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1 Introduction

In our society, contests in which multiple prizes are awarded are quite ubiquitous. Examples include

employees who exert effort for the purpose of promotions in organizational hierarchies, students

who compete over grades (and the adjacent ranking), political competitions for ranked places in

parliamentary systems, and obviously sports events where athletes compete over medals or various

monetary prizes. Such contests with multiple prizes can be modeled in several ways, one of the

most well-known being the all-pay auction.1 In this contest form, the players with the highest bids

receive the prizes, but all the players, including those who do not win anything, bear the costs of

their bids.

Thus far, most of the contest literature has focused on single-prize all-pay auctions where

the highest bidder is awarded the prize (known as the winner-take-all contest), whereas studies

concerning all-pay auctions with multiple prizes, especially heterogenous ones, are rather neglected.

The reason for this is quite straightforward - there is a substantial difference, in terms of complexity,

between the analysis of a single-prize all-pay auction or even one with several identical prizes, and

that of an all-pay auction with heterogenous prizes. For example, in a complete information single-

prize contest, the player with the highest valuation wins the prize with the highest probability and

has the highest expected payoff. Moreover, if one player has a strictly higher valuation for winning

compared to all the other players, then only he has a positive expected payoff, while all others

have an expected payoff of zero (see Baye et al. 1996). Likewise, in a complete information all-pay

auction with k ě 2 identical prizes, the players with the k highest values gain positive expected

payoffs, where a higher private value entails a higher expected payoff.

In contrast, when there are at least two heterogeneous prizes and the ordering of the players’

valuations vary across prizes, the identity of the winners for each of the prizes, as well as the order

of the players’ expected payoffs, are ambiguous. A priori, it is unclear how one should evaluate the

winning probability and expected payoff of a player with a high value for the first prize and a low

value for the second one to those of a player with a lower value for the first prize and a higher value

for the second one.

To illustrate the above argument, consider an all-pay auction with two heterogeneous prizes

and four players, all with different values for both prizes, while the sum of their values is the same.

In addition, for each of the players, the value for the first prize is higher than the value for the

second one. In such a case, it can be shown that the player who has the highest value for the first

prize and the lowest value for the second prize gains the highest expected payoff. Moreover, the

player who has the highest value for the second prize and the lowest value for the first prize has

the second highest expected payoff. This result is somewhat puzzling since each of the four players

can potentially win each of the prizes.

In this paper, we try to shed light on the players’ behavior in all-pay auctions with heterogenous

prizes (i.e., the players’ valuations vary across prizes). We assume that each player has a higher

value for the first prize than for the second one, but the player with the highest value for each prize

1See, among others, Hillman and Samet (1987), Hillman and Riley (1989), Baye et al. (1993), Amman and
Leininger (1996), Krishna and Morgan (1997), Che and Gale (1998), Lizzeri and Persico (2000), Siegel (2009), Sela
(2012), Hart (2016), Einy et al. (2017), and Lu and Parreiras (2017).
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is not necessarily the same. In order to deal with the players’ behavior in such complex contests,

we assume that each of the n players is one of two types such that there are n ´ 1 symmetric

players all of whom have the same valuations for each of the prizes (to be clear, all have different

values for the first and second prize), while the remaining player has different values for both prizes

compared to his opponents (note that all valuations are public). The contest evolves as follows.

First, each player chooses a bid. Next, the player with the highest bid wins the first prize, and the

player with the second highest bid wins the second prize. Finally, all players bear the cost of their

bids, independently of their winning status.

It turns out that the most complex scenario in our model is when there are only three players,

namely, two symmetric players and a single asymmetric one. The rationale is that if there are more

than two symmetric players, in any equilibrium their expected payoff will necessarily be zero since

the number of prizes is smaller than the number of the symmetric players. On the other hand, if

there are only two symmetric players, they might have positive expected payoffs. Thus, most of

the present paper focuses on three players, while providing some generalizations for n ą 3 players.

In contrast to the equilibrium profiles in the all-pay auction with a single prize in which the

players’ efforts (or bids) are derived from a common support, in the all-pay auction with two

heterogenous prizes, they are not necessarily derived from the same support. Moreover, the supports

of the players’ strategies are not necessarily convex, namely, they include gaps such that the players’

mixed strategies (distributions over bids) are not strictly increasing.2 Thus, we divide our analysis

into five cases according to the relationship between the players’ values for the prizes. For each

case, we provide sufficient conditions ensuring that the players’ distributions of bids are strictly

increasing, and then analyze the players’ equilibrium bids. Since we provide an explicit solution of

the players’ equilibrium strategies, we are able to calculate the players’ expected payoffs as well.

A player type with the higher (lower) value for the first prize will be referred to as an S-

type player (W -type player, respectively). Our equilibrium analysis shows that, depending on the

players’ values for the prizes, either the W -type player(s) or the S-type player(s) has a positive

expected payoff, but both types never have positive expected payoffs at the same time. Furthermore,

if the S-type player is the asymmetric player, he is the only one who has a positive expected payoff.

On the other hand, if the S-type players are the symmetric players, the asymmetric W -type player

does not necessarily have an expected payoff of zero. In that case, depending on his value for the

second prize, he might be the only player with a positive expected payoff although he is allegedly

considered the weaker player. Hence, we conclude that although the values for the first (larger)

prize have the greatest effect on the identity of the players with positive expected payoffs, the value

of the second prize might have a non-negligible effect. In other words, the order of the players

according to their expected payoffs depends on the valuations of all the prizes.

We then consider the all-pay auction with n ą 3 players. Although we do not provide a complete

analysis of this case, we do show how our results for three players can be generalized. We prove that

the asymmetric player may have a positive expected payoff, whether or not he has the higher value

for the first prize. On the other hand, the n ´ 1 symmetric players will always have an expected

2Baye et al. (1996) showed that even in the all-pay auction with a single prize the players’ strategies are not
necessarily convex.
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payoff of zero. This is due to the fact that even if these players have higher values for either the

first prize or for both prizes, the competition among them yields an expected payoff of zero.

As mentioned earlier, we are not the first to deal with the all-pay auction with heterogeneous

prizes. Incomplete information auctions where only the common distribution of private values is

commonly known has been studied, among others, by Moldovanu and Sela (2001, 2006), Moldovanu

et al. (2012), and Liu and Lu (2017). Complete information auctions with identical prizes and

linear costs in which the players’ values are common knowledge has been studied by Barut and

Kovenock (1998), and Clark and Riis (1998). Siegel (2010) analyzed such contests with nonlinear

costs. Bulow and Levin (2006) studied all-pay auctions with heterogenous prizes and linear costs

in which the first-order differences in successive prizes are constants, and Gonzalez-Diaz and Siegel

(2013) extended this work by allowing nonlinear costs. Later, Xiao (2016) investigated another

version of the all-pay auction with heterogenous prizes in which either the ratio of successive prizes

is constant or the second-order differences are a positive constant.

The model most similar to ours, namely, with two symmetric players and one asymmetric player

who compete over two prizes, was studied by Dahm (2018). However, this work places several

restrictions on the prizes’ values so that the value of the second prize is zero for the asymmetric

player. Thus, Dahm is mainly interested in one prize, and considered the symmetric players’ values

for the first prize to be larger than the respective asymmetric player’s value. Xiao (2018) also

studied all-pay auctions with two nonidentical prizes, but he assumed that the sequence of prizes is

either convex or concave, that is, the second-order differences (among prizes) are either a positive

or a negative constant. Therefore, in these studies the heterogeneity among the prizes is limited

due to some special properties imposed on the sequence of the prizes’ valuations.3 Furthermore, it

is assumed that the ratio of the values for every pair of prizes is the same for all the players who

differ from each other by their ability or, alternatively, their bid cost. In other words, the players

technically have the same value for each prize, but due to the heterogenous cost functions, they

differ in their expected payoff for winning. Nevertheless, the ratio between the values of each pair

of prizes is identical among all the players. In contrast, in our model the players differ in their

prize valuations and in the ratios among these valuations. In other words, the heterogeneity of the

prizes between the two types of players in our model is unrestricted.

The rest of the paper proceeds as follows. In Section 2, we introduce the model, and in Section

3, we present general properties of the equilibria. In Sections 4 and 5, we analyze the equilibrium

strategies with three players and two heterogenous prizes where the players’ supports are convex.

In Section 6, we illustrate an equilibrium with non-convex supports, and generalize our equilibrium

analysis to contests with more than three players. Section 7 concludes. Most of the proofs appear

in the Appendix.

3In Olzewski and Siegel (2016) the heterogeneity of the prizes is not limited, but they assume that the numbers
of prizes and players go to infinity.
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2 The model

We first consider a two-prize all-pay auction with three players. There are two types of players

who differ in their prize valuations: the ‘strong’ type, denoted by S, has valuations s1 and s2 for

the first and second prize, and the ‘weak’ type, denoted by W , has valuations w1 and w2 for the

first and second prizes. Note that s1 ą s2 ě 0 and w1 ą w2 ě 0. We refer to the types as strong

and weak since s1 ą w1 is the basic assumption that affects the type which has a positive expected

payoff in equilibrium. Unless stated otherwise, we assume that among the three players, there are

two S-type players and one W -type player.

The bid set of each player is R` and, without loss of generality, we can assume that the bids

of S-type and W -type players are bounded on r0, s1s and r0, w1s, respectively. A strategy of a

player is a distribution over the set of feasible bids (i.e., the CDF) which is denoted by FT for

every T P tS,W u. We denote the random bids of the S-type and W -type players by XS P IS

and XW P IW , where IS and IW are the relevant supports. The analysis is confined to symmetric

equilibria with respect to the players’ types. To be clear, we assume that the player with the highest

bid wins the first prize, and the player with the second highest bid wins the second prize.

Under the mentioned assumptions and given a strategy profile pFS , FW q, the expected payoffs

of both types under a bid of x P R are

USpx|FS , FW q “ s1FSpxqFW pxq ` s2rFW pxqp1´ FSpxqq ` FSpxqp1´ FW pxqqs ´ x (1)

“ rps1 ´ 2s2qFSpxq ` s2sFW pxq ` s2FSpxq ´ x

and

UW px|FS , FW q “ w1F
2
Spxq ` 2w2FSpxqp1´ FSpxqq ´ x (2)

“ pw1 ´ 2w2qF
2
Spxq ` 2w2FSpxq ´ x

Note that the expected payoffs do not account for possible ties since ties occur with 0-probability

in equilibrium.

3 General properties of equilibria

We first introduce some general properties of the equilibrium profile pFS , FW q when there are several

S-type players and one W -type player.

Lemma 1 In a symmetric equilibrium, FS has no atoms in r0, s1q and FW has no atoms in p0, w1q.

Proof. We begin with the CDF FS . Assume, by contradiction, that there exists a symmetric

equilibrium where all S-type players support some atom a P r0, s1q. There are at least two S-type

players, so a tie occurs with positive probability, and a symmetric tie-breaking rule dictates a final

allocation. Now consider an infinitesimal and unilateral upward-deviation of an S-type player, from

a to a ` ε ă s1. On the one hand, this deviation increases the player’s cost by an infinitesimal

amount, but on the other, the expected prize increases by a strictly positive and relatively high
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amount due to the increased probability of winning without the need to split the prize according to

some tie-breaking rule.4 Thus, in a symmetric equilibrium, the bids’ distributions of S-type players

have no atoms in r0, s1q.

For the CDF FW , we assume, by contradiction, that there exists a symmetric equilibrium in

which the W -type player supports some atom a P p0, w1q. Since a cannot be an atom of XS , either

there exists some small ε ą 0 such that PrpXS P pa ´ ε, aqq ą 0, or there exists ε˚ ą 0 such that

PrpXS P pa ´ ε, aqq “ 0 for every ε P p0, ε˚q. If the latter is the case, then the W -type player has

a profitable deviation downwards. Specifically, for some ε ą 0, bids in pa´ ε, aq are not supported

by the S-type players, so the W -type player can shift his atom from a to a ´ ε
2 such that the

probability of getting a prize is not affected while the cost decreases. If, however, there exists some

small ε ą 0 such that PrpXS P pa ´ ε, aqq ą 0, then any of the S-type players can shift bids from

this small interval upwards to a` ε1, for some small ε1 ą 0. Such a deviation increases the expected

payoff by strictly increasing the probability of winning the first prize, while the increased cost is

infinitesimal. Thus, we can conclude that this cannot be an equilibrium, and FW has no interior

atoms in equilibrium.

Corollary 1 In a symmetric equilibrium, if PrpXW P r0, εqq ą 0 for any ε ą 0, UW px|FS , FW q “ 0

for any x P IW .

The proof is omitted since it is a straightforward conclusion from the fact that FS is non-atomic

at 0. Namely, since the payoffs are right-side continuous and without an atom at 0 of an S-type

player, then the point-wise expected payoff of the W -type player converges to zero when a bid x

approaches 0. Therefore, by the indifference principle, the expected payoff must be zero.

Lemma 2 In a symmetric equilibrium, for every open interval I Ď R`` such that PrpXW P Iq ą 0,

it follows that PrpXS P Iq ą 0.

Proof. Fix a symmetric equilibrium pFS , FW q. Assume, by contradiction, that there is an open

interval I such that PrpXW P Iq ą 0 “ PrpXS P Iq. If the W -type player has an atom a P I,

then there exists a strictly profitable deviation downwards from a to a1 P pinf I, aq Ă I since the

probability of winning a prize does not change while the realized cost strictly decreases. Moreover,

even if the W -type player has no atoms in I, then the player can shift a positive-probability set

of values (from I) downwards in a similar manner to the atom shift, while remaining within I.

Again, this would not change the probability of winning a prize, whereas the realized cost strictly

decreases. Therefore, we conclude that this cannot be an equilibrium since the W -type player

always has a strictly profitable deviation.

Remark 1 The last lemma suggests that for every symmetric equilibrium in which the random

bids XS of the S-type players and the random bid XW of the W -type player are supported on IS

and IW , respectively, then IW Ď IS up to a zero-measure deviation of the S-type players.

Lemma 3 In a symmetric equilibrium, IS is a connected set.

4The tie-breaking rule does not have to be symmetric, and any rule would motivate at least one player to shift
the private bid upwards.
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Proof. Assume, by contradiction, that IS is not a connected set. By the lack of interior atoms,

there exists an open interval I Ă R`` such that PrpXS ě sup Iq ¨PrpXS ď inf Iq ą 0 “ PrpXS P Iq.

By Lemma 2, it follows that PrpXW P Iq “ 0. Without loss of generality, take I to be the largest

possible interval, which suggests that PrpXS P rsup I, sup I ` εqq ą 0 for any ε ą 0.

Now consider two scenarios: either the W -type player has an atom at sup I or he does not have

one. If an atom exists, then the W -type player has a profitable deviation downwards, for example

from sup I to inf I`sup I
2 . This follows from the fact that the probability of winning the prize does

not change by this shift, while the realized price strictly decreases.

If, however, the W -type player does not have an atom at sup I, then the S-type players have a

profitable deviation from bids x P rsup I, sup I ` εq downwards, for example, to inf I`sup I
2 . Again,

by the indifference principle, all bids produce the same expected payoff and a shift from sup I to
inf I`sup I

2 does not entail any decrease in the winning probability, while the price strictly decreases.

Thus, we conclude that this cannot be an equilibrium, and IS is indeed a connected set.

4 Three-player contests with one weak and two strong players

We next analyze the equilibrium in the all-pay auction with three players who compete for two

heterogeneous prizes. We assume that there are two S-type players and one W -type player. Below,

we divide our analysis to four cases A-D, depending on the players’ valuations of the prizes.

Remark 2 Unless stated otherwise, all subsequent proofs appear in the Appendix.

4.1 Case A: The weak player stays out of the contest.

The first case depicts an equilibrium where the W -type player stays out of the contest, and the two

S-type players compete against each other, so that each wins one of the prizes.

Proposition 1 In the all-pay auction with two S-type players and one W -type player, if rs1´s2s ě

maxtw1, 2w2u, there exists an equilibrium in which both S-type players randomize on the interval

r0, s1 ´ s2s according to their cumulative distribution bid function FSpxq which is

FSpxq “

$

’

’

&

’

’

%

0, for x ă 0,

x
s1´s2

, for 0 ď x ď s1 ´ s2,

1, for x ě s1 ´ s2,

(3)

while the W -type player bids 0 with probability 1. Under this equilibrium, the expected payoff of

both S-type players is s2, while the expected payoff of the W -type player is 0.

The following example illustrates an equilibrium under the conditions of Proposition 1.

Example 1 Assume that there are two S-type players whose prize valuations are s1 “ 10, s2 “ 5,

and a W -type player whose prizes’ valuations are w1 “ 4, w2 “ 2, so that the conditions of
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Proposition 1 hold. Then, the mixed-strategy equilibrium described in Proposition 1 (see Figure 1)

is

FSpxq “

$

’

’

&

’

’

%

0, for x ă 0,

x
5 , for 0 ď x ď 5,

1, for x ě 5,

FW pxq “

$

&

%

0, for x ă 0,

1, for x ě 0.

The expected payoff of each S-type player is 5, and that of the W -type player is 0.

1 2 3 4 5

0.5

1

x

FSpxq

1 2 3 4 5

0.5

1

x

FW pxq

Figure 1: The distributions of the S- and W-type players, in equilibrium, given s1 “ 10, s2 “ 5, w1 “ 4, and

w2 “ 2 (values sustain the condition of Proposition 1).

If the conditions of Proposition 1 are violated, the W -type player may actually compete. Then,

we would need to verify that the W -type player’s distribution FW , in equilibrium, is well-defined

and specifically, non-decreasing.5 Thus, below we now provide several sufficient conditions so that

the relevant distribution is non-decreasing:

[A1] w1 ą 2w2;

[A2] s1 ą 2s2;

[A3] 2pw1 ´ w2q ą ps1 ´ s2q;

[A4] 2w2s2 ą s2
2 ` ps1 ´ 2s2qps1 ´ w1q.

We shall use these conditions in the statements that follow to ensure that FW is indeed non-

decreasing. To provide some intuition, specifically for conditions A1 and A2 which will prove rather

useful later on, one can see that under these conditions, Equations (1) and (2) become somewhat

more similar to the utility functions in a single-prize all-pay auction, compared to the alternative

when these conditions do not hold.

5As we will later show, this assumption is not trivial, since the function FW , described in Equation p1q, might be
partially decreasing in some intervals under various parametric assumptions (contradicting the fact that it is a CDF).
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4.2 Case B: All the players have symmetric supports

We continue our analysis by describing an equilibrium where all the players compete against each

other (i.e., support a strictly positive bid with probability 1), and both types, S and W , use mixed

strategies with a common support.

Proposition 2 In the all-pay auction with two S-type players and one W -type player, if w1 ě

s1 ´ s2 and the monotonicity conditions, either pA1, A2, A3, A4q, or p A1, A2, A3, A4q hold, then

there exists an equilibrium in which the players randomize on the interval r0, w1s according to their

non-decreasing cumulative distribution bid functions pFS , FW q which are

FSpxq “

$

’

’

’

&

’

’

’

%

0, for x ă 0,

w2´
?
w2

2´2w2x`w1x

2w2´w1
, for 0 ď x ď w1,

1, for x ą w1,

FW pxq “

$

’

’

&

’

’

%

0, for x ă 0,
x´s2FSpxq`s1´w1

ps1´2s2qFSpxq`s2
, for 0 ď x ď w1,

1, for x ą w1.

(4)

Under the given equilibrium, the expected payoffs of both S-type players is s1 ´ w1, whereas the

expected payoff of the W -type player is 0.

The following example shows that the conditions of Proposition 2 are feasible, and that there

are parameters which simultaneously support the required constraints.

Example 2 Assume that there are two S-type players whose prize valuations are s1 “ 10, s2 “ 6,

and a W -type player whose prize valuations are w1 “ 8, and w2 “ 3, so that the conditions of

Proposition 2 hold. Then, a mixed-strategy equilibrium (see Figure 2) is

FSpxq “

$

’

’

&

’

’

%

0, for x ă 0,
?

9`2x´3
2 , for 0 ď x ď 8,

1, for x ą 8,

FW pxq “

$

’

’

&

’

’

%

0, for x ă 0,

x´3
?

9`2x`11
9´
?

9`2x
, for 0 ď x ď 8,

1, for x ą 8.

The expected payoff of each S-type player is 2, while the expected payoff of the W -type player is 0.

4.3 Case C: The weak player has a one-sided short support

In Case C, both types of players participate in the contest and none of them stays out with a

positive probability. However, the W -type player has a shorter support relative to the S-type

players, namely, the W -type player’s maximal bid is smaller than the maximal bids of the S-type

players.

Proposition 3 In the all-pay auction with two S-type players and one W -type player, if 2w2 ą

s1 ´ s2 ě w1, K1 “ s2 ´
r2w2´ps1´s2qs2

4p2w2´w1q
ě 0 and the monotonicity condition A2 holds, then there

exists an equilibrium in which the W -type player randomizes on the interval r0, αs, where α “

9



2 4 6 8

0.5

1

x

FSpxq

2 4 6 8

0.33

1

x

FW pxq

Figure 2: The distributions of the S- and W-type players, in equilibrium, given s1 “ 10, s2 “ 6, w1 “ 8, and

w2 “ 3. Note that these parameters meet the conditions of Proposition 2.

p2w2q
2´ps1´s2q2

4p2w2´w1q
, and the S-type players randomize on the interval r0, s1 ´ K1s according to their

non-decreasing cumulative distribution bid functions pFS , FW q which are

FSpxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, for x ă 0,

w2´
?
w2

2´2w2x`w1x

2w2´w1
, for 0 ď x ď α,

1` x`K1´s1
s1´s2

, for α ď x ď s1 ´K1,

1, for x ą s1 ´K1,

FW pxq “

$

’

’

&

’

’

%

0, for x ă 0,
x´s2FSpxq`K1

ps1´2s2qFSpxq`s2
, for 0 ď x ď α,

1, for x ą α.

(5)

Then, the expected payoffs of both S-type players is K1, and that of the W -type player is 0.

The following example shows that the conditions of Proposition 3 are feasible, and that there

are parameters which simultaneously support all needed constraints.

Example 3 Assume that there are two S-type players whose prize valuations are s1 “ 10, s2 “ 4,

and a W -type player whose prize valuations are w1 “ 5, and w2 “ 4, so that the conditions of

Proposition 3 hold. Then, the mixed-strategy equilibrium described in Proposition 3 (see Figure 3)

is

FSpxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, for x ă 0,

4´
?

16´3x
3 , for 0 ď x ď 7{3,

3x´1
18 , for 7{3 ď x ď 19{3,

1, for x ą 19{3,

FW pxq “

$

’

’

&

’

’

%

0, for x ă 0,

3x`4
?

16´3x´5
20´2

?
16´3x

, for 0 ď x ď 7{3,

1, for x ą 7{3.

The expected payoff of each S-type player is 61
3 , while the expected payoff of the W -type player is 0.

10



2.33 4 6.33

0.33

1

x

FSpxq

2.33 3

0.5

0.92
1

x

FW pxq

Figure 3: The distributions of the S- and W-type players, in equilibrium, given s1 “ 10, s2 “ 4, w1 “ 5, and

w2 “ 4. These values sustain the conditions of Proposition 3.

4.4 Case D: The weaker player has a two-sided short support

In this case, both types support a positive bid with a probability of 1, but the W -type player has

a shorter support relative to the S-type players. Specifically, the W -type player’s maximal bid is

smaller than that of the S-type players, and the W -type player’s minimal bid is larger than that

of the S-type players.

Proposition 4 In the all-pay auction with two S-type players and one W -type player, if 2w2 ą

s1 ´ s2 ě w1, K2 “
r2w2´ps1´s2qs2

p4w2´w1q
´ s2 ą 0, and the monotonicity condition A2 holds, then there

exists an equilibrium where the W -type player randomizes on the interval rα1, α2s, where

α1 “ s2
2w2´s2´

?
p2w2´s2q2´4K2p2w2´w1q

2p2w2´w1q
and α2 “ s2 ` ps1 ´ s2q

2w2 ´ ps1 ´ s2q

2p2w2 ´ w1q
,

and the S-type players randomize on the interval r0, s1s according to the following non-decreasing

bid-distributions

FSpxq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0, for x ă 0,

x
s2
, for 0 ď x ď α1,

w2´
?
w2

2´px`K2qp2w2´w1q

2w2´w1
, for α1 ď x ď α2,

x´s2
s1´s2

, for α2 ď x ď s1,

1, for x ą s1,

FW pxq “

$

’

’

&

’

’

%

0, for x ă α1,
x´s2FSpxq

ps1´2s2qFSpxq`s2
, for α1 ď x ď α2,

1, for x ą α2.

(6)

Under this equilibrium, the expected payoffs of the S-type players is 0, while the expected payoff of

the W -type player is K2.

The following example illustrates that the conditions of Proposition 4 are feasible, and that

there are parameters that simultaneously support all the required constraints.
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Example 4 Assume that there are two S-type players whose prize valuations are s1 “ 30, s2 “ 1,

and a W -type player whose prize valuations are w1 “ 25, and w2 “ 20, so that the conditions of

Proposition 4 hold. Then, the players’ mixed-strategy equilibrium-strategies (see Figure 4) are

FSpxq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0, for x ă 0,

x, for 0 ď x ď 39´
?

1460
30 u 0.026,

40´
?

1539´60x
30 , for 0.026 u 39´

?
1460

30 ď x ď 349
30 u 11.633,

x´1
29 , for 11.633 u 349

30 ď x ď 30,

1, for x ą 30,

FW pxq “

$

’

’

&

’

’

%

0, for x ă 39´
?

1460
30 u 0.026,

30x´40`
?

1539´60x
1150´28

?
1539´60x

, for 0.026 u 39´
?

1460
30 ď x ď 349

30 u 11.633,

1, for x ą 349
30 u 11.633.

The expected payoff of each S-type player is 0, and that of the W -type player is 1. 2.

2.6 ¨ 10´2 11.63 30

0.37

1

x

FSpxq

2.6 ¨ 10´2 11.63

0.5

1

x

FW pxq

Figure 4: The distributions of the S- and W-type players, in equilibrium, given s1 “ 30, s2 “ 1, w1 “ 25,

and w2 “ 20. Note that these parameters sustain the conditions of Proposition 4.

5 Three-player contests with one strong and two weak players

In this section, we assume that there are two W -type players and a single S-type player. Thus,

given a strategy profile pFS , FW q, the expected payoffs of all types under a bid of x P R are

UW px|FS , FW q “ w1FW pxqFSpxq ` w2rFSpxqp1´ FW pxqq ` FW pxqp1´ FSpxqqs ´ x

“ rpw1 ´ 2w2qFW pxq ` w2sFSpxq ` w2FW pxq ´ x,

12



and

USpx|FS , FW q “ s1F
2
W pxq ` 2s2FW pxqp1´ FW pxqq ´ x

“ ps1 ´ 2s2qF
2
W pxq ` 2s2FW pxq ´ x.

5.1 Case E: The strong player has a one-sided short support

In this set-up of two W -type players and a single S-type player, our equilibrium analysis shows

that both types participate with a probability of 1, but the S-type player has a shorter support

relative to the W -type players. Specifically, the S-type player’s minimal bid is larger than that of

the W -type players.

Proposition 5 In the all-pay auction with two W -type players and one S-type player, if

0 ă α “ w2
2∆psq

”

´2s2 ` w2 `
a

p2s2 ´ w2q
2 ` 4∆psqps1 ´ w1q

ı

ă w1 , where ∆psq “ s1 ´ 2s2,

and the monotonicity conditions  A1, A2 and 2s2 ą w2 hold, then there exists an equilibrium in

which the W -type players randomize on the interval r0, w1s, and the S-type player randomizes on

the interval rα,w1s according to their non-decreasing cumulative distribution bid functions pFS , FW q

which are

FW pxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, for x ă 0,

x
w2
, for 0 ď x ď α,

´s2`
?
s22`∆psqps1´w1`xq

∆psq , for α ď x ď w1,

1, for x ą w1,

FSpxq “

$

’

’

&

’

’

%

0, for x ă α,
x´w2FW pxq

pw1´2w2qFW pxq`w2
, for α ď x ď w1,

1, for x ą w1.

(7)

Then, the expected payoff of both W -type players is 0, and that of the S-type player is s1 ´ w1.

The following example shows that the conditions of Proposition 5 are feasible, and that there

are parameters which simultaneously support all the required constraints.

Example 5 Assume that there is a single S-type player whose prize valuations are s1 “ 5, s2 “ 2,

and two W -type players whose prize valuations are w1 “ 3, and w2 “ 2, so that the conditions of

Proposition 5 hold, where

α “ w2
2∆psq

”

´2s2 ` w2 `
a

p2s2 ´ w2q
2 ` 4∆psqps1 ´ w1q

ı

“
?

12´ 2.

Then, the players’ mixed-strategy equilibrium-strategies described in Proposition 5 (see Figure 5)

are

FW pxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, for x ă 0,

x
2 , for 0 ď x ď

?
12´ 2,

´2`
?

6` x, for
?

12´ 2 ď x ď 3,

1, for x ą 3,

FSpxq “

$

’

’

&

’

’

%

0, for x ă
?

12´ 2,

x`4´2
?

6`x
4´
?

6`x
, for

?
12´ 2 ď x ď 3,

1, for x ą 3.

13



The expected payoff of the S-type player is 2, while that of each of the W -type players is 0.

1.46 3

0.73

1

x

FSpxq

1.46 3

0.73

1

x

FW pxq

Figure 5: The distributions of the S- and W-type players, in equilibrium, given s1 “ 5, s2 “ 2, w1 “ 3, and

w2 “ 2. These values sustain the conditions of Proposition 5.

6 Extensions

6.1 A non-convex support for the ‘weak’ player

Thus far, we have provided sufficient conditions such that the W -type player’s distribution over

bids, FW , is monotonically increasing. However, in some cases, these conditions do not hold and

a different type of equilibrium arises. Specifically, if we consider the distribution FW given in

Proposition 2 and assume that A4 is violated (contrary to the condition in this proposition), then

FW may decrease close to zero.6 Thus, we need to depict new equilibrium strategies for which the

support of the W -type player’s strategy is non-convex.

Claim 1 Assume that there are two S-type players whose values of the prizes are s1 “ 8, s2 “ 6, and

a single W -type player whose values are w1 “ 4, and w2 “ 0. Then, a mixed-strategy equilibrium

(see Figure 6) is

FSpxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, for x ă 0,

3x
10 , for 0 ď x ď 25{9
?
x

2 , for 25{9 ď x ď 4

1, for x ą 4,

FW pxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, for x ă 0,

2
3 , for 0 ď x ď 25{9,
4`x´3

?
x

6´2
?
x
, for 25{9 ď x ď 4

1, for x ą 4.

(8)

Note that FW pxq is not strictly increasing, and is fixed for all 0 ď x ď 25{9. In that case, the

expected payoffs of both S-type players is 4, and that of the W -type player is 0.

6An easy way to see this is by substituting w2 “ 3 with w12 “ 0 in Example 2.
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2.77 4

0.83

1

x

FSpxq

2.77 4

0.67

1

x

FW pxq

Figure 6: The distributions of the S- and W-type players, in equilibrium, given s1 “ 8, s2 “ 6, w1 “ 4, and

w2 “ 0 (as given in Claim 1).

6.2 More than three players

We now proceed to study the case of n ą 3 players, where there are at least three players of the

same type and one player of a different type. This model is not only tractable, but even simpler

to analyze than the three-player contest, since the competition among more than two players of

the same type, regardless of whether their type is S or W , implies that their expected payoffs are

zero. This is demonstrated in the following propositions, where in Proposition 6 there are multiple

S-type players, and in Proposition 7 there are multiple W -type players.

Proposition 6 In the all-pay auction with n´1 S-type players and one W -type player, where either

rs1 ´ pn ´ 2qs2s ě maxtw1, pn ´ 1qw2u or pn ´ 2qs2 ě pn ´ 1qw2 hold, there exists an equilibrium

where the S-type players randomize on the interval r0, s1s according to their cumulative distribution

bid function FSpxq which is given by

s1F
n´2
S pxq ` s2pn´ 2qFn´3

S pxqr1´ FSpxqs ´ x “ 0, (9)

while the single W -type player bids 0 with a probability of 1. Then, the expected payoffs of all the

players is 0.

Now, let us consider the case with more-than-two W -type players and a single S-type one.

Proposition 7 Consider an all-pay auction with n´1 W -type players, one S-type player, and the

functions

FW pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, for x ă 0,
”

x
w2

ı

1
pn´2q

, for 0 ď x ď α1,

Gpxq, for α1 ď x ď w1,

1, for x ą w1,

FSpxq “

$

’

’

’

&

’

’

’

%

0, for x ă α1,
x´w2F

n´2
W pxq

Fn´3
W pxqrpw1´pn´2qw2qFW pxq`w2pn´3qs

, for α1 ď x ď w1,

1, for x ą w1,

(10)
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where α1 and Gpxq are given by

s1 ´ w1 ` α1 “ s1

”

α1
w2

ıpn´1q{pn´2q
` s2pn´ 2qα1

w2

„

1´
”

α1
w2

ı1{pn´2q


,

s1 ´ w1 ` x “ s1G
n´1pxq ` s2pn´ 2qGn´2pxqr1´Gpxqs.

If FSp¨q is non-decreasing on rα1, w1s and s1 ě s2pn´ 2q, then there exists an equilibrium in which

the W -type players randomize on the interval r0, w1s and the S-type player randomizes on the

interval ra1, w1s according to the given strategies pFS , FW q. Moreover, under this equilibrium, the

expected payoffs of all W -type players are 0, while the expected payoff of the single S-type player is

s1 ´ w1.

7 Conclusion

Most of the contest literature has focused on the all-pay auction with a single prize or several

identical prizes. In the current work, we study all-pay auctions with heterogeneous prizes and

demonstrate that the equilibrium strategies might be rather complex. In particular, we show that

the players’ distributions over bids are not necessarily strictly increasing. When the players’ distri-

butions are strictly increasing, we analyze the equilibrium strategies and show that the results may

significantly differ from the standard all-pay auctions, with either identical prizes or heterogeneous

prizes where the ratio of each pair of prizes is the same for all the players. We demonstrate that

the identity of the dominant player, namely, the player with the highest expected payoff changes

(in a non-trivial manner) depending on the heterogeneity of the prizes. Due to the complexity

of the analysis of our model with heterogeneous prizes, we assume a partial asymmetry among

the players. Obviously a sharper asymmetry among the players will produce less predictable and

plausibly, even more interesting results.

8 Appendix

8.1 Proof of Proposition 1

Proof. Consider the strategy profile pFS , FW q in which FW pxq “ 0 and FSpxq is given by (3), and

under which, the expected payoffs of all the players for a bid of x P r0, s1 ´ s2s are

USpx|FS , FW q “ s1FSpxq ` s2r1´ FSpxqs ´ x

“ ps1 ´ s2q ¨
x

s1 ´ s2
` s2 ´ x “ s2,

UW px|FS , FW q “ w1F
2
Spxq ` 2w2FSpxqr1´ FSpxqs ´ x

“ x2 w1 ´ 2w2

ps1 ´ s2q
2
` x

2w2 ´ s1 ` s2

s1 ´ s2
.

Clearly, the S-type players have no profitable deviations upwards which would induce a higher cost

while the probability of winning then is identical when the bid is equal to x “ s1 ´ s2.
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Now, to see that theW -type player has no profitable deviation from x “ 0, note that UW px|FS , FW q

is a quadratic function of x. For x “ s1´ s2, we get UW ps1´ s2|FS , FW q “ w1´ s1` s2 ď 0, where

the inequality follows from the lemma’s conditions. So, we now need to verify that the derivative

of UW at x “ 0 is negative. Specifically, U 1W p0|FS , FW q “
2w2´s1`s2
s1´s2

“ 2w2
s1´s2

´ 1 ď 1´ 1 “ 0, and

the W -type player has no profitable deviations as well, thus concluding the proof.

8.2 Proof of Proposition 2

Proof. Consider the strategy profile pFS , FW q given by (4). The proof is divided into two parts:

First we establish that FW is non-decreasing on r0, w1s, and then we prove that the given profile

pFS , FW q is an equilibrium.

Part I: FW is non-decreasing on r0, w1s.

It easy to verify that FSpxq is strictly increasing on r0, w1s, and its derivative is

fSpxq “
1

2

“

w2
2 ´ xp2w2 ´ w1q

‰´1{2
.

Note that A1 implies that FS is concave (i.e., f 1Spxq ă 0 for every x P r0, w1s), and  A1 suggests

that FS is convex (i.e., f 1Spxq ě 0 for every x P r0, w1s).

Denote ∆psq “ ps1 ´ 2s2q. To see that FW pxq is strictly increasing on r0, w1s as well, we

differentiate both sides of the equation USpx|FS , FW q “ s1 ´ w1, and then we get

0 “ ∆psqfSpxqFW pxq `∆psqFSpxqfW pxq ` s2fW pxq ` s2fSpxq ´ 1.

fW pxq “
1´ r∆psqFW pxq ` s2s fSpxq

r∆psqFSpxq ` s2s

Note that r∆psqFSpxq ` s2s ą 0 for every x P r0, w1s, since

r∆psqFSp0q ` s2s “ s2 ą 0 , r∆psqFSpw1q ` s2s “ s1 ´ s2 ą 0,

and FSpxq in increasing on r0, w1s. Therefore, FW pxq is increasing if and only if

r∆psqFW pxq ` s2s fSpxq ă 1, for all x P r0, w1s.

If FW is either convex or concave (which means that fW is a monotone function), we only need

to verify that FW is increasing near the end points of its support, 0 and w1. If that is indeed the

case (namely, if fW pxq ą 0, for x “ 0, w1), then FW is increasing on the interval r0, w1s. Therefore,

we can differentiate the previous equation once more, and get

0 “ ∆psqrf 1SpxqFW pxq ` 2fSpxqfW pxq ` FSpxqf
1
W pxqs ` s2rf

1
W pxq ` f

1
Spxqs,

f 1W pxq “
´f 1Spxqrs2 `∆psqFW pxqs ´ 2∆psqfSpxqfW pxq

s2 `∆psqFSpxq
.

The conditions pA1, A2q imply that f 1W pxq ě 0 and FW is convex, while the conditions p A1, A2q

ensure that f 1W pxq ď 0 and FW is concave. In any case, fW is monotone, and we need to verify
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that fW pxq ą 0 for x “ 0, w1. Specifically,

r∆psqFW pw1q ` s2s fSpw1q “ r∆psq ` s2s
1

2pw1 ´ w2q
ă 1,

r∆psqFW p0q ` s2s fSp0q “

„

∆psq
s1 ´ w1

s2
` s2



1

2w2
“

∆psqps1 ´ w1q ` s
2
2

2w2s2
ă 1,

where the first inequality follows from A3, and the second inequality follows from A4, thus conclud-

ing the first part of the proof.

Part II: pFS , FW q is an equilibrium.

We begin by showing that both functions are well-defined CDFs given that FW is non-decreasing.

Note that FW p0q “
s1´w1
s2

ě FSp0q “ 0, where the inequality follows from the assumption that

w1 ě s1 ´ s2. Also, note that FW pw1q “ FSpw1q “ 1, and that one can easily verify that FSpxq is

strictly increasing on r0, w1s. Thus, the functions FS and FW are well-defined CDFs, and we can

now evaluate the players’ payoffs at every point x, to establish an equilibrium.

Under the given strategy profile, the expected payoff of all S-type players for a bid of x P r0, w1s

is

USpx|FS , FW q “ ∆psqFSpxqFW pxq ` s2 rFW pxq ` FSpxqs ´ x

“ ∆psqFSpxq
x´ s2FSpxq ` s1 ´ w1

∆psqFSpxq ` s2
` s2

„

x´ s2FSpxq ` s1 ´ w1

∆psqFSpxq ` s2
` FSpxq



´ x

“
∆psq

“

xFSpxq ´ s2F
2
Spxq

‰

∆psqFSpxq ` s2
`
xs2 ` s2∆psqF 2

Spxq

∆psqFSpxq ` s2
` ps1 ´ w1q

∆psqFSpxq ` s2

∆psqFSpxq ` s2
´ x

“
∆psqxFSpxq ` xs2

∆psqFSpxq ` s2
` s1 ´ w1 ´ x “ s1 ´ w1.

Therefore, all the S-type players are indifferent between any bid x P r0, w1s, and no player has

an incentive to deviate upwards above w1. The expected payoff of the W -type player for a bid of

x P r0, w1s is

UW px|FS , FW q “ rw1 ´ 2w2sF
2
Spxq ` 2w2FSpxq ´ x

“ rw1 ´ 2w2s

«

w2 ´
a

w2
2 ´ 2w2x` w1x

2w2 ´ w1

ff2

` 2w2
w2 ´

a

w2
2 ´ 2w2x` w1x

2w2 ´ w1
´ x

“ ´

«

w2
2 ´ 2w2

a

w2
2 ´ 2w2x` w1x` w

2
2 ´ 2w2x` w1x

2w2 ´ w1

ff

` 2w2
w2 ´

a

w2
2 ´ 2w2x` w1x

2w2 ´ w1
´ x

“
2w2

a

w2
2 ´ 2w2x` w1x` 2w2x´ w1x´ 2w2

a

w2
2 ´ 2w2x` w1x

2w2 ´ w1
´ x

“
2w2x´ w1x

2w2 ´ w1
´ x “ 0.
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Thus, the W -type player has no profitable deviation, as well, and the profile is indeed an equilibrium

with expected payoffs s1 ´ w1 and 0, as stated.

8.3 Proof of Proposition 3

Proof. Consider the strategy profile pFS , FW q given by (5). The proof is divided into two parts:

First we establish that FW is non-decreasing on r0, w1s, and second we prove that the given profile

pFS , FW q is an equilibrium.

Part I: FW is non-decreasing on r0, w1s.

Note that FSpxq is strictly increasing on r0, αs, and its derivative is

fSpxq “
1

2

“

w2
2 ´ xp2w2 ´ w1q

‰´1{2
.

Note that 2w2 ą s1´s2 ě w1 implies that FS is convex (i.e., f 1Spxq ě 0 for every x P r0, w1s). Recall

that ∆psq “ ps1 ´ 2s2q. Similarly to the first part of the proof of Proposition 2, we differentiate

both sides of the equation USpx|FS , FW q “ K1, and we get

fW pxq “
1´ r∆psqFW pxq ` s2s fSpxq

r∆psqFSpxq ` s2s
,

Thus, we conclude that FW pxq is non-decreasing in r0, αs if and only if

r∆psqFW pxq ` s2s fSpxq ď 1, for all x P r0, αs.

Again, as in the proof of Proposition 2, the conditions 2w2 ą s1 ´ s2 ě w1 and A2 ensure that

F 2W pxq ď 0 and that FW is concave. Thus, fW is a monotone function and it remains to verify that

fW pxq ě 0 for x “ 0 and x “ α. Specifically, for x “ 0 we get

r∆psqFW p0q ` s2s fSp0q “

„

∆psq
K1

s2
` s2



1

2w2

“

„

∆psq

„

1´
r2w2 ´ ps1 ´ s2qs

2

4s2p2w2 ´ w1q



` s2



1

2w2

ă

„

s1 ´ s2 ´
∆psqr2w2 ´ ps1 ´ s2qs

2

4s2p2w2 ´ w1q



1

s1 ´ s2

“ 1´
∆psqr2w2 ´ ps1 ´ s2qs

2

4s2ps1 ´ s2qp2w2 ´ w1q
ď 1,

where the first inequality follows from the condition 2w2 ą s1´s2, and the second inequality follows

from the fact that ∆psqr2w2´ps1´s2qs2

4s2ps1´s2qp2w2´w1q
ě 0. Moving on to x “ α, we get

r∆psqFW pαq ` s2s fSpαq “ r∆psq ¨ 1` s2s
1

2
a

w2
2 ´ αp2w2 ´ w1q

“ rs1 ´ s2s
1

b

4w2
2 ´ 4p2w2 ´ w1q

p2w2q
2´ps1´s2q2

4p2w2´w1q

“ 1,
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as needed. This concludes the first part of the proof.

Part II: pFS , FW q is an equilibrium.

We begin by showing that both functions are well-defined CDFs, given that FW is non-decreasing.

Note that FW p0q “
K1
s2
ě FSp0q “ 0, where the inequality follows from the assumption that K1 ě 0.

Also note that FSps1 ´K1q “ 1, and that

FSpαq “
w2 ´

b

w2
2 `

p2w2q
2´ps1´s2q2

4p2w2´w1q
pw1 ´ 2w2q

2w2 ´ w1
“
w2 ´

s1´s2
2

2w2 ´ w1
“ 1`

α`K1 ´ s1

s1 ´ s2
. (11)

Therefore, ps1 ´ s2qFSpαq “ α`K1 ´ s2. Hence,

FW pαq “
α´ s2FSpαq `K1

ps1 ´ s2qFSpαq ´ s2FSpαq ` s2
“

α´ s2FSpαq `K1

α`K1 ´ s2 ´ s2FSpαq ` s2
“ 1.

Similarly to the proof of Proposition 2, it is straightforward to verify that FSpxq is strictly increasing

on r0, w1s. We thus conclude that the functions FS and FW are well-defined CDFs, and can now

evaluate the players’ point-wise payoffs in order to establish an equilibrium.

Under the given strategy profile, the expected payoffs of the W -type player for a bid of x P r0, αs

is

UW px|FS , FW q “ rw1 ´ 2w2sF
2
Spxq ` 2w2FSpxq ´ x

“ rw1 ´ 2w2s

«

w2 ´
a

w2
2 ´ 2w2x` w1x

2w2 ´ w1

ff2

` 2w2
w2 ´

a

w2
2 ´ 2w2x` w1x

2w2 ´ w1
´ x

“ ´

«

w2
2 ´ 2w2

a

w2
2 ´ 2w2x` w1x` w

2
2 ´ 2w2x` w1x

2w2 ´ w1

ff

` 2w2
w2 ´

a

w2
2 ´ 2w2x` w1x

2w2 ´ w1
´ x

“
2w2x´ w1x

2w2 ´ w1
´ x “ 0.

Therefore, the W -type player is indifferent between any bid x P r0, αs. In addition, a bid of

x P pα, s1 ´K1s would produce a negative payoff for the W -type player as rFSpxq ´ 1sps1 ´ s2q `

s1 ´K1 “ x and

UW px|FS , FW q “ rw1 ´ 2w2sF
2
Spxq ` 2w2FSpxq ´ rFSpxq ´ 1sps1 ´ s2q ´ s1 `K1

“ ∆pwqt2 ` p2w2 ´∆ps1qqt´ s2 `K1,

where t “ F 2
Spxq, ∆pwq “ w1´2w2, and ∆ps1q “ s1´s2. Denote Hptq “ ∆pwqt2`p2w2´∆ps1qqt´

s2 ` K1, which is a parabolic function with a unique maximum point (by the assumption that

∆pwq ă 0) and HpFSpαqq “ 0. Moreover, H 1ptq “ 2∆pwqt` p2w2 ´∆ps1qq and

H 1pFSpαqq “ 2∆pwqFSpαq ` p2w2 ´∆ps1qq “ ´2
“

w2 ´
s1´s2

2

‰

` p2w2 ´∆ps1qq “ 0,
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where the second equality follows from Equation (11). Thus, Hptq is decreasing for every t ą FSpαq,

which implies that UW px|FS , FW q ă 0 for every x ą α, as needed. Thus, the W -type player has an

incentive to deviate upwards, above α.

We now consider the S-type players. Denote ∆psq “ s1 ´ 2s2. The expected payoff of the

S-type players for a bid of x P r0, αs is

USpx|FS , FW q “ ∆psqFSpxqFW pxq ` s2 rFW pxq ` FSpxqs ´ x

“ ∆psqFSpxq
x´ s2FSpxq `K1

∆psqFSpxq ` s2
` s2

„

x´ s2FSpxq `K1

∆psqFSpxq ` s2
` FSpxq



´ x

“
∆psq

“

xFSpxq ´ s2F
2
Spxq

‰

∆psqFSpxq ` s2
`
xs2 ` s2∆psqF 2

Spxq

∆psqFSpxq ` s2
`K1

∆psqFSpxq ` s2

∆psqFSpxq ` s2
´ x

“
∆psqxFSpxq ` xs2

∆psqFSpxq ` s2
`K1 ´ x “ K1,

and for a bid of x P rα, s1 ´K1s, the expected payoff is

USpx|FS , FW q “ ∆psqFSpxq ` s2 r1` FSpxqs ´ x

“ ∆ps1qFSpxq ` s2 ´ x

“ ∆ps1q

„

1`
x`K1 ´ s1

∆ps1q



` s2 ´ x

“ ∆ps1q ` x`K1 ´ s1 ` s2 ´ x “ K1.

Thus, no player has a profitable deviation, and the stated profile is indeed an equilibrium, with

expected payoffs of K1 and 0, as needed.

8.4 Proof of Proposition 4

Proof. Consider the strategy profile pFS , FW q given by (6). The proof is divided into two parts:

First we establish that FW is non-decreasing on r0, w1s, and then we prove that this profile is an

equilibrium.

Part I: FW is non-decreasing on r0, w1s.

Note that FSpxq is strictly increasing on r0, αs, and its derivative is

fSpxq “
1

2

“

w2
2 ´ px`K2qp2w2 ´ w1q

‰´1{2
.

Note that 2w2 ą s1´s2 ě w1 implies that FS is convex (i.e., f 1Spxq ě 0 for every x P r0, w1s). Recall

that ∆psq “ ps1 ´ 2s2q. Similarly to the first part of the proof of Proposition 2, we differentiate

both sides of the equation USpx|FS , FW q “ 0, and we get

fW pxq “
1´ r∆psqFW pxq ` s2s fSpxq

r∆psqFSpxq ` s2s
,
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We can conclude that FW pxq is non-decreasing in rα1, α2s if and only if

r∆psqFW pxq ` s2s fSpxq ď 1, for all x P rα1, α2s.

As in the proof of Proposition 2, the conditions 2w2 ą s1 ´ s2 ě w1 and A2 ensure that

f 1W pxq ď 0 and FW is concave. Thus, fW is a monotone function and it remains to verify that

fW pxq ě 0 for x “ α1, α2. Note that

α2 `K2 “ s2 ` ps1 ´ s2q
2w2 ´ ps1 ´ s2q

2p2w2 ´ w1q
`
r2w2 ´ ps1 ´ s2qs

2

4p2w2 ´ w1q
´ s2

“ ps1 ´ s2q
2w2 ´ ps1 ´ s2q

2p2w2 ´ w1q
`

4w2
2 ´ 4w2ps1 ´ s2q ` ps1 ´ s2q

2

4p2w2 ´ w1q

“
´ps1 ´ s2q

2

2p2w2 ´ w1q
`

4w2
2 ` ps1 ´ s2q

2

4p2w2 ´ w1q
“

4w2
2 ´ ps1 ´ s2q

2

4p2w2 ´ w1q
,

and

fSpα2q “
1

2

“

w2
2 ´ pα2 `K2qp2w2 ´ w1q

‰´1{2

“
1

2

„

w2
2 ´

4w2
2 ´ ps1 ´ s2q

2

4p2w2 ´ w1q
p2w2 ´ w1q

´1{2

“
1

s1 ´ s2
.

In addition, since α1 ď α2, we get

fSpα1q “
1

2

“

w2
2 ´ pα1 `K2qp2w2 ´ w1q

‰´1{2
ď

1

2

“

w2
2 ´ pα2 `K2qp2w2 ´ w1q

‰´1{2
“

1

s1 ´ s2
.

Thus, using A2 (i.e., s1 ą 2s2), for each i “ 1, 2, it follows that

r∆psqFW pαiq ` s2s fSpαiq ď r∆psq ¨ 1` s2s
1

s1 ´ s2

“ rps1 ´ 2s2q ` s2s
1

s1 ´ s2
“ 1,

as needed. Thus, we conclude the first part of the proof.

Part II: pFS , FW q is an equilibrium.

We begin by showing that both functions are well-defined CDFs, given that FW is non-decreasing.
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Note that FSp0q “ 0 ă FSps1q “ 1 and FS is strictly increasing in r0, s1s. Also note that

α1 “ s2
2w2 ´ s2 ´

a

p2w2 ´ s2q
2 ´ 4K2p2w2 ´ w1q

2p2w2 ´ w1q

“ s2

2w2 ´ s2 ´

c

p2w2 ´ s2q
2 ´ 4

´

r2w2´ps1´s2qs2

4p2w2´w1q
´ s2

¯

p2w2 ´ w1q

2p2w2 ´ w1q

“ s2
2w2 ´ s2 ´

a

2s1s2 ´ s2
1 ` 4s1w2 ´ 4s2w1

2p2w2 ´ w1q

ď s2
2w2 ´ s2 ´

a

2s1s2 ´ s2
1 ` 2s1ps1 ´ s2q ´ 4s2ps1 ´ s2q

2p2w2 ´ w1q

“ s2
2w2 ´ s2 ´

a

s2
1 ´ 4s2s1 ` 4s2

2

2p2w2 ´ w1q

“ s2
2w2 ´ s2 ´ ps1 ´ 2s2q

2p2w2 ´ w1q

“ s2
2w2 ´ ps1 ´ s2q

2p2w2 ´ w1q
ď s2 ¨ 1 ă α2,

as needed. Moreover, we can show that the proposition’s conditions imply that α1 ě 0 (i.e.,

2w2 ě s2), and it is a straightforward to verify that FS is continuous, specifically at x “ α1, α2.

Therefore, we can conclude that both functions are well defined.

Let us now verify that the profile of strategies which consists of FW and FS constitutes an

equilibrium. We begin with the W -type player. For x P rα1, α2s we get

UW px|FS , FW q “ rw1 ´ 2w2sF
2
Spxq ` 2w2FSpxq ´ x

“ rw1 ´ 2w2s

«

w2 ´
a

w2
2 ´ px`K2qp2w2 ´ w1q

2w2 ´ w1

ff2

` 2w2
w2 ´

a

w2
2 ´ px`K2qp2w2 ´ w1q

2w2 ´ w1
´ x

“ ´
2w2

2 ´ px`K2qp2w2 ´ w1q ´ 2w2

a

w2
2 ´ px`K2qp2w2 ´ w1q

2w2 ´ w1

` 2w2
w2 ´

a

w2
2 ´ px`K2qp2w2 ´ w1q

2w2 ´ w1
´ x

“
px`K2qp2w2 ´ w1q

2w2 ´ w1
´ x “ K2.

Therefore, the W -type player is indifferent between all values of x P rα1, α2s that produce an

expected payoff of K2.

Now consider x P r0, α1q,

UW px|FS , FW q “ rw1 ´ 2w2sF
2
Spxq ` 2w2FSpxq ´ x

“ rw1 ´ 2w2s
x2

s2
2

` 2w2
x

s2
´ x.
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Thus, for x P r0, α1q, the function UW px|FS , FW q is parabolic with UW p0|FS , FW q “ 0, U 1W p0|FS , FW q ě

0 (which follows from 2w2 ą s1 ´ s2 ě w1 and K2 ą 0 ) and

U 1W pα1|FS , FW q “ 2 rw1 ´ 2w2s
α1

s2
2

`
2w2

s2
´ 1

“ 2 rw1 ´ 2w2s s2
2w2 ´ s2 ´

a

p2w2 ´ s2q
2 ´ 4K2p2w2 ´ w1q

2p2w2 ´ w1qs2
2

`
2w2

s2
´ 1

“ ´
2w2 ´ s2 ´

a

p2w2 ´ s2q
2 ´ 4K2p2w2 ´ w1q

s2
`

2w2 ´ s2

s2

“

a

p2w2 ´ s2q
2 ´ 4K2p2w2 ´ w1q

s2
ě 0.

Since UW pα1|FS , FW q “ K2 and UW px|FS , FW q is increasing for x P r0, α1q, we conclude that

UW px|FS , FW q ď K2 for every x P r0, α1q, and that there exists no profitable deviation downwards

for the W -type player.

We now consider x P pα2, s1s.

UW px|FS , FW q “ rw1 ´ 2w2sF
2
Spxq ` 2w2FSpxq ´ x

“ rw1 ´ 2w2s
px´ s2q

2

ps1 ´ s2q
2
` 2w2

x´ s2

s1 ´ s2
´ x.

So,

U 1W pα2|FS , FW q “ 2 rw1 ´ 2w2s

´

s2 ` ps1 ´ s2q
2w2´ps1´s2q
2p2w2´w1q

´ s2

¯

ps1 ´ s2q
2

`
2w2

s1 ´ s2
´ 1

“ ´
2w2 ´ ps1 ´ s2q

s1 ´ s2
`

2w2

s1 ´ s2
´ 1 “ 0,

while UW pα2|FS , FW q “ K2, and UW ps1|FS , FW q “ w1 ´ s1 ă 0. Therefore, we can conclude that

UW px|FS , FW q ď K2 for every x P pα2, s1s, as needed. Therefore, we have established that the

W -type player has no profitable deviations.

We now consider the S-type players. For x P r0, α1q, we get

USpx|FS , FW q “ ps1 ´ 2s2qFSpxqFW pxq ` s2 rFW pxq ` FSpxqs ´ x

“ ps1 ´ 2s2qFSpxq ¨ 0` s2

„

0`
x

s2



´ x “ 0,

whereas, for x P pα2, s1s, we get

USpx|FS , FW q “ ps1 ´ 2s2qFSpxqFW pxq ` s2 rFW pxq ` FSpxqs ´ x

“ ps1 ´ 2s2q
x´ s2

s1 ´ s2
¨ 1` s2

„

1`
x´ s2

s1 ´ s2



´ x

“ ps1 ´ 2s2q
x´ s2

s1 ´ s2
` s2

x` s1 ´ 2s2

s1 ´ s2
´ x “ 0,
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Therefore, in these intervals, the S-type players get an expected payoff of 0 for every bid. In

addition, for x P rα1, α2s,

USpx|FS , FW q “ ps1 ´ 2s2qFSpxq
x´ s2FSpxq

ps1 ´ 2s2qFSpxq ` s2
` s2

„

x´ s2FSpxq

ps1 ´ 2s2qFSpxq ` s2
` FSpxq



´ x

“ rps1 ´ 2s2qFSpxq ` s2s
x´ s2FSpxq

ps1 ´ 2s2qFSpxq ` s2
` s2FSpxq ´ x “ 0.

Hence, we can conclude that the S-type players have an expected payoff of 0 for every x P r0, s1s,

and that there are no profitable deviations for any of the players, thus establishing an equilibrium.

8.5 Proof of Proposition 5

Proof. Consider the strategy profile pFS , FW q given by (7). The proof is divided into two parts:

First we establish that FS is non-decreasing on rα,w1s, then we prove that the given profile pFS , FW q

is an equilibrium.

Part I: FS is non-decreasing on rα,w1s.

Note that FW pxq is strictly increasing and continuous in r0, w1s (i.e., α is fixed specifically so

that FW is continuous), and its derivatives in rα,w1s are

fW pxq “
1

2

“

s2
2 `∆psqps1 ´ w1 ` xq

‰´1{2
,

f 1W pxq “ ´
∆psq

4

“

s2
2 `∆psqps1 ´ w1 ` xq

‰´3{2
.

Since ∆psq ą 0, we deduce that FW is concave (namely, f 1W pxq ď 0 for every x P rα,w1s). Now, we

can differentiate (twice) both sides of the following equation

UW px|FS , FW q “ rpw1 ´ 2w2qFW pxq ` w2sFSpxq ` w2FW pxq ´ x “ 0,

and get

fSpxq “
1´ rpw1 ´ 2w2qFSpxq ` w2s fW pxq

rpw1 ´ 2w2qFW pxq ` w2s
,

f 1Spxq “
f 1W pxq rp2w2 ´ w1qFSpxq ´ w2s ` 2p2w2 ´ w1qfW pxqfSpxq

rpw1 ´ 2w2qFW pxq ` w2s
.

Thus, we conclude that FSpxq is non-decreasing in rα,w1s if and only if

rpw1 ´ 2w2qFSpxq ` w2s fW pxq ď 1, for all x P rα,w1s.

Combining the fact that f 1W pxq ď 0 and 2w2 ą w1 (by assumption), we get that f 1Spxq ą 0 for every

x P rα,w1s. This means that fS is a monotone function, FS is convex, and it remains to verify that
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fSpxq ě 0 for x P tα,w1u. Specifically,

fSpαq “
1´ rpw1 ´ 2w2qFSpαq ` w2s fW pαq

rpw1 ´ 2w2qFW pαq ` w2s

“
1´ w2fW pαq

rpw1 ´ 2w2qFW pαq ` w2s

“
1´ w2r2

a

s2
2 `∆psqps1 ´ w1 ` αqs

´1

rpw1 ´ 2w2qFW pαq ` w2s
ą 0,

where the last inequality follows from the assumptions that 2s2 ą w2 and ∆psq ą 0. In addition,

fSpw1q “
1´ rpw1 ´ 2w2qFSpw1q ` w2s fW pw1q

rpw1 ´ 2w2qFW pw1q ` w2s

“
1´ pw1 ´ w2q

1
2

“

s2
2 `∆psqps1 ´ w1 ` w1q

‰´1{2

w1 ´ w2

“
1´ w1´w2

2ps1´s2q

w1 ´ w2

ą
1´ 2w2´w2

2p2s2´s2q

w1 ´ w2
“

2s2 ´ w2

2s2pw1 ´ w2q
ą 0,

where the first inequality follows from w1 ă 2w2 and s1 ą 2s2, and the second inequality follows

from 2s2 ą w2. Thus, FS is increasing in rα,w1s, and we conclude the first part of the proof.

Part II: pFS , FW q is an equilibrium.

Note that both functions are well-defined CDFs, given that FS is non-decreasing. Specifically,

FW p0q “ FSpαq “ 0 ă FW pw1q “ FSpw1q “ 1, and FW is strictly increasing and continuous (by

the choice of α) in r0, w1s.

We now verify that the profile of strategies pFW , FSq constitutes an equilibrium. We begin with

the W -type players. For x P r0, αs, we get

UW px|FS , FW q “ rpw1 ´ 2w2qFW pxq ` w2sFSpxq ` w2FW pxq ´ x

“

”

pw1 ´ 2w2q
x
w2
` w2

ı

¨ 0` w2
x
w2
´ x “ 0,

and for x P rα,w1s, we get

UW px|FS , FW q “ rpw1 ´ 2w2qFW pxq ` w2sFSpxq ` w2FW pxq ´ x

“ rpw1 ´ 2w2qFW pxq ` w2s
x´ w2FW pxq

pw1 ´ 2w2qFW pxq ` w2
` w2FW pxq ´ x “ 0.

Hence, the W -type players are indifferent between all values of x P r0, w1s which produce an

expected payoff of 0.
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We now consider the S-type player. For x P rα,w1s, we get

USpx|FS , FW q “ ∆psqF 2
W pxq ` 2s2FW pxq ´ x

“ ∆psq

«

´s2 `
a

s2
2 `∆psqps1 ´ w1 ` xq

∆psq

ff2

` 2s2
´s2 `

a

s2
2 `∆psqps1 ´ w1 ` xq

∆psq
´ x

“
s2

2 ´ 2s2

a

s2
2 `∆psqps1 ´ w1 ` xq ` s

2
2 `∆psqps1 ´ w1 ` xq

∆psq

` 2s2
´s2 `

a

s2
2 `∆psqps1 ´ w1 ` xq

∆psq
´ x

“
∆psqps1 ´ w1 ` xq

∆psq
´ x “ s1 ´ w1,

therefore, the expected payoff of the S-type player is s1 ´w1 for every x P rα,w1s. In addition, we

consider x P r0, αs, and note that USpx|FS , FW q constitutes the following parabolic function,

USpx|FS , FW q “ ps1 ´ 2s2qF
2
W pxq ` 2s2FW pxq ´ x

“ ps1 ´ 2s2q
x2

w2
2

` 2s2
x

w2
´ x.

By differentiating and inserting in x “ α, we get

U 1Spα|FS , FW q “ ∆psq
2α

w2
2

`
2s2

w2
´ 1

“ ∆psq
2 w2

2∆psq

”

´2s2 ` w2 `
a

p2s2 ´ w2q
2 ` 4∆psqps1 ´ w1q

ı

w2
2

`
2s2

w2
´ 1

“
´2s2 ` w2 `

a

p2s2 ´ w2q
2 ` 4∆psqps1 ´ w1q

w2
`

2s2

w2
´ 1 ą 0,

As such, the function is increasing for x below and sufficiently close to α. Combining this result

with the fact that USp0|FS , FW q “ 0, we conclude that USpx|FS , FW q ă USpα|FS , FW q “ s1´w1 for

x P r0, αs, and that the S-type player does not have a profitable deviation downwards. To conclude,

we have shown that there are no profitable deviations for any of the players, thus establishing an

equilibrium.

8.6 Proof of Claim 1

Proof. Consider the strategy profile pFS , FW q given by (8). It is straightforward to verify that

both CDFs are well defined. Clearly, no player can deviate to x ă 0, nor has an incentive to bid
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above 4, so we consider x P r0, 25{9s. For the S-type players, we get

USpx|FS , FW q “ ps1 ´ 2s2qFSpxqFW pxq ` s2 rFW pxq ` FSpxqs ´ x

“ ´4 ¨
2

3
¨

3x

10
` 6

„

2

3
`

3x

10



´ x “ 4,

while for the W -type player we get

UW px|FS , FW q “ pw1 ´ 2w2qF
2
Spxq ` 2w2FSpxq ´ x

“ 4
9x2

100
´ x ď 0.

Now, we consider x P r25{9, 4s, and get

USpx|FS , FW q “ ps1 ´ 2s2qFSpxqFW pxq ` s2 rFW pxq ` FSpxqs ´ x

“ ´4 ¨
4` x´ 3

?
x

6´ 2
?
x

¨

?
x

2
` 6

„

4` x´ 3
?
x

6´ 2
?
x

`

?
x

2



´ x

“ p6´ 2
?
xq

4` x´ 3
?
x

6´ 2
?
x

` 3
?
x´ x “ 4.

Thus, both S-type players are indifferent between all values of x P r0, 4s. For the W -type player

we get

UW px|FS , FW q “ pw1 ´ 2w2qF
2
Spxq ` 2w2FSpxq ´ x

“ 4
x

4
´ x “ 0.

Hence, no player has an incentive to deviate, and the given profile is indeed an equilibrium.

8.7 Proof of Proposition 6

Proof. Consider the strategy profile pFS , FW q where FW pxq “ 0 and FSpxq is given by (9). Fix

FW “ 1txě0u so that the W -type player always bids x “ 0. Given some CDF FS with no atoms in

r0, s1q, the W -type player has an expected payoff of 0, whereas an S-type player who bids x has an

expected payoff of

USpx|FS , FW q “ s1F
n´2
S pxq ` s2pn´ 2qFn´3

S pxqp1´ FSpxqq ´ x.

Now, we fix FS such that USpx|FS , FW q “ 0 for every x P r0, s1s. Note that this CDF is well defined

since FSpxq “ 0 for every x ď 0, FSpxq “ 1 for every x ě s1, and the function is strictly increasing

in the given interval.

To show that pFS , FW q is an equilibrium, we consider a unilateral deviation of some player,

either of type W or type S. An S-type player has no profitable deviation for a bid x P r0, s1s since

all bids generate a payoff of zero. In addition, any deviation upwards to x ą s1 entails a negative

expected payoff. Thus, we can focus on a deviation of an W -type player.

Assume that the W -type player bids x ą 0, and that rs1 ´ pn ´ 2qs2s ě maxtw1, pn ´ 1qw2u.
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According the Eq. (2), the player’s expected payoff would be

UW px|FS , FW q “ w1F
n´1
S pxq ` w2pn´ 1qp1´ FSpxqqF

n´2
S pxq ´ x

ď rs1 ´ pn´ 2qs2sF
n´1
S pxq ` rs1 ´ pn´ 2qs2sr1´ FSpxqsF

n´2
S pxq ´ x

“ ps1 ´ pn´ 2qs2qF
n´2
S pxq ´ x

ă s1F
n´2
S pxq ` s2pn´ 2qFn´3

S pxqp1´ FSpxqq ´ x

“ USpx|FS , FW q “ 0,

where the first inequality follows from the condition rs1´pn´2qs2s ě maxtw1, pn´1qw2u, and the

second inequality follows from the fact that s2pn ´ 2qFn´3pxq ą 0 for x ą 0. Otherwise, assume

that pn´ 2qs2 ě pn´ 1qw2 and recall that s1 ą w1. Then,

UW px|FS , FW q “ w1F
n´1
S pxq ` w2pn´ 1qp1´ FSpxqqF

n´2
S pxq ´ x

ă s1F
n´2
S pxq ` s2pn´ 2qp1´ FSpxqqF

n´3
S pxq ´ x

“ USpx|FS , FW q “ 0,

where the inequality follows from our preliminary assumptions, pn´ 2qs2 ě pn´ 1qw2 and s1 ą w1,

along with the fact that FSpxq ď 1. We conclude that the W -type player has no profitable deviation

upwards, and pFS , FW q is indeed an equilibrium.

8.8 Proof of Proposition 7

Proof. Consider the strategy profile pFS , FW q given by (10). We begin by showing that the

functions FW and FS are well-defined CDFs, given that FS is non decreasing in rα1, w1s. For that

purpose, we first need to prove that α1 and Gpxq are well-defined. Consider the equation

s1 ´ w1 ` α1 “ s1

”

α1
w2

ıpn´1q{pn´2q
` s2pn´ 2qα1

w2

„

1´
”

α1
w2

ı1{pn´2q


.

If we substitute α1 with 0, then the LHS is strictly greater than the RHS. However, for α1 “ w2,

we obtain the reverse inequality. Thus, by the Mean-Value Theorem (MVT), there exists a solution

α1 P r0, w1s. Similarly, for every x P pα1, w1q, we can take the equation

s1 ´ w1 ` x “ s1G
n´1pxq ` s2pn´ 2qGn´2pxqr1´Gpxqs,

and substitute Gpxq with 0 and 1. Again, we get reverse inequalities (between the two cases), and

the MVT ensures that a solution Gpxq exists. Note that for x “ w1 we get Gpw1q “ 1, and for

x “ α1 both equations coincide so that Gpα1q “

”

α1
w2

ı

1
n´2

. Thus, α1 and Gpxq are well-defined,

and FW is continuous, thus implying that FS is continuous, as well. By differentiating both sides

of the second equation, we get

G1pxq “
1

Gn´3pxq rGpxqrs1pn´ 1q ´ s2pn´ 2qpn´ 1qs ` s2pn´ 2q2s
ě 0, @Gpxq P p0, 1s.

29



Therefore, Gpxq is non-decreasing. We conclude that both functions, FW and FS , are well-defined

CDFs, as needed.

We next establish an equilibrium, beginning with the single S-type player. Taking the expected

payoff of the single S-type player and inserting in FW for x P rα1, w1s, we get

USpx|FS , FW q “ s1G
n´1pxq ` s2pn´ 2qGn´2pxqr1´Gpxqs ´ x “ s1 ´ w1,

where the equality follows from the definition of Gpxq. To evaluate a possible deviation of the

S-type player downwards to x P r0, α1q, consider the functions

USpx|FS , FW q “ rs1 ´ s2pn´ 2qsFn´1
W pxq ` s2pn´ 2qFn´2

W pxq ´ x

“ rs1 ´ s2pn´ 2qs ¨

„

x

w2



n´1
n´2

`
s2pn´ 2qx

w2
´ x

dUSpx|FS , FW q

dx
“ rs1 ´ s2pn´ 2qs ¨

n´ 1

pn´ 2qx
¨

„

x

w2



n´1
n´2

`
s2pn´ 2q

w2
´ 1.

Since s1 ě s2pn ´ 2q, it follows that U 1S is non-decreasing for x P r0, α1q. In other words, the

monotonicity of U 1S implies that US is convex with no interior maxima in x P r0, α1q . Since

USp0|FS , FW q “ 0 ă s1 ´ w1 “ USpα1|FS , FW q, we conclude that USpx|FS , FW q ă USpα1|FS , FW q

for every x P r0, α1q, which implies that the S-type player has no profitable deviations downwards.

For the W -type players, the expected payoff is given by

UW px|FS , FW q “ w1F
n´2
W pxqFSpxq`w2

“

p1´ FSpxqqF
n´2
W pxq ` pn´ 3qFn´3

W pxqFSpxqp1´ FW pxqq
‰

´x.

For x P r0, α1s we get

UW px|FS , FW q “ w1F
n´2
W pxq ¨ 0` w2

“

p1´ 0qFn´2
W pxq ` pn´ 3qFn´3

W pxq ¨ 0 ¨ p1´ FW pxqq
‰

´ x

“ w2F
n´2
W pxq ´ x

“ w2
x

w2
´ x “ 0.

For x P rα1, w1s, we can see that FS is specifically defined under the condition that UW “

px|FS , FW q “ 0. Therefore, again, no player has a profitable deviation, and pFS , FW q is an equilib-

rium as stated.
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