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1 A Productivity Primer

Productivity is a central concept in economics. Its application spans a wide range of fields

and is not housed within a particular discipline or approach. A telling observation is

that the National Bureau of Economic Research (NBER) lists Productivity, Innovation,

and Entrepreneurship as a research program separate from, among others, its Industrial

Organization program. This highlights that while it is not treated as a separate field in

graduate education, it stands distinct in substantive focus.

The scope of productivity analysis is broad. It spans from micro to macro, ranging

from the analysis of individual production lines in a factory to the study of economy-

wide aggregates. It treats these different scopes not just as separate objects but minds

their connections as well, studying the efficiency of industry output allocation across

heterogeneous producers and its relationship to changes in the operating environment

(such as technical change, antitrust, or trade policy). Productivity analysis also includes

the study of both the efficiency of production and technological change.

This subject matter breadth is accompanied by a methodological flexibility as well,

with the literature applying a variety of approaches and methods to address these research

questions.

This chapter focuses on the implications and applications of productivity analysis

within Industrial Organization. There is a long tradition in IO of studying productivity-

related topics like allocative efficiency, technological change, regulatory effects, cost effi-

ciencies in merger analysis, and returns to scale, to name a few. The term productivity is,

however, more often than not used in a fairly loose sense, usually referring to a measure

of performance. In this chapter we make an explicit distinction between productivity in

a strict production efficiency sense, on the one hand, and performance on the other. The

study of production efficiency, the rate at which a producer can convert a bundle of inputs

into a unit of output, is in essence about the technical relationship between output and

inputs. Performance captures a variety of measures, but as this chapter will highlight, it

is intimately related to efficiency. However, the distinction can be crucial when analyzing

the very topics listed above.

1.1 Background and Focus

While having a long history in economics, the past few decades have seen the productivity

analysis of individual producers and the corresponding industry- and economy-wide ag-
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gregates become a central topic in both academic and policy circles. This renewed interest

has paralleled at least three main developments.

First, over the last two decades the access to micro data has exploded. At the turn

of the century, only a few large-scale producer-level datasets existed, with limited access

to researchers. In contrast, the current list of countries for which micro census data

is available (in manufacturing, at least) contains a rather large share of the world. In

addition, private data providers have emerged offering comprehensive accounting data

capturing typical variables used in productivity analysis, through the reporting of balance

sheets and income and loss statements.

Second, accompanying the increased access to micro data has been a renewed interest in

the estimation and identification of production functions. These are of course key objects

of interest for most productivity analyses, both for their own sake as well as supply-

side inputs into equilibrium analysis. This research has focused on obtaining reliable

productivity measures for sets of producers when, as is the case, the researcher cannot

directly observe productivity but producers can. This leads to two well-known biases, the

simultaneity and selection biases, that researchers must face.

Third is the prominent role of productivity analysis in forming and executing eco-

nomic policy. While policymakers still mostly focus on industry- or economy-wide aggre-

gates, there is increasing recognition that this analysis is often most informative when

built from the ground up using micro data. The melding of data, methods, and economi-

cally oriented policy analysis has spurred informative interactions among microeconomists,

macroeconomists, and policymakers that have created many insights into productivity.

Our intent in this chapter is to organize and review the intellectual underlayment of

this burgeoning literature. There are many facets. Our coverage includes key concep-

tual issues, facts about micro-level productivity, models of markets with heterogeneous-

productivity producers, measurement and data, productivity estimation, the positive and

normative implications of the static and dynamic allocation of activity across heteroge-

neous producers, and an overview of what we expect to be active areas of work in the near

future. We do this while taking stock of several decades of empirical work on productivity

using micro data. We will unavoidably miss certain dimensions, and simple space con-

straints mean we cannot do justice to many contributions and insights from this extensive

literature. We do hope, however, to offer a structured view on the field of productivity

and how Industrial Organization scholars have contributed.
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1.2 Productivity Conceptualized

Productivity is conceptualized in a number of related ways. All productivity metrics in one

form or another measure how much output producers obtain from a given set of inputs. As

such they are measures of the efficacy of the supply side of the economy (though “efficacy”

need not always be synonymous with social welfare).

An interpretation of productivity as an economic primitive is as a factor-neutral (aka

Hicks-neutral) shifter of the production function.1 Consider the general production func-

tion Q = ΩF (.), where Q is output and F (·) is a function of observable inputs capital such

as capital, labor and intermediate inputs. Ω is productivity, the factor-neutral shifter.2

It reflects variations in output not explained by shifts in the observable inputs that act

through F (·). A higher value of Ω implies the producer will obtain more output from a

given set of inputs. That is, it denotes a shift in the production function’s isoquants down

and to the left.

A second conceptualization is empirical: productivity as a ratio of output to inputs.

This is tightly related to the production-function-shifter interpretation above. This can

be seen by isolating productivity from the production function: Ω = Q
F (.) . A is clearly

an output-to-input ratio. Here, where output is divided by a combination of observable

inputs, the productivity concept is named total factor productivity (TFP) (it is also

sometimes called multifactor productivity, MFP). There are also single-factor productivity

measures, where output is divided by the amount of a single input, most commonly labor;

i.e., labor productivity. Because single-factor productivity measures can be affected not

just by shifts in TFP but factor intensity decisions as well, TFP measures are often

conceptually preferable. On the other hand, labor productivity is often easier to measure

than TFP.

A third conceptualization is of productivity as a shifter of the producer’s cost curve.

Higher productivity shifts down the cost curve; that is, at the producer’s cost-minimizing

combination of inputs, its total cost of producing a given quantity is lower, the higher is

its TFP level. This productivity conceptualization is related to the other two because the

cost function is the value function of the producer’s cost minimization problem, which

takes the production function as its constraint. This cost function shifts down when

1Throughout we consider this predominant setup, of Hicks-neutral productivity, unless we explicitly discuss
departures.

2We define the specific factors of production in more detail later on in the Chapter.
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productivity rises.

Because it plays such an important role in the producer’s production technology, mea-

suring productivity and its influence on outcomes is the subject of an enormous literature.

This work has found in many disparate settings that, as an empirical matter, productivity

is hugely important in explaining the fortunes of producers, their workers, their suppliers,

and their customers. We survey work on both the measurement and effects of productivity

below.

2 Empirical Facts about Productivity at the Pro-

ducer Level

A tremendous amount of empirical research during the past three decades has docu-

mented many empirical regularities about the levels and growth rates of productivity

among producers. In this section, we summarize some of the best-established findings of

that literature.

The typical unit of analysis (the “producer”) depends on the particulars of the available

data. Usually, it is a firm or establishment. An establishment is a geographically unique

location of economic activity, be it a plant, warehouse, office, store, mine, and so on. One

firm can own many establishments. A smaller body of work has explored production at

an even more disaggregate level, such as the production line or work team. Regardless,

the empirical patterns discussed below have been found to hold at any of these micro-level

scopes of analysis.

2.1 Dispersion

One of the most ubiquitous findings in the literature is the enormous dispersion in pro-

ductivity levels across producers, even within narrowly defined markets. For example, the

typical 6-digit NAICS manufacturing industry in the U.S. or Canada has a 90-10 percentile

TFP ratio of roughly 2:1. That is, the typical manufacturing industry (at this level of

disaggregation, an industry is something like Metal Can Manufacturing) has a producer

that can obtain twice the output from the same set of inputs of another operating in the

same narrowly-defined industry. Note that this measure of dispersion ignores the extreme

deciles of the distribution.

Nothing is particularly unusual about North American manufacturers when it comes
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to productivity dispersion. Indeed, if anything the productivity dispersion among them

is relatively small compared to other settings. Researchers have found 90-10 TFP ratios

of 3:1 or more in manufacturing industries in developing and emerging economies. Others

have documented higher ratios than this for various industries in other sectors in developed

economies, ranging from business services to healthcare. Simply put, businesses differ

greatly in the proficiency with which they convert inputs to outputs.

A reasonable first reaction to this enormous productivity dispersion is that it reflects

the exclusion from the production function of inputs other than the standard labor, capital,

and intermediate inputs. In some sense, this is right. Setting aside measurement error,

observed output is made from and by something, and in a world of infinite data, one

should be able to include those inputs in the production function. However, explaining

the observed productivity dispersion is not just a matter of gathering a bit more data

on some key non-standard inputs. Researchers in many empirical settings have added

additional inputs and suspected productivity drivers to their production functions without

substantially reducing measured productivity dispersion. For example, the early work of

Griliches and its subsequent extensions included R&D expenditures or constructed R&D

capital stocks without affecting measured dispersion. In the context of labor inputs,

Fox and Smeets (2011) use highly detailed matched employer-employee data to build

a multidimensional Griliches-type human capital measure of firms’ labor inputs. This

flexibly accounted for heterogeneity in worker skills and experience. Nevertheless, they

too found no effect of including this more detailed input measure on estimated productivity

dispersion.3

2.2 Persistence within Producers

Another documented empirical reality is that producers’ productivity levels are persistent.

Producers near the top end of their industry distribution in this period are likely to be

near the top in the next period. Low-productivity producers are similarly likely to stay

that way. This persistence rules out classical measurement error or true-but-white-noise

3We discuss extensively below an additional complication that arises in most producer-level data. Namely,
output and input measures may be constructed from revenue and expenditures rather than quantities. This
introduces price variation into the measurement of productivity. This variation can be driven by influences
beyond just the production technology, such as market power or variations in local market conditions. The
literature recognizes this issue and, as we detail below, treats it with combinations of theory and measurement.
The facts described in this section have been found to apply generally, both to measures of productivity obtained
using “pure” quantity data and more expenditure-based metrics.
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productivity process as sources of the documented productivity dispersion. Whatever

factors influence producers’ productivity levels, they have staying power.

The literature has quantified the persistence in multiple ways. Some studies construct

quantile-to-quantile transition matrices. These find that elements along the diagonal are

consistently the largest, and they fall in size with distance from the diagonal. Other work

estimates AR(1) specifications on producers’ productivity levels in panel data. Typical

coefficients might be 0.7-0.8 in annual panel data without producer fixed effects and 0.3-0.4

with fixed effects.

2.3 Correlations

Other variables have been found to be consistently related to productivity. To list some

of the more common, multiple studies have found higher-productivity producers are:

• more profitable,

• larger,

• faster-growing,

• more likely to survive (this is perhaps the most ubiquitously documented pattern of

those listed here),

• low price-setters (when the industry product is relatively homogeneous),

• higher-wage payers.

Other correlations have been measured in individual studies, but those listed here have

the broadest empirical support.

3 A Simple Model of Equilibrium Productivity

Dispersion

Canonical free entry models do not predict the persistent productivity differences ob-

served in the data. In absence of heterogeneous fixed production factors, only firms that

can operate at the lowest possible cost can operate in long-run equilibrium (that is, the

long-run industry supply curve is horizontal). Given the empirical ubiquity of sustained

productivity differences, researchers have built a class of commonly applied models to

account for these and other associated empirical patterns. We sketch out here an example
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of such a model, a simplified version of Melitz and Ottaviano (2008). We do so for two

primary reasons. One, even this simple model offers several predictions that are consistent

with, and can help explain, the basic mechanisms underlying the empirical regularities de-

scribed in the previous section. Straightforward extensions of the model to more dynamic

versions within its class imply still others. Two, the model’s framework will be useful in

facilitating discussions of various issues throughout the remainder of the chapter.

3.1 Demand

An industry comprises a continuum of producers, each of whom makes a single differen-

tiated variety of the industry good. Both producers and varieties are indexed by i, and I

is the set of industry producers/varieties. Demand for the industry’s varieties is given by

the representative industry consumer’s preferences:

U = y + α

∫
i∈I

Qi di −
1

2
η

( ∫
i∈I

Qi di

)2

− 1

2
γ

∫
i∈I

Q2
i di (1)

where y is the quantity of a numeraire good, Qi is the quantity of variety i consumed,

and α > 0, η > 0, and γ ≥ 0.

Utility is quadratic in total consumption of the industry’s output, minus a term that

increases in the variance of consumption across varieties. This last term builds curvature

into the utility function by introducing an incentive to equate consumption levels of differ-

ent varieties. The parameter γ summarizes substitutability. If γ is large, substitutability

is low. Consumers want to limit idiosyncratic variation in their quantities of particular

varieties, so consumption is relatively insensitive to any price differences. As γ → 0, only

the total quantity of industry varieties determines utility and substitutability becomes

perfect. One can interpret γ as either a direct preference parameter or a reduced-form

stand-in for other substitution barriers (unmodeled here but in other studies made more

explicit) like trade costs, transport costs, or search costs.

3.2 Supply

Producers have a simple linear production technology Qi = ΩiXi, where Ωi is productivity

and Xi is a composite input with price PX . As a result, producers have constant marginal

costs ci = PX

Ωi
. Thus cost variation reflects productivity variation.

No company will produce if its cost is too high to make a profit. Call the cost at which

a firm earns zero profits cD and the corresponding zero-profit productivity level cD = PX

ΩD
.
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Given this and demand as described above, Melitz and Ottaviano (2008) show a firm’s

revenues and operating profits are given by

r(ci) =
1

4γ

(
c2
D − c2

i

)
=
PX

2

4γ

(
1

Ω2
D

− 1

Ω2
i

)
(2)

π(ci) =
1

4γ
(cD − ci)2 =

PX
2

4γ

(
1

ΩD
− 1

Ωi

)2

(3)

Entry into the industry is determined as follows. A pool of ex-ante identical potential

entrants decides whether to pay a sunk entry cost fE to take a productivity draw from

a distribution G(Ω) = 1− ΩM
Ω , Ω ∈ [ΩM ,∞). This distribution is chosen for analytical

convenience, as we will work with marginal costs and their distribution below. This

productivity distribution implies that marginal costs are distributed uniformly between 0

and an upper bound cM = PX

ΩM
.

If an entrant chooses to receive a draw Ωi, it observes the draw and then determines

whether to begin production and earn the corresponding operating profits as above. Be-

cause only potential entrants receiving draws Ωi > ΩD will choose to produce in equi-

librium, the gross expected value of paying fE for a productivity draw is the expected

operating profit conditional on Ωi > ΩD.

3.3 Equilibrium

The free-entry condition imposes that the gross expected value of paying for a productivity

draw equals fE . Changing variables to work with analytically more convenient marginal

cost distribution, we can write this condition as follows:∫ cD

0

1

4γ
(cD − c)2 1

cM
dc = fE (4)

This condition pins down the equilibrium zero-profit cost draw cD. Solving gives

cD = (12γcMfE)
1
3 (5)

which relates cD (and hence cutoff productivity level ΩD) to the model’s primitives.

3.4 Empirical Implications

We summarize some empirical implications of the simple model above that have been

documented in the literature. Other empirical findings can be linked to other, more

complex models in its class, though we will not discuss them in detail here.
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Productivity Dispersion There is equilibrium productivity dispersion. As long as

γ > 0 and fE > 0, the marginal cost and productivity distributions are nondegenerate.

That is, if substitutability across product varieties is not perfect and there are fixed costs

of setting up a business (or more strictly interpreted, learning what one’s operating cost

will be), industry producers will exhibit a range of productivity levels in equilibrium.

The productivity distribution is a truncation of the underlying distribution G(Ω).

How much dispersion exists in equilibrium depends on the magnitudes of γ and fE . As

substitutability falls (γ rises), consumers are less willing or able to shift their purchases

from one variety to another. This makes it easier for higher-cost producers to profitably

operate. As seen in the revenue and profit functions above, the negative effect on firms’

sales and profits is smaller when γ is large, raising ΩD, the threshold productivity draw

required for profitable operations.

A higher sunk entry cost fE also supports greater productivity dispersion, though

through a different mechanism than substitutability. Entry costs “protect” producers

with low productivity draws from competition by limiting the mass of producers that

take entry draws, reducing ΩD.4

Productivity Persistence Producers’ productivity levels are persistent. Here, this

is trivially so, as the model is static and all producers have fixed draws. However, models

with similar structures that allow more dynamic productivity process (e.g., Asplund and

Nocke (2006)) nevertheless imply positive correlation in a given producer’s productivity

levels over time, while also preserving equilibrium productivity dispersion (and in some

cases, even a stationary industry-level productivity distribution).

Profitability Higher-productivity producers are more profitable, as the profit expres-

sion above indicates.

Size and Growth Size is correlated with productivity. Revenues rise as marginal

costs fall. Equilibrium quantities sold also decline in the producer’s marginal cost and are

given by

q(ci) =
1

2γ
(cD − ci) (6)

4If there is also a fixed operating cost in the model, this acts in a direction opposite of a fixed entry cost. The
intuition is that this fixed cost is imposed after the firm knows its productivity draw. Higher fixed operating
costs make it more difficult for low-productivity producers to be profitable, thereby raising ΩD.
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Producer size as measured through input use is somewhat more ambiguous because higher

productivity reduces required input purchases for any given quantity. Here, however, the

elasticity of quantity with respect to productivity is greater than one, and the production

technology implies a negative unit elasticity of input to productivity. The combination

of these implies that an increase in productivity implies net growth in input use. Thus

higher-productivity producers are also larger even when measured by input use.

In this static model, producers’ sizes are fixed, just like their productivity levels. How-

ever, it is clear from the size-productivity comparative static that dynamic versions of

such models imply a correlation between the growth rates of size and productivity. Fur-

thermore, if there are adjustment costs in factor or output markets, growth be correlated

with productivity levels as well, as it can take time for firms experiencing a productivity

innovation to adjust to the equilibrium size implied by their new productivity level. More

explicit treatments of the dynamics of productivity can be found in the seminal articles

of Jovanovic (1982) and Ericson and Pakes (1995).

Survival Productivity is correlated with survival. Firms receiving a productivity draw

too low to be profitable in equilibrium do not produce. In the static model above, this

“exit” decision occurs in the pre-production interregnum. If we imagine that this stands in

for the reality of an early period of operation for young but not fully established producers,

this is consistent with the empirical pattern of high exit rates among inefficient, young

producers. That said, it is worth noting that the negative correlation between productivity

and exit also holds even conditional on age in the data. This conditional relationship is

captured by more explicitly dynamic versions of the model above.

The correlations between productivity, size, growth, and survival play an important

role in motivating the burgeoning productivity research areas on allocation, reallocation,

and misallocation. Allocation regards the relationship between productivity variation and

the spread of economic activity across industry producers. For example, it answers ques-

tions like, what is the size of the productivity-output covariance? Reallocation explores

how the productivity-activity relationship changes in response to shifts in industry prim-

itives. Do changes in substitutability arising from reductions in transport costs increase

the productivity-activity correlation, for instance? Misallocation asks the normative ques-

tion of whether the observed productivity-activity relationship is welfare maximizing. We

will discuss these topics in greater detail below.

13



Prices Producers with higher productivity charge lower prices. This is apparent in the

expression for equilibrium prices:

P (ci) =
1

2γ
(cD + ci) (7)

Lower marginal costs imply lower prices. Here, the pass-through rate is 0.5 because of

the linear demand system, but the directional result holds as long as the demand system

implies positive pass through (an empirical regularity and a feature of commonly used

demand systems). Things can become more complicated in reality, when products are

vertically differentiated and productivity regards being able to make a higher quality

product at a given cost. In this case, if equilibrium price is correlated with quality,

price and productivity can be positively correlated. See Kugler and Verhoogen (2012) for

example.

Wages The positive empirical correlation between wages and productivity is not em-

bodied in this model nor its dynamic extensions. However, it could be accommodated

with some effort. Empirical work has established two likely mechanisms for this corre-

lation in the data (with opposite directions of implied causation, interestingly). One is

based on the idea that unit labor inputs, however measured, differ in quality. These qual-

ity differences are reflected in their marginal products. In competitive labor markets, the

equilibrium wage rises in labor quality. This allows firms to raise their productivity level

(though perhaps not their profitability level, or at least not as much) by hiring higher

quality labor at a wage premium. The other mechanism involves rent sharing between

firms and their workers. Firms that experience positive innovations to productivity and

profitability pass along some of the resulting profit gains to their workers in the form of

higher pay.

4 Measurement of Output and Inputs

Given the empirical conceptualization above, all approaches build productivity metrics

that are some form of output-to-input ratio. A number of measurement issues arise in

this process. We overview these here. Measurement problems are especially important to

keep in mind when working with productivity values. Because productivity is the output

variation that cannot be explained by observable inputs, it is essentially a residual. As

with all residuals, and as Abramovitz (1956) famously puts it, productivity is a measure of
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our ignorance. Productivity metrics can end up embodying (to varying degrees, depending

on the setting and the quality of the data) sources of output variation, like market power

and measurement error, that are conceptually distinct from a production function.

4.1 Output Measurement

Producing output is what firms are built to do, but measuring that output for the sake of

productivity measurement involves several potential concerns.

Sometimes the difficulty is quite fundamental: Defining what a producer’s output

actually is. What is the output of a bank, insurance company, or other firms in the

financial sector? What do they “make”? Measuring a bank’s output as its volume of

loans would capture only a tiny part of the services that banks create, for example.

Firms in other sectors are likely to have similarly difficult-to-define outputs; these include

education, government, and nonprofits.

Another difficulty arises when one can conceptually define the output, but it is basically

unmeasurable. These cases involve economic goods produced by the application of scarce

resources but that, for one reason or another, are not captured in the current standard

data collection apparatus. Healthcare is an example. What consumers seek to buy from

the healthcare industry is health, but there is no straightforward way to measure this.

Plus there is often a long and noisy lag between the purchase of healthcare services and any

change in health. Producers of “free” digital goods like media sites also create outputs that

can go unmeasured. Consumers’ use of web searches, posts, views, etc., are not readily

counted if they are not tied to a monetary transaction. While this is an old issue (free

media has been present for a long time), it may be becoming more prominent.5 Another

unmeasured output exists when firms produce intangible capital goods for their own use

in future production. In this case, the firm is producing an output that is neither counted

in revenues nor incorporated into future capital input measures. We will return to this

below in our discussion of capital measurement issues in productivity.

Measurement difficulties remain when output is more readily conceptualized and ac-

tivity tied to the sale of those outputs is measured. Outputs in economic micro data

5It is important to recognize, however, that there are measured transactions associated with these goods
that enter output. Free media and social network sites are often supported by (measured) advertising revenues.
Consumers also need to purchase complementary goods like smartphones, tablets, broadband access, and mobile
telephony to consume these free goods. Sellers of those complements should be pricing consumers’ values of free
goods into their own prices, which again are counted as outputs.
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are not usually true quantities. They are instead more likely to be measured as buyers’

expenditures on products, or equivalently, producers’ revenues from selling them. While

revenues may not be measured perfectly, they are probably one of the most accurately

tracked economic values and are clearly correlated with output. However, a drawback

of this approach—as necessary as it might be in the absence of quantity data—is that

without product- or producer-specific price deflators (very rarely available in micro data),

any price differences will be labeled as output differences. This poses obvious troubles

in interpreting variations in measured productivity levels and growth across producers.

If prices reflect at least in part idiosyncratic demand shifts or market power variation

rather than quality or production efficiency differences, producers with high measured

productivity may not be particularly technologically efficient.

In specific cases, some output quantity metric may be available. This may or may

not be a close relative to the conceptual notion of output for the producer (e.g., counting

cars, even if measurable, may not reflect the true output of automakers because of the

heterogeneity of cars), but even if not it may still be a useful ingredient in a broader

output index.

In absence of direct quantity metrics and when revenues measured as-is are not ac-

ceptable, the literature has proposed theory-based approaches to decompose revenue into

price and quantity. These vary considerably in structure, from assuming (and estimating)

a demand system to working off firms’ first order conditions for inputs. These methods

of course require assumptions, and the extent to which the necessary assumptions hold

varies across particular empirical settings. Our sense is that the literature has not yet

settled on “One Best Way” to do such decompositions. The assumptions of any given

method do not hold exactly in any particular setting, and do not hold inexactly across

settings equally. For now, researchers are left to determine the best option among a set

of imperfect solutions.

Over time, the literature has become increasingly careful about denoting whether it

is using revenue-based output and productivity measures or instead using output-based

measures (whether those rare cases where quantities are directly measured, or instead

when they have been backed out using the aforementioned methods). TFP is often labeled

TFPR when measured using revenue-based output and TFPQ when output-based. By the

definition of revenue, there is a simple identity linking the two metrics. If, as common, TFP

is measured in logs (the log output minus the log of inputs), then TFPR = lnP +TFPQ,
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where P is price.6

4.2 Input Measurement

Labor Variations in worker quality pose one of the trickiest issues in accurately measur-

ing labor inputs. Workers and worker-hours are heterogeneous in reality. Treating them

as homogeneous will attribute to productivity what are instead differences in (properly

measured in a world with enough data) quality-adjusted labor inputs.

An approach researchers commonly employ to adjust for labor quality differences in

micro data is to measure labor inputs using the wage bill (i.e., the producer’s entire

expenditure on labor). The notion is that market wages reflect workers’ marginal products,

so the wage bill serves as a quality-weighted total labor input measure. This correction

has the advantage that wage bills, while not universally available, are often reported in

production micro data. This methodology is not foolproof; wage variation might reflect the

competitive structure of local labor markets (the labor-market-side analog to the output

price variation issue discussed above), or causation could be in the other direction if more

productive firms share rents with employees. Definitively pinning down labor quality’s

productivity contribution would require more direct labor quality measures, which are

unfortunately quite rare in production data. That said, there is some evidence (Fox and

Smeets, 2011) that the wage bill is a reasonable proxy for what is captured in more detailed

labor quality measures.

Intermediate Inputs Intermediate inputs are almost inevitably measured as expen-

ditures, the product of input quantities and prices, rather than separate quantity and

price components. This raises the same price-variation-interpreted-as-quantity-variation

issues discussed above. (The most common exception to this is electricity use, whose

measurement in physical units—typically kWh—is made easier by its homogeneity.)

Capital Capital might be the most mis-measurement-prone component of any produc-

tivity measure. First, capital can exhibit considerable unmeasured quality variation. Cap-

ital vintages might vary in how much they embody the latest in technological progress,

6As we discuss below, despite some confusion in the literature, TFPR is not the residual of a production
function estimated with revenue as the output measure. Such a residual generally includes parameters of the
demand system that are not summarized by the (log) price, creating a gap between the residual and TFPR as
defined here.
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for example. Capital quality poses conceptually similar problems to the labor quality

measurement issues discussed above. In practice, capital measurement can be even more

troublesome. Measurable auxiliary correlates of labor quality like education and experi-

ence are sometimes available to allow quality adjustment of measured labor. Few such

proxies for quality exist for measured capital.

Second, practitioners must typically use a capital stock to measure capital input,

even though the true input into production is the flow of services that capital provides.

Differences in capital utilization rates therefore create measurement error. A given capital

stock can provide a high flow of capital inputs when used intensively or a low flow when

not, but a typical stock-based capital input measure treats both the same.

Third, practitioners often build up capital stocks using the perpetual inventory method.

Both the depreciation rate and current investment, which are necessary components of

this process, are potential conduits for mismeasurement. Depreciation depends on the

producers’ capital mix and utilization intensity, both of which are typically unobserved.

And measuring the correct level of investment requires a price deflator that equates effec-

tively equivalent dollars of investment today to that in another period. Such investment

deflators—even when available, which is not always, are probably more noise laden than

output deflators.

A fourth problem is heterogeneity. The kind of capital that matters most for pro-

duction can vary across industries. Some industries’ production activities are extremely

intangible-heavy, in others, it could be physical equipment and structures. Physical space,

both size and geographic location, matters a lot in retail and wholesale.

Fifth, capital may not just be measured with error; it may not be measured at all.

Intangible capital (brand value among a customer base, operational know-how, organiza-

tional culture, relationships with suppliers and customers, and so on) plays an important

role in many markets, yet by nature is typically unmeasured. The contributions of these

intangible capital inputs are therefore misattributed to productivity in standard measures,

overstating true productivity.

Intangible capital’s inherent unobservability can be managed in part by reinterpreting

productivity as including the effects of intangibles. However, doing so can cloud the

understanding of the mechanisms through which intangibles operate, how they vary across

producers or over time, and how much measured productivity is affected by factors other

than intangible capital.

Furthermore, as briefly mentioned in the output measurement discussion above, intan-
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gibles have a second effect on productivity measurement. When first produced, investment

goods, whether tangible or intangible, are output. A firm that makes intangible capital

for its own future use as an input (e.g., builds a reputation for quality through product

improvement efforts, manages customer relationships, reorganizes its internal structure

to improve production or use new technologies) is making an output that is not counted

as such. This initial production of intangible capital leads to understatement of produc-

tivity. The net effect of intangibles on productivity measurement therefore depends on

the relative size of the productivity-overstating effect of not counting intangible capital in-

puts versus the productivity-understating effect of not counting intangible capital outputs

when they are made. If intangible capital production ramps up faster than its placement

as a capital input, then standard productivity measures will first understate a firm’s pro-

ductivity level. Later, as its intangibles come online as inputs, its productivity will be

overstated. In steady state, these two measurement effects approach equality. However,

in the meantime measured productivity growth and levels exhibit a J-curve effect: first

falling, then rising substantially, only to eventually return toward baseline.

There has recently been a surge in attention paid to measuring intangible capital and

more explicitly accounting for it in productivity measurement. The various approaches

include building metrics from reported values in companies’ balance sheets and income

and loss statements. For example, one can assume some portion of the reported item

Selling and General Administrative Expenditures is actually intangible investment and

build a stock through the perpetual inventory method.7 Just like with physical capital,

this depends on appropriate deflators and depreciation rates, which are themselves not

directly observable. Moreover, the ability to construct such proxies is dependent on data

and industry context. It is therefore not surprising that no real consensus yet exists on

the best approach. More research is definitely needed here.

4.3 Data Sources

Most IO-related work on productivity uses micro data on producers’ outputs and inputs,

and it structures measurement around some notion of a production function.

As noted above, productivity also has a cost-based interpretation, and some macroe-

conomic work on productivity uses this approach. At the micro level, however, cost data

7The item reported on the income and loss statement (abbreviated by SG&A). This poses a few challenges,
chief among them the appropriate economic rate at which these assets need to be amortized over time and
across assets, in the likely absence of underlying transactions in the economy – e.g., brand value of a company.
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are rarely available. They are typically held by firms as proprietary and are hard to rely

on due to mismatches between accounting standards and economic concepts. Plus, they

rely on accurate measurement of often difficult to obtain micro-level prices.8 As a result,

we focus in this chapter primarily on methods developed to estimate production functions.

However, remember that the approaches are connected. We can move from production

functions to costs by adding cost minimization; the limit is the data.

The modal micro productivity study uses some form of micro data from countries’

national statistical agencies. These data are collected with the intent of aggregating up to

compute national income accounts, so they naturally have measures of outputs and inputs.

The data are often richest for countries’ manufacturing sectors, both because of the sector’s

historical importance and the fact that outputs and inputs are (at least somewhat) more

straightforward to measure than in other sectors. Data outside manufacturing has become

increasingly available, though posing a few more measurement issues for researchers to

tackle. Depending on the particular national setting, additional production information

might be available such as output prices, input prices, matched worker files, and financial

data, though these are the exception rather than the rule. The major limitation to the

use of such data is the (sensible and important, albeit taxing) confidentiality constraints

that limit access to and reporting of such data.

Other commonly used data include the collected and collated balance sheets of publicly

listed firms, like Compustat. These data are based on accounting conventions and, unlike

the national statistical agencies’ data, are not collected with the intent of facilitating

aggregate economic analysis. Hence the mapping from data to production function is

more strained. Labor inputs are not always measured well or cleanly separated from

intermediates. There is lots of attrition due to mergers and acquisition, making survival

analysis difficult. There is of course selection into being a publicly listed firm. And firms

are inevitably multiproduct, with inputs seldom broken down by product, complicating

the concept and measurement of the production function. Still, in some settings these

data can be useful.

A middle ground between statistical agency and publicly listed firm data includes

8This same cost data limitation was an impetus behind the development, in IO, of methods to measure
market power and conduct using demand estimation and output-based approaches. When micro-level cost
data has been employed, it has traditionally come from firms in regulated industries, like electric and water
utilities. (Readers of previous versions of this handbook will know this.) The unique regulatory and institutional
environment of these industries lends itself to cost measurement. See Wolak (2003) for a discussion.
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datasets like Orbis, which provides firm-level (or plant-level) data in long list of countries

with annual balance sheet and ownership information. There are also micro data collected

for particular industries or countries by international organizations such as the World Bank

Enterprise Surveys.9

5 Recovering Productivity from the Data

Total factor productivity measures require labor, capital, and intermediate inputs to be

combined into a single, composite input that forms the denominator of the TFP measure.

The precise way to combine the inputs depends on the production function. The most

common method is to weight each input by the elasticity of output with respect to that

input, so the (logged) composite input is equal to the output-elasticity weighted sum

of the logged individual inputs. This summation is exactly correct for a Cobb-Douglas

production function. It is also, conveniently, the correct first-order approximation for any

general production function.

Output elasticities are not directly observable; they are properties of the production

function. Hence one must somehow estimate them, a process which itself introduces

measurement error. There are two primary approaches used in the literature: factor

shares and production function estimation.10

Regardless of which method one deploys and prefers in a particular application, we

argue it is necessary to explicitly consider the market structure facing producers (i.e.,

the operating environment in both output and input markets) and the underlying model

of production (single- or multi-product producers, for example). In addition, one needs

to model two empirical ubiquities mentioned above: heterogeneity of productivity across

producers and serial correlation in these differences (i.e., productivity persistence). Eco-

nomic theory can guide us to tackle this problem in a general way, but it also implies that

different settings, datasets, and questions often require different approaches and solutions.

9See https://www.enterprisesurveys.org/en/enterprisesurveys.
10A somewhat distinct literature with branches extending beyond economics into operations and engineering

applies a third, entirely nonparametric, approach to productivity measurement: data envelopment analysis
(DEA). We are not adept practitioners of DEA and as such do not cover it in detail here. An overview of DEA
can be found in Cooper, Seiford, and Zhu (2011).
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5.1 Operating Environment and Unit of Analysis

We want to focus on the economic environment under which the two main approaches are

valid and informative about producers’ abilities to supply the market. We focus here on

behavioral assumptions and features of the operating environment, omitting some details

of the econometric procedures. We refer interested readers to the original research.

It is useful to organize productivity measurement around three important dimensions:

1) Market structure: perfect or imperfect competition, 2) Unit of analysis: producer or

product, and 3) Product: homogeneous or differentiated products.

Table 1 lists the various cases and how they map to the organization of our discussion.

The market structure is listed by row (labeled A and B) and unit of analysis (producer

or product) by column (1 and 2). The Market Structure distinctions should be readily

apparent, although we will make an important distinction within imperfect competition

between homogeneous and differentiated products, and the presence of strategic interac-

tion between producers (i.e., oligopoly versus monopolistic competition).11 As for the Unit

of Analysis distinction, cases in the “producer level” column cover analysis of producers

that are either explicitly single-product, situations where any underlying multi-product

aspect of the producer are ignored, or where the researcher aggregates the data to the

producer level. “Product level” refers to environments where multi-product firms are

explicitly modelled and product-level data are used.

While the literature has not always explicitly categorized productivity measurement

approaches in this way, we believe the taxonomy is useful for highlighting the main as-

sumptions at work in the methods. It also facilitates discussions of where current practices

lie and, just as importantly, where more research might be most useful. Speaking of that,

the bulk of applications so far have implicitly worked with producer-level data under the

assumption of perfect competition (A.1). This may require interpretation of the litera-

ture’s findings accordingly. However, there is a growing set of work that is explicit about

product differentiation under a variety of market structures (monopolistically competitive

and oligopoly, both captured in B.1.2).

11Perfect competition by definition only considers homogeneous products, though in some settings it pools
producers across different (geographic) markets when estimating the production function. In those cases, the
resulting price variation needs to be considered.
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Table 1: The operating environment and unit of analysis

UNIT OF ANALYSIS

1. Producer Level 2. Product level

MARKET STRUCTURE

A. Perfect competition A.1 A.2

B. Imperfect competition B.1 B.2

Homogeneous Product B.1.1 B.2.1
Differentiated Products B.1.2 B.2.2

Note: All cases consider heterogeneous firms (in terms of productivity).

5.1.1 Market Structure

The fact that we still distinguish between perfect and imperfect competition in the fourth

volume of the Handbook of Industrial Organization may surprise some of those new to the

productivity literature. In fact, much of the early work in identification and estimation

of production functions assumed perfect competition. We do not see this as an inherent

problem; rather, it serves as both a benchmark and a stepping stone toward more recent

(and still unsettled as to their relative benefits and costs) methods that handle imperfect

competition. We make an important distinction between models with and without strate-

gic interactions.12 We do this in the context of differentiated products, which covers a

large share of economic activity and industries.

When discussing production function estimation under imperfect competition, we need

to distinguish between product and factor market imperfections. This distinction is impor-

tant when evaluating empirical approaches designed to estimate production functions.13

Furthermore, we make an important distinction between imperfect competition through

demand-side heterogeneity (like monopolistic competition with product differentiation)

12Unless noted otherwise, we only consider non-collusive models of oligopoly.
13For example, whether wage variation reflects worker quality heterogeneity or labor market power (i.e.,

monopsony), or the presence of capital market frictions (e.g., financial constraints), affects the validity of certain
approaches and may require additional assumptions or structure.
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versus purely through competition (e.g., homogeneous-good Cournot competition). This

distinction is important when contrasting the factor-share and production function esti-

mation approaches. It is also a crucial difference when comparing the control function, or

proxy, approach and dynamic panel data estimation approaches.

5.1.2 Unit of Analysis

We distinguish between productivity analysis at the producer level (usually this refers to

firm- or plant-level) from product-level analysis. In some cases product-level measures

of output are recorded in the data and then aggregated to the producer level (we come

back to this later in this section), without further attention given to the product-specific

values, or even the fact that producers deliver multiple products at all. In those cases the

distinction is moot.14 The “Producer level” column contains the majority of empirical

applications in the literature. The “Product level” column thus captures settings where

researchers both observe product-level measures of output and explicitly consider multi-

product production (or costs). While there was an older research tradition of estimating

multi-product cost functions (see Chapter 1 in Volume I of this Handbook series), the

focus shifted to estimating production functions for a host of reasons we already discussed.

Recently, insights from the production function estimation literature have been used to

analyze multi-product production output and input data.

5.1.3 Output and Input Data

The classification in Table 1 does not indicate whether researchers observe quantities of

output and inputs, as opposed to revenues or expenditures (i.e., the products of quantities

and prices). We do not include this important measurement dimension in Table 1, because

we work under the premise that applied work relies on deflated monetary variables (output

and input data, except of course employment), albeit often at different levels of aggregation

for inputs compared to output.15 This implies that we can safely ignore the difference

between say revenue and output quantity (or expenditures and input quantities) for the

cases captured in rows A.1 and B.1.1. In other words, either through deflating or directly

14When we consider the issue of observing revenue instead of physical output, the presence of multi-product
producers is sometimes treated explicitly as it enters through the demand side, through product-level demand
shifters.

15While it is not unusual for production data to include detailed industry-level output price indices (e.g.,
4-digit NACE in the EU, or 6-digit or even more disaggregated in the US), this is less often the case for inputs.
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observing physical units of output and input, the researcher assumes all producers within

the industry under consideration make identical, homogeneous goods. Cases in the last row

(capturing B.1.2 and B.2.2.), however, have to confront head-on the presence of differences

in product attributes and therefore quality. The literature has only very recently started

to consider this case, let alone in a multi-product setting.

5.1.4 Trade-Offs across Approaches

It is useful to make explicit which of these cases the two distinct approaches, production

function estimation (PFE) and the factor-share (FS) approach, can accommodate (at least

at this point in the literature). We also state where we see the most favorable prospects

for researchers to make progress in advancing through the various columns and rows of

our admittedly simplified taxonomy. Below, we will discuss each approach in detail, but

at this point we want to emphasize how certain assumptions impact the validity of the

approach.

The FS approach is valid under all market structure scenarios, provided cost shares

can be computed with the available data. Effectively, if one is willing to assume that each

producer statically minimizes cost each period, that all inputs are flexibly adjustable,

and technology is characterized by constant returns to scale, an input’s cost share will

be directly informative about its output elasticity. The PFE approach relies on other

restrictive assumptions, though perhaps these have not always been spelled out explicitly.

We argue that both PFE approaches (control function and dynamic panel techniques)

definitely capture case A.1 – i.e., perfect competition.

Deploying the control function approach in an imperfectly competitive setting requires

certain modifications (including additional information) as well as restrictions on the spe-

cific form of imperfect competition, especially when considering models of oligopoly.16

Finally, the dynamic panel data approach can in principle be applied to case B.1.1 with-

out restricting the model of imperfect competition.

The cases in the multi-product column add distinct challenges, chief among them the

unobserved input allocation across products, making a restricted version of PFE feasible.

16This is topic of recent research, see Ackerberg and De Loecker (2021) for a more detailed discussion.
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5.1.5 Notation and Setup

Here and throughout this chapter, unless otherwise noted, we imagine some producer i (be

it a firm, establishment, or some other production unit; we will only distinguish among

these when it is important) producing a product j. For the most part we will consider

single-product producers, so i = j. Output is Q. Inputs are XH . We consider two types of

inputs H = {V, F}, where V contains more flexible inputs like labor, intermediate inputs,

and energy, and F contains the (sometimes quasi-fixed) capital stock. The corresponding

factor prices are given by PX
H

. Lower cases denote logs. Productivity is Ω; its log is ω.

Production function parameters will be denoted with β.

When working with production functions, we usually use the Cobb-Douglas form. It

conveys most of the necessary intuition and makes notation easier. For most of what we do

in the chapter, what matters is Hicks-neutrality (i.e., that productivity is multiplicatively

separable from factor inputs), not the specific form of the production function.

Consider the following logarithmic specification of the production function. Our inter-

est lies obtaining the output elasticities so that we can recover an estimate of productivity:

qit = βV x
V
it + βFx

F
it + ωit + εit, (8)

We consider two types of inputs, variable (V ) and fixed (or quasi-fixed) in the period

(F ). Anticipating the most common empirical approaches, we distinguish between errors

in recording output (εit, assumed to be classical measurement error) and the unobserved

productivity term ωit.
17 We start our discussion with producer-level analyses from Table

1 (the single-product setting). The unit of observation (i) is a firm or plant. Both the

factor share and production function estimation approaches introduce a set of distinct

potential measurement issues, capturing both model misspecification and sampling error.

5.2 Factor Shares

The factor share approach for measuring factor elasticities (sometimes referred to as the

first-order-condition approach) relies on the condition for static cost minimization: an

input’s output elasticity equals the product of that input’s cost share and the scale elas-

ticity. This implied optimization is in contrast to the production function approach, which

17The literature has predominantly considered a Cobb-Douglas specification. Departures often include
translog (see De Loecker and Warzynski (2012) and De Loecker et al. (2016)), and increasingly the constant
elasticity of substitution specification (see Grieco, Li, and Zhang (2016)), and departures from Hicks-neutrality
(see Doraszelski and Jaumandreu (2018) and others).
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requires only the existence of a production function, without the additional behavioral

assumption.18 The factor share approach has a long history in productivity measurement

in macroeconomics (e.g., Basu and Fernald (1997) and indeed Solow (1957)), though it

has seen steady and even increasing use in micro-level productivity analysis.

Of course the approach requires measuring inputs’ cost shares. This can be less mea-

surement prone than measuring input quantities, because, as discussed above, costs are

based on expenditures, which tend to be directly measured, and do not rely on separately

accurate measurement of price indexes. Capital costs are the most difficult. Direct mea-

sures of expenditures on capital inputs are rare, especially if that capital is owned (and

hence rental rates are implicit) rather than rented.

While the theory behind the cost-minimization approach is straightforward, and the

method avoids needing to estimate a production function regression, it is not assumption-

free. If there are factor adjustment costs, the link between observed cost shares and the

needed output elasticities will not hold at any given moment, because firms will be operat-

ing at input levels away from their long-run desired level. This misspecification error may

be partially mitigated by using cost shares that have been averaged over time (or in micro

settings, across producers as well). Such averaging smooths out idiosyncratic adjustment-

cost-driven misalignments between actual and optimal input levels. The notion is that

input levels are optimal on average, even if individual producers may be operating with

idiosyncratically high or low inputs. That said, this is not a complete fix. It is only under

very specific conditions that the average would exactly equal the true elasticity. Collard-

Wexler and De Loecker (2016) suggest a modification in light of measurement error in

capital, and propose to take the median over the producer-level ratio.

In practice, the scale elasticity is often assumed to be one, allowing for a straightfor-

ward calculation of the output elasticity for input H using:

PX
H

it XH
it

TCit
, (9)

for H = {V, F} and TCit =
∑

H P
XH

it XH
it . In light of the production function we had in

mind, a summary statistic of this ratio is used to compute the industry-specific elasticity.

Typically, researchers take the average across all producers and a particular period in the

18However, as we will note, the estimation techniques that were developed to combat the econometric chal-
lenges in the production function approach (i.e., the endogeneity of inputs) bring in behavioral assumptions
through the back door. These assumptions are arguably stronger than static cost minimization in many settings.
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data:

βHX =
1

Nt

∑
i

PX
H

it XH
it

TCit
(10)

A strength of the factor share approach is that it accommodates all cases listed in

Column 1 without any modification. Product differentiation poses no challenge as long as

one is willing to assume the production function is the same across all products. It does

not rely on comparable output and input quantities to compute the elasticity.

In typical practice, researchers using the method apply it assuming constant returns

to scale. In this case the output elasticity equals the cost share. Relaxing this assumption

requires the estimation of the scale parameter via a regression of output on a composite

input constructed as the cost-share-weighted sum of logged inputs. This introduces the

same challenges laid out below regarding production function estimation. See Syverson

(2004a) and De Loecker, Eeckhout, and Unger (2020) for illustrations of this approach.

In the perfect competition case of A.1, an input’s cost share equals its revenue share,
PXX
PQ . The logic is simple. Under constant returns to scale and with all inputs variable,

average cost equals marginal cost. Under perfect competition, marginal cost must equal

the price a producer receives. In this case, one can avoid computing the cost of capi-

tal, which can be tricky in practice (rental payments to capital service flows are rarely

directly reported). Capital’s revenue share can instead just be one minus the directly

measured input cost shares. This approach has a long tradition in the field of agriculture

economics.19

While in theory the factor-share approach can equally handle the multiproduct pro-

duction case (column 2), the researcher must observe factor expenditures separately for

each product. As we will discuss below, these are not in the typical dataset. It may

be difficult to even conceptualize product-level inputs under a multi-product production

setup.

Given the simplicity of its implementation, it may seem that the factor share approach

would be destined to be the main technique for estimating output elasticities. This is not

the case; most studies estimate production functions. If we were to speculate as to the

reasons why, one possibility is researchers’ discomfort about some of the assumptions of

the framework. Imposing constant returns to scale is a strong assumption. At the very

19It does pose a bit of a logical inconsistency. Under perfect competition and constant returns to scale,
nothing definitively pins down a producer’s empirical size. Optimal size is zero if marginal costs are greater
than price, infinite if marginal costs less than price, or indeterminate if marginal costs equal price.
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least, we recommend testing for this, even though this is not currently standard practice.

Perhaps more importantly, there is substantial evidence, and we will come back to this

later, of adjustment costs in factors of production. While traditionally thought to matter

for the capital accumulation process, micro-level evidence suggests adjustment costs are

important for labor demand as well (see Cooper, Haltiwanger, and Willis (2015) and

Bloom (2009)). Whether the quick fix of averaging cost shares across producers and time

sufficiently reduces this bias in practice remains a topic for future research.

5.3 Production Function Estimation (Producer level)

A second approach to obtain output elasticities is to estimate the production function by

regressing output on inputs. The estimated coefficients are, depending on the functional

form assumptions, either direct estimates of the elasticities or functions thereof. Total

factor productivity is the estimated residual from the production function.

There are econometric challenges involved in this approach, with a considerable liter-

ature attempting to address these concerns.

There is the transmission or simultaneity bias: producers’ input choices are likely to

be correlated with their productivity levels. In almost any model of producer behavior,

factor demands are a function of productivity. This creates a correlation between the

explanatory variables (factor inputs) and the error term (productivity) in the production

function regression, in violation of the assumptions of OLS.

In settings where productivity is being measured at the firm level, an additional po-

tential selection bias is present. Because lower-productivity producers are more likely to

exit from the sample, the econometrician will only observe a selected set of productivity

draws.

It is important to underscore that the standard reaction, go look for an instrument,

might be an option in specific settings, but it does not lend itself towards general use

in production function estimation using micro data. This is for at least two reasons.

First, it is a well-documented fact that ideal instruments to deal with the simultaneity

bias, input prices, are often either not available to the econometrician, or their variation

across producers is unlikely to satisfy the exclusion restriction (i.e., be orthogonal to the

productivity shock).20 Second, and related, the internal consistency of an instrument is

severely restricted once it is understood that, at least implicitly, restrictions are imposed

20See Griliches and Mairesse (1995) and Ackerberg et al. (2007).
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on market structure, the degree of product differentiation, product scope, and how output

and inputs are recorded. As will become clear below, demand-side shifters may be good

instruments, but this in turn affects the validity of the approach taken more generally.

5.3.1 Perfect Competition (A.1)

Until the past decade or so, perfect competition had been the main environment consid-

ered in the production function estimation literature.21 There are good reasons for this.

The productivity literature grew in considerable part out of work on productivity in the

agriculture sector. Assuming perfectly competitive output and factor markets was quite

reasonable in many such settings. As the literature increasingly turned its focus to manu-

facturing, this assumption became harder to maintain. Increased product differentiation

and technological change affected the distribution of market shares across producers and

the amount of producer market power. Nevertheless, even now an approximate majority

of applications assume this environment (implicitly, for the most part), and even many

recently developed econometric techniques remain rooted in this paradigm.

There are two broad approaches under the setup of perfect competition, the control

function and the dynamic panel data approaches. We refer the reader to the overviews

of Ackerberg et al. (2007) and Ackerberg, Caves, and Frazer (2015) for more details on

the relationship among the two. However, both approaches can be extended and adjusted

to accommodate departures from perfect competition. It is also instructive to highlight

that the (revenue) factor share approach remains a viable alternative under this situation

(A.1), albeit assuming constant returns to scale and no adjustment costs in any input (at

least along the time dimension of the dataset, typically a year).

Control Function Approach The control function approach was pioneered by Olley

and Pakes (1996), modified by Levinsohn and Petrin (2003), and consolidated by Acker-

berg, Caves, and Frazer (2015). It connects the production function to an underlying

economic model that describes the behavior of producers and the operating environment

in which they compete. This permits, in the spirit of Griliches (1967), an interpretation

of the estimated production function coefficients and an evaluation of the potential biases

that plague least squares estimation through the lens of economic theory.22 This approach

21Unless noted explicitly, we refer to both perfectly competitive product and factor markets.
22See also Reiss and Wolak (2007), Section 4, for a discussion in the context of structurally estimating

production and cost functions.
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includes two fundamental pieces: 1) construction of optimal input demand through model-

ing either static input choices or forward-looking investments, and 2) a specific time-series

for the productivity process.

The input demand assumption stipulates that the first order condition for the pro-

ducer’s demand of some factor input (in logs, d) is an unknown function of productivity

ωit and other producer-specific observable inputs:

dit = dt(ωit, x
V
it , x

F
it). (11)

In the classic setup, factor prices and the output price are assumed to be common across

firms. These and any other non-producer-specific influences on factor demand are accom-

modated by the time subscript on the input demand equation dt(.).

The key assumption is that this optimal input demand is monotonic in (scalar) pro-

ductivity, conditional on the other observables in the input demand. Monotonicity implies

a unique mapping between observable input demand and unobserved productivity, thus

allowing the input demand function to be inverted to recover productivity as a function

of data and parameters:

ωit = d−1
t (dit, x

V
it , x

F
it). (12)

Under these assumptions, the unobserved productivity shock can be controlled for

(exactly) by this function, obviating the simultaneity problem. The precise form of the

control function is generally unknown, so in practice the researcher approximates d−1
t (.)

using a flexible function of dit, x
V
it , and xFit , like a high-degree polynomial or other non-

parametric techniques.

The control function in Olley and Pakes (1996) is an investment policy function (i.e., a

dynamic control) derived from a special case of Ericson and Pakes (1995): dit = iit, where

iit denotes logged investment.23 Levinsohn and Petrin (2003) propose using a static control

like intermediate inputs or electricity use instead of investment to deal with two major

concerns. First, producer investment is lumpy and is often observed to be zero. Because

the input demand (investment) function is not invertible at this level of investment (e.g.,

with fixed costs of investment, a range of productivity levels are consistent with zero

investment), the researcher cannot use these zero-investment observations in estimating

23This restricts the underlying model of market competition to one where only producer i’s productivity
determines its investment choices, conditional on capital and the aggregate state in the market. In addition,
the law of motion of productivity, introduced below, is restricted to exogenous Markov processes, instead of
allowing investment to affect future productivity draws.
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the production function. Second, when considering slight deviations from the original

Olley and Pakes setup, deriving the investment equation that allows inversion proves to

be challenging. The trade-off to using a static input proxy is that investment decisions

are highly informative about a producer’s expectations of future productivity, and this

information is largely lost in the static case. While the Olley and Pakes (OP) approach

has to keep the function dt(.) non-parametric, in the Levinsohn and Petrin (LP) approach

the functional form directly relates to the production function. In the Cobb-Douglas case,

for example, the inverted input demand equation is log linear.24

This explains how the control function can address the simultaneity bias. However,

one cannot simply include this control function in a production function regression and

be done. The reason why is that the inputs of the production function are also in the

control function. The derivative of output with respect to any input in such a regression

is not simply the output elasticity. Separating the production function from the control

function is where the timing assumptions come in.

A second key assumption of the control function approach is that productivity follows

a first-order Markov process:

ωit = g(ωit−1) + ξit. (13)

This is the core timing assumption, and its application raises the issue of dealing with

selection (survivor) bias.

Selection Bias The original Olley and Pakes (1996) approach deals with the non-

random exit of producers by turning the (expected) productivity distribution into a

truncated distribution based on a producer-specific exit threshold that depends on the

producer’s state variables, in particular capital. Selection bias is likely to be especially

pronounced in periods of drastic change in the operating environment. This has been

discussed prominently in the literature, but we do want to call one common wisdom into

question. The OP methodology highlights the importance of correcting for this selection

bias. It materializes most in the output elasticity on fixed factors of production, in their

case capital, since it is precisely this variable that generates the option value of remaining

in the market, given unfavorable productivity shocks. OP show that the use of an unbal-

anced panel gets one most of the way (practically speaking, raises the capital coefficient

to a more realistic value). This is for good reason; not selecting the sample on survival

24It is this case that highlights the identification challenges we discuss below.
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through the entire sample period insulates from selection on the unobservable productivity

shock.

This result has become an argument for no further treatment of the selection bias once

an unbalanced panel is used. However, we note that this strategy does not insulate from

selection on productivity and inputs. This would be the case if, say, a producer’s decision

to exit the market depended not only on its productivity forecast but its size (measured

by capital) as well. Or if firms with a large number of employees had different propensities

to stay in the market due to unobserved government actions (e.g., bailouts).

To address selection bias, control function methods add a step that recovers the pro-

ducer’s survival probability (from t−1 to t, say) as predicted by the relevant state variables

of the problem. This survival probability is then included in the forecast of productivity

(the g(.) function). In the standard OP setup, the relevant state variables end up being

investment and capital, as productivity has again been solved out for. See Ackerberg et al.

(2007) for more discussion of the selection bias correction.

Procedure We now have the necessary pieces to estimate the output elasticities. We

follow the more general treatment of Ackerberg, Caves, and Frazer (2015, henceforth

ACF), also a two-step procedure. The first step replaces the unobserved productivity

term with the inverse of the optimal input (investment or intermediate input) demand

equation (equation 12). Collecting terms yields an equation that predicts producer output

using inputs and the relevant control variable (d):

qit = φt(dit, x
V
it , x

F
it) + εit, (14)

where φt(.) captures predicted output, or ωit + βV x
V
it + βFx

F
it . The first stage has only

one purpose, to strip predicted output from measurement error.25 The subscript on the

control function is important, both theoretically and empirically. It is typically described

as capturing variation in the function over time, thus capturing market-wide movements

in demand and supply conditions. However, it can be interpreted a bit more broadly.

For example, even under perfect competition, researchers may want to take into account

that producers (facing the same production function) are sometimes active across different

25This can be quite important in its own right; see Collard-Wexler (2013) for an application. Another
interpretation of εit besides measurement error is that it is actual surprise output that was not predictable
even to the producer, given its chosen inputs and known productivity level. The distinction between pure
measurement error and realizations of output affects the specific econometric treatment of this error term.
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markets, e.g., regionally segmented markets. Thus they face different factor and output

price conditions. These could be subsumed in a market-specific term φt(.), where now the

subscript denotes a market-time combination.

The remainder of the approach is centered on timing assumptions regarding input

choices after the productivity shock ξit is recovered using the first step estimates and the

assumed productivity law of motion. We know that ωit = φit − βV xVit − βFxFit . For a

guess of the parameter vector β, we can compute productivity and use the assumed law

of motion on productivity (equation (13)) to recover the productivity shock ξit. The final,

second step of the procedure then relies on the moment conditions:

E
(
ξit(β)

(
xVit−s
xFit

))
= 0 (15)

This approach distinguishes between inputs that react to the productivity shock within

the period, xV , and those that do not xF . The specific law of motion assumed on this

input xF (in levels) injects another timing assumption into how this dynamic input’s

accumulation process takes place. In almost all work (and in the OP, LP, and ACF

papers), xF represents the logged capital stock (or XF = K). The standard law of

motion is given by

Kit = (1− δ)Kit−1 + Iit−1, (16)

where Iit−1 is investment at time t−1. This timing assumption is what permits identifica-

tion using the moments above. Conditional on the persistent part of productivity, lagged

investment is assumed to be orthogonal to the productivity shock. In other words, the

capital stock at time t cannot react to the contemporaneous shock to productivity. This

is not the case for the input xV (labor in the case of OP-LP-ACF), which is precisely why

different moment conditions are suggested.

The control function approach was used in a variety of settings using the approaches

laid out in the original articles of OP and LP, and not much attention or care had initially

been given to the precise moment condition for these variable input coefficients. Ackerberg,

Caves, and Frazer (2015) and Bond and Söderbom (2005) independently arrived at the

conclusion that in the context of this setup (case A.1), the identification of a perfectly

flexible variable input is challenging and even infeasible unless additional assumptions are

made.

The easiest way to see the challenge is to consider a gross output Cobb-Douglas pro-

duction function in labor, capital, and an intermediate input. The latter is the control
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variable, d in our notation. Solving for the optimal intermediate input demand and plug-

ging its inverse in the production function (thereby eliminating unobserved productivity)

leaves the researcher with an equation that no longer features any of the production

function coefficients. This demonstrates the non-identification result in the first stage of

the control function approach.26 At the same time, a variety of other data generating

processes for the labor choice eliminate this concern.27

The literature paused for some time between the seminal works of Olley and Pakes

(1996), Levinsohn and Petrin (2003), and Ackerberg, Caves, and Frazer (2015). But the

conclusion is that the user has a great deal of flexibility to decide what moments she is

willing to use (essentially, letting s be either 1 or 0), a choice that ultimately reflects

timing assumptions. This presents a researcher with many choices to tailor the method

to the specific institutional and market details of the application.

The focus on production function identification in this body of work led to a more

careful evaluation of the underlying economic models and econometric evaluation of the

moment conditions used in estimation. A recent literature further studies the timing

assumptions; see Ackerberg et al. (2020b) and Ackerberg (2020). A promising avenue

may be to supplement the production data with survey questions related to the timing

of firms’ decision making. This adds empirical content to researchers’ notions of firm

information sets.28 Another challenge in the standard ACF setup is global identification.

Various approaches have been forwarded to eliminate the spurious local minima presence

in finite samples (Kim, Luo, and Su (2019) and Ackerberg et al. (2020a)).

Dynamic Panel On the other side of the Atlantic, an alternative approach was devel-

oped to estimate dynamic panel data models. This was not done primarily for production

function estimation. Rather, Arellano and Bond (1991) considered a much more generic

26Inverting the profit-maximizing material demand equation under perfect competition gives: ω = −βV xV −
βFx

F +d+c, where c is a constant consisting of the common output and materials input prices and the material
output elasticity. Plugging this into equation (8) yields q = c+ d.

27One can achieve identification of one flexible input, say labor, by considering optimization error in labor
choices, while relying on another input used in fixed proportion to output to proxy for productivity. A dynamic
control, like investment in OP, provides another identification scheme. This essentially relies on an additional
timing assumption where within a period investment decisions are made after labor choices, and importantly,
sub-period productivity shocks hit the firm, breaking the non-identification. See Ackerberg, Caves, and Frazer
(2015) for more discussion.

28It also connects to a separate literature in IO that studies producer decisions under a variety of assumptions
on their information sets, like entry models (see Berry and Reiss (2007)).
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setup of identifying parameters in (what now have become) standard panel data models.

These were later modified and extended by Blundell and Bond (1998) and have been used

since to estimate production functions. This approach has seen somewhat less uptake

compared to the control function approach. While appealing in theory, in practice users

estimated what were often thought to be unrealistically low or even negative capital co-

efficients. This can occur when (quasi) first-differencing data, which throws out variation

across producers in the capital measure and raises its noise-to-signal ratio. Indeed, one

of the motivations for the original OP approach was preserving the typically enormous

cross-sectional variation for the sake of identification.

At a methodological level, there are two main differences between the dynamic panel

and control function approaches. First, the dynamic panel method relies explicitly on a

linear productivity process (an AR(1)). Second, it allows for a fixed effect in productivity.

As observed by Ackerberg, Caves, and Frazer (2015), this setup no longer requires the

control function approach’s first stage. Further, as will become clear, it bypasses the need

to invert the input demand equation and the complications that come along with that.29

Instead, it relies on a statistical process for productivity and can proceed by directly

forming moments on the joint error term, productivity, and the measurement error.

Let us illustrate the approach by considering a special case of the Markov process

(equation (13), ωit = ρωit−1 + ξit – i.e., an AR(1) process.30 Starting from the produc-

tion function, substituting in the specific linear productivity process and replacing lagged

unobserved productivity using the production function gives rise to:

qit = βV x
V
it + βFx

F
it + ρωit−1 + ξit + εit (17)

qit = βV x
V
it + βFx

F
it + ρ(qit−1 − βV xVit−1 − βFxFit−1 − εit−1) + ξit + εit (18)

The moments conditions used to obtain the production function coefficients are similar to

the ones of the control function:

E
(
ξ̃it(β)

[
xvit−1

xfit

])
= 0, (19)

where ξ̃it = ξ + εit − ρεit−1. Note that this is not exactly what the dynamic panel

approach suggests. It typically allows for a fixed effect, requiring more work to identify

29Of course, if one were to drop the measurement error term εit from the control function setup, the first
step could be dropped there as well. Moments would be formed directly on the productivity shock, given that
ω(β)it = q − βV xVit − βFxFit. This would no longer require invoking optimal input demand behavior and the
concomitant restrictions guaranteeing identification.

30The dynamic panel data literature considers the presence of a fixed effect, ωi.
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the persistence parameter (as now qit−1 would be correlated with ωi). This often leads to

a (quasi) first differencing strategy.31 The dynamic panel approach, by leaning entirely

on the linearity of the productivity process, does not treat the selection bias. Note that

it is precisely the presence of measurement error in output, while taking into account the

non-random exit of firms and not committing to a particular process for the productivity

shock, that requires the OP approach to consider an optimal input demand equation.32

Here, we employ the fact that measurement error is independent from the productivity

shock. However, the moment condition on xV will not identify the coefficient when this

input is fully flexible and input prices do not vary across firms. What breaks the non-

identification of the variable input coefficient is the presence of either serially correlated

demand shifters or factor prices. (Though note that the former is formally outside the

environment we assumed under case (A.1).) The presence of either of these links input

use over time, turning the lagged variable input into a valid instrument. Of course if one

believes all inputs face adjustment costs, effectively all inputs are like xfit in the model,

that would also restore identification. This strategy relies, however, on assuming that

adjustment costs are a function of the level of inputs, creating variation across producers

independent from the arrival of new productivity shocks.33

The applied researcher thus faces a trade-off between including observable factors

influencing input demand explicitly, or instead relying on a particular statistical process

of the productivity shock, and in addition on the presence of factors that turn lagged

inputs valid instruments. From an applied point of view, the latter may be attractive in

that it does not require to observe such a factor. At the same time, however, there is no

way to check whether these factors are relevant and satisfy the necessary conditions to

support identification.

Discussion Olley and Pakes (1996) created their approach to study productivity growth

that accompanied deregulation of the telecom equipment industry. The non-random exit

and reallocation of market shares among industry producers called for an approach that

provided estimates of plant-level efficiency using standard production data, while ad-

31We refer the reader to Arellano and Bond (1991) and section 4.3.3. in ACF for a detailed comparison of
both approaches.

32Below we discuss another important distinction, namely, the presence of endogenous productivity processes
that are heterogeneous across producers.

33There is a literature that supports these assumptions in the micro data, for labor and capital use (see
Cooper and Haltiwanger (2006)).
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dressing the simultaneity and selection bias. The focus was thus on obtaining important

economic objects while relying on a theoretically sound framework within the market of

interest to interpret the data. The approach was subsequently taken out of the market

context of their application and became the go-to routine for production function estima-

tion. That is a tall order for any method, and can (and did) lead to some instances of

pounding square pegs in round holes.

These difficulties spurred a series of papers that further deepened the literature’s un-

derstanding of both its potential extensions and limiting caveats. Levinsohn and Petrin

(2003) built on OP by demonstrating that instead of relying on an inverted investment

policy function, a perhaps simpler static optimization problem (the hiring decision for fully

flexible factors, like intermediates) can control for the unobserved productivity shock. A

motivation for this modification is that especially in producer-level data from developing

countries, reported investment is often zero or missing, preventing inversion and making

the observation worthless.

