strategies to withdraw if

RL has realized. We now elaborate on some key elements of this result.

The uninformed depositor’s utility differential between waiting and immediate

withdrawal is a function of the number of withdrawals n1(θ, θ
′
, L) as defined in
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Figure 2: The payoff of waiting minus the payoff of immediate withdrawal.

The parameters used are D = 1, RH = 1.3, RL = 0.9, λ = 0.9, and p = 0.5.

Equation 1. We obtain:

ν(θ, n1(θ, θ′, L)) =


p(θ)[(1− q(θi, θ′, ε))RH + q(θi, θ

′, ε)D] if λRL
D

> n1(θ, θ′, L) ≥ π

+(1− p(θ))λRL−n1(θ,θ′,L)D
(1−n1(θ,θ′,L))

−D
p(θ)(1− q(θi, θ′, ε)(RH −D) if 1 ≥ n1(θ, θ′, L) ≥ λRL

D

−(1− p(θ)) λRL
n1(θ,θ′ ,L)

(5)

Global strategic complementarity would require that ν always decreases in n1(θ, θ′, L).

This does not hold in our setting. Figure 2 illustrates the “net incentives” of un-

informed agents: the payoff of waiting minus the payoff of immediate withdrawal

for a given θ. The withdrawal decision of uninformed agents has one-sided strategic

complementarities in the sense of Goldstein and Pauzner (2005): whenever the net

incentives are positive, they are monotonically decreasing in the number of other

agents.

Intuitively, there is strategic complementarity until the bank is illiquid: The ex-

pected gain from waiting decreases in n1(θ, θ′, L) until the entire asset is liquidated

and then is constant after that point. The expected payoff of withdrawing is con-

stant in n1(θ, θ′, L) until the entire asset is liquidated, but it decreases afterwards.

Therefore, the net utility from waiting minus withdrawing is decreasing until the

entire asset is liquidated but increasing afterwards. In other words, once the asset

is liquidated, the incentives to further run on the bank decrease as more depositors

withdraw since the share of the liquidated payoff shrinks. As pointed out above, we
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still have one-sided strategic complementaries as long as Assumption 3 holds - since

ν(θ, n1(θ, θ′, L)) is monotonically decreasing in n1(θ, θ′, L) as long as ν(θ, n1(θ, θ′, L))

is positive. This is enough to obtain the same uniqueness result as Goldstein and

Pauzner (2005).

We can now compute the threshold signal p(θ∗(π)). An uninformed deposi-

tor that receives the signal θ∗(π) must be indifferent between waiting and with-

drawing. That depositor’s posterior distribution of θ is uniform over the interval

[θ∗(π)− ε, θ∗(π) + ε]. As we assume that the error term is uniformly distributed as

well, the indifferent depositor’s posterior distribution of n1(θ, θ′, L) is uniform over

[π, 1]. At the limit, as ε → 0, we can determine the threshold implicitly defined

by the condition where the uninformed depositor is indifferent between waiting and

withdrawing immediately:18

∫ λRL
D

π

{p(θ∗)RH + (1− p(θ∗))λRL − nD
(1− n)

−D }dn (6)

+

∫ 1

λRL
D

{p(θ∗)RH − p(θ∗)D − (1− p(θ∗))λRL

n
}dn = 0.

We can integrate as long as π < λRL
D

: the number of informed depositors must

be low enough such that uninformed depositors still receive a positive amount from

the low-quality asset. Integration yields:

p(θ∗)(1−π)

(
RH

D
− 1

)
+(1−p(θ∗))λRL

D
ln

(
λRL

D

)
+(1−p(θ∗))(1−λRL

D
) ln

(
1− λRL

D

1− π

)
= 0.

This implicit condition is correct as long as the resulting θ∗ ∈ [θ(π), θ], which holds

for π ∈ [0, π̂], where π̂ is defined in Lemma 7 just below. Solving for p(θ∗) defines the

critical realization as a function of payoffs and the proportion of informed depositors:

p(θ∗)|ε→0 =
φ(π)

(1− π)(RH
D
− 1) + φ(π)

(7)

with φ(π) := −λRL
D

ln
(
λRL
D

)
− (1− λRL

D
)
(
ln
(
1− λRL

D

)
− ln (1− π)

)
, which is strictly

positive for all 0 ≤ π < λRL
D

< 1. This also implies that p(θ∗) ∈ (0, 1).

18Note that in order to derive this indifference condition, we performed a change of variables

(changing θ for n1(θ, θ′, L)) for the integral over θ, and used the limit ε→ 0 to eliminate the second

integral over ε.
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Figure 3: Critical probability threshold that triggers a preemptive run as a function

of informed investors. The parameters used are D = 1, RH = 1.3, RL = 0.9, and

λ = 0.9.

Lemma 7 Strategic complementarity among uninformed depositors exists only if

π ∈ (0, π̂), where π̂ < λRL
D

is implicitly defined by p(θ∗(π̂)) = p(θ(π̂)).

When more informed depositors make use of their first mover advantage when

the asset is low-quality, the uninformed depositors benefit less from waiting. As the

share of informed depositors increases, the role of strategic complementarity between

the agents becomes less important in determining the incidence of preemptive runs,

even though the incidence is increasing:

Proposition 2 The signal threshold p(θ∗) is increasing in π for θ∗(π) ∈ (θ(π), θ).

The intuition for Proposition 2 is the following. When more depositors are

informed, a larger fraction of the low-quality asset is liquidated at t = 1. This

decreases the residual value of the bank with the low-quality asset at t = 2. This

can be seen in the indifference condition (Eq. (6)) in the first integral, which has a

positive value and shrinks as π increases. This makes a run at t = 1 more likely.

The lower dominance cutoff θ(π) is also increasing in the fraction of depositors

that are informed π. The more depositors that are informed, the smaller is the

impact of the behavior of other uninformed depositors on the expected payoff from

waiting of an individual uninformed depositor, weakening the strategic complemen-

tarity between the uninformed depositors’ choices. We depict the threshold value as

well as the dominance regions as functions of π in Figure 3. The upper dominance

region is independent of π. For fundamentals that produce signals in between the
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two regions, depositors follow their unique threshold strategy: whenever they ob-

serve a signal above the critical threshold, they wait and, otherwise, they withdraw.

As the threshold value is increasing in π, the probability that a fundamental value

produces signals resulting in a run increases as well.

We can now summarize the main insight from the global game setup for our

multi-period game.

Corollary 1 In the limit, where ε→ 0 and π < π̂, the probability of all uninformed

depositors withdrawing is P [θ < θ∗(π)], which increases in π. With probability 1 −
P [θ < θ∗(π)], all uninformed depositors wait until uncertainty is resolved at t = 2.

In the limit, as ε→ 0, preemptive runs occur when the fundamental is low - i.e.,

θ < θ∗(π). We assume that depositors at t = 2 observe the aggregate withdrawals

of all depositors at t = 1. The number of withdrawals in the low-quality-asset case

(equation (1)) becomes:

lim
ε→0

n1(θ, θ∗(π), L) =

{
1 if θ < θ∗(π)

π if θ > θ∗(π).
(8)

Similarly, in the limit the number of depositors withdrawing from a bank with a

high-quality asset (equation (2)) becomes:

lim
ε→0

n1(θ, θ∗(π), H) =

{
1− π if θ < θ∗(π)

0 if θ > θ∗(π).
(9)

As π is known, remaining uninformed depositors at t = 2 are able to perfectly deduce

the actual asset quality in t = 2 by observing the aggregate number of withdrawals.

The aggregate number of withdrawals reveals the actions of informed agents even

though depositors cannot observe the identities of the depositors that withdraw.

2.5 Comparative Static on λ

We now examine how the solution is affected by a change in the liquidation value

of the asset λ.

Proposition 3 The equilibrium threshold value for a preemptive run decreases in

λ (∂p(θ
∗)

∂λ
< 0) if (1− π) > D−λRL

λRL
, and increases otherwise.
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To understand the intuition, we consider the threshold probability of a pre-

emptive run that implicitly solves the indifference condition in equation (6), which

equates the expected return from waiting for another period and withdrawing im-

mediately. We adapt the indifference condition from equation (6) by separating the

utility of waiting (first line) and the utility from withdrawing immediately (second

line). ∫ λ
RL
D

π

(p(θ)RH + (1− p(θ))λRL − nD
(1− n)

)dn+

∫ 1

λ
RL
D

p(θ)
RH

D
dn (10)

=

∫ λ
RL
D

π

Ddn+

∫ 1

λ
RL
D

(p(θ)D + (1− p(θ))λRL

n
)dn.

The first line depicts the expected utility of an uninformed depositor from waiting

for another period. This expected utility is clearly increasing in λ, as a higher

liquidation value increases the payoff from waiting in both cases.19 The second line

captures the expected utility from immediate withdrawal. It is also increasing in λ,

since (i) there are more states in which the depositor receives D; and (ii) there is a

larger liquidation value if the bank becomes illiquid.

If the proportion of informed depositors is small, an increase in λ decreases

the net incentives to withdraw at t = 1, as the remaining fraction of the asset

to be liquidated in the second period is high, and the higher future liquidation

value outweighs the benefits of immediate withdrawal. However, when there are

many informed depositors, the fraction of the low-quality asset remaining for future

liquidation is small, and immediate withdrawal becomes more attractive. Therefore,

the threshold value increases in λ if π is large.

While we do not model how λ is determined, this result suggests that the incen-

tives to change λ are important. The liquidation discount λ could be affected by

the bank when it chooses whether it wants to invest in liquid or illiquid assets. It

could also be affected by a regulator, who may try to boost liquidity/reduce fire sale

costs by buying illiquid assets such as asset-backed securities. Both the bank and

the regulator face an unexpected trade-off; if there are many informed depositors,

increasing liquidity can amplify the probability of a run. For the bank, this may

19This mechanism is similar to the effect of asset encumbrance, as discussed in Ahnert et al.

(2018). Not pledging assets to secured debt claims reduces the risk of the unsecured debt claims

and, thus, decreases the incidence of an unsecured debt run.
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increase its incentives to invest in illiquid assets. For the regulator, this may increase

its hesitation to intervene.

3 Surplus

In this section, we study surplus in the model.20 We look at a simple version of

surplus: (i) unlike, for example, Diamond and Dybvig (1983), there is no consump-

tion benefit from early withdrawal in this model; (ii) we look at the surplus from

our main model and do not include the benefits from information in disciplining the

bank manager (which we model in the Internet Appendix).

In the absence of any early withdrawal, the highest surplus level that can be

reached is the first best (FB):

SFB = pRH + (1− p)RL.

However, this is not achievable due to the strategic complementarity of depositors’

withdrawal decisions and information externalities.

Now consider the case of full information (FI), where the quality of the bank’s

asset is known to all depositors, and depositors make their own decisions on when

to withdraw. In this case, when the asset quality is high, all depositors will wait

until the asset matures (t = 3). For the low-quality asset, all depositors will have a

dominant strategy to withdraw immediately. This yields a surplus of:

SFI = pRH + (1− p)λRL.

This is below the first best due to the liquidation of the low-quality asset.

3.1 No information

We now analyze the surplus in a static benchmark where (i) there are no informed

depositors, and (ii) depositors must choose whether to withdraw or wait without

having the opportunity to decide later based on observing better information. This

20For ease of reading, we do not take into account the investment 1 of depositors needed to

produce the asset’s returns.
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eliminates period t = 2 from the timeline.21 We call this the no information (NI)

benchmark.

The unique equilibrium is again defined as a threshold strategy, in which all de-

positors withdraw whenever they receive a signal below the threshold and wait until

the asset matures otherwise. The threshold is implicitly defined by the depositor

who is indifferent between withdrawing and waiting based on the received signal.

The indifference condition is similar to Equation 6, with two differences: First, the

minimum number of withdrawals is zero, as there are no informed depositors with

dominant strategies to withdraw (when the asset quality is low). Therefore, the

uninformed depositors have no fear of missing out. Second, the expected return

from waiting if the bank is not liquidated is higher. This is because there is no

learning that the asset quality is low and, hence, no run. There is no real option of

learning, eliminating panic runs and forced liquidation, which increases the surplus.

For an arbitrarily small noise term, the new indifference condition implicitly defines

the benchmark threshold value p(θNI):∫ λRL
D

0

{p(θNI)RH + (1− p(θNI))
RL − nDλ
(1− n)

−D }dn (11)

+

∫ 1

λRL
D

{p(θNI)RH − p(θNI)D − (1− p(θNI))RLλ

n
}dn = 0.

We can explicitly solve for p(θNI):

p(θNI)|ε→0 =
φNI

φNI + λ(RH
D
− 1)

(12)

with φNI := −λλRL
D

ln
(
λRL
D

)
− (1− λRL

D
) ln
(
1− λRL

D

)
− (1− λ)λRL

D
.

The surplus created in the no information benchmark, therefore, consists of two

parts. First, when a preemptive run occurs - i.e., if the fundamental realization is

low (θ ≤ θNI) - all depositors withdraw and force the bank to liquidate its asset.

If the actual asset quality is high, the depositors receive an aggregate amount of

D and the bank has to liquidate a fraction D
λRH

of the asset to serve the liabilities.

21Note that allowing for period t = 2 here complicates matters even if there is no new information

in period t = 2. This is because there could be a self-fulfilling run in the second period (in addition

to the possibility of the run in the first period), and there will not be a unique equilibrium in the

second period without further modifications. Thus, the benchmark we examine is more comparable

to the main model.
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The bank remains liquid, and the remaining part of the asset produces (1− D
λRH

)RH

when the asset matures. If, however, the asset quality is low, the bank cannot pay

back the withdrawn deposits in full, and the bank is forced into full liquidation. The

depositors receive λRL. The surplus in case of a low fundamental realization can be

summarized as:∫ θNI

0

{p(θ)
(
RH(1− D

λRH

) +D

)
+ (1− p(θ))λRL }dθ. (13)

Second, when the fundamental realization is high (θ > θNI), no preemptive run

occurs, and the bank does not have to liquidate any fraction of the asset prematurely.

The surplus depends only on the realization of the asset quality:∫ 1

θNI
{p(θ)RH + (1− p(θ))RL }dθ. (14)

The expected surplus of the no information benchmark can, therefore, be sum-

marized as the sum of equations 13 and 14:

SNI = pRH + (1− p)λRL︸ ︷︷ ︸
SFI

+ (1− λ)RL

∫ 1

θNI
(1− p(θ)) dθ︸ ︷︷ ︸

Gain from no run on RL

− (1− λ)
D

λ

∫ θNI

0

p(θ) dθ.︸ ︷︷ ︸
Loss from run on RH

The expected surplus consists of three parts: the full information surplus; a gain

compared to the full information surplus, as the low-quality asset is not liquidated

if the fundamentals indicate a good economic environment (θ > θNI); and a loss

compared to the full information surplus from the liquidation of the high-quality

asset if the fundamental indicates a relatively bad economic environment (θ < θNI).

3.2 Main model: A proportion π of informed depositors

We now consider the surplus in our main model.

We begin by demonstrating that the threshold in the main model is higher (a

run is more likely) than when there is no information.

Proposition 4 The likelihood of a preemptive run on the bank in t = 1 in the main

model is strictly larger than the likelihood in the no information case: p(θ∗(π)) >

p(θNI) for all π.

The run threshold of the no information game is strictly smaller than the run

threshold in the main model. We prove this by first demonstrating that as π → 0,
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p(θ∗(0)) > p(θNI). Given that θ∗(·) is increasing in π, the proposition is complete.

Note that in the first step, p(θ∗(0)) > p(θNI), neither model has any informed

depositors withdrawing early. The option to wait for better information, even in the

absence of informed depositors, increases the probability of inefficient preemptive

runs. By allowing depositors to delay their withdrawal decision, the depositors can

learn that the asset has a low-quality; there is then a strict incentive to withdraw

at t = 2, liquidating the asset inefficiently. This destroys aggregate surplus from

waiting in expectation, making preemptive runs more likely at t = 1.

We now derive the surplus.

If the fundamental is low (θ < θ∗(π)), a preemptive run forces the liquidation

of a proportion (1−π)D
λRH

of the high-quality asset to serve the uninformed depositors’

withdrawals. The low-quality asset is liquidated entirely since both uninformed and

informed depositors withdraw. The ex ante surplus created by low fundamental

values can, therefore, be summarized by:

∫ θ∗(π)

0

{p(θ)
(
RH(1− (1− π)D

λRH

) + (1− π)D

)
+ (1− p(θ))λRL }dθ. (15)

Similarly, we can derive the surplus created for high fundamental values θ >

θ∗(π). For high fundamentals, no preemptive runs by uninformed depositors occur.

If the bank has a high-quality asset, no liquidation of the asset is forced. If the

bank’s asset is low-quality, informed depositors force a partial asset liquidation at

t = 1, and, subsequently, uninformed depositors deduce that the quality of the asset

is low and force the full liquidation of any remaining fraction of the asset. The ex

ante value created by high fundamental values can, therefore, be summarized by:∫ 1

θ∗(π)

{p(θ)RH + (1− p(θ))λRL }dθ. (16)

The surplus is the sum of Equation 15 and 16. Simplifying yields:

SI = pRH + (1− p)λRL︸ ︷︷ ︸
SFI

−(1− λ)
D

λ

∫ θ∗(π)

0

p(θ) dθ︸ ︷︷ ︸
Loss from run on RH

+π(1− λ)
D

λ

∫ θ∗(π)

0

p(θ) dθ.︸ ︷︷ ︸
Fewer uninformed withdrawals

(17)

Compared to the full-information benchmark, the surplus is reduced by the cost

of the preemptive liquidation of the high-quality asset, forced by the uninformed

depositors’ withdrawals of (1 − π)D whenever the economic environment is bad
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Figure 4: The Surplus Effect of Information

(θ < θ∗(π)): for every unit withdrawn, one unit of the future value is destroyed,

creating only λ < 1 units of value. This effect is mechanically smaller when there

are fewer uninformed depositors; the third term in SI reflects this.

Compared to the no information benchmark, the total effect of information is

ambiguous:

SI − SNI = (18)

− (1− λ)RL

∫ 1

θNI
(1− p(θ)) dθ︸ ︷︷ ︸

Loss from run on RL

− (1− λ)
D

λ

∫ θ∗(π)

θNI
p(θ) dθ︸ ︷︷ ︸

More preemptive runs

+π(1− λ)
D

λ

∫ θ∗(π)

0

p(θ) dθ.︸ ︷︷ ︸
Fewer uninformed withdrawals

Information creates a loss due to liquidation of the low-quality asset and an increase

in the probability of inefficient preemptive runs. However, as informed agents do not

liquidate the high-quality asset, the size of an inefficient preemptive run decreases

as more depositors become informed.

We can decompose the surplus effect into the option to learn about the return

at t = 2 and the fear-of-missing-out effect.

SI − SNI = π(1− λ)
D

λ

∫ θ∗(π)

0

p(θ) dθ︸ ︷︷ ︸
Fewer uninformed withdrawals

(19)

− (1− λ)RL

∫ 1

θNI
(1− p(θ)) dθ − (1− λ)

D

λ

∫ θ∗(0)

θNI
p(θ) dθ︸ ︷︷ ︸

Option to learn

− (1− λ)
D

λ

∫ θ∗(π)

θ∗(0)

p(θ) dθ.︸ ︷︷ ︸
Amplification: Fear of missing out

The option to learn unambiguously decreases surplus; it (i) creates inefficient (though
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fundamental) runs on the low-quality asset and (ii) increases the incidence of pre-

emptive runs and, thus, partial liquidation of the high-quality asset. This effect may

have been present in the slow bank run in Greece - Artavanis et al. (2019) document

strategic withdrawals before the resolution of a 2015 Greek election that had the

potential to affect the value of deposits. Furthermore, it tells us that empirical stud-

ies need to carefully consider timing and causality in bank runs; here, runs precede

the revelation of information, although they do so exactly because it is known that

information will be revealed.22

The preemptive runs are amplified by the fear of uninformed agents that they

will miss out on their chance to withdraw cash before it has run out.

There is a positive side to having more informed depositors. In the first term,

we can see that the liquidation of the high-quality asset in a preemptive panic run

is less likely.

An increase in the proportion of informed depositors has two effects on the

surplus in our model. First, more informed depositors increase the incidence of inef-

ficient preemptive runs. This is a negative effect. Second, the more depositors that

are informed, the fewer uninformed depositors there are to preemptively liquidate

their high-quality asset if fundamentals are low (θ < θ∗). This is a positive effect.

The ambiguous effect of learning on surplus is illustrated in Figure 4a. For low π,

there is higher surplus when no depositors are informed, while for high π, the reverse

is true. Figure 4b illustrates a parameter space in which learning always decreases

surplus. If only a few depositors are informed (π → 0), the possibility to learn from

the withdrawals of the informed unambiguously decreases surplus relative to the no

information benchmark. As π becomes large, this gap diminishes. In Figure 4b, the

gap does not diminish enough, making learning harmful, while in Figure 4a, learning

is superior for larger values of π.

4 Application to Stress Tests

The case in which π → 0 and only the real option effect is present is equivalent to

a model in which a fully informative public signal is released at t = 2 and there

22Chen et al. (2020) document a significant positive relation between the informativeness of bank

earnings and the sensitivity of uninsured deposit flows to bank performance. They do not look at

causality, but from our results, any such attempt would need to carefully address the timing and

strategic reactions to information.
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are no informed depositors. The results for this model are of interest to the debate

over the effect of information released by regulators, as it resembles stress testing .

There is a recent theoretical literature (Bouvard et al. (2015), Goldstein and Leitner

(2018), Williams (2017), Orlov et al. (2020), and Faria-e Castro et al. (2016)) on the

information design of stress tests that broadly have the stress test first and depositor

reaction to the test second. While we clearly do not examine the optimal way to

release information, we point out here that there will be an adverse ex ante reaction

to the presence of a stress test - runs may occur in anticipation of the test. This is

potentially an explanation of why the results of the microprudential version of stress

tests, banking supervision exams, are kept private.

Moreover, this implies that there should be a market reaction to the announce-

ment that a stress test will be conducted.23 In the U.S., this could be examined

by looking at the announcements of the first U.S. stress test (the SCAP) and the

subsequent stress testing regimes (CCAR and DFAST). However, the announcement

may also contain information about future regulatory approaches towards banks.

5 Endogenous Information Acquisition

We now allow depositors to decide ex-ante, before they receive the noisy signal,

if they want to become fully informed at a cost. The cost to become informed is

assumed to be heterogeneous; we think of this as different levels of resources required

to acquire and process information or different levels of financial sophistication.

Some sophisticated depositors can become informed at negligible costs, while others

have to exert a prohibitively costly effort to gather all necessary information. We

assume that depositors draw an information cost that is uniformly distributed over

a unit interval ci ∼ U [0, 1].24

Every depositor i initially has to decide if he/she wants to become informed

(zi = I) at an individual cost ci or remain uninformed (zi = U). The individual

23The empirical literature (e.g., Morgan et al. (2014)) focuses mainly on event studies examining

the reaction to the stress test itself.
24Note that we have a discontinuity in the payoff function at the point where nobody becomes

informed: if nobody is informed, there would be no information to infer, and the gain from waiting

would be the expected return of the asset and not the conditional return. However, there is always

an information benefit, such that the investor with zero cost will always acquire information; this

results in a strictly positive proportion of informed investors (π > 0) in equilibrium.
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choices aggregate to the proportion of informed depositors

π∗ =

∫ 1

0

1{z∗i = I}di

that is consistent with the optimal individual information choice of each depositor

i:

z∗i = arg max
zi∈{I,U}

1{zi = I}[EU I(π∗)− ci] + 1{zi = U}EUU(π∗),

where EU I(π∗) and EUU(π∗) are the expected utilities of the depositors who choose

to become informed or stay uninformed (before they receive their noisy signal θi

about the fundamental) at period 0, respectively.25

The ex-ante expected utility of a depositor that chooses to become informed

when π∗ ≤ π̂ is:26

EU I(π) =

∫ θ∗(π)

0

(p(θ)RH + (1− p(θ))λRl )dθ +

∫ 1

θ∗(π)

(p(θ)RH + (1− p(θ))D) dθ.

The perfectly informed depositor has a dominant strategy of waiting until the

asset matures when observing the high asset quality and to withdraw otherwise.

This strategy is independent of the strategy of the uninformed depositors. However,

the depositor’s payoff is affected by the strategy of uninformed depositors: with

probability P [θ < θ∗(π)], the bank is illiquid such that the entire asset is liquidated

if the asset is low-quality, and the liquidation value is shared among all depositors.

As a result, the expected payoff of an informed depositor is lower the more likely a

preemptive run becomes - i.e., the more depositors become informed.

Similarly, the ex-ante expected utility of a depositor that chooses not to invest

ci to become informed when π∗ ≤ π̂ is:

EUU(π) =

∫ θ∗(π)

0

(p(θ)D+(1−p(θ))λRL )d θ+

∫ 1

θ∗(π)

(p(θ)RH+(1−p(θ))λRL − πD
1− π

) d θ.

25For the characterization of the endogenous information choice, we use notation similar to that

of Ahnert and Kakhbod (2017).
26If π∗ ∈ (π̂, λRL

D ), instead of a unique equilibrium with switching strategies, multiple equilibria

exist. If π∗ ≥ λRL

D , the bank is forced to liquidate the entire low-quality asset at t = 1 because

so many informed investors withdraw. Given Assumption 3, withdrawing at t = 1 is a dominant

strategy for uninformed investors in this case.
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The value of becoming informed is defined by the difference in expected utilities;

we denote this as the gain from information ∆(π) = EU I(π)− EUU(π), which can

be summarized as:

∆(π) =

∫ θ∗(π)

0

p(θ)(RH −D) d θ︸ ︷︷ ︸
Gain from remaining invested in H despite run

+

∫ 1

θ∗(π)

(1− p(θ))
(
D − λRL

1− π

)
d θ.︸ ︷︷ ︸

Gain from withdrawing when L and no run

(20)

The information gain consists of two parts. The first part reflects the fact that an

informed depositor does not withdraw from a bank that has a high-quality asset, even

though there is a run. The second part reflects the fact that an informed depositor

withdraws when the bank has a low-quality asset and there is no preemptive run.

The information benefit is to withdraw before uninformed depositors move and,

therefore, gain the difference between D and the liquidation value of the low-quality

asset.

Lemma 8 The gain ∆(π) from learning the actual asset quality at t = 1 is positive

and increasing in π for all feasible π ∈ (0, π̂).

Recalling from Assumption 1 that RL < D < λRH , it is clear that ∆(·) must

be positive. An increase in π has a direct positive effect on the gain to being

informed when the asset is low-quality in a good economic environment (θ high)

as the depositor can withdraw early: as more agents are informed, the term in the

second integral increases. This direct effect results from the fact that more informed

depositors withdrawing before the uninformed depositors withdraw decreases the

expected utility of the uninformed but does not directly affect the expected utility

of the individual informed depositors. Next, a higher proportion of informed agents

increases the critical threshold for preemptive runs. This affects the endpoints of

both integrals, but in opposite ways: as a preemptive run becomes more likely,

the information gain from not withdrawing from a bank with a high-quality asset,

despite a preemptive run, becomes more important than the gain of withdrawing

from a bank with a low-quality asset when no preemptive run takes place. We show

in the Appendix that this effect is also positive, as the increased gain from not

liquidating a high-quality asset outweighs the reduced gain from withdrawing when

the asset is low-quality. In other words, the information gain increases when there

is a higher likelihood of preemptive runs.

If a unique equilibrium exists, it is defined by a threshold information cost c̄

that is implicitly defined by the depositor i that is indifferent between becoming
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Figure 5: Endogenous Information Choice.

The parameters used are D = 1, RH = 1.5, RL = 0.9, and λ = 0.8.

informed or not. All depositors with a lower cost than c̄ choose to get informed, and

all depositors with a higher cost choose not to acquire information. For uniformly

distributed information costs, this threshold value in equilibrium must equal to the

proportion of informed depositors: π∗ = c̄. The equilibrium proportion of informed

depositors must, therefore, solve: ∆(π∗) = π∗.

We now demonstrate under what conditions such a fixed point may exist.

Lemma 9 If ∆(π̂) < π̂, there exists a fixed point solving ∆(π∗) = π∗ in π ∈ (0, π̂).

The condition for existence ∆(π̂) < π̂ implies that the expected information

gain if many depositors choose to become informed - i.e., π → π̂ - is lower than the

information acquisition cost of the marginal informed depositor. This is depicted in

Figure 3. There may be multiple intersections. A condition guaranteeing a unique

intersection is ∂∆(π)
∂π < 1 for all π.

The surplus created by a given number π of informed depositors is SI . A social

planner also considers the aggregate cost of becoming informed
∫ π

0
c dc and will

therefore choose:

πS = arg maxSI(π)−
∫ π

0

c dc. (21)

If a unique interior solution πS ∈ (0, π̂) exists, the surplus-maximizing proportion

of informed depositors is implicitly defined by dSI

dπ
|πS= πS.

34



Proposition 5 Assuming that there exists a unique interior proportion of informed

depositors that invest in information and a unique interior proportion of informed

depositors that maximize surplus (πS), depositors choose to overinvest in informa-

tion relative to the surplus-maximizing information choice.

The information benefit for individual depositors is strictly higher than the infor-

mation benefit for the surplus. The individual benefit has two components: a gain

from not liquidating the high-quality asset during a preemptive run and the first-

mover advantage of withdrawing from the low-quality asset first. This first-mover

advantage does not affect surplus and is, therefore, not taken into account by a

surplus maximizer. Moreover, depositors do not consider the effect of their decision

to become informed on the decisions of the other depositors to run preemptively on

the bank. This negative externality of more preemptive runs reduces surplus.

