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1 Introduction

Poor households in low-income countries have limited access to formal insurance and
credit. They must rely on social networks for informal assistance in the form of intra-
household transfers of cash and favors. These transfers help reduce economic inequality
(see, e.g., Schechter and Yuskavage, 2011; Asongu, 2015; Beck et al., 2019; Gagnon and
Goyal, 2017; Ambrus and Elliott, 2018) and they provide a means to insure against income
risk—even if not perfectly (see, e.g., Udry, 1994; Cox and Jimenez, 1998; Fafchamps and
Lund, 2003; De Weerdt and Dercon, 2006).

Our paper contributes to this line of research by building on two key insights from the
theoretical and empirical literature. The first insight is that transfers between households
can be formally represented as a graph or network in which households are nodes and
transfers are edges (e.g., Genicot and Ray, 2005; Bloch et al., 2008). When transfer
flows are examined in this light, the resulting graphs are often found to exhibit complex
topological features spanning multiple nodes. Examples include triangles—two transfer
partners of a household also having a transfer (e.g., Jackson et al., 2012; Bloch et al.,
2008)—and stars— households that receive from or give to many households (e.g., Bala
and Goyal, 1998; Jackson and Wolinsky, 1996). Households can also act as intermediaries,
receiving from some and giving to others (e.g., Bourlès et al., 2017). These topological
features form a central theme of this paper and are used to distinguish between different
micro-founded models of transfer networks.

The second insight from the literature relates to the role of incentives in the forma-
tion of favor exchange networks. Two classes of theoretical models have been studied,
depending on whether transfers are based on incentives or on preferences. The first class
allows self-interested individuals to sustain mutually beneficial exchange by relying on
the threat of ostracization to deter deviation (e.g., Coate and Ravallion, 1993; Kocher-
lakota, 1996; Bloch et al., 2008; Karlan et al., 2009; Jackson et al., 2012). In the second
class of models, the magnitude of transfers is determined by the strength of altruism,
grounded either in sentimental attachment or in personal and social norms (e.g., Bourlès
et al., 2017; Bourlès et al., 2020; Alger and Weibull, 2013; Alger and Cox, 2019). Al-
though altruism can be directed towards coreligionists or mankind in general, it tends to
be stronger towards relatives and friends (Cox and Fafchamps, 2008; Curry et al., 2013).
Our analysis contributes to this second strand of research by structurally estimating a
model of network formation with altruistic preferences.

Our analysis builds on the model of network formation of Bourlès et al. (2017). In
this model, agents are altruistic and derive utility when others consume. Transfers serve
to equalize weighted marginal utilities of consumption between household pairs. The
resulting transfer network contains no cycles. We generalize the model to allow caps on
feasible transfers, e.g., because of transfer costs or imperfect observation. This addition
allows the emergence of undirected cycles in the transfer network—while continuing to
rule out directed cycles. In contrast, transfer network models that rely on the threat of
ostracization typically imply cycles either between two nodes (i.e., reciprocated trans-
fers) or among multiple nodes (e.g., Bloch et al., 2008; Jackson et al., 2012). These
considerations form the starting point of our testing strategy.

Structural models of network formation are notoriously difficult to estimate. As a
result, empirical studies of network formation often compare the topological features of
empirical networks to model predictions. Existing studies of network formation have fol-
lowed two main approaches. The first explicitly specifies the topological features of inter-
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est and empirically studies their correlates. Exponential random graph models (ERGMs,
see Bhamidi et al., 2011; Shalizi and Rinaldo, 2013), statistical ERGMS (Chandrasekhar
and Jackson, 2014), and subgraph-generation models (SUGMs, see Chandrasekhar and
Jackson, 2018) fall into this category. These reduced-form models offer the advantage
that they can be estimated without further modification. But they are limited in the
interpretability of their results regarding the underlying network formation process. A
second strand of literature starts from models in which topological features emerge en-
dogenously as equilibria from individual or pairwise decision making (e.g., Bloch et al.,
2008; Jackson et al., 2012; Vandenbossche and Demuynck, 2013; Bourlès et al., 2017).
The advantage of these models is that they offer a clear micro-founded interpretability.
However, their structural parameters are difficult to estimate, e.g., due to the multiplicity
of equilibria. Furthermore, network data often lack sufficiently detailed information on
consumption, transfer amounts, and social structure to pin down model parameters.

The present paper contributes to both strands of the literature. Like the first strand,
our estimation relies on the frequency of topographical features. But, like the second
strand of literature, our approach to estimation is simulation-based and micro-founded.
Our approach to estimation also sidesteps one common problem with transfer data,
namely that transfer volumes are difficult to measure and difficult to compare across
types of transfers (e.g., gifts and credits; in-kind and cash). This limits the usefulness
of transfer volumes as estimation variables. We instead propose an empirical model of
transfer flows that can be estimated using only the network topology of transfer flows,
combined with data on pre-transfer income.

For estimation purposes, we use detailed transfer data from 56 villages in the Gambia,
West Africa (see Heß et al., 2021). What makes these data unusually rich is the fact that
we have a complete enumeration of all the households in each village, and of all the
pairwise transfers between them. This enables us to sidestep the estimation problems
that arise in sampled network data (e.g., Chandrasekhar and Lewis, 2016).

The choice of structural model that we apply to the data is motivated by the char-
acteristics of the transfer flow networks that we observe in our data (see Appendix A
for details). First, as in previous studies (e.g., Fafchamps and Gubert, 2007), we find
that richer households give to poorer households: an income difference of 1,000 Gambian
Dalasis (around US$25) is associated with a 43 percentage point higher probability of
transfer. Second, transfer flows often are indirect: one third of recipients who receive
transfers from one household also give to another, thereby acting as intermediaries in
transfer flows (see also Beck et al., 2019). Third, households with a richer social network
give to households with a poorer social network, controlling for the pair’s income dif-
ference: a 1,000 Dalasis difference in the average income of the two household’s kinship
networks is associated with a significant 13 percentage point increase in the probability of
a transfer between them. Fourth, most networks in our data have a forest-like structure
with few cycles; and when there are cycles, these are mostly undirected. This is best
illustrated by the low frequency of closed triads in our data: only 13% of all connected
triplets form a cycle; and only 2.4% of connected triplets form a directed cycle, that is,
have transfers flowing from 𝐴 to 𝐵, from 𝐵 to 𝐶, and from 𝐶 to 𝐴.

The frequency of circular flows is much lower than what would be predicted by re-
peated game models in which indirect reciprocity is needed to sustain transfers (e.g.,
Bloch et al., 2008; Jackson et al., 2012), making these models a poor starting point for
structural estimation on these data. In contrast, many of the observed features of transfer
networks are easy to reconcile with the model of Bourlès et al. (2017) in which households
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choose transfers to maximize altruistic utility from their own consumption and that of
others. This model, however, is unable to account for the presence of any cycle in the
transfer data, whether directed or undirected. To allow for cycles, we generalize the
model by adding capacity constraints on transfers and we show that this extension allows
for undirected cycles—but still predicts the absence of directed cycles which, as we have
just shown, are quite rare in our data.

To estimate the model, we develop an efficient simulation algorithm that finds equilib-
rium networks for all possible configurations of the model parameters in a short computing
time. This enables us to use simulation-based indirect inference (Gourieroux et al., 1993)
to estimate the parameters of the structural model. Of particular interest is the inclusion
of parameters capturing the existence of caps on transfers and the extent to which kinship
predicts altruism. Since our model nests the model by Bourlès et al. (2017), we are able
to test their model against ours, and we reject their model for our data. We also find
evidence that kinship is an important predictor of altruistic behavior.

This paper makes three contributions. First, we propose a model that generalizes
existing work and yields equilibrium networks that are in line with stylized facts about
transfer networks. Second, we devise a way to estimate a complex network formation
model using only income data and a binary indicator of transfers, without requiring data
on consumption or transfer values. Third, our application of this approach to network
data from The Gambia contributes to the understanding of how income is distributed via
transfers in villages of West Africa.

The remainder of the paper is structured as follows. Section 2 sets up the model and
illustrates the properties of equilibrium networks. Section 3 presents and discusses the
data, focusing on topological network features that are relevant for the model. Section 4
introduces the estimation strategy and Section 5 presents and discusses the results. In
Section 6 we present comparative statics of the fitted model to shed light on the transfers’
role for consumption inequality. Finally, Section 7 concludes.

2 Model

The modeling framework used in our empirical investigation is an extension of the model
by Bourlès et al. (2017). That model can be summarized as follows. A village, 𝑉 , consists
of a set of households indexed by 𝑖 = 1, ..., 𝑛. Each household earns a stochastic income 𝑦𝑖.
Consumption is equal to income plus transfers received minus transfers given. A transfer
from household 𝑖 to household 𝑗 is denoted as 𝑡𝑖𝑗. Transfers have no costs to the sender,
other than the foregone own consumption of the transferred income. Consumption 𝑐𝑖 is
given by:

𝑐𝑖 = 𝑦𝑖 +
∑︁
𝑗 ̸=𝑖

𝑡𝑗𝑖 −
∑︁
𝑗 ̸=𝑖

𝑡𝑖𝑗.

Since we only consider transfers within each village, it follows that
∑︀

𝑖∈𝑉 𝑦𝑖 =
∑︀

𝑖∈𝑉 𝑐𝑖 for
each village 𝑉 .

Households derive concave utility 𝑢(𝑐𝑖) from consuming 𝑐𝑖. Additionally, households
are altruistic in the sense that they care about the utility other households derive from
consumption. Altruism is allowed to vary across household pairs 𝑖𝑗. The matrix 𝐴 =
{𝛼𝑖𝑗} with 𝛼𝑖𝑗 ∈ [0, 1) for all 𝑖𝑗 describes the extent to which household 𝑖 cares about the
consumption utility of 𝑗. The utility function that household 𝑖 maximizes is their social
utility 𝑣𝑖(𝑐), which combines their own consumption utility and the consumption utility
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of all the other households that 𝑖 cares about:

𝑣𝑖(𝑐) = 𝑢(𝑐𝑖) +
∑︁
𝑗 ̸=𝑖

𝛼𝑖𝑗𝑢(𝑐𝑗).