Ackerberg, Caves, and Frazer (2015) revisited the precise identification conditions

under which these approaches are valid. It offered a more general way to deal with

potential non-identification concerns. More recently, Gandhi, Navarro, and Rivers (2020)

used a perfectly competitive framework to study the identification properties under a

non-parametric production function (conditional on a scalar Hicks-neutral productivity

shock). These two papers also made clear the non-identification of the variable input

coefficient, here βV , under the canonical setup, a point previously made by Bond and

Söderbom (2005).

An interesting element of the approach in Gandhi, Navarro, and Rivers (2020), given

the discussion above, is that it essentially incorporates a (non-parametric) factor share

approach. The shape of the production function and the first-order condition for a flexi-

ble input give rise to a non-parametric share equation that features the derivative of the

production function. Adding a Markov productivity process yields a non-parametric esti-

mator of the production function parameters through integration over the flexible input.

While the identification arguments in these papers remain largely theoretical, they

have proven extremely useful in pushing the literature to a more careful treatment of

the problem. The literature has noted that under perfect competition and absent input

price variation or demand shifters, the output elasticities of perfectly variable inputs are

challenging to identify, and may require very strict and implausible assumptions. This

may not be too much of problem, given that one can naturally appeal to factor shares to
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compute the output elasticity (albeit at the expense of having to assume constant returns

to scale).34 We refer the reader to Ackerberg et al. (2007) for a more detailed discussion

of the econometric challenges and the commonalities and contrasts between the control

function and dynamic panel approaches.

These developments also showed directions for relaxing the assumption of perfect com-

petition. However, the richer market environment forced researchers to deal with the

elephant in the room: output and input price heterogeneity.

5.3.2 Imperfect Competition (B.1)

While the assumption of perfect competition has been the norm in much of the produc-

tivity estimation literature to this point, few markets strictly adhere to its assumptions.

Most producers have some degree of market power, whether in product or factor markets.

Explicitly accounting for the consequences of imperfect competition when estimating pro-

duction functions requires the accommodation of several new elements.

First, departures from perfect competition can capture both non-strategic producer-

level differences (reflecting demand or product quality differences) as well as strategic

interactions among producers. The latter is a topic of active and recent research, while

the former has received more attention in the literature relying on a monopolistically

competitive setup.35 Second, the potential presence of horizontal or vertical product

differentiation complicates the comparison of quantities produced. Additionally, in most

datasets output and input are recorded as sales and expenditures, respectively. This

introduces price errors into quantity measurements.

An important issue is that the popular control function methods implicitly restrict the

form of competition. The dynamic panel approach, on the other hand, is not affected by

strategic interaction across producers or demand-side differences across producers, as long

as one can compare output and inputs (more on this below) and is willing to stick with

the exogenous linear productivity process, thereby ignoring selection bias.

In general, the key ingredients of production function estimation approaches discussed

above are preserved under imperfect competition. This includes the law of motion for

34One can construct a hybrid factor-share/control-function approach, where first the variable output elasticity
is directly computed and the remaining elasticities (on the fixed factors) are estimated to free up the returns to
scale. See Collard-Wexler and De Loecker (2016) for an illustration.

35Most applications to date have been in international trade, e.g., De Loecker (2011a) and Bilir and Morales
(2020)
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productivity and timing assumptions on inputs. However, an important distinction is that

the input demand equation needs to allow for differences in demand due to differentiated

products or strategic interactions. That is, the optimal input demand equation (equation

11) needs to reflect the operating environment and market structure. To see this, it is

useful to go back to the input demand equation:

dit = dt(ωit, x
V
it , x

F
it , zit), (20)

where the additional variables in zit reflect input price differences, demand-side differences

(e.g., different demand curves or shifters), and marginal revenue shifters from strategic

interaction among market firms. For instance, De Loecker and Warzynski (2012) includes

wages and export status in z, while De Loecker et al. (2016) inject price, market share,

product dummies, and tariffs. Note that any omission of such relevant factors would

invalidate the first stage by effectively not controlling fully for unobserved productivity

shocks. Put differently, there is no one-to-one mapping between productivity and input

demand if we fail to include all relevant shifters (coming from either cost, demand, or

market structure), fouling the necessary inversion that would allow inputs to proxy for

productivity.

In the most general oligopoly settings, this has stark implications for what should be

included in the control function. It should include not just the index producer’s demand

shifters but also all competing producers’ productivity levels and relevant state variables.

In this section, we discuss these challenges. We organize our discussion along the

lines of Table 1. The first case, homogeneous good oligopoly case, can in principle rely

on the approaches discussed under A.1. We devote most of our attention to settings

where producers face different conditions in the operating environment, and where the

researcher has to confront the additional price errors coming from observing revenues and

expenditures. The details of the implementation depend on whether the researcher wants

to allow for strategic interactions among the producers.

Homogeneous Good The imperfectly competitive, homogeneous good setting (e.g.,

Cournot competition) has not been explicitly analyzed in the productivity estimation

literature. However, most of the main insights from the perfectly competitive setting

apply.

Under product homogeneity, even though the output’s price is above marginal cost, the
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uniformity of price means producers’ outputs are perfectly comparable.36 Researchers can

deploy the factor share method or dynamic panel data approach with little modification.

Control function methods work as well, though the control function (based on input

demand, whether investment or intermediates as the case may be) should be modified to

reflect the effect of competitive interactions among market producers. To see why, recall

the discussion above regarding the presence of additional input demand shifters z. These

must be included in the input demand function so that any two firms with the same

productivity and capital stock will select the same amount of the input d. In imperfectly

competitive, homogeneous good settings, it is important to correctly index this function to

reflect the relevant market (one might label it “the state of competition in the market”),

capturing output and factor prices. This underscores the importance of correctly indexing

the control function by either time or time-market, depending on the industry’s structure

and level at which the good can be considered homogenous. In many ways, one can treat

such differences in competition across (time or geographic) markets as analogous to the

aforementioned differences in aggregate market conditions across perfectly competitive

markets.37

It is important to underscore, however, that the challenge of identifying the variable

input coefficient (βV in our notation), in either the control function or dynamic panel

approach, is significantly reduced under models of oligopoly. This is because productivity

shocks of competitors now move around a producer’s individual residual demand curve,

and therefore its optimal input demand. The exact conditions and details of this setting

are the subject of ongoing research.38

Product Differentiation Product differentiation affects all production function es-

timation approaches, as it is fundamentally about how to compare output and input data

across producers when products have different attributes and thus vary in (perceived)

quality by consumers. The fact that most users have output and input data recorded in

36In practice output can be measured either through directly observing quantities or through use of a deflator
based on the observed market-clearing price. The same procedure can be adopted for inputs, though typically
deflators are only available at more aggregate levels.

37There is, however, a tension in deploying non-parametric estimation techniques in the first stage, where
implicitly the number of firms in the market is assumed to go to infinity. This topic requires further research.
Apart from that complication, one could interpret the existing work deploying the control function estimator
as at least theoretically consistent with a symmetric oligopoly setting like a homogenous good Cournot model.

38Ongoing work of Ackerberg and De Loecker (2021) discuss this in more detail.
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the form of revenue and expenditure can present additional complications, though even

when physical output and inputs are recorded, the presence of product differentiation still

poses a challenge, as physical units may not be particularly comparable.39

To keep notation light, let us consider a simple one-factor production function consist-

ing of a variable input and productivity:

qit = βV x
V
it + ωit. (21)

Suppose the researcher has data on (deflated across time) sales and the input expenditure

for the set of active producers in the market. The practice of deflating stems from the

tradition of using industry-wide time series data on output and inputs and industry de-

flators (typically constructed by statistical agencies). Deflating producer-level output and

input data by industry-wide deflators does remove aggregate movements in prices over

time, but leaves the deviation around industry average price and input prices in the error

term of the production function.40

While theory tells us we should relate physical output to physical inputs, the data

implies we now relate (deflated) sales to (deflated) material expenditures:

rit = qit + pit = βV (pVit + xVit ) + ωit + pit − βV pVit (22)

where p denotes the log price, pVit the input price of material, and r log revenue. Of course

this will only be informative about the technical relationship (and thus measure the output

elasticity) if all producers in the industry face the same output and input prices, thereby

turning this regression of sales on material expenditures into a regression of output on

materials. If either output or input prices vary across producers, the estimation of the

production function will be generally biased both through a correlation between measured

input and the error term, yielding a biased estimate of the production function coefficient

(βV ), as well as through the productivity residual capturing both output and input price

variation.

While this issue had long been recognized by practitioners, reflected in the use of the

most disaggregated output and input deflators available, it came to the fore after the

39An example of this from the literature regards units of measured employment, typically total employees
or hours worked. Because of concerns that there may be systematic differences in the quality of these units
across producers, some applications use the wage bill (i.e., expenditures on labor) to measure labor instead, to
hopefully have better measured quality-adjusted labor input.

40In what follows, our notation implies that the output and input price are expressed relative to the industry
price index.
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seminal contribution of Klette and Griliches (1996). They discuss the implications of

output price heterogeneity and introduce an approach that provides separate estimates

of the production function and the assumed demand system. Klette and Griliches (1996)

introduced the omitted price variable bias that occurs when relating revenues to inputs.

Its treatment was integrated into the control function approach in Levinsohn and Melitz

(2002) and De Loecker (2011a). At the same time, Foster, Haltiwanger, and Syverson

(2008) introduced the distinction between TFPR and TFPQ and how these concepts

relate to firm survival.

Since this earlier work, researchers have adopted a variety of practices to mitigate the

presence of unobserved prices in the production function. These practices have centered

on using output price indexes to convert output in monetary units (e.g., USD) to physical

units, adding more structure to the problem through assuming and estimating a demand

function jointly with the production function, or exploiting the predicted correlation be-

tween output and input prices. This work has mostly focused on dealing with output

price variation, for at least two reasons. First, there seems to have been a notion, albeit

not backed by much formal testing, that input price variation is somehow less prevalent

than output price variation within industries. Second, researchers have increasingly found

production data with output prices but not input prices available, leading to a bit of a

“looking under the lamppost because that’s where the light is” phenomenon.

To summarize, in applied work dealing with productivity estimation when products

are differentiated, one or a combination of the following is adopted:

1. Deflate revenue data using:

(a) Industry-wide price index,

(b) Product-level prices,

(c) Product-producer level prices;

2. Add a demand system and demand shifters,

3. Exploit the output-input price wedge.

We discuss each of these in more detail.

Deflating Revenue The revenue deflation strategy converts observed revenue to out-

put data using additional price data. The default is the use of an industry-wide price

index. This eliminates common price trends from revenue data. In the specific case of
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homogeneous products without any other sources of price heterogeneity (be it a spatial

or regulatory dimension), this exactly converts revenue into quantities. Over the past

decade or so, researchers have made increasing efforts to find more disaggregated price

data, whether at the producer-, product-, or producer-product level. Researchers have

used these data to construct producer-level (often firm-level) price indexes. This ap-

proach, however, brings in multi-product production through the back door, which can

require special treatment (see below).41

Adding Demand-Side Information The demand system approach does not rely

on price data. Instead, it explicitly models the revenue generating function from the

production function and demand primitives. This approach requires observed demand

shifters to disentangle demand and supply parameters. There have been a variety of dif-

ferent demand functions imposed across applications, chosen for a combination of reasons

including tractability, generality of application, and empirical fit.

For purposes of illustration, we outline the approach of Klette and Griliches (1996)

and De Loecker (2011a) in a simplified case. First, let all producers face a common

input price. Second, assume demand can be described by a horizontal differentiated

(conditional) demand system:

Qit = Qt

(
Pit
Pt

)ψ
exp (νit), (23)

with Qt, Pt, νit, and ψ be industry-wide demand, the average price (i.e., the observed

price index), an idiosyncratic demand error, and the elasticity of demand, respectively.

The main insight of Klette and Griliches (1996) is to express observed revenue as a function

of inputs, productivity, and demand-side shifters and parameters. Inverting and taking

logs of equation (23) yields an expression for the (log) inverse demand system. Consider

logged revenue, rit = qit + pit and replace the logged price by the inverse demand system.

41There are an array of examples of the use of producer-level prices in production function estimation. See
Collard-Wexler and De Loecker (2015), Smeets and Warzynski (2013), Dhyne et al. (2020), Foster, Haltiwanger,
and Syverson (2008), Rubens (2020), Allcott, Collard-Wexler, and O’Connell (2016), Slavtchev, Bräuer, and
Mertens (2020), Morlacco (2017), Eslava and Haltiwanger (2020), Forlani et al. (2016), Valmari (2016), Orr
(2019), Itoga (2019), Stiebale and Vencappa (2018), Atalay (2014), Backus (2020), Doraszelski and Jaumandreu
(2018), Pozzi and Schivardi (2016), Ornaghi (2006), and Mairesse and Jaumandreu (2005).
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Deflated revenue is then given by:

rit − pt =

(
ψ + 1

ψ

)
qit +

1

|ψ|
qt + ν̃it (24)

= αV x
V
it +

1

|ψ|
qt + ω̃it + ε̃it, (25)

where the second line plugs in the production function, αV =
(
ψ+1
ψ

)
βV , ω̃it =

(
ψ+1
ψ

)
ωit,

and ε̃it captures idiosyncratic output and demand shocks. Explicitly writing the revenue

function in terms of production and demand drives home two important points. First,

the revenue function coefficients are reduced-form coefficients that combine the demand

and production parameters (β, ψ). In other words, the “revenue elasticity” of a factor

of production is not its output elasticity from the production function. Second, both

observable (here qt) and unobservable demand shifters enter the specification in addition to

unobserved productivity. Thus, if one is to recover productivity or the output elasticities,

these demand shifters have to be taken into account. And this is all in addition to

treatment of the well-known simultaneity bias.

De Loecker (2011a) combines the control function approach with the Klette and

Griliches (1996) structure. The application shows how to combine aggregate and product-

level data to separately identify the demand and production function parameters, allowing

the study of productivity while controlling for demand-side heterogeneity. The integration

of both approaches rests on the important observation that whichever factor demand d

is used in the productivity proxy (static (LP) or dynamic (OP)), at a very minimum one

has to think through how demand-side heterogeneity enters the input demand equation

and include controls for it. In this particular study, the additional shifters z include

product and product-segment demand shifters as well as producer-level quota indicators.

Including these serially correlated, observable demand shifters is not only important in

the first stage (as in equation (20)), it also supports identification of the variable input

coefficients by creating correlation across variable input choices across time periods for a

given producer (using moments in equation (15)).

The results indicate that standard estimates that ignore the price error tend to under-

estimate returns to scale. Further, the imposed nested conditional demand system (nested

CES) allowed recovery of product-nest-specific Lerner indices. These demand parameters

allowed decomposition of the residual of the revenue function into the structural produc-

tivity term (ωit), the implied firm-level price, and the bias induced through the biased
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coefficients (reflecting a bias in the scale elasticity).42 A bottom line of the study was

a substantially different interpretation of the productivity effects of trade reforms. Be-

cause the relevant reforms acted simultaneously as both demand shifters and productivity

drivers at the firm level, controlling for demand muted the productivity effects signif-

icantly. Revenue-based productivity measures confound demand and supply responses.

This approach has since been used in the other international trade contexts. See, for

example, Roberts et al. (2017).

Pass-Through A potential third approach has seen adoption only recently. It starts

from the observation that demand and supply primitives predict the relationship between

output and input prices. In many plausible conditions, they are positively correlated.

Consider, for example, products where higher-quality versions (whose producers can sell

for higher prices) require higher-quality inputs (whose producers must pay more to obtain).

In this case, the biases tend to work against each other—one being in productivity’s

numerator and the other in its denominator—and in extreme cases can cancel out. While

this is the topic of ongoing work, we want to highlight that there is value in integrating

the insights from the control function with a formal treatment of the output-input price

wedge error.

The presence of both output and input price variation in the revenue function error

term introduces the pass-through from input to output prices (conditional on productiv-

ity). This setting is arguably the most relevant empirical setting, admitting both output

and input price heterogeneity. This leads to a composite error term in the empirical

specification of the production function:43

ω̃ = ω + ε+ p− βV pV (26)

This is the case De Loecker and Goldberg (2014) label the standard setup; it is also

considered by De Loecker, Eeckhout, and Unger (2020). Even though output and input

prices are not observed directly, one can rely on observables (e.g., market shares in De

Loecker, Eeckhout, and Unger (2020)) that govern the pass-through to infer their relative

42The literature sometimes refers to the residual of the revenue function as “revenue based productivity.”
Note that, despite some commentary to the contrary, this is not generally equivalent to TFPR. TFPR is defined
as the product of TFPQ (physical productivity) and price. While the revenue residual includes both of these
elements, they need not enter multiplicatively, and the residual generally also depends on other parameters of
the demand system.

43In the more general setup the same applies to input price differences for the fixed factor.
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size. The key idea is that firms with identical productivity will pass on input shocks

differently depending on their market share. This allows the price measurement error

term to be backed out separately from the production function parameters.

Beyond Price Data: How to Compare Quantities? The issue of price hetero-

geneity highlights a more fundamental problem that plagues even analyses where physical

output and input data are observed directly in the data. Namely, how does one compare

units of differentiated outputs and inputs across producers on a common (productivity)

scale?

An intuitive reaction might be to convert the physical data to revenue and cost data

to let prices capture the quality variation.44 While this makes intuitive economic sense, it

poses a fundamental identification problem: what explains higher revenue per bundle of

expenditure? Is it higher productivity, or differences in demand and competitive pressures,

and how could these be separated? A recent set of work tackling this problem has emerged.

Its solutions evoke those just discussed: introducing information from the demand side

paired with a model of competition, or combining product-level price and quantity data

and a model of product differentiation. The various solutions offered so far in the literature

highlight that the specific context of the application is crucial. We will discuss, however,

what we believe are some general insights that may prove to be useful for future work in

this area. We conclude this section with a few suggestions.

This challenge resembles that faced when estimating a demand system under product

differentiation. This is a common issue in IO; indeed, other chapters in this volume are

dedicated to this. An early start on estimation of production functions in characteristics

space was in Berry, Kortum, and Pakes (1996). This work used insights from the differ-

entiated product demand models developed in Berry, Levinsohn, and Pakes (1995) and

others.

More recently, De Loecker et al. (2016) propose another framework to handle differen-

tiated products. They limit the dimensionality of the differentiation and derive a quality

index that allows comparison of quantities across producers. The starting point is an em-

pirically relevant case, where output quantity data and (deflated) input expenditures are

observed.45 The method rests on an important assumption that higher quality inputs are

44This solution is similar to using the wage bill to capture the differences in labor quality across producers
(see e.g., (Fox and Smeets, 2011)).

45This framework also works when both output and inputs are recorded in physical units, and where the same
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required to produce higher quality output. Denoting product quality by ν, the approach

considers a production function of the form: Q(ν) = F (XV (ν))Ω. In other words, pro-

ducing a unit of output of quality level ν requires inputs featuring the attributes necessary

to achieve that level of quality.46

The main observation that De Loecker et al. (2016) make is that the mapping from

input use to output use, conditional on productivity and product quality, allows identifica-

tion of the production function’s parameters. We illustrate the approach under a vertical

model of quality. Let all consumers agree on a ranking of quality, and let the price be the

sufficient statistic such that ν = v(p). The following regression

qit = βV x
V
it + ωit + v(pit) + εit, (27)

can trace out the parameter of interest, βV , provided that the unobserved productivity

term can be controlled for. A control function approach can be used here, provided

that the input demand equation is adjusted as discussed above. Let us entertain the

thought experiment of having two products with identical prices, a control for productivity,

variation in material use that maps into output use, identifies the production parameter

(that is precisely the role of the measurement error in output, or unanticipated shocks to

output). Conversely, holding fixed productivity, with identical material use, but different

output quantities, the price variation will identify the function v(.) capturing the quality

variation component. The parameters are identified using:

E
(
ξ̃it(β, γ)

[
xvit−1

pit−1

])
= 0. (28)

In the absence of product differentiation, the last moment can be dropped and we

identify the production parameters. Now, let firms produce different varieties reflecting

different attributes. These attributes are costly to add (compare low-end with high-end

cars for example), but they do not necessarily materialize in 1:1 output price differences

due to market structure, demand and other environmental conditions. The second moment

identifies the parameter that controls the degree of product quality variation through price

variation (in this case). Put differently the function v(p) allows to compare products across

firms in terms of perceived quality. The moment that identifies this relies on a well-

known instrument in empirical IO. Demand estimation has to confront the endogeneity

index can be used to control for unobserved quality.
46If product differentiation is solely tied to fixed expenses (e.g., advertising) of an otherwise homogeneous

good, we are back to case B.1.1.
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of prices, and the gold-standard to date is to find a cost shifter that moves around the

price, but is orthogonal to any demand error. It is precisely the correlation between

the productivity shock and the contemporaneous price that would violate the moment

condition, and therefore lagged prices are used. What fundamentally solves the unobserved

product differentiation variation, is the correlation between output and input price that

informs us about the degree of product quality variation.

Finally, it is instructive to consider a special case where the log price enters linearly

with a coefficient of one. The implication is that input and output prices are perfectly

correlated across all firms. That puts us back in the standard case where we relate revenue

to expenditures. De Loecker and Goldberg (2014) highlight this as the one knife-edge

case for which we can identify the production function and recover productivity using

revenue and expenditure data (note, not revenue and input quantity data). There a few

other auxiliary assumptions needed to get there: constant returns to scale and a common

proportional input price error (i.e., if a firm has 5 percent higher wages, it also pays a 5

percent higher material price).

5.3.3 Impact on the Coefficients of Interest

As made clear above, the literature has wrestled with the multiple conceptual problems

that can arise in production function and productivity estimation. However, there really

has been no systematic analysis of how the results of interest actually change when the

correct parameters are used, as opposed to the biased ones obtained in more naive esti-

mations. For example, economic theory predicts that in most situations, the coefficient

on the flexible input XV will be biased upwards because more productive producers, all

things equal, will produce more and thus require more inputs. So, is that the typical find-

ing in the literature? If so, are the biased and unbiased estimates significantly different

from each other, and do they lead to different conclusions regarding the research question

at hand?

We do not wish or attempt a meta-analysis of the vast literature. However, the common

wisdom is that they change according to what economic theory predicts, and we believe this

is a fair assessment of the literature’s results. But what is lacking, from our perspective, is a

more systematic analysis of the uncertainty around these correct parameter estimates and

their differences from their naive counterparts. This comparison is of course complicated

by the fact that the production function is inherently multivariate in nature, making it
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harder to see an immediate impact on the results of interest. An important piece of

information in this regard is the correlation between the various inputs, as this ends up

having a big impact on how the potentially corrected parameters values play into the

results.

An illustration of an analysis where the effects of the econometric correction are ex-

plicitly mentioned is Collard-Wexler and De Loecker (2016). The authors construct confi-

dence intervals around the parameter of interest (in their case the productivity premium

of minimill steel producers, and the various decompositions terms) based on the standard

errors obtained on each of the approaches. They find that correcting for unobserved prices

and productivity shocks yields both statistically and economically different results. This

is important given that the methods deployed to undo the endogeneity concerns have a

tendency to lead to somewhat higher standard errors given that they tend to be more

data-hungry.

5.4 Multi-Product Production

Product differentiation highlights the presence of a product space. In contrast to the

literature on market power using demand analysis (see XX and XX in this Handbook),

the product space has traditionally not received much attention in productivity analysis.

Most studies have instead focused on the producers (leaving the underlying product space

for what it is) or sometimes single-product producers.47

It is well-known from older, theoretical literatures on multi-product production (see

Diewert (1973)) and multi-product cost function analysis (see McFadden (1978)) that

these settings do not yield simple mappings from inputs to a single output due the presence

of joint inputs and economies of scope. Formally, there does not exist a “production

function,” but rather a “production possibility frontier” or “transformation function.”

While applied researchers were of course aware of the presence of the product space

and variations in product mix across producers, the focus was on obtaining productivity

measures at the producer level. A major reason for this is the lack of data on products

produced or, more often, the allocation of inputs across various products. Production data

are typically reported at the establishment or firm level; even if product-level breakdowns

are reported for outputs (which they are often not), rarely are reported inputs similarly

apportioned.

47See e.g., Syverson (2004a) for an application to a single product industry (ready-mixed concrete).
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This single-product focus, or the aggregation to the producer level as discussed above,

eliminates the presence of economies of scope, joint inputs, and the like.48

The impetus for a renewed focus on products came for a large part from the empir-

ical trade literature and its use of product-level customs administrative data. An early

treatment of multi-product firms, Eckel and Neary (2010), describes theoretical features

of multi-output production. Bernard, Redding, and Schott (2010) further demonstrate

the importance of multi-product firms in the U.S. manufacturing sector by showing the

importance of this dimension in determining industry-wide patterns of production, effi-

ciency, and trade. Using a fairly aggregate notion of a product (5-digit U.S. SIC code),

they show that multi-product firms account for 40 percent of firms but 87 percent of pro-

duction. Goldberg et al. (2010) report similar numbers for Indian manufacturing, albeit

using a more disaggregated definition of products (roughly 1,800 unique product codes

(CMIE)). This fact has been further confirmed throughout the literature in a wide range

of economies with differing average income levels. Ignoring multi-product firms would

leave out the majority of economic activity, and not treating their multi-product nature

explicitly in productivity analysis risks drawing incorrect conclusions about the nature of

production within and across industries.

Productivity analysis of multi-product firms poses substantial measurement and method-

ological challenges. As mentioned above, even if product-level output is observed, inputs

are seldom broken down by products. Now, as shown by Diewert (1973), allocating in-

puts across products is not required when a production possibility set and the associated

transformation function are considered. However, the standard problem of product dif-

ferentiation now also plagues this problem, making the early theoretical literature on

transformation functions not directly applicable. Furthermore, just like firm entry and

exit, product adding and dropping are endogenous responses to firm- and market-specific

shocks. This makes the set of products produced by a firm an endogenous object, con-

sisting of potentially differentiated products produced using a bundle of inputs, and a

particular level of efficiency. The latter can in theory vary across products within a pro-

ducer, although this has not been the predominant theoretical starting point in the IO

theory literature on multi-product producers.

These challenges aside, researchers have made strides in treatment of multi-product

48Formally, this does not rule out economies scope in the form of spreading fixed costs (absent from the
production function) across products, or applying superior managerial capabilities across product lines. It does,
however, require the production function to be common across products.
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producers. One set of work starts from a product-specific production function and aggre-

gates explicitly to the firm level, where output and input data are observed. This benefits

from using product-level information explicitly, but also rules out important aspects of

multi-product production that could generate productivity benefits.

Some micro data, often customs-related, offers extra product-level information within

firms. Because of their inherent link to tradability, such data is typically limited to the

manufacturing sector. We will discuss how the existing literature has used such data

along with economic theory to apportion firms’ inputs across their multiple products.

The presence of imperfect competition and product differentiation interact with this input

allocation problem. Our discussion is brief and selective and makes clear this is very much

a literature in progress. We organize the discussion as follows. First, we present what

can be thought of as a standard approach of aggregating (certain) product-level data to

the firm (or plant) level.49 Second, we point the reader to ongoing work that considers

the empirical analogue of the multi-product transformation function in the presence of

homogeneous products under perfect competition. Third, we contrast the multi-product

production and cost function and discuss a special case that allows for economies of scope

and multi-product production while permitting product quality variation and imperfect

competition.

5.4.1 Allocation of Inputs to Products

We briefly describe the popular practice that turns the multi-product data into producer-

level production, hereby eliminating economies of scope and joint inputs. One starts from

observing product-level output data (typically revenue data) and producer-level input

data. The literature has considered a variety of product-level shares to aggregate product-

level inputs to producer-level input data. The shares range from simply using the number

of products, to using shares directly proportional to product revenue shares (De Loecker

(2011a), Foster, Haltiwanger, and Syverson (2008) and Collard-Wexler and De Loecker

(2015)). Implicit in these aggregation strategies is that the (unobserved) productivity

term only varies at the producer level, and not across products within the firm. This

is an economic rather than an econometric assumption, and implies that the researcher

can only make statements about productivity differences across producers, excluding the

49In some applications plants may be less likely to produce multiple products, which can sometimes aid
in eliminating the multi-product challenge. However, this is not generally the case, so we do not distinguish
between firm and plant aggregation here.
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perhaps relevant product dimension.

Explicit Aggregation from Product to Producer level In light of our notation,

this means that we start from a product-level production function, where j denotes a

product, for a given producer in a given time period:

Qj = (XV
j )βV (XF

j )βF Ω (29)

The assumption that productivity is common across products, and that inputs can be

allocated to inputs in a neutral way (i.e., XH
j = ajX and ∀H), allows to aggregate to the

producer level using

Q =
∑
j

Qj =
∑
j

aβV +βF
j XVXFΩ (30)

Depending on the application, the choice of the share aj has been either the number of

products or the output share (aj =
Qj

Q , where it is understood that this has been done

using product-level revenues in most settings). Most researchers have either imposed

constant returns to scale (βV + βF = 1), which eliminates the extra term, and gives rise

to the well-known producer-level production function equation (e.g., Foster, Haltiwanger,

and Syverson (2008)). In the case where this assumption is not imposed, additional care

needs to be given to this term. For example, in the case where the share is simply related

to the number of products (aj = J−1), the production function specification includes an

additional term: the (log) of the number products. In both cases, this effectively puts

us back in the producer-level analysis discussed above, with the slight wrinkle that when

returns to scale are not imposed, that the aggregation approach requires to think through

the potential endogeneity of the number of products.50

5.4.2 Estimate Transformation Function (A.2)

In terms of our classification table, this approach resides in A.2, a perfectly competitive

environment.51 We illustrate this with the application of Dhyne, Petrin, and Warzynski

(2014) studying production in Belgian bakeries producing bread and pastries. A crucial

assumption is, again, that these two products are homogeneous and are both produced

50See De Loecker (2011a) for an application of this approach.
51In theory the approach could allow for imperfect competition in the output market, but it would have to

confront the additional sources of input demand variation across firms when controlling for productivity. So we
keep it under perfect competition for now, to insure validity of the entire approach including implementation.
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by every bakery in the data – denoted (in logs) by qijt with j = {1, 2}. The data report

quantities produced for each product and total input use, distinguishing between variable

and fixed factors of production.

The main estimating system of equations is obtained using the empirical analogue to

Diewert (1973) and Lau (1976). It is given by, where we drop the producer and time

subscript:

q1 = γ1q2 + βV 1x
V + βF1x

F + ω1 (31)

q2 = γ2q1 + βV 2x
V + βF2x

F + ω2 (32)

where now J + J × 2 parameters must be estimated (6 in the case of the two products):

the coefficients (βV , βF ) for each product, γ1, and γ2. These last two coefficients capture

the nature of multi-product production, and the approach rests on the assumption that

γj < 0 and ∀j.
This a very appealing and quite general setup, though an additional econometric chal-

lenge emerges aside from the assumptions stated above. In every model discussed in

this chapter so far, there is only one unobservable productivity term. Now, there are J

of them: all the productivity shocks (ωi1t, ωi2t, ..., ωiJt). Another endogenous regressor,

qi,−j,t, shows up in the regression. Again this is of dimension (J−1). Additional data and

assumptions are needed to identify this system. Not only does one need to instrument for

the additional endogenous regressors, one must revisit the conditions allowing inversion

of the input demand equations in the presence of multiple unobservables. The literature

is still very much grappling with these issues. Dhyne, Petrin, and Warzynski (2014) take

a first step by considering a two-product case (bread and pastries) and combining the OP

and LP proxies of investment and materials to control for the two unobserved productivity

terms. Thus (
ωi1t
ωi2t

)
= ht(kit,mit, iit), (33)

where ht(.) is now a bijection. This further highlights the additional restrictions required

of the control function approach in this scenario. Note that the dynamic panel data

approach discussed above has the potential to free up the invertibility problem while

allowing imperfectly competitive environments, provided reliance on a linear productivity

process and a homogeneous product setup. This seems an attractive approach going

forward.
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5.4.3 Product Differentiation and Imperfect Competition (B.2)

In Section 5.3.2 we discussed the approach suggested by De Loecker et al. (2016) under

the single product assumption. The main insight is that projecting quantity produced on

deflated inputs does not provide information about the technology parameters if products

are differentiated (if product quality varies across producers, in their wording). The unob-

served input price variation introduces a bias. The proposed control for unobserved input

prices is based on the notion that output quality is related to input quality, conditional on

controlling for productivity. The paper goes further by using the product-level production

function estimation step as an input to recovering input allocations across products.

The main assumption is that there exists a product-specific production function but

not a product-firm-specific production function.52 This rules out physical synergies across

products as a source of economies of scope. It does, however, not rule economies scope

in the cost space. A multi-product firm can, say, spread fixed costs, or superior man-

agerial capabilities across products or leverage bargaining power to obtain discounts

on purchased inputs. Formally, these sources can generate economies of scope – in

a two-product example, while Q1 = F1(X1)Ω and Q2 = F2(X2)Ω, the cost function

C(Q1, Q2) ≤ C(Q1) + C(Q2).53

Let us run with the bread and pastries case of Dhyne, Petrin, and Warzynski (2014) to

illustrate the approach of De Loecker et al. (2016) (they consider a more general case), and

let there be a product-specific production function, each under constant returns to scale.

The approach starts with the presumption that there exists a sample (albeit selected)

of single product producers allowing to estimate the production function parameters for

each product (giving estimates of βV j , βFj).
54 A second important assumption, and a

52Formally, the firm’s production function is separable across products.
53See De Loecker et al. (2016) for more discussion. Consider the following analogy. Most of us have assembled

furniture from Ikea. The production function Fj(.) is the manual (blueprint) for assembling a particular piece.
Someone who is mechanically inclined can probably put any particular piece together at a lower (time) cost; that
is, they will have a productivity advantage that spreads across different pieces. This across-product efficiency
advantage is reflected in Ω.

54Note that this framework does allow for the endogeneity of multi-product status that can arise if more
productive firms add products over time. This selection bias in the single-product estimation step can be
addressed in a similar way to the exit-based selection in Olley and Pakes (1996). There is a sense that the time
series dimension of the data will matter, but of course, it can easily rule out certain production processes to
begin with. For example, the production process of gasoline and diesel – see e.g., Burkhardt (2019). This is a
sharp contrast with the approach of Diewert (1973) where all producers need to produce both products in order
to characterize the transformation function.
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difference with Dhyne, Petrin, and Warzynski (2014), is that De Loecker et al. (2016)

follow the theory literature on multi-product firms and model productivity as a firm-level

characteristic, and not product-firm specific.55

We can now revisit the two product-level regressions (where we drop the firm and time

subscripts):

q1 = βV 1x
V
1 + βF1x

F
1 + ω (34)

q2 = βV 2x
V
2 + βF2x

F
2 + ω (35)

The main difference here is that inputs are attributable to products, implying that there

exists a production function per product.56 The input allocation problem implies that xj

is not observed, however, given this assumption, we can express it in terms of the share

of product j in the input’s total input expenditure:

exp (ρj) =
PHj X

H
j∑

j P
H
j X

H
j

, (36)

for H = {V, F}. This states that the allocation is done in cost space, and it is common

across all inputs.57

Collecting all observables on the left hand side we get the following system of 2 equa-

tions with what look like 3 unknowns (ρ1, ρ2, ω):

q1 − βV 1x
V − βF1x

F = ρ1 + ω (37)

q2 − βV 2x
V − βF2x

F = ρ2 + ω (38)

It looks like we are one equation short to identify the objects of interest. However, note

that
∑

j exp ρj ≡ 1; i.e., all costs are attributable to products. This procedure then

delivers, for each firm and time period, the input allocation shares, ρ, as well as firm-

specific productivity.

55See e.g., Eckel and Neary (2010).
56Note that in De Loecker et al. (2016) this is actually more general: total expenditures on factor are

attributable to products.
57De Loecker et al. (2016) acknowledge that inputs are measured in dollars (potentially reflecting quality

differences across products and firms), as reflected by the presence of (log) expenditures eV , eF rather than
physical inputs as in this illustration. They do, however, restrict the input allocation to be factor-neutral.
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Illustration To keep the algebra simple, imagine that both production functions are

characterized by the same constant returns to scale (CRS) production technology (βH1 =

βH2 ∀H). Productivity (in levels) Ω is obtained using∑
j

Qj
X
, (39)

where lnX = βV x
V + βFx

F . This simply implies that exp (ρj) =
Qj∑
j Qj

. In other words,

in this illustration with a multi-product homogeneous good producer, under a common

technology with CRS across all products, facing common input prices, the inputs are

allocated across products depending on the quantity shares. De Loecker et al. (2016) nests

this as a special case, and this illustration highlights the important steps and requirements.

However, it is more general in that it can accommodate 1) product-specific technologies

with unspecified returns to scale, 2) input price variation, and 3) product differentiation

of the type that can be described by an index. The key assumptions are that single-

product producers can deliver the output elasticities, costs can be assigned to each input

by product, and that the input allocation shares are product specific (and not factor

specific).

Recent work has adopted an alternative approach using first order conditions across all

inputs, paired with an explicit restriction on the demand system and an underlying model

of competition to recover the input allocation across products – see. Valmari (2016) and

Orr (2019) for such an approach.

5.5 Cost versus Production Functions

In this section, we briefly remind the reader how production and cost function estimation

are related. We also consider the differences and how those may translate into deciding

between them. There is a long tradition of using cost functions to estimate economies

of scale and scope (for multi-product production) as well as to evaluate the productive

efficiency of individual producers and their aggregates. For an early treatment of cost

and production functions see Walters (1963). Nerlove (1961) provides a clear discussion

on the challenges facing production function analysis and advantages of using the cost

function instead. The opening chapter of an earlier volume of this Handbook, Panzar

(1989), is devoted to the analysis of cost functions and implications for the theory of

industry structure, scale and efficiency. Reiss and Wolak (2007) cover some further issues

regarding empirical implementation of cost function estimation.
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Deriving the Cost Function Starting from our production function and considering

a static cost minimization problem (equalizing the marginal rate of technical substitution

to the ratio on input prices), we obtain the following cost function in logs:

lnCit = c0 +
1

βV + βF
qit +

βV
βV + βF

pVit +
βF

βV + βF
pFit +

1

βV + βF
ωit + ε∗it (40)

The same simultaneity and selection biases are present in cost function estimation. The

former comes through the correlation of output and unobserved productivity shocks. The

same techniques used to estimate production functions can in principle be used to deal

with this, including the control function and dynamic panel approaches. The cost function

form also highlights the necessity in this approach of observing factor prices in the data

(the derivation here assumes competitive input markets).

Another well known challenge of cost function estimation arises in the requirement that

the (log of) total economic cost of production (Cit) is observed. This has been a recurring

topic throughout this chapter, and in the IO literature more broadly: do we think we

can credibly read this item from the data, or not? One’s willingness to consider the

cost function approach depends on the answer to this question, as well as the willingness

to accept the additional assumptions required to derive a cost function, like static cost

minimization across all factors of production.58

An early cost function estimation literature leveraged institutional details of the indus-

try under study to deal with econometric challenges. For example, Nerlove (1961) studies

returns to scale in U.S. electricity supply. Regardless of the regulated price, output and

productivity are correlated across production units though the price mechanism of reg-

ulation that aggregates individual supply curves and clears the market. A subsequent

literature relied on cost functions in this way to study allocative efficiency and market

power.

Rightly or wrongly, the literature has drifted away from cost functions and toward

production function estimation. Cost functions hold some strong advantages. Accounting

data are typically expressed in expenditure terms rather than quantities; cost itself is

an expenditure, and estimating a cost function does not require input quantities to be

observed. Economies of scale and scope are more easily handled conceptually with cost

functions: see our discussion on the challenges of multi-product production analysis using

58Some users have adopted short-run cost function estimation by conditioning on fixed or quasi-fixed factors
of production. This imposes the static cost minimization assumption only for the variable input, xV in our
notation, and implies that fixed input quantities be included on the right hand side.
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the output-input space. However, a cost function approach still requires assumptions

on economic behavior, essentially cost minimization and an assumption on how factor

markets clear. Further, one must still observe output quantities to estimate returns to

scale. Perhaps the greatest hurdle is that producer-level factor prices are required to

estimate a cost function at the micro level, unless this variation is assumed away, of

course, or can be captured by relevant controls.

Perhaps another “sociological” factor at work behind this shift from estimating cost

to production functions were arguments accompanying the New Empirical IO wave that

called the use of any cost data into question.59 The biggest concerns centered on payments

to capital services, but the points applied more broadly. These misgivings were based on

solid arguments and concerns. However, it is fair to say that a major thrust of the

literature’s responses to such concerns was in some ways the most extreme possible: to

estimate production costs without cost data. The practice involved obtaining marginal

costs by inverting observed product prices through a first-order pricing condition based on

assumed firm pricing conduct and estimated demand elasticities. This solution didn’t seem

to fully grapple with the fact that the revenues and factor expenditures data of concern

for cost function estimation were the same source data for the alternative, production

function estimation. Complaints about one applied just as well to the other. In addition,

the very same discredited cost data was often used to support the structural model used

to recover the marginal cost and markup estimates from this approach.

The (renewed) interest in the productivity residual, in part fueled by the prominence

of models of firm heterogeneity in international trade and macro models (an important

example in the context of trade is Melitz (2003)) and the arrival of the rich producer-

level micro data, further pushed the development of econometric techniques to estimate

production functions. The analysis of cost functions, and recovering objects such as

economies of scale and scope (in the case of multi-product production), were relegated to

the sideline.

We propose that researchers put the cost and production function approaches, and

their required data, on an equal footing—namely, full of challenges (what empirical ap-

proach is not?) yet still useful.

59See Bresnahan (1989) for discussion.
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5.6 Measurement and Specification Errors

Like in any applied field, productivity measurement is subject to a host of data and

specification errors. To this point we have highlighted sources of errors that are derived

from an underlying theoretical model (either supply, demand, or conduct related). The

variation in the data thus reflects what economic theory suggests should move around

output and input data, broadly defined. However, there are still other measurement and

model misspecification concerns. While it is not practical to discuss all possible sources of

measurement and specification error here, we highlight a few issues that we believe to be

priorities: measurement error in capital and misspecification of the production function

and the underlying productivity process.

5.6.1 Measurement Error

One type of measurement error that we explicitly allowed for in the theoretical frameworks

above is error in recording output, ε. Recall that in the control function setup, this has

an alternative interpretation of an unanticipated output shock that was not part of the

producer’s information set when input decisions were made.

Griliches and Mairesse (1995) gently warn productivity researchers of a host of other

challenges, chief among them measurement error in inputs. Several studies outlined in

the overview articles by Bartelsman and Doms (2000) and Syverson (2011) are clear

testament to the issues that can arise. However, there has not been much attention to

formal treatments of input measurement error. We focus here on the many potential forms

of measurement error in capital, the input arguably the most prone to measurement error

for all the reasons highlighted in Section 4.2. We keep sight throughout of also treating

the simultaneity bias.

While the standard reaction in the presence of measurement error in a covariate is

to look for an instrument, this turns out to be quite challenging given the presence of

the unobserved productivity shock. A valid instrument for a mismeasured input must

not just be correlated with the true underlying input, it must also be orthogonal to the

productivity shock. Just as this can pose issues for the use of input prices to instrument

for endogenous inputs to address the simultaneity bias (due to market power in factor

markets, for instance), the same logic applies as an instrument for measurement error.

The search for instruments has been further complicated by the introduction of the control

function approach, which implies that a non-linear function in inputs is estimated in a
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first stage, as highlighted in equation (14).60 This limits the applicability of IV techniques

to address input measurement error.

Collard-Wexler and De Loecker (2016) consider the standard setting (A.1) and study

the impact of measurement error in capital. The fundamental distinction with other inputs

is that capital’s valuation is rarely linked directly to a transaction that would cleanly reveal

it. The value of the capital stock therefore has to be computed by the researcher or taken

from the accountant, allowing for a long list of potential sources of measurement error.61

The heart of the approach is the observation that the source of the measurement error

is likely to stem from computing the stock, therefore requiring appropriate depreciation

factors, and prices. However, reported investment expenditures or alternative measures of

the capital stock such as replacement capital are likely to be less riddled with measurement

error, or at least different errors. They use this observation to suggest instrumenting the

capital stock with lagged investment expenditures, or alternatively, replacement capital.

(Their approach still builds a control for simultaneity bias.) Candidate instruments thus

need to be orthogonal to the measurement error in capital, but they are allowed to be

correlated with the persistent part of the productivity term. An interesting byproduct of

this approach is that it has implications for the bias of the other factors of production,

through the correlation across all factors of production.

After demonstrating the impact of measurement error in capital on standard ap-

proaches under A.1 using Monte Carlo analysis, Collard-Wexler and De Loecker (2016)

apply their estimator to three distinct datasets covering the manufacturing industry of

China, India, and Chile. Across all industries they find estimated capital coefficients that

are about twice as high as those obtained using standard techniques (ACF in this case).

This indicates that measurement error in capital is substantial under the maintained as-

sumptions, and it will impact subsequent productivity analyses. More work is clearly

needed that connects these findings to the specific sources of the error, e.g., heterogeneity

in the assets across firms, depreciation heterogeneity, or through differences in the price

of capital.

60In this setting, Kim, Petrin, and Song (2016) build on non-linear IV techniques to tackle measurement error
in capital.

61Becker et al. (2006) compare the reported book value of capital (on the balance sheet) to the constructed
one (built using the perpetual inventory method) in the U.S. Census of Manufacturers. They find quite a bit of
disagreement across the two measures, further pointing to the difficulties in assessing the value of a producer’s
capital stock in any given point in time.
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5.6.2 Model Misspecification

We briefly discuss three specification errors that pester empirical work: 1) omissions

of productivity drivers in the underlying law of motion of productivity (introducing an

internal inconsistency in the research design), 2) heterogeneity in the production function,

and 3) incorrect functional form of the production function.

Productivity Process Suppose a researcher wishes to study the effect of innovation

on productivity at the producer level. Can she first estimate the production function

and recover productivity, then relate those recovered productivity estimates to measures

of innovation? It turns out that this two-step approach is problematic in practice. It

fails to recognize that the variable of interest, say R&D, should enter the first production

function estimation step. To see why, imagine that one were to rely on OLS to estimate

a production function. This would imply that input use does not respond to productivity

shocks induced by the change in the operating environment. But that relationship is

precisely the object of interest in the second step.

We can represent this lack of internal consistency by stating that any change in the

operating environment, be it exogenous to the producer or a deliberate action denoted by

Ait, conceptually belongs in the productivity process:

ωit = g(ωit−1,Ait−s) + ξit. (41)

We use t − s, with s = 0 or s = 1, to denote that this productivity shifter can enter

either at time t or in lagged fashion (s = t − 1). Omitting the action variable from the

productivity process leads to biased coefficients and therefore invalidates the productivity

analysis itself.62

This internal inconsistency plagues even sophisticated methods that deal with the

endogeneity of inputs.63

62Note that the only way to claim that this omission does not bias the coefficients is to argue that input
decisions are orthogonal to A. But that seems at odds with the research question of if, and how, productivity
is affected through changes in this variable.

63There is one approach that attempts to by-step this issue by considering the augmented production function,
whereby the term A is directly added to the production function specification. This approach still faces the
problem of endogeneity, however, not just for inputs but potentially for the action variable included as well
(unless this is clearly an exogenous change in the operating environment). See De Loecker (2011a) for a detailed
discussion of the various approaches.
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This discussion also suggests that the dynamic panel data approach is much more

restricted in dealing with endogenous productivity processes, and as highlighted above,

it underscores the importance of linear productivity processes. The control function ap-

proach is on the other hand more flexible, but it requires researchers to think through

carefully how the additional productivity driver enters the model. In other words, what

time subscript does A enter the law of motion with?

Recent work has pointed out the severity of this inconsistency and offered ways to deal

with it. Firms engage in a variety of activities to raise their efficiency over time through

general investment, active R&D and innovation, and learning by doing. The omission of

these variables in the productivity process can lead to drastically different conclusions.

We revisit this in section 6 when discussing productivity drivers.

Technology Heterogeneity Throughout this chapter we have assumed there is an

industry-wide production function under which all firms produce, and they only differ in

terms of the efficiency whereby inputs are converted into units of output, as embodied

in the Hicks-neutral TFP multiplier. That is of course a major simplification. There is

relatively little work on the explicit technological differences across firms within a single

industry aside from any productivity term. In practice, producers may have some scope

to adjust their production function, selecting among a menu of technologies.

An example of a study that loosens this constraining assumption somewhat is Van

Biesebroeck (2003). This work studies car production and models the technology adoption

choice of producers (lean or mass production). The model is structurally estimated using

micro-level data on production and technology indicators.

Functional Form The predominant functional form for production functions in ap-

plied works is Cobb-Douglas. While Cobb-Douglas is the first-order approximation to

any production function, it does impose a strong assumption of a unitary elasticity of

substitution across inputs. Further, in practice, researchers sometimes impose constant

returns to scale upon it, which can be a severe restriction depending on the setting. More

generally, holding to any set of parameters for Cobb-Douglas (or any functional form)

over a sample can raise further issues. For example, for a range of questions related to

secular changes in the aggregate economy, say changes in market power, failing to allow

for time-varying production functions can lead to faulty inference.64

64See De Loecker, Eeckhout, and Unger (2020) and Syverson (2019) for a discussion.
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A separate body of work has emerged that considers the Constant Elasticity of Substi-

tution (CES) specification. This nests two popular specifications, Cobb-Douglas and the

Leontief (fixed proportion) technologies. Using CES introduces an additional parameter

to free up the allowed substitution across inputs. See Grieco and McDevitt (2017) for a

recent study relying on a CES specification in the context of measuring the quality of care

in the U.S. dialysis industry. The use of the Leontief form is attractive when modeling a

particular production process at a reasonable disaggregated level; see Hendel and Spiegel

(2014) on Israeli steel mills and De Loecker and Scott (2016) for U.S. brewing as examples.

Still more flexible is the translog production function, which is a second-order approx-

imation to any general production function. The translog was introduced by Christensen,

Jorgenson, and Lau (1973) and its use has continued in both production and cost function

applications since then. See Feenstra (2003) for an example.

The introduction of the control function approach has at least partly paved the way for

richer substitution patterns by considering production functions of the form f(xV , xF ;β)+

ω. For example, De Loecker and Warzynski (2012) and De Loecker et al. (2016) rely on

industry-specific translog production functions, generating producer-time varying output

elasticities. Gandhi, Navarro, and Rivers (2020) generalize the ACF approach under

case A.1 and allow for a non-parametric production function using, essentially, a hybrid

between the factor share approach and the timing assumptions introduced in the control

function approach.65

The main restriction remains, however, that productivity is a factor-neutral production

function shifter (i.e., Hicks-neutral), and that the coefficients of the production function

are common across producers. Departures from Hicks-neutrality introduce substantial

challenges for the identification of production functions; see, for example, Ackerberg and

Hahn (2015), Balat, Brambilla, and Sasaki (2016), Doraszelski and Jaumandreu (2018),

Li and Sasaki (2017), Fox et al. (2017), and Demirer (2020). That said, there is a vast the-

oretical and empirical literature documenting the importance of factor-augmenting tech-

nologies. The practice of outsourcing, the arrival of labor-changing technologies (through

automation and robotization) has given rise to a significant body of work (on the edges

of the field of IO) that relies on departures from the Hicks-neutral mantra.66 Bresnahan,

Brynjolfsson, and Hitt (2002) study the interplay of skill-biased technological change in

65Just like in the dynamic panel data approach, they forego the input demand inversion step by imposing
restrictions on the nature of competition and demand-side heterogeneity.

66See, for example, the work of Acemoglu (2002) and Acemoglu (2003).
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the U.S. and the impact on labor demand. In particular, they find that the combination

of IT and organizational innovation impact labor demand. In the final section we discuss

the importance of this line of work for the productivity literature going forward.

Finally, throughout this chapter we have explicitly treated the gross output production

function. There is, however, a long tradition in the productivity field of relying on value

added as an output measure. One argued advantage of value added is that intermediate

inputs respond especially strongly to productivity shocks, therefore making the simultane-

ity bias very challenging to deal with. On the other hand, the conditions which a value

added production function can straightforwardly be derived from a more primitive gross

output production function are quite restrictive.

6 Productivity Analysis

A substantial literature studies productivity drivers arising from both producer-level ac-

tions and changes in the operating environment. The effects of these influences can be

measured at the producer level or at a more aggregate market (or industry or economy)

level. We find it helpful to organize the literature according to two dimensions: the source

of the productivity driver and the unit of analysis.

Productivity drivers can be internally or externally sourced. The distinction depends

on whether producers can potentially initiate the productivity effect through their own

actions (and as such are internal drivers), or rather rely on a passive, exogenous process

(external drivers). The latter is understood to capture technological change not explicitly

modelled by the researcher, but could well be a result of political or economic interactions

outside the scope of analysis (for example, trade shocks that affect an industry).

The second dimension is the level at which productivity effects are estimated, analyzed,

and reported. The tradition in the micro productivity literature is to report across-

producer moments of estimated effects of certain actions or changes in the operating

environment. This analysis is frequently extended to compute implications for aggregate

outcomes. In most studies done by industrial organization researchers, the aggregate has

typically been a market or industry. In other fields, however, and indeed even within

industrial organization more recently, studies of multi-sector and economy-wide aggregate

outcomes are common.67

67We interchange the “market” and “industry” when referring to aggregate impacts in this discussion. The
difference may be relevant in empirical analysis, however. Consider, as an example, an industry whose producers
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There are connections between the different cells in Table 1 and the dimensions in-

troduced above. For example, the assumptions used to measure productivity limit the

scope of the productivity analysis and restrict the interpretation of the estimated effects.

Under the workhorse model of single-product perfect competition (case A.1 in Table 1),

for instance, policy changes or producer-level actions cannot differentially impact demand

(and thus prices) across producers.

6.1 Producer-Level Productivity Analysis

We discuss the general approach to identify productivity drivers at the producer level and

distinguish between passive and active drivers. We then detail a set of specific drivers

that the literature has identified across a wide range of settings and datasets.

6.1.1 Identifying Producer-Level Drivers

A standard approach would first measure productivity using one of the approaches dis-

cussed in Section 5, relying on a panel of producers across one or more industries (typically

in manufacturing), and consider a regression of the general form:

ωit = δAit + controls + εit, (42)

Depending on whether the driver of interest Ait is an exogenous or an endogenous factor,

additional structure may be required to identify the coefficient of interest. We briefly

describe these two cases.

Exogenous Drivers Perhaps the largest users of this approach are the trade and

development literatures, where considerable interest lies in studying the impact of policy

reforms on firm-level productivity.68 A by now classic paper in this genre is Pavcnik (2003).

The study uses the OP approach to estimate productivity of Chilean manufacturing firms

and then relates these to changes in (output) tariffs. (Pavcnik (2003) also considers the

aggregate effect by following the Olley and Pakes (1996) decomposition, which we discuss

in Section 6.2.2.) A large body of empirical work has followed this approach. Extensions

and modifications have been made by incorporating spillover effects through forward and

backward linkages in the production or FDI chain. Other settings consider changes in

operate across a number of quasi-independent geographic markets.
68See Melitz and Trefler (2012) and De Loecker and Goldberg (2014) for more detail.
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technology, regulation, or environmental policy. Note that it can often be the case in such

settings that the exogenous driver of interest may be common across sets of producers.

While we do not attempt to list the specific conclusions of such a large body of work

here, it is important to underscore that for these productivity regressions to be internally

consistent with the use of certain productivity estimation approaches, they should explic-

itly state the conditions under which 1) productivity is measured, and 2) the assumption

the two-stage approach using a linear specification is a valid approach. There are multiple

modelling decisions to make. Does A enter with a t or t− 1 subscript? Is the effect com-

mon and fixed across producers and time? And so on. These are all important dimensions

to consider.

As discussed in the previous section, this raises the issue that even if A is exogenous,

this two-stage approach of first estimating productivity, and then relating it to potential

drivers cannot in general deliver the correctly estimated impact of the change in the oper-

ating environment – here, the parameter δ. An example is in De Loecker (2011a), where

the interest lies in identifying the impact or reduced quota restrictions in the European

textile market. The quotas are allowed to non-parametrically affect productivity following

a generalized law of motion: g(ωit,Ait−1) + ξit. Following an ACF-style approach, g(.) is

estimated alongside the production (and in this case, demand) parameters. This achieves

two things. First, it allows for an internally consistent approach where productivity can

move with quota protection variation. Second, it allows for heterogeneous effects of quo-

tas across producers and time. The bottom line is that if the changes in the environment

are part of the information set of a producer, they should be included in the model for

forecasting productivity, g(.).

Endogenous Drivers When the hypothesized drivers are endogenous, the same argu-

ments in the previous section hold. Again, starting from equation (42) calls into question

the two-stage approach. Now the extra complication is the fact that the factor Ait lies in

the hands of the producer. As with exogenous drivers, a large empirical literature investi-

gates endogenous drivers using a version of equation (42), though in this case additional

assumptions or IV strategies are used to address the endogeneity of the choice variable.

Still, most of this work does not incorporate (A) into the productivity measurement frame-

work. A separate approach is to allow the endogenous productivity driver to enter the

production function directly (this is sometimes labeled the augmented production func-

tion approach). This raises the concern that, depending on the application, (A) may not
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always constitute an obvious factor of production that is potentially substitutable with

other factors.

This is not merely a matter of econometric sophistication or style. It can substantially

alter inference and the conclusions made about the importance of the productivity driver,

both quantitatively and qualitatively. Only a handful of papers to date rely on such an

approach (i.e., including the driver of interest directly in the law of motion) to study the

impact of endogenous decisions of producers. De Loecker (2013) identifies learning-by-

exporting effects by allowing past export experience to impact the productivity process.

Including lagged export status in the law of motion of productivity then permits identifi-

cation of heterogeneous effects of exporting on future productivity. The results indicate

that these effects are substantially heterogeneous across producers of different produc-

tivity levels (coming from the interaction of ωit−1 and Ait−1), but also that standard

approaches fail to identify these effects. Doraszelski and Jaumandreu (2018) rely on this

approach to estimate the productivity effects from innovation using a rich panel of Span-

ish producers with detailed information on R&D expenditures. They again confirm the

dispersed R&D effects across the productivity distribution. Braguinsky et al. (2015) allow

for heterogeneous effects by including ownership information in the productivity process,

in the context of a unique setting in the Japanese cotton-spinning industry.

6.1.2 Sources of Productivity Differences

Research has established a causal relationship between many factors that operate at the

producer level and productivity. We review some of the more prominent of these in this

section.

Managerial Practices While once the object of much more speculation than ev-

idence, the effect of managers and managerial practices on productivity has been the

object of a flourishing literature over the prior 10-15 years. The early part of this research

literature established robust correlations between a host of practices, see Bloom and Van

Reenen (2007). More recently this work has expanded to more convincingly establish

causal effects through a variety of methods, from model-based application of plausibly

exogenous variation to randomized control trials.

The practices found to matter have varied somewhat across studies, though the lit-

erature overall has tended to focus on operational management. Therefore the studied

practices tend to focus on how the producer coordinates its production process, like its
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goal setting and evaluation; inventory management; policies on training, evaluation, and

allocation of human capital; and management of customer relations. How the producer

arrives at its main thrust of business (what products to make, what markets to operate

in, the broad strokes of its production technology, and so on) has been taken as given.

Work exploring this latter set of decisions, sometimes called strategic management, is still

nascent.

Another related set of research still at a relatively early stage involve efforts to sepa-

rate the effects of managers from management practices. This is an important question.

Practices can in principle be taught and transferred across settings, making them less

rival than managerial inputs embodied in the manager herself. Which of these is the more

empirically powerful has implications for policies that might improve productivity as well

as the potential scope for management-based productivity growth.

Unobservable Input Quality Standard TFP metrics “remove” the effects of labor

and capital inputs on output. As such, standard measures of labor and capital have no

direct effect on productivity. However, if there are unmeasured quality differences in these

factors, given productivity’s role as an output residual, these will be reflected in produc-

tivity. Because an enormous labor literature has documented dispersion in labor quality,

and other research has found vintage effects or other important sources of heterogeneity in

capital inputs, it is highly likely that in many settings some productivity variation reflects

differences in factor quality that are missed in, say, worker-hours or measured units of

capital stock.

Depending on available data, the institutional setting, and the research question, it

may be possible and advised to construct productivity measures that explicitly adjust for

factor quality differences. For example, a common practice is to measure labor inputs as

the producer’s total wage bill rather than employees or employee-hours. This is based on

the notion that market wages reflect variations in workers’ contributions to production

(as discussed above in the context of the wage-productivity correlation). Even more de-

tailed data on worker characteristics, such as the increasingly available matched employer-

employee data, might allow even more precision in accounting for labor’s marginal product.

Similarly, in settings where considerable detail is available about the attributes of

the capital stock, more comprehensive quality-adjusted measures of capital inputs are

possible. A related element of measuring capital inputs is the stock-versus-flow issue

described above, with variations in utilization rates being one source of “quality” variation
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in capital (stock) inputs that normally are attributed to productivity. Specific empirical

settings may allow capital input measures to be adjusted for utilization.

Intangible Capital Intangible capital comprises capital inputs that are difficult or

impossible to measure. As inputs, producers use them to obtain their output, but by

their nature the influence of intangibles on output will be reflected in productivity rather

than as a marginal product of an observable factor.

Producers have many potential types of intangible capital at their disposal depending

on the setting. Examples include a producer’s reputation, brand value, camaraderie among

its workers, production know-how, installed customer base, trust with its input providers,

and relationships with lenders.

Recent research has built a conceptual foundation for characterizing the attributes of

intangibles in production technologies and their likely equilibrium consequences (Westlake

and Haskel, 2017). Related work has attempted to build proxies in micro data for intan-

gible capital stocks and empirically tie them directly to productivity, profitability, and

other producer-level and aggregate outcomes (e.g., Saunders and Brynjolfsson (2016),

Peters and Taylor (2017), and Crouzet and Eberly (2020)). Just as with variations in

factor quality, to the extent that researchers can construct measurable proxies for intan-

gibles, they can account for intangibles’ influence on output and their connection with

productivity at least partially severed.

The particular type and role of intangible capital could affect different aspects of

productivity. Some types, such as production know-how, are likely to raise productivity

through technical efficiency, TFPQ. Types like brand capital on the other hand are more

likely to have demand-side influence, raising the price the producer’s output will sell at

on the market. While unlikely to influence TFPQ, the price effect will raise TFPR.

Firm Structure Productivity can be influenced by the organizational structure of a

firm’s production units. Varied studies have established connections between productivity

and structural elements such as vertical integration, centralization, the number of indus-

tries the firm operates in, and the relative sizes of its production units in those specific

industries. The mechanisms vary across settings, ranging from the elimination of vertical

inefficiencies like holdup, to optimizing the managerial span of control, to more efficient

transference of intangible inputs across production units, and beyond.
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Product-Side Differences Many product markets exhibit nontrivial demand vari-

ation across varieties. These could be in either vertical or horizontal attributes. These

differences in demand are reflected in dispersion in the prices that industry products are

sold at.69 Producers able to sell at higher prices than their industry cohorts will have

higher TFPR, all else equal.

Furthermore, many producers engage in product innovation. These efforts could well

be reflected in productivity measures, and this connection has been verified in many

empirical settings.

Product-based variation in productivity raises an important point of interpretation

regarding revenue- and output-based productivity measures like TFPR and TFPQ. TFPR,

which combines both the ability of a producer’s technology to create units of output and

the price at which the producer can sell that output, can vary for reasons unrelated to

the producer’s physical efficiency. However, that should not be taken to dismiss TFPR

as a potentially informative measure of the producer’s social efficiency. Producers who

can make goods of greater quality at the same cost as others are in fact more productive

as a conceptual issue; they deliver higher utility per unit cost. If quality and price are

correlated in output markets, then TFPR productivity measures will reflect this. TFPQ

may not. In such cases, TFPR is a better metric of the firm’s capabilities than TFPQ.

6.2 Aggregate Analysis: Resource (Re/Mis)Allocation

The arrival of micro data generated a wealth of information about producer-level differ-

ences in inputs and output as summarized by measured productivity differences. Models

of firm heterogeneity were built around these facts. These were designed in part to speak

to the influence of micro-level variation in explaining aggregate outcomes. With producer-

level productivity measures in hand, a number of approaches were developed to aggregate

these measures from the producer level to the level of interest, ranging from a market or

an industry to an entire sector or even economy. This aggregating up can be done in a

variety of ways, and the literature started from empirically appealing aggregations and

associated decompositions to theoretical and structural approaches. Regardless the ap-

69It is obvious how vertical product differentiation might be correlated with prices. Horizontal differentiation
can also be tied to price variation if there are differences in demand for specific horizontal attributes that
vary across industry varieties. Suppose for example that industry producers operate in overlapping but distinct
geographic markets, and transport costs are nontrivial. If demand for the industry’s product varies across space,
those producers located in or near high-demand markets are likely to earn a price premium.
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proach we refer to the aggregation of producer-level measured productivities as At(ωt, st),

where the vector st captures the weight of an individual producer.

6.2.1 What Does Theory Predict?

The model laid out in Section 3 can be used to discuss the allocation and reallocation of

economic activity in an industry. As discussed there, the substitutability parameter γ can

be a reduced form stand-in for a more explicitly modeled market structure. When γ is

large, substitutability is low and there is extensive productivity dispersion. When γ falls,

productivity dispersion falls with it.