6 Conclusion

Many bank runs are characterized by heterogeneously informed agents and informa-

tion transmission. We demonstrate that depositor learning exacerbates panic-based

bank runs. The (real) option to learn from previous withdrawals leads to costly liq-

uidation in bad states, which increases the payoff of running ex-ante. And when a

fraction of depositors learn the bank’s asset quality early, the remaining depositors

have a fear of missing out, which also makes preemptive runs more likely. More

information may, thus, lead to more panic runs, and surplus may be non-monotonic

in the amount of information available.
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A Appendix

Proof of Lemma 1 (Decision of informed depositors when

asset is high-quality)

Denote the overall withdrawal before the asset matures by x ∈ [0, 1]. Knowing that

the high asset quality has realized, an informed depositor would have an incentive

to withdraw whenever D > min
[
RH−xDλ

(1−x)
, RH

]
or RH −D < x

(
D
λ
−D

)
. The right-

hand side is increasing in x. The highest feasible value is x = 1, resulting in the

requirement λ RH < D, which contradicts Assumption 1.

Proof of Lemma 2 (Decision of informed depositors when

asset is low-quality)

Denote E[N1] as a depositor’s expectation about how many other depositors with-

draw. If an informed depositor expects E[N1] > λRL
D

(Case (3) in Table 1), it follows

that the bank is forced into full liquidation at t = 1. Waiting yields a zero return

and is, therefore, strictly dominated by immediate withdrawal. If E[N1] < λRL
D

,

the informed depositor knows that immediate withdrawal yields D (neglecting the

externality on the bank’s solvency). From Lemma 3 cases (1) and (2), the depos-

itor forms expectations that waiting yields min
[
D, λRL−E[N1]D

(1−E[N1])

]
and is, therefore,

dominated by immediate withdrawal, as an indifferent depositor prefers immediate

consumption. As expectations, in equilibrium, have to match the actual withdrawal

behavior, it must hold that E[N1] = nU1 +π, and, hence, nI1 = π, which implies that

nI2 = nI3 = 0.
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Proof of Lemma 3 (Period 2 decision of uninformed deposi-

tors)

We begin by examining the inference problem of the uninformed depositors who

waited at t = 1 and now must decide to withdraw or wait at t = 2.

At t = 2, the uninformed depositor has two sources of information: the private

signal θi from t = 0 and the new information from observing the number of with-

drawals in t = 1. The uninformed depositor knows that at t = 1, (1) all informed

depositors had the dominant strategy to withdraw when the asset quality was low

and to wait when the asset quality was high; and (2) given that we posited the

existence of a threshold θ′, uninformed depositors withdrew if their private signal

was θi ≤ θ
′

and waited if their signal was θi > θ
′
.

Therefore, the number of withdrawals depended on the realization of the asset

quality, the realization of θ, and the private noise ε. If the asset quality is low, given

a threshold strategy of uninformed depositors, the number of withdrawals in t = 1

becomes a function of θ as summarized in equation (1). Similarly, the number of

withdrawals at t = 1 if the asset has high-quality is summarized in equation (2).

First, note that if there had been a realization of θ such that θ + ε < θ′, then

all uninformed depositors would have withdrawn at t = 1, and there would be no

uninformed depositors left at t = 2 to make a withdrawal decision.

Second, note that if there had been a realization of θ such that θ−ε > θ′, then all

uninformed depositors would have waited at t = 1. In this case, if the asset was low-

quality, there would have been π withdrawals (n1(θ, θ′, L) = π), and if the asset was

high-quality, there would have been no withdrawals (n1(θ, θ′, H) = 0). Therefore,

the asset quality would be inferred perfectly. As in the case of the informed depositor

(Lemmas 1 and 2), the uninformed depositor at t = 2 would then withdraw if the

asset was low-quality and wait if the asset was high-quality.

An inference problem may arise if θ′ − ε < θ < θ′ + ε because the low-quality

asset results in the same amount of withdrawals as the high-quality asset.

In particular, for a given number of withdrawals ñ1 that satisfy θ′−ε < θ < θ′+ε,

there exist fundamentals θL ∈ [θ′ − ε, θ′ + ε] and θH ∈ [θ′ − ε, θ′ + ε] such that

ñ1 = n1(θL, θ
′, L) = n1(θH , θ

′, H). Solving for the realization θL gives:

θH = θL − 2ε
π

1− π
.

The withdrawal amounts for the low-quality asset and high-quality asset are parallel

decreasing functions of θ. This is depicted in Figure 6. The distance between the
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Figure 6: Number of withdrawals for the low asset quality and high asset quality as

a function of the fundamental θ with an exogenous threshold θ′ = 0.5, π = 0.3 and

ε = 0.01

two realizations that result in the same withdrawal amount is a constant: 2ε π
1−π .

Our first result is that if π ≥ 1/2, the inference problem vanishes entirely. When

π > 1/2, the difference between θL and θH is 2ε π
1−π > 2ε. As this is larger than 2ε,

it cannot be the case that both θL and θH are in the interval [θ′ − ε, θ′ + ε]. The

uninformed depositor can then back out the quality of the asset from the number of

withdrawals (and will have a dominant strategy of withdrawing if the asset quality

is L and waiting if the asset quality is H).

Now consider the case in which π < 1/2.

The fundamental θH must be in the interval (θ′ − ε, θ′ + ε − 2επ
1−π ), where the

term θ′ + ε− 2επ
1−π is derived by setting n1(θH , θ

′, H) equal to π (see Figure 6 for an

illustration). The fundamental θL must then lie in the interval (θ′− ε+ 2επ
1−π , θ

′+ ε),

where the term θ′ − ε+ 2επ
1−π is derived by setting n1(θL, θ

′, L) equal to 1− π.

Before observing the number of withdrawals at t = 1, uninformed depositor i with

signal θi believed that θ was uniformly distributed over the interval [θi−ε, θi+ε]. We

note that the only uninformed depositors remaining to make a decision at t = 2 are

depositors with signals θi > θ′, as the others would have withdrawn at t = 1. This

implies that if θH +ε < θi, there is once again no inference problem, as the depositor

will learn that the quality of the asset is L. If θi < θH + ε, then the probability

that the fundamental is θH is equal to the probability that the fundamental is θL.

Therefore, depositor i’s best estimate of θ is equal to 1
2
θH + 1

2
θL.

To summarize, when θ ∈ [θ′ − ε, θ′ + ε], a given number of withdrawals ñ1 can

arise only from two possible draws of θ, θH and θL such that ñ1 = n1(θL, θ
′, L) =
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n1(θH , θ
′, H). For uninformed depositors with a signal in the interval (θ′, θH + ε),

the best estimate of θ is equal to 1
2
θH + 1

2
θL. Their best estimate of the probability

that the asset is high-quality is, therefore, P (θL) = 1
2
p(θL − 2ε π

1−π ) + 1
2
p(θL).

We denote the probability that uninformed depositors have a signal above θH +ε

(which we will write as θL + ε1−3π
1−π ) as 1 − F (θL + ε1−3π

1−π ), where F (·) is a cdf that

we will elaborate on below. We denote the probability that uninformed depositors

have a signal in the interval (θ′, θL + ε1−3π
1−π ) as F (θL + ε1−3π

1−π )− F (θ′).

We make two observations. First, if θL + ε1−3π
1−π < θ′, all uninformed depositors

have inferred the true asset quality. Second, the only situation in which we will

need to use the cdf F (·) is conditioning on the fundamental being L (because that is

the only state in which the number of depositors that withdraw matters to payoffs).

In that case, the true fundamental is θL, and uninformed depositors have signals

uniformly distributed over [θL− ε, θL + ε] such that we can write 1−F (θL + ε1−3π
1−π )

as
θL+ε−(θL+ε 1−3π

1−π )

2ε
, which simplifies to π

1−π . Hence, an uninformed depositor with a

signal that does not allow him to infer the true state expects that a proportion of
π

1−π other remaining uninformed depositors receive a signal above θH +ε. Therefore,

the uninformed depositor expects that (1 − n1(θL, θ
′, L)) π

1−π withdraw at t = 2 if

the asset quality is low because they received a signal above θH + ε.

The expected payoff of uninformed depositors with a signal in the interval (θ′, θL+

ε1−3π
1−π ) from withdrawing at t = 2 is:

P (θL)D + (1− P (θL)) min

[
D,

λRL − n1(θL, θ
′, L)D

(1− n1(θL, θ′, L)) π
1−π + n2

]
,

where n2 indicates the expected number of other uninformed depositors with a

signal in the interval (θ′, θL + ε1−3π
1−π ) who will withdraw.

And the expected payoff of waiting is:

P (θL)RH+(1−P (θL)) max

[
λRL − (n1(θL, θ

′, L) + (1− n1(θL, θ
′, L)) π

1−π + n2)D

1− (n1(θL, θ′, L) + (1− n1(θL, θ′, L)) π
1−π + n2)

, 0

]
.

The uninformed depositor who has not learned the asset quality and is thinking

about waiting must consider (i) the number of withdrawals from t = 1 depositors

(n1(θL, θ
′, L)) and t = 2 depositors who have signals that allow them to infer that

the asset quality is low ((1−n1(θL, θ
′, L)) π

1−π ); and (ii) the expected number of other
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uninformed depositors who have not learned the asset quality that will withdraw.

For now, we define the first amount (point (i)):

n1(θL, θ
′, L) + (1− n1(θL, θ

′, L))
π

1− π
(A22)

= π + (1− π)

(
1

2
+
θ′ − θL

2ε

)
+ (1− (π + (1− π)

(
1

2
+
θ′ − θL

2ε

)
))

π

1− π

=
1

2
+ π + (1− 2π)

(
θ′ − θL

2ε

)
The largest possible θL sets θL + ε1−3π

1−π = θ′ + ε, which, after rewriting, is θL =

θ′+ ε 2π
1−π . So, the lowest value that the number of withdrawals can take in equation

(A22) is:

1

2
+

π2

1− π
.

So, no matter how many informed depositors there are (as long as there are not

zero), the minimum number of withdrawals will be 1
2

when the asset quality is L, as

many of the uninformed depositors will infer the asset quality from the withdrawals

at t = 1.

Notice, also, that using the largest possible θL maximizes P (θL).

If we assume that the expected payoff from waiting is lower than the expected

payoff from withdrawing at (i) the largest possible θL (θ′ + ε 2π
1−π ); (ii) the lowest

possible number of t = 1 withdrawals plus t = 2 withdrawals from uninformed

depositors who have inferred the state (1
2
); and (iii) the lowest possible number of

uninformed depositors who have not inferred the state at t = 2 withdrawing (zero),

we get:

P (θ′ + ε
2π

1− π
)RH + (1− P (θ′ + ε

2π

1− π
))
λRL − 1

2
D

1
2

< D. (A23)

Lastly, we will demonstrate in Lemma 6 that the threshold θ′ must be lower than

the cutoff for the upper dominance region θ̄ = p−1
(

D
RH

)
. Therefore, we can modify

the condition in Equation A23 to be:

P (p−1

(
D

RH

)
+ ε

2π

1− π
)RH + (1− P (p−1

(
D

RH

)
+ ε

2π

1− π
))
λRL − 1

2
D

1
2

< D.

This implies that all remaining uninformed depositors at t = 2 who did not infer

the asset quality withdraw. We label this condition as Assumption 4 in the text.
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Derivation of payoff for uninformed depositors at t = 1 waiting until

t = 2:

Conditional on the asset quality being L, Assumption 4 and the above analysis

state that all remaining depositors will withdraw at t = 2.

Conditional on the asset quality being H, the above analysis points out several

facts for depositor i’s decision. If depositor i were to wait at t = 2, her payoff would

be RH . If depositor i were to withdraw at t = 2, her payoff would be D. Firstly, if

θ < θ′ − ε or if θ > θ′ + ε, depositor i would learn the state perfectly at t = 2 and

wait. Secondly, if θ ∈ [θ′ − ε, θ′ + ε], then depositor i would be uncertain about the

state, and, from Assumption 4, would withdraw.

We denote the probability that θ ∈ [θ′ − ε, θ′ + ε] given that i’s signal is θi, as

Pr(θ′ − ε < θ < θ′ + ε|θi). We could write this out explicitly given the assumptions

that θ and εi are uniformly distributed, but there is no need to since, when we take

ε to zero, this probability must be approaching zero as well.

Therefore, an uninformed depositor with signal θi can form expectations about

her payoff from waiting:

E[p(θi)][1− Pr(θ′ − ε < θ < θ′ + ε|θi)]RH + Pr(θ′ − ε < θ < θ′ + ε|θi)D

+(1− E[p(θi)]) max

[
λRL −N1(L)D

1−N1(L)
, 0

]
Demonstrating that Assumption 4 does not affect the results:

One might wonder whether the results of the paper depend on Assumption 4.

We now demonstrate that they do not.

Consider the opposite assumption (call it Assumption 4’): all uninformed depos-

itors who do not learn the state at t = 2 wait until t = 3 to withdraw.

Let us derive the payoff of an uninformed depositor at t = 1 who decides to wait

until t = 2.

Now, conditional on the asset quality being H and given Assumption 4’, the

uninformed depositor will either learn the true state (in which case the depositor

will wait) or be uncertain (in which case the depositor will wait).

Conditional on the asset quality being L, if depositor i were to learn the true

state, she would withdraw. If depositor i were uncertain about the state, Assumption

4’ states that she would wait.

Once again, we denote the probability that θ ∈ [θ′−ε, θ′+ε] given that i’s signal

is θi, as q(θi, θ
′, ε) = Pr(θ′ − ε < θ < θ′ + ε|θi).
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Therefore, an uninformed depositor with signal θi can form expectations about

her payoff from waiting:

E[p(θi)]RH + (1− E[p(θi)]){[1− q(θi, θ′, ε)] max

[
λRL −N1(L)D

[1− q(θi, θ′, ε)](1−N1(L))
, 0

]
+q(θi, θ

′, ε) max

[
λRL − (N1(L) + [1− Pr(θ′ − ε < θ < θ′ + ε|θi)](1−N1(L)))D

q(θi, θ′, ε)(1−N1(L))
, 0

]
}

= E[p(θi)]RH + (1− E[p(θi)]){max

[
λRL −N1(L)D

(1−N1(L))
, 0

]
+ max

[
λRL − (N1(L) + [1− q(θi, θ′, ε)](1−N1(L)))D

(1−N1(L))
, 0

]
}.

This would replace Equation 4.

We now rewrite the uninformed depositor’s utility differential between waiting

and immediate withdrawal, where we replace N1(L) with n1(θ, θ′, L):

ν(θ, n1(θ, θ′, L)) =

p(θ)(RH −D) + (1− p(θ))2(λRL−N1(L)D)
(1−N1(L))

if λRL
q(θi,θ′,ε)D

− 1−q(θi,θ′,ε)
q(θi,θ′,ε)

> n1(θ, θ′, L) ≥ π

−[2− q(θi, θ′, ε)]D)

p(θ)(RH −D) if λRL
D

> n1(θ, θ′, L) ≥ λRL
q(θi,θ′,ε)D

− 1−q(θi,θ′,ε)
q(θi,θ′,ε)

+(1− p(θ))(λRL−n1(θ,θ′,L)D
(1−n1(θ,θ′,L))

−D)

p(θ)(RH −D) if 1 ≥ n1(θ, θ′, L) ≥ λRL
D

−(1− p(θ)) λRL
n1(θ,θ′ ,L)

Notice that the interval λRL
q(θi,θ′,ε)D

− 1−q(θi,θ′,ε)
q(θi,θ′,ε)

> n1(θ, θ′, L) ≥ π disappears as ε

approaches zero. This implies that the key equation that drives our results (equation

6) does not change.

Therefore, Assumption 4 does not affect the analysis, as we study the limiting

case. Assumption 4 allows us to write the payoffs clearly so that we can take the

limit appropriately.

Proof of Lemma 4 (Threshold when uninformed depositors

do not receive private signals)

Here, uninformed depositors do not receive private signals. We define the consump-

tion of an uninformed depositor as cUt (Nt(L), Q), where t ∈ {1, 2}and Q ∈ {H,L}.
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As in the rest of the text, we define the unconditional ex-ante probability that the

asset quality is high by p.

For any realized π, the uninformed depositor has to decide to withdraw immedi-

ately or wait. Assumption 2 guarantees that E[cU2 (0, Q)] > E[cU1 (0, Q)]. If very few

depositors withdraw when the asset is low-quality, waiting gives a higher expected

payoff than withdrawing early. Both utilities weakly decrease with the number of

expected withdrawals. Before the bank becomes illiquid(N1(L) < λRL
D

), the utility

of waiting E[cU2 (·, Q)] is continuously decreasing, while E[cU1 (·, Q)] is a constant until

illiquidity. At the point of illiquidity, E[cU2 (λRL
D
, Q)] = pRH < E[cU1 (λRL

D
, Q)] = D,

given Assumption 3. There must exist a threshold N1(L) at which both utilities are

equal. This threshold is unique: after the bank is illiquid, E[cU2 (·, Q)] = pRH is con-

stant and E[cU1 (·, Q)] is continuously decreasing until E[cU1 (1, Q)] = pD+(1−p)λRL.

Assumption 3 guarantees that E[cU1 (1, Q)] > E[cU2 (1, Q)]. There is a unique thresh-

old N̂1 for which an uninformed depositor is indifferent between withdrawing and

waiting and the bank is still liquid. This threshold is implicitly defined by:

pRH + (1− p)

[
λRL − N̂1D

1− N̂1

]
= D.

Solving gives:

N̂1 =
pRH + (1− p)λRl −D

p(RH −D)
.

Proof of Lemma 5 (Equilibria when uninformed depositors

do not receive private signals)

We continue to use the notation from the proof of Lemma 4.

The equilibrium is defined as a number of uninformed withdrawals nU1 (where we

simplify our notation to nU1 = nU1 (H) = nU1 (L) since uninformed depositors do not

observe/infer the quality of the asset at any point), given the dominant strategies

of π informed depositors, for which it is true that nU1 +π = N1(L), and depositor i’s

expected payoff is maximized for all i. We show that two equilibria exist for π < N̂1:

(1) Consider an uninformed depositor expecting nU1 = 0. Immediate withdrawal

implies that E[cU1 (N1(L), Q)] = D given π < λRL
D

which always holds for π < N̂1 .

Waiting yields E[cU2 (N1(L), Q)] = pRH + (1− p)λRL−πD
1−π . Thus, E[cU1 (N1(L), Q)] <

E[cU2 (N1(L), Q)] for π < N̂1, implying that nU1 = 0. and, indeed, no uninformed

depositor has an incentive to deviate.
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(2) Consider an uninformed depositor expecting nU1 = 1 − π. Immediate with-

drawal implies that E[cU1 (N1(L), Q)] = pD+(1−p)λRL. Waiting yieldsE[cU2 (N1(L), Q)] =

pRH . Thus, E[cU1 (N1(L), Q)] > E[cU2 (N1(L), Q)] in the assumed parameter range,

implying that nU1 = 1 − π, and, indeed, no uninformed depositor has an incentive

to deviate.

There is a possible mixed strategy equilibrium in which uninformed depositors

withdraw with positive probability. However, given that we have assumed that if a

depositor is indifferent between withdrawing in two periods, the depositor withdraws

earlier, this is not an equilibrium.

Finally, note that if π > N̂1, E[cU1 (N1(L), Q)] > E[cU2 (N1(L), Q)], and all unin-

formed depositors withdraw, implying that nU1 = 1− π.

Proof of Lemma 6 (Upper and lower dominance regions)

We first have to show that there are extreme regions of the fundamental for which

the uninformed depositor’s actions are independent of beliefs about other depositors’

behavior. For a given number of informed depositors π ∈ (0, λRL
D

), an uninformed

depositor is better off by withdrawing immediately, for any beliefs about the other

uninformed depositors’ actions, if D > E[p(θi)][1−q(θi, θ′, ε)RH+q(θi, θ
′, ε)D]+(1−

E[p(θi)]
λRL−πD

1−π . This condition implicitly defines a lower bound of the fundamental

realization at equality θ(π). Even if all other uninformed depositors decide to not

withdraw, a depositor is better off by withdrawing immediately whenever θi ≤
θ(π) − ε. The interval [0, θ(π)] then defines the lower dominance region. As the

difference between the fundamental and an observed signal in our setup is at most

ε, an uninformed depositor will withdraw early, whenever observing θi ≤ θ(π) − ε.
To guarantee the existence of the lower dominance region, we assume that ε is

sufficiently small - i.e., that θ(π) > 2ε. Since we will assume in our analysis that ε

is arbitrarily close to 0, it is sufficient to assume that θ(π) > 0, which holds for all

feasible π under our assumptions.27 For lim ε → 0, we can explicitly solve for the

lower dominance region:

θ(π̂(γ))ε→0 =
D − λRL

RH(1− π̂) +Dπ̂ − λRL

. (A24)

27For ε→ 0 also, the probability of not being able to infer the asset quality in t = 1 q(θi, θ
′, ε)→

0. As θ(π) is increasing in π, inserting the lowest possible value π → 0 shows that a lower dominance

region exists as limπ→0 θ(π) = D−RLλ
RH−RLλ

, which is strictly greater than zero, given our assumptions.
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Similarly, for very high fundamentals, there exists a region in which an unin-

formed depositor would prefer to wait, independent of other depositors’ actions.

Waiting is the preferred action if the expected benefit is positive, even though all

other uninformed depositors withdraw such that the low-asset-quality bank is liq-

uidated. In this case, the depositor who decides to wait receives a positive return

only from the high asset quality, i.e., D < E[p(θi)][1− q(θi, θ′, ε)RH + q(θi, θ
′, ε)D],

implicitly defining the θ at equality. Letting ε→ 0, we can also explicitly solve for

the upper dominance region:

θ = p−1

(
D

RH

)
. (A25)

The realizations of the fundamental in the range [θ, 1] define the upper dominance

region.

Note that the lower dominance region is increasing in π, while the upper dom-

inance region does not change with π . As lim
π→λRL

D

θ(π) = θ, both conditions

become equal such that the set of signal realizations that result in multiple equilib-

ria becomes empty.

Proof of Proposition 1 (Unique equilibrium threshold)

Assume that all uninformed depositors have the same threshold strategy, character-

ized by a threshold θ′, where uninformed depositors withdraw at all signals below

θ′ and wait at all signals above θ′. This implies that the aggregate withdrawals also

follow the threshold, as summarized in equations (1) and (2). We can then define

the expected difference in utility for depositor i, given the signal θi and the threshold

θ′ :

∆(θi, θ
′) =

1

2ε

∫ θi+ε

θi−ε
ν(θ, n1(θ, θ′, L))dθ.

Note that ∆(θi, θ
′) is continuous and increasing in θi and θ′.

In a threshold equilibrium, an uninformed depositor prefers to withdraw when

observing θi < θ′ and to wait if θi > θ′. Given the dominance regions, we know

that ∆(θ′, θ′) is negative for sure if θ′ ≤ θ(π)− ε and positive for sure if θ′ ≥ θ + ε

. As ∆(θ′, θ′) is continuous and increasing in θ′, there must exist a signal θ∗ where

it holds that ∆(θ∗, θ∗) = 0 and this value must be unique. As the depositor that

obtains signal θi = θ∗ expects that ∆(θ∗, θ∗) = 0, the depositor is, indeed, indifferent

between withdrawing and waiting.
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We have, therefore, identified a unique candidate for a threshold equilibrium.For

the remainder of the proof that any equilibrium must be a threshold equilibrium,

we refer the reader to the proof of Goldstein and Pauzner (2005).

Proof of Lemma 7 (Range for which strategic complemen-

tarity exists)

Define, as before, γ = λRL
D

. First, we show that p(θ∗(0)) > p(θ(0)). This can be

simplified to φ(0) > 1− γ. A sufficient (though not necessary) condition for this to

hold is the parameter restriction γ > 1
2
, which is implied by our Assumptions 2 and

3. To see this, remember that the project must have a positive net expected value

pRH + (1−p)λRL > D, which can be written as D− (1−p)λRL < pRH . The single

crossing property requires that pD+(1−p)λRL > pRH . Combining both conditions

requires: pD+ (1−p)λRL > D− (1−p)λRL, which can be simplified to 2λRL > D.

Hence, for π → 0, the threshold value θ∗(π) is above the lower dominance region

cutoff . For small π, strategic complementarity among agents exists and leads to self-

fulfilling runs. However, as π increases, the strategic complementarity becomes less

important. As both functions are continuous in π, we can solve for the intersection

p(θ∗(π)) = p(θ(π)). After solving, this is π̂(γ) = 1− e(1− γ)γ
γ

1−γ , where e is Euler’s

number .

We will now prove that π̂(γ) < γ ∀γ ∈ (1/2, 1) in a series of steps.

Step 1: We show that π̂(γ) is increasing in γ ∈ (1/2, 1). This is directly from
∂π̂(γ)
∂γ

= − eγ
γ

1−γ ln(γ)
1−γ , which is positive for all γ < 1.

Step 2: We demonstrate that ∂2π̂(γ)
∂γ2

is negative for γ ∈ (1/2, 1).The term:

∂2π̂(γ)

∂γ2
= −eγ

γ
1−γ−1

1− γ
− eγ

γ
1−γ ln(γ)

(1− γ)2
−
eγ

γ
1−γ ln(γ)

(
1

1−γ +
(

γ
(1−γ)2

+ 1
1−γ

)
ln(γ)

)
1− γ

=
eγ

1
1−γ−2 ((γ − 1)2 + γ ln(γ)(−2γ + ln(γ) + 2))

(γ − 1)3

Define f(γ) ≡ (1−γ)2+γ ln(γ)(2(1−γ)+ln(γ)). Then, the term ∂2π̂(γ)
∂γ2

is negative

if f(γ) > 0. The slope of f(γ) is ∂f(γ)
∂γ

= ln(γ)(4(1 − γ) + ln(γ)); the term ln(γ) is

clearly negative. We now show that the second term is positive. The derivative of

the second term is negative: ∂(4(1−γ)+ln(γ))
∂γ

= −4 + 1/γ < 0↔ γ > 1/4. The second

term, evaluated at γ = 1, is equal to 0. Therefore, the term 4(1 − γ) + ln(γ) is
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positive, and, thus, the derivative ∂f(γ)
∂γ

< 0 ∀γ ∈ (1/2, 1). Note that f(1) = 0, so,

indeed, f(γ) > 0 ∀γ ∈ (1/2, 1). This implies that ∂2π̂(γ)
∂γ2

< 0 ∀γ ∈ (1/2, 1).

Step 3: We note the following facts about the endpoints. First, at γ = 1
2
,

π̂(γ) = 1− e
4
< 1

2
, so π̂(1

2
) < 1

2
. Second, at γ = 1, π̂(γ) = 1, so π̂(1) = 1. The slope

∂π̂(γ)
∂γ

also approaches 1 as γ approaches 1. To see this,we first apply the product

rule to the slope:

lim
γ−>1

∂π̂(γ)

∂γ
= lim

γ−>1
−eγ

γ
1−γ ln(γ)

1− γ
(A26)

= e lim
γ−>1

(
γ

γ
1−γ

)
lim
γ−>1

(
ln(γ)

γ − 1

)
.

Applying l’Hôpital’s rule to the third term:

lim
γ−>1

(
ln(γ)

γ − 1

)
= lim

γ−>1

d
dγ

ln(γ)
d
dγ

(γ − 1)
= lim

γ−>1

1
γ

1
= lim

γ−>1

1

γ
= 1.

We can now rewrite Eq (A26) as:

lim
γ−>1

∂π̂(γ)

∂γ
= e lim

γ−>1
γ

γ
1−γ .

Rewriting using the exponential of a logarithm:

=e lim
γ−>1

eln(γ
γ

1−γ )

=e lim
γ−>1

e
γ ln(γ)
1−γ

=e ∗ elimγ−>1
γ ln(γ)
1−γ .

We now apply l’Hôpital’s rule again:

= e ∗ elimγ−>1
ln(γ)+ 1

γ
−1

= 1.

The slope approaches 1 from above. Hence, the term π̂(γ) < γ for all γ ∈ (1/2, 1).
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Proof of Proposition 2 (Threshold increasing in π )

Consider the derivative with respect to π. To save on notation, we use the definition

γ = λRL
D

.

∂p(θ∗)|ε→0

∂π
=

(RH
D
− 1) (φ(π)− (1− γ))(

φ(π) + (1− π)(RH
D
− 1)

)2 (A27)

The sign of the slope is determined by the sign of the numerator - i.e., the sign of

φ(π)−(1−γ). This term is strictly decreasing in π as: ∂φ(π)
∂π

= − 1−γ
1−π < 0 ∀ π ∈ (0, γ)

where γ ≤ 1. Moreover, the numerator is positive for small π - i.e., we can show

that for π = 0, it must hold that φ(0) > (1− γ). In the proof of Lemma 7, we show

that this is implied by our single crossing property. Hence, for π = 0, it must hold

that φ(0) > (1− γ), which implies that
∂p(θ)∗|π→0

∂π
> 0 is strictly positive for small π.