Since the focus of the model is on arbitraging differences in marginal utilities, not on
information asymmetries, each household 𝑖 in village 𝑣 is assumed to observe the entire
vector of consumption quantities for those households 𝑗 that 𝑖 cares about, i.e., for which
𝛼𝑖𝑗 > 0. With this assumption, each household 𝑖 independently chooses transfers 𝑡𝑖𝑗 to
others by maximizing its social utility subject to a budget constraint, the transfer choices
of other households, and a non-negativity condition on each transfer. This implies that
households cannot extract transfers from others, they can only give. The solution to this
utility maximization defines 𝑖’s best response vector 𝑡𝑖 to other households’ transfers, 𝑡−𝑖:

𝐵𝑅𝑖(𝑡−𝑖|𝑦, 𝛼) = arg max
{𝑡𝑖𝑗}𝑗 ̸=𝑖

𝑢(𝑐𝑖) +
∑︁
𝑗 ̸=𝑖

𝛼𝑖𝑗𝑢(𝑐𝑗) (1)

s.t.: 𝑡𝑖𝑗 ≥ 0

𝑐𝑘 = 𝑦𝑘 +
∑︁
𝑗 ̸=𝑘

𝑡𝑗𝑘 −
∑︁
𝑗 ̸=𝑘

𝑡𝑘𝑗 for 𝑘 = 1, ..., 𝑛

The maximand is concave in 𝑐 = (𝑐1, . . . , 𝑐𝑛), implying that the first order conditions are
sufficient to characterize the solution. As transfers linearly reduce own consumption and
increase the recipient’s consumption, any interior solution to this maximization problem
equalizes the marginal utility 𝑢′(𝑐𝑖) that the sending household 𝑖 derives from consump-
tion, with the weighted marginal utility 𝛼𝑖𝑗𝑢

′(𝑐𝑗) that 𝑖 derives from 𝑗’s consumption.
Bourlès et al. (2017) show that a Nash equilibrium of transfers exists, is unique and

that a sequence of iteratively updated best responses converges to the Nash equilibrium.
Moreover, the undirected network of equilibrium transfers1 is an acyclic network con-
sisting of a single or multiple disconnected trees, otherwise known as a forest. Another
relevant implication is that intermediation—a household receiving funds from one house-
hold and passing them to another—can naturally arise even if the original sender is not
altruistic towards the final recipient. If household 𝑖 cares about household 𝑗 and 𝑗 cares
about 𝑘, flows can redistribute income from 𝑖 to 𝑘, even if 𝑖 and 𝑘 do not directly care
about each other’s consumption. We discuss more properties of best responses and the
resulting equilibria after introducing caps on transfers as a generalization of the above
model.

2.1 Caps on Transfers

Arguably, one of the most central result of the model from Bourlès et al. (2017) regarding
network topology is the prediction that the directed transfer network, and generically also
the undirected transfer network, has no cycles and thus is a forest. This model is thus
easily falsifiable for specific network data by showing the existence of cycles. Rejecting
this model, however, does not provide any information on the plausibility of alternative
data generating process. To palliate this shortcoming, we extend the model to allow
for caps on transfers and we show that this simple extension leads to a less stringent
predictions, namely, that the undirected transfer network can contain cycles. In other

1More precisely, the undirected network 𝐺 = [𝑔𝑖𝑗 ] formed by setting 𝑔𝑖𝑗 = 1 if 𝑡𝑖𝑗 > 0 or 𝑡𝑗𝑖 > 0 and
setting 𝑔𝑖𝑗 = 0 otherwise.
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words, the extended model makes topological predictions that are more general, and
includes the original model as a special case.

There are many reasons why caps on transfer may limit flows between pairs of house-
holds in a given period, irrespective of how much the sender would like to give. For
in-kind transfers, caps may be physical. For instance, transfers of divisible goods such
as food may be easy, while the use of assets or housing is more difficult to transfer. A
second reason are transactions costs (e.g., transport, coordination, preparation) that put
limits on the size of transfers. For financial transfers, such as cash gifts or credit, the
sending household may have limited access to cash (e.g., much of agricultural income is
in kind) or limited ability to hoard cash for future use (e.g., no bank account). Other
caps on transfers may reflect social norms about what transfers are acceptable, e.g., large
transfers made outside the family may be resisted by relatives or foster envy among non-
recipients. Caps on transfers can be thought of as an approximation of transfer costs,
which our model extension captures in a simplified yet straightforward way.

We now extend model characterized by Equation (1) by introducing a fixed cap on
transfers which is the same for all household pairs within one village. We illustrate how
this affects the best response function. We then show that an equilibrium network exists
and that it does not have a strict forest structure. But first we explain the intuition
behind the two models.

In the model of Bourlès et al. (2017), equilibrium transfer flows follow the path of
least resistance from high-consumption households to low-consumption households until
the highest achievable level of marginal utility equalization is reached. Intuitively, this is
achieved by forming chains of rich and poor households. In such a chain, transfers can
only flow from the highest to the lowest consumption—i.e., like in an irrigation network,
with money replacing water. The largest transfers can then be made by channeling funds
through a high capacity path, i.e., through household pairs with a high 𝛼𝑖𝑗. Without a
cap, a single high 𝛼𝑖𝑗 is capable of channeling any amount of transfers required along the
chain from the upstream to the downstream households.

If the chain is long and the income differences large, large amounts of funds may
have to be channeled by intermediate households in the middle of the chain. If transfers
are capped, these intermediate households along the strongest path may not be able to
transfer all the necessary funds, thereby requiring the use of multiple paths. Again the
analogy with an irrigation system is telling: if one canal cannot carry all the required
water, it may be necessary to use two or more canals to achieve the uncapped equilibrium.
If caps on transfers are too limiting, the uncapped equilibrium may not be reachable.

Formally, household 𝑖’s utility maximization problem with caps on transfer volumes
can be written as:

𝐵𝑅𝑖(𝑡−𝑖|𝑦, 𝛼, 𝜅) = arg max
{𝑡𝑖𝑗}𝑗 ̸=𝑖

𝑢(𝑐𝑖) +
∑︁
𝑗 ̸=𝑖

𝛼𝑖𝑗𝑢(𝑐𝑗) (2)

s.t.: 𝑡𝑖𝑗 ∈ [0, 𝜅]

𝑐𝑘 = 𝑦𝑘 +
∑︁
𝑗 ̸=𝑘

𝑡𝑗𝑘 −
∑︁
𝑗 ̸=𝑘

𝑡𝑘𝑗 for 𝑘 = 1, ..., 𝑛,

where 𝜅 represents the cap on the transfer volume.
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2.2 Equilibrium Analysis

Since the maximands of Equations (1) and (2) are concave in 𝑐 and 𝑡𝑖𝑗, the first or-
der conditions are sufficient to characterize the best responses. A set of transfer flows
{𝑡𝑖𝑗}𝑖,𝑗∈{1,...,𝑛} is a Nash equilibrium if the following conditions are met:

∀ 𝑖, 𝑗, 𝑡𝑖𝑗 ∈ (0, 𝜅) ⇒ 𝑢′(𝑐𝑖) = 𝛼𝑖𝑗𝑢
′(𝑐𝑗) (3)

and 𝑡𝑖𝑗 = 0 ⇒ 𝑢′(𝑐𝑖) ≥ 𝛼𝑖𝑗𝑢
′(𝑐𝑗) (4)

and 𝑡𝑖𝑗 = 𝜅 ⇒ 𝑢′(𝑐𝑖) ≤ 𝛼𝑖𝑗𝑢
′(𝑐𝑗). (5)

Conditions 3 and 5 also ensure that a transfer occurs only if the recipient consumes less
than the sender, meaning that transfers can only flow from the rich to the poor.

The existence of an equilibrium is guaranteed by a variant of the argument in Bourlès
et al. (2017). The logic of the proof follows three steps: First, observe that the equilibrium
network can have no directed cycles, because in equilibrium agents will only give to agents
who consume strictly less, based on Equations (3) and (5). A directed cycle would violate
this for at least one transfer. Second, without directed cycles, the set of possible transfers
is bounded from above by

∑︀
𝑖 𝑦𝑖, and from below by 0. Moreover, the set of possible

transfers is trivially bounded if 𝜅 is finite. Third, since the strategy set is closed and
bounded and the utility function is concave, the existence of a Nash equilibrium follows
from the Kakutani Fixed-Point theorem (Kakutani, 1941; Glicksberg, 1952). Uniqueness
of the equilibrium consumption profile is implied by the proof in appendix A to Bourlès
et al. (2017): it applies without adaptions to our case since our generalization with
𝜅 < ∞ only further restricts the strategy space. Bourlès et al. (2017, p. 681) show that a
sequence of iteratively updated best responses converges to the equilibrium of the model
without caps on transfers. The same mechanism works in the case of the model with caps
on transfers.

The biggest difference with the case without caps on transfers is that the equilibrium
need not produce a forest structure in the undirected transfer network: excess flows
may have to be redirected away from the strongest path. It does, however, remain that
the directed transfer network still cannot have cycles, as argued above. In other words,
the presence of cycles in the directed transfer network—e.g., reciprocal gifts—cannot be
accounted for by a model in which transfers are the simple product of altruism. To
account for such topography, we would have to introduce a mechanism for reciprocal
transfers to occur. We revisit this point in the conclusion.

Before turning to the empirical part of the paper, we provide an example to illustrate
how caps on transfers affect the structure of equilibrium transfers, and in particular how
they lead to undirected cycles.

2.3 Example

Figure 1 offers a graphical presentation of a model simulation with 10 households and
consumption utility 𝑢(𝑐𝑖) = log(𝑐𝑖). The chosen values for the income vector 𝑦 and the
altruism matrix 𝐴 are presented in the first and second panel, respectively. In the first
panel, each household is shown as a circle, with the radius of the circle representing
household income. The value of income is also given next to that circle. The second
panel depicts the strength of altruism ties. Denser lines indicate stronger altruism, with
the strongest being 𝛼56 = 0.62 and the weakest 𝛼19 = 0.02.
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Figure 1: Examples—Income, Altruism and Transfer Networks With and Without Caps
on Transfers
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Notes: The first two panels show the fixed covariates of the example “village”. Values were chosen to best illustrate the
model’s dynamics. The first panel indicates the income of each household. Larger circles correspond to higher incomes.
The second panel shows the strengths of altruism ties between households. For illustrative purposes, altruism is symmetric,
𝛼𝑖𝑗 = 𝛼𝑗𝑖, which is not generally required for the model. The third panel shows the equilibrium network that would emerge
in an uncapped model, i.e., if 𝜅 → ∞. The forth panel shows the resulting equilibrium network that would be observed if
𝜅 = 0.5.

The third panel of Figure 1 presents the equilibrium network without caps on trans-
fers. This equilibrium was computed using iterated best response updating based on
Equation (1). In line with predictions: (i) the network of equilibrium transfers is a forest;
(ii) transfers strictly flow from high consumption to low consumption nodes; and (iii)
indirect transfers (e.g., from 10 to 2) follow the path of strongest altruism.2

The fourth panel of Figure 1 shows the equilibrium network when transfers are capped
at 𝜅 = 0.5. Iterative best response updating is used to compute the equilibrium transfer
network based on Equation (2). We see that, relative to the uncapped equilibrium, two
transfers have been added and one removed. As a result, the network is not a forest
anymore although, as predicted, there are no directed cycles in the transfer network—
i.e., a sequence of arrows pointing back to its node of origin. But the transfer network
has two undirected cycles.

The new transfer from 10 to 2 arises because the strongest path from 10 to 2 is capped,
which prevents equalizing 10’s marginal utility with 2’s marginal utility weighted by 𝛼2,10.
As a result, 10 has to give to 2 directly in order to maximize 10’s social utility. The new
transfer from 9 to 8 arises because the transfer that 10 gives to 8 is reduced, so that 9,
who cares about 8, now makes a direct transfer to 8. We also see that the transfer from
1 to 4 that is present in panel 3 has now vanished. In the uncapped case, this flow was
made possible by the larger flow from 7 to 1, which is now reduced because of the caps
on transfers. Since 7 does not sufficiently care about 4’s consumption and 1, who does,
no longer has enough income to justify making a transfer to 4, this transfer disappears.

3 Data on Networks of Informal Transfers in Gam-

bian Villages

To empirically estimate and test our modeling framework, we use detailed data on social
and economic networks from 56 Gambian villages. The data were collected as part
of a project evaluating the effects of a randomized development project on social and
economic networks (Heß et al., 2021). In addition to information on the characteristics of
all households in each village, the data contains unusually detailed information on social

2Strong refers to the product of all 𝛼𝑖𝑗 along the path. For details see Bourlès et al. (2017), Theorem 1.
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and economic interactions between all households. These interactions were recorded in
interviews with all the households in each village, by asking each respondent to list all
the households to whom they gave transfers and from whom they received transfers.
This is important because, if we only had a sample of households from each village, we
would not directly be able to accurately observe the topology of the transfer network
(e.g. Chandrasekhar and Lewis, 2016).

To construct our variables of interest, we rely on data regarding household income
and kinship ties. Our dependent variable of interest is the inter-household transfers made
within each village that can take a variety of forms. We follow Heß et al. (2021), who
distinguish consumption and production-related transfers in the data. For our analysis
we focus on consumption-related transfers. The dataset also contains dyadic information
on production-related transfers, such as transfers of land, labor, and other agricultural
inputs, as well as social interactions, such as leisure time spent together. These trans-
actions are more likely to respond to other motives such as commercial exchanges or
friendship and hence they fall outside the purview of our model. They are not included
in our estimation.

The most basic forms of consumption-related are cash gifts, in-kind gifts and transfers
of food. Also informal loans between household are included because they nearly always
include a transfer element: they are made at a preferential (e.g., zero) rate of interest,
are uncollateralized, and seldom stipulate a strict repayment date. Hence they imply a
foregone income as well as a risk for the giver and effect and increase in consumption for
the recipient. We combine all these types of transfers into on network. The monetary or
utility value of these different types of transfers is difficult to calculate and to compare.
To sidestep the issue, our estimation approach relies exclusively on the topology of the
transfer flow network. This has the advantage that it does not require knowledge of
the value of transferred consumption to the giver and receiver. Of course, estimation
efficiency could in theory be increased using information on transfer values, had it been
available. But since our data does not contain information about consumption, this point
is moot for our purpose.

The full dataset includes 56 villages. All villages in our sample are poor rural commu-
nities ranging from 21 to 98 households. The median annual cash income in the sample is
approximately US$625 (25,000 Gambian Dalasis in 2014). Some 76% of the households
state farming as their main occupation. 78% of households have kinship ties to other
households in the same village and 62% belong to the largest component of their villages
kinship network.

The transfer networks exhibit some interesting topological features. Figure 2 shows
networks from three different exemplary villages, chosen to illustrate the variety of net-
work topologies. Figure (a) shows a perfect forest, comprised of one big tree and three
smaller chains. This is a border case and in most villages some cycles exist. For example
in Figure (b), where several edges would need to be removed to obtain a tree structure.
Yet in large parts this network remains somewhat tree-like. Networks also vary in density,
as seen when comparing Figures (b) and (c). The denser network in Figure (c) exhibits
many cycles. Plots of all 56 transfer networks are found in Appendix C.

Table 1 presents descriptive statistics for a number of relevant topographical properties
of the 56 transfer networks in our sample. 84% of the households are connected to someone
else from the same village via the transfer network, either as a sender or as a recipient (not
shown in Table 1). Edge density in the directed transfer networks mostly falls between
1.8% (mostly in larger villages) and 4.6% (mostly in smaller villages). This difference

9



Figure 2: Three Transfer Networks for Cash Gifts, In-Kind and Food Gifts and Credit

(a) Perfect Forest
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(b) Sparse Network
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(c) Dense Network w/ Many Cycles
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Notes: Transfers of gifts (solid blue), credit (dashed red) and food (dotted green) in three villages from our sample,
chosen to illustrate the variation in characteristics describing transfer network typologies. The visual representation of
node locations is based on a stress-majorization algorithm to optimally show topological features (Gansner et al., 2004).
Numbers next to singleton nodes indicate the number of nodes with a degree of zero.

Table 1: Summary Statistics for Topological Features of Transfer Networks

Statistic Pctl(25) Mean Pctl(75)

Edge Density (%) 1.85 3.48 4.62
Forest Resemblance (%, 𝑞forest) 50.90 65.52 79.31
Intermediation rate (%, 𝑞intermediation) 26.92 37.96 44.44
Dyadic Transfer-Kin Correlation (%) 8.56 12.85 16.58

Notes: The table shows the lower and upper quartiles and the median of the distribution of five indicators for transfer
network structure across the 56 village form our sample. These forest resemblance and the intermediaton rate are also two of
the five auxiliary parameters used for the estimation described in Section 4.2. Edge density measures the fraction of dyads
with transfers. Forest resemblance measures whether network components are tree-like. This is quantified by computing
the maximal share of edges that can retained if edges are dropped until all components are trees. The intermediation rate
is the share of nodes that have an incoming and an outgoing transfer among households that have any transfer at all (not
counting reciprocal links). The dyadic transfer-kinship correlation is the correlation coefficient between an indicator for
(undirected) transfer and an indicator for kinship.

mostly reflects variation in village size—the degree distribution remains relatively stable
across villages.

Most networks are not perfect forests. The forest resemblance-index is the maximal
possible proportion of edges that can be retained when dropping edges until all compo-
nents are trees (the measure is based on the networks’ circuit rank). For the examples
in Figure 2, forest resemblance is 100% in panel (a) but only 84% and 44% in panels (b)
and (c) respectively. In spite of not having a perfect forest-structure many villages still
only show a very limited number of cycles. Half of the village networks could retain two
thirds of their links when all edges were dropped until all components are trees. Transfer
networks in close to a quarter of our sample villages could be made forests by dropping
6 or fewer edges.3

In line with model predictions (see Section 2), many households act as de-facto inter-
mediaries in the transfer network. On average, 68% of the households that are connected
in the transfer network give and receive transfers. Transfers are positively correlated with
kinship at the dyad level. Further, transfers tend to flow from richer to poorer households.
In terms of self-reported annual cash income, the mean difference between sending and

3Based on simple simulations we observe that the networks in the data tend to be less forest-like than
Erdõs-Rényi-graphs of same size and density.
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receiving households is US$165 (results not shown). This supports the conjecture that
one main function of these transfers is to redistribute income.

4 Estimation Strategy

The approach to estimation is parameterized in such a way as to be able to estimate the
model parameters of interest using indirect inference (Gourieroux et al., 1993). Indirect
inference shares many commonalities with a simulated generalized method of moments
(GMM) approach, which can be seen as a special case of indirect inference. The main dif-
ference is that elements of the target function in indirect inference, referred to as auxiliary
parameters, need not be moments (i.e. means of functionals of individual observations
in the data), but can be any feature of the observable data. The distinction between the
model parameters of interest and the auxiliary parameters is central to indirect inference.
Estimates for the model parameters are obtained by finding those values for which aux-
iliary parameter estimates obtained from simulations most closely resemble the auxiliary
parameter estimates computed from the data.

In our case, the indirect inference estimation is applied to each village separately,
leading to 56 independent sets of estimates. This approach is computationally convenient
and has the advantages of allowing for differences across villages, thereby providing more
flexibility in the estimation and providing us with a distribution of parameter estimates
to examine.

In our case we chose auxiliary parameters such that estimation only requires observing
the matrices describing the network of transfers, 𝑇 = [1(𝑡𝑖𝑗>0)], the network of kinship,
𝐾 = [kin𝑖𝑗], and the vector of incomes 𝑌 = [𝑦𝑖]. The auxiliary parameters are mostly
descriptive statistics of the transfer network. For each candidate vector for the structural
model parameters, the estimation algorithm simulates draws from the distribution of
auxiliary parameters in each of the 56 villages. We then compare these to the auxiliary
parameter values for the actual transfer networks, and we iterate until we find the vector
of model parameter values that produces the best adequation between the two sets. Thus
the estimation algorithm does not try to predict individual links, something we could not
do anyway given that we lack data on household consumption and on the value of the
different types of transfers.

More precisely, we parameterize the model by positing a relationship between pairwise
altruism and kinship:

𝛼𝑖𝑗 = 𝐿(𝛽0 + 𝛽1kin𝑖𝑗 + 𝜀𝑖𝑗), (6)

where 𝜀𝑖𝑗
i.i.d.∼ 𝑁(0, 𝜎2). 𝐿(·) is the logistic function and thus bounded between 0 and

1. Parameter 𝛽1 measures the extent to which altruism is predicted by kinship. The
parameter space consists of four parameters: the vector 𝛽 = {𝛽0, 𝛽1}, 𝜎 and the village-
wide capping parameter 𝜅. The only additional structure we impose is that 𝑢(𝑐) = log(𝑐).
The model of Bourlès et al. (2017) is nested as a limit case, 𝜅 → ∞, allowing us to test
that model’s applicability to our data.

Estimation proceeds by guessing a starting parameter vector 𝜃(𝑛) = {𝛽0, 𝛽1, 𝜎, 𝜅}(𝑛)
for 𝑛 = 0 where (𝑛) denote the 𝑛th guess about 𝜃. The four parameters fully specify
the conditional distribution of 𝛼𝑖𝑗|kin𝑖𝑗. By drawing from this distribution, we generate

one possible realization, 𝑠, of the altruism matrix 𝐴(𝑛,𝑠) = [𝛼
(𝑛,𝑠)
𝑖𝑗 ]. Given 𝜅, the vector

of incomes, and this realization of the altruism matrix, we numerically solve for the
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equilibrium transfer network through iterative best responses updating. We repeat this
process many times, 𝑠, for each guess of the parameter vector, 𝑛, so as to calculate
a close approximation the vector of simulated auxiliary parameters 𝑞(𝑛) corresponding
to parameter vector 𝜃(𝑛).4 We then iterate on 𝜃(𝑛) = {𝛽0, 𝛽1, 𝜎, 𝜅}(𝑛) to best match
the equivalent sample auxiliary parameters in each of the 56 villages using a GMM-like
objective function.

Obtaining the equilibrium transfer network via iterative best response updating is
computationally burdensome, because it can take many iterations before the process
converges to the equilibrium network. To give an overview of the number of steps in-
volved: In each iteration, all households update who they transfer to and how much.
Since best response transfers are functions of the vector of predicted consumption, each
transfer update potentially affects all other households’ best responses.5 Thus, solving for
equilibrium networks for a given guess of the parameter vector and a given realization of
the altruism matrix requires a large number of best response updates. Furthermore, we
do this several hundred times for each guess of the parameter vector, each time using a
different draw from the conditional distribution of the altruism matrix [𝛼𝑖𝑗]. This enables
us to calculate the expected value of our objective function for that guess of the param-
eter vector, by averaging out the random noise stemming from different realizations of
the altruism matrix. For the optimization, we then minimize this objective function iter-
atively through an optimization algorithm that evaluates the objective function several
thousand times at different parameter values. Hence estimating the model amounts to
computing around 4 million equilibrium networks, i.e., solving for roughly a billion best
responses for each of the 56 village network.

4.1 Objective function

We now describe in more detail the GMM-like objective function used for estimation. We
consider a vector of parameters from a dyadic regression model and topological features,
𝑞, which can be computed for the actual data and for the simulated data. This vector
of auxiliary parameters is what is used to identify the parameters of the model. In
indirect inference, these features are called auxiliary parameters because they can be
understood as parameters of an auxiliary model that is estimable using observable data.
The parameters, 𝜃, of the structural model of interest are estimated by choosing them
so that the auxiliary parameters of the simulated data and the observed data are as
close as possible. The auxiliary model does not need to be correctly specified to ensure
consistent estimation, but if it is, indirect inference is equivalent to maximum likelihood
(Gourieroux et al., 1993). For efficiency, it is desirable to choose auxiliary parameters
that are as informative as possible about the estimation parameters of our model.

For a given parameter vector 𝜃 = (𝛽0, 𝛽1, 𝜎, 𝜅), the vector of auxiliary parameters 𝑞 has
a distribution 𝑞 ∼ 𝑄(𝜃). Unlike in typical GMM settings, this distribution is analytically

4The algorithm we use to minimize the target function uses fewer iterations initially, to be fast, but
continuously increases the number of iterations to become more precise the closer it gets to finding the
minimum of the target function.

5In the uncapped model (𝜅 → ∞) transfer quantities can be analytically determined once it is known
which transfers are non-zero. For this, we first solve for the equilibrium consumption quantities, using
the fact that 𝑡 > 0 ⇒ 𝑢′(𝑐𝑖) = 𝛼𝑖𝑗𝑢

′(𝑐𝑗) and that
∑︀

𝑖 𝑐𝑖 =
∑︀

𝑖 𝑦𝑖 is known. Based on the consumption
profile and income profile, the transfer quantities can be induced from the structure. For the model with
capped transfers this is not possible, because we cannot directly infer from the structure of incomes and
altruism whether the 𝑢′(𝑐𝑖) = 𝛼𝑖𝑗𝑢

′(𝑐𝑗) holds or whether it would imply a transfer that exceeds the cap.
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intractable, so that moment conditions cannot be formulated as closed-form expressions
that can be solved to derive estimators for the parameters. It is, however, possible to draw
from the distribution 𝑄(𝜃) and to compute moments of this distribution numerically. By
searching the model parameter space for values resulting in similar evaluations of the
auxiliary parameters, we obtain estimates of the model parameters.

Specifically, parameters are estimated by minimizing the distance between the auxil-
iary parameters computed from the real data and the mean auxiliary parameters com-
puted through simulation. This distance is given by:

dist(𝜃) = 𝐸(𝑄(𝜃)− 𝑞data)𝑊𝐸(𝑄(𝜃)− 𝑞data), (7)

where 𝑞data denotes the value of the auxiliary parameters, 𝑞, in the data and 𝑊 is a
weighting matrix. 𝐸(𝑄(𝜃) − 𝑞data) is evaluated via a large number of simulated draws
from the model, given 𝜃. For each draw the statistics in 𝑞 are computed and draws of
𝑄(𝜃)− 𝑞data are averaged.

The indirect inference model parameter estimates are thus defined as:

𝜃 = argmin
𝜃

dist(𝜃). (8)

To find the minimum, we use a combination of two optimization algorithms, namely, a
spectral projected gradient (SPG) algorithm (Birgin et al., 2000; Varadhan and Gilbert,
2009) and a particle swarm optimization (PSO) algorithm (El Dor et al., 2012; Zambrano-
Bigiarini et al., 2013). This combination has proven useful to achieve a satisfactory opti-
mization performance in the face of two important features of the optimization problem.
First, the optimization problem has four dimensions and thus a non-trivial parameter
space. Solving for the equilibrium network can take prohibitively long in some parts of
the parameter space.6 It is thus crucial for performance, that the optimization quickly
moves out of areas of the parameter space that correspond to a very low fit to the data.
Second, the precision of each evaluation of the target function that is based on a finite
number of equilibrium network draws is affected by noise from our simulation-based ap-
proximation. In other words, the numeric approximation of the target function is not
perfectly smooth. This noise component can be made arbitrary small by increasing the
number of equilibrium networks based on which the function is evaluated. This is however
is computationally costly. The combined algorithm addresses these problems by starting
initially with a small number of draws, 𝑠, for each function evaluation to quickly move
out of areas of unlikely areas of the parameters space and using an increasing number
of equilibrium draws the closer it moves to the optimum. The algorithm is described in
detail in Appendix E.

Since the data contains transfer networks for many independent villages, we can use
the inverse variance-covariance matrix of 𝑞data across all villages as weighing matrix. This
ensures that highly correlated auxiliary parameters receive less weight and that auxiliary
parameters that vary little are matched with higher precision.

4.2 Choice of Auxiliary Parameters

In indirect inference, auxiliary parameters have to be informative about the parameters
of the econometric model, defined by Equations (2) and (6), while being calculable using

6This is the case when solving for the equilibrium network requires a large number of best responds
updates. This can be the case, e.g., when 𝛽0 and 𝜎 have unrealistically extreme values that many 𝛼𝑖𝑗

are close to zero and one.
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only data observable by the econometrician. In this section, we go through the model
parameters, briefly describe how they affect characteristics of the equilibrium transfer
network, and discuss auxiliary parameters that capture these characteristics. One ben-
efit of indirect inference is that we can focus on dyadic regression estimates and other
topological measures that are easy to compute from the observable data.

Naturally, each auxiliary parameter is likely jointly affected by all model parameters
simultaneously. However, some can be linked more directly to particular model param-
eters than others. Furthermore, some auxiliary parameters may be informative about
model parameters only in certain ranges of the parameter space. To account for this, we
use multiple auxiliary parameters. Based on simulations, we determined five auxiliary
parameters as being most informative. Below we discuss which auxiliary parameters are
informative about which of the structural parameters. We start with the parameters that
determine the altruism matrix 𝛼𝑖𝑗 = 𝐿(𝛽0 + 𝛽1kin𝑖𝑗 + 𝜀𝑖𝑗), including the variance of 𝜀𝑖𝑗,
𝜎2. After this, we discuss the cap parameter 𝜅.

Ideally, the parameters of the altruism matrix would be estimated by regressing al-
truism, 𝛼𝑖𝑗, on kinship and a constant. This is not feasible because 𝛼𝑖𝑗 is not observable.
Instead, we rely on an auxiliary regression, regressing transfers on kinship. Because
transfers (unlike altruism) are also determined by the income difference, we additionally
control for the dyadic difference in log incomes. The auxiliary dyadic regression model
equation is thus:

𝑇𝑖𝑗 = 𝛾aux
0 + 𝛾aux

1 kin𝑖𝑗 + 𝛾aux
2 log income diff𝑖𝑗 + 𝜂𝑖𝑗, (9)

where 𝑇𝑖𝑗 is a binary indicator for whether a transfer from 𝑖 to 𝑗 exists.7 This model
can readily be estimated on the dyadic transfer network from the real data and from
networks simulated for specific values for 𝜃. We use the estimates from this auxiliary
model together with two additional network topology measures as auxiliary parameters
to identify our structural model parameters. Details follow.

Coefficients 𝛽0 and 𝛽1: Together, the intercept and slope parameters determine the
level of altruism and the extent to which altruism depends on kinship. Holding income
differences constant, a larger 𝛽0 will lead to higher altruism and thus to more transfers.
A larger 𝛽1 will do the same, but only within kin. Equation (9) captures these two
effects in 𝛾aux

0 and 𝛾aux
1 . We thus include these two auxiliary parameters, mainly for the

identification of 𝛽0 and 𝛽1.
8

Dispersion Parameter 𝜎2: Similar to 𝛽0 and 𝛽1, the variance 𝜎2 = 𝑉 (𝜀𝑖𝑗) cannot
be directly estimated from observable data, but is related to the variance of the error
term in the auxiliary regression, 𝜎2,aux = 𝑉 (𝜂𝑖𝑗). A larger 𝜎2 implies that dyads have
more extreme values of altruism, i.e. 𝛼𝑖𝑗 close to zero or one. This in turn implies that
kinship and income differences and kinship hold less predictive power for whether or
not transactions take place in equilibrium. This is captured in the residual variance of

7For indirect inference estimators to be consistent, the auxiliary model does not need to be cor-
rectly specified in the sense of correctly describing the conditional distribution of the dependent variable
Gourieroux et al. (see e.g., 1993).

8Our results are qualitatively robust to replacing these auxiliary parameters with auxiliary parameters
that are not obtained from an auxiliary regression. We obtain very similar estimates when using the
transfer network density and the dyadic-level correlation between kinship and transfer instead of 𝛾aux

0

and 𝛾aux
1 .
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Table 2: Auxiliary Parameters and Corresponding Model Parameters

Auxiliary Parameter Model Parameters

Name Symbol

Auxiliary Regression Intercept 𝛾aux
0 𝛽0

Auxiliary Regression Kin Coefficient 𝛾aux
1 𝛽1

Auxiliary Regression Residual Variance 𝜎2,aux 𝜎2

Forest Resemblance 𝑞forest 𝜅
Intermediation Rate 𝑞intermediation 𝜅

Notes: This table shows an approximate match between auxiliary parameters and model parameters. Details are discussed
in Appendix B.

Equation (9), which is why we include the auxiliary model residual variance (an estimate
for 𝜎2,aux) as an auxiliary parameter mainly to identify 𝜎2.

Cap Parameter 𝜅: For the capping parameter, 𝜅, we cannot derive a direct analogue
from our dyadic auxiliary regression. There are however two important ways in which this
parameter affects observable network structures that we can levy. First, the parameter
𝜅 limits the action-space for each individual and is the only parameter of the model
that governs whether a forest structure arises in equilibrium. With a sufficiently tight 𝜅
networks are no longer guaranteed to be forests. The lower the cap becomes, the more
likely cycles emerge. Second, intermediate values of 𝜅 that do not break the tree structure
may still alter network structures, e.g., by increasing the necessity for indirect transfers
to equalize marginal utilities, i.e., transfer chains where 𝑖 gives to 𝑗 and 𝑗 gives to 𝑘.
This is illustrated in the example in Figure 1. To capture these two topological features
as auxiliary parameters, we use (i) the share of links that need to be removed for the
network to be a forest, 𝑞forest,9 and (ii) the share of connected nodes that have incoming
as well as outgoing transfers, 𝑞intermediation. The forest resemblance index is important to
include because, within the model, it is the strongest indicator for caps on transfers. The
intermediation rate is a useful refinement, because caps may be binding, but not strong
enough to break the forest structure. The intermediation rate can capture variation in 𝜅
where the forest resemblance is still unaffected.

4.3 Summary

Table 2 lists all five auxiliary parameters used to estimate the model parameters and
summarizes which model parameters each auxiliary parameter mainly helps identify. Of
course, each individual model parameter may affect the realizations of multiple auxiliary
parameters. No auxiliary parameter strictly captures a single model parameter. The
table serves the purpose of illustrating how each model parameter is related to and ap-
proximately identified by at least one auxiliary parameter. Auxiliary parameters may be
correlated, which is why we use the inverse of the empirical variance-covariance matrix of
the auxiliary parameters as weighting matrix, 𝑊 , in the objective function Equation (7).

Indirect inference can be thought of as finding those values of the structural model
parameters that yield the networks that maximize the similarity (in terms of the dyadic

9This auxiliary parameter can be computed from the circuit rank with a breadth-first algorithm.
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auxiliary regression results, the forest resemblance and intermediation rate) between sim-
ulated data and the real data.

4.4 Inference

To assess estimation uncertainty for our structural estimates, we use a parametric boot-
strap approach. We estimate the sampling distribution of parameter estimates by draw-
ing, from the fitted model, 𝐵𝑉 = 10 alternative realizations of [𝑎𝑖𝑗|kin𝑖𝑗] per village. Using
these draws of altruism and each village’s estimate for 𝜅, we solve for the equilibrium
transfer network. Based on these equilibrium networks, we re-estimate all parameters to
obtain 𝐵𝑉 × 56 = 560 bootstrap draws for all parameter estimates across villages. The
variation of these bootstrap estimates around the sample estimates they were obtained
from is taken as a measure for estimation uncertainty.

The bootstrap framework has two benefits for our application. First, it provides us
with a straightforward way to implement parameter tests, by re-estimating the model
with imposed parameter restrictions, thus obtaining a bootstrap sample of (restricted)
equilibrium networks. Estimates obtained from these bootstrapped networks provide
us with a distribution of parameter estimates under the imposed null hypothesis. Using
these distributions, we assess whether our estimates from the real data are consistent with
the null hypothesis. Second, the simulation-based estimation inevitably brings about a
certain degree of simulation-induced random noise in our estimates. The effect of this on
the estimates is small since as our estimation is based on large numbers of independent
simulations. It is further reduced because our main focus in the discussion of results
are averages of estimates across 56 independent villages, which averages out remaining
estimation noise. However the assessment of village-level estimation uncertainty (stan-
dard errors) still needs to account for this. Bootstrap-based standard errors, which are
computed by repeating the simulation-based estimation procedure, naturally include this
source of estimation uncertainty.

5 Results

Figure 3: Draws From the Fitted Model for Three Example Villages

(a) Perfect Forest
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(b) Sparse Network
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(c) Dense Network, Many Cycles
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Notes: Random draws from the fitted model are shown for the same four villages as in Figure 2. Nodes are not necessarily
shown in the same location as in Figure 2. The representation of node locations is based on a stress-majorization algorithm
to focuses on topological features (Gansner et al., 2004). Numbers next to singleton nodes indicate the number of nodes
with a degree of zero.
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Table 3: Average Estimated Structural Parameters

Mean Estimate
(Population Weighted)

Standard Error for
Mean Estimates

25𝑡ℎ and 75𝑡ℎ Percentile
(Village Estimate)

Standard Error for
Village-level Estimate

𝛽0 -13.4 (0.62) [-17.9, -7.8] (6.34)
𝛽1 6.8 (0.33) [3.8, 9.1] (3.38)
log(𝜎) 1.9 (0.06) [1.6, 2.4] (0.57)
𝑧(𝜅) 6.4 (0.29) [4.1, 8.8] (2.83)

Notes: The table shows summary statistics of the coefficient estimates across 56 villages in the sample. The first column
shows the mean estimated parameters across 56 independent village estimates. The second columns shows the standard
error of that mean, computed through a parametric bootstrap based on repeatedly drawing transfer networks from the
fitted model at the estimated parameters, re-estimating parameters based on those draws and computing their means across
villages. The reported standard error is obtained as the standard deviation of these bootstrap means. The third column
shows the interval spanning the two middle quartiles. The fourth column show estimated standard errors for individual
village estimates. These standard errors are also estimated via a parametric bootstrap. The repored numbers are the
standard deviations of village-level bootstrap estimates.

In this section we present the estimation results from fitting the model to the network
data from the 56 Gambian villages. We start by showing how well the fitted structural
models replicates the topological features of the transfer networks. A detailed compar-
ison of observed networks with draws from the fitted model is given in Appendix C.
Figure 3 shows single random draws from the fitted model for the three examples used
in Figure 2. Structural properties are matched remarkably well while—owed to the high
degree of interdependence of transfers across dyads—individual links cannot be expected
to be predicted with high accuracy. For computational reasons, we estimate monotonous
transformations of two parameters instead of the parameters themselves: Instead of 𝜎 we
estimate log(𝜎) and instead of 𝜅 we estimate 𝑧(𝜅) = 10

𝜅+1
.10

In Table 3, we describe the distribution of estimates across the 56 villages. Our
discussion of results focuses on the distribution of parameter estimates within our sample,
in particular the mean. The dispersion of estimates within our sample, provides a partial
indication of the dispersion of the parameter distribution and could be interpreted as the
coefficient variance of a random effects model. The variability across villages does however
not account for sampling and estimation uncertainty. To gauge estimation uncertainty
we use a parametric bootstrap, as described above, to estimate standard errors and to
conduct tests for parameters restrictions.

We now focus our discussion on the two main parameters of interest 𝛽1 and 𝜅.
Regarding the relationship between kinship and altruism, 𝛽1, the results clearly im-

ply that the transfer networks are consistent with a strong positive association between
them:11 although estimates for 𝛽1 vary across villages, they are positive in 55 out of 56

10The variance parameter 𝜎 can, by definition, only take strictly positive values. Our optimization
program thus solves for log(𝜎), which can be any real number. One benefit of this approach is that the
estimation of this parameter follows the logic of an unconstrained optimization problem, like that of our
other parameters, 𝛽0 and 𝛽1. Similarly, by definition 𝜅 can only take positive values. Additionally we
want to be able to test how well the uncapped model with 𝜅 → ∞ fits the data. We thus chose to estimate
a monotonous transformation of 𝜅, 𝑧(𝜅) = 10

𝜅+1 . This has two immediate implications. First, the nested
uncapped model with 𝜅 → ∞ is implied by (and testable via) by the parameter constraint 𝑧(𝜅) = 0.
Second, the parameter space for the estimation of 𝑧(𝜅) is constrained on both side, 𝑧(𝜅) ∈ [0, 10],
and the optimization problem is a standard box-constrained optimization problem in this regard. The
scaling factor, 10, as well as the form of this transformation has performance benefits, which we assessed
through simulations. Aspects and implications of these transformations are discussed in greater detail
in Appendix E.1.

11Since the link function in Equation (6) is strictly increasing, the sign of the marginal effect of kinship
on altruism corresponds to the sign of 𝛽1.
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villages. To put coefficient size into perspective: using the mean estimates for 𝛽 and 𝜎,
being kin implies an average value of altruism of 0.18, while altruism without kin is 0.03
on average.12 This indicates that households strongly care about the consumption utility
of households with whom they share kinship ties.

Regarding caps on transfers, estimates of 𝑧(𝜅) are heterogeneous across villages—a
finding that is closely related to the fact that village transfer networks are themselves
heterogeneous, in particular with regards to how close they are to being a forest network.
As expected, the estimates for 𝑧(𝜅) are correlated with the forestness index, implying that
the uncapped model with 𝜅 = ∞ fits better to villages with forest-like transfer networks.13

The following can help to put the estimated magnitudes into perspective. The village
population-weighted mean estimate of 𝑧(𝜅) = 6.44 implies a cap on transfers of 𝜅 = 554
GMD (US$14) or approximately 2.2% of the median reported annual per capita income.
Put differently, the network typologies are consistent with caps on transfers that amount
to the average income of 8 days. A finding that is consistent with the observation that
most sample households are subsistence farmers with no significant savings

We conclude that caps on transfers are well below the level of transfers that could
equalize marginal altruistic utility from consumption across households. The variability
in these estimates across our sample villages deserves closer attention. A small number (7)
of the villages have estimates that imply 𝜅 > 5, 000 GMD, corresponding to US$125. It is
reasonable to say that, for these villages, caps on transfers can be regarded as effectively
non-binding. On the other hand, one half of villages have 𝜅 estimates that are at or below
US$9.16, implying significant transfers caps.

Using our parametric bootstrap framework, we conduct a test for the null hypothesis
of no caps on transfers. Uncapped transfers imply that 𝜅 → ∞ and thus that 𝑧(𝜅) → 0.
Our test proceeds as follows. We estimate the restricted model for each village, imposing
𝜅 = ∞ ⇔ 𝑧(𝜅) = 0. Using the restricted estimates, we draw from the distribution of
altruism and from that obtain the resulting transfer networks under the null. From these
bootstrap transfer networks, we estimate the parameters anew to obtain our bootstrap
estimates, against which we can compare our original estimates from the sample. If the
restricted model is true, the bootstrap transfer networks and thus the estimates we obtain
from them, should be similar to those we obtained from our data. If the null is false, they
should differ. This is the underlying logic of our test strategy.

In Appendix Figure 21, we plot the distributions of the 56 village estimates against
560 (10 per village) bootstrapped estimates imposing the null hypothesis of no capacity
constraint. It is apparent that these distributions are very different. This is the first
piece of evidence against the null hypothesis. To construct a 𝑝-value for a joint test of
the null hypothesis of no caps on transfers across all villages, we use the population-
weighted average of the 56 estimates for 𝑧(𝜅), as reported in Table 3. We compare
this test statistic against the distribution of analogously computed weighted averages
of 56 bootstrap estimates. One minus the relative rank of the sample estimates in the
distribution of restricted bootstrap estimates can be interpreted as a 𝑝-value for the null
hypothesis. A 𝑝-value of 0 in this case indicates that none of the bootstrap replications
resulted in an average estimated cap as low as in our data. We find that all bootstrap
realizations of the weighted average fall into the range of [0.6, 2.9], they are smaller than

12These estimate are based on 1,000,000 draws from Equation (6) with parameters fixed at the mean
estimates shown in Table 3.

13The median estimate of 𝑧(𝜅) among all villages is 7.32. The median estimate for 𝑧(𝜅) is 3.4 for villages
in the top quartile of the forestness distribution, while it is 6.7 for villages in the bottom quartile.
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the sample estimate. This implies a 𝑝-value of 0. We thus reject the null of no binding
caps on transfers in this model for our data.

Finally, to corroborate our estimates for the caps, we use separate survey data from
the same villages that was not used in the estimation. We construct proxy variables for
four factors that we consider to be determinants of liquidity constraints, transaction costs,
social norms that relate to caps on transfers. These data come from two survey modules.
First, Heß et al. (2021) conducted detailed household interviews with a small random
sample of ten households from each village. From these data we construct a variable
measuring the fraction of respondents that have access to a bank account. This variable
measures liquidity constraints and ranges from 0 to 0.7 and has a mean of 0.15. Second,
in the survey in which the network data were collected, a survey module was administered
to all villagers with questions on asset ownership. Two assets are relevant indicators for
physical transaction costs: carts and motorbikes. We construct a variable indicating the
share of villagers owning either a cart or a motorbike. This continuous variable ranges
from 0.41 to 1 and has a mean of 0.7. Third, if distance is a determinant of transaction
costs, then population density should be correlated with caps on transfers. We therefore
construct a measure for population density by dividing the number of households in a
village by the village’s area in hectares—where area is approximated by the square of
the longest distance between two households in the village. This variable ranges from 0.6
to 14.2 with mean of 4.1. Lastly, we use ethno-linguistic fractionalization (ELF). This
variable ranges from 0 to 0.8 with a mean of 0.3 and is assumed to proxy for social norms
that can represent caps on transfers (across ethnicities).

We estimate a log-linear specification, regressing the capacity constraint on the these
proxy variables. Our sample is geographically diverse, not only covering parts of the
country that are close to the urban areas around Serrekunda but also parts of the country
that are several hours away from the capital. Since rurality and other spacial properties
can be argued to also be correlated with transaction costs, we additionally present results
accounting for location in the form of fixed effects for 6 Local Government Areas (LGAs).

Table 4: Relationships Between Estimated Caps and Village-Level Proxies for Caps on
Transfers from other Data Sources

(1) (2) (3) (4) (5) (6) (7) (8)
log(𝜅+ 1) log(𝜅+ 1) log(𝜅+ 1) log(𝜅+ 1) log(𝜅+ 1) log(𝜅+ 1) log(𝜅+ 1) log(𝜅+ 1)

Villagers with access to bank account 0.48 0.59
(0.66) (0.65)

Villagers with carts or motorbikes 0.57 0.65
(0.57) (0.59)

Hausholds per hectare 0.02 0.04
(0.03) (0.03)

Ethno-linguistic fractionalization -0.38 -0.42
(0.42) (0.49)

LGA fixed effects X X X X

Observations 56 56 56 56 56 56 56 56

Notes: Robust standard errors in parentheses.

Regression estimates are shown in Table 4. They should not be considered as causal,
but as a means to ascertain whether the estimated 𝜅s correlate with variables we would
normally associated with constraints on transfers. The power of this analysis is signif-
icantly limited by the small sample size of 56 and the use of constructed (and fairly
imprecise) proxies and an estimate as the dependent variable. But, with these caveats in
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mind, the estimates are reassuring. We find that access to banking, availability of means
of transport, and population density are correlated with looser caps on transfers, while
ethno-linguistic fractionalization is correlated with tighter caps on transfers. Columns 1
and 2 indicate that networks from villages where households have access to bank accounts
have on average larger (i.e., less binding) estimated cap on transfers in our model. The
point estimate in column 2 suggest that villages with a ten percentage point higher rate
of banked households is associated with an approximately 5.9% looser cap on transfers.
Columns 3 and 4 indicate that villages with a higher share of households owning carts
or motorbikes also have have a larger estimated cap. The estimates in column 4 imply
that villages with a ten percentage point higher rate of households with means of trans-
portation have on average a 6.5% larger cap on transfers. Columns 5 and 6 show rather
small correlations for the relationship between caps and population density. Based on
the estimates in column 6, villages with one more household per hectare have on average
0.04% larger caps on transfer. Lastly, columns 7 and 8 show that ethno-linguistically frac-
tionalized villages are estimated to have lower (i.e. tighter) caps on transfers. The point
estimate in column 8 implies that villages that are 10 percentage points more fractional-
ized have on average a 4.2% lower estimate for 𝜅. None of these estimates is significant
at a 10%, which is not surprising given the variables used here. The purpose of this part
of the analysis is to investigate whether the model-based capacity constraints, estimated
from the observed network structure, correlate with more conventional proxies for caps
on transfers. Overall these results offer some reassurance that estimates for 𝜅 may be
interpreted as a cap on transfers.

6 Comparative Statics and Consumption Inequality

While our data only consists of information about income and binary transfer indicators,
the fitted model also predicts transfers volumes. Based on predicted transfers we can
compute the implied consumption levels and consumption inequality. This allows us to
study how consumption inequality is shaped by transfers and caps on transfers.

Table 5: Income and Consumption Inequality

N Sample Mean 25𝑡ℎ and 75𝑡ℎ Percentile
Income Gini 56.00 0.37 [0.33, 0.4]

Consumption Gini — ̂Transfers 56.00 0.34 [0.29, 0.38]

Consumption Gini — | ̂Transfers w/o Constraints 56.00 0.11 [0.05, 0.16]

Notes: Estimates for consumption inequality measures are averaged over 100 draws of equilibrium transfer networks per
village using the parameter estimates described in Section 5.

To this end, we can draw repeatedly from [𝛼𝑖𝑗|kin𝑖𝑗, 𝛽, 𝜎2] for each village, solve for
the equilibrium transfer network, obtain the resulting consumption after transfers, and
compute the Gini coefficient of consumption. Table 5 shows the result of this process for
three different scenarios. The first row shows consumption inequality without transfers,
i.e., income inequality. The second row shows consumption inequality for transfers re-
sulting from the actual parameter estimates. Finally, the third row shows consumption
inequality, assuming the actual parameter estimates for altruism (i.e., 𝛽0, 𝛽1, and 𝜎) but
removing the cap on transfers (i.e., 𝜅 → ∞). The Gini coefficients are computed for 100
draws of [𝛼𝑖𝑗|kin𝑖𝑗, 𝜃] for each village in each scenario and averaged. The table reports
the mean and inter-quartile range of this average across our 56 villages.
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A first observation is that there is substantial income inequality in the villages, with
an average Gini coefficient of 0.37. A second observation is that the transfer volumes
predicted by our fitted model reduce this inequality to an average consumption-based
Gini coefficient of 0.34. This suggests that informal transfers play an important role in
reducing consumption inequality in these villages.

An interesting counterfactual scenario is the consumption inequality that would result
from uncapped transfers, i.e., if 𝜅 → ∞ in all villages. Consumption inequality with
uncapped transfers is predicted to be much lower, with an average Gini coefficient of 0.11
across the 56 villages. This implies that, while the villagers’ altruistic preferences allow
them to significantly reduce within-village consumption inequality, the villagers’ ability
to achieve this objective is severely limited by transfer caps.

7 Conclusion and Discussion

Transfers of income in the form of gifts and credit play an important role in the lives
of people in low-income countries. They serve to redistribute income and are key to
understanding the dynamics of inequality and vulnerability to income risk. Theoretical
research by Bourlès et al. (2017) examines how altruism shapes transfers and shows
that, in the absence of caps on transfers and without alternative motives for transfers,
transfer networks have a forest topology. Taking this idea as starting point, we propose a
model of capped transfers between households with heterogeneous income and altruistic
preferences. The model captures two key properties of observed networks in 56 Gambian
villages well, namely: the existence of undirected cycles; and the presence of transfer
intermediaries.

We use indirect inference to estimate the structural parameters of the model, including
a parameter that captures the correlation between altruism and kinship. Our findings are
consistent with the existence of caps on the size of transfer between households. Within
the model we study, these caps can explain why transfer networks do not strictly adhere
to a forest structure, i.e., why they exhibit undirected cycles. We also find evidence that
kinship is a strong correlate of altruistic preferences.

The effectiveness of inequality reduction policies is suspected to be affected by crowd-
ing out, that is, the reduction in informal transfer flows that they cause (Cox and
Fafchamps, 2008). Our results show that, because of the presence of caps on transfers,
transfer networks are are limited in their ability to redistribute income. This reduces
crowding out and suggests that redistributive policies may be more effective than what
would be predicted, e.g., by the model in Bourlès et al. (2017). However, by showing that
kinship is an important correlate of altruism, our results highlight one possible concern
with income redistribution interventions: In the presence of transfer caps, redistribu-
tion across or within kinship groups may affect the ability of existing transfer networks
to reduce inequality—a form of crowding out that depends on the topography of the
network.

Our results should be seen as one step in empirically studying the determinants of
informal inter-household transfers. This paper focuses on modeling transfers that result
from preferences rather than from dynamic incentives to sustain cooperation (e.g., Jack-
son et al., 2012; Bloch et al., 2008). These two mechanisms of network formation are
not mutually exclusive and our analysis should be seen as complementary to analyses
of mechanisms in which incentives for transfers result from anticipated direct or indirect
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reciprocal help. For our particular data the focus on altruistic preferences is justified by
the low incidence of directed cycles, which we would expect to be more pronounced in
networks that are formed through mechanisms based on a dynamic incentive for (indi-
rect) reciprocity. As discussed above, in transfer networks in our data that have closed
triads at all, on average one in seven closed triads also have a directed flow. Bilateral
reciprocity is equally relatively rare. In the average village, less than one in seven of
transfers are reciprocated and in three quarters of the villages, less than one in five links
are reciprocated. These numbers do not rule out that reciprocal agreements and dynamic
incentives play a role. But they suggest that their role may be secondary in our particular
context.

Future empirical research should focus on extending our research to other cultural
and economic contexts and on generalizing the structural estimation. In particular, es-
timating models that combine network formation based on altruistic preferences and on
dynamic incentives seems relevant. In even richer data than ours, the estimation could be
improved upon by accounting for a greater set of dyadic characteristics and by allowing
caps to be pair-specific or household-specific. These heterogeneous caps may still be iden-
tified through local deviations from tree-like structures (such as triadic closure). In sum,
the determinants of transfer networks is a field of research where future developments
are likely to be fruitful, as detailed data become increasingly available for structural
estimation.
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A Differences in Two Households’ Peer’s Incomes

Predict Transfers

To show that differences in two households’ social networks’ incomes hold predictive power
for transfers, even after controlling for both households’ incomes, we use dyadic linear
probability regressions in a sample of 153,862 directed dyads between 2,805 households
in 56 Gambian villages. Section 3 discusses descriptives of the sample. For these dyadic
regressions, we follow Comola and Fafchamps (2014) and run the regression on a sample
in which each directed dyad appears in two measurements—the reported transfer from
the household end and the reported transfer from the giving household, to avoid implicitly
making assumptions about misreporting in the case of discordant responses.

Table 6: Transfers are More Likely to Occur Between Households with a Larger Difference
in Incomes and Between Households with a Larger Difference in the Incomes of Their
Social Networks.

(1) (2)
Food & Gifts & Credit

𝑖 → 𝑗
Food & Gifts & Credit

𝑖 → 𝑗

difference in own income (𝑖-𝑗) 0.43*** 0.43***
(0.09) (0.09)

difference in kin’s income 0.13***
(0.04)

difference in kin and neighbor’s incomes 0.06***
(0.02)

Controls X X

Dyads 307724 307724
Mean transfer probability (%) 1.89 1.89

Notes: This table shows points estimates from a linear regression with a binary dependent variable, taking the value 0 if
household 𝑖 made no transfer to household 𝑗 and the value 100 if they did. Coefficient estimates can thus be interpreted as
percentage points. The independent variables measure the difference between household 𝑖’s and household 𝑗’s incomes, or
the difference in their social ties incomes. In column 1, the income of the social ties is measured as the sum of all incomes
of all households with kin relationship, excluding the other household in this dyad. In column 2 this sum also include
the income of neighbors. For dyads in which one or both households have no social ties, 0 is imputed for the difference.
Control variables are indicators for whether the household head was interviewed or another member, enumerator fixed
effects, ethnicity fixed effects. The annual income is measured in USD 1000. Standard errors in parentheses allow for
clustering at the village level. * 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01.

The regression results in Table 6 indicate that on average 2% of all dyads have a
transfer and that this number is larger in dyads with larger income differences between the
sending and the receiving household. However, not only the income of the two households
in a dyad matters. Transfers are also more likely to occur if the difference between incomes
of other households connected to the sending and to the receiving household respectively
are larger. These regressions provide an indication that the structure and income in a
wider neighborhood of the village network are drivers of transfers, at least at the extensive
margin.
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B Example: Effects of Model Parameters

In this section we use an example to illustrate how each parameter affects the equilibrium
transfer network. Recall that altruism is parametrized as 𝛼𝑖𝑗 = 𝐿(𝛽0 + 𝛽1kin𝑖𝑗 + 𝜀𝑖𝑗) and
household 𝑖 maximizes utility

max
{𝑡𝑖𝑗}𝑗 ̸=𝑖

𝑢(𝑐𝑖) +
∑︁
𝑗 ̸=𝑖

𝛼𝑖𝑗𝑢(𝑐𝑗)

s.t.: 𝑡𝑖𝑗 ∈ [0, 𝜅]

𝑐𝑘 = 𝑦𝑘 +
∑︁
𝑗 ̸=𝑘

𝑡𝑗𝑘 −
∑︁
𝑗 ̸=𝑘

𝑡𝑘𝑗 for 𝑘 = 1, ..., 𝑛,

with 𝑢(𝑥) = log(𝑥). For illustrative purposes, here we assume symmetric altruism, 𝛼𝑖𝑗 =
𝛼𝑗𝑖, which not generally assumed in the paper.

All examples below use the same kinship network and the same income allocation.
The noise in the altruism matrix is simulated using a single draw that is re-scaled in
some examples, to reflect varying levels of 𝜎. The left panel always shows the fixed
values for income and kinship. The mid panel shows the resulting altruism, which is
constructed from kinship and the parameters in 𝛽 and an error term 𝜀 with variance 𝜎2.
Thicker, darker lines indicate more altruism. The right panel shows the resulting network
of equilibrium transfers. The first figures (Figures 4 to 6, 8 and 10) illustrate the role of
the parameters of the altruism matrix, while the last two (Figures 11 and 12)focus on
the caps on transfers.
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Figure 4: Base-example: 𝛽0 = −1.8, 𝛽1 = 2, 𝜎 = 1.3, 𝜅 = ∞

It can be seen that some dyads (e.g., 5-9) have strong altruism ties in spite of not
being kin, while others ties are weak in spite of kinship (2-6). The transfers result from
three factors: differences in income, kinship ties, and other transfers to and from each
household. It can be clearly seen how transfers flow from rich to poor, following the paths
of strongest altruism. Household 10, the richest, is one of the two household (besides 7)
who only gives in equilibrium. Households 2, 3, and 8 only receive and households 5
and 9 act as intermediaries and give and receive at the same time. Four households are
disconnected from the main largest component, because they have only weak altruism ties
to other households who have enough income to share. One household has neither ingoing
no outgoing transfers. Two of the seven transfers occur within the kinship network.

Figure 5 shows the same households with lower 𝛽0, which significantly reduces altruism
in dyads. As a result the equilibrium network only retains two links (10 → 8 and 7 → 1),
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which are in dyads not characterized by strong altruism, but mainly by a large income
gap.
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Figure 5: Less altruism: 𝛽0 = −2.8, 𝛽1 = 2, 𝜎 = 1.3, 𝜅 = ∞

The opposite is illustrated in Figure 6, where 𝛽0 is much higher and altruism is thus
stronger everywhere. As a result more transactions appear, so that now all households
are part of the transaction network. Three interesting changes occur. First, compared to
the base example transfers increase on average in number as well as in volume. Second,
this only holds on average. Some transfer volumes are reduced (e.g., 10 → 8), because
households who give now care more about other households. Third, intermediaries can
give more than they receive (household 9). Household 10 could give to 5 directly and
thus reduce the distance the transfer has to travel. The reason this does not happen is
that 10 is not directly altruistic towards 5 and transfers (and detours) are not costly in
the model.
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Figure 6: More altruism: 𝛽0 = 0.2, 𝛽1 = 2, 𝜎 = 1.3, 𝜅 = ∞

Figures 7 and 8 illustrate the effect of the parameter 𝛽1, which determines how kinship
affects altruism. In Figure 7 where kinship is a stronger determinant of altruism (𝛽1 = 3),
three of the four dyads linked by kinship have a transaction. In Figure 8 (𝛽1 = 1) not a
single transaction occurs within kin.
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Figure 7: Altruism depends more on kinship: 𝛽0 = −1.8, 𝛽1 = 3, 𝜎 = 1.3, 𝜅 = ∞
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Figure 8: Altruism depends less on kinship: 𝛽0 = −1.8, 𝛽1 = 1, 𝜎 = 1.3, 𝜅 = ∞

Figures 9 and 10 show the effect of 𝜎. In Figure 9, noise plays almost no role and
kinship is the main determinant of altruism. As a result, transactions are determined by
income differences and kinship. Even if altruism was stronger (a larger 𝛽0, not shown),
transactions would still be, largely, determined by income differences. In Figure 10 on the
other hand, where the noise is increased (𝜎 = 3), altruism is less dependent on kinship
and in some dyads (e.g., 8-9) extremely strong in spite of no kinship link. As a result, the
transfer and the kinship network are almost uncorrelated. Neither are income differences
a strong predictor of transfer existence anymore. For very strong altruistic links, transfers
occur even with only minor differences in income.
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Figure 9: Altruism less noisy: 𝛽0 = −1.8, 𝛽1 = 2, 𝜎 = 0.3, 𝜅 = ∞
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Figure 10: Altruism more noisy: 𝛽0 = −1.8, 𝛽1 = 2, 𝜎 = 3, 𝜅 = ∞

In all of the above examples, the equilibrium transfer networks were acyclic forests,
because with 𝜅 = ∞ the model is identical to the one discussed in Bourlès et al. (2017).
The following two figures show parameter combinations that deviate from this. Figure 11
introduces a slight restriction so that no transfers may exceed a volume of 𝜅 = 1. As can
be seen from the numbers next to the edges in the right panel, the transfer volumes are
reduced compared to Figure 4, even for dyads where the restriction is not binding (see
5 → 2). Aside from the volumes, the transfer network is unchanged (technically it is also
possible that links vanish).

Kin and Income

●

●

●

●

●

●

●

●

●
1

2

3

4

5

6

7

8

9

10

4.9

5.5

5.9

6.1

6.6

6.8

17.8

6.3

13.3

31.1

Altruism

●

●

●

●

●

●

●

●

●
1

2

3

4

5

6

7

8

9

10

Transfers

0.5

1

10.4

1

1

1

●

●

●

●

●

●

●

●

●
1

2

3

4

5

6

7

8

9

10

Figure 11: Mild caps on transfers: 𝛽0 = −1.8, 𝛽1 = 2, 𝜎 = 1.3, 𝜅 = 1

Figure 12 shows the transfer network resulting from a stronger cap of 𝜅 = 0.5. Here,
new transactions emerge because, after the original transfers (those in Figure 4) are served
up to the cap, the remaining income differences between households that would not have
income transfers in the base example, are still big enough so that households, e.g., 9 and
10, prefer forming new transactions rather than consuming themselves.

Therefore, the cap on transfers affects the density of the network and also thresholds
in disposable income that result in new links. Most clearly, however, caps on transfers
can be identified from deviations from the forest structure.
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Figure 12: Severe caps on transfers: 𝛽0 = −1.8, 𝛽1 = 2, 𝜎 = 1.3, 𝜅 = 0.5
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C Topologies of Predicted Networks Versus Actual
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Figure 13

Notes: “Real” indicates that the figure shows network as in the data. Transfers of gifts (solid blue), credit (dashed red) and
food (dotted green) are shown. “Predicted” indicates that the figure shows a single draw from distribution of equilibrium
networks at the estimated parameter values.
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Figure 14

Notes: “Real” indicates that the figure shows network as in the data. Transfers of gifts (solid blue), credit (dashed red) and
food (dotted green) are shown. “Predicted” indicates that the figure shows a single draw from distribution of equilibrium
networks at the estimated parameter values.
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Figure 15

Notes: “Real” indicates that the figure shows network as in the data. Transfers of gifts (solid blue), credit (dashed red) and
food (dotted green) are shown. “Predicted” indicates that the figure shows a single draw from distribution of equilibrium
networks at the estimated parameter values.
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Figure 16

Notes: “Real” indicates that the figure shows network as in the data. Transfers of gifts (solid blue), credit (dashed red) and
food (dotted green) are shown. “Predicted” indicates that the figure shows a single draw from distribution of equilibrium
networks at the estimated parameter values.
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Figure 17

Notes: “Real” indicates that the figure shows network as in the data. Transfers of gifts (solid blue), credit (dashed red) and
food (dotted green) are shown. “Predicted” indicates that the figure shows a single draw from distribution of equilibrium
networks at the estimated parameter values.
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Figure 18

Notes: “Real” indicates that the figure shows network as in the data. Transfers of gifts (solid blue), credit (dashed red) and
food (dotted green) are shown. “Predicted” indicates that the figure shows a single draw from distribution of equilibrium
networks at the estimated parameter values.
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Figure 19

Notes: “Real” indicates that the figure shows network as in the data. Transfers of gifts (solid blue), credit (dashed red) and
food (dotted green) are shown. “Predicted” indicates that the figure shows a single draw from distribution of equilibrium
networks at the estimated parameter values.
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Figure 20

Notes: “Real” indicates that the figure shows network as in the data. Transfers of gifts (solid blue), credit (dashed red) and
food (dotted green) are shown. “Predicted” indicates that the figure shows a single draw from distribution of equilibrium
networks at the estimated parameter values.
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D Boostrapping Results

Figure 21: Distribution of Estimates for 𝑧(𝜅) from the 56 Villages Against the Distribu-
tion of Parametric Bootstrap Estimates After Imposing the null of 𝑧(𝜅) = 0
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E Numeric Optimization

For optimization we use a combination of two optimization algorithms, namely, a spectral
projected gradient (SPG) algorithm Birgin et al. (2000) and Varadhan and Gilbert (2009)
and a particle swarm optimization (PSO) algorithm (El Dor et al., 2012; Zambrano-
Bigiarini et al., 2013).

The goal of combining the two algorithms is twofold. First, we need to ensure that
the parameter space is fully explored. Second, evaluating the target function is extremely
slow for large 𝑀 (which is required for high precision) in areas of the parameter space
that are very unlikely. Thus, we do the following:

1. Start 15 PSO searches with a low precision of 𝑀 = 4, initially box-constraining the
parameter space of {𝛽0, 𝛽1, log(𝜎), 𝑧(𝜅)} between {6, 15, 4, 10} and {−30,−3,−2, 0}
and iteratively restricting it further to the lowest and highest values obtained by
any particle in the swarm from the previous iteration.

2. At the parameter estimate each final optimum from (1), start an SPG optimization
with 𝑀 = 200.

3. Evaluate the 15 parameter estimates from (2) with 𝑀 = 4000 and continue with
the best.

4. Start a final SPG optimization routine at that value with 𝑀 = 5000.

This process was gauged in simulations and yields numerically stable results across runs
with different starting seeds.
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E.1 Parameter Transformations

The optimization algorithm uses monotonous transformations of parameters. The vari-
ance parameter, 𝜎, is estimated through estimating 𝑙𝑜𝑔(𝜎) and the transfer cap, 𝜅, is
estimated through estimating 𝑧(𝜅) = 10

𝜅+1
. To obtain the actual parameter estimates

we thus have to apply the inverse transformations to the estimation output. As a con-
sequence of this, the parameter space is transformed which simplifies and improves the
estimation in two ways.

First, the transformations transform the bounds of the parameter space into a more
convenient space. While the estimation of, 𝜎 has to be bounded away from zero, 𝑙𝑜𝑔(𝜎)
behaves like an unconstrained parameter and may take on all real values. Conversely
𝜅 would be also bounded away from zero, whereby the special case we want to test
corresponds to 𝜅 → ∞. Applying the transformation 𝑧(𝜅) = 10

𝜅+1
implies that the special

case we want to test corresponds to a standard null hypothesis of 0 = 10
𝜅+1

.
A second important benefit of the transformation relates to numeric precision and

performance. The algorithm approximates the gradient in steps of homogeneous size.
The transformations stretch and compress different areas of the parameter space and can
thus increase and decrease precision of this approximation in these areas. For 𝜎, we can
clearly see that values 𝜎 ≪ 10 should be treated with higher precision, as variation within
higher values are uninformative given the logistic transformation (almost all resulting
values for 𝛼 would be very close to either zero or one). The logarithmization of 𝜎 thus
increases the estimation precision in the areas of the parameters space where variation
is meaningful. A similar argument applies to 𝜅 where, by design, the variation in 𝜅 in
exceedingly high ranges does not matter (e.g., a cap that is larger than the villages’ total
income can never effectively contain the transfer network). Thus, the transformation
again ensures that the estimation focuses on variation in relevant ranges.

The gained precision has additional benefits on computational performance. Finding
the equilibrium networks for given parameters takes longer in certain parameter ranges,
which typically are those ranges where the data fit is very bad. For example, if the altru-
ism matrix has many entries that are numerically very close to 1, the sequential updating
of best responses tends to converge to the equilibrium network much slower. Thus, to
speed up the optimization algorithm, it is helpful to move on quickly from parameter
ranges which provide a bad fit but take longer to evaluate. This also is improved by the
stretching and compressing of areas of the parameter space.
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