We also know that producer size is positively correlated with productivity. We can

quantify this relationship within the model. The covariance between productivity (cost)

and revenues is:

Cov [r(ci), ci] = E [r(ci)ci]− E [r(ci)]Eci (43)

= − 1
4γ

(
Ec3

i − Ec2
iEci

)
(44)

= − 1
48γ c

3
M (45)

This covariance is negative, of course; higher-cost producers are smaller. Importantly, its

magnitude depends on γ. As substitutability falls, so does the covariance between size

and cost (or size and productivity). This is a manifestation of the fact that limits to

consumers’ ability or willingness to substitute across producers also limit the response of

market share to productivity differences. On the other hand, as substitutability becomes

perfect (γ → 0), the covariance skyrockets; the smallest productivity difference leads to

enormous differences in market share.

These intuitions from the model (which again generalize to the many other models in

this class) lend themselves to discussions of the effect of competition on the allocation

and reallocation of economic activity across heterogeneous producers in a market. If

competition is interpreted as the equilibrium amount of substitutability in the demand

system (and this is a reasonable interpretation, as substitutability is embodied in the

slopes of firms’ residual demand curves, and those slopes are also a measure of the amount

of market power firms have), then the above implies more competitive markets have

more skewed market share distributions, all else equal. Furthermore, if we think of the

comparison as being for a particular market in two different periods, the model implies

that an increase in competition raises substitutability and shifts market share toward

72



higher-productivity producers. The implied dynamic reallocation reinforces the static

allocation.

The specific mechanisms that tie competition to substitutability are manifold and have

been the object of many studies. They include trade, transport, or search costs. Examples

of studies include Syverson (2004b), Syverson (2004a), Goldmanis et al. (2010), Crouzet

and Eberly (2020) and Autor et al. (2020).

Note that these insights about allocation and its associated implications for reallocation

tie greater concentration to more competition. The more competitive is a market, the

more skewed is its market share distribution. The largest, most efficient producers are the

most dominant. While many might worry about concentration leading to greater market

power, the opposite holds here. It can be shown in the example model above that profits

fall and welfare increases when substitutability and concentration grow (Syverson, 2019).

To be clear, there are other classes of models where concentration and market power are

positively correlated. Here, however, the opposite holds, and there is evidence that—

perhaps especially in settings where producers have heterogeneous costs—the predictions

hold up in the data.

6.2.2 Empirical Work

The empirical work studying aggregate outcomes using micro-level productivity estimates

can be broadly classified into two main approaches: 1) share-weighted sums of producer-

level productivity, and 2) measures of productivity dispersion. Both approaches are very

much related in terms of how they inform us about the sources of aggregate productivity

gains and potential changes in losses of output due to inefficient production. The detection

of the sources of aggregate output loss is a classic question in economics, with diverging

traditions across multiple fields. In IO, this pertains to the presence of market power (in

all shapes and forms, see the chapter in this Volume by Asker and Nocke), though typically

“aggregate” refers to a single industry or market. In this section we focus specifically on

how technology, competition policy, and market power affects the efficiency of productive

resource allocation.

Decomposing Industry Aggregate Productivity Since the seminal work of

Baily et al. (1992) and Olley and Pakes (1996)), researchers have constructed industry- or

sector-level aggregates as a share-weighted average of producer-level productivity values

– i.e., At =
∑

i sitωit. The weights sit are typically the share of a producer’s sales in total
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sales of the industry or sector, though sometimes input (e.g., employment) shares are used

instead.

This aggregate is in itself not the only object of interest, though in practice it often

closely tracks observed aggregate series. What researchers are often most interested in

is the decomposition of this aggregate into within and between components. While very

simple transformations of the data, they can be quite powerful in terms of describing how

the aggregate performance of a collection of producers evolved over time. They describe

what amount of change in the aggregate arose due to a common within-producer evolu-

tion versus a reallocation of activity away from relatively unproductive units and toward

relatively productive ones. Economic theory can explain how both mechanisms can op-

erate in principle, though the between component is especially tied to the operations of

markets. Such reallocation is precisely what economists think well-functioning markets

should do. Some of the studies we present below indicate how deregulation and the pro-

cess of creative destruction initiated by technological change drove favorable reallocations

of this type. On the other hand, we also discuss how market power, say through the

presence of cartels, can hamper this process. The resulting misallocations create welfare

losses because the industry is less productive in aggregate than it could be under a more

efficient allocation. (That is, its producers could jointly produce more total output from

its current aggregated inputs, if those inputs were better allocated.) This is distinct from

the traditional deadweight loss coming from quantity distortions.

Before our detailed exploration of decompositions of productivity aggregates used in

the literature, it is important to note a key conceptual point made in Petrin and Levinsohn

(2012). Under general conditions, the growth in a share-weighted average of producers’

productivity levels in an industry is not the theoretically correct measure of industry pro-

ductivity growth. In essence, the difference is sourced in the fact that across-producer gaps

in measured productivity need not equal gaps in marginal products. This raises questions

about whether the within-between decompositions used in the literature accurately quan-

tify the relative contributions of producer-level changes to aggregate productivity growth.

Petrin and Levinsohn (2012) present an empirical approach that conforms to a first-order

approximation to theoretically defined aggregate productivity growth. While perhaps the

most preferred metric in many situations, its implementation requires researchers to deal

with what can be delicate empirical issues. Perhaps due to a combination of this factor as

well as familiarity with and comparability to the “accounting-type” share decompositions,

most researchers to this point have continued to use weighted-sum decompositions in em-
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pirical applications, despite the conceptual mismatch. A further convergence in theory

and practice along this dimension would be welcome.

We first consider one of the more popular decompositions in the literature, that pro-

posed by Olley and Pakes (1996)). It decomposes aggregate productivity into an un-

weighted average productivity and the covariance of producer-level market share and

productivity:70

At = ωt + covt(sit, ωit). (46)

Inspecting the time-series patterns of these two objects during a period of interest, say

during a trade reform, points to the relevance of reallocation of resources in the economy.

These decompositions have been applied to a variety of settings, across a wide range of

regions in the world.

A major stylized fact emerging from these studies is that movement in this covariance

is important. It can explain anywhere from twenty to forty percent of the total change in

share-weighted average industry productivity across a wide range of studies and settings.

In the context of international trade, this suggests that a large part of the productivity

gains from opening to trade arises through a market-based reallocation process where

more productive producers take over market share of less productive ones. This process

is a central feature in modern trade theory models, as introduced by Melitz (2003).

Of course this still implies that the within-producer component is even larger. Stan-

dard drivers of growth such as technology adoption, R&D and other innovative activities

(both product and process), and improved managerial practices are still acting and im-

portant. There is a sense in which some of the current literature, by focusing on the real-

location component, has left the within-producer component under-explored. Producer-

level productivity regressions are therefore complementary to aggregate decompositions.

However, few studies closely integrate both aspects to jointly address reallocation and

within-producer effects simultaneously.

The OP decomposition is inherently a cross-sectional and empirical decomposition

of observed average performance within an industry. There are, however, a variety of

other decompositions that focus specifically on the time series dimension. For example,

Haltiwanger (1997) propose a decomposition of aggregate productivity growth into within,

70Formally, the second term is not exactly the covariance, as it does not scale by the number of producers in
any given cross-section. Thus entry and exit of producers will complicate this computation if done over time.
This is precisely the motivation of Melitz and Polanec (2015) to introduce a correction for entry and exit, and
develop a dynamic Olley and Pakes decomposition.
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between, and net-entry components, where the within component is obtained by holding

market shares fixed at time t− 1.71

We now turn to discussing exogenous and endogenous drivers of the allocation of

resources. Depending on the setting, the relevant focus may be on reallocation or misal-

location

6.2.3 Exogenous Drivers: Reallocation

We sketch out in more detail two archetypal studies that use plant-level production data to

study the impact of a plausibly exogenous change to the market operating environment.

The first, Olley and Pakes (1996), investigates deregulation in the U.S. telecom equip-

ment manufacturing industry during the 1960-1990 period. The second, Collard-Wexler

and De Loecker (2015), looks at the arrival and diffusion of a new technology for steel

production over 1963-2007. Each industry witnessed substantial aggregate productivity

growth during the respective periods, with reallocation of activity towards more produc-

tive producers playing a large role. Both articles obtain plant-level productivity measures

by estimating production functions for the industries’ populations of plants over the rele-

vant time periods. Both settings feature significant entry and exit (in line with the facts

first documented by Dunne, Roberts, and Samuelson (1989)), markedly rising aggregate

labor productivity, and substantial reallocations of market share away from incumbents.

This Schumpeterian process gave rise to increased industry performance in both markets.

The studies highlight the importance of obtaining reliable productivity measures. Fur-

thermore, the usefulness of additional data on output prices and plant-level technology

indicators becomes apparent in the analyses in Collard-Wexler and De Loecker (2015).

Deregulation Olley and Pakes (1996) begin by estimating the productivity levels of

U.S. telecommunication equipment manufacturers before and during a period of intensive

industry deregulation.72 This industry underwent major restructuring beginning in the

71We refer the reader to Nishida, Petrin, and Polanec (2014), Melitz and Polanec (2015), and De Loecker,
Fuss, and Van Biesebroeck (2018) for more discussion on the various decompositions.

72The authors state clearly their interpretation of the productivity numbers as measures of sales per unit
input, rather than quantity per unit input, due to the lack of producer-level deflators. However, we note that
because industry-level deflators were available, the associated industry aggregate productivity numbers could be
interpreted as “true” TFP (i.e., a pure supply-side measure of technological efficiency). It is the across-producer
variation that cannot be interpreted as productivity dispersion. This requires a careful interpretation of the
reallocation analysis.
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late 1960s due to two related changes. First, the substantial technological change brought

many new products for both delivering phone services (digital switches, fiber optics, etc.)

and for using the phone lines (fax, modem, etc.). Second, and as a particular focus of

the paper, the deregulation that occurred after the Carterfone decision in 1968 halted the

industry’s history as a near monopoly due to the procurement practices of AT&T from

its equipment-producing subsidiary, Western Electric. Waves of new products (modems,

fax machines, etc.) and new companies came into the industry. Later, further regulatory

changes forced AT&T to lease out its lines to other long-distance carriers, having a further

effect on equipment purchases.

The essence of the analysis is summarized in Tables 1-4 of the article. In 1963, the

industry had 104 firms operating 133 plants making 5.86 billion (1982 USD) of output

with 137,000 workers. By 1987, there were 481 firms operating 584 plants that made

22.41 billion (1982 USD) with 184,000 workers. This is a three-fold increase in sales

per worker. The research question is quite simple: what were the sources behind this

massive productivity increase? The increase in industry firms from 104 to 481 suggests a

potential reallocation of market share away from incumbents and towards more productive

entrants. This is exactly what the decomposition used in the paper is designed to measure:

to separate and quantify reallocation from efficiency improvements common to all industry

producers. To do this analysis, OP first estimate a Cobb-Douglas (value added) production

function in labor and capital, as described in Section 5.3.1. In addition to addressing the

standard simultaneity concern, the estimation procedure takes into account the substantial

entry and exit seen in the industry during this time. The procedure yielded a much larger

estimate of the output elasticity of capital than did the (commonly employed alternative

at the time) producer-fixed-effect estimator using a balance panel: 0.35 versus 0.06. This

greatly affected the implied dynamics of productivity; more on this below.

The authors find that periods of high aggregate productivity growth were characterized

by substantial reallocation, as reflected in a large positive covariance term. That is,

the more productive producers accounted for increasing market shares over time. The

economic interpretation is that the deregulation facilitated this shift, leading to an increase

in aggregate industry performance. The precise reallocation mechanism is not discussed

or further analyzed, however. The authors did not evaluate the importance of relying on

productivity estimates that take into account the simultaneity and selection bias, but we

revisit this below.
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Technology Collard-Wexler and De Loecker (2015) study the creative destruction pro-

cess induced by the (exogenous) arrival of a new technology. The setting is the U.S. steel

industry from 1962 to 2012. This new production technology, the minimill, made produc-

ers efficient at smaller scales and allowed them to operate independently of production in

upstream input markets (coal, lime, etc.). Despite a reputation otherwise, the U.S. steel

industry over the period had one of the fastest productivity growth rates among manu-

facturing industries, behind only high-tech sectors like semiconductors. Steel producers

made roughly the same tonnage of output in 2012 as they did in 1965, but with just

one-fifth of the workforce. This enormous increase in labor productivity coincided with

substantial industry TFP growth as well. The decomposition of share-weighted produc-

tivity indicated dynamics showed similar patterns to those in OP, with a reallocation of

market shares away from incumbents and to entrants.

The study’s goal was to precisely identify the driver(s) of this massive productivity

increase. A number of candidates present themselves, not just minimill technology but

also import liberalization, unionization shifts, and improved management practices. As

with OP, the authors first estimate a production function to recover plant-level produc-

tivity estimates, then perform within-between decompositions of their weighted average

to help identify the sources of industry productivity growth. Importantly, the data make

apparent whether the producer employed the old (integrated mill) or new (minimill) pro-

duction technology, allowing decompositions both within and between plants using either

technology as well.

The initial analysis confirms the relative importance of reallocation. About one-third

of the gains in the industry’s weighted average productivity could be directly traced back

to the reallocation of market shares from the old to the new technology. Interestingly, the

competing candidate explanations above have little explanatory power, as their trajecto-

ries were similar across the two technologies.

Of course, the decomposition also implies that roughly 70 percent of industry produc-

tivity growth was due to other factors. The authors rely on product-level information in

the data to distinguish between high and low quality steel products. The results reveal that

head-to-head competition in low-quality segments induced selection among old-technology

producers that led to productivity growth. But it wasn’t all selection; incumbents saw big

productivity gains too. In fact, surviving integrated mills experienced higher productivity

growth rates than the rest of the industry, eventually catching up with the minimills and

creating a substantial within-producer growth that accounted for a considerable share of
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overall industry productivity gains. The results highlight the importance of the interaction

of market-wide, across producers, effects and within-producer improvements.

The study also indicates the importance of correcting for the output price bias when

producer-level deflators are available. The results from an analysis using expenditures

rather than quantities were significantly different from those taking advantage of producer

price information.

The sensitivity of the results to various measurement decisions raises a broader point.

The components of the decompositions discussed above are stochastic objects. We en-

courage the practice of reporting the confidence intervals of decompositions’ components

to properly evaluate the econometric techniques used to combat the various biases that

plague the production function estimation.

And while the archetypal studies above focus on manufacturing industries (as much of

the early productivity literature did), there is by now a considerable body of work looking

at reallocation and productivity in other sectors. Examples include retail (Foster, Halti-

wanger, and Krizan (2006)), healthcare (Chandra et al. (2016)), and wholesale (Ganapati

(2021)).

6.2.4 Endogenous Drivers and Aggregation: Market Power

A multitude of producer-level decisions can impact the aggregate performance of a market.

However, one that is probably of most interest to IO scholars involves firms’ responses to

market power. This will affect not just the volume of market transactions, but also the

associated production costs. Both factors ultimately influence the total surplus generated

in the market.

Market power’s welfare losses are well appreciated conceptually, and they are the

primary motivation behind antitrust policy. Much of the empirical attention, however, has

been trained on the well-known deadweight loss from quantity restrictions. Market power’s

influence on production inefficiency (i.e., costs that are too high) has received considerably

less empirical treatment. We surmise that this is in part a natural consequence of the once

onerous data requirements for quantifying productive inefficiency. Measuring such losses

requires observing reliable measures of producers’ marginal costs and ex ante knowledge

of the firms and methods responsible for (potential) market power abuse. However, the

arrival of the producer-level micro data that drove the productivity literature frees up

this constraint. Researchers are no longer tied to traditional analysis reliant on assuming
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homogeneous firms (for instance, in the traditional macro style using aggregate industry

time series, like in Harberger (1954), or a fair share of the theoretical literature as well).

One can now look inside an industry’s total cost of production and relate it to productivity

dispersions that may well interact with market power.

Notable exceptions are the work of Borenstein, Bushnell, and Wolak (2002) on market

power in the California electricity market, and Asker, Collard-Wexler, and De Loecker

(2019) studying the effect of OPEC’s market power on productive inefficiency. Both

studies leverage detailed cost and production data to build a supply model that allows

counterfactual production allocations across producers in the absence of market power.

This focuses on the welfare rectangle that captures the loss due to misallocation of pro-

duction, given the quantity produced. This contrasts with the traditional focus on the

welfare triangle that reflects the quantity distortion induced by market power.

Asker, Collard-Wexler, and De Loecker (2019) use observed cost and production data

for every oil well in the world between 1970 and 2014. Assuming a Leontief technology

specification for crude oil production, they derive marginal costs from data on production

and comprehensive itemized costs. The starting point of the analysis is the fact that

marginal costs are highly dispersed across producers, disproportionally lower in OPEC

countries, and that reserves (that is, capacities) are higher in OPEC countries. These facts

give rise to a substantial welfare loss from the actions of the OPEC cartel. Productive

inefficiency is computed by characterizing the minimal cost allocation of production across

wells that would yield the observed market-level quantity. The only wrinkle in the analysis

is the finite resource extraction character of oil production. This is dealt with by using

a theoretically derived sorting algorithm that dictates the order and sequence of wells

called to produce. They compute a NPV welfare loss of about 750 billion (USD) due to

the misaligned production allocation driven by OPEC.

While this study is specific to the global oil market, it suggests a similar phenomenon

could be at work much more broadly. Given the ubiquity of productivity dispersion and the

fat-tailed distribution of producer outcomes, there is considerable scope for market power

to create welfare loss through misallocated production. A complicating countervailing

consideration is the existence of product differentiation, and investigations into the issue

will need to address this, but this is precisely why these studies of homogenous product

markets (electricity and crude oil) are instructive.
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6.3 Misallocation

The investigation of inefficient production allocations due to market power offer a con-

venient segue into a discussion of a broader set of research looking at productivity and

misallocation.

There is a long tradition in industrial organization of studying factors that hamper

industry performance, broadly defined. Factors that limit the optimal deployment of

resources in an economy can be classified as either primitives, capturing technology, pref-

erences, and environmental factors (with the exception of course of man-made environ-

mental outcomes), or behavior and policy, capturing the actions of firms, governments

and institutions, affecting economic outcomes. In the context of IO, the primitives are

typically the particular technologies firms use to produce and how consumers value prod-

ucts. These can of course also entail different kinds of adjustment costs among producers

or consumers. The behavior/policy category involves departures from optimal resource

use due to the actions of producers, governments, or other institutions more generally.

Market power features prominently in this category. Moreover, agency and governmental

interventions in the market for corporate control and antitrust rules more generally, can

equally play an important role.

It is useful to note that productivity dispersion per se is not sufficient for losses due

to misallocation. Consider an industry with heterogeneous-productivity firms. Absent

any frictions, the market equilibrium leads to an optimal deployment of resources where

the marginal revenue product of (any) input is equalized across firms. This observation,

which extends back to Lucas (1978), is the starting point of the macro literature on

misallocation (see Restuccia and Rogerson (2008), Hsieh and Klenow (2009), and an

overview by Hopenhayn (2014)). While this literature is not yet central to IO, the setting

of Olley and Pakes (1996) fits it exactly. The ability to measure productivity allows

measurement of the allocative impact of regulations.73

The empirical literature on misallocation grew from the seminal contribution of Hsieh

and Klenow (2009). This gave way to the wedge (alternatively, gap or friction) approach

that has been applied in many settings. The main premise of the Hsieh and Klenow

approach is that a frictionless economy should see full equalization of inputs’ marginal

revenue products across production units. Dispersion thereof indicates the existence of

73The discussion in Section 5.3 underscores that the estimation of a production function requires an explicit
treatment of the friction to credibly identify the productivity residual.
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frictions in output or input markets that prevent the optimal allocation of resources. And

indeed, Hsieh and Klenow find massive aggregate productivity losses due to misallocation.

Specifically, if capital and labor inputs in the Chinese and Indian manufacturing sectors

were reallocated to equalize marginal products to the extent observed in the United States,

the implied TFP gains would be 30-50 percent in China and 40-60 in India. In other words,

both countries could see enormous output growth without any additional factors required.

While the “equate marginal revenue products” intuition of the approach is extremely

incisive, this approach requires a host of assumptions on conduct, demand, and production.

Hsieh and Klenow (2009) assume that producers are monopolistically competitive and face

CES demand curves, producing with identical Cobb-Douglas constant returns to scale

production functions and facing identical input prices and no factor adjustment costs.74

This follows the tradition of much of the empirical work in IO. As with all structural work,

the devil is in the details; in this case the set of assumptions used to compute marginal

revenue products and infer misallocation is the center of attention.

Adjustment Costs and Volatility The presence of adjustment costs and uncer-

tainty about future productivity pose a challenge for this approach. If there are capital

adjustment costs, the dispersion in the marginal revenue product of capital is no longer

informative about misallocation. And once we allow for the fact that producers face uncer-

tainty about their sales per input process, we also naturally obtain equilibrium dispersion

of inputs’ marginal revenue products. The presence of either or both of these issues break

the prima facie link between observed MRP dispersion and resource misallocation. Asker,

Collard-Wexler, and De Loecker (2014) makes exactly this point using both reduced-form

empirical evidence and simulations from a fully specified model estimated by data moment

conditions.

There is abundant evidence in the literature documenting volatility of productivity

and the presence of capital adjustment costs. The implication is that in countries or

industries with higher volatility, we should expect to see higher dispersion of inputs’

marginal revenue products. Asker, Collard-Wexler, and De Loecker (2014) confirm this

prediction in reduced-form evidence and show using a model that this can explain about

60 to 90 percent of observed dispersion.

This result has two important, and related implications. One, static measures of

74See Haltiwanger, Kulick, and Syverson (2018) for detailed discussion of this environment and the implica-
tions for interpreting findings using this approach.
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distortions or misallocation are limited in their ability to detect productivity-detracting

frictions that might be targeted by policy. Two, identification of distortions affecting

the allocation of resources from time-series patterns in the data (or, put differently, the

ones that impact investment decisions) are often preferable. In any case, linkages among

productivity analyses of the type discussed in this chapter, volatility, and features of a

market’s operating environment are well worth analyzing further.

7 Looking Ahead

In this section, we briefly discuss some of the most active and novel portions of the

literature. While these bodies of work are in their infancy, we expect that they will be

busy areas of inquiry moving forward.

7.1 Market Power and Productivity Data

Recent work has put forward a framework to analyze market power (by measuring price-

cost margins) using the very same data typically used to study productivity. This has the

potential to further integrate the productivity literature with what one might perceive as

the standard approach in IO, as well as to provide additional micro-founded measurement

of a variety of performance indicators of interest to policymakers. We sketch out here

the current interface of the market power and productivity literatures and summarize

a few recent applications. This approach, combined with additional information and

assumptions on factor and product markets, brings another tool to the applied researcher’s

toolkit for studying imperfect competition.75

The industrial organization literature’s typical concern regarding market power is the

quantity distortion. Firms with market power charge too much and produce too little, cre-

ating deadweight loss and reducing consumer surplus. While antitrust authorities across

the world increasingly rely on demand analysis coupled with a conduct assumption to

evaluate mergers and acquisitions, cartels, and other forms of market power abuse, the

analysis of potential cost effects is currently less developed. This results in reliance on

rather arbitrary guesstimates about whether cost effects would offset market power effects

on pricing. IO researchers and antitrust practitioners justifiably spend a lot of effort mod-

75In reference to Table 1, we consider cases in row B, capturing models of imperfect competition, in either
the product or factor market.
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eling and estimating demand to predict merger effects acting through markups. However,

there is little systematic modeling of expected productivity/cost effects. Productivity

researchers could offer considerable value added here.76

There is another important connection between the market power and productivity

literatures. Besides creating deadweight loss and lost consumer surplus from quantity

restrictions, cartels and monopolies can also have allocative efficiency effects on produc-

tivity. Market power can skew the distribution of production among firms in a way that

raises total industry costs. In the parlance, market power creates not just losses from

“triangles” but “rectangles” as well. These rectangles can be large. Misallocation, as dis-

cussed in the previous section, has been extensively studied in the recent macroeconomic

literature. This work has developed evidence that there is considerable misallocation of

output across producers with different productivity levels. As a result, industry costs are

higher than they need to be.

However, research looking at market power as a specific source of misallocation is still

rather scant. One possible reason for this is the influential study of Harberger (1954)

and its followers. Harberger concluded that the rates of return on capital across U.S.

(manufacturing) industries during the 1920s were not sufficiently dispersed to generate

any meaningful aggregate distortions attributable to market power. The intuition for

this inference is that market power operates like a tax, where the implicit tax rate is

reflected in the rates of return on capital (profits). If these rates are equal, then there

can be no scope for misallocation of the incremental resource (production) unit. This

analysis and its conclusion that market power scarcely impacts economy-wide outcomes

became the default view held by many economists for decades. Harberger’s focus on

deadweight loss triangles has persisted in much contemporary work on market power.

A recent literature started to challenge this view, and aided with rich micro production

and cost data researchers have started to look into the prevalence of market-power-related

distortions, impacting both deadweight loss and productive inefficiency. We briefly present

the underlying framework that has allowed researchers to leverage standard productivity

data to say something about market power in a given market or industry.

76The lack of cost-side evidence is also noted by Whinston (2008). In fact, he relies on Olley and Pakes (1996)
just to draw even some tentative conclusions.
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7.1.1 Measuring Market Power Using Production Data

Estimating the size of the wedge between price and marginal costs is often the place IO

economists start when measuring market power. This wedge, the markup, measures a

producer’s ability to raise the price above the marginal cost of production and at a basic

level indicates the presence of market power, or a least the possibility. Bresnahan (1989)

discusses the challenges of measuring market power, noting in particular what by now

can be safely called the conventional wisdom that measuring markups is difficult because

marginal costs are rarely directly observed. We agree, but it is still very useful to embrace

the rich production and cost information used in the productivity literature to aid in

measuring marginal costs.

Let us first define the markup as the price-to-marginal cost ratio:77

µ ≡ P

c
(47)

There exist three main approaches to measure markups. First, the accounting ap-

proach relies on directly observable gross (or net) margins of profits. While this is

straightforward to implement, it suffers from well-known problems, chief among them

the assumption that average cost equals marginal cost. This imposes strong restrictions

on firm-level cost structures.78 Under this setup, the markup equals the profit rate. This

is often an undesirable assumption in many applications of interest to IO economists, as

it rules out economies of scale, network effects, and so on—cost structures that may be

relevant across a wide range of industries and markets.

The second approach comes from the New Empirical IO literature (see Bresnahan

(1989)) and relies on the specification of a demand system that delivers price-elasticities

of demand. Combined with assumptions on how firms compete, the demand approach

delivers measures of markups through the first order condition associated with optimal

pricing. This approach has a long tradition in the field of IO, and has been widely market

tested.79 It is also well-known that this approach restricts attention to a particular model

77Some work instead considers markups in absolute terms, P − c, or as a Lerner index, P−c
P . While there are

obvious and straightforward conversions among these three metrics, one has to keep in mind which definition is
being used when comparing results across different settings.

78In essence, the simplicity of the accounting approach is to multiply the price-cost ratio through by total
output (Q) and obtain the ratio of revenue (PQ) and total cost (cQ), both of which are commonly reported.
Underlying this are the same assumptions as those used to rely on factor (cost) shares: constant returns to scale
in production and the absence of economies of scale; i.e., there are no fixed costs.

79See Pakes (2021) for an overview.
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of conduct (most often, a Bertrand-Nash static pricing game) from which the first order

condition price equations are derived, while requiring information on product-level prices

and quantities for all relevant products in a market (which often the researcher must

define).80

De Loecker and Warzynski (2012) propose an alternative and complementary approach

to markup estimation, labeled the “production approach.” The method builds on the

insights of Hall (1988) and relies on a different first order condition to measure markups:

cost minimization of a variable input of production. Implementation requires the output

elasticity of the variable input and its revenue share. These were the topic of Section 5

in this chapter; however, this approach moves the focus away altogether from trying to

recover the productivity residual.81

The key assumption behind this approach is that, in a given period, producers minimize

cost by optimally choosing those inputs that are free from frictions, the statically chosen

factors (as opposed to the dynamically chosen factors, which face adjustment costs and

other frictions).

This framework leads to the following expression to compute the markup using pro-

duction and cost data:

µit = θVit
PitQit

P Vit X
V
it

, (48)

with θVit the output elasticity (of input XV ), importantly it is in general to producer-time

specific.82

The flexibility of the approach is recognized when one notes that the markup expres-

sion is derived without specifying conduct in the product market or a particular demand

system. With this approach to markup estimation, there are in principle multiple first

order conditions, one for each variable input in production, that yield an expression for the

markup. See De Loecker and Warzynski (2012), De Loecker, Eeckhout, and Unger (2020),

and Raval (2019) for a discussion. Regardless of which variable input is used, there are

two key ingredients needed in order to measure the markup: its revenue share and output

80An older literature relies on observed cost data to infer markups. Roberts and Dunne (1992) and Roberts
and Supina (2000) are two early studies that used firm production data to measure marginal costs and use them
to infer markups.

81We refer the reader to De Loecker (2011b) and De Loecker and Scott (2016) for a detailed discussion of
both approaches, and the various trade-offs. Chapters 1 and 2 in this Volume [TO BE CONFIRMED] discuss
the demand approach in great detail.

82In the case of our leading Cobb-Douglas example this would correspond to the parameter βV .
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elasticity. The approaches discussed above in this chapter generate estimates of the output

elasticity. However, the validity of the production approach to recover markups is quite

distinct from the auxiliary assumptions leveraged to estimate the production function.83

The standard derivation discussed in De Loecker and Warzynski (2012) assumes that

firms take input prices as given. This does not preclude input providers charging markups,

potentially leading to double-marginalization. The production approach, however, can ac-

commodate departures from price-taking by considering multiple variable inputs, allowing

for a non-zero input-price elasticity. For recent applications of this approach see Morlacco

(2017), Mertens (2020) and Rubens (2020), where input buyer power and labor market

power in the form of monopsony are identified alongside product market power in a variety

of settings.

The markup formula (48) derived under the production approach highlights that the

marginal cost of production is derived from a single variable input, without imposing

any particular substitution elasticity with respect to other inputs (variable or fixed) or

returns to scale. It is instructive to contrast it to the accounting approach introduced

above. Only in the case of constant returns to scale and either a single variable input (V ),

or only variable inputs in the production function (thus excluding fixed costs), will the

accounting-based markup be correct.

While the production approach holds in general, and thus also for multi-product firms

(for each product), deploying this framework requires one to confront the standard input

allocation problem. The main challenge is, as stated in Section 5.2, the product-specific

input share cannot usually be observed. Additional assumptions or data are required; see,

for example, De Loecker et al. (2016), who restrict attention to product-level production

functions.

Applications The production approach to markups measurement has been used in a

variety of applications, both in and outside of IO. It has been used to document rising

markups and provide facts in the recent debate around the surge of market power and

industry concentration in the U.S. and other world regions. While it has to confront the

many measurement issues involved with production data and the challenges that come

with measuring output elasticities, it has opened the debate and generated a renewed

83For example, Raval tests the hypothesis of a joint set of assumptions, capturing the specification of the
production function, the presence of adjustment costs across input choices, and factor demand conditions, and
the underlying behavioral model of cost minimization with respect to a given input.
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interest in the productivity literature. Most notably, De Loecker, Eeckhout, and Unger

(2020) rely on this approach to measure share-weighted aggregate markups for the U.S.

economy during the period 1955-2016, and find a steady rise. The rise is correlated with

greater measured fixed costs of production and increasing profitability. Moreover, the

growth in the aggregate comes about from a reallocation process of market shares from

relatively low to relatively high markup firms. This suggests a particular force at work,

namely, increased alignment of output and markups over time in the economy. This ties

in with the separate accounts of increased concentration in U.S. industries.84

Through this body of work, the production approach has connected productivity data

to a larger global debate around market power, declining labor shares, increased glob-

alization, and a variety of other labor market issues such as monopsony.85 We see this

as a unique opportunity for IO to contribute to a larger debate on the overall state of

competition, as well as to help identify sources and implications for competition policy, by

using a combination of single-industry and cross-industry studies. The field can leverage

its rich and diverse toolbox of measurement, estimation, and modeling techniques.

7.1.2 Integrating Product and Factor Markets Using Productivity Data

The production approach to markups relies on insights and practices of the production

function estimation literature, and therefore the use of producer-level output and input

data. At the same time, it directly interacts with the objects of interest in the demand

approach literature. For lack of better terminology, and with an obvious oversimplification,

the “demand approach” refers to the practice (discussed briefly above) of studying market

power using an estimated demand system to recover cross-price elasticities, paired with

assumptions on conduct and market structure, that yield a first-order condition for pricing.

This delivers measures of marginal costs and markups without observing any cost data,

following the approach suggested by Rosse (1970) and Bresnahan (1987), and hence the

phrase estimating cost without cost data. While the latter has traditionally relied on

consumer-level data to learn about competition across firms in a given market, it relies

on assumptions of the relevant upstream (factor) markets. This is precisely where the

productivity data can be used to learn more about the relationships along the supply

chain. We briefly discuss two promising avenues of research that leverage the very data

84Though there are many well-known issues relying on concentration ratio (e.g., HHI). See Syverson (2019)
and Berry, Gaynor, and Scott Morton (2019) for more discussion.

85See Autor et al. (2020) and Krueger (2018).
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sources we have discussed in this chapter, to learn about features of factor markets and

vertical aspects of industries.

Vertical Linkages The integration of these approaches, including a combination of a

variety of data sources, to learn about vertical linkages has started in earnest only recently.

Productivity along buyer-supplier links has been studied to this point mostly in the context

of international trade. Some IO-related exceptions include Hortaçsu and Syverson (2007),

Forbes and Lederman (2010), and Atalay, Hortaçsu, and Syverson (2014).

The natural orientation of the data, with most production-approach data recorded at

the producer level (e.g., the beer brewer or car manufacturer) and demand data at the

retail level (e.g., supermarket or dealership), naturally links different parts of the produc-

tion and distribution chain. Researchers can deploy this combined approach to study the

interactions of productivity, factor demand, and margins among producers, wholesalers,

and retailers. For example, De Loecker and Scott (2016) combines the production and

demand approach to measure the extent to which the U.S. retail market (selling beer) is

competitive.

Labor Market Power While much of IO has traditionally focused on product market

competition, there has recently been a marked increase in interest in monopsony power in

factor markets, particularly labor. IO economists have deployed various approaches, in-

cluding the production approach (extended to incorporate input market power), to do so.

De Loecker, Eeckhout, and Mongey (2021) relate increasing aggregate markups to wages

and the overall labor share in the US. Prager and Schmitt (2021) document the down-

ward impact on nurses’ wages in hospital markets exposed to merger activity. Rubens

(2021) exploits a Chinese government-mandated consolidation in cigarette manufacturing

to estimate the monopsony power in upstream tobacco farming. Goolsbee and Syverson

(2019) estimate the extent of universities’ market power in the labor market for faculty.

Azar, Berry, and Marinescu (2019) apply modeling insights from the differentiated prod-

uct demand literature to analogous situations created by differentiated jobs in the labor

market.

After developing mostly separately for a long time, we think the time is ripe for re-

searchers to harness the combined capabilities of the productivity and demand literatures.
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7.2 Technological Change and Market-Level Outcomes

The measurement of technological change and discovery of its drivers and implications has

been a central component of the productivity literature since its inception. As discussed

before, the predominant model of technological change in applications involves exogeneous

Hicks-neutral productivity growth. In reality, however, technological change may come

about in different ways. We briefly mention two recent literatures that consider departures

from this standard setup.

7.2.1 Factor-Biased Technological Change

Hicks-neutral productivity influences the marginal products of all factors the same way.

Departures from this, involving factor-biased technological differences, have been treated

(mostly) theoretically in the macroeconomics literature for some time. These kinds of

frameworks have started to creep into the micro productivity literature.

Raval (2019) provides evidence that there is a nontrivial amount of, and variation in,

labor augmenting productivity among U.S. manufacturers. Further, this factor-specific

productivity, just like typically measured TFP, is persistent at the producer level and

correlated with producers’ exporter status, size, and growth. Doraszelski and Jauman-

dreu (2018) estimate the factor-bias of technological change among Spanish producers

and find important roles for a labor-augmenting productivity process. Interestingly, this

labor-favoring productivity is more closely tied to firms’ R&D than is their measured

Hicks-neutral productivity. Zhang (2019) finds that labor-augmenting productivity growth

explains over half of the large decline in labor’s share of income in the Chinese steel indus-

try during the 2000s. In the methodological vein, Demirer (2020) extends proxy-variable

production function estimation approaches to allow for non-neutral productivity.

7.2.2 Endogenous Productivity Growth

Producer-level productivity exhibits obvious empirical dynamics. Production function

estimation approaches incorporate such dynamics, and indeed often model it explicitly

(e.g., assuming productivity follows a Markov process), and allow that process to vary

systematically with observables. However, much of the literature treats the process as

exogenous. The tension with this treatment is that it is clear producers would have incen-

tives to improve their productivity level if doing so were cost effective, and introspection
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about producers’ actual behaviors strongly indicates that they do indeed invest resources

in attempts to do precisely that.

The obvious conceptual resolution to this tension is to endogenize the productivity pro-

cess, allowing it to be influenced by the choices of the producer, like R&D. Doing so would

in some sense return to an earlier part of the productivity literature that sought to explain

productivity differences using proxies for producers’ investments in productivity growth

(e.g., the accumulated stock of R&D spending). This earlier work did not explicitly model

the endogenous choice and benefit-cost tradeoff underlying the productivity-enhancing in-

vestments, but at its core was a notion that such investments were consequential and

important to understand. While fully endogenous productivity is not yet the standard

treatment in the literature, there are several studies that have made strides in this direc-

tion. Prominent examples include Doraszelski and Jaumandreu (2013), Bøler, Moxnes,

and Ulltveit-Moe (2015), Peters et al. (2017), and Humlum (2019).

8 Conclusion

The arrival of detailed producer-level production and cost data covering a broad set of

industries and countries has left an enormous mark on the research literature. It has

brought models of firm behavior and industry performance closer to the data. Economists

in multiple fields have increasingly interacted with each other, finding a common interest

in understanding production and performance at the micro level and describing their

influence on industry and economic aggregates. We have provided, in this chapter, a

sample of this type of research. We believe further progress is possible and likely to yield

many insights. We encourage interested researchers to follow this existing work.

91



References

Abramovitz, Moses (1956). “Resource and Output Trends in the United States since
1870”. American Economic Review 46, pp. 5–23.

Acemoglu, Daron (2002). “Directed Technical Change”. The Review of Economic
Studies 69.4, pp. 781–809.

Acemoglu, Daron (2003). “Labor- and Capital-Augmenting Technical Change”.
Journal of the European Economic Association 1.1, pp. 1–37.

Ackerberg, Daniel A (2020). “Timing Assumptions and Efficiency: Empirical Evi-
dence in a Production Function Context”. Mimeo, University of Texas at Austin.

Ackerberg, Daniel A, Benkard, C Lanier, Berry, Steven, and Pakes, Ariel (2007).
“Econometric Tools for Analyzing Market Outcomes”. Handbook of Economet-
rics 6, pp. 4171–276.

Ackerberg, Daniel A, Caves, Kevin, and Frazer, Garth (2015). “Identification Prop-
erties of Recent Production Function Estimators”. Econometrica 83.6, pp. 2411–
51.

Ackerberg, Daniel A and De Loecker, Jan (2021). “Production Function Identifica-
tion under Imperfect Competition”. Mimeo, University of Leuven.

Ackerberg, Daniel A, Frazer, Garth, Kim, Kyoo il, Luo, Yao, and Su, Yingjun
(2020a). “Under-Identification of Structural Models Based on Timing and In-
formation Set Assumptions”.

Ackerberg, Daniel A, Frazer, Garth, Luo, Yao, and Su, Yingjun (2020b). “Under-
Identification of Structural Models Based on Timing and Information Set As-
sumptions”. Mimeo, University of Texas at Austin.

Ackerberg, Daniel A and Hahn, Jinyong (2015). “Some Non-Parametric Identifica-
tion Results using Timing and Information Set Assumptions”. Working Paper.

Allcott, Hunt, Collard-Wexler, Allan, and O’Connell, Stephen D (2016). “How do
Electricity Shortages Affect Industry? Evidence from India”. American Eco-
nomic Review 106.3, pp. 587–624.

Arellano, Manuel and Bond, Stephen (1991). “Some Tests of Specification for Panel
Data: Monte Carlo Evidence and an Application to Employment Equations”.
The Review of Economic Studies 58.2, pp. 277–97.

Asker, John, Collard-Wexler, Allan, and De Loecker, Jan (2014). “Dynamic Inputs
and Resource (Mis) Allocation”. Journal of Political Economy 122.5, pp. 1013–
63.

Asker, John, Collard-Wexler, Allan, and De Loecker, Jan (2019). “(Mis) Allocation,
Market Power, and Global Oil Extraction”. American Economic Review 109.4,
pp. 1568–615.

92



Asplund, Marcus and Nocke, Volker (2006). “Firm Turnover in Imperfectly Com-
petitive Markets”. The Review of Economic Studies 73.2, pp. 295–327.

Atalay, Enghin (2014). “Materials Prices and Productivity”. Journal of the European
Economic Association 12.3, pp. 575–611.
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Azar, José, Berry, Steven, and Marinescu, Ioana Elena (2019). “Estimating Labor
Market Power”.

Backus, Matthew (2020). “Why is Productivity Correlated with Competition?”
Econometrica 88.6, pp. 2415–44.

Baily, Martin Neil, Hulten, Charles, Campbell, David, Bresnahan, Timothy F, and
Caves, Richard E (1992). “Productivity Dynamics in Manufacturing Plants”.
Brookings Papers on Economic Activity. Microeconomics 1992, pp. 187–267.

Balat, Jorge, Brambilla, Irene, and Sasaki, Yuya (2016). “Heterogeneous Firms:
Skilled-labor Productivity and the Destination of Exports”. Working Paper.

Bartelsman, Eric J and Doms, Mark (2000). “Understanding Productivity: Lessons
from Longitudinal Microdata”. Journal of Economic Literature 38.3, pp. 569–94.

Basu, Susanto and Fernald, John G. (1997). “Returns to Scale in U.S. Production:
Estimates and Implications”. Journal of Political Economy 105.2, pp. 249–83.

Becker, Randy A, Haltiwanger, John, Jarmin, Ron S, Klimek, Shawn D, and Wilson,
Daniel J (2006). “Micro and Macro Data Integration: The Case of Capital”.
A new architecture for the US national accounts. University of Chicago Press,
pp. 541–610.

Bernard, Andrew B, Redding, Stephen J, and Schott, Peter K (2010). “Multiple-
Product Firms and Product Switching”. American Economic Review 100.1,
pp. 70–97.

Berry, Steven, Gaynor, Martin, and Scott Morton, Fiona (2019). “Do Increasing
Markups Matter? Lessons From Empirical Industrial Organization”. Journal of
Economic Perspectives 33.3, pp. 44–68.

Berry, Steven, Kortum, Samuel, and Pakes, Ariel (1996). “Environmental Change
and Hedonic Cost Functions for Automobiles”. Proceedings of the National Academy
of Sciences 93.23, pp. 12731–38.

Berry, Steven, Levinsohn, James, and Pakes, Ariel (1995). “Automobile Prices in
Market Equilibrium”. Econometrica: Journal of the Econometric Society, pp. 841–
90.

93



Berry, Steven and Reiss, Peter (2007). “Chapter 29 Empirical Models of Entry and
Market Structure”. Handbook of Industrial Organization 3. Ed. by M. Arm-
strong and R. Porter, pp. 1845–86.

Bilir, L Kamran and Morales, Eduardo (2020). “Innovation in the Global Firm”.
Journal of Political Economy 128.4, pp. 1566–625.

Bloom, Nicholas (2009). “The Impact of Uncertainty Shocks”. Econometrica 77.3,
pp. 623–85.

Bloom, Nicholas and Van Reenen, John (2007). “Measuring and Explaining Manage-
ment Practices Across Firms and Countries”. Quarterly Journal of Economics
122.4, 1351–1408.

Blundell, Richard and Bond, Stephen (1998). “Initial Conditions and Moment Re-
strictions in Dynamic Panel Data Models”. Journal of Econometrics 87.1, pp. 115–
43.
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