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1 Introduction

Differing opinions on how stress tests should be undertaken are welcome and important...We need

to move away from simple pass/fail policies (Piers Haben, Director, European Banking Authority,

Financial Times, August 1, 2016).

Coordination plays a major role in many socio-economic environments. The damages to society

of mis-coordination can be severe and often call for government intervention. Think of the situation

faced in 2016 by Monte dei Paschi di Siena, the oldest bank on the planet and the Italian third

largest, trying to raise capital from multiple investors (mutual funds, creditors, and other major

financial institutions), despite concerns about the size of the bank’s non-performing loans. A default

by an institution such as MPS can trigger a collapse in financial markets, and ultimately a deep

recession in the Eurozone and beyond (The Economist, July 7, 2016).

Confronted with such prospects, governments and supervising authorities have incentives to inter-

vene. However, a government’s ability to calm the market by injecting liquidity into a troubled bank

can be limited. For example, in Europe, legislation passed in 2015 prevents Eurozone member states

from rescuing banks by purchasing assets or, more generally, by acting on the banks’ balance sheets.

In such situations, interventions aimed at influencing market beliefs, for example through the design

of stress tests, or other targeted information policies, play a fundamental role. The questions policy

makers face in designing such information policies are the following: (a) What disclosures minimize

the risk of default? (b) Should all the information collected through the stress tests be passed on to

the market, or should the supervising authorities commit to coarser policies, for example, a simple

announcement of whether or not a bank under scrutiny passed the tests? (c) Should stress tests pass

institutions with strong fundamentals and fail the rest, or are there benefits to non-monotone rules?

(d) What are the effects of an increase in market uncertainty on the structure of the optimal tests,

and how do they depend on the banks’ recapitalization strategies, i.e., on the type of security issued

by the banks?

In this paper, we develop a theoretical framework that permits us to investigate the above ques-

tions. We study the design of optimal information policies in markets in which a large number of

receivers (e.g., market investors) must choose whether to play an action favorable to the designer

(e.g., pledging to a bank, or refraining from speculating against it), or an “adversarial” action (e.g.,

refraining from pledging, or engaging in predatory trading, for example by short-selling securities

linked to the bank’s assets, or buying credit-default swaps, which are known to put strain on illiquid

banks). Market participants are endowed with heterogenous private information about relevant eco-

nomic fundamentals, such as a bank’s non-performing loans, the long-term profitability of its assets,

or other elements of the bank’s balance sheet not in the public domain. A cash-constrained policy

maker (e.g., a benevolent government, or a supervising authority such as the European Banking Au-

thority, or the Federal Reserve Bank) can influence the market’s beliefs (for example, by designing a
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stress test), but is constrained in its ability to use financial instruments to shape directly the market

outcome.1

While motivated by the design of stress tests, the analysis delivers results that are relevant also for

many other applications, including currency crises, technology and standards adoption, and political

change.2 We explicitly account for the role that coordination plays among multiple, heterogeneously

informed, receivers. Coordination plays a key role in the funding of solvent but illiquid banks (see,

among others, Diamond and Dybvig (1983) and Goldstein and Pauzner (2015) for runs on deposits,

Copeland et al. (2014) and Gorton and Metrick (2012) for runs on repos, Covitz et al. (2013) for runs

on asset-backed commercial paper, and Pérignon et al. (2018) for dry-ups on certificates of deposit).

The backbone of our analysis is a general global game of regime change in which, prior to re-

ceiving information from the information designer (the policy maker), each agent is endowed with

an exogenous private signal about the strength of the underlying fundamentals. In the absence of

additional information, such a game admits a unique rationalizable strategy profile, whereby agents

play the action favorable to the policy maker (i.e., pledge to the bank) if, and only if, they assign

sufficiently high probability to the underlying fundamentals being strong, and whereby regime change

(i.e., default) occurs only for sufficiently weak fundamentals. In such settings, the design of the opti-

mal persuasion strategy must account for the effects of information disclosure not just on the agents’

first-order beliefs, but also on their higher-order beliefs (that is, the agents’ beliefs about other agents’

beliefs, their beliefs about other agents’ beliefs about their own beliefs, and so on). Equivalently, the

optimal policy must be derived by accounting for how different information disclosures affect both

the agents’ structural uncertainty (i.e., their beliefs about the underlying economic fundamentals),

and the agents’ strategic uncertainty (i.e., the agents’ beliefs about other agents’ behavior).

We take a “robust approach” to the design of the optimal information policy. We assume that,

when multiple rationalizable strategy profiles are consistent with the information disclosed, the policy

maker expects the agents to play according to the “most aggressive” strategy profile (the one that

minimizes the policy maker’s payoff over the entire set of rationalizable profiles). This is an important

departure from both the mechanism design and the persuasion literature, where the designer is

typically assumed to be able to coordinate the market on the course of action most favorable to

her (among those consistent with the assumed solution concept). Given the type of applications the

analysis is meant for, such “robust approach” appears more appropriate.3

1For an account of the key institutional details of the stress tests conducted in Europe, see, for example, Henry and

Christoffer (2013) and Homar et al. (2016).
2For example, in the context of currency crises, the policy maker may represent a central bank attempting to

convince speculators to refrain from short-selling the domestic currency by releasing information about the bank’s

reserves and/or about domestic economic fundamentals. Alternatively, the policy maker may represent the owners of

an intellectual property, or more broadly the sponsors of an idea, choosing among different certifiers in the attempt to

persuade heterogenous market users (buyers, developers, or other technology adopters) of the merits of a new product,

as in Lerner and Tirole (2006)’s analysis of forum shopping.
3If the designer trusted the market to coordinate on the course of action most favorable to her, she would fully
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Our first result shows that the optimal policy has the “perfect coordination property.” It induces

all market participants to take the same action, irrespective of the heterogeneity in the agents’

first- and higher-order posterior beliefs. In other words, the optimal policy completely removes

any strategic uncertainty, while retaining heterogeneity in structural uncertainty. Under the optimal

policy, each agent is able to predict the actions of any other agent, but not the beliefs that rationalize

such actions. In the context of our application, an investor who is induced to pledge need not be

able to predict whether other investors pledge because they expect the bank’s fundamentals to be

so strong that the bank will never collapse, irrespective of what over investors do, or because they

expect other investors to pledge.

The optimality of policies satisfying the perfect coordination property should not be taken for

granted given the robustness requirement. When the designer trusts the receivers to follow her

recommendations, the optimality of the perfect coordination property is straightforward and follows

from arguments similar to those establishing the Revelation Principle. This is not the case under

adversarial design, for information policies that facilitate perfect coordination among the Receivers

may also open the door to rationalizable profiles in which some of the agents play adversarially to

the designer (in the stress testing application, refrain from pledging).

Our second result identifies primitive conditions under which the optimal policy takes the form

of a simple “pass/fail” test, with no further information disclosed to the market. We show that

the optimality of such simple policies hinges on a certain co-movement between fundamentals and

beliefs, namely on the property that states of Nature in which the fundamentals are strong are also

states in which most agents expect the fundamentals to be strong, expect other agents to expect the

fundamentals to be strong, and so on.4 This property is consistent with what is typically assumed

in the literature on coordination under incomplete information. Importantly, we show by means of

an example that, when such a property is not satisfied, the policy maker may be strictly better off

disclosing information to the agents in addition to whether or not the bank passed the test.5

The above two results contribute to the debate about the (sub)optimality of European stress

tests. Such tests have been criticized for not disclosing the details of the simulations (see, e.g., “Stress

tests do little to restore faith in European banks,” Financial Times, August 1, 2017). Our results

indicate that simple pass/fail policies might actually be optimal. Importantly, optimal stress tests

should be transparent, in the sense of facilitating coordination among the relevant actors, but should

disclose the state and then recommend that all agents pledge, unless the bank is doomed to collapse irrespective of the

agents’ behavior. This appears both uninteresting and unrealistic.
4Formally, when the agents’ beliefs are parametrized by a uni-dimensional signal, this amounts to assuming that

the distribution from which the signals are drawn is log-supermodular or, equivalently, satisfies the monotone likelihood

ratio property.
5This is another point of departure with respect to the pertinent literature. When the designer trusts her ability to

coordinate the receivers on the course of action most favorable to her, optimal policies always take the form of action

recommendations (and hence pass/fail policies are optimal, irrespective of the agents’ primitive beliefs). This is not

the case under adversarial/robust design.
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not generate consensus among market participants about the soundness of the financial institutions

under scrutiny. Preserving heterogenous beliefs over a bank’s fundamentals is instrumental to the

minimization of default risk.

Our third result is about the optimality of monotone rules that pass with certainty institutions

whose fundamentals are strong and fail with certainty those whose fundamentals are weak. We

identify conditions under which such policies are optimal. These conditions relate the policy maker’s

preferences over the fundamentals of the banks saved to the distribution of the agents’ primitive

beliefs and the agents’ payoffs. We show that these conditions are fairly sharp in the sense that,

when violated, non-monotone rules may strictly outperform monotone ones. We also explain that the

conditions guaranteeing the optimality of monotone rules are more stringent when the policy maker

faces multiple privately-informed receivers than when she faces either a single (possibly privately-

informed) receiver, or multiple receivers who possess no exogenous private information.

