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1 Introduction

Factor investing is a low-cost approach to active fund management that exploits common

characteristics, such as value, investment, and profitability.1 Although assets under manage-

ment in factor-investing strategies have grown rapidly at 30% per annum since 2010, reaching

$700 billion by 2018 (Ratcliffe, Miranda, and Ang, 2017; Riding, 2018), their capacity re-

mains limited by price-impact costs. Indeed, there is a large literature that characterizes

a strategy’s capacity, defined as the total investment that can be allocated to it before

price-impact costs erode its profits entirely.2 Importantly, the growth in factor investing has

been accompanied by an explosion in the number of institutions exploiting these strategies.

For instance, 145 managers launched factor-investing products in 2018 (Flood, 2019). This

raises concerns about crowding : as an increasing number of institutions exploit the same

characteristic, competition leads them to overinvest and price-impact costs erode profits.3

Our first contribution is to identify a mechanism that alleviates crowding in factor

investing—trading diversification: institutions exploiting different characteristics can reduce

each other’s price-impact costs. It is intuitive that institutions exploiting different char-

acteristics whose portfolio-rebalancing trades are negatively correlated reduce each other’s

price-impact costs because their trades net out on average. However, we show theoretically

that combining characteristics may reduce price-impact costs even when their rebalancing

trades are not negatively correlated. Empirically, we consider 18 characteristics and find

that there is a reduction of around 16% in price-impact costs when considering them in

combination, relative to the cost of trading them in isolation. More importantly, exploiting

the 18 characteristics in combination leads to an increase in total capacity of 45%, from $239

billion to $345 billion, in total optimal investment of 43%, from $116 billion to $165 billion,

and in total annual profits of 22%, from $1.5 billion to $1.8 billion. That is, empirically the

effect of trading diversification on capacity, investment, and profits is of first order.

1In the investment industry, factor investing strategies are often referred to as smart beta.
2See, for instance, Korajczyk and Sadka (2004); Lesmond, Schill, and Zhou (2004); Novy-Marx and

Velikov (2016); Ratcliffe et al. (2017) and Frazzini, Israel, and Moskowitz (2018).
3For instance, in his AFA presidential address Stein (2009) argues that “basic economic logic suggests

that as more money is brought to bear against a given trading opportunity, any predictable excess returns
must be reduced and eventually eliminated.” Similarly, Jacobs and Levy (2014) state that: “Smart beta
strategies are often based on common, generic factors used by many managers. This approach leaves their
performance susceptible to factor crowding: Too many investors are buying (or selling) the same securities
on the basis of the same factors.”
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Our second contribution is to study how trading diversification affects equilibrium

investment positions and profits in the factor-investing industry. To do this, we develop

a game-theoretic model related to the models in Berk and Green (2004) and Pástor and

Stambaugh (2012), who consider competition among fund managers facing diseconomies of

scale at the fund and industry levels, respectively. In contrast, we consider a model with two

groups of factor investors, each group exploiting a different characteristic. Investors within

each group compete to exploit the same characteristic and thus face diseconomies of scale at

the characteristic level driven by price-impact costs. However, there is a positive externality

between the two groups of investors because they reduce each other’s price-impact costs due

to trading diversification across characteristics.

We characterize in closed form the equilibrium investment positions and profits in

the game and study how trading diversification affects them. To gauge the magnitude of the

effect, we also calibrate the model using “investment (asset growth)” as the first characteristic

and “gross profitability” as the second. Our main findings are illustrated in Figure 1. To

set the stage for our main result about trading diversification, we first illustrate in Panel (a)

the effect of crowding by depicting the aggregate profits of the investors exploiting the

first characteristic as a function of their aggregate investment, when there are no investors

exploiting the second characteristic. The graph shows that when there is only a single

investor exploiting the first characteristic (I1 = 1), she maximizes her profits by investing

around half of the characteristic’s capacity C. However, as the number of investors in

the first characteristic I1 increases, competition leads them to overinvest and, as a result,

their aggregate profits decrease. In the limit, as the number of investors goes to infinity,

we find that their aggregate investment position converges to the strategy’s capacity and

their aggregate profits converge to zero because of price-impact costs. Thus, we obtain the

intuitive result that competition among investors exploiting the same characteristic erodes

their profits because of crowding.

Panel (b) of Figure 1 illustrates the effect of trading diversification and competition

among investors exploiting the second characteristic. The graph compares the aggregate

profits of investors exploiting the first characteristic for the cases where: (i) there are no

investors exploiting the second characteristic (I2 = 0) and thus there is no trading diversifi-

cation, (ii) there is one investor (I2 = 1), and (iii) there are ten investors (I2 = 10) exploiting

3



Figure 1: Crowding and trading diversification

This figure illustrates the effect of crowding and trading diversification on investment positions and profits.
The figure is calibrated using “investment (asset growth)” as the first characteristic and “gross profitability”
as the second. For each panel, the horizontal axis depicts aggregate investment in the first characteristics
(billions of dollars) and the vertical axis depicts aggregate profits from the first characteristic (millions of
dollars). Panel (a) illustrates the effect of crowding by depicting the aggregate profits of the investors
exploiting the first characteristic as a function of their aggregate investment, when there are no investors
exploiting the second characteristic (I2 = 0). The graph shows the optimal aggregate investment in the
first characteristic when there are I1 = 1, 2, 3 investors exploiting it. Panel (b) illustrates the effect of
trading diversification and competition among investors exploiting the second characteristic by comparing
the aggregate profits of investors exploiting the first characteristic for the cases where: (i) there are no
investors exploiting the second characteristic (I2 = 0) and thus there is no trading diversification, (ii) there
is one investor (I2 = 1), and (iii) there are ten investors (I2 = 10) exploiting the second characteristic.

(a) Capacity and crowding (b) Trading diversification

the second characteristic. Comparing the case of I2 = 0 with that of I2 = 1, we observe that

trading diversification increases the capacity of the first characteristic as well as its equi-

librium aggregate investment position and profits. Thus, trading diversification alleviates

crowding in factor investing. Moreover, an increase in the number of investors exploiting

the second characteristic further increases the capacity, aggregate investment position, and

aggregate profits associated with the first characteristic. Thus, competition among investors

exploiting other characteristics further alleviates crowding in the first characteristic.

We use data on mutual-fund holdings and stock returns to test the two key predictions

of our game-theoretic model. To do this, we first run cross-sectional regressions of quarterly

stock returns on a novel measure of buy competition (BuyCompetition). We find that stock

prices increase by around 13% contemporaneously with a unit increase in BuyCompetition,

but they revert by 7% within three years. This return reversal shows that stocks that

experience high buy competition suffer large price-impact costs, and thus, provides support
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for the first prediction of our model that crowding erodes profits because of price-impact

costs. We then run cross-sectional regressions of stock returns on both BuyCompetition and

SellCompetition measures. We find that the return reversal associated with a unit increase

in buy competition (around 7%) is much larger than that associated with a unit increase

in both buy and sell competition (around 2%). That is, when a high buy-competition stock

experiences also high sell competition, the stock’s return reversal in response to the buy

competition is smaller. This evidence supports the second prediction of our model that

trading diversification alleviates crowding in factor investing.

Our work has implications for the industrial organization and regulation of the quan-

titative investment industry. First, financial institutions should focus not only on character-

istics that are profitable, but also are exploited by a relatively small number of institutions.

This intuitive implication of our work is reflected in the current structure of the investment

industry, with just three institutions—BlackRock, Vanguard, and State Street—holding 79%

of the assets in ETF products (Baert, 2018). Moreover, institutions can increase their market

power by increasing assets under management or acquiring competitors, a strategy recently

adopted by Invesco to become the fourth largest ETF provider in the U.S. (Carlson, 2019).

Second, financial institutions should exploit characteristics that allow them to benefit from

trading diversification. For instance, we show that the institutions exploiting an “investment

(asset growth)” characteristic benefit from the trading diversification generated by other in-

stitutions exploiting “gross profitability.” Similarly, Frazzini, Israel, and Moskowitz (2015)

find using proprietary data that “value and momentum trades tend to offset each other,

resulting in lower turnover which has real transaction costs benefits.” Third, regulators

need to recognize that, although encouraging competition among fund managers exploiting

a characteristic may reduce fees (Wahal and Wang, 2011), it may also erode fund returns

because of crowding. However, encouraging the appropriate balance of competition between

managers exploiting different characteristics can actually alleviate crowding and increase

profits due to trading diversification.

Our work is closely related to Bonelli, Landier, Simon, and Thesmar (2019), who con-

sider competitive traders who exploit a single investment signal and maximize multiperiod

mean-variance utilities. They analyze how the capacity and performance of the strategy

depend on the persistence of the signal and the traders’ estimates of the number of competi-
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tors. In contrast, we focus on how trading diversification affects capacity and performance

when there is competition among investors exploiting different characteristics.

There is also a literature on competition in the active mutual-fund industry; see the

review by Berk and van Binsbergen (2017). The seminal paper by Berk and Green (2004)

considers managers who have different abilities to generate alpha and face diseconomies of

scale at the fund level. In contrast, Pástor and Stambaugh (2012) assume diseconomies of

scale at the industry level and Pástor, Stambaugh, and Taylor (2015) provide empirical evi-

dence supporting this assumption.4 We consider diseconomies of scale at the characteristic

level, but we provide a microfoundation for them based on price-impact costs, which we esti-

mate from data on firm characteristics. This microfoundation is consistent with the empirical

evidence in Edelen, Evans, and Kadlec (2007) and Pástor et al. (2015) that suggests trading

costs are the primary source of diseconomies of scale.5 A key feature that distinguishes our

work from these papers is that we consider competition among investors exploiting different

characteristics, which alleviates the diseconomies of scale because of trading diversification.

Our work is also related to the literature on the capacity of quantitative strategies.

Several papers study the capacity of strategies that exploit a single characteristic: Korajczyk

and Sadka (2004) study the market-impact costs associated with exploiting momentum and

find that this characteristic can be exploited on only a relatively modest scale. Novy-Marx

and Velikov (2016) consider 23 anomalies and find that simple strategies to mitigate trans-

action costs significantly reduce price impact and thus increase the scale to which the char-

acteristics can be exploited. The aforementioned papers use publicly available datasets to

estimate the trading costs of an average investor. In contrast, Ratcliffe et al. (2017) and

4In addition, Feldman, Saxena, and Xu (2020, 2021) show that when industry concentration is lower,
net alpha and industry size are smaller, Wahal and Wang (2011) find that incumbent funds that have high
overlap in holdings with entrant funds reduce management fees and suffer lower alphas, and Hoberg, Kumar,
and Prabhala (2018) show that buy-side competition among mutual funds explains future alphas.

5For instance, Edelen et al. (2007) state that “We estimate annual trading costs for a large sample of
equity funds and find that they are comparable in magnitude to the expense ratio; that they have higher
cross-sectional variation that is related to fund trade size; and that they have an increasingly detrimental
impact on performance as the fund’s relative trade size increases. Moreover, relative trade size subsumes fund
size in regressions of fund returns, which suggests that trading costs are the primary source of diseconomies
of scale for funds.” Pástor et al. (2015) explain that “evidence is mounting that trading by mutual funds
is capable of exerting meaningful price pressure in equity markets” and cite six papers in their Footnote 2
that support this claim. In their own analysis, Pástor et al. (2015) find that “the negative relation between
industry size and fund performance is stronger for funds with higher turnover and volatility as well as small-
cap funds. These results seem sensible because funds that are aggressive in their trading, and funds that
trade illiquid assets, see their high trading costs reap smaller profits when competing in a more crowded
industry.”
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Frazzini et al. (2018) use proprietary data from large money managers and find that the

trading costs of these financial institutions are quite small, and thus, they can exploit these

characteristics to a much larger extent than previously thought. However, even the largest

estimates of capacity, which are provided by Ratcliffe et al. (2017), are smaller than the assets

under management in the factor-investing industry; see, for instance, Johansson, Sabbatucci,

and Tamoni (2021). We build on these papers by showing that trading diversification across

characteristics can further increase capacity as well as the equilibrium investment positions

and profits of factor investors.

Other papers have also found that combining characteristics helps to reduce trans-

action costs. For instance, Barroso and Santa-Clara (2015) consider currency portfolios

based on six characteristics and explain that “transaction costs depend crucially on the

time-varying interaction between characteristics.” Novy-Marx and Velikov (2016) study “fil-

tering,” a cost mitigation technique that allows investors trading one strategy to opportunis-

tically take small positions in another at effectively negative trading costs. Frazzini, Israel,

and Moskowitz (2015) show that value and momentum trades offset each other. DeMiguel,

Martin-Utrera, Nogales, and Uppal (2020) show that transaction costs increase the dimen-

sion of the cross-section of stock returns because “combining characteristics allows one to

diversify trading, just as combining them allows one to diversify risk.” Our manuscript con-

tributes to this literature by providing empirical evidence that trading diversification has

a first-order effect on capacity, optimal investment, and profits, and studying its role in

competition between institutions trading different characteristics.

Our work is related to a growing literature on crowding in investment management.

Asness (2015) discusses why factors that are exploited by many competing investors can

still be profitable. Bonne, Roisenberg, Kouzmenko, and Zangari (2020) propose a set of

crowding metrics that can be used for factor timing. Harvey, Liu, Tan, and Zhu (2020)

study the impact of team management on the crowding of ideas in discretionary funds.

Chincarini (2017) finds that, when portfolio managers consider price-impact costs, they may

end up holding less crowded portfolios because they find “it advantageous, ceteris paribus,

to trade very small amounts of many more stocks.” Lou and Polk (2021) propose a novel

comomentum measure of arbitrage activity and provide evidence that crowded momentum

trading has a detrimental effect on long-term momentum returns. Hoberg, Kumar, and
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Prabhala (2020) show that momentum produces abnormal returns only when the momentum

portfolio is constructed from stocks held by funds that do not face intense competition. A

distinguishing feature of our work is that we focus on the effect of trading diversification

across multiple characteristics on equilibrium investment positions and profits.

There is also a literature that studies the effect of crowding on “tail risk.” For in-

stance, Brown, Howard, and Lundblad (2020) find that hedge fund exposures to a crowding

factor explain downside tail risk. However, Barroso, Edelen, and Karehnke (2021) cast both

theoretical and empirical doubt on crowding as a stand-alone source of tail risk. These two

papers are related to a large literature that studies the dynamics of market liquidity, partic-

ularly around times of financial turmoil; see, for example, Khandani and Lo (2011); Nagel

(2012); Drechsler, Moreira, and Savov (2020); Franzoni, Plazzi, and Cotelioglu (2019). In

contrast to this literature, and consistent with the literature on the capacity of quantita-

tive strategies, we focus on the static effect of price impact and trading diversification on

equilibrium investment positions and profits in factor investing.

The remainder of this manuscript is organized as follows. Section 2 describes how we

extend the parametric portfolios of Brandt, Santa-Clara, and Valkanov (2009) to consider

price-impact costs. Section 3 analyzes trading diversification theoretically and empirically.

Section 4 develops the game-theoretic model and characterizes its equilibrium. Section 5

discusses the effect of the strategic interactions among investors on investment positions and

profits. Section 6 provides empirical tests of the predictions of the game-theoretic model.

Section 7 concludes. Appendix A provides the proofs for all results and the Internet Appendix

contains robustness checks.

2 Parametric portfolios with price-impact costs

In this section, we explain how we extend the parametric portfolios of Brandt et al. (2009)

to consider price-impact costs in factor investing. We rely on the resulting framework for

our theoretical and empirical analysis in the remainder of the manuscript.
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2.1 Parametric portfolios

We consider a market with N stocks and K firm-specific characteristics.6 Let rt ∈ RN be the

vector of stock returns and xkt ∈ RN the kth characteristic vector at time t. For instance, x1t

and x2t could be vectors containing the “investment (asset growth)” and “gross-profitability”

characteristics, respectively, of the N firms at time t. We standardize xkt cross sectionally

so that it has zero mean; that is, xkt is a long-short portfolio, and thus, has zero cost. This

is customary in cross-sectional asset pricing and it facilitates our analysis by removing the

need for a budget constraint.7 We also standardize the characteristic portfolio weight vectors

so that the sum of the positive or negative weights is one; that is, a portfolio θkxkt invests θk

dollars on both the positive and negative legs. Finally, for the empirical analysis we consider

value-weighted long-short characteristic portfolios so as to not allocate large weights to small

firms that are difficult to trade.

Like Brandt et al. (2009), we consider a parametric portfolio policy such that the

weight on a particular stock at time t is a linear function of only its weights in the K

characteristic portfolios. Moreover, the same linear function is applied across stocks and

over time.8 Thus, the parametric portfolio at time t can be written as

wt(θ) =
∑
k

xktθk = Xtθ, (1)

where θk ∈ R is the investment position in the kth characteristic, θ = (θ1, θ2, . . . , θK) is the

investment-position vector, and Xt = (x1t, x2t, . . . , xKt) ∈ RN×K is the matrix whose columns

are the K long-short characteristic portfolios at time t. The return of the parametric portfolio

6We are agnostic about whether a particular characteristic is a proxy for the loading on a common
risk factor or not. Instead, we focus on the trade-off between expected gross return and price-impact costs,
consistent with the literature on the capacity of quantitative strategies (Korajczyk and Sadka, 2004; Lesmond
et al., 2004; Novy-Marx and Velikov, 2016; Ratcliffe et al., 2017; Frazzini et al., 2018).

7There are both long-short and long-only factor-investing products in financial markets. The advantages
of long-short funds are that they are market neutral and they can exploit the favorable performance of
the short leg. The main advantage of long-only products is that they do not require shorting, which may
be costly. However, many long-short products can reduce costs by shorting the market index instead of
individual stocks.

8The linearity of the parametric portfolio policy is required for tractability of the game-theoretic model
that we introduce in Section 4. Also, the assumption that the weights assigned to the characteristics are
constant over time is consistent with the empirical literature on the capacity of quantitative strategies,
which characterizes the largest investment position that can be allocated to a particular characteristic over
the entire period before price-impact costs drive its net average return to zero; see Korajczyk and Sadka
(2004), Ratcliffe et al. (2017), and Frazzini et al. (2018).
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at time t+ 1 is:9

rp,t+1 = wt(θ)
>rt+1 =

∑
k

θk x
>
ktrt+1 = θ>X>t rt+1. (2)

2.2 Price-impact costs

Investors trade for both informational and liquidity motives; see, for instance, Grossman and

Stiglitz (1980) and Kyle (1985). While informational trades result in permanent price impact,

liquidity trades have temporary price impact. Given our focus on factor-investing strategies

that exploit publicly known characteristics, we focus on temporary price-impact costs, which

is also consistent with the empirical literature on quantitative-strategy capacity.10

While several papers assume the price impact of a trade is linear in the amount traded

(Korajczyk and Sadka, 2004; Novy-Marx and Velikov, 2016), empirical evidence finds that

price impact grows with the square root of the amount traded (Torre and Ferrari, 1997;

Grinold and Kahn, 2000; Almgren, Thum, Hauptmann, and Li, 2005; Ratcliffe et al., 2017;

Frazzini et al., 2018). To capture either specification, we write the general price-impact

function at time t as:

PIt = Λt sign(∆wt) ◦ |∆wt|α, (3)

where the case with α = 1 corresponds to a linear price-impact function and the case with

α = 0.5 to the square-root price-impact function, and where

Λt = diag(λt1, λt2, . . . , λtN) ∈ RN×N (4)

is the diagonal matrix whose nth element, λtn, is the price-impact parameter for the nth

stock at time t, which is exogenous in our model; ∆wt ∈ RN is the aggregate-trade vector

at time t, defined as the vector that contains the net amount traded in the market for each

stock aggregated across all investors and given by

∆wt =
∑
k

θkx̃kt, where (5)

x̃kt = xkt − xk,t−1 ◦ (e+ rt), (6)

9Although rt+1 is a payoff because the parametric portfolio is a zero-cost long-short portfolio, for sim-
plicity we refer to it as a return.

10In unreported results, we find that our findings are robust to considering persistent price-impact costs.
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x ◦ y is the componentwise or Hadamard product of vectors x and y, e is the N -dimensional

vector of ones, and sign(x), |x|, and xα are the componentwise sign, absolute value, and

power function of vector x, respectively. The aggregate-trade vector can also be conveniently

written in matrix notation as

∆wt = X̃θ, (7)

where X̃t = (x̃1t, x̃2t, . . . , x̃Kt) ∈ RN×K .

The price-impact cost at time t is the amount of trading multiplied by its price impact:

PICt = ∆w>t PIt = ∆w>t Λt sign(∆wt) ◦ |∆wt|α. (8)

Then, substituting (7) into (8), the price-impact cost of rebalancing the portfolio at time t

can be written as

PICt = θ>X̃>t Λt sign(X̃tθ) ◦ |X̃tθ|α. (9)

2.3 Optimal parametric portfolio

The optimal portfolio at time t is given by the investment-position vector θ that optimizes

the conditional expected portfolio return net of price-impact costs. However, a key insight

of Brandt et al. (2009) is that the optimal parametric portfolio policy can be obtained

by optimizing the unconditional expectation because the investment-position vector θ is

assumed to be constant through time. In addition, for simplicity we assume that investors

are risk neutral, although Section IA.1 in the Internet Appendix shows that our results

are robust to considering risk-averse investors. Therefore, the optimal parametric portfolio

is obtained by choosing the investment-position vector θ that optimizes the unconditional

expectation of the difference between the price-impact cost and the return

min
θ

E
[
PICt − rp,t+1

]
, (10)

in which the portfolio return rp,t+1 and the price-impact cost PICt are functions of θ, as

specified in Equations (2) and (9), respectively.
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3 Trading diversification

We now characterize theoretically and empirically the trading-diversification mechanism by

studying the effect of combining characteristics on price-impact costs, capacity, and optimal

investment and profits.

3.1 Theoretical results

We first study theoretically how the price-impact costs of exploiting characteristics are re-

duced when they are traded in combination.

Definition 3.1 Given K characteristics whose rebalancing trades follow a particular joint

probability distribution, the price-impact diversification ratio for the nth stock is defined as

the ratio of the unconditional expected price-impact cost required to rebalance the position

on the nth stock for an equally weighted portfolio of the K characteristics to that required

to rebalance the K characteristics in isolation; that is

price-impact diversification ratio :=
E
[
λtn
∣∣∑K

k=1 x̃ktn
∣∣1+α]∑K

k=1E
[
λtn
∣∣x̃ktn∣∣1+α] , (11)

where λtn is the nth stock price-impact parameter at time t, that is, the nth element of the

diagonal matrix Λt in (4), and x̃ktn is the trade on the nth stock required to rebalance the

kth characteristic at time t, that is, the nth element of vector x̃kt in (6).

Note that a price-impact diversification ratio smaller than one implies that there is a

reduction in price-impact costs from combining characteristics. For instance, a price-impact

diversification ratio of 0.75 would indicate the price-impact cost of trading the characteristics

in combination is 25% smaller than that of trading them in isolation. On the other hand,

a price-impact diversification ratio of one implies that there are no diversification benefits

from combining the characteristics. Finally, a price-impact diversification ratio larger than

one implies that the price-impact cost of trading the characteristics in combination is higher

than that of trading them in isolation.11

11Note that in practice it is not feasible to trade characteristics in isolation because they all require trading
in the same underlying stocks. However, if the rebalancing trades of K characteristics are highly positively
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The following proposition characterizes analytically the price-impact diversification

ratio for α > −1. DeMiguel et al. (2020, Proposition 3) characterize this ratio for the case

with proportional transaction costs, α = 0. Here, we generalize their result to the case with

α > −1, which includes the two relevant cases: (i) α = 1, implying a linear price-impact

function, and thus, quadratic price-impact costs and (ii) α = 0.5, implying a square-root

price-impact function, and thus, subquadratic price-impact costs.

Proposition 3.1 Assume that the trades in the nth stock required to rebalance K charac-

teristics, that is, the quantities x̃ktn for k = 1, 2, . . . , K, are jointly distributed as a Normal

distribution with zero mean and positive definite covariance matrix Ω. Moreover, assume the

nth stock price-impact parameter is independently distributed from the rebalancing trades.

Then, for any α > −1 the

price-impact diversification ratio =

(∑K
k=1 σ

2
k +

∑K
k=1

∑
l 6=k ρklσkσl

) 1+α
2∑K

k=1 σ
1+α
k

,

where σ2
k is the variance of the rebalancing trade x̃ktn and ρkl is the correlation between the

rebalancing trades x̃ktn and x̃ltn. If, in addition, the covariance matrix Ω is symmetric with

respect to the K characteristics, that is, if σ2
k = σ2 for all k and ρkl = ρ for all k 6= l, then12

price-impact diversification ratio =

[
K(1 + (K − 1)ρ)

] 1+α
2

K
(12)

and the price-impact diversification ratio is strictly smaller than one if and only if

ρ < ρ̄ =
K

1−α
1+α − 1

K − 1
. (13)

We now discuss Proposition 3.1 focusing, for simplicity, on the symmetric case with

σ2
k = σ2 for all k and ρkl = ρ for all k 6= l. Equation (13) shows that the threshold correlation

ρ̄ below which the price-impact diversification ratio is smaller than one depends on the form

of the price impact given by α and the number of characteristics combined K. For the case

correlated, then if one could trade them in K isolated markets (that is, trades in each market do not affect
prices in the other K − 1 markets), then the price-impact cost would be smaller than that of trading them
in the same market because price-impact costs are a strictly convex function of the amount traded.

12Note that the term K(1 + (K − 1)ρ) is strictly positive because Ω is positive definite.
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with linear price impact, α = 1, we have that ρ̄ = 0, and thus, combining characteristics

reduces price-impact costs only if their portfolio-rebalancing trades are negatively correlated.

However, for the empirically relevant case of square-root price impact, α = 0.5,

Proposition 3.1 shows that the price-impact diversification ratio can be smaller than one

even if the rebalancing trades are positively correlated, as long as the correlation is below

the threshold ρ̄ = (K1/3−1)/(K−1) > 0. That is, with square-root price impact, combining

characteristics leads to a reduction of price-impact costs even if the rebalancing trades of

the characteristics are moderately positively correlated.13

These theoretical findings are illustrated in Figure 2. Panel (a) depicts how the

price-impact diversification ratio depends on the rebalancing trade correlation ρ for the case

with two characteristics and linear (α = 1) or square-root price impact (α = 0.5). The

graph shows that for the case with square-root price impact (α = 0.5) the ratio is smaller

than one provided ρ < ρ̄ = 21/3 − 1 ≈ 0.26. For example, if ρ = 0, the price-impact

diversification ratio for the case with two characteristics is around 0.84, indicating that the

price-impact cost of trading the two characteristics in combination is around 16% smaller

than the average cost of trading them in isolation. Panel (b) illustrates the effect of the

number of characteristics K on the price-impact diversification ratio for the case with zero

rebalancing-trade correlation (ρ = 0) and square-root price impact (α = 0.5). The plot

shows that the benefits from trading diversification increase substantially with the number

of characteristics combined and the price-impact diversification ratio ranges from 84% for

the case with two characteristics to around 50% for the case with K = 18 characteristics.

The explanation for these theoretical findings is that the subquadratic price-impact

cost function (α = 0.5) assigns a lower cost to large trades than the quadratic function

(α = 1). To see this, consider a simple example with two characteristics whose rebalancing

trades in the nth stock, x̃1tn and x̃2tn, are independently and identically distributed with

equal probability to take a value of −1 or +1. Moreover, let the price-impact parameter for

13Proposition 3.1 shows that trading diversification is fundamentally different from variance-risk diversi-
fication, which takes place whenever asset returns are not perfectly correlated. For the case with linear price
impact, trading diversification occurs only for strictly negative correlation between the rebalancing trades of
different characteristics. Even for the case with square-root price impact, combining characteristics reduces
price-impact costs only if the correlation between rebalancing trades is below a positive threshold that is
strictly smaller than one.
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Figure 2: Price-impact diversification ratio: Theoretical results

This figure depicts the price-impact diversification ratio given in (11) for characteristics satisfying
the assumptions of Proposition 3.1 and for the case where the covariance matrix of rebalancing
trades is symmetric with respect to the characteristics; that is, the case where σ2

k = σ2 for all k
and ρkl = ρ for all k 6= l. Panel (a) considers the case with two characteristics and shows the
price-impact diversification ratio on the vertical axis as a function of the correlation between the
rebalancing trades of the two characteristics on the horizontal axis. The two curves correspond to
the cases with square-root price-impact function (subquadratic price-impact costs, α = 0.5) and
linear price-impact function (quadratic price-impact costs, α = 1). Panel (b) shows the price-impact
diversification ratio on the vertical axis as a function of the number of characteristics combined for
the case with ρ = 0 and square-root price-impact function (α = 0.5).

(a) Effect of rebalancing trade correlation for two characteristics

(b) Effect of number of characteristics for zero rebalancing-trade correlation
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the nth stock be constant and equal to one, λtn = 1.14 Then, for the case with quadratic

price-impact costs, the expected cost of rebalancing each of the characteristics in isolation

is equal to one:

E
[
|x̃ktn|2

]
=

1

2
| − 1|2 +

1

2
|+ 1|2 = 1 for k = 1, 2.

To calculate the price-impact cost of trading the two characteristics in combination, we

consider four equally likely outcomes depending on the values of x̃1tn and x̃2tn:

(x̃1tn, x̃2tn) =


(−1,−1),

(−1,+1),

(+1,−1),

(+1,+1).

Thus, the expected cost of trading the two characteristics in combination is equal to two:

E
[
|x̃1tn + x̃2tn|2

]
=

1

4
× | − 1− 1|2 +

1

4
× | − 1 + 1|2 +

1

4
× |+ 1− 1|2 +

1

4
× |+ 1 + 1|2

=
1

4
× | − 2|2 +

1

4
× |0|2 +

1

4
× |0|2 +

1

4
× |+ 2|2 = 2.

Thus, from (11) we have that

price-impact diversification ratio =
E
[
|x̃1tn + x̃2tn|2

]
E
[
|x̃1tn|2

]
+ E

[
|x̃2tn|2

] =
2

1 + 1
= 1.

The price-impact diversification ratio is one for the case with quadratic costs because even

though the price-impact cost is zero for the two outcomes where the trades of the two

characteristics net out, (−1,+1) and (+1,−1), the quadratic price-impact costs of trading

the characteristics in combination are large (equal to four) for the two outcomes where the

rebalancing trades of the two characteristics are in the same direction, (−1,−1) and (+1,+1).

In other words, the increase in price-impact cost from trading characteristics in combination

for the two outcomes where the trades of the two characteristics are in the same direction

exactly compensates for the reduction for the two outcomes where they net out. This is

because the quadratic price-impact costs are disproportionately high for large trades.

14We assume that the absolute value of the rebalancing trades and the price-impact parameter are equal
to one without loss of generality as the price-impact diversification ratio is invariant to multiplying the
rebalancing trades of all characteristics or the price-impact parameter by a constant because the absolute-
value and power functions are homogeneous.
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For the square-root price-impact function, that is, subquadratic price-impact costs,

the expected cost of rebalancing each of the characteristics in isolation is also equal to one:

E
[
|x̃ktn|1.5

]
=

1

2
× | − 1|1.5 +

1

2
× |+ 1|1.5 = 1 for k = 1, 2.

In contrast, the expected cost of trading the two characteristics in combination is only
√

2:

E
[
|x̃1tn + x̃2tn|1.5

]
=

1

4
× | − 1− 1|1.5 +

1

4
× | − 1 + 1|1.5 +

1

4
× |+ 1− 1|1.5 +

1

4
× |+ 1 + 1|1.5

=
1

4
× | − 2|1.5 +

1

4
× |0|1.5 +

1

4
× |0|1.5 +

1

4
× |+ 2|1.5

=
2× 21.5

4
=
√

2.

Thus, we have that for the square-root price-impact function the

price-impact diversification ratio =
E
[
|x̃1tn + x̃2tn|1.5

]
E
[
|x̃1tn|1.5

]
+ E

[
|x̃2tn|1.5

] =

√
2

1 + 1
=

1√
2
< 1.

The price-impact diversification ratio is smaller than one for the case with square-root price

impact because, in addition to having zero price-impact cost for the two outcomes where

the rebalancing trades of the two characteristics cancel out, (−1,+1) and (+1,−1), the

subquadratic price-impact costs of trading the characteristics in combination are only 21.5

for the two outcomes where the rebalancing trades of the two characteristics are in the same

direction, (−1,−1) and (+1,+1), compared to 22 for the case with quadratic costs.

This example illustrates why, with a square-root price impact, combining character-

istics leads to a reduction of price-impact costs even when the rebalancing trades of the two

characteristics are uncorrelated or moderately positively correlated. In the next section, we

examine the magnitude of this effect empirically.

3.2 Empirical results

To evaluate empirically the trading diversification benefits from combining characteristics, we

require a historical sample of the rebalancing-trade vectors, x̃kt, the characteristic portfolio

returns, x>ktrt+1, and an estimate of the price-impact cost for each stock.
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Table 1: List of characteristics considered

This table lists the 18 characteristics we consider, which include the traditional characteristics size, value,
and momentum, plus the 15 characteristics that DeMiguel et al. (2020) find to be significant, ordered
alphabetically by acronym. The first column gives the number of the characteristic, the second column gives
the characteristic’s definition, the third column gives the acronym, and the fourth and fifth columns give the
authors who analyzed them, and the date and journal of publication.

# Characteristic and definition Acronym Author(s) Date, Journal

1 Asset growth: Annual percent change in total assets agr Cooper, Gulen & Schill 2008, JF
2 Beta: Estimated market beta from weekly returns and equal weighted market returns

for 3 years ending month t− 1 with at least 52 weeks of returns
beta Fama & MacBeth 1973, JPE

3 Book to market: Book value of equity divided by end of fiscal-year market capitalization bm Rosenberg, Reid &
Lanstein

1985, JPM

4 Industry adjusted book to market: Industry adjusted book-to-market ratio bm ia Asness, Porter & Stevens 2000, WP
5 Industry adjusted change in asset turnover: 2-digit SIC fiscal-year mean adjusted

change in sales divided by average total assets
chatoia Soliman 2008, TAR

6 Change in tax expense: Percent change in total taxes from quarter t− 4 to t chtx Thomas & Zhang 2011 JAR
7 Gross profitability: Revenues minus cost of goods sold divided by lagged total assets gma Novy-Marx 2013 JFE
8 Industry sales concentration: Sum of squared percent of sales in industry for each

company
herf Hou & Robinson 2006, JF

9 12-month momentum: 11-month cumulative returns ending one month before month-
end

mom12m Jegadeesh 1990, JF

10 1-month momentum: 1-month cumulative return mom1m Jegadeesh 1990, JF
11 Market capitalization: Natural log of market capitalization at end of month t− 1 mve Banz 1981, JFE
12 ∆% gross margin - ∆% sales: Percent change in gross margin minus percent change in

sales
pchgm pchsale Abarbanell & Bushee 1998, TAR

13 Financial-statements score: Sum of 9 indicator variables to form fundamental health
score

ps Piotroski 2000, JAR

14 R&D to market cap: R&D expense divided by end-of-fiscal-year market capitalization rd mve Guo, Lev & Shi 2006, JBFA
15 Return volatility: Standard deviation of daily returns from month t− 1 retvol Ang, Hodrick, Xing &

Zhang
2006, JF

16 Volatility of share turnover: Monthly standard deviation of daily share turnover std turn Chordia, Subrahmanyan
& Anshuman

2001, JFE

17 Unexpected quarterly earnings: Unexpected quarterly earnings divided by fiscal-
quarter-end market cap. Unexpected earnings is I/B/E/S actual earnings minus me-
dian forecasted earnings if available, else it is the seasonally differenced quarterly earn-
ings before extraordinary items from Compustat quarterly file

sue Rendelman, Jones & La-
tane

1982, JFE

18 Zero trading days: Turnover weighted number of zero trading days for most recent
month

zerotrade Liu 2006, JFE

To obtain a historical sample for the rebalancing-trade vectors and characteristic-

portfolio returns, we compile data on stock returns as well as for the 18 characteristics listed

in Table 1, which include the traditional characteristics size, value, and momentum plus the

15 characteristics that DeMiguel et al. (2020) find jointly significant for explaining the cross

section of stock returns. We combine U.S. stock-market information from CRSP, Compustat,

and I/B/E/S from January 1980 to December 2018.15 Our database contains every firm

traded on the NYSE, AMEX, and NASDAQ exchanges. We then remove firms with negative

book-to-market ratios. As in Brandt et al. (2009), we also remove firms below the 20th

percentile of market capitalization because these are very small firms that are difficult to

trade. We form value-weighted long-short portfolios for each characteristic by going long on

stocks with values of the characteristic above the 30th percentile and going short stocks with

values of the characteristic below the 70th percentile. We standardize the value-weights so

15We thank Jeremiah Green for sharing the code to download the data in Green, Hand, and Zhang (2017).
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that both the positive and negative weights sum to one for each characteristic. Then, we

use (6) to compute the monthly rebalancing-trade vectors and a single-characteristic version

of (2) to compute the returns of each characteristic portfolio.

To estimate the price-impact cost for the nth stock, we use the results of Frazzini

et al. (2018), who use a trade-execution dataset from a large institutional money manager

covering a 19-year period to estimate the following panel regression for the price impact of

a trade on the nth stock

PItn = atn + b vrtn + c sign(vrtn)
√
|vrtn|, (14)

where vrtn = 100×∆wtn/dtvtn is the signed dollar value of a trade ∆wtn as a percentage of

the stock’s average daily dollar volume dtvtn. The second and third terms on the right-hand

side of (14) account for the linear and square-root price impact of trading, respectively. The

first term atn captures the effect of explanatory variables that do not depend on the trade

size such as a time trend, the log market capitalization and idiosyncratic volatility of the

stock, and the monthly variance of the CRSP value-weighted index. The panel regression in

(14) is a generalization of the price-impact function given in Equation (3) because it allows

for additional explanatory variables collected in atn, and a term linear in vrtn in addition to a

square-root term. Frazzini et al. (2018) find that the coefficient c in (14) is highly statistically

significant, whereas the coefficient b is not significant, consistent with the findings of Torre

and Ferrari (1997), Grinold and Kahn (2000), Almgren et al. (2005), and Ratcliffe et al.

(2017). We rely on the estimates of atn, b, and c reported in Column (9) of Table VII in

Frazzini et al. (2018), to characterize the price-impact cost of a trade in the nth stock.

Based on the historical sample of rebalancing-trade vectors and the stock price-impact

model of Frazzini et al. (2018), Table 2 compares the capacity, optimal investment, and

optimal annual profit associated with exploiting the 18 characteristics when considered in

isolation and in combination. We obtain the optimal investment and profit by solving the

parametric portfolio problem (10) for each of the 18 characteristics in isolation and in com-

bination.16 The investment is given by the optimal value of θ and the annual profit is 12

times the optimal objective of problem (10). We obtain the capacity of each characteristic in

16For the price-impact cost model of Frazzini et al. (2018), which contains both linear and square-root
price-impact terms, there are no closed-form expressions for the optimal investment and profit, so we compute
these numerically. Also, as explained in Section 2.1, the investment position θi represents the dollars invested
on the long leg and on the short leg of the ith characteristic portfolio.
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Table 2: Capacity, investment, and profit in isolation and combination

This table reports the capacity, investment, and profit of each characteristic when considered in isolation
and in combination. For each characteristic, the first column reports its acronym and the remaining columns
report its capacity, optimal investment, and optimal profit when considered in isolation and in combination,
as well as the percentage increase in these quantities when the characteristic is considered in combination
instead of in isolation. We obtain the optimal investment and profit by solving problem (10) for each of
the 18 characteristics in isolation and in combination, with the price-impact cost PICt evaluated using the
model of Frazzini et al. (2018) in Equation (14). The investment is given by the optimal value of θ and the
annual profit is 12 times the optimal objective of problem (10). We express all quantities in terms of market
capitalization at the end of our sample (December 2018).

Capacity Investment Profit

Isol. Comb. Incr. Isol. Comb. Incr. Isol. Comb. Incr.
Characteristic ($bill.) ($bill.) (%) ($bill.) ($bill.) (%) ($mill.) ($mill.) (%)

gma 105.502 133.764 27 52.751 64.106 22 324.52 443.48 37
rd mve 66.163 66.009 −0 31.954 31.635 −1 918.93 923.85 1
bm 32.510 41.174 27 15.346 19.733 29 129.17 178.12 38
herf 6.389 40.488 534 2.832 19.404 585 2.18 23.29 970
agr 16.082 25.681 60 7.528 12.308 63 69.73 133.93 92
ps 4.819 7.542 57 2.223 3.615 63 11.36 24.76 118
chatoia 1.654 6.392 287 0.753 3.064 307 2.00 12.18 510
beta 1.319 5.952 351 0.601 2.853 374 0.94 7.18 667
bm ia 0.000 5.572 - 0.000 2.670 - 0.00 0.77 -
mom12m 1.007 3.090 207 0.456 1.481 225 3.19 15.87 398
chtx 0.768 2.348 206 0.351 1.125 220 1.45 7.44 414
sue 0.869 2.265 161 0.397 1.085 173 2.41 9.19 281
retvol 0.201 1.621 708 0.088 0.777 785 0.50 9.40 1790
pchgm pchsale 1.450 1.068 −26 0.658 0.512 −22 1.63 2.55 57
std turn 0.001 1.008 94076 0.000 0.483 - 0.00 1.62 -
mom1m 0.002 0.552 31145 0.000 0.265 - 0.00 2.86 -
zerotrade 0.005 0.424 8965 0.002 0.203 9865 0.00 1.47 78499
mve 0.000 0.125 - 0.000 0.060 - 0.00 0.02 -

Total 238.739 345.076 45 115.941 165.378 43 1467.99 1797.98 22

isolation by computing the maximum investment that can be allocated to each characteristic

before price-impact costs erode any profits. We obtain the capacity of the 18 characteristics

in combination by scaling up the parametric-portfolio vector that is optimal for the case

where the 18 characteristics are exploited in combination until price-impact costs erode any

profits. As in Korajczyk and Sadka (2004) and Novy-Marx and Velikov (2016), we express

all quantities in terms of market capitalization at the end of our sample (December 2018).

The estimates of capacity in Table 2 are consistent with those in the existing liter-

ature; for instance, the total capacity aggregated across the 18 characteristics when con-

sidered in isolation is around $239 billion. The “gross profitability (gma)” characteristic

has the largest capacity when considered in isolation of around $105 billion. Other popular
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characteristics such as “R&D to market capitalization (rd mve),” “value (book to market,

bm),” and “investment (asset growth, agr)” have capacities in isolation of more than $10

billion each.

More importantly, the table shows that trading diversification has a first-order effect

on capacity, investment, and profits. In particular, exploiting the 18 characteristics in com-

bination leads to a 45% increase in total capacity from $239 billion to $345 billion, a 43%

increase in total optimal investment from $116 billion to $165 billion, and a 22% increase in

total annual profits from $1.5 billion to $1.8 billion. Moreover, Section IA.3 of the Internet

Appendix checks the robustness of this finding by considering subsamples and shows that

trading diversification continues to have a first-order effect in the first and second halves of

our sample.

Figure 3 reports the empirical price-impact diversification ratio as a function of the

number of characteristics considered, when we invest in each characteristic the amount that

is optimal when all 18 characteristics are considered in combination; that is, the amount in

the sixth column of Table 2.17 For each number of characteristics K = 1, 2, . . . , 18 (depicted

on the horizontal axis), we consider all combinations of the 18 characteristics taken in groups

of K and report the mean and 5th and 95th percentiles of price-impact diversification ratio

across the combinations. The figure shows that the benefits from trading diversification

increase substantially with the number of characteristics, and the price-impact diversification

ratio is around 84% for the case where all 18 characteristics are considered; that is, there

is reduction of around 16% in price-impact costs when combining all characteristics using

their optimal investment weights compared to considering them in isolation.18 Moreover,

the figure shows that the results in Table 2 are robust to considering different subsets of

characteristics. To see this, note that we do not re-optimize the weights of the characteristics

when considering only K < 18, but rather use the weights that are optimal when combining

all 18 characteristics, yet there are substantial benefits in terms of price-impact cost from

combining characteristics.

17We have reproduced Figure 3 for the case where the characteristics are equally weighted and the
results are very similar, with a price-impact cost reduction of around 18% from combining 18 characteristics,
compared to exploiting them in isolation.

18Although substantial, this price-impact cost reduction is smaller than that predicted by Proposition 3.1
because the multivariate distribution of the empirical rebalancing trades is neither symmetric nor normally
distributed.
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Figure 3: Price-impact diversification ratio: Empirical results

This figure depicts the empirical price-impact diversification ratio as a function of the number of
characteristics combined, when we invest in each characteristic the amount that is optimal when all
18 characteristics are considered in combination. For each number of characteristics K (depicted on
the horizontal axis), we consider all combinations of the 18 characteristics taken in groups of K and
report the mean (solid red line) and the 5th and 95th percentiles (dashed black lines) of price-impact
diversification ratio across the combinations.

In this section, we have shown theoretically and empirically that combining charac-

teristics substantially reduces the price-impact cost of exploiting them. Moreover, we have

shown empirically that trading diversification has a first-order effect on capacity, optimal

investment positions and profits. In the remainder of this manuscript, we study how price-

impact diversification affects the strategic interaction between investors and the resulting

effects on equilibrium investment positions and profits.

4 Game-theoretic model of strategic competition

We now extend the parametric-portfolio framework introduced in Section 2 to develop a

game-theoretic model of competition. For simplicity, we consider two groups of investors,

where I1 investors exploit one characteristic and I2 investors exploit a second characteristic.

In Section 5, we use this model to study how price-impact diversification affects the strategic

interactions between investors and in Section 6.1, we take the model to the data.
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The portfolio of the ith investor exploiting the kth characteristic at time t is

wkit(θki) = xktθki,

where θki ∈ R is the investment position of the ith investor exploiting the kth characteristic.

The portfolio return of the ith investor exploiting the kth characteristic at time t+ 1 is

rki,t+1 = θkix
>
ktrt+1. (15)

For analytical tractability, in this section we assume that trading has a linear impact

on prices; that is, α = 1 in Equation (3), an assumption that we relax in our empirical

work in Section 6.1, where we use the price-impact cost model of Frazzini et al. (2018) that

captures both linear and square-root price-impact terms. The following lemma shows that,

under the assumption of a linear price-impact function, the price-impact cost of the investors

at time t is a quadratic function of their investment positions.

Lemma 4.1 Assume the aggregate amount of trading on a stock has a linear impact on its

price (α = 1). Then, the price-impact cost of the ith investor exploiting the first and second

characteristics at time t can be written as

PIC1it = θ1iλ1t(θ1i + θ1,−i) + θ1iλ12t

I2∑
j=1

θ2j and (16)

PIC2it = θ2iλ2t(θ2i + θ2,−i) + θ2iλ12t

I1∑
j=1

θ1j, respectively, (17)

where θk,−i =
∑

j 6=i θkj is the aggregate investment position of investors in the kth character-

istic other than the ith investor and λkt = x̃>ktΛtx̃kt and λ12t = x̃>1tΛtx̃2t are the price-impact

parameters for the kth characteristic and the interaction between the two characteristics at

time t, respectively, where x̃kt is the rebalancing-trade vector for the kth characteristic at

time t defined in (8).

Lemma 4.1 shows that, for the case with linear price-impact function, the trading

costs for the two investors can be conveniently decomposed into three distinct terms. The

terms associated with λ1t and λ2t measure the price-impact cost associated with exploiting

in isolation the first and second characteristics, respectively. The parameter λ12t measures

the interaction between the rebalancing trades for the two characteristics. For λ12t = 0, the
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price-impact costs of exploiting the two characteristics are independent, for λ12t < 0 (> 0)

there is a positive (negative) externality between the two groups of investors because trading

in one characteristic decreases (increases) the price-impact cost of trading the other.

4.1 Decentralized setting

In the decentralized setting, we consider a game where the two groups of investors make deci-

sions simultaneously ; however, in unreported results we observe that our findings are robust

to considering the case where investors in one of the groups act as Stackelberg leaders.19

The ith investor in the kth characteristic chooses her investment position θki to op-

timize the unconditional expectation of the difference between her price-impact cost and

portfolio return

min
θki

E[PICkit − rki,t+1]. (18)

Then, using (15) and (16), the decision problems of the ith investor in the first and second

characteristics can be rewritten as

min
θ1i

θ1iλ1(θ1i + θ1,−i) + θ1iλ12

I2∑
j=1

θ2j − θ1iµ1 and (19)

min
θ2i

θ2iλ2(θ2i + θ2,−i) + θ2iλ12

I1∑
j=1

θ1j − θ2iµ2, respectively, (20)

where λk = E[λkt] is the price-impact parameter for the kth characteristic, λ12 = E[λ12t]

is the price-impact parameter for the interaction between the two characteristics, and µk =

E[x>ktrt+1] is the average return of the kth characteristic portfolio. Note that although µ1

and µ2 are exogenous in our model, the average characteristic return net of price-impact

costs, µ̄1 and µ̄2, are determined endogenously as a function of the investment positions. For

instance, for the first characteristic we have µ̄1 = µ1 − λ1(θ1i + θ1,−i)− λ12
∑I2

j=1 θ2j.

19Also, as mentioned in Section 2, although for simplicity of exposition we assume risk-neutral investors,
Section IA.1 of the Internet Appendix shows that our results are robust to considering risk-averse investors.
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4.2 Centralized setting

To understand the impact of competition between the two groups of investors, we also

consider a centralized setting in which a single investor exploits both characteristics. For the

case with linear price impact, the decision problem in the centralized setting is:

min
θ1c,θ2c

θ1cλ1θ1c + 2θ1cλ12θ2c + θ2cλ2θ2c − θ1cµ1 − θ2cµ2, (21)

where the subscript “c” denotes the optimal quantities for the centralized market. Note that

because the objective function in the centralized setting is to maximize total profits, the

total profit in the centralized setting is an upper bound for that in the decentralized setting.

4.3 Equilibrium

We now characterize the unique equilibrium in closed form for both the decentralized and

centralized settings. We start with some assumptions that rule out unrealistic cases.

Assumption 4.1 The joint probability distribution of the two characteristic rebalancing-

trade vectors, x̃1t and x̃2t, is such that the following events have strictly positive probability:

1. The rebalancing-trade vector of the first characteristic is nonzero; that is, x̃1t 6= 0.

2. The rebalancing-trade vector of the second characteristic is nonzero; that is, x̃2t 6= 0.

3. The rebalancing-trade vectors of the two characteristics are not equal, up to a change

of scale; that is, there does not exist a ∈ R such that x̃1t = ax̃2t.

Assumptions 4.1(1–2) rule out the case in which exploiting the characteristics does not

require any rebalancing trades. Assumption 4.1(3) rules out the case in which the two

characteristics require rebalancing trades that are identical, up to a change of scale.

Under Assumption 4.1, in Lemma 4.2 below we show using the triangular inequality

that the absolute value of the price-impact parameter for the interaction between the two

characteristics is bounded above.

Lemma 4.2 Let Assumption 4.1 hold. Then, λ1, λ2 > 0 and the absolute value of the price-

impact parameter for the interaction between the two characteristics is bounded above by

λ̄12 ≡
√
λ1λ2; that is, |λ12| < λ̄12.
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The following proposition provides closed-form expressions for the equilibrium quan-

tities in the decentralized setting, denoted by the subscript “d.”

Proposition 4.1 Let Assumption 4.1 hold. Then, in the decentralized setting:

1. There exists a unique Nash equilibrium.

2. The equilibrium is symmetric with respect to the I1 investors exploiting the first char-

acteristic and with respect to the I2 investors exploiting the second.

3. The investment positions of the ith investor exploiting the first characteristic and the

ith investor exploiting the second characteristic are

θ1id =
(I2 + 1)λ2µ1 − I2λ12µ2

(I1 + 1)(I2 + 1)λ1λ2 − I1I2λ212
and (22)

θ2id =
(I1 + 1)λ1µ2 − I1λ12µ1

(I1 + 1)(I2 + 1)λ1λ2 − I1I2λ212
, respectively. (23)

4. The profits of the ith investor exploiting the kth characteristic is

πkid = λkθ
2
kid. (24)

The following proposition gives the optimal investments and profit in the centralized

setting, denoted by the subscript “c”.

Proposition 4.2 Let Assumption 4.1 hold. Then, in the centralized setting:

1. There exists a unique minimizer to the centralized decision problem.

2. The optimal investment positions are

θ1c =
λ2µ1 − λ12µ2

2(λ1λ2 − λ212)
, (25)

θ2c =
λ1µ2 − λ12µ1

2(λ1λ2 − λ212)
. (26)

3. The profits from the first and second characteristics are

π1c =
1
2
λ2µ

2
1 − 1

2
λ12µ1µ2

2(λ1λ2 − λ212)
, (27)

π2c =
1
2
λ1µ

2
2 − 1

2
λ12µ1µ2

2(λ1λ2 − λ212)
. (28)
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Propositions 4.1 and 4.2 characterize the equilibrium in closed form for the general

case where both characteristics may have a nonzero mean return. For simplicity of exposition,

Section 5 studies the case where the average return of the second characteristic is zero

(µ2 = 0). We refer to this case as the case with pure liquidity-provision motive because

in this case the only motive to trade the second characteristic is to receive compensation

for providing liquidity for the trades of the first characteristic. The empirical analysis in

Section 6.1 shows that our findings are robust to the general case with µ2 6= 0. The following

assumption describes the case with pure liquidity-provision motive.

Assumption 4.2 The mean return of the first characteristic is strictly positive, µ1 > 0, the

mean return of the second characteristic is zero, µ2 = 0, and the price-impact parameter for

the interaction between the two characteristics is positive, λ12 > 0.

Note that the assumption that characteristic mean returns are nonnegative is without loss

of generality because the case where a characteristic has a negative mean return can be

transformed into a case with positive mean return by changing the sign of the characteristic.

Also, we exclude the trivial case with λ12 = 0, in which the decisions of the two groups

of investors are independent. Finally, it is straightforward to show that for the case with

µ2 = 0, the equilibrium quantities are the same for the cases with λ12 > 0 and λ12 < 0, up

to a change of sign; therefore, the assumption that λ12 > 0 is without loss of generality.

5 Discussion of equilibrium

Our discussion of the equilibrium of the game-theoretic model parallels our discussion of

Figure 1 in the introduction. To study the effect of crowding, we start by considering the

case where there are only investors exploiting the first characteristic (I1 ≥ 1, I2 = 0). Then,

to characterize how trading diversification and competition among investors exploiting the

second characteristic alleviate crowding in the first characteristic, we consider the case where

there are investors exploiting both characteristics (I1 ≥ 1 and I2 ≥ 1). Finally, we consider

the centralized setting where a single investor exploits both characteristics.
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5.1 Crowding in factor investing

To set the stage for our main insight about trading diversification, we begin by considering the

case where there are only investors exploiting the first characteristic (I1 ≥ 1 and I2 = 0). We

identify the capacity of the first characteristic, defined as the aggregate investment position

for which aggregate profits become zero. From Equation (19), we have that the aggregate

profits for the case where there are no investors exploiting the second characteristic are

π1 = θ1µ1 − θ1λ1θ1, where the aggregate investment position in the first characteristic is

θ1 =
∑I1

i=1 θ1i. Thus, the capacity of the first characteristic is C(I2 = 0) = µ1/λ1.

In the following proposition, we characterize analytically the equilibrium for the case

where we only have investors exploiting the first characteristic and there are no investors

exploiting the second characteristic.

Proposition 5.1 Let Assumption 4.1 hold and consider the case where there are only in-

vestors exploiting the first characteristic (I1 ≥ 1 and I2 = 0), then there exists a unique Nash

equilibrium, which is symmetric across the I1 investors. Moreover, the aggregate investment

position of the investors in the first characteristic is

θ1d = I1θ1id =
I1

I1 + 1

µ1

λ1
(29)

and their aggregate profits are

π1d = I1π1id = I1λ1θ
2
1id =

I1
(I1 + 1)2

µ2
1

λ1
. (30)

Furthermore, the following monotonicity properties hold:

1. The aggregate investment position θ1d = I1θ1id is increasing in I1 and converges to the

strategy’s capacity µ1/λ1 as I1 →∞.

2. The aggregate profits π1d = I1π1id are decreasing in I1 and converge to zero as I1 →∞.

The intuition underlying Proposition 5.1, which is shown in Panel (a) of Figure 1,

is as follows. A single investor maximizes her profits by investing half of the capacity,

θ1d = µ1/2λ1 = C(I2 = 0)/2. Note that this is the first-best allocation that maximizes ag-

gregate profits in the absence of a second characteristic because the single investor acts as
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a monopolist exploiting the first characteristic. However, when there are multiple investors

competing to exploit the first characteristic, there is a negative externality among them be-

cause they do not internalize in their objective function how their investment decisions affect

each other. Consequently, as the number of investors I1 increases, their aggregate investment

position increases and their aggregate profit decreases because the externality among them

worsens. In the limit, as the number of investors goes to infinity, the externality pushes

them to overinvest to the point where price-impact costs completely erode any profits from

trading the first characteristic.20 Thus, Proposition 5.1 establishes the base-case result that

competition among investors exploiting the same characteristic erodes their profits because

of crowding.

5.2 Trading diversification

To study the effect of trading diversification, we now consider the case where there may also

be investors exploiting the second characteristic (I2 ≥ 0). We first characterize how trading

diversification and competition among investors exploiting the second characteristic increase

the capacity of the first characteristic.

Proposition 5.2 Let Assumptions 4.1 and 4.2 hold, then the capacity of the first charac-

teristic for any I2 ≥ 0 is

C(I2) =
µ1

λ1 − I2
I2+1

λ212
λ2

.

Moreover, C(I2) is monotonically increasing in I2 for any I2 ≥ 0.

We then characterize how the equilibrium aggregate investment position and prof-

its for the first characteristic increase with the number of investors exploiting the second

characteristic, I2.

Proposition 5.3 Let Assumptions 4.1 and 4.2 hold and I1 <∞, then the equilibrium quan-

tities in the decentralized setting given in Proposition 4.1 satisfy the following conditions with

respect to the number of investors exploiting the second characteristic, I2 ≥ 0:

20This result parallels the classic result of competition in quantities first studied by Cournot (1838).
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1. The aggregate investment position in the first characteristic θ1d = I1θ1id is strictly

positive and increasing in I2.

2. The aggregate profit from the first characteristic π1d = I1π1id is strictly positive and

increasing in I2.

3. For I2 ≥ 1, the investment position in the second characteristic θ2d = I2θ2id is strictly

negative and decreasing in I2; that is, it is increasing in absolute value.

4. For I2 ≥ 1, the aggregate profit from the second characteristic π2d = I2π2id is strictly

positive and decreasing in I2 provided that 2−(I2+1)
I2

> I1
I1+1

, and converges to zero as

I2 →∞.

We now discuss the intuition underlying Propositions 5.2 and 5.3, which is illustrated

in Panel (b) of Figure 1. First, comparing the case where there is no investor (I2 = 0) to that

where there is a single investor (I2 = 1) exploiting the second characteristic, Propositions 5.2

and 5.3 show that trading diversification increases the capacity as well as the equilibrium

aggregate investment position and profits of the first characteristic. Thus, trading diversi-

fication alleviates crowding in the first characteristic. Second, an increase in competition

among investors exploiting the second characteristic, measured by an increase in I2, further

increases the capacity as well as the equilibrium aggregate investment position and profits

for the first characteristic. To understand this result, note that there is a negative externality

among the investors exploiting the second characteristic because they do not internalize in

their objective function the effect of their investment decisions on each other. This external-

ity worsens as I2 increases and leads them to increase their aggregate investment position,

which reduces their profits, but increases aggregate profits from the first characteristic. Thus,

competition among investors exploiting the second characteristic further alleviates crowding

in the first characteristic.

Section 5.1 showed that in the absence of investors exploiting the second character-

istic, increased competition among investors exploiting the first characteristic leads to an

increase in their aggregate investment position and a decrease in their aggregate profits.

The following proposition shows that this monotonicity result with respect to I1 holds also

when there are I2 ≥ 1 investors exploiting the second characteristic.
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Proposition 5.4 Let Assumptions 4.1 and 4.2 hold and I2 < ∞, then the decentralized

equilibrium quantities in Proposition 4.1 satisfy the following conditions with respect to I1:

1. The aggregate investment position in the first characteristic θ1d = I1θ1id is increasing

in I1.

2. The aggregate investment position in the second characteristic θ2d = I2θ2id is strictly

negative and decreasing in I1; that is, it is increasing in absolute value.

3. The aggregate profits from the first characteristic π1d = I1π1id are decreasing in I1 for

I1 such that (I1 − 1)/I1 ≥ I2/(I2 + 1) and converge to zero as I1 →∞.

4. The aggregate profits from the second characteristic π2d = I2π2id are strictly positive

and increasing in I1.

Proposition 5.4 shows that, even when there are investors exploiting the second char-

acteristic, competition among investors exploiting the first characteristic leads to a reduction

in their profits. However, competition among investors exploiting the first characteristic also

leads investors exploiting the second characteristic to increase their investment positions.

This is because the increased investment position in the first characteristic increases the

rents from exploiting the second characteristic because of the positive externality between

investors exploiting the two characteristics. This increases the market power of the investors

exploiting the second characteristic, who strategically increase their investment positions and

earn higher profits. Thus, although competition among investors exploiting the first char-

acteristic erodes their profits because of crowding, it also induces the investors exploiting

the second characteristic to increase their investment positions, which reduces the negative

impact of crowding in the first characteristic.

5.3 Centralized investing in characteristics

We now consider a centralized setting in which a single investor exploits both characteristics.

The following proposition shows that centralization leads to an increase in the total profits

from exploiting both characteristics. The main takeaway from this result is that financial

institutions have an incentive to centralize the exploitation of multiple characteristics because

of trading diversification.
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Proposition 5.5 Let Assumptions 4.1 and 4.2 hold, then:

1. The equilibrium investment position in the first characteristic in the centralized setting,

θ1d, is larger than in the decentralized setting; that is, θ1c > θ1d > 0.

2. The equilibrium investment position in the second characteristic in the centralized set-

ting, θ2c, is negative and larger in absolute value than in the decentralized setting; that

is, θ2c < θ2d < 0.

3. The profits from trading the second characteristic π2c are zero in the centralized setting

and strictly smaller than those in the decentralized setting; that is, 0 = π2c < π2d.

4. The equilibrium total profits πc and the equilibrium profits from the first characteristic

in the centralized setting π1c are larger than those in the decentralized setting; that is,

πc > πd and π1c > π1d.

To understand the intuition underlying Proposition 5.5, note that centralizing the

trading of two characteristics allows the single investor to internalize the three externali-

ties present in the decentralized setting: among investors exploiting the first characteris-

tic, among investors exploiting the second characteristic, and between the two groups of

investors. After internalizing these externalities, the single investor makes decisions that

maximize total profits. Another insight from Proposition 5.5 is that, for the case with pure

liquidity-provision motive, the profits from the second characteristic are zero in the central-

ized setting.21 That is, the second characteristic is used solely to increase the profit from

exploiting the first characteristic.

6 Empirical analysis of game-theoretic model

This section provides empirical analysis of the proposed game-theoretic model. Section 6.1

calibrates the game-theoretic model using historical stock-return and characteristic data in

21To see this, note the first-order optimality conditions for the centralized setting portfolio problem (21)
imply that λ2θ2c = −λ12θ1c; in other words, the price impact of the investment in the second characteristic
cancels with the price impact of the interaction between the two characteristics.
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Figure 4: Crowding with a single characteristic
This figure illustrates the effect of crowding on aggregate investment positions and profits when there are only
investors exploiting the first characteristic (I1 ≥ 1 and I2 = 0). The figure depicts the aggregate investment
position and profits for the cases with I1 = 1, 2, 5, 10, 20,∞ investors. We consider the price-impact cost
model of Frazzini et al. (2018) and use “investment (asset growth)” as the characteristic.

order to gauge the magnitude of the impact of trading diversification on the equilibrium in-

vestment positions and profits. Section 6.2 tests the main implications of our game-theoretic

model using mutual-fund-holding data.

6.1 Empirical calibration

To investigate the magnitude of the impact of trading diversification on the equilibrium, we

now calibrate the game-theoretic model using historical stock-return and characteristic data

along with the price-impact cost model of Frazzini et al. (2018), as in Section 3.2. We use

“investment (asset growth)” as the first characteristic and “gross profitability” as the second

characteristic. Section IA.2 in the Internet Appendix shows that these results are robust to

considering a different characteristic, “book to market,” as the first characteristic, but the

same characteristic, “gross profitability,” as the second. For the price-impact cost model of

Frazzini et al. (2018), there are no closed-form expressions for the equilibrium quantities, so

we compute these numerically.

Figure 4 illustrates the effect of crowding on aggregate investment positions and

profits when there are only investors exploiting the first characteristic (I1 ≥ 1 and I2 = 0).

The figure depicts the aggregate investment position and profits for the first characteristic
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Figure 5: Trading diversification and competition among investors in second characteristic

This figure depicts the investment positions and profits for the two characteristics for the decentralized setting
where there is a single investor exploiting the first characteristic I1 = 1 and I2 = 0, 1, 2, 5, 10, 20,∞ investors
exploiting the second, and for the centralized setting (Cen). Panel (a) depicts the aggregate investment
position in each of the two characteristics and the total investment position across both characteristics in
billions of dollars. Panel (b) depicts the annual profits obtained from each characteristic and the total profits
from both characteristics in millions of dollars. We consider the price-impact cost model of Frazzini et al.
(2018) and use “investment (asset growth)” as the first characteristic and “gross profitability” as the second.

(a) Aggregate investment positions ($B)

(b) Aggregate annual profits ($M)

for the cases with I1 = 1, 2, 5, 10, 20,∞ investors. We observe that increasing the number of

investors competing to exploit the “investment (asset growth)” characteristic from one to 20

doubles their aggregate investment position, from $7.5 billion to $15 billion, and because of

crowding greatly reduces the aggregate expected annual profit, from almost $70 million to

just above $10 million. In the limit as the investors become perfectly competitive (I1 =∞),

their aggregate investment position is 113% greater than that for the case with a single

investor and their aggregate profits vanish.

Figure 5 depicts the investment positions and profits for the two characteristics for the

decentralized setting where there is a single investor exploiting the first characteristic I1 = 1

and I2 = 0, 1, 2, 5, 10, 20,∞ investors exploiting the second, and for the centralized setting
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(Cen). Panel (a) depicts the aggregate investment position in each of the two characteristics

and the total investment position across both characteristics. Panel (b) depicts the profits

obtained from each characteristic and the total profits from both characteristics.

Comparing the case where there are no investors (I2 = 0) to the case where there is

a single investor exploiting the second characteristic (I2 = 1), we note from Figure 5 that

trading diversification leads to an increase of around 50% in aggregate investment position,

from $7.5 billion to around $11.25 billion, and an increase in profits of around 95%, from

almost $70 million to around $136.5 million, from the first characteristic. Moreover, when

the number of investors exploiting the second characteristic increases from one to twenty,

their aggregate annual profits are reduced by almost 80%, from around $360 million to

around $75 million, and their aggregate investment position more than doubles, from around

$50 billion to around $110 billion. This additional investment in the second characteristic

generates trading diversification benefits for the investor exploiting the first characteristic

“investment (asset growth),” who in response increases her aggregate investment by 15%

and her aggregate profits by 26%. Overall, comparing the case without investors exploiting

the second characteristic (I2 = 0) to the case with twenty investors (I2 = 20), trading

diversification and competition among investors exploiting the second characteristic leads to

a 69% increase in aggregate investment position and a 145% increase in aggregate profits

from the first characteristic.

Finally, the single investor in the centralized setting maximizes the total profits across

the two characteristics by taking an even greater investment position in the first characteris-

tic, but a smaller position in the second characteristic, compared to the decentralized setting

with I1 = 1 and I2 = 20. This is because by reducing the investment position in the second

characteristic, the single investor substantially increases the profits from the second charac-

teristic at the expense of only a modest reduction in the profits from the first characteristic,

thus generating substantially higher total profits.

Summarizing, the empirical calibration of our game-theoretic model shows that com-

petition has a first-order effect on the impact of trading diversification on the equilibrium

investment positions and profits of financial institutions exploiting factor-investing strategies.
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6.2 Empirical tests of model predictions

In this section, we use data on mutual-fund holdings and stock returns to test the two key

predictions of our game-theoretic model: (i) competition among investors exploiting the same

characteristic erodes their profits because of crowding and (ii) competition among investors

exploiting other characteristics alleviates crowding because of trading diversification.

We download portfolio holdings for US equity mutual funds from Thomson Reuters.

Similar to Doshi, Elkamhi, and Simutin (2015), we combine all share classes issued by each

fund and drop funds with ten or fewer stock holdings or less than $15 million of assets under

management. We merge the resulting mutual-fund data with stock returns from CRSP. Our

final database covers the period from January 1990 to December 2018 and contains return

data for 15, 238 stocks and holdings data for 3, 516 mutual funds.22

We study the impact on stock returns of competition among mutual funds to buy or

sell each stock. To do this, we first compute the number of shares of the ith stock bought by

the jth fund in the tth quarter as bijt = [hijt − hij,t−1]+, where hijt is the number of shares

of the ith stock held by the jth fund in the tth quarter and [x]+ is the positive part of x.

Similarly, we compute the number of shares sold as sijt = [hij,t−1−hijt]+. Then, we estimate

the competition among funds to buy the ith stock in the tth quarter as

BuyCompetitionit =
(

1−
∑

j b
2
ijt

(
∑

j bijt)
2︸ ︷︷ ︸

Purchase
concentration

)
×

∑
j bijt∑

j(bijt + sijt)︸ ︷︷ ︸
Fraction of

shares purchased

. (31)

The first term on the right-hand side of Equation (31) is one minus the Herfindahl-Hirschman

(HH) index, which measures how concentrated across funds are the purchases of the stock.

For instance, if all shares purchased are bought by a single fund, then the HH index is equal

to one and the first term is zero (low buy competition). On the other hand, if ten funds

purchase an equal number of shares, then the HH index is 0.1 and the first term takes a

value of 0.9 (high buy competition). The second term on the right-hand side of Equation (31)

then scales this competition measure by the fraction of all transactions that correspond to

purchases as opposed to sales. Therefore, if there are ten funds buying a small number

22We thank Mikhail Simutin for sharing the SAS code to replicate the results of Doshi et al. (2015). We
start our sample in January 1990 because the number of funds and the percentage of the US equity market
that they hold is small before 1990 as shown, for instance, in Lou (2012, Table I).
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of shares (say 100 shares each) and two funds selling a much larger number of shares (say

10,000 each), then the competition to buy is small relative to the competition to sell. Note

that both terms on the right-hand side of Equation (31) are bounded between zero and one,

and thus the BuyCompetitionit variable is also bounded between zero and one. Similarly,

we estimate the competition to sell the ith stock at quarter t as

SellCompetitionit =
(

1−
∑

j s
2
ijt

(
∑

j sijt)
2

)
×

∑
j sijt∑

j(bijt + sijt)
. (32)

First, we test the prediction that competition among investors exploiting the same

characteristic erodes their profits because of crowding. In our model, competition induces

investors to hold larger investment positions that require larger rebalancing trades leading

to larger price-impact costs that erode profits. Therefore, we test the prediction that stocks

that experience high buy competition also experience high return reversals or price-impact

costs. We follow an approach similar to that of Lou (2012) and Ben-David, Li, Rossi, and

Song (2020), who show that stocks that experience large flow-induced trading suffer return

reversals at a three year horizon that are associated with high price-impact costs. We test

instead the prediction that stocks that experience high mutual-fund buy competition, suffer

high return reversals and price-impact costs. To do this, similar to Ben-David et al. (2020,

Section 4.2), we run cross-sectional regressions of quarterly stock returns on contemporaneous

and past values of BuyCompetition:

rit = c0 + c1BuyCompetitioni,t + . . .+ c12BuyCompetitioni,t−11 + ui,t, (33)

where rit is the return of stock i over quarter t. The slope coefficients of this regression

characterize the price response to mutual-fund buy competition.

Figure 6 graphs the cumulative price response (c1, c1 + c2, . . .) to a unit increase in

BuyCompetition. The figure shows that prices increase by around 13% contemporaneously

with a unit increase in BuyCompetition, but they revert by 7% within three years. That

is, a unit increase in BuyCompetition leads to both a permanent return of around 6% and

a return reversal of around 7%. This return reversal shows that stocks that experience

high buy competition suffer large price-impact costs, and thus, provides support for the first

prediction of our game-theoretic model.
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Figure 6: Price impact of buy competition
This figure depicts the cumulative price response to a unit increase in BuyCompetition (solid blue line) and
its 90% confidence interval (dashed black lines). The horizontal axis gives the time in quarters and the
vertical axis depicts the cumulative price response.

Second, we test the prediction that competition among investors exploiting other

characteristics alleviates crowding because of trading diversification. The analysis in regres-

sion (33) characterizes the effect of buy competition on prices, but it does not account for

the effect of trading diversification, which arises when investors trade in the opposite di-

rection. More precisely, the prediction of our model is that when a high buy-competition

stock experiences also high sell competition, the stock’s return reversal in response to the

buy competition will be smaller because of trading diversification. To test this prediction,

we consider the following cross-sectional regression:

rit = c0 + c1BuyCompetitioni,t + . . .+ c12BuyCompetitioni,t−11

+ b1SellCompetitioni,t + . . .+ b12SellCompetitioni,t−11 + ui,t, (34)

where the slope coefficients bi characterize the price response to sell competition. Thus, the

net effect from buy and sell competition at each quarter is (ci + bi), which accounts for the

trading diversification benefits that arise when mutual funds simultaneously buy and sell

certain assets.

Figure 7 depicts the cumulative price response to a unit increase in buy competi-

tion (c1, c1 + c2, . . . ) and the cumulative net response to a unit increase in both buy and

sell competition (c1 + b1, c1 + b1 + c2 + b2, . . . ). The figure shows that the return reversal

associated with a unit increase in buy competition (around 7%) is much larger than that

associated with a unit increase in both buy and sell competition (around 2%). That is,

when a high buy-competition stock experiences also high sell competition, the stock’s return
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Figure 7: Price impact of buy and sell competition
This figure depicts the cumulative price response to a unit increase in BuyCompetition (solid blue line) and
to a unit increase in both BuyCompetition and SellCompetition (dashed red line). The horizontal axis gives
the time in quarters and the vertical axis depicts the cumulative price response.

reversal in response to the buy competition is smaller. This provides evidence that trading

diversification alleviates the return reversals experienced by high buy competition stocks.

Our findings above are consistent also with results in the existing literature, which

provides additional support for the two key predictions of our game-theoretic model. For

instance, the first prediction is supported by Lou and Polk (2021) and Hoberg et al. (2020)

in the context of the momentum characteristic. Lou and Polk (2021) propose a novel como-

mentum measure of arbitrage activity and find that when “comomentum is high, the returns

on momentum stocks strongly revert, reflecting prior overreaction from crowded momentum

trading which pushes prices away from fundamentals.” Figure 3 in Lou and Polk (2021)

shows that momentum stocks with high comomentum have smaller returns than those with

low comomentum and that their returns revert strongly after only six months. Hoberg et al.

(2020) show that momentum produces abnormal returns only when the momentum portfolio

is constructed from stocks held by funds that do not face intense competition. The second

prediction is supported by the literature on fund herding (Wermers, 1999; Dasgupta, Prat,

and Verardo, 2011), which shows that the magnitude or sign of the aggregate trade of insti-

tutional investors in a particular stock predicts the stock’s short-term returns. Importantly,

these papers rely on the aggregate net (purchases minus sales) trade to explain subsequent

returns, and thus take into account trading diversification.

The Internet Appendix also contains several robustness checks for our empirical anal-

ysis based on mutual-fund holdings. Section IA.3 shows that the results are robust to

considering two subsamples of the data. Section IA.4 provides evidence for our second pre-
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diction regarding trading diversification by double sorting stocks based on BuyCompetition

and SellCompetition, instead of using a cross-sectional regression as in the main body of

the manuscript. Finally, Section IA.4 uses a double sort of stocks based on aggregate in-

stitutional trade and BuyCompetition and shows that the effect of BuyCompetition is not

subsumed by that of aggregate institutional trade.

7 Conclusion

The explosion in the number of fund managers investing in factors has raised concerns about

the effect of crowding on the profitability of these strategies. The analysis in our manuscript

suggests that the answer to the question posed in the title is that the trading-diversification

mechanism that we identify alleviates the effects of crowding in factor investing. In particular

our game-theoretic model shows that, although competition among investors exploiting the

same characteristic does erode their profits, competition among investors exploiting different

characteristics increases the capacity and profits of factor-investing strategies due to trading

diversification. Our empirical analysis shows that competition and trading diversification

have a first-order effect on capacities, investments, and profits. Moreover, we use mutual-

fund holdings to provide empirical evidence that supports the key predictions of our game-

theoretic model.

Our work has implications for various stakeholders in financial markets. First, finan-

cial institutions should search for characteristics that not only provide high returns net of

trading costs, but are also exploited by a relatively small number of competing institutions.

Second, financial institutions should seek to exploit characteristics that allow them to benefit

from the trading diversification generated by other institutions exploiting different charac-

teristics. Third, regulators need to recognize that, although encouraging competition among

fund managers exploiting a characteristic may reduce fees, it may also erode the profitabil-

ity of factor-investing products because of crowding. However, encouraging the appropriate

balance of competition between managers exploiting different characteristics can actually

alleviate crowding and increase profits due to trading diversification.
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A Proofs for all results

In this appendix we provide the proofs for all the results in the main body of the manuscript.

Proof of Proposition 3.1

For the case where the nth stock price-impact parameter is independently distributed from

the rebalancing trades, the price-impact diversification ratio simplifies to

price-impact diversification ratio =
E
[∣∣∑K

k=1 x̃ktn
∣∣1+α]∑K

k=1E
[∣∣x̃ktn∣∣1+α] . (A1)

Below, we characterize the expectation in the numerator and denominator on the right-hand

side of Equation (A1) for α > −1. Let

x̃ewtn =
K∑
k=1

x̃ktn

be the trade in the nth stock required to rebalance an equally weighted portfolio of the

K characteristics. Because x̃ktn for k = 1, 2, . . . , K are jointly distributed as a multivariate

Normal distribution with zero mean and covariance matrix Ω, we have that x̃ewtn is distributed

as a Normal distribution with zero mean and variance
∑K

k=1 σ
2
k +

∑K
k=1

∑
l 6=k ρklσkσl.

We need to characterize E[|x̃ewtn |1+α]. Because x̃ewtn is distributed as a Normal distri-

bution with zero mean, we have that E[|x̃ewtn |1+α] is the central moment of order 1 + α of a

Normal random variable. Winkelbauer (2012) shows that for α > −1

E[|x̃ewtn |1+α] =
Γ(2+α

2
)

π
× 21+α ×

(
K∑
k=1

σ2
k +

K∑
k=1

∑
l 6=k

ρklσkσl

) 1+α
2

, (A2)

where Γ(.) is the Gamma function; see Winkelbauer (2012, p. 1). Similarly, we have that

E[|x̃ktn|1+α] =
Γ(2+α

2
)

π
× 21+α × σ1+α

k . (A3)

Taking the ratio of (A2) to the summation of (A3) for k = 1, 2, . . . , K, we get

price-impact diversification ratio =

(∑K
k=1 σ

2
k +

∑K
k=1

∑
l 6=k ρklσkσl

) 1+α
2∑K

k=1 σ
1+α
k

. (A4)
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For the case with σ2
k = σ2 for all k and ρkl = ρ for all k 6= l, we have that

price-impact diversification ratio =

[
K(1 + (K − 1)ρ)

] 1+α
2

K
, (A5)

where the term K(1 + (K − 1)ρ) is strictly positive because Ω is positive definite. Finally,

the value of ρ̄, which is defined in (13), follows using straightforward algebra.

Proof of Lemma 4.1

For the case with linear price impact, α = 1, the price-impact at time t defined in Equa-

tion (3) becomes

PIt = Λt∆wt, (A6)

where the aggregate amount of trading is

∆wt =
2∑

k=1

Ik∑
i=1

∆wkit, (A7)

in which ∆wkit contains the portfolio-rebalancing trades for the ith investor in the kth

characteristic:

∆wkit = wkit(θki)− w+
kit(θki), (A8)

w+
kit(θki) is the portfolio of the ith investor in the kth characteristic before trading at time t:

w+
kit(θki) = θki xk,t−1 ◦ (e+ rt), (A9)

e is the N -dimensional vector of ones, and x ◦ y is the componentwise (Hadamard) product

of x and y. The price-impact cost at time t of the ith investor in the kth characteristic is:

PICkit = ∆wkitPIt.

The lemma follows from straightforward algebra.

Proof of Lemma 4.2

We first show the result for the empirically relevant case where there is a discrete joint

probability distribution for the rebalancing-trade vectors, x̃1t and x̃2t, and the price-impact
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matrix, Λt. By concatenating the rebalancing trades x̃1t and x̃2t and the matrices Λt for all

realizations of the discrete distribution into panel vectors and matrices, it is straightforward

to show that λ1 and λ2 are squared norms of certain vectors and λ12 is the scalar product of

these same vectors. Therefore, it follows from the triangular inequality for norms that λ212 ≤
λ1λ2. Moreover, unless the rebalancing trades of the two characteristics are identical for every

stock and every realization up to a change of scale, we have that the triangular inequality

holds strictly λ212 < λ1λ2. For the case where there is a continuous joint distribution for

the rebalancing-trade vectors and the price-impact matrix, the result can be shown under

mild assumptions by discretizing the continuous distribution and taking the limit when the

granularity of the discretization goes to zero.

Proof of Proposition 4.1

Part 1. By Lemma 4.2 we know that λk > 0 for k = 1, 2 and thus, the decision problem of

the ith investor in the kth characteristic is strictly convex. Therefore, there exists a unique

global minimizer to the decision problem of the ith investor in the kth characteristic and it

is given by the solution to the first-order optimality conditions:

2λ1θ1i + λ1θ1,−i + λ12

I2∑
j=1

θ2j = µ1, and (A10)

2λ2θ2i + λ2θ2,−i + λ12

I1∑
j=1

θ1j = µ2. (A11)

Therefore, the investment positions θ1id and θ2id are a Nash equilibrium if and only

if they satisfy the first-order optimality conditions of the investors in the first and second

characteristics; that is, if they satisfy the following system of linear equations:

2λ1 λ1 · · · λ1 λ12 λ12 · · · λ12
λ1 2λ1 · · · λ1 λ12 λ12 · · · λ12
...

...
. . .

...
...

...
. . .

...
λ1 λ1 · · · 2λ1 λ12 λ12 · · · λ12
λ12 λ12 · · · λ12 2λ2 λ2 · · · λ2
λ12 λ12 · · · λ12 λ2 2λ2 · · · λ2
...

...
. . .

...
...

...
. . .

...
λ12 λ12 · · · λ12 λ2 λ2 · · · 2λ2





θ11d
θ12d

...
θ1I1d
θ21d
θ22d

...
θ2I2d


=



µ1

µ1
...
µ1

µ2

µ2
...
µ2


. (A12)
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We now prove that there is a unique Nash equilibrium by showing that the matrix on

the left hand side of (A12) is nonsingular. Assume by contradiction that there is a nonzero

vector of θ′1is and θ2i’s that satisfies the following:

2λ1 λ1 · · · λ1 λ12 λ12 · · · λ12
λ1 2λ1 · · · λ1 λ12 λ12 · · · λ12
...

...
. . .

...
...

...
. . .

...
λ1 λ1 · · · 2λ1 λ12 λ12 · · · λ12
λ12 λ12 · · · λ12 2λ2 λ2 · · · λ2
λ12 λ12 · · · λ12 λ2 2λ2 · · · λ2
...

...
. . .

...
...

...
. . .

...
λ12 λ12 · · · λ12 λ2 λ2 · · · 2λ2





θ11
θ12
...
θ1I1
θ21
θ22
...
θ2I2


=



0
0
...
0
0
0
...
0


. (A13)

Then, any solution to (A13) must satisfy the first I1 equations in (A13), which can be

rewritten as 
2λ1 λ1 · · · λ1
λ1 2λ1 · · · λ1
...

...
. . .

...
λ1 λ1 · · · 2λ1




θ11
θ12
...
θ1I1

 = −λ12
I2∑
i=1

θ2ie, (A14)

where e is the I1-dimensional vector of ones. The matrix on the left-hand side of (A14) is

nonsingular because by Lemma 4.2 we know that λ1 > 0. Moreover, this matrix is symmetric

with respect to the I1 investors in the first characteristic. Therefore, any solution to Equa-

tion (A14) must be symmetric with respect to the I1 investors in the first characteristic;

that is, θ1i = θ1 for i = 1, 2, . . . , I1. Consequently Equation (A13) can be rewritten as
(I1 + 1)λ1 λ12 λ12 · · · λ12
I1λ12 2λ2 λ2 · · · λ2
I1λ12 λ2 2λ2 · · · λ2

...
...

...
. . .

...
I1λ12 λ2 λ2 · · · 2λ2




θ1
θ21
θ22
...
θ2I2

 =


0
0
0
...
0

 . (A15)

Using similar arguments as above, it is easy to show that any solution to Equation (A15)

must be symmetric with respect to the I2 investors in the second characteristic; that is,

θ2d = θ2 for i = 1, 2, . . . , I2. Thus, we can express (A13) as follows(
(I1 + 1)λ1 I2λ12
I1λ12 (I2 + 1)λ2

)(
θ1
θ2

)
=

(
0
0

)
. (A16)
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The matrix on the left-hand side of (A16) is nonsingular for any I1 and I2 different from zero

because its determinant is (I1 + 1)(I2 + 1)λ1λ2 − I1I2λ212, which is nonzero by Lemma 4.2.

Consequently, there is a unique Nash equilibrium given by the unique solution to the linear

system of equations in (A12).

Part 2. By arguments similar to those in Part 1, any solution to (A12) must be symmetric

with respect to the I1 investors in the first characteristic and with respect to the I2 investors

in the second characteristic; that is, θkid = θkd for i = 1, 2, . . . , Ik and k = 1, 2.

Part 3. Therefore, the unique equilibrium is the solution to the following system of two

linear equations with two variables(
(I1 + 1)λ1 I2λ12
I1λ12 (I2 + 1)λ2

)(
θ1d
θ2d

)
=

(
µ1

µ2

)
. (A17)

The above system of two equations can be solved by premultiplying the vector of charac-

teristic means by the inverse of the left-hand side matrix. This gives the following optimal

solutions:

θ1id =
(I2 + 1)λ2µ1 − I2λ12µ2

(I1 + 1)(I2 + 1)λ1λ2 − I1I2λ212
,

θ2id =
(I1 + 1)λ1µ2 − I1λ12µ1

(I1 + 1)(I2 + 1)λ1λ2 − I1I2λ212
.

Part 4. The profit of the ith investor in the kth characteristic is her expected return

net of price impact multiplied by her investment position. Therefore, it suffices to show

that the expected return net of price impact of the ith investor in the kth characteristic

is µ̄kid = λkθkid. The expected return net of price impact of the ith investor in the first

characteristic is

µ̄1id = µ1 − λ1I1θ1id − λ12I2θ2id.

Now, using the ith investor’s first-order conditions, we have that:

0 = µ1 − λ1(I1 + 1)θ1id − λ12I2θ2id.

Therefore, substituting the last equation into the expression for µ̄1id, we obtain µ̄1id = λ1θ1id.

The result for the ith investor in the second characteristic is obtained similarly.
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Proof of Proposition 4.2

Part 1. The decision in the centralized setting is given in (21). By Lemma 4.2 we have that

λ1λ2 > λ212 and therefore the decision problem in the centralized setting is strictly convex

and there exists a unique minimizer.

Part 2. The unique minimizer is given by the first-order optimality conditions for the single

investor in the centralized setting:(
2λ1 2λ12
2λ12 2λ2

)(
θ1c
θ2c

)
=

(
µ1

µ2

)
. (A18)

The result follows from straightforward algebra.

Proof of Proposition 5.1

Note that the decision problems of the ith investor in the first characteristic in the absence

and presence of investors in the second characteristic are identical for the case with λ12 = 0.

Therefore, the equilibrium investment position and profits of the ith investor in the first

characteristic in the absence of investors in the second characteristic are obtained by setting

λ12 = 0 in Equations (22) and (24) of Proposition 4.1.

The monotonicity results follow from Equations (29) and (30) by noting that I1/(I1 +

1) is increasing and I1/(I1 + 1)2 is decreasing in I1 for all I1 ≥ 1

Proof of Proposition 5.2

To obtain the capacity of the first characteristic, we first determine the best response of

the investors in the second characteristic to a given aggregate investment position in the

first characteristic θ1d. Note that the decision problem of the ith investor in the second

characteristic for the case with pure liquidity-provision motive is

min
θ2i

θ2iλ2(θ2i + θ2,−i) + θ2iλ12θ1d.

Thus, the first-order optimality condition for the ith investor in the second characteristic is

2λ2θ2i + λ2θ2,−i = −λ12θ1d.
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It follows from the proof of Proposition 4.1 that the equilibrium among investors in the second

characteristic is symmetric, and thus we can rewrite the first-order optimality conditions as

(I2 + 1)λ2θ2i = −λ12θ1d,

and therefore the aggregate best response of the investors in the second characteristic is

θ2d = − I2
I2 + 1

λ12
λ2
θ1d. (A19)

The capacity of the first characteristic is the aggregate investment position in the first char-

acteristic for which its aggregate profits are zero, which must satisfy the following equation:

θ1dλ1θ1d + θ1dλ12θ2d − θ1dµ1 = 0.

We can simplify this equation by removing the trivial root θ1d = 0 and we obtain

λ1θ1d + λ12θ2d − µ1 = 0.

Plugging (A19) into this equation we obtain that the capacity of the first characteristic is

θ1d =
µ1

λ1 − I2
I2+1

λ212
λ2

.

Proof of Proposition 5.3

Part 1. The partial derivative of the aggregate investment position in the first characteristic

with respect to I2 is

∂(θ1d)

∂I2
=
∂(I1θ1id)

∂I2
= I1

∂(θ1id)

∂I1

= I1
λ2µ1

(
(I1 + 1)(I2 + 1)λ1λ2 − I1I2λ212

)
− (I2 + 1)λ2µ1

(
(I1 + 1)λ1λ2 − I1λ212

)2
(

(I1 + 1)(I2 + 1)λ1λ2 − I1I2λ212
)2

= I1λ2µ1

(
(I1 + 1)(I2 + 1)λ1λ2 − I1I2λ212

)
− (I2 + 1)

(
(I1 + 1)λ1λ2 − I1λ212

)2
(

(I1 + 1)(I2 + 1)λ1λ2 − I1I2λ212
)2 > 0,

where the last inequality follows from the fact that the ratio is strictly positive for all I2 > 0

because of Lemma 4.2.
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Part 2. The partial derivative of the aggregate investment position in the second charac-

teristic with respect to I2 is

∂(θ2d)

∂I2
=
∂(I2θ2id)

∂I2
= θ2id + I2

∂(θ2id)

∂I2
(A20)

= θ2id

(
1− (I1 + 1)λ1λ2 − I1λ212

(I1 + 1) I2+1
I2
λ1λ2 − I1λ212

)
< 0, (A21)

where the inequality in (A21) holds because the ratio inside the parenthesis is strictly greater

than one because of Lemma 4.2 and the fact that (I2 + 1)/I2 > 1 for finite I2.

Part 3. The result follows from Part 1 and Equation (24).

Part 4. The partial derivative of the aggregate profit from the second characteristic with

respect to I2 is

∂I2π2id
∂I2

= λ2θ
2
2id

(
1− 2

(I2 + 1)λ1λ2 − I1λ212
(I1 + 1) I2+1

I2
λ1λ2 − I1I2λ212

)
< 0, (A22)

where the inequality in (A22) follows from the fact that by Lemma 4.2, the ratio inside the

parenthesis is greater than one provided
(

2− I2+1
I2

)
> I1

I1+1
.

Proof of Proposition 5.4

Part 1. The partial derivative of the aggregate investment position in the first characteristic

with respect to I1 is

∂(θ1d)

∂I1
=
∂(I1θ1id)

∂I1
= θ1id + I1

∂(θ1id)

∂I1

= θ1id

(
1− I1

(I2 + 1)λ1λ2 − I2λ212
(I2 + 1)(I1 + 1)λ1λ2 − I1I2λ212

)

= θ1id

(
1− (I2 + 1)λ1λ2 − I2λ212

(I2 + 1) I1+1
I1
λ1λ2 − I2λ212

)
> 0, (A23)

where the inequality in (A23) follows because the ratio in the second term inside the paren-

thesis is positive and strictly smaller than one because of Lemma 4.2 and the fact that

(I1 + 1)/I1 > 1 for finite I1.
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Part 2. When λ12 > 0, dividing by I1 the numerator and denominator of the optimal invest-

ment position in the second characteristic, it is straightforward to see that the denominator

becomes smaller as I1 increases, whereas the numerator is independent of I1 and always

negative under Assumption 4.2. The overall result of these two effects is that the optimal

investment position decreases with I1 when λ12 > 0.

Part 3. The partial derivative of the aggregate profit from the first characteristic with

respect to I1 is

∂(I1π1id)

∂I1
=
∂(I1λ1θ

2
1id)

∂I1
= λ1

∂(I1θ
2
1id)

∂I1
= λ1

(
θ21id + 2I1θ1id

∂(θ1id)

∂I1

)
. (A24)

Plugging the partial derivative of θ1id with respect to I1 into (A24), we then have that

∂(I1π1id)

∂I1
= λ1θ

2
1id

(
1− 2I1((I2 + 1)λ1λ2 − I2λ212)

(I2 + 1)(I1 + 1)λ1λ2 − I1I2λ212

)
= λ1θ

2
1id

(
1− 2I1((I2 + 1)λ1λ2 − I2λ212)

(I1 + 1)
(
(I2 + 1)λ1λ2 − I1I2

I1+1
λ212
)). (A25)

The ratio inside the parenthesis in (A25) is greater than one iff:

2I1((I2 + 1)λ1λ2 − I2λ212) > (I1 + 1)

(
(I2 + 1)λ1λ2 −

I1I2
I1 + 1

λ212

)
. (A26)

Simplifying this inequality we get(
2I1(I2 + 1)− (I1 + 1)(I2 + 1)

)
λ1λ2 > I1I2λ

2
12, (A27)

which holds for all I1 such that I1−1
I1

> I2
I2+1

. Thus, ∂(I1π1id)
∂I1

> 0 for all I1 such that I1−1
I1

>

I2
I2+1

.

Part 4. This result can be proven by using arguments similar to those in Part 2.

Proof of Proposition 5.5

Part 1. To show that the investment position in the first characteristic in the decentral-

ized setting with I1 = 1 and pure liquidity provision (µ2 = 0) is smaller than that of the

centralized setting, we need to prove the following inequality:

2λ2µ1

4λ1λ2 − λ212︸ ︷︷ ︸
θ1d

<
λ2µ1

2(λ1λ2 − λ212)︸ ︷︷ ︸
θ1c

. (A28)
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Simplifying we have

1

4λ1λ2 − λ212
<

1

4λ1λ2 − 4λ212
.

By Lemma 4.2, we know that the denominators of both the right- and left-hand sides of the

inequality are strictly positive. Also, the denominator of the right-hand side term is smaller

and thus Inequality (A28) holds.

Part 2. We now prove that the investment position in the second characteristic in the

decentralized setting with I1 = 1 and pure liquidity provision (µ2 = 0) is negative but higher

than that in the centralized setting. Therefore, we prove the following inequalities:

0 >
−λ12µ1

4λ1λ2 − λ212︸ ︷︷ ︸
θ2d

>
−λ12µ1

2(λ1λ2 − λ212)︸ ︷︷ ︸
θ2c

. (A29)

Under Assumption 4.2, we have that the numerators of θ2d and θ2c are identical and negative,

whereas the denominators of θ2d and θ2c are strictly positive by Lemma 4.2. However, the

denominator of θ2d is larger than that of θ2c, and thus, θ2d is smaller in absolute value

than θ2c.

Parts 3. From Equation (28), we know that the profits from the second characteristic in the

centralized setting are zero for the case with pure liquidity-provision motive, µ2 = 0. More-

over, Part 2 above and Equation (24) imply that the profits from the second characteristic

in the decentralized setting are strictly positive.

Parts 4. The total profits in the decentralized setting have to be smaller than those in the

centralized setting because by Proposition 4.2 we know that the optimal investment positions

in the centralized setting are the unique minimizer to the total profit function.

Because we know from Part 3 that profits from the second characteristic are smaller

in the centralized setting, and we have just shown that total profits are higher in the cen-

tralized setting, then we must have that profits from the first characteristic are larger in the

centralized setting.
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Pástor, Ľuboš, and Robert F. Stambaugh, 2012, On the size of the active management

industry, Journal of Political Economy 120, 740–781.
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This Internet Appendix contains several robustness checks. Section IA.1 shows that

the findings from our game-theoretic model in Section 4 are robust to considering investors

who are risk averse rather than risk neutral. Section IA.2 reports the results from the

empirical calibration in Section 6.1 for the case in which we use book to market instead of

asset growth as the first characteristic. Section IA.3 checks the robustness of our empirical

findings by undertaking a subsample analysis for the first and second half of our datasets.

Section IA.4 studies the robustness of the empirical analysis based on mutual fund holdings

to using single- and double-sorts instead of the regression approach used in the main body

of the manuscript.

IA.1 Model extension: Risk-averse investors

In the main body of the manuscript, we consider risk-neutral investors. We now extend the

model to study the robustness of our results to considering risk-averse investors. We assume

that the investors’ absolute risk-aversion parameters in the decentralized setting increase

with the number of competitors. In particular, we assume that the absolute risk-aversion

parameters of the investors in the first and second characteristics are γ1 = (I1 + 1)/(2γ1) and

γ2 = (I2 + 1)/(2γ2), respectively, where I1 and I2 are the number of investors exploiting the

first and second characteristics, respectively, and γ1 and γ2 are constants. This assumption

greatly simplifies the analysis, but it is also reasonable because each investor makes a smaller

investment as the number of competitors increases, and hence the investor’s absolute risk

aversion must increase with the number of competitors.

The ith investor in the first characteristic chooses her investment position θ1i to

optimize her mean-variance utility net of price-impact costs

min
θ1i

γ1
2
θ1iσ

2
1θ1i + θ1iλ1(θ1i + θ1,−i) + θ1iλ12

I2∑
j=1

θ2j − θ1iµ1, (IA.1.1)

where σ2
1 is the variance of the first characteristic return. Similarly, the decision problem of

the ith investor in the second characteristic is

min
θ2i

γ2
2
θ2iσ

2
2θ2i + θ2iλ2(θ2i + θ2,−i) + θ2iλ12

I1∑
j=1

θ1j − θ2iµ2, (IA.1.2)

where σ2
2 is the variance of the second characteristic return. Using similar arguments to

those in the proofs of Propositions 4.1 and 4.2, the equilibrium is symmetric and thus the

optimality condition of the ith investor in the first characteristic can be written as

γ1σ
2
1θ1i + (I1 + 1)λ1θ1i + I2λ12θ2j − µ1 = 0, (IA.1.3)
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which can be rewriten as

(I1 + 1)

(
γ1
2
σ2
1 + λ1

)
θ1i + I2λ12θ2j − µ1 = 0. (IA.1.4)

Similarly, the optimality condition for the ith investor in the second characteristic is

(I2 + 1)

(
γ2
2
σ2
2 + λ2

)
θ2i + I1λ12θ1j − µ2 = 0. (IA.1.5)

From these optimality conditions, it is straightforward to show that the equilibrium quanti-

ties in the case with risk-averse investors are those given in Propositions 4.1 and 4.2 of the

main body of the manuscript after replacing the transaction cost parameters λ1 and λ2 with

λ̃1 = γ1
2
σ2
1 + λ1 and λ̃2 = γ2

2
σ2
2 + λ2, respectively. Therefore, the results in the main body of

the manuscript continue to hold for the case with risk-averse investors.

IA.2 Book to market and profitability

In Section 6.1, we calibrate the game-theoretic model for the case with “investment (asset

growth)” as the first characteristic and “gross profitability” as the second. We now calibrate

the game-theoretic model with a different first characteristic: we use “book to market” as the

first characteristic, while continuing to use “gross profitability,” as the second. Figure IA.1

depicts the investment positions and profits when there are I1 = 1, 2, 5, 10, 20,∞ investors

exploiting the first characteristic in the absence of investors exploiting the second (I2 = 0).

Figure IA.2 depicts the investment positions and profits for the decentralized setting with

I1 = 1 investor in the first characteristic and I2 = 0, 1, 2, 5, 10, 20,∞ investors in the second,

and for the centralized setting (Cen). The results for the case with “book to market”

as the first characteristic are similar to those presented in Section 6.1 for the case with

“investment (asset growth)” as the first characteristic. In particular, Figure IA.1 shows that

competition among investors exploiting the first characteristic erodes their aggregate profits

due to crowding. Figure IA.2 shows that trading diversification and competition among

investors exploiting the second characteristic alleviate crowding in the first characteristic.

IA.3 Subsample analysis

To check the robustness of our empirical findings, we consider two subsamples covering the

first and second half of our dataset.
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We first study the robustness of our empirical findings regarding the effect of trading

diversification on capacity, investment, and profit reported in Table 2 of the main body of the

manuscript. Table 2 shows that trading diversification leads to an increase in total capacity

of 45%, total investment of 43%, and profit of 22%. Tables IA.1 and IA.2 report the results

for the first and second halves of our sample, respectively. We observe that our results are

robust to considering subsamples. In particular, trading diversification in the first half of

the sample leads to an increase in total capacity of 51%, total investment of 54%, and profit

of 54%, and in the second half of the sample to an increase in total capacity of 40%, total

investment of 39%, and profit of 19%. Thus, for both subsamples trading diversification has

a first-order effect on the equilibrium quantities.23

Comparing the benefits of trading diversification for the two subsamples, we observe

that they are a bit larger for the first subsample. The reason for this is that stock-trading

volumes are relatively smaller for the first subsample, and thus the price-impact costs given

by Equation (14) are more important in the first subsample.24 Nonetheless, trading diver-

sification remains important also in the second subsample causing capacity and investment

to increase by around 40% and profit to increase by almost a fifth.

Second, we study the robustness of our test of the game-theoretic implications to

considering two subsamples. Figures IA.3 and IA.4 replicate the analysis in Figure 7 for the

first and second half of our sample, respectively. The figures show that our main findings

are robust to considering subsamples. In particular, for both subsamples we find that stocks

that experience high buy competition from mutual funds suffer large return reversals within

three years, but these return reversals are smaller for stocks that, in addition to experiencing

high buy competition, experience also high sell competition.

IA.4 Single and double sorts

In the main body of the manuscript, we use a cross-sectional regression approach to test the

predictions of our game-theoretic model using mutual-fund holdings and stock returns. In

23Note that when considering the 18 characteristics in combination in the second subsample, it is optimal
to assign a negative weight of −$0.687 billion to the “chatoia” characteristic. Although this negative weight
on “chatoia” makes a negative contribution to profit of −$0.48 million, this is more than compensated by the
reduction in the price-impact costs of the other characteristics, and thus, increase in their profit contribution,
because of trading diversification.

24Note that although we report capacity, investment, and profits in terms of market capitalization at the
end of our full sample (December 2018), daily trading volumes have grown faster than market capitalization
in our sample. For instance, the median stock daily trading volume has grown by a factor of 48.49 in our
sample, whereas the median stock market capitalization has grown by a factor of 37.95. As a result, even
though quantities are reported in terms of market capitalization at the end of our full sample, price-impact
costs are relatively more important in the first subsample.
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this section, we study the robustness of our findings to single- and double-sorting the stocks

by BuyCompetition and SellCompetition.

We first test the prediction that competition among investors exploiting the same

characteristic erodes their profits because of crowding. To do this, we sort stocks every quar-

ter by their BuyCompetition measure. We then form the high-minus-low buy-competition

portfolio as the value-weighted portfolio of the stocks in the top 30% minus the stocks in the

bottom 30% of BuyCompetition.25 Figure IA.5 graphs the cumulative returns of the high-

minus-low buy-competition value-weighted portfolio for 12 quarters, with the first quarter

being the portfolio-formation quarter, and averaged across the portfolios corresponding to

the 116 quarters in our dataset. Consistent with Lou (2012), we interpret the portfolio cu-

mulative return after 12 quarters as the permanent return and the difference between the

maximum cumulative return, which takes place after around 2 quarters, and the return after

12 quarters as the return reversal associated with price-impact cost. Thus, Figure IA.5 shows

that high buy-competition stocks experience both a higher permanent return of around 2%

and a higher return reversal of around 5%, compared to stocks that experience low buy com-

petition. The 5% price-impact cost demonstrates that when funds compete to buy stocks

(that is, when they are exploiting similar investment strategies or characteristics) they end

up incurring higher price-impact costs than when competition is low.

We now test the second prediction of our model that competition among investors

exploiting other characteristics alleviates crowding because of trading diversification. To do

this, we double sort stocks based on their BuyCompetition and SellCompetition measures.

Specifically, we first select the high buy-competition stocks that are in the top 30% in terms

of BuyCompetition. Conditional on being in this universe of high buy-competition stocks,

we sort stocks according to their SellCompetition measure. We then build a low-minus-high

sell -competition portfolio as the value-weighted portfolio of stocks in the bottom 30% minus

stocks in the top 30% of SellCompetition within the set of high buy-competition stocks.

Figure IA.6 depicts the cumulative quarterly returns of this portfolio. The figure shows

that high buy-competition stocks that are subject to low sell competition experience both a

higher permanent return of around 2% and a higher return reversal of around 3%, compared

with stocks that experience high sell competition. That is, when stocks that are subject

to high buy competition (stocks that are being purchased by funds that compete to exploit

similar strategies) experience also high sell competition (other funds are competing to exploit

complementary strategies that suggest the stock should be sold instead of purchased), they

experience return reversals or price-impact costs that are 3% smaller than that experienced

25Results based on equal-weighted portfolios are similar.
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by stocks with low sell competition. This is consistent with the prediction of our model that

competition among investors exploiting other characteristics alleviates crowding because of

trading diversification.

Finally, as discussed in the main body of the manuscript, there is an extensive lit-

erature that shows that institutional herding positively predicts short-term returns; see, for

instance, Wermers (1999); Dasgupta et al. (2011). In particular, this literature shows that

high aggregate institutional trades predict high short-term returns. To check that the effect

of competition that we consider is distinct from the effect of the aggregate trade of institu-

tional investors, we double sort stocks by aggregate mutual-fund trade and BuyCompetition,

where the aggregate mutual-fund trade of the ith stock at the tth quarter is

AggregateTradeit =

∑
j(bijt − sijt)∑

j NumberSharesit
, (IA.4.1)

where NumberSharesit is the number of shares outstanding of the ith stock at the tth quarter.

Figure IA.7 shows that high buy competition generates an incremental price-impact cost of

around 6% even within the set of stocks in the top 30% in terms of aggregate mutual-fund

trade. This shows that aggregate trade does not explain the effect of competition on price-

impact costs.
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Figure IA.1: Crowding with “book to market” as the single characteristic
This figure illustrates the effect of crowding on aggregate investment positions and profits when there are only
investors exploiting the first characteristic (I1 ≥ 1 and I2 = 0). The figure depicts the aggregate investment
position and profits for the first characteristic for the cases with I1 = 1, 2, 5, 10, 20,∞ investors. We consider
the price-impact cost model of Frazzini et al. (2018) and use “book to market” as the characteristic.
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Figure IA.2: Trading diversification and competition with “book to market”

This figure depicts the investment positions and profits for the two characteristics for the decentralized setting
where there is a single investor exploiting the first characteristic I1 = 1 and I2 = 0, 1, 2, 5, 10, 20,∞ investors
exploiting the second, and for the centralized setting (Cen). Panel (a) depicts the aggregate investment
position in each of the two characteristics and the total investment position across both characteristics in
billions of dollars. Panel (b) depicts the annual profits obtained from each characteristic and the total profits
from both characteristics in millions of dollars. We consider the price-impact cost model of Frazzini et al.
(2018) and use “book to market” as the first characteristic and “gross profitability” as the second.

(a) Aggregate investment positions ($B)

(b) Aggregate annual profits ($M)
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Figure IA.3: Price impact of buy and sell competition, first subsample
This figure depicts the cumulative price response to a unit increase in BuyCompetition (solid blue line)
as well as to a unit increase in both BuyCompetition and SellCompetition (dashed red line), for the first
subsample (January 1990 to June 2004). The horizontal axis gives the time in quarters and the vertical axis
depicts the cumulative price response.

Figure IA.4: Price impact of buy and sell competition, second subsample
This figure depicts the cumulative price response to a unit increase in BuyCompetition (solid blue line) as
well as to a unit increase in both BuyCompetition and SellCompetition (dashed red line), for the second
subsample (July 2004 to December 2018). The horizontal axis gives the time in quarters and the vertical
axis depicts the cumulative price response.
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Figure IA.5: High-minus-low buy-competition portfolio cumulative returns
This figure graphs the cumulative returns of the high-minus-low buy-competition value-weighted portfolio
(solid blue line) and its 90% confidence interval (dashed black lines). The horizontal axis gives the time in
quarters and the vertical axis depicts the cumulative portfolio return. We report the cumulative portfolio
return averaged across the portfolios corresponding to the 116 quarters in our dataset.

Figure IA.6: Low-minus-high sell-competition portfolio, high buy-competition stocks
This figure graphs the cumulative quarterly returns of the low-minus-high sell-competition value-weighted
portfolio for stocks that are in the top 30% in terms of buy competition (solid blue line) and its 90%
confidence interval (dashed black lines). The horizontal axis gives the time in quarters and the vertical
axis depicts the cumulative portfolio return. We report the cumulative portfolio return averaged across the
portfolios corresponding to the 116 quarters in our dataset.
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Figure IA.7: High-minus-low buy-competition portfolio, high aggregate trade stocks
This figure graphs the cumulative returns of the high-minus-low buy-competition value-weighted portfolio for
stocks that are in the top 30% in terms of aggregate mutual-fund trade (solid blue line) and its 90% confidence
interval (dashed black lines). The horizontal axis gives the time up to 11 quarters after the portfolio-formation
quarter. The vertical axis depicts the cumulative portfolio return. We report the cumulative portfolio return
averaged across the portfolios corresponding to the 116 quarters in our dataset.
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Table IA.1: Capacity, investment, and profit in isolation and combination, first subsample

This table reports the capacity, investment, and profit of each characteristic when considered in isolation and
in combination for the first half of our sample. For each characteristic, the first column reports its acronym
and the remaining columns report its capacity, optimal investment, and optimal profit when considered in
isolation and in combination, as well as the percentage increase in these quantities when the characteristic
is considered in combination instead of in isolation. We obtain the optimal investment and profit by solving
problem (10) for each of the 18 characteristics in isolation and in combination, with the price-impact cost
PICt evaluated using the model of Frazzini et al. (2018) in Equation (14). The investment is given by the
optimal value of θ and the annual profit is 12 times the optimal objective of problem (10). We express all
quantities in terms of market capitalization at the end of our full sample (December 2018).

Capacity Investment Profit

Isol. Comb. Incr. Isol. Comb. Incr. Isol. Comb. Incr.
Characteristic ($bill.) ($bill.) (%) ($bill.) ($bill.) (%) ($mill.) ($mill.) (%)

gma 41.131 55.210 34 19.365 26.222 35 105.24 150.16 43
bm 11.845 18.859 59 5.527 8.957 62 37.84 68.55 81
herf 8.382 16.731 100 3.789 7.946 110 4.99 14.43 189
agr 7.475 12.339 65 3.475 5.860 69 32.06 60.65 89
rd mve 10.801 10.670 −1 5.111 5.068 −1 60.14 61.95 3
chatoia 3.485 6.114 75 1.607 2.904 81 11.40 24.86 118
bm ia 0.118 4.734 3905 0.051 2.248 4270 0.03 3.60 12285
mve 3.038 3.278 8 1.449 1.557 7 32.80 35.66 9
ps 2.310 2.643 14 1.059 1.255 19 5.29 7.92 50
beta 0.414 1.732 319 0.189 0.823 335 0.26 2.15 727
mom12m 0.813 1.587 95 0.368 0.754 105 3.73 9.78 162
chtx 0.499 1.102 121 0.228 0.523 130 1.21 4.02 233
sue 0.426 0.970 127 0.194 0.461 137 1.23 3.87 214
retvol 0.257 0.908 254 0.114 0.431 279 1.24 6.56 430
std turn 0.000 0.365 - 0.000 0.174 - 0.00 0.56 -
mom1m 0.006 0.331 5392 0.003 0.157 5933 0.01 2.25 36707
zerotrade 0.036 0.323 787 0.016 0.154 845 0.08 1.64 2061
pchgm pchsale 0.253 0.063 −75 0.112 0.030 −73 0.17 0.10 −40

Total 91.290 137.960 51 42.659 65.525 54 297.72 458.71 54
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Table IA.2: Capacity, investment, and profit in isolation and combination, second subsample

This table reports the capacity, investment, and profit of each characteristic when considered in isolation and
in combination for the second half of our sample. For each characteristic, the first column reports its acronym
and the remaining columns report its capacity, optimal investment, and optimal profit when considered in
isolation and in combination, as well as the percentage increase in these quantities when the characteristic
is considered in combination instead of in isolation. We obtain the optimal investment and profit by solving
problem (10) for each of the 18 characteristics in isolation and in combination, with the price-impact cost
PICt evaluated using the model of Frazzini et al. (2018) in Equation (14). The investment is given by the
optimal value of θ and the annual profit is 12 times the optimal objective of problem (10). We express all
quantities in terms of market capitalization at the end of our full sample (December 2018).

Capacity Investment Profit

Isol. Comb. Incr. Isol. Comb. Incr. Isol. Comb. Incr.
Characteristic ($bill.) ($bill.) (%) ($bill.) ($bill.) (%) ($mill.) ($mill.) (%)

gma 60.893 80.241 32 30.446 38.395 26 205.06 302.67 48
rd mve 58.121 59.463 2 28.030 28.452 2 1246.73 1277.08 2
herf 23.337 47.972 106 10.795 22.954 113 43.09 101.84 136
bm 17.381 21.964 26 8.218 10.510 28 80.47 111.28 38
beta 14.011 18.620 33 6.506 8.910 37 53.02 76.64 45
agr 8.283 16.191 95 3.838 7.747 102 33.94 82.68 144
pchgm pchsale 1.193 3.934 230 0.544 1.883 246 1.86 9.63 418
ps 1.581 3.272 107 0.725 1.566 116 3.68 11.04 200
mve 1.548 1.677 8 0.739 0.802 9 15.22 17.20 13
mom12m 0.173 1.572 808 0.078 0.752 869 0.30 5.62 1796
chatoia 0.000 −1.436 - 0.000 −0.687 - 0.00 −0.48 -
chtx 0.218 1.427 554 0.099 0.683 587 0.29 3.78 1218
sue 0.298 1.059 256 0.135 0.507 275 0.77 4.35 466
bm ia 0.001 0.902 - 0.000 0.432 - 0.00 0.29 -
std turn 0.000 0.844 - 0.000 0.404 - 0.00 1.41 -
retvol 0.000 0.764 - 0.001 0.366 58712 0.00 3.29 -
mom1m 0.000 0.239 - 0.000 0.115 - 0.00 0.87 -
zerotrade 0.000 0.184 - 0.000 0.088 - 0.00 0.22 -

Total 187.037 261.762 40 90.154 125.250 39 1684.42 2009.43 19
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