As the numerator is a continuous function, we have to identify the critical π

for which φ(π) = (1 − γ). As the right-hand side is a constant and φ(π) is de-

creasing in π over the feasible parameter space, π has to be unique. Solving

φ(π) = (1 − γ) for π gives π(γ) = 1 − e(1 − γ)γ
γ
γ−1 , which is equal to π̂: the

point at which the strategic complementarity among agents vanishes - i.e. where

p(θ∗(π̂)) = p(θ). Intuitively, as long as there is strategic complementarity among

agents, the threshold for uninformed depositors to run increases with more informed

depositors until π̂ . The slope is zero at the point where no further strategic

complementarity among agents exists - i.e., where p(θ∗(π̂)) = p(θ). Therefore,

φ(π) > (1− γ)∀π ∈ (0, π̂(γ))⇔ ∂p(θ∗)|ε→0

∂π
> 0 ∀π ∈ (0, π̂(γ)).

Proof of Proposition 3 (Comparative statics)

We first write the critical threshold in terms of λ:

p(θ∗) =
φ(π, λRL

D
)

(1− π)(RH
D
− 1) + φ(π, λRL

D
)
, (A28)

where φ(π, λRL
D

) = −λRL
D

ln
(
λRL
D

)
−(1−λRL

D
)
(
ln
(
1− λRL

D

)
− ln (1− π)

)
> 0∀ 0 ≤

π < λRL
D
< 1.

The derivative with respect to λ is:

∂p(θ∗)

∂λ
=

RL
D

(1− π)(RH
D
− 1) ln

(
1−λRL

D

(1−π)λ
RL
D

)
(
(1− π)(RH

D
− 1) + φ(π)

)2 . (A29)
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The sign of the derivative depends on the sign of the function ln

(
1−λRL

D

(1−π)λ
RL
D

)
. The

sign is positive, whenever (1−λRL
D

) > λRL
D

(1−π) and negative otherwise. Therefore,

the threshold value is decreasing in λRL
D

if π is small (1−π > D−λRL
λ
RL
D

) and increasing

otherwise. Note that our assumptions imply that λRL
D
> 1

2
, as shown in Proposition

2. Moreover, it holds that 1− π̂ > D−λRL
λ
RL
D

. Hence, the sign of the derivative switches

at 1− π = D−λRL
λ
RL
D

.

Proof of Proposition 4 (No information threshold vs. main

model)

We have to show that p(θNI) < p(θ∗(0)) since both p() is increasing in θ and θ∗() is

increasing in π. Using equations 12 and 7, this can be rewritten as:

φNI

φNI + λ
(
RH
D
− 1
) < φ(0)

φ(0) +
(
RH
D
− 1
) , (A30)

with φNI = −λγ ln(γ) − (1 − γ) ln(1 − γ) − (1 − λ)γ and φ(0) = −γ ln(γ) − (1 −
γ) ln(1− γ) where γ = λRL

D
. This can be simplified to:

φNI

φ(0)
< λ

−λγ ln(γ)− (1− γ) ln(1− γ)− (1− λ)γ < −λγ ln(γ)− λ(1− γ) ln(1− γ)

−(1− λ)γ < (1− λ)(1− γ) ln(1− γ)
γ

1− γ
> ln(1− γ).

Defining g(γ) = γ
1−γ−ln(1−γ) it is straightforward to show that g(γ) > 0 ∀γ ∈ (0, 1).

Proof of Lemma 8 (Incentive to acquire information increases

in π )

As RH > D > λRL by Assumption 1, it must hold that ∆(θ∗(0), 0) > 0. The slope

of ∆(π) can be characterized as the following:

∂∆(θ∗(π), π)

∂π
=

∫ 1

θ∗(π)

(1− p(θ))D − λRL

(1− π)2
dθ

+
∂θ∗(π)

∂π

(
p(θ∗(π))(RH −D)− (1− p(θ∗(π))

D − λRL

(1− π)

)
> 0.

(A31)
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The first term of the slope is always positive. We now show that the second term

is positive. First, from Proposition 2, the critical threshold value increases in the

proportion of informed depositors ∂θ∗(π)
∂π

> 0. Second, the term in brackets strictly

increases in p(θ∗(π)). Third, we know, also from Proposition 2, that p(θ∗(π)) >

p(θ(π)) for any π ∈ (0, π̂(γ)). Inserting p(θ(π)), defined by equation (A24), into the

term in brackets gives zero. Hence, the term in brackets must be strictly positive

for all p(θ∗(π)) > p(θ(π)).

Proof of Lemma 9 (Equilibrium information acquisition)

First, note that ∆(0) > 0. From Lemma 8, we know that ∆(·) is continuous and

increasing for all π ∈ (0, π̂(γ)). This implies, that if a fixed point exists, it is unique

if ∂∆(π)
∂π

< 1 for all π ∈ (0, π̂(γ)).

However, to show that a fixed point exists, we need to assume only a much

weaker condition:

∆(π̂(γ)) < π̂(γ). (A32)

We now demonstrate that parameters exist for which Equation A32 holds. If we

assume that p(θ(π)) = θ(π), we can write out ∆(π) as:

∆(π) =
1

2
RHθ(π)2 − 1

2
Dθ(π)2 +

(1− θ(π))2(D − λRL)

2(1− π)
. (A33)

We know that for π = π̂, the following holds:

p(θ∗(π̂(γ))) = p(θ(π̂(γ)))⇔ θ∗(π̂(γ)) = θ(π̂(γ)).

where θ(π̂(γ))ε→0 as defined in Equation A24, where q(θi, θ
′, ε) → 0 as ε → 0.

Substituting θ(π̂(γ))ε→0 into Equation A33 and simplifying gives:

∆(π̂) =
RH −D

2

(D − λRL)2

(RH(1− π̂) +Dπ̂ − λRL)2
+

(D − λRL)
(

1− D−λRL
RH(1−π̂)+Dπ̂−λRL

)2

2(1− π̂)
(A34)

=
(RH −D)

2
θ(π̂(γ))ε→0

We can write the sufficient condition for an existence of the fixed point as

RH
D
− 1

2

1− γ
RH
D

(1− π̂(γ)) + π̂(γ)− γ
< π̂(γ).
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For γ ∈ (1/2, 1), we will now demonstrate that this condition always holds if RH
D

is not too high (which is excluded by our Assumption 3). Recall that π̂(γ) =

1− e(1− γ)γ
γ

1−γ .

First, note that the left-hand side of this condition increases in γ: The slope is
eγ

γ
γ−1 (

RH
D
−1)2(γ−ln(γ)−1)

2(γ−1)2
(
γ

γ
γ−1 +e(

RH
D
−1)

)2 , which is positive, iff the term γ − ln(γ) − 1 > 0. The term

γ − ln(γ) − 1 is positive for γ ∈ (1/2, 1), as it is (i) decreasing in γ for γ < 1, and

(ii) equal to zero at γ = 1. This implies that ∆(π̂(γ)) is increasing in γ.

The term approaches

lim
γ−>1

∆(π̂(γ)) =
RH
D
− 1

2
lim
γ−>1

1− γ
RH
D

(1− π̂(γ)) + π̂(γ)− γ
.

Inserting π̂(γ) and simplifying, we get:

lim
γ−>1

∆(π̂(γ)) =
RH
D
− 1

2
lim
γ−>1

1

eγ
γ

1−γ (RH
D
− 1) + 1

.

Consider only the second term (the one with a limit). We take the exponential of

the natural logarithm:

lim
γ−>1

exp

(
ln

(
1

eγ
γ

1−γ (RH
D
− 1) + 1

))

= lim
γ−>1

exp

(
− ln

(
eγ

γ
1−γ (

RH

D
− 1) + 1

))
= exp

(
− lim

γ−>1
ln

(
eγ

γ
1−γ (

RH

D
− 1) + 1

))
= exp

(
− ln

(
e(
RH

D
− 1) lim

γ−>1

(
γ

γ
1−γ

)
+ 1

))
Once again applying an exponential of a logarithm:

= exp

(
− ln

(
e(
RH

D
− 1) lim

γ−>1
exp(ln(γ

γ
1−γ )) + 1

))
= exp

(
− ln

(
e(
RH

D
− 1) lim

γ−>1
exp

(
γ

1− γ
ln(γ)

)
+ 1

))
= exp

(
− ln

(
e(
RH

D
− 1) exp

(
− lim

γ−>1

ln(γ)

γ − 1

)
+ 1

))
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Applying l’Hôpital’s rule gives us that:

lim
γ−>1

ln(γ)

γ − 1
= lim

γ−>1

d
dγ

ln(γ)
d
dγ

(γ − 1)
= lim

γ−>1

1

γ
= 1.

We now rewrite the expression:

= exp

(
− ln

(
e(
RH

D
− 1) exp (−1) + 1

))
= exp

(
− ln

(
e(RH

D
− 1)

e
+ 1

))
=

1
RH
D

Inserting in the original term, we get:

lim
γ−>1

∆(π̂(γ)) =
RH
D
− 1

2

1
RH
D

This is the highest possible value for the information rent within the parameter

space. At the same time π̂, is also increasing in γ. The lowest possible value that π̂(γ)

can take is limγ−>1/2 π̂(γ) = 1− e
4

= 0.32043. This is greater than the highest possible

information rent - i.e.,limγ−>1 ∆(π̂(γ)) < limγ−>1/2 π̂(γ), if RH
D
< 2

e−2
= 2.78442.

Proof of Proposition 5 (Overinvestment in information ac-

quisition)

The endogenous information choice results in π∗ implicitly defined by

∫ θ∗(π)

0

p(θ)(RH −D) d θ︸ ︷︷ ︸
+

+

∫ 1

θ∗(π)

(1− p(θ))
(
D − λRL

1− π

)
d θ︸ ︷︷ ︸

+

= π. (A35)

Both terms on the left-hand side are positive, and the left-hand side is increasing in

π (this was proven in Lemma (8)).

The surplus-optimizing proportion of informed depositors is implicitly defined

by ∂SI

∂π
= π. We can write:

D

(
1− λ
λ

)(∫ θ∗(π)

0

p(θ) dθ − (1− π)p(θ∗(π))
∂p(θ∗(π))

∂π

)
= π (A36)
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∫ θ∗(π)

0

p(θ)D

(
1− λ
λ

)
dθ︸ ︷︷ ︸

+

− (1− π)D

(
1− λ
λ

)
p(θ∗(π))

∂p(θ∗(π))

∂π︸ ︷︷ ︸
+

= π. (A37)

The first term on the left-hand side is positive and the second positive term is

subtracted. Notice that the right-hand sides of the endogenous choice (Eq. A35)

and the surplus maximization (Eq. A37) are both equal to π . We will now show

that the left-hand side that implicitly defines the surplus maximization is always

smaller than the left-hand side of the the endogenous choice for the same π. The

first term in the equations can be compared as follows:∫ θ∗(π)

0

p(θ)(RH −D) d θ ≥
∫ θ∗(π)

0

p(θ)D

(
1− λ
λ

)
dθ

because point-wise:

(RH −D) ≥ D

(
1− λ
λ

)
λRH ≥ D

This strictly holds under Assumption 1.

As the first term of the endogenous choice equation is strictly greater than the

first term of the surplus optimal choice, adding a positive term in the former and

subtracting a positive term in the latter reinforces the inequality for any π. As a

result, any endogenous choice solution π∗ > πS results in a strictly higher proportion

of depositors than a surplus-optimal choice. The agents overinvest in information

from a surplus perspective.
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B Internet Appendix

The Optimal Deposit Contract

We now add some features to our model from Calomiris and Kahn (1991) and

examine the optimal deposit contract.28 The optimal deposit contract consists of a

short-term rate D at t = 1 and t = 2 and a long-term payout ρ > D.29 We show that

there exist parameter spaces such that the optimal contract satisfies the assumptions

of the model. The risk-neutral manager of the bank is compensated by a small

fraction of profits η. We assume that η is close to zero to simplify the expressions.

The bank has zero costs. At time t = −1, the manager must attract deposits. The

manager’s decision variables are D, the short-term payment for early withdrawal,

and ρ, the payout for waiting until t = 3 to withdraw. The promised payoff at

maturity has to be greater than the short-term payment, since, otherwise, early

withdrawal would be the dominant strategy. There is perfect competition among

banks. Due to competitive pressure, the manager will maximize the depositors’

payoff when proposing the contract.

To simplify this problem, we will assume that all depositors are uninformed and

that information about the asset quality Q ∈ {L,H} is revealed perfectly at the end

of t = 1. This is equivalent to a perfectly informative public signal or the existence

of a very small amount of perfectly informed depositors whose t = 1 actions were

observable.

Depositors have an outside return of R̄ when they do not deposit their funds.

Similar to Calomiris and Kahn (1991), in our model, the bank manager can

abscond with a fraction of the asset value at t = 0.

In particular, we assume that the asset of each quality Q ∈ {L,H} has a payoff

at t = 3 of RQ+ δ with probability 1
2

and a payoff of RQ− δ with probability 1
2
. The

manager may attempt to abscond with an amount 2δ when the payoff is RQ + δ.30

In this case, a low payoff of RQ− δ may be due to a poor realization or due to the

28Note that we do not directly apply the Calomiris and Kahn (1991) framework to our model.

The most important changes (seen below) to the Calomiris and Kahn (1991) setting here are: (i)

the bank faces perfect competition ex ante; and (ii) there is an endogenous probability of getting

caught and a cost of absconding.
29We restrict the penalty rate to be the same at t = 1 and t = 2 for simplicity.
30We continue to assume that if either quality asset is liquidated early, it is worth a fraction of

its expected value: λRQ, where Q ∈ {L,H}.
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manager absconding.

The manager has to decide whether to abscond at t = 0 . A regulator may initiate

an investigation and impose a penalty of C on the manager. The probability of an

investigation is perfectly positively correlated with a bank run. We denote this

probability by z. For simplicity, we assume that a bank run always results in a

penalty for a manager that decided to divert funds. The way to think about this is

that (i) the regulator may go through the books when there is a run; (ii) depositors

will start looking into the bank’s books when there is a run; and/or (iii) if the money

is already gone at t = 1, then depositors who do not get their money will demand an

investigation. However, this also implies that if there is no run, and the depositors

wait until the end, it is too late to catch the banker who absconded.

The manager will decide to abscond if his expected payoff is greater than the

expected penalty if he is caught. Ex ante, the gain from absconding is the probability

that assets of quality Q have a low payoff (1
2
) multiplied by the amount with which

the manager could abscond (2δ). Given a probability of a run/getting caught z, the

manager will not abscond if:

z > z :=
δ

δ + C
.

.

Without the manager’s moral hazard problem, setting D < λRL makes with-

drawals before t = 3 a dominated strategy and, therefore, allows the bank’s asset

to reach maturity without any liquidations. This is equivalent to offering long-term

debt contracts. This, of course, relies on the assumption that waiting until t = 3

satisfies the depositors’ outside option. A sufficient condition for this to hold is:

pRH + (1− p)RL > R̄. (A38)

Hence, from a welfare perspective, it is desirable to fund the project. However,

with the manager’s moral hazard problem, long-term debt funding implies that the

manager will choose to abscond whenever the project returns RQ+δ for Q ∈ {L,H}.
This can create a market failure if depositors do not want to invest when they expect

the manager to abscond. A sufficient condition for this to hold is:

pRH + (1− p)RL − δ < R̄. (A39)

This assumption makes long-term debt contracts unattractive to depositors. Note

that the depositors do not need to observe the manager abscond; they will rationally

expect that he absconds whenever RQ + δ.
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Moreover, we will assume that a short-term debt contract, with D ∈ (λRL, RH)

and ρ ∈ [D,RH ], is attractive to depositors when it induces a probability of a

bank run that is high enough to prevent the banker from absconding. A short-term

contract yields the ex ante expected utility of :∫ 1

0

(p(θ)ρ+ (1− p(θ))λRL) dθ − (ρ−D)

∫ θ∗(ρ,D)

0

p(θ)dθ. (A40)

We use the definitions (i) p =
∫ 1

0
(p(θ)) dθ , (ii) (1 − p) =

∫ 1

0
(1− p(θ)) dθ, and

note that the probability of a run is
∫ θ∗(ρ,D)

0
p(θ)dθ. From above, the minimum ex

ante run probability needed to prevent the manager from absconding is z̄ = δ
δ+C

.

Substituting these expressions, we obtain a sufficient assumption that ensures that

the optimal short-term contract is viable, i.e., the expected utility is greater than

the outside option:

pRH + (1− p)λRL −
δ

δ + C
(RH − λRL) > R̄ (A41)

In other words, we assume that, ex ante, the net loss from the inefficient liquidation

of a high-quality asset ρ − D, caused by a disciplining bank run that occurs with

probability δ
δ+C

, is not too high. The maximum expected loss is δ
δ+C

(RH − λRL).

Disciplinary bank runs are efficient if, given their probability z̄ of occurring, the

net loss for depositors when the manager absconds is greater than the net loss from

a short-term contract (i.e., combining conditions A39 and A41) :

Assumption A1: δ − (1− p)(1− λ)RL >
δ

δ+C
(RH − λRL).

Another way of stating this is that the penalty a manager faces, once detected,

is high enough given the benefit from absconding:

C > C(δ) ≡ δ
(RH − λRL)− (δ − (1− p)(1− λ)RL)

(δ − (1− p)(1− λ)RL)
. (A42)

To attract deposit funding, the manager has to offer a short-term debt contract

that deters him from absconding. While long-term debt funding is not attractive

because of the moral hazard problem, short-term debt induces a positive probability

of panic runs, which may help to overcome the moral hazard problem but creates a

liquidation cost.

For simplicity in the rest of the derivations, we assume that p(θ) = θ.
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The optimal short-term contract maximizes the expected utility of depositors

under the constraint that it successfully prevents the manager from absconding:

max
ρ,D

E[U(θ∗(ρ,D), ρ,D)] (A43)

s.t. ∫ θ∗(ρ,D)

0

θdθ ≥ z̄ (A44)

ρ ≥ D. (A45)

The expected utility of depositors is defined as:

E[U(θ∗(ρ,D), ρ,D)] =

∫ θ∗(ρ,D)

0

{θmin[D,λRH ] + (1− θ)λRL }dθ

+

∫ 1

θ∗(ρ,D)

{θ(aHλRH + (1− aH)ρ) + (1− θ)(aLλRL + (1− aL)RL) }dθ.

Note that in contrast to our main model, there could be multiple equilibria at t = 2.

In our main model, the assumption D ∈ (RL, λRH ] guarantees that depositors have

dominant strategies to run or wait in t = 2. Here, we allow (i) D to be smaller

than RL, which allows for multiple equilibria at t = 2 when the asset is low-quality

and (ii) D > λRH , which allows for multiple equilibria at t = 2 if the asset is high-

quality. To show that a contract D ∈ (RL, λRH ] can, indeed, be optimal, we need to

compare the expected utility over the entire contract space. To consider the possible

multiple equilibria at t = 2, we specify that depositors expect with probability aQ

(where Q ∈ {L,H}) that all depositors run at t = 2, and with probability 1 − aQ

that all depositors wait at t = 2. This could be due to, for example, a sunspot state,

as in Cooper and Ross (1998).31

The probability of a second-stage run depends on D, and we can distinguish

three intervals for which the probability differs, summarized in Table 2.

In the first interval (Case I), D is low. In the case of a high-quality asset,

there would be no runs. In the case of a low-quality asset, there may be runs at

t = 2. In the second interval (Case II), there are once again no runs at t = 2

if the asset is high-quality, but runs with probability 1 if the asset is low-quality.

Finally, in the third interval (Case III), there may be runs if the asset is high-

31An extrinsic “sunspot” variable that determines the run probability is commonly used in the

literature; see, for example, Peck and Shell (2003), Ennis and Keister (2010), and Mitkov (2020).
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Table 2: Second-stage Run Probabilities

Case I Case II Case III

D ∈ (λRL, RL] D ∈ (RL, λRH ] D ∈ (λRH , RH ]

Q = H aH = 0 aH = 0 aH ∈ [0, 1]

Q = L aL ∈ [0, 1] aL = 1 aL = 1

quality, and there will certainly be runs if the asset is low-quality. For brevity,

define AQ := aQ + (1− aQ) 1
λ
≥ 1 and note that ∂AQ

∂aQ
= 1− 1

λ
< 0.

A unique threshold equilibrium requires the existence of a lower and upper dom-

inance region for θ. In particular, if θ is very high, it is optimal for each agent to

wait, no matter what the other agents do. For Cases I and II, the upper domi-

nance region is implied by our assumption ρ > D because, if the probability that

a high-quality asset realizes is high enough, the implied return ρ from waiting is

higher than what the agent can possibly get from withdrawing, no matter what the

other agents do. However, in Case III, the short-term payment is greater than the

high-quality asset’s liquidation value, implying that a run may occur. The return

from waiting when the asset is high-quality may then be lower than the return from

withdrawing early (at t = 1). Therefore, we make use of the same assumption as

(Goldstein and Pauzner, 2005, p.1301) that for sufficiently high state variables, no

patient agent demands early withdrawal.32

The existence of a lower dominance region is implied by the strictly positive

liquidation value of the asset, which guarantees a secure minimum return from early

withdrawal. If the state variable is sufficiently low, all agents prefer this secure

return over the low expected return from waiting.

Moreover, we assume that the liquidation value is not too low, which will ensure

monotonicity of first-stage run probabilities in the second stage’s probability of a

run:33

32Note that our model can even be analyzed if an upper dominance region ceases to exist.

Goldstein and Pauzner (2005) apply several equilibrium selection criteria to show that the more

reasonable equilibrium is the same as the unique equilibrium obtained with an assumed upper

dominance region.
33Note that λ > 0.5 is implied by assumptions A2 and A3, such that assumption A4 is just a

slightly stricter, technical assumption.
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Assumption A2: λ > 1− 1
e
≈ 0.632.

We will now show that the expected utility in Cases I and II is strictly increasing

in ρ, while it is ambiguous in D. The short-term payment D has two opposing effects

on the expected utility of depositors. First, there is a direct positive effect because

depositors can withdraw more from their account as long as the bank is liquid.

Second, a higher withdrawal amount increases the probability of an inefficient run,

which reduces the expected utility of depositors. We will see that the expected

utility is convex in D such that a corner solution of D maximizes the expected

utility. Because of varying run probabilities in the second stage, we need to analyze

each case individually and provide a full characterization of the optimal contract.

Case I: λRL < D ≤ RL.

We first analyze the case in which D is low. In this case, it is never optimal to run

if depositors learn that the asset has high-quality, but if the asset has low-quality,

it is optimal to run if other depositors run as well.

We proceed as follows: In a first step, we show that both contract components ρ

and D have a direct effect on the expected utility of depositors and an indirect effect

through a change in the run probability. In step 2, we solve for the critical state

value θ∗ that determines the ex ante run probability under the modified conditions

that ensure one-sided strategic complementarity among depositors. In step 3, we

show, first, that ρ decreases and D increases the run probability. Consequently, the

expected utility is unambiguously increasing in ρ, but D has an ambiguous effect on

the expected utility. In the fourth step, we show that the expected utility is convex

in D in the interval such that the expected utility is maximized by a corner solution.

In step 5, we show that this holds for all possible second-stage run probabilities aL

if λ is not too small. We then summarize the results for this interval.

Step 1: Let us start by analyzing the effect of ρ and D on the expected utility.

The ex-ante expected utility of a depositor can be written as:

UI =

∫ θ∗I

0

{θD + (1− θ)λRL }dθ +

∫ 1

θ∗I

{θρ+ (1− θ)(ALλRL )}dθ, (A46)

where θ∗ is defined as the signal that makes a depositor indifferent between with-

drawing and waiting.

Taking the derivative with respect to ρ, we obtain the following:

∂UI
∂ρ

=

∫ 1

θ∗I

θ dθ −
[
(ρ−D)θ∗I + (1− θ∗I )(AL − 1)λRL )

] ∂θ∗I
∂ρ

.
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A higher contracted payment has a positive direct effect, as it increases expected

consumption. However, the contracted payment also affects the incentives to with-

draw early, leading to costly liquidation. As the term in brackets is strictly positive,

the direction of the indirect effect depends on the effect of the payment ρ on the

critical signal θ∗I .

Taking the derivative with respect to D, we obtain a similar result:

∂UI
∂D

=

∫ θ∗I

0

θ dθ −
[
(ρ−D)θ∗I + (1− θ∗I )(AL − 1)λRL )

] ∂θ∗I
∂D

.

Step 2: To pin down the optimal contract, we have to understand how ρ and D

affect the probability of a run. Thus, we solve explicitly for the cutoff θ∗I as the

signal that makes a depositor indifferent between withdrawing and waiting at t = 1.

The expected consumption of a depositor withdrawing at t = 1 is:

θiD + (1− θi) min

[
D,

λRL

N1(L)

]
. (A47)

The expected consumption of a depositor waiting at t = 1 is:

θiρ+ (1− θi)AL max[
λRL −N1(L)D

1−N1(L)
, 0]. (A48)

The payoff of waiting minus the payoff of running is:

ν̃(θ, n1) =

{
θ[ρ−D] + (1− θ)[λRL−n1D

1−n1
AL −D] if λRL

D
> n1 ≥ 0

p(θ)[ρ−D]− (1− θ)λRL
n1

if 1 ≥ n1 ≥ λRL
D

(A49)

Integrating over the number of withdrawals in t = 1 yields:

0 =θ∗I (ρ−D) + (1− θ∗I )(AL − 1)λRL + (1− θ∗I )λRL ln(
λRL

D
)

+(1− θ∗IAL)(D − λRL) ln(1− λRL

D
).

Rearranging, we obtain:

θ∗I =
φI

(ρ−D) + φI
(A50)

and

1− θ∗I =
(ρ−D)

(ρ−D) + φI
, (A51)

where φI = −(AL − 1)λRL − λRL ln
(
λRL
D

)
− AL(D − λRL) ln

(
1− λRL

D

)
.
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Step 3: We can now analyze the impact of ρ and D on the ex ante run- probability.

It is straightforward to see that:

∂θ∗I
∂ρ

= − φI
D(( ρ

D
− 1) + φI)2

< 0.

Increasing the payout ρ increases the expected utility of depositors ex ante as it

increases their returns and reduces the incentive to run.

The impact of the contracted short-term payment is, however, less obvious:

dθ∗I
dD

=
φI + (ρ−D)dφI

dD

((ρ−D) + φI)2
.

While the first term in the numerator is positive, the second term needs further

analysis:
∂φI
∂D

= −(AL − 1)
λRL

D
− AL ln

(
1− λRL

D

)
. (A52)

The first term is negative and the second term is positive. To see that the sum is,

nevertheless, positive for D ∈ (λRL, RL] given any possible AL = aL+(1−aL)/λ ≥ 1

with aL ∈ [0, 1] and λ ∈ (0, 1), we first show that the whole term is decreasing in D:

∂2φI
∂D2

= −λRL

D2

D + (AL − 1)λRL

D − λRL

< 0.

As the derivative is unambiguously decreasing over the interval (λRL, RL], it must

hold that ∂φI
∂D

> 0 if we can show that ∂φI
∂D
|D=RL > 0, which is true if:

− λ(1− aL)(1− λ)− (aLλ+ (1− aL)) ln (1− λ) > 0. (A53)

The LHS of Equation (A53) is increasing in λ with slope equal to:

− (1− aL)(1− λ) + (1− aL)λ+
(1− aL) + aLλ

1− λ
− aL ln(1− λ)

=

(
2(1− aL) +

1

1− λ

)
λ− aL ln(1− λ) > 0

and approaches zero for limλ → 0. Hence condition (A53) must hold for any

aL ∈ [0, 1] and λ ∈ (0, 1) such that ∂φL(AL)
∂D

|D=RL > 0. As ∂φI
∂D

decreases in D, but is

positive for the highest value in the interval it must be positive in the whole interval.

Therefore:
∂φI
∂D

> 0,

which implies that:
dθ∗(AL)

dD
> 0.

A higher D increases the likelihood of a run, which decreases ex ante expected utility.

As the direct effect is positive, the total effect of D on expected utility is ambiguous.
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Step 4: We now examine the shape of UI . Rewriting ∂UI
∂D

, we get:

∂UI
∂D

=
θ∗2I
2
− dθ∗I
dD

[(ρ−D)θ∗I + (1− θ∗I )(AL − 1)λRL]. (A54)

Substituting the derivative
dθ∗I
dD

and using (A50) and (A51), yields:

∂UI
∂D

= θ∗I{
θ∗I
2
− (θ∗I + (1− θ∗I )

∂φI
∂D

)(1− θ∗I )
(

1 +
(AL − 1)λRL

φI

)
}.

Hence, the expected utility increases in D if:

θ∗I
2
− {θ∗I + (1− θ∗I )

dφ(AL)

dD
}(1− θ∗I )(1 + Φ)) > 0 (A55)

and decreases otherwise, where Φ = (AL−1)λRL
φ(AL)

> 0, which is increasing in AL with

slope
λRL

(
φI−(AL−1)

∂φI
∂AL

)
φ2I

> 0 because:

∂φI
∂AL

= −(D − λRL) ln

(
1− λRL

D

)
− λRL < 0.

To see this, we divide the derivative by D and denote γ = λRL
D

for brevity. We need

to show that −(1− γ) ln 1− γ) < γ. For limγ→0 both terms go to zero. The RHS is

increasing in γ with slope 1, while the LHS has a slope smaller than 1. Hence, the

condition must hold for any γ > 0.

We now show that UI is convex in D, and, thus, the optimal D is a corner solution

within the interval. To show this, we first consider the case aL = 1, implying that

AL = 1 such that Φ = 0, meaning that we can rewrite condition A55 as:

θ∗(0)(2θ∗(0)− 1) > 2
dφ(0)

dD
(1− θ∗(0))2. (A56)

The left-hand side is negative for θ∗(0) < 1
2

and positive otherwise. In contrast,

the right-hand side is always positive. The depositor’s expected utility is, therefore,

decreasing in D for θ∗(0) < 1/2.

The slope of the left-hand side of Equation (A56) is:

∂(2θ∗(0)2 − θ∗(0))

∂D
=
∂θ∗(0)

∂D
(4θ∗(0)− 1).

The left-hand side of Equation A56 is decreasing in D for θ∗(0) < 1/4 and increasing

in D for θ∗(0) > 1/4. Hence, the left-hand side of Equation A56 is increasing in D

whenever it is positive (i.e., when θ∗(0) > 1
2
).
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The right-hand side of Equation A56 is always positive and strictly decreasing

in D:

∂(dφ(0)
dD

(1− θ∗(0))2)

∂D
= −λRL

D

(1− θ∗(0))2

D − λRL

+ 2 ln

(
1− λRL

D

)
(1− θ∗(0))

∂θ∗(0)

∂D
< 0.

As the left-hand side of Equation A56 is increasing when positive, and the right-

hand side of Equation A56 is always positive and decreasing, and we know that
dθ∗(0)
dD

is positive, there must be a unique D̂ for which the slope ∂UI
∂D

is zero.

If D̂ > RL, the solution within this interval is λRL + ε, as the expected utility

is unambiguously decreasing in D. If D̂ ∈ (λRL, RL), the solution for this interval

is one of the endpoints. If D̂ < λRL, the solution for this interval is RL, as the

expected utility is increasing over the interval.

Step 5: Now we allow AL > 1. That is, we consider the effect of a second-stage

run probability aL ∈ (0, 1) on the impact of D on the expected utility. Dividing the

condition (A55) by (1− θ) and rewriting, we obtain:

1

2

φI
ρ−D

> {θ∗I +
dφI
dD

(1− θ∗I )}(1 + Φ)).

The left-hand side is decreasing in AL because ∂φI
∂AL

< 0, as we showed above.

We now examine how the right-hand side changes with an increase in AL:

∂Φ

∂AL
{θ∗I +

dφI
dD

(1− θ∗I )}+
∂{θ∗I + dφ(AL)

dD
(1− θ∗I )}

∂AL
(1 + Φ)).

The first term is clearly positive, the second term can be positive or negative de-

pending on λ and AL. We can break down the second term into:

∂{θ∗I + dφ(AL)
dD

(1− θ∗I )}
∂A

=
∂θ∗I
∂AL

(
1− ∂φI

∂D

)
+

∂2φI
∂D∂AL

.

The second term is positive. The expression ∂2φI
∂D∂AL

= −λRL
D
− ln(1 − λRL

D
) > 0 for

λRL
D
∈ (0, 1) given it is increasing in the term λRL

D
and zero for λRL

D
→ 0.

The first term is positive if:
∂φI
∂D

> 1

because
∂θ∗I
∂AL

=
(ρ−D) ∂φI

∂AL

(ρ−D) + φ(AL))2 < 0.
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Now we acknowledge that

∂2φI
∂D2

= −
(1− λRL

D
) + AL λRL

D

1− λRL
D

< 0.

Second, the derivative also increases in AL because

∂2φI
∂D∂AL

= −λRL

D
− ln

(
1− λRL

D

)
> 0,

which we showed to be positive above.

Now it must be the case that if ∂φI
∂D

> 1 holds for the lowest possible AL (that is,

AL = 1) and the highest D in the interval (that is, D = RL), the expected utility is

unambiguously decreasing in AL. Using equation A52, we can write:

∂φI
∂D
|AL=1,D=RL = − ln(1− λ).

For this expression to be larger than 1, it must be that λ > 1− 1
e
, which is our

Assumption A2.

The minimum of the expected utility function D̂I(A
L) is implicitly defined by

∂UI(D̂I ,A
L)

∂D̂I
= 0. The impact of changes in AL > 1 on the threshold value can be

determined by the implicit function theorem:

dD̂I

dAL
= −

∂2UI
∂D̂I∂AL

∂2UI
∂D̂2

I

> 0

because ∂2UI
∂D2 > 0 and ∂2UI

∂D∂AL
< 0, as shown above. The critical threshold value

D̂I(A
L) is increasing in AL (and, hence, decreasing in aL). This implies that the

critical value for a full second-stage run is strictly smaller than the critical value

with a partial run: D̂I(1) < D̂I(a
L) if aL < 1.

Finally, it is straightforward to show that the expected utility increases in AL:

∂UI
∂AL

=

∫ 1

θ∗I

(1− θ)λRL dθ − ((ρ−D)θ∗I + (A− 1)λRL(1− θ∗I ))
∂θ∗I
∂AL

> 0

because
∂θ∗I
∂AL

< 0, as shown above. This implies that the expected utility decreases

in the probability of a second-stage run aL. Defining UI(ρ,D, a
L), it must, therefore,

hold that UI(RH , RL, 1) ≤ UI(RH , D
∗
I , a

L).

To summarize, the optimal (unconstrained) contract parameters in Case I are:

ρ∗ = RH , and D∗ is equal to either λRL + ε or RL.
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Case II: D ∈ (RL, λRH ]. We proceed using the same approach as in Case I.

Consider setting D slightly above RL. This induces withdrawals for the low-quality

asset such that none of it remains at t = 3. Hence, aL = 1 and AL = 1. This is

the major change from Case I. We can, therefore, take the expression for expected

utility there (Equation A57) and simplify it to:

UII =

∫ θ∗I

0

{θD + (1− θ)λRL }dθ +

∫ 1

θ∗I

{θρ+ (1− θ)λRL}dθ, (A57)

where θ∗(0) is the critical threshold defined in equation (7) of our main model with

π = 0. The effect of the payout ρ is again unambiguously positive because a higher

ρ reduces the probability of a run (∂θ
∗(0)
∂ρ

< 0):

∂UII
∂ρ

=

∫ 1

θ∗(0)

θ dθ − (ρ−D)θ∗(0)
∂θ∗(0)

∂ρ
> 0. (A58)

The effect of the short-term payment D is ambiguous, giving us:

∂UII
∂D

=

∫ θ∗(0)

0

θ dθ − (ρ−D)θ∗(0)
∂θ∗(0)

∂D
. (A59)

Our main model gives (using our assumption here that p(θ) = θ):

θ∗(0) =
φ(0)

(ρ−D) + φ(0)
(A60)

and

1− θ∗(0) =
(ρ−D)

(ρ−D) + φ(0)
, (A61)

with φ(0) := −λRL ln
(
λRL
D

)
− (D − λRL) ln

(
1− λRL

D

)
. We note that:

dφ(0)

dD
= − ln

(
1− λRL

D

)
> 0.

We can now write the expression for dθ∗(0)
dD

:

dθ∗(0)

dD
=
φ(0) + (ρ−D)dφ(0)

dD

[(ρ−D) + φ(0)]2
> 0.

Rewriting ∂UII
∂D

from Equation A59, we get:

∂UII
∂D

= θ∗(0){1

2
θ∗(0)− dθ∗(0)

dD
(ρ−D)}. (A62)
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After inserting dθ∗(0)
dD

and rearranging we obtain that the expected utility is increasing

in D if condition (A56) holds for D ∈ (RL, λRH ]. We apply the same argumentation

as in Case I, but we now consider the interval D ∈ (RL, λRH ].

As the left-hand side of Equation A56 is increasing when positive, and the right-

hand side of Equation A56 is always positive and decreasing in D, and we know

that dθ∗(0)
dD

is positive, there exists a D̂II for which ∂UII
∂D

= 0. Because the expected

utility in Case II equals the expected utility in Case I if aL = 1, it follows that

D̂II = D̂I(1). Moreover, it immediately follows that D̂II < D̂I(a
L) for aL < 1.

For D < D̂II , the slope ∂UII
∂D

is negative, and for D > D̂II , the slope ∂UII
∂D

is

positive. This implies that there is no interior solution for the optimal unconstrained

D in the interval (RL, λRH ]. If D̂II ≥ λRH , the optimal D for this interval is

D = RL. If D̂II ∈ (RL, λRH), the optimal D is a corner solution. If D̂ ≤ RL, the

optimal D for this interval is D = λRH . Note that since ∂UII
∂ρ

> 0, the optimal

ρ = RH .

Therefore, we have proven that the solution for this interval is: ρ = RH , and D

is equal to either RL + ε or λRH .

Comparing Case I and Case II, it becomes clear that the run probability resulting

from the optimal contract in Case I is always smaller than the run probability

induced by the optimal contract for Case II. To see this, first note that the run

probability θ∗I decreases in AL (increases in aL). But for the highest value aL = 1,

the run probabilities are equal θ∗I |aL=1 = θ∗II for any short-term payment D. The

short-term payment DI ∈ (λRL, RL] that is optimal in Case I, however, must be

weakly smaller than the optimal rate DII ∈ (RL, λRH ]. As θ∗II increases in D,

the run probability resulting from the optimal contract in Case II must be strictly

greater than the run probability resulting from the optimal contract in Case I.

Moreover, denoting the expected utility in Cases I and II as UI(ρ,D) and UII(ρ,D),

respectively, it is the case that UII(RH , RL) ≤ UI(RH , D
∗
I ) for any aL: the expected

utility with D∗II = RL is less than or equal to the expected utility achievable with

any optimal contract in Case I.

Case III: λRH < D < RH

Increasing D above λRH leads to the possibility of multiple equilibria at t = 2

when the asset quality is H. Uninformed depositors then can either all run or all

wait. Consider the situation in which depositors expect with probability aH that

all depositors run at t = 2, and with probability 1− aH that all depositors wait at

t = 2. As discussed earlier, this could be due to a sunspot.

68



The expected utility in this case can be summarized as:

UIII =

∫ θ∗III

0

{θλRH+(1−θ)λRL }dθ+

∫ 1

θ∗III

{θ(aHλRH+(1−aH)ρ)+(1−θ)λRL }dθ.

(A63)

If D > λRH , the positive direct effect of D on the expected utility vanishes

because now the high-quality asset also needs to be entirely liquidated in case of a

bank run (because the liquidation value λRH does not cover the liability to depositors

D). Hence, an increase of D affects only the probability of a run on the bank:

∂UIII
∂D

= −(1− aH)(ρ− λRH)θ∗III
∂θ∗III
∂D

(A64)

and
∂UIII
∂ρ

= (1− aH)

(∫ 1

θ∗III(ρ,D)

dθ − (ρ− λRH)θ∗III
∂θ∗III
∂ρ

)
. (A65)

To understand the effect of ρ and D on the probability of a run on the bank, we

need to solve for the threshold θ∗III in this case. We proceed in two steps. The first

step is to evaluate θ∗
III
|aH=0, which we will denote θ∗

III
(0), as the case in which all

depositors wait.

Step 1: The expected consumption of a depositor withdrawing at t = 1 is:

θi min

[
D,

λRH

n1

]
+ (1− θi) min

[
D,

λRL

n1

]
. (A66)

The expected consumption of a depositor waiting at t = 1 is:

θi min[ρ,max(
RH − n1D

λ

1− n1

, 0)] + (1− θi) max[
λRL − n1D

1− n1

, 0]. (A67)

This gives three cutoffs for withdrawals in the first stage: if n1 = RH−ρ
D
λ
−ρ , the

promised payment ρ at t = 3 equals the residual value of the high-quality asset

after liquidating a fraction n1
D
λRH

at t = 1. Note that this value approaches zero if

ρ = RH and equals 1 for D = λRH given any ρ > D. The second cutoff, n1 = λRH
D

,

defines the withdrawal amount that forces the full liquidation of the hiqh quality

asset. Note that RH−ρ
D
λ
−ρ ≤

λRH
D

with both being equal to 1 for D = λRH . The final

cutoff is the number of withdrawals that force the bank into full liquidation of the

low-quality asset, n1 = λRL
D

. We note that RH−ρ
D
λ
−ρ can be greater or smaller than λRL

D

depending on ρ and D. We, therefore, distinguish two sets of parameters.
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Parameter Set A: RH−ρ
D
λ
−ρ ∈

(
0, λRL

D

)
We define the payoff of waiting minus the

payoff of running as:

ν̂(θ, n1) =



θ[ρ−D] if RH−ρ
D
λ
−ρ > n1 ≥ 0

+(1− θ)[λRL−n1D
1−n1

−D]

θ[(λRH−n1D
1−n1

)−D] if λRL
D

> n1 ≥ RH−ρ
D
λ
−ρ

+(1− θ)[λRL−n1D
1−n1

−D]

θ[(λRH−n1D
1−n1

)−D] if λRH
D
≥ n1 ≥ λRL

D

−(1− θ)λRL
n1

−θ λRH
n1

if 1 ≥ n1 ≥ λRH
D

−(1− θ)λRL
n1

. (A68)

We can now compute the threshold signal θ∗
III

for which the uninformed depositor

is indifferent between waiting and withdrawing.∫ RH−ρ
D
λ
−ρ

0

{θ∗
III

(ρ−D)}dn−
∫ λRL

D

0

{(1− θ∗
III

)
D − λRL

1− n
}dn (A69)

−
∫ λRH

D

RH−ρ
D
λ
−ρ

{θ∗
III

(0)
D − λRH

1− n
}dn

−
∫ 1

λRL
D

{(1− θ∗
III

(0))
λRL

n
}dn−

∫ 1

λRH
D

{θ∗
III

(0)
λRH

n
}dn = 0.

Integration yields:

0 = θ∗
III

(0)(ρ−D)
RH − ρ
D
λ
− ρ

+ θ∗
III

(0)(D − λRH) ln(1− λ ρ
D

) + θ∗
III

(0)λRH ln(
λRH

D
)

+(1− θ∗
III

(0))(D − λRL) ln(1− λRL

D
) + (1− θ∗

III
(0))λRL ln(

λRL

D
).

Rearranging yields:

θ∗
III

(0) =
φ(0)

φ(0) + ξ(ρ,D)

with:

ξ(ρ,D) = (ρ−D)
RH − ρ
D
λ
− ρ

+ (D − λRH) ln(1− λρ

D
) + λRH ln(

λRH

D
),

and φ(0) as in Equation (A60), which is the same as in our main model for π = 0.
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The derivative with respect to D is given by:

∂θ∗
III

(0)

∂D
=

dφ(0)
dD

φ(0) + ξ(ρ,D)
−
φ(0)(dφ(0)

dD
+ ξD(ρ,D))

(φ(0) + ξ(ρ,D))2
. (A70)

We have already shown in Case II that dφ(0)
dD

= − ln
(
1− λRL

D

)
> 0 is strictly positive

for any D > λRL. Therefore, the first term is positive. The second term is positive

if dφ(0)
dD

+ ξD(ρ,D) < 0. To show this, first we write out ξD(ρ,D):

ξD(ρ,D) = −λ(RH − ρ)(ρ+D − 2λρ)

(D − λρ)2
+ ln(1− λρ

D
) < 0.

Both terms are negative for ρ ≤ RH and D > λRH . The sum dφ(0)
dD

+ ξD(ρ,D) < 0

is also negative because ln(1− λρ
D

)− ln
(
1− λRL

D

)
= ln

(
D−λρ
D−λRL

)
is strictly negative

given that D−λρ
D−λRL

< 1. Therefore, in Case III, the probability of a bank run is also

strictly increasing in the contracted short-term payment:

∂θ∗
III

(0)

∂D
> 0.

Given that in Case III, the short-term payment D only indirectly affects the expected

utility via the bank run probability, it immediately follows that:

∂UIII
∂D

< 0.

The optimal short-term rate is the infimum of the set of possible short-term pay-

ments in Case III: D∗III = λRH + ε .

The derivative with respect to ρ is

∂θ∗
III

(0)

∂ρ
= − φ(0)ξρ(ρ,D)

(φ(0) + ξ(ρ,D))2
. (A71)

Inserting the optimal short-term payment limε→0D
∗
III = λRH into ξ(ρ, λRH)

simplifies that expression to ρ − λRH > 0. The derivative with respect to ρ is,

therefore, equal to ξρ(ρ, λRH) = 1 > 0. Thus, the run probability decreases in the

long-term return ρ, and, thus, the expected return is maximized by setting ρ∗ = RH .

We will now demonstrate that the maximum expected utility that can be achieved

in Case II is at least as high as the expected utility achieved with the optimal con-

tract for Case III - i.e., UII(RH , D
∗
III) ≥ UIII(RH , λRH + ε). For this, we first

demonstrate that θ∗
III

(0) ≥ θ∗(0):

φ(0)

ξ(ρ,D) + φ(0)
≥ φ(0)

(ρ−D) + φ(0))
.
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This holds since ξ(ρ,D) < (ρ−D); that is:

(
ρ

D
− 1)

RH − ρ
D
λ
− ρ

+ (1− λRH

D
) ln(1− λρ

D
) +

λRH

D
ln(

λRH

D
) <

ρ

D
− 1.

This holds given that RH−ρ
D
λ
−ρ < 1 and (1 − λRH

D
) ln(1 − λρ

D
) + λRH

D
ln(λRH

D
) < 0 for

D ∈ (λRH , RH). Given that expected utility strictly decreases in the run probability,

it must, therefore, be true that UII(RH , λRH) ≥ UIII(RH , λRH + ε).

Hence, UII(RH , D
∗
II) ≥ UII(RH , λRH) ≥ UIII(RH , λRH + ε) when aH = 0; the

highest achievable utility in Case III is strictly dominated by the highest achievable

utility in Case II. The intuition is straightforward: as liquidations of the high-quality

asset are inefficient, setting D > λRH cannot increase the expected utility since it

increases only the incentives to run without increasing the expected utility directly.

Any aH > 0 decreases UIII such that the achievable utility in Case III is strictly

lower than the achievable utility in Case II.

The same remains true for Parameter Set B:

Parameter Set B: RH−ρ
D
λ
−ρ ∈

(
λRL
D
, λRH

D

)
We will see that this case yields the same

result as Parameter Set A, as the relative size of λRL
D

< RH−ρ
D
λ
−ρ does not affect the

expected payoff in each case. To see this, we again define the payoff of waiting minus

the payoff of running as:

ν̂(θ, n1) =



θ[ρ−D] if λRL
D

> n1 ≥ 0

+(1− θ)[λRL−n1D
1−n1

−D]

p(θ)[ρ−D] if RH−ρ
D
λ
−ρ > n1 ≥ λRL

D

−(1− θ)λRL
n1

θ[(λRH−n1D
1−n1

)−D] if λRH
D

> n1 ≥ RH−ρ
D
λ
−ρ

−(1− θ)λRL
n1

−θ λRH
n1

if 1 ≥ n1 ≥ λRH
D

−(1− θ)λRL
n1

(A72)

The threshold signal θ∗
IIIB

makes the uninformed depositor indifferent between
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waiting and withdrawing:∫ RH−ρ
D
λ
−ρ

0

{θ∗
IIIB

(ρ−D)}dn−
∫ λRL

D

0

{(1− θ∗
IIIB

)
D − λRL

1− n
}dn

−
∫ λRH

D

RH−ρ
D
λ
−ρ

{θ∗
IIIB

D − λRH

1− n
}dn

−
∫ 1

λRL
D

{(1− θ∗
IIIB

)
λRL

n
}dn−

∫ 1

λRH
D

{θ∗
IIIB

λRH

n
}dn = 0. (A73)

This is identical to (A69), implying that θ∗
IIIB

= θ∗
III

. The relative size of threshold

points RH−ρ
D
λ
−ρ and λRL

D
do not matter because the first affects only the payoff of the

high-quality asset and the latter only the payoff of the low-quality asset. As both

cases result in the same expected payoffs, we do not have to analyze them separately.

We now proceed to the second step.

Step 2: We have already shown that in the “best case scenario,” where aH = 0,

the expected utility in Case III is strictly lower than the expected utility in Case II.

It is straightforward to show that aH > 0 decreases only the expected utility that

can be achieved in Case III.

When aH > 0, the expected consumption of a depositor withdrawing at t = 1 is

the same as in the case where aH = 0 - i.e., Equation A66 still holds.

The expected consumption of a depositor waiting at t = 1 is:

θi(a
H max[

λRH − n1D

1− n1

, 0] + (1− aH) min[ρ,max(
RH − n1D

λ

1− n1

, 0)])

+(1− θi) max[
λRL − n1D

1− n1

, 0]. (A74)

The payoff of waiting at t = 1 in the equation (A74) is strictly lower than the

payoff of waiting at t = 1 when aH = 0 (Equation A67). Therefore, the threshold

signal that makes the depositor indifferent between running and not running must

be larger than the probability of running when all depositors wait at t = 2, θ∗
III

(aH >

0) > θ∗
III

. Furthermore, given that θ∗
III

> θ∗(0), this implies that θ∗
III

(aH > 0) >

θ∗(0). Overall, an increase in aH has two negative effects on the ex-ante expected

utility. First, it increases the run probability. Second, it reduces the expected return

if no first-stage run occurs because depositors receive λRH < ρ with probability aH

instead of ρ. Therefore, the expected utility is strictly decreasing in the probability

of second-stage runs aH ∈ [0, 1]. Formally:

∂UIII
∂aH

= −

(∫ 1

θ∗
III

(aH)

(ρ− λRH)θdθ + (1− aH)(ρ− λRH)θ∗
III

(aH)
∂θ∗

III
(aH)

∂aH

)
< 0
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because
∂θ∗
III

(aH)

∂aH
> 0 and ρ > λRH .

The Optimal Contract We now write down the optimal contract. The expected

utility in all cases is increasing in ρ, while the optimal short-term payment is pinned

down by corner solutions. Therefore, the optimal payout must be ρ∗ = RH , the

highest feasible rate that can be credibly promised to depositors.

The constrained optimal short-term payment D∗ depends on D̂ and z̄.

First, we define

θ∗(RH , D) =


θ∗I (RH , D, a

L) if D ∈ (λRL, RL]

θ∗II(RH , D) if D ∈ (RL, λRH ]

θ∗III(RH , D, a
H) if D ∈ (λRH , RH ]

. (A75)

We have shown that θ∗(RH , D) is unambiguously increasing in D. We can now

analyze the different parameter spaces. For brevity, we write the utility for each

interval as UI(D, a
L), UII(D), and UIII(D, a

H), omitting the argument ρ∗ = RH .

1. If D̂II > λRH the optimal short-term payment is either

D∗ = λRL + ε if

∫ θ∗(RH ,λRL+ε)

0

θdθ ≥ z̄(δ, c)

or

D∗ > λRL + ε solving

∫ θ∗(RH ,D
∗)

0

θdθ = z̄(δ, c)

if a solution exists that prevents absconding. Otherwise, banking is not viable.

If D̂II > λRH , the expected utility is decreasing in D in all three intervals.

Given that D̂I(a
L) > D̂II , we showed that UI(RL, aL) ≥ UII(RL) in the dis-

cussion at end of Case II. As UII(D) is decreasing in D, it must also hold

that UII(RL) > UII(λRH) ≥ UIII(λRH , a
H). We also proved that UIII(D) is

decreasing in D. The optimal short-term rate is D∗ = λRL + ε if the implied

run probability deters the banker from absconding. If the run probability is

too low to deter absconding, the optimal contract is implicitly defined by the

binding constraint.

We run a simulation to make sure that the constrained optimal short-term

payment assumed in our main model D ∈ (RL, λRH ] can, indeed, be a solution

for our modified model. The first case is illustrated in Figures 7a and 7b. All

assumptions hold for the parameterization: RH = 1.11; RL = 0.95; λ = 0.86;
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aL = 1; aH = 0; and R̄ = 0.99. If we set δ = 0.5 and C = 1.5, the resulting

constrained optimal short-term rate is D̄ ∈ (RL, λRH), as assumed in our

main model.

2. If D̂II < λRH and UI(D
∗
I ) < UII(D

∗
II), the optimal short-term rate is either

D∗ = λRH if

∫ θ∗(RH ,λRH)

0

θdθ ≥ z̄(δ, c)

or

D̄ > λRH which solves

∫ θ∗(RH ,D̄)

0

θdθ = z̄(δ, c)

if a solution exists that prevents absconding. Otherwise, banking is not viable.

We showed at the end of Case II that UI(D
∗
I ) ≥ UII(RL). Therefore, UI(D

∗
I ) <

UII(D
∗
II) implies that D∗II = λRH . If the implied run probability that deters

the manager from absconding is above the threshold z̄(δ, c), this constitutes

the optimal contract. Otherwise, the short-term payment that just makes

the constraint bind constitutes the constrained optimal rate, as the expected

utility strictly decreases in D > λRH .

We illustrate this case in Figures 8a and 8b. All assumptions hold for the

parameterization: RH = 1.01; RL = 0.99; λ = 0.99; aL = 0.5; aH = 0;

R̄ = 0.99; and δ = 0.5. The optimal short-term payment is D∗ = λRH

if C > 0.893, such that the resulting bank run probability that successfully

deters the manager from absconding is not too high.

3. If D̂II < λRH and UI(D
∗
I ) > UII(D

∗
II), we have to distinguish two subcases:

(a) If D∗II = RL

D∗ = D∗I if

∫ θ∗(RH ,D
∗
I )

0

θdθ ≥ z̄(δ, c). (A76)

Consider first the case in which D∗I = λRL. If
∫ θ∗(RH ,λRL)

0
θdθ ≥ z̄(δ, c) is

violated, then the solution may be:

D∗ = RL if

∫ θ∗(RH ,RL)

0

θdθ ≥ z̄(δ, c) (A77)

or

D∗ = D̄ < RL, where

∫ θ∗(RH ,D̄)

0

θdθ = z̄(δ, c). (A78)
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If
∫ θ∗(RH ,RL)

0
θdθ ≥ z̄(δ, c) is violated, the short-term payment is defined

by the binding constraint:

D∗ = D̄ ∈ (RL, λRH) where

∫ θ∗(RH ,D̄)

0

θdθ = z̄(δ, c) (A79)

or

D∗ = λRH if

∫ θ∗(RH ,λRH)

0

θdθ ≥ z̄(δ, c), (A80)

depending on whether UII(D̄) is larger or smaller than UII(λRH).

If
∫ θ∗(RH ,λRH)

0
θdθ ≥ z̄(δ, c) is violated, the short-term payment is given

by:

D∗ = D̄ where

∫ θ∗(RH ,D̄)

0

θdθ = z̄(δ, c) (A81)

if a solution exists that prevents absconding. Otherwise, banking is not

viable.

Now consider the case in which D∗I = RL. If
∫ θ∗(RH ,D∗I )

0
θdθ ≥ z̄(δ, c)

is violated, then the solution may be Condition A79 or Condition A80,

depending on whether UII(D̄) is larger or smaller than UII(λRH). If∫ θ∗(RH ,λRH)

0
θdθ ≥ z̄(δ, c) is violated, the short-term payment is given by

Condition A81 if a solution exists that prevents absconding. Otherwise,

banking is not viable.

We illustrate this parameter space in Figures 9a and 9b. The parameter-

ization is RH = 1.14; RL = 0.99; λ = 0.87; aL = 1; aH = 0; R̄ = 0.99;

δ = 0.5; and C = 2, and all assumptions hold.

(b) If D∗II = λRH and UI(RL) > UII(λRH), the optimal short-term payment

is defined in part (a). If UI(RL) < UII(λRH), the optimal short-term

payment is:

D∗ = λRL if

∫ θ∗(RH ,λRL)

0

θdθ ≥ z̄(δ, c). (A82)

If
∫ θ∗(RH ,λRL)

0
θdθ ≥ z̄(δ, c) is violated, the optimal short-term payment

is:

D∗ = λRH if

∫ θ∗(RH ,λRH)

0

θdθ ≥ z̄(δ, c). (A83)

If
∫ θ∗(RH ,λRH)

0
θdθ ≥ z̄(δ, c) is violated, the optimal short-term payment

is:

D̄ ∈ (λRH , RH) such that

∫ θ∗(RH ,D̄)

0

θdθ = z̄(δ, c). (A84)
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Otherwise, banking is not viable.

We illustrate this parameter space in Figures 10a and 10b. The parameterization

is RH = 1.05; RL = 0.95; λ = 0.91; aL = 0.5; aH = 0; R̄ = 0.99; δ = 0.5; and C = 2,

and all assumptions hold.

If z̄(δ, C) is so high that UI(D̄) is lower than UII(λRH), this case also results in

D∗ = λRH as the constrained optimal short-term rate.

Finally, any optimal contract must satisfy Assumption 2 to be ex-ante viable,

which gives an upper bound on D. The short-term rate cannot exceed the expected

long-term proceeds ex-ante.
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Figure 7: Optimal Contract with D̂II > λRH .

The parameters used are RH = 1.11, RL = 0.95, λ = 0.86, aL = 0.9, aH = 0.

(a) The Expected Utility.
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Expected Utility
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(b) The Run Probability for a given D.
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D
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Bank Run Probability

Case I Case II Case III

Figure 8: Optimal Contract with D̂II < λRH and UI(D
∗
I ) < UII(D

∗
II).

The parameters used are RH = 1.01, RL = 0.99, λ = 0.99, aL = 0.5, aH = 0.

(a) The Expected Utility.
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D
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(b) The Run Probability for a given D.
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0.8

Expected Utility
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78



Figure 9: Optimal Contract with D̂II < λRH , UI(D
∗
I ) > UII(D

∗
II) and D∗II = RL.

The parameters used are RH = 1.14, RL = 0.99, λ = 0.87, aL = 0.5, aH = 0.

(a) The Expected Utility.

RL λRH
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(b) The Run Probability for a given D.
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Figure 10: Optimal Contract with D̂II < λRH , UI(D
∗
I ) > UII(D

∗
II) and D∗II = λRH .

The parameters used are RH = 1.05, RL = 0.95, λ = 0.91, aL = 0.5, aH = 0..

(a) The Expected Utility.
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(b) The Run Probability for a given D.
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