The reason why, under adversarial design, non-monotone policies may outperform monotone

ones is that they make it more difficult for the agents to commonly learn the precise fundamentals

when hearing that a bank passed the test and hence help reduce the risk of the market responding

adversarially to the disclosed information. In turn, this permits the policy maker to give a pass grade

to more banks, while guaranteeing that, after a pass grade is announced, the unique rationalizable

strategy profile features all agents pledging.

We also show how the results extend to settings in which the policy maker faces uncertainty

about the fate of the financial institutions under scrutiny, for example because default may be

determined also by variables orthogonal to, or imperfectly correlated with, those measurable by

the policy maker (e.g., by the behavior of noisy/liquidity traders, or by macroeconomic events only

imperfectly correlated with the banks’ fundamentals). Lastly, we show how the model favors micro-

foundations in which the banks under scrutiny issue equity or debt to fund their short-term liquidity

obligations, and where the (market-clearing) price of the securities is endogenous and depends on

the information revealed through the stress tests. We use such micro-foundations to show how the

model can be used for comparative statics. As an example, we investigate the effects of an increase

in market uncertainty on the toughness of the optimal stress tests and show how the latter depends

on the type of security issued by the banks.

Throughout the analysis, we restrict attention to situations in which the agents possess primitive

private information before hearing from the policy maker and where the latter is constrained to

disclose the same information to all market participants, which is the relevant case in practice. In

the online Supplement, however, we also discuss why, when feasible, discriminatory disclosures may

improve upon non-discriminatory ones.

Organization. The rest of the paper is organized as follows. Below, we wrap up the introduction

with a brief review of the most pertinent literature. Section 2 presents the model. Section 3 contains

all the results about properties of optimal policies (perfect-coordination, pass/fail, monotonicity).

4



Section 4 discusses the robustness of the results with respect to a few extensions relevant for appli-

cations (namely, richer payoff specifications and aggregate uncertainty imperfectly correlated with

the policy maker’s and the market’s information). Section 5 discusses comparative statics of the

optimal stress test in a fully micro-founded model in which banks issue debt or equity to fund their

obligations. Section 6 concludes. All proofs are either in the Appendix at the end of the document

or in the online Supplement.

(Most) pertinent literature. The paper is related to different strands of the literature.

The first strand is the literature on information design (see Bergemann and Morris (2019) and

Kamenica (2019) for overviews). This literature traces back to Myerson (1986), who introduced the

idea that, in a general class of multi-stage games of incomplete information, the designer can restrict

attention to private incentive-compatible action recommendations to the agents. Recent develop-

ments include Rayo and Segal (2010), Kamenica and Gentzkow (2011), Gentzkow and Kamenica

(2016), Ely (2017), and Dworczak and Martini (2019). These papers consider persuasion with a

single receiver. The case of multiple receivers is less studied. Calzolari and Pavan (2006a) consider

an auction setting in which the sender is the initial owner of a good and where the different receivers

are privately-informed bidders in an upstream market who then resell in a downstream market (see

also Dworczak (2020) for an analysis of persuasion in other mechanism design environments with

aftermarkets).6 More recent papers with multiple receivers include Alonso and Camara (2016a),

Bardhi and Guo (2017), Basak and Zhou (2019), Che and Hörner (2018), Doval and Ely (2020),

Galperti and Perego (2020), Li et al. (2020), Mathevet et al. (2019), Morris et al. (2020) and Taneva

(2019). In particular, Li et al. (2020) and Morris et al. (2020) consider adversarial design in a co-

ordination setting similar to the one in the present paper. These papers, which are subsequent to

ours, assume that (a) the receivers possess no exogenous private information prior to receiving the

information from the designer, and (b) the designer can inform the receivers asymmetrically, that is,

she can engage in discriminatory disclosures. In contrast, we assume that the receivers are endowed

with exogenous private information and that the designer is constrained to disclose the same infor-

mation to all the receivers, which appears the most relevant case for the type of applications the

analysis is meant for (e.g., stress testing). Persuasion with privately-informed receivers has been ex-

amined primarily in settings with a single receiver (see, among others, Kolotilin et al. (2017), Alonso

and Camara (2016b), Chan et al. (2019), and Guo and Shmaya (2019)). See Laclau and Renou

(2017), Gitmez and Molavi (2020), and Heese and Lauermann (2021) for recent papers with multiple

privately-informed receivers. These papers though do not look at the implications of (adversarial)

coordination for the structure of the optimal policy, which is the focus of the present paper.7 In a

coordination setting with two privately-informed receivers and two states, Alonso and Zachariadis

6Related is also Calzolari and Pavan (2006b). That paper studies information design in a model of sequential

contracting with multiple principals.
7See also Gick and Pausch (2012), Shimoji (2017), and Arieli and Babichenko (2019). These papers, though, abstract

from strategic interactions among the receivers.
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(2021) show that, when the precision of the receivers’ exogenous information is sufficiently high, pri-

vate and public information are complements in that an increase in the precision of the agents’ private

information leads to the provision of more accurate public information. Goldstein and Huang (2016)

study persuasion in a coordination setting similar to ours but restricting the designer to monotone

pass/fail policies. Our results show that the optimal policy need not be monotone in their setting,

but also identify primitive conditions under which, in richer settings, monotone policies are optimal.

In a similar vein, Galvão and Shalders (2020) look at the design of policies in a global game similar

to ours but restricting the designer to monotone partitional rules (whereby if two types receive the

same grade then all types between these two also receive the same grade).

The present paper contributes to this strand of the literature by identifying properties of optimal

(non-discriminatory) policies when the receivers are privately informed and play adversarially.

The second strand is the literature on stress testing. Bouvard et al. (2015) study a credit rollover

setting where a policy maker must choose between transparency (full disclosure) and opacity (no

disclosure) but cannot commit to a disclosure policy. In contrast, we assume the policy maker

can fully commit to her disclosure policy and allow for flexible information structures. Alvarez

and Barlevy (2015) study the incentives of banks to disclose balance sheet (hard) information in a

setting where the market is not able to observe how banks are exposed to each others’ risks.8 See

also Goldstein and Sapra (2014) for an overview of some of the early contributions and Morgan

et al. (2014), Flannery et al. (2017), and Petrella and Resti (2013) for an empirical analysis of

the information provided by stress tests conducted in the US and the EU. Goldstein and Leitner

(2018) study the design of stress tests by a regulator facing a competitive market, where agents

have homogeneous beliefs about the bank’s balance sheet.9 Orlov et al. (2018) and Inostroza (2021)

consider the joint design of stress tests and capital requirements. The latter paper also considers the

interplay between information disclosures and the policy maker’s role as a lender of last resort.10

The present paper contributes to this literature along the following dimensions: (a) it shows that

optimal stress tests should not create conformism in market beliefs about banks’ fundamentals but

should be sufficiently transparent to eliminate any ambiguity about the market response to the tests;

(b) it identifies conditions under which simple pass/fail announcements are optimal; (c) it provides

conditions for optimal tests to be monotone; and (d) it discusses how the toughness of optimal tests

relates to the type of securities issued by the banks.

Finally, the paper is related to the literature on global games with endogenous information. An-

geletos et al. (2006), and Angeletos and Pavan (2013) consider settings whereby a policy maker,

8See also Corona et al. (2017) for an analysis of how stress tests disclosures may favor banks’ coordinated risk taking

in the spirit of Farhi and Tirole (2012).
9See also Williams (2017) for a related analysis of stress test design in a bank-run model a’ la Allen and Gale (1998),

with homogenous investors.
10See also Faria-e Castro et al. (2016) and Garcia and Panetti (2017) for a joint analysis of stress tests and government

bailouts.
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endowed with private information, engages in costly actions to influence the agents’ behavior. Ed-

mond (2013) considers a similar setting but assumes the cost of policy interventions is zero and agents

receive noisy signals of the policy maker’s action. Angeletos et al. (2007) consider a dynamic model

in which agents learn from the accumulation of private signals over time and from the (possibly

noisy) observation of past outcomes. Cong et al. (2016) consider a dynamic setting similar to the

one in Angeletos et al. (2007) but allowing for policy interventions. Denti (2020), Szkup and Trevino

(2015), Yang (2015) and Morris and Yang (2019) consider global games where, prior to committing

their actions, agents acquire private information about payoff-relevant variables at a small cost.

The key contribution of the present paper vis-a-vis this literature is the characterization of the

optimal provision of public information.

2 Model

To illustrate the key ideas in the simplest possible terms, we consider a stylized global game of

regime change in the spirit of Rochet and Vives (2004). The game abstracts from many institutional

details but highlights the effects of (adversarial) coordination among privately-informed receivers on

the design of the optimal policy. Motivated by the application to stress testing, the model features

a policy maker persuading investors to pledge to a bank.11 The analysis, however, can be adapted

easily to many other games of regime change.

Players and Actions. A policy maker designs a stress test, i.e., an information policy that

evaluates the profitability, the liquidity, and the solvency of a representative bank and communicates

the results of such evaluations to the market. To meet its short-term liquidity obligations, the

bank may need funding from the market. The latter is populated by a (measure-one) continuum of

investors distributed uniformly over [0, 1]. Each investor may either take a “friendly” action, ai = 1,

or an “adversarial” action, ai = 0. The friendly action is interpreted as the decision to pledge funds

to the bank (alternatively, to abstain from speculating against the bank by short-selling its assets or

by engaging in predatory trading, e.g., by purchasing credit-default swaps). The adversarial action

is interpreted as the decision to not pledge (alternatively, to speculate against the bank). We denote

by A ∈ [0, 1] the size of the aggregate pledge.

Fundamentals and Exogenous Information. The bank’s fundamentals are parameterized

by θ ∈ R. Before the bank is scrutinized, it is commonly believed (by the policy maker and the

investors alike) that θ is drawn from a distribution F , absolutely continuous over Θ % [0, 1], with a

smooth density f strictly positive over Θ. In addition, each investor i ∈ [0, 1] is endowed with private

information summarized in a uni-dimensional signal xi ∈ R drawn independently across agents (given

θ) from an absolutely continuous cumulative distribution function P (x|θ) with smooth density p(x|θ)
11Rochet and Vives (2004) consider a three-period economy a’ la Diamond and Dybvig (1983) but with heterogenous

investors, in which banks can liquidate assets to boost liquidity and may fail early or late. As shown in that paper,

the full model admits a reduced-form version similar to the one considered here.
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strictly positive over an (open) interval %θ ≡ (%θ, %̄θ) containing θ, with %θ, %̄θ monotone in θ.12 The

bounds %θ, %̄θ can be either finite or infinite. For example, when xi = θ + σεi, with εi drawn from

a uniform distribution over [−1,+1], then, for any θ, %θ = θ − σ and %̄θ = θ + σ. When, instead,

xi = θ + σεi with εi drawn from a standard Normal distribution, then, for any θ, %θ = −∞ and

%̄θ = +∞. Furthermore, in this latter case, P (x|θ) = Φ((x − θ)/σ), where Φ is the cumulative

distribution function of the standard Normal distribution.13 We denote by x ≡ (xi)i∈[0,1] a profile of

private signals and by X(θ) the collection of all x ∈ R[0,1] that are consistent with the fundamentals

being equal to θ. As usual, we assume that any pair of signal realizations x,x′ ∈ X(θ) has the same

cross-sectional distribution of signals, with the latter equal to P (x|θ).
Default. The bank’s fundamentals θ parametrize the critical size of the aggregate pledge that is

necessary for the bank to avoid default. If A > 1 − θ, the bank meets all its short-term obligations

and avoids default. If, instead, A ≤ 1 − θ , the bank ends up in distress and defaults. We denote

by r = 0 the event that the bank defaults, and by r = 1 the complement event in which the bank

avoids the default.

Dominance Regions. Clearly, for any θ ≤ 0, the bank defaults, whereas for any θ > 1 the

bank avoids default, irrespective of the size of the aggregate pledge. For θ ∈ (0, 1], instead, whether

or not the bank defaults is determined by the behavior of the market.

Payoffs. Each investor’s payoff differential between the friendly and the adversarial action is

equal to g (θ) > 0 in case the bank avoids default and b (θ) < 0 otherwise. The policy maker’s payoff

is equal to W (θ) in case default is avoided and L (θ) in case of default, with W (θ) > L(θ) for all θ.14

When W and L are invariant to θ, the policy maker’s objective reduces to minimizing the probability

of default. The functions b, g, W , and L are all bounded.

Stress Tests. Let S be a compact metric space defining the set of possible signal realizations

(think of these as grades or scores given to the bank under examination). A stress test Γ = (S, π)

consists of the set S along with a mapping π : Θ → ∆(S) specifying, for each θ, a (probability

distribution over the) score given to type θ.15

Timing. The sequence of events is the following:

1. The policy maker publicly announces the policy Γ = (S, π) and commits to it.

2. The fundamentals θ are drawn from the distribution F and the agents’ exogenous signals

x ∈ X(θ) are drawn from the distribution P (x|θ).

3. The score s is drawn from π(θ) and publicly announced.

12Formally, %θ = supp[P (·|θ)].
13The uniform and Gaussian distributions are the ones considered in most of the literature.
14The choice of this notation is meant to be mnemonic, with g and b standing for “good” and “bad” outcomes, and

W and L for “win” and “lose” payoffs.
15Here we assume that, through the stress test, the policy maker learns all information that is relevant for the fate

of the bank, for the policy maker’s payoff, and for the payoffs of all market participants. We relax these assumptions

in Section 4.
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4. Agents simultaneously choose whether or not to pledge.

5. The fate of the bank is determined and payoffs are realized.

Adversarial Coordination and Robust Design. The policy maker does not trust the market

to follow her recommendations and play according to the strategy profile that is most advantageous

to her (i.e., pledge to the bank whenever the latter is solvent, i.e., whenever θ > 0).16 Instead, the

policy maker adopts a robust approach to the design of the stress test. She evaluates any policy Γ

under the “worst-case” scenario. That is, given any policy Γ, the policy maker expects the market

to play according to the rationalizable profile most adversarial to her.

Definition 1. Given any policy Γ, the most aggressive rationalizable profile (MARP) consistent

with Γ is the strategy profile aΓ ≡ (aΓ
i )i∈[0,1] that minimizes the policy maker’s ex-ante expected

payoff over all profiles surviving iterated deletion of interim strictly dominated strategies (henceforth

IDISDS).

In the IDISDS procedure leading to MARP, agents update their beliefs about the fundamentals θ

and the other agents’ exogenous signals x ∈ X(θ) using the common prior, F , the signal distribution,

P (x|θ), the disclosure policy, Γ, and Bayes rule. Under MARP, given (x, s), each agent i ∈ [0, 1],

after receiving exogenous information x and endogenous information s, then refrains from pledging

whenever there exists at least one conjecture over (θ,A) consistent with the above Bayesian updating

and supported by all other agents playing strategies surviving IDISDS, under which refraining from

pledging is a best response for the individual.

Remarks. Hereafter, we confine attention to policies Γ for which MARP exists. As it will

become clear from the analysis below, because the game among the agents is supermodular, the

strategy profile aΓ is then a Bayes-Nash equilibrium (BNE) of the continuation game among the

agents, and minimizes the policy maker’s payoff state-by-state, and not just in expectation.

Furthermore, given a policy Γ = (S, π), when describing the agents’ behavior, we do not dis-

tinguish between pairs (x, s) that are mutually consistent given Γ (meaning that the joint density

of (x, s) is positive, i.e.,
´
θ:s∈supp(π(θ)) p(x|θ)dF (θ) > 0) and those that are not. Because the policy

maker commits to the policy Γ, the abuse is legitimate and permits us to ease the exposition. Any

claim about the optimality of the agents’ behavior, however, should be interpreted to apply to pairs

(x, s) that are mutually consistent given Γ.

3 Properties of Optimal Policies

We discuss three key properties of optimal policies.

16If she did, a simple monotone test revealing whether or not θ > 0 would be optimal.
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3.1 Perfect-coordination property

Definition 2. A policy Γ = (S, π) satisfies the perfect-coordination property (PCP) if, for

any θ ∈ Θ, any exogenous information x ∈ X(θ), any s ∈ supp(π(θ)), and any pair of individuals

i, j ∈ [0, 1], aΓ
i (xi, s) = aΓ

j (xj , s), where aΓ = (aΓ
i )i∈[0,1] is the most aggressive rationalizable profile

(MARP) consistent with the policy Γ.

Hence, a disclosure policy has the perfect-coordination property if it induces all market partici-

pants to take the same action, after any information it discloses. For any θ ∈ Θ, any s ∈ supp(π(θ)),

let rΓ(θ, s) ∈ {0, 1} denote the default outcome when investors play according to aΓ (i.e., rΓ(θ, s) is

the fate of the bank that prevails at (θ, s), when the agents play according to MARP consistent with

Γ).17 Hereafter, we say that the policy Γ is regular if MARP under Γ is well defined and the default

outcome under aΓ is measurable in θ.18

Theorem 1. Given any (regular) policy Γ, there exists another (regular) policy Γ∗ satisfying the

perfect coordination property and such that, for any θ, the default probability under Γ∗ is the same

as under Γ.

Proof of Theorem 1: See the Appendix.

The policy Γ∗ is obtained from the original policy Γ by disclosing, for each θ, in addition to the

score s ∈ supp(π(θ)) disclosed by the original policy Γ, the fate of the bank rΓ(θ, s) ∈ {0, 1} under

MARP consistent with the original policy Γ. That, under Γ∗, it is rationalizable for all agents to

pledge when the policy discloses the information (s, 1) and to refrain from pledging when the policy

discloses the information (s, 0) is straight-forward. In fact, the announcement of (s, 1) (alternatively,

of (s, 0)) makes it common certainty among the agents that θ > 0 (alternatively, that θ ≤ 1).

The interesting part of the result is that, in the continuation game that starts after the policy

Γ∗ announces (s, 1), pledging is the unique rationalizable action for any agent, irrespective of his

signal. When, under the original policy Γ, given s, rΓ(θ, s) is increasing in θ, the new piece of

information that θ is such that rΓ(θ, s) = 1 is equivalent to the announcement that θ > θ̂(s),

for some threshold θ̂(s). In this case, agents update their first-order beliefs about θ upward when

receiving the additional information that rΓ(θ, s) = 1. That each agent is more optimistic about

the strength of the fundamentals, however, does not guarantee that MARP under the new policy is

less aggressive than under the original policy. In fact, the new piece of information changes not only

the agent’s first-order beliefs about θ but also his higher-order beliefs and the latter matter for the

determination of the most-aggressive rationalizable profile. Furthermore, in general, rΓ(θ, s) need

not be monotone in θ. This is because MARP under the original policy Γ need not entail strategies

17Because the cross-sectional distribution of signals is uniquely pinned down by P (x|θ), the fate of the bank under

MARP is the same across any pair of signal profiles x,x′ ∈ X(θ) and hence depends only on Γ, θ, and s.
18Because the game has infinitely many states and players, these properties, while fairly natural, cannot be guaranteed

for arbitrary policies.
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that are monotone in x. As a result, the announcement that rΓ(θ, s) = 1 need not trigger an upward

revision of the agents’ beliefs.19

The result in Theorem 1 holds irrespectively of whether or not, given s, rΓ(θ, s) is monotone in

θ. It follows from the fact that, at any stage n of the IDISDS procedure, any agent who, under

the original policy Γ would have pledged under the most aggressive strategy profile surviving n− 1

rounds of deletion, continues to do the same under the new policy Γ∗. In the Appendix, we show

that this last property in turn follows from the game being supermodular along with the fact that

Bayesian updating preserves the likelihood ratio of any two states that are consistent with no default

under the original policy Γ. Formally, for any s ∈ supp(π(Θ)), and pair of states θ′ and θ′′ such that

(a) s ∈ supp(π(θ′)) and s ∈ supp(π(θ′′)), and (b) rΓ(θ′, s) = rΓ(θ′′, s) = 1, the likelihood ratio of

such two states under Γ∗ is the same as under the original policy Γ. This property, together with

the announcement that default would have not occurred under MARP consistent with the original

policy Γ, guarantees that, for any agent for whom pledging was optimal under MARP consistent

with the original policy Γ, pledging is the unique rationalizable action under the new policy Γ∗.20

The policy Γ∗ thus removes any strategic uncertainty. When (s, 1) (alternatively, (s, 0)) is an-

nounced, each agent knows that all other agents will pledge (alternatively, will refrain from pledging),

irrespective of their exogenous private information. Importantly, while the policy Γ∗ removes any

strategic uncertainty, it preserves structural uncertainty (i.e., heterogeneity in the agents’ posterior

beliefs about θ). To avoid default at certain fundamentals, it is essential that agents who pledge are

uncertain as to whether other agents pledge because they find it dominant to do so, or because they

expect other agents to pledge, which requires heterogeneity in posterior beliefs.

When it comes to stress testing, Theorem 1 implies that optimal tests should not be expected

to create conformism in market beliefs about the soundness of a bank under scrutiny. On the other

hand, there is no value in leaving any room to ambiguity as to whether or not the bank will succeed

in raising the liquidity it need to continue operating.

19In richer settings, the fate of the bank may depend also on variables other than θ for which both the policy maker

and the market have imperfect information about. As we discuss in Section 4, when this is the case, perfect coordination

can still be attained but it involves disclosing information other than the predicted fate of the bank. We come back to

this point in due course.
20Formally, as we show in the Appendix, the above two properties jointly imply that each agent’s posterior beliefs

after rΓ(θ,s)=1 is announced are a “truncation” of the agent’s beliefs under the original policy Γ, with the truncation

eliminating from the support of the agent’s beliefs states θ at which, under the most aggressive profile surviving n rounds

of IDISDS under the original policy Γ, the agent’s payoff from pledging would have been negative. The truncation thus

contributes to making the agent more willing to pledge.
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3.2 Pass/Fail

Theorem 2. Suppose that p(x|θ) is log-supermodular.21 Given any policy Γ satisfying the perfect

coordination property, there exists a binary policy Γ∗ = ({0, 1}, π∗) that also satisfies the perfect

coordination property and such that, for any θ, the probability of default under Γ∗ is the same as

under Γ.

Proof of Theorem 2: See the Appendix.

Take any policy Γ = (S, π) satisfying the perfect coordination property. Given the result in

Theorem 1, without loss of generality, assume that Γ = (S, π) is such that S = {0, 1} × S, for some

measurable set S, and is such that (a) when the policy discloses any signal (s, 1), all agents pledge

and default does not happen, whereas (b) when the policy discloses any signal (s, 0), all agents refrain

from pledging and default happens. Given the policy Γ, let UΓ(x, (s, 1)|k) denote the expected payoff

differential of an agent with exogenous information x who receives information (s, 1) from the policy

maker and who expects all other agents to pledge if and only if their exogenous signal exceeds a cut-

off k. In the Appendix, we show that, no matter the shape of the policy Γ, because p(x|θ) has the

monotone likelihood ratio property (in short, MLRP), MARP associated with the policy Γ is in cut-

off strategies. Hence, each agent’s expected payoff differential when all other agents play according

to MARP can be written as UΓ(x, (s, 1)|k) for some k that depends on s. That the original policy

Γ satisfies the perfect-coordination policy in turn implies that, for any s and k such that (k, (s, 1))

are mutually consistent,22 UΓ(k, (s, 1)|k) > 0. That is, the expected payoff differential of any agent

whose private signal x coincides with the cutoff k must be strictly positive. If this were not the case,

the continuation game would also admit a rationalizable profile (in fact, a continuation equilibrium)

in which some of the agents refrain from pledging, contradicting the fact that pledging irrespectively

of x is the unique rationalizable profile following the announcement of (s, 1).

Now consider a policy Γ∗ that, for any θ, discloses the same outcome rΓ(θ, s) as the original

policy Γ but conceals the additional information s. By the law of iterated expectations, for all k such

that (k, (s, 1)) are mutually consistent, because UΓ(k, (s, 1)|k) > 0 then UΓ∗(k, 1|k) > 0. The last

property implies that the new policy Γ∗ also satisfies the perfect-coordination property. The policy

maker can thus drop the additional signals s from the original policy Γ and continue to guarantee

that, after r = 1 is announced, pledging is the unique rationalizable action for all agents. The result

in the theorem thus implies that simple pass/fail policies are optimal.

The property that justifies restricting attention to simple pass/fail policies is the log-supermodularity

of the signal distribution p(x|θ). This property, which is formally equivalent to MLRP, is essential

for the optimality of simple pass/fail policies.23

21The property that p(x|θ) is log-supermodular means that, for any x′, x′′ ∈ R, with x′ < x′′, and any θ′, θ′′ ∈ Θ,

with θ′′ > θ′, then p(x′′|θ′′)p(x′|θ′) ≥ p(x′′|θ′)p(x′|θ′′).
22Recall that the latter means that the set θ ∈ Θ such that (a) k ∈ %θ and (s, 1) ∈ supp(π(θ)) have positive measure.
23The example below features signals drawn from a distribution with finite support. This, however, is only for
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Figure 1: Suboptimality of simple pass/tail tests

Example 1. Suppose that θ is drawn from a uniform distribution over [−1, 2]. Given θ, each agent

i ∈ [0, 1] receives an exogenous signal xi ∈ {xL, xH}, drawn independently across agents from a

Bernoulli distribution with probability

Pr(xL|θ) =

2/3 if θ ∈ (0, 1/3) ∪ [2/3, 5/6) ∪ [1, 7/6) ∪ [4/3, 5/3)

1/3 if θ ∈ [1/3, 2/3) ∪ [5/6, 1) ∪ [7/6, 4/3) ∪ [5/3, 2).

The value of Pr(xL|θ) for θ ∈ [−1, 0] plays no role in this example, so it can be taken arbitrarily.

Suppose that agents’ payoffs are such that g(θ) = 1− c and b(θ) = −c, for all θ, with c ∈ (1/2, 8/15).

There exits a deterministic policy that satisfies PCP and guarantees that no θ > 0 defaults, but no

deterministic pass/fail policy can spare all θ > 0 from default.

Proof of Example 1. Figure 1 illustrates the signal structure considered in Example 1. The

dash line depicts the probability of signal xL whereas the solid line the complementary probability

of signal xH , as a function of θ. Note that the agents’ posterior beliefs under the signal structure

of Example 1 can be ranked according to FOSD. Each agent observing xH has posterior beliefs that

dominate those of each agent observing xL. Nonetheless, the ratio p(xH |θ)/p(xL|θ) is not increasing

in θ over the entire domain, meaning that p(x|θ) is not log-supermodular. Also note that, under

the payoff specification in the example, pledging is rationalizable if the probability of default is no

greater than 1− c, whereas not pledging is rationalizable if such a probability is at least 1− c.
To see that there exists no pass/fail policy sparing all θ > 0 from default, note that, by virtue of

Theorem 1, if such a policy existed, there would also exist a binary policy satisfying PCP and such

simplicity. Conclusions similar to those in the example can be established by having the agents receive signals drawn

from a continuous distribution. We thank Tommaso Denti for suggesting a related example with finite signals and

Leifu Zhang for suggesting a related example with continuous signals.
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that π(1|θ) = 0 for all θ ≤ 0 and π(1|θ) = 1 for all θ > 0, with π(1|θ) denoting the probability that

the policy discloses signal s = 1 when the fundamentals are θ. Under such a policy, after hearing that

s = 1, no matter the private signal x, each agent assigns probability 1/2 to θ ∈ [0, 1] and probability

1/2 to θ ∈ [1, 2]. Because c > 1/2, each agent expecting all other agents to refrain from pledging

(and hence default to occur for all θ ∈ [0, 1]) then finds it optimal to do the same. Hence, under

MARP consistent with the above policy, after the signal s = 1 is announced, all agents refrain from

pledging, meaning that the above policy fails to spare all θ > 0 from default.

To see that all types θ > 0 can be spared from default under richer policies, consider the policy

Γ = ({0, (1,mid) , (1, ext)} , π) that, in addition to publicly announcing whether or not the bank

passed the test, also announces whether fundamentals are extreme (i.e., θ ∈ (0, 5/6) ∪ (7/6, 2]),

or intermediate (i.e., θ ∈ [5/6, 7/6]). Formally, for any θ ∈ [−1, 0], π (0|θ) = 1, meaning that

the policy announces with certainty s = 0 meaning that the bank failed the test. For any θ ∈
[5/6, 7/6], π(1,mid|θ) = 1, meaning that the the policy announces with certainty that the bank

passed the test and that fundamentals are intermediate. Finally, for any θ ∈ (0, 5/6) ∪ (7/6, 2],

π(1, ext|θ) = 1 meaning that the policy announces with certainty that the bank passed the test and

that fundamentals are extreme. See again Figure 1 for a graphical representation of such a policy.

Under MARP associated with such a policy, all agents pledge when they hear that the bank passed

the test, no matter whether the policy announces that fundamentals are extreme or intermediate,

whereas all agents refrain from pledging when hearing that the bank failed the test.

Consider first the case in which the fundamentals are extreme, i.e., θ ∈ (0, 5/6) ∪ (7/6, 2]. All

agents with exogenous signal xH find it dominant to pledge when they hear that s = (1, ext). In fact,

even if all other agents were to refrain from pledging, the probability that each agent with signal

xH assigns to θ > 1 (and hence to the bank surviving) is Pr(θ > 1|xH , ext) = 8/15 > c, making it

dominant for the individual to pledge. As a consequence of this property, each agent receiving an

exogenous signal xL finds it iteratively dominant to pledge. This is because, for any θ ∈ [1/3, 5/6],

even if all agents receiving a signal equal to xL were to refrain from pledging, the aggregate size

of the pledge from those agents receiving an xH signal would suffice for the bank to survive. This

means that the probability that each agent with signal xL assigns to the bank surviving is at least

equal to Pr(θ > 1/3|xL, (1, ext)) = 11/15, implying that it is optimal for the agent to pledge.

Next, consider the case in which fundamentals are intermediate, i.e., θ ∈ [5/6, 7/6]. In this case,

each agent with a signal equal to xL assigns probability 2/3 > c to θ ≥ 1 and hence finds it dominant

to pledge. Because, for any θ ∈ (5/6, 1), 1/3 of the agents receives an xL signal, the minimal size of

the pledge that each agent with signal equal to xH can expect at any θ ∈ (5/6, 1) is thus equal to

Pr(xL|θ) = 1/3 > 1− θ, implying that even if all agents with signal equal to xH were to refrain from

pledging, the bank would survive. Because of the above properties, pledging is iteratively dominant

for those agents receiving the xH signal.

Hence, under the proposed policy, default does not occur for any θ > 0. Because, under MARP,

all agents pledge when they hear that the bank passed the test, no matter whether they hear that the
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fundamentals are extreme or intermediate, one may conjecture that the policy maker could refrain

from specifying whether the fundamentals are extreme or intermediate and simply announce that

the bank passed the test. However, as explained above, such a simple pass/fail policy would not

induce all agents to pledge when playing according to MARP. �

The above example illustrates both the failure of the Revelation Principle (when the market is

expected to play according to MARP, it is with loss of generality to confine attention to policies that

take the form of action recommendations), as well as the sub-optimality of simple pass/fail tests,

when beliefs and fundamentals do not co-move according to the monotone likelihood ratio property.

3.3 Monotone Rules

We now turn to the optimality of policies that fail with certainty institutions with weak fundamentals

and pass with certainty those with strong fundamentals. For any (θ,A) ∈ Θ× [0, 1], let

u (θ,A) ≡ g(θ)I(A > 1− θ) + b(θ)I(A ≤ 1− θ)

and

UP (θ,A) ≡W (θ)I(A > 1− θ) + L(θ)I(A ≤ 1− θ)

denote the payoffs of a representative agent and of the policy maker, respectively, when the funda-

mentals are θ and the aggregate size of the pledge is A. Let

x̄G ≡ sup

{
x ∈ R :

ˆ
Θ
u (θ, 1− P (x|θ)) I(θ ≥ 0)p (x|θ) dF (θ) ≤ 0

}
(1)

denote the largest signal threshold x such that, when each agent pledges when receiving a signal

above x and does not pledge when receiving a signal below x, then the expected payoff from pledging

for the marginal agent with signal x is non-positive under the additional information that θ is non-

negative. As we show in the Appendix, x̄G corresponds to an upper bound for the set of cut-offs

characterizing the strategies consistent with MARP across all disclosure policies Γ satisfying the

perfect coordination property.

Next, for any θ ∈ (0, 1), let x∗(θ) be the critical signal threshold such that, when agents follow

a cut-off strategy with threshold x∗(θ) (that is, pledge for x > x∗(θ) and refrain from pledging for

x < x∗(θ)), then default occurs if and only if the fundamentals are below θ.24 For any θ ∈ (0, 1), the

threshold x∗(θ) is implicitly defined by

P (x∗(θ)|θ) = θ. (2)

Let

θ∗ ≡ inf

{
θ̂ ≥ 0 :

ˆ ∞
θ̂

u
(
θ̃, 1− P

(
x∗(θ)|θ̃

))
p
(
x∗(θ)|θ̃

)
dF (θ̃) ≥ 0 for all θ ∈

[
θ̂, 1
)}

(3)

24When the noise in the agents’ signals is bounded, the definition of x∗(θ) can be extended to θ = 0 and θ = 1. When

the noise is unbounded, abusing notation, one can extend the definition to θ = 0 and θ = 1 by letting x∗(0) = −∞ and

x∗(1) = +∞.
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be the lowest truncation point θ̂ such that, when the policy reveals that fundamentals are above θ̂,

then for any possible default threshold θ ∈
[
θ̂, 1
)

, if default were to occur for fundamentals below

θ and not occur for fundamentals above θ, then the marginal agent with signal x∗(θ) would find it

optimal to pledge. Finally, for any x, let Θ(x) ≡ {θ ∈ Θ : x ∈ %θ} denote the set of fundamentals

that are consistent with signal x.

Condition M. The following properties hold :

1. inf Θ(x̄G) ≤ 0;

2. the functions p (x|θ) and |u(θ, 1− P (x|θ))| are log-supermodular over25

{(θ, x) ∈ [0, 1]× R : u(θ, 1− P (x|θ)) ≤ 0} ;

3. for any θ0, θ1 ∈ [0, 1], with θ0 < θ1, and any x ≤ x̄G such that (a) u(θ1, 1 − P (x|θ1)) ≤ 0 and

(b) x ∈ %θ0,
UP (θ1, 1)− UP (θ1, 0)

UP (θ0, 1)− UP (θ0, 0)
>
p (x|θ1)u (θ1, 1− P (x|θ1))

p (x|θ0)u (θ0, 1− P (x|θ0))
. (4)

Property 1 in Condition M says that the lower bound of the support of the beliefs of the marginal

agent with signal x̄G, where x̄G is the threshold defined in (1), is not strictly positive. Clearly, this

property trivially holds when, for any θ, the agents’ signals are drawn from a distribution whose

support is large enough (and hence, a fortiori, when the noise in the agents’ signals is drawn from a

distribution with unbounded support, e.g., a Normal distribution).

Property 2 says that signals are ordered according to MLRP and that the (percentage) reduction

in the agents’ loss from pledging due to higher fundamentals is larger when more agents pledge.

Formally, for any θ′ < θ′′ and x′ < x′′ such that u(θ′′, 1− P (x′|θ′′)) < 0,

u(θ′, 1− P (x′′|θ′))− u(θ′′, 1− P (x′′|θ′′))
u(θ′, 1− P (x′′|θ′))

≤ u(θ′, 1− P (x′|θ′))− u(θ′′, 1− P (x′|θ′′))
u(θ′, 1− P (x′|θ′))

. (5)

Note that u(θ′′, 1−P (x′|θ′′)) < 0 implies that u(θ′, 1−P (x′|θ′)), u(θ′, 1−P (x′′|θ′)), u(θ′′, 1−P (x′′|θ′′)) <
0. The left-hand side of (5) is thus the percentage reduction in the agents’ payoff loss when funda-

mentals improve from θ′ to θ′′ and agents pledge when receiving a signal x ≥ x′′. The right-hand

side of (5), instead, is the percentage reduction in the agents’ payoff loss when fundamentals improve

from θ′ to θ′′ and agents pledge for x ≥ x′. Importantly, this property is required to hold only for fun-

damentals θ and thresholds x for which the agents’ expected payoffs from pledging, u(θ, 1−P (x|θ)),
is non-positive. Also note that this property trivially holds in the baseline model considered so far,

25That |u(θ, 1 − P (x|θ))| is log-supermodular over {(θ, x) ∈ [0, 1]× R : u(θ, 1− P (x|θ)) ≤ 0} means that, for any

x′, x′′ ∈ R, with x′ < x′′, and any θ′, θ′′ ∈ Θ, with θ′′ > θ′, such that u(θ′′, 1− P (x′|θ′′)) ≤ 0,

u(θ′′, 1− P (x′′|θ′′))u(θ′, 1− P (x′|θ′)) ≥ u(θ′′, 1− P (x′|θ′′))u(θ′, 1− P (x′′|θ′)).
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for payoffs u(θ,A) are invariant in A conditional on the fate of the bank. The reason for stating the

condition in these more general terms is that, as we show in the next section, Condition M above

plays a key role for the optimality of monotone policies also under richer payoff specifications in

which u(θ,A) depends on A over and above the effect that the latter has on the default outcome.

Property 3 in turn says that the benefit that the policy maker derives from changing the agents’

behavior (inducing all agents to pledge starting from a situation in which no agent pledges) increases

with the fundamentals at a sufficiently high rate, with the critical rate determined by a combination

of the agents’ payoffs and beliefs (the right-hand-side of (4)). Such a property is required to hold

only for fundamentals θ0 and θ1 in the critical region and for signal realizations x ≤ x̄G such that

(a) u(θ1, 1−P (x|θ1)) ≤ 0 (meaning that the payoff from pledging is negative when agents pledge for

signals above x and refrain from pledging for signals below x), and (b) x ∈ %θ0 (meaning that signal

x is consistent with the fundamentals being θ0). Also note that, in the baseline model considered so

far, the right-hand side of (4) is equal to p (x|θ1) b (θ1) /p (x|θ0) b(θ0). Once again, the reason for the

more general condition is that the result in Theorem 3 below extends to richer payoff specifications,

as we explain in the next section.

We then have the following result:

Theorem 3. Suppose Condition M holds. Given any policy Γ, there exists a deterministic monotone

policy Γθ̂ = ({0, 1}, πθ̂) satisfying the perfect-coordination property and yielding the policy maker a

payoff weakly higher than Γ. The policy Γθ̂ is such that there exists a threshold θ̂ ∈ [0, 1] such that,

for any θ ≤ θ̂, πθ̂(θ) assigns probability one to s = 0, whereas for any θ > θ̂, πθ̂(θ) assigns probability

one to s = 1.

Proof of Theorem 3: See the Appendix.

When Condition M holds, the choice of the optimal policy reduces to the choice of the smallest

threshold θ̂ such that, when agents commonly learn that θ > θ̂, under the unique rationalizable

profile, all agents pledge, irrespective of their signals. For this to be the case, it must be that, for any

x ∈ R,
´∞
θ̂ u(θ, 1 − P (x|θ))p(x|θ)dF (θ) > 0. The above problem, however, does not have a formal

solution, due to the lack of upper-hemicontinuity of the designer’s payoff in θ̂.26 Notwithstanding

these complications, hereafter we follow the pertinent literature and refer to the monotone policy

with cut-off θ̂ = θ∗, with θ∗ as defined in (??), as the “optimal monotone policy”.27

As we show in the Appendix, property 1 in Condition M guarantees that, starting from the

optimal monotone policy (the one with cut-off θ∗), one cannot perturb the policy by assigning a pass

26This problem was first noticed in Goldstein and Huang (2016).
27The reason why this is an abuse is that, under the monotone policy with cut-off θ∗, in the continuation game that

starts after the policy maker announces that the bank passed the test, there exists a rationalizable profile in which

some of the agents refrain from pledging. However, there exists a monotone policy with cut-off θ̂ arbitrarily close to

the threshold θ∗ such that, after the policy maker announces that the bank passed the test, the unique rationalizable

profile features all agents pledging. Because the policy maker’s payoff under the latter policy is arbitrarily close to the

one she obtains when all agents pledge for θ > θ∗ and refrain from pledging when θ ≤ θ∗, the abuse appears justified.
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grade also to a small interval [θ′, θ′′] of fundamentals with 0 ≤ θ′ < θ′′ < θ∗, while guaranteeing

that all agents necessarily pledge when hearing that the bank passed the test (i.e., when hearing

that s = 1). This property trivially holds when the noise in the agents’ signals is large (and hence,

a fortiori, when noise is unbounded), but plays a key role when the noise is drawn from a bounded

interval of small size (see Example 2 below for an illustration).

Properties 2 and 3 of Condition M in turn guarantee that, given a non-monotone rule, perturba-

tions of the original policy that swap the probability of inducing all agents to pledge from low to high

fundamentals in a way that preserves the agents’ incentives to pledge (under MARP) when hearing

that s = 1, increase the policy maker’s payoff. These conditions guarantee that the higher value the

policy maker derives from saving banks with stronger fundamentals compensates for the possibility

that, from an ex-ante perspective, the probability of default may be larger under monotone policies

than under non-monotone ones (see Example 3 for an illustration of why non-monotone rules may

permit the policy maker to save a larger set of banks).

Condition M is fairly sharp in the sense that, when violated, one can construct examples where

the optimal policy is non-monotone. We provide two such examples below. Example 2 illustrates

the role of property 1 in Condition M, whereas Example 3 illustrates the role of properties 2 and 3

in Condition M.

Let θMS ∈ (0, 1) be implicitly defined by the unique solution to

ˆ 1

0
u(θMS , A)dA = 0. (6)

The threshold θMS corresponds to the value of the fundamentals at which an agent who knows θ

and holds Laplacian beliefs with respect to the measure of agents pledging is indifferent between

pledging and not pledging.28 Importantly, θMS is independent of the initial common prior F and of

the distribution of the agents’ signals.

Example 2. Suppose that there exist scalars g, b,W,L ∈ R, with g > 0 > b and W > L, such

that, for any θ, g(θ) = g, b(θ) = b, W (θ) = W , and L(θ) = L. Suppose that θ is drawn from a

uniform distribution with support [−K, 1 +K], for some K ∈ R++. Finally, assume that the agents’

exogenous signals are given by xi = θ + σεi, with σ ∈ R+ and with each εi drawn independently

across agents from a uniform distribution over [−1, 1], with σ < K/2. Let θ∗σ be the threshold defined

in (3), applied to the primitives described in this example (with the subscript σ used to emphasize

the dependence on the noise in the agents’ exogenous signals). There exists σ# ∈ (0,K/2) such that

(a) inf Θ(x∗
σ#(θMS)) > 0, and (b) for all σ ∈ (0, σ#), starting from the optimal monotone policy

with cut-off θ∗σ (the one saving the largest set of fundamentals over all monotone rules), there exists

a deterministic non-monotone policy satisfying the perfect-coordination property and sparing the

28This means that the agent believes that the proportion of agents pledging is uniformly distributed over [0, 1]. See

Morris and Shin (2006).
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Figure 2: Suboptimality of deterministic binary monotone policies.

banks from default over a set of fundamentals of strictly larger probability measure than the optimal

monotone policy (and hence yielding the policy maker a strictly higher payoff).

Proof of Example 2: The formal proof is in the online Supplement. Here we sketch the

key arguments. To fix ideas, let g = 1 − c and b = −c, with c ∈ (0, 1), as in Example 1. For any

θ ∈ [0, 1], let x∗σ(θ) be the critical signal threshold such that, when the quality of the agents’ exogenous

information is σ and all agents pledge for x > x∗σ(θ) and refrain from pledging for x < x∗σ(θ), a bank

survives if its fundamentals exceed θ and defaults otherwise, as defined in (2).29 Note that, under

the specification in this example x∗σ(θ) = (1 + 2σ)θ − σ. For any binary policy Γ = ({0, 1}, π), any

quality of the agents’ exogenous information σ, and any threshold θ ∈ [0, 1] such that (x∗σ(θ), 1) are

mutually consistent, let V Γ
σ (θ) be the payoff of the marginal agent with signal x∗σ(θ) when each agent

with signal below x∗σ(θ) refrains from pledging and each agent with signal above x∗σ(θ) pledges, after

the policy Γ announces that s = 1. That is,

V Γ
σ (θ) ≡ UΓ

σ (x∗σ(θ), 1|x∗σ(θ)) ,

where UΓ
σ is the function defined after Theorem 2.

Now, for any θ̂ ∈ Θ, let Γθ̂ = ({0, 1}, πθ̂) be the deterministic monotone policy with cut-off θ̂

(that is, the policy that discloses s = 1 with certainty when fundamentals are above θ̂ and discloses

s = 0 with certainty when fundamentals are below θ̂). Note that the absence of any public disclosure

is equivalent to a monotone policy with cut-off θ̂ = min Θ = −K and that, under such a policy, the

default threshold is θMS = c.30

29That is, for θ̃ ≤ θ, 1− P (x∗σ(θ)|θ̃) ≤ 1− θ̃, whereas, for θ̃ > θ, 1− P (x∗σ(θ)|θ̃) > 1− θ̃.
30To see this, observe that, for any θ ∈ [0, 1], V Γmin Θ

σ (θ) = Pr
(
θ̃ > θ|x∗σ(θ)

)
− c = θ− c, which is strictly positive for

19



Compared to a situation in which the policy reveals no information, the knowledge that the

fundamentals are above a threshold θ̂ ∈ [0, 1], other things equal, increases the payoff of the marginal

agent from pledging. However, because the noise in the agents’ signals is bounded, the announcement

that fundamentals are above θ̂ has a bite on the marginal agent’s payoff only insofar θ ≤ (θ̂+2σ)/(1+

2σ). In fact, when θ > (θ̂+ 2σ)/(1 + 2σ), x∗σ(θ)−σ > θ̂ meaning that the marginal agent with signal

x∗σ(θ) already knows that fundamentals are above θ̂ from the observation of his own signal and thus

learns nothing from learning that the bank passed the test (i.e., that fundamentals are above θ̂).

A necessary and sufficient condition for all agents to pledge under MARP associated with a

monotone policy Γθ̂ is that, for any possible default threshold θ > θ̂, V Γθ̂
σ (θ) > 0.31 This implies that

the cut-off θ∗σ for the optimal deterministic monotone rule is θ∗σ = x∗σ(θMS)− σ.32

Now to see that the above monotone policy is improvable, assume that σ is small so that

inf Θ
(
x∗σ
(
θMS

))
= x∗σ

(
θMS

)
− σ > 0. Next, pick δ, γ > 0 small and let θ′′ ≡ x∗σ(θMS − δ) − σ

and θ′ ≡ θ′′ − γ. That inf Θ
(
x∗σ
(
θMS

))
> 0 implies that it is possible to find δ, γ > 0 small so

that θ′′ and θ′ are non-negative. Next, consider a policy Γγ,δ = ({0, 1}, πγ,d) that, in addition to

passing all banks with fundamentals above θ∗σ, also passes those with fundamentals θ ∈ [θ′, θ′′].33 Let

V
Γγ,δ
σ (θ) be the payoff of the marginal agent with signal x∗σ(θ) when the policy Γγ,δ announces that

s = 1, thus revealing that fundamentals belong to [θ′, θ′′] ∪ [θ∗σ, 1 +K]. This payoff is represented in

Figure 2 along with the payoff V Γθ
∗
σ

σ (θ) under the optimal monotone rule. Provided that δ and γ are

small, V
Γγ,δ
σ (θ) ≥ 0 for all θ ∈ [θ′/ (1 + 2σ) , 1], with V

Γγ,δ
σ (θ) = 0 if and only if θ = θMS .34 Starting

from Γγ,δ, one can then further perturb the policy Γγ,δ by giving a pass grade with certainty to banks

with fundamentals in [θ′, θ′′] ∪ [θ∗σ + ε,+∞), with ε > 0 but small, and failing with certainty the

others. The new policy Γ̃ so constructed is such V Γ̃
σ (θ) > 0 for all θ ∈ [θ′/ (1 + 2σ) , 1] meaning that,

when Γ̃ announces that s = 1, under MARP all agents pledge, no matter their signal. Hence the

policy Γ̃ so constructed satisfies the perfect-coordination property. That it strictly improves upon

the original deterministic optimal monotone one follows directly from the fact that it spares a bank

θ > θMS = c and strictly negative for θ < θMS . Hence, in the absence of any public disclosure, the unique rationalizable

profile features all agents pledging for x > x∗σ(θMS) and all agents refraining from pledging for x < x∗σ(θMS).

31Indeed, if there exists θ > θ̂ such that V Γθ̂

σ (θ) ≤ 0, then not pledging when receiving a signal below x∗σ(θ) is

rationalizable. In this case, there must exist θ′ > θ̂ such that V Γθ̂

σ (θ′) = 0. In the continuation game that starts

after the announcement that s = 1, refraining from pledging for any x < x∗σ(θ′) and pledging for any x > x∗σ(θ′) is

thus a continuation equilibrium. Because x∗σ(θ′) > x∗σ(θ), it is then easy to see that not pledging for x < x∗σ(θ) is

rationalizable.
32As explained above, for any θ > (θ̂+ 2σ)/(1 + 2σ), the announcement that fundamentals are above θ̂ has no effect

on the payoff of the marginal agent with signal x∗σ(θ), meaning that V Γθ̂

σ (θ)=V Γmin Θ

σ (θ). Because V Γmin Θ

σ (θ) < 0 for

θ < θMS , we thus have that, for any θ̂ < x∗σ(θMS) − σ, and any θ ∈
(

(θ̂ + 2σ)/(1 + 2σ), θMS
)

, V Γθ̂

σ (θ) = θ − c < 0,

meaning that not pledging is rationalizable for some agents.
33Formally, πγ,δ discloses s = 1 with certainty when θ ∈ [θ′, θ′′]∪ [θ∗σ, 1 +K] and discloses s = 0 with certainty when

θ ∈ (−K, θ′) ∪ (θ′′, θ∗σ).
34For θ < θ′/ (1 + 2σ), x∗σ(θ) + σ < θ′, meaning that (x∗σ(θ), 1) are not mutually consistent and hence the payoff

function V
Γγ,δ
σ (θ) is not well defined.
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from default over a set of fundamentals of strictly larger probability measure. �

The reason why the non-monotone policy Γ̃ constructed in the proof of Example 2 spares more

banks from default than the optimal deterministic monotone policy with threshold θ∗σ is that agents

receiving signals around θMS are highly sensitive to the grade the policy gives to banks with funda-

mentals around θMS but not so much so to to the grade the policy gives to fundamentals far from

θMS . In the above example with bounded noise, an agent receiving a signal x∗σ(θMS) is not sensitive

at all to the grade the policy gives to a bank with fundamentals below x∗σ(θMS) − σ given that his

private signal informs him that the fundamentals are above x∗σ(θMS)− σ. Hence, while it is impos-

sible to amend the optimal deterministic monotone policy (the one with cut-off θ∗σ = x∗σ(θMS)− σ)

by giving a pass grade also to banks with fundamentals slightly below θ∗σ (say, with fundamentals

θ ∈ [θ∗σ−ε, θ∗σ]), without inducing some of the agents to refrain from pledging, it is possible to amend

the optimal deterministic monotone policy by extending the pass grade to a small interval [θ′, θ′′] of

fundamentals with 0 ≤ θ′ < θ′′ < θ∗σ, while continuing to induce all agents to pledge under MARP.

Property 1 in Condition M implies that x∗σ(θMS)−σ < 0 thus making such perturbations unfeasible.

Next, consider the other two properties in Condition M. Given any policy Γ = ({0, 1}, π) in which

π is deterministic (meaning that, for any θ, π(θ) assigns probability 1 either to s = 1 or to s = 0),

let DΓ =
{

(θi, θ̄i] : i = 1, ..., N
}

denote the partition of
(
0, θMS

]
induced by π, with N ∈ N, θ1 = 0,

and θN = θMS .35 Let d ∈ DΓ denote a generic cell of the partition DΓ and, for any θ ∈ [0, θMS ],

denote by dΓ (θ) ∈ DΓ the cell that contains θ. Finally, let M (Γ) ≡ maxi=1,...,N |θ̄i − θi| denote the

mesh of DΓ, that is, the Lebesgue measure of the cell of DΓ of maximal Lebesgue measure.

The next example considers an economy in which the noise in the agents’ exogenous signals is

drawn from an unbounded distribution (in which case, property 1 in Condition M trivially holds),

but where properties 2 and 3 in Condition M are violated. It shows that any deterministic policy

giving the same grade to an interval of types to the left of θMS of measure larger than E(σ), with

E(σ) going to zero as σ goes to zero, can be improved upon by a non-monotone deterministic policy

with a smaller mesh. Optimal policies are thus highly non-monotone

Example 3. Suppose that θ is drawn from an improper uniform prior over R and that the agents’

signals are given by xi = θ + σεi with εi drawn from a standard Normal distribution.36 Further

assume that there exist scalars g, b,W,L ∈ R, with g > 0 > b and W > L, such that, for any

θ, g(θ) = g, b(θ) = b, W (θ) = W and L(θ) = L. There exists a scalar σ̄ > 0 and a function

E : (0, σ̄] → R+, with limσ→0+ E(σ) = 0, such that, for any σ ∈ (0, σ̄], in the game in which the

35That is, letting π(θ) = 0 denote the Dirac distribution assigning probability one to s = 0 and π(θ) = 1

be the Dirac distribution assigning measure one to s = 1, we have that DΓ is such that either (a) π(θ) = 0

for all θ ∈ ∪i=2k,k=1,2,...,N

(
θi, θ̄i

]
and π(θ) = 1 for all θ ∈ ∪i=2k−1,k=1,2,...,N

(
θi, θ̄i

]
, or (b) π(θ) = 1 for all

θ ∈ ∪i=2k,k=1,2,...,N

(
θi, θ̄i

]
and π(θ) = 0 for all θ ∈ ∪i=2k−1,k=1,2,...,N

(
θi, θ̄i

]
.

36That the prior is improper simplifies the exposition but is not important. Also note that the agents’ hierarchies of

beliefs are well defined despite the improperness of the prior.
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noise in the agents’ information is σ, the following is true: given any deterministic pass/fail policy

Γ = ({0, 1}, π) satisfying the perfect-coordination property and such that M (Γ) > E(σ), there

exists another deterministic pass/fail policy Γ∗ with M (Γ∗) < E(σ) that also satisfies the perfect-

coordination property and such that the ex-ante probability of default under Γ∗ is strictly smaller

than under Γ (and hence Γ∗ yields the policy maker a payoff strictly higher than Γ).

Proof of Example 3: The formal proof is in the online Supplement. Here we sketch the key

arguments. Heuristically, non-monotone policies permit the policy maker to save more banks than

monotone policies by making it difficult for the agents to commonly learn the fundamentals when

the latter are above 0 but below θMS and the policy maker announces that the bank passed the

test. Intuitively, if the policy maker assigned a pass grade to an interval [θ′, θ′′] ⊂ [0, θMS ] of large

Lebesgue measure, when σ is small and θ ∈ [θ′, θ′′], most agents would receive signals xi ∈ [θ′, θ′′].

No matter the grade assigned to fundamentals outside the interval [θ′, θ′′], in the continuation game

that starts after the policy maker announces that the bank passed the test, most agents receiving

signals xi ∈ [θ′, θ′′] would then assign high probability to the joint event that θ ∈ [θ′, θ′′], that other

agents assign high probability to θ ∈ [θ′, θ′′], and so on. When this is the case, it is rationalizable

for such agents to refrain from pledging. Hence, when σ is small, the only way the policy maker can

guarantee that, when θ ∈ [0, θMS ], the agents pledge after hearing that the bank passed the test is

by dividing the subset of [0, θMS ] receiving a pass grade into a collection of disjoint intervals, each

of small Lebesgue measure.37

Next, suppose that the intervals
(
θi, θ̄i

]
⊂
(
0, θMS

]
, i = 1, ..., N , receiving a pass grade were far

apart, implying that the policy maker fails an interval [θ′, θ′′] ⊂ (0, θMS ] of large Lebesgue measure

(note that this is indeed the case under the optimal monotone deterministic rule with cut-off θ∗, as

defined in (3)). The proof in the online Supplement then shows that, starting from Γ, the policy

maker could assign a pass grade to some types in the middle of [θ′, θ′′] and a fail grade to some

types to the right of θ′′, in such a way that (a) pledging continues to be the unique rationalizable

action for all agents after hearing that the bank passed the test, and (b) the set of fundamentals

receiving a pass grade under the new policy is strictly larger than under the original one. Formally,

suppose that, starting from the original policy Γ, the policy maker assigns a pass grade to types

θ ∈ [(θ′ + θ′′)/2, (θ′ + θ′′)/2 + ξ] and a fail grade to types θ ∈ [θ′′ + δ/2, θ′′ + δ], with ξ and δ small

and chosen so that the ex-ante probability of a pass grade is the same as under the original policy Γ.

Now take any individual with signal x < (θ′ + θ′′)/2. Suppose that, under the original policy Γ, the

individual pledges and rationalizes such behavior by expecting all individuals with signal above his

to also pledge. When σ is small, the individual then expects default to occur only for θ < x. Because

the new policy assigns a pass grade to fundamentals θ > (θ′ + θ′′)/2 closer to the individual’s own

signal than the original policy, and because such fundamentals are associated with no default, the

37Formally speaking, a highly non-monotone policy guarantees that the support of each agent’s posterior beliefs after

hearing that the bank passed the test is not connected. Connectedness of the supports facilitates rationalizable profiles

where some agents refrain from pledging.
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individual’s incentives to pledge under the new policy are stronger than under the original one.

Next consider an individual with signal x ≥ θ′′ + δ. Suppose again that, under the original

policy Γ, such an individual pledges and rationalizes his behavior by expecting all individuals with

signal higher than his to also pledge. When σ is small, such individual expects the bank to default

only for θ < x. Because the new policy assigns a pass grade to types θ < x farther away from x

than the original policy, and because such fundamentals are associated with default, the individual’s

incentives to pledge are again stronger under the new policy than under the original one.

In the online Supplement, we show that the above two properties in turn imply that, for those

individuals with signals x /∈ [(θ′ + θ′′)/2, θ′′ + δ], if pledging was the unique rationalizable action

under the original policy Γ then pledging continues to be the unique rationalizable action under the

new policy.

For those agents with signal x ∈ [(θ′ + θ′′)/2, θ′′ + δ], instead, the incentives to pledge may be

smaller under the new policy than under the original one. However, as we show in the online Sup-

plement, for such individuals pledging is the unique rationalizable action under small perturbations

of the original policy. Hence, provided that σ, ξ, δ are small, pledging is the unique rationalizable

action for such individuals as well.

The policy maker can then extend the pass grade to some types to the left of (θ′ + θ′′)/2 and to

some types to the right of θ′′+δ/2 while guaranteeing that pledging after hearing that the bank passed

the test continues to be the unique rationalizable action for all agents. The construction sketched

above can be iterated till one arrives at a new policy with a mesh smaller than E(σ). Because default

under the new policy is smaller than under the original one, the new policy improves strictly over

the original one.

Finally, one can show that, when σ is small, a pass grade can be given to all θ > θMS + ε, with

ε > 0 small, while guaranteeing that all agents pledge after hearing that the bank passed the test.38

�

3.3.1 Discussion: multiplicity of receivers and exogenous private information

It is worth contrasting the above results about the sub-optimality of monotone rules (when Condition

M is violated) to those for economies featuring either a single privately-informed receiver, or multiple

receivers with no exogenous private information.

Single Receiver. In this case, the optimal stress test is a simple monotone pass/fail policy with

cut-off equal to θ∗ = 0. This is because, in this model, the policy maker’s and the receiver’s payoffs

are aligned (they both want to avoid default when possible). Things are different when preferences

are misaligned. To see this, suppose the policy maker’s payoff is equal to W in case the bank avoids

38Formally, for any ε > 0, there exists σ(ε) such that, for any σ < σ(ε), given any pass/fail policy Γ satisfying the

perfect-coordination property, there exists another pass/fail policy Γ′ also satisfying the perfect-coordination property

that agrees with Γ on any θ < θMS and passes with certainty all banks with fundamentals θ ≥ θMS + ε.
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default, and L in case of default, with W > L as in Examples 2 and 3 above. However, now suppose

that the receiver’s payoff differential between pledging and not pledging is equal to −g in case of

default and −b in case of no default, with g > 0 > b. Such payoff may reflect the idea that the

receiver is a speculator whose payoff is equal to zero when he refrains from speculating (equivalently,

when he pledges). When, instead, he speculates, his payoff is positive in case speculation leads to

default but negative in case the bank survives the speculative attack. Using the results in Guo and

Shmaya (2019), one can then show that the optimal stress test in this case has the interval structure:

each type x of the receiver is induced to play the action favorable to the policy maker (abstain from

speculating) over an interval of fundamentals [θ1(x), θ2(x)], with θ1(x) < 1 < θ2(x), for all x, and

with θ1(x) decreasing in x and θ2(x) increasing in x. Such a policy requires disclosing more than

two signals and hence cannot be implemented through a simple pass/fail test. In contrast, with

a continuum of heterogeneously informed receivers with the same payoffs as in the variant above,

the optimal stress is a pass-fail policy that is typically non-monotone in θ, as shown in Examples 2

and 3 above.39 Furthermore, when the optimal policy is not monotone, it does not have an interval

structure, as each receiver with signal x is induced to pledge over a non-connected set of fundamentals.

The reason for these differences is that, with a single receiver, to avoid an attack, the policy maker

must persuade the receiver that the fundamentals are likely to be above 1, in which case the attack

is unsuccessful. With multiple receivers, instead, the policy maker must persuade each receiver that

enough other receivers are not attacking, which, as shown above, is best accomplished by a non-

monotone policy that makes it difficult for the receivers to commonly learn the fundamentals, when

the latter are above 0 but below θMS .

Multiple receivers with no exogenous private information. Because all receivers have the same

posterior beliefs, under MARP, each of them plays the friendly action only if it is dominant to do

so. The optimal policy is then again a simple monotone pass/fail policy with cut-off equal to θ∗ = 0

in case preferences are aligned and equal to some value θ∗ ∈ (0, 1) in case they are mis-aligned.

The reason why the optimal policy is monotone when the receivers possess no exogenous private

information is that the policy maker needs to convince each of them that θ is above 1 with sufficiently

high probability to induce them to play the friendly action. Interestingly, when the receivers possess

no exogenous private information, the optimality of monotone rules extends to economies in which

the policy maker can disclose different information to different receivers, as shown in Li et al (2020)

and Morris et al (2020).

39This is because, under MARP, all agents play the friendly action if and only if it is iteratively dominant for them

to do so, irrespective of the alignment in payoffs.

24



4 Robustness and Extensions

4.1 Generalizations

We now introduce a few generalizations whose value is twofold: (a) they permit us to discuss the

robustness of the results in the baseline model, and (b) they introduce enrichments that we expect

to be relevant for applications.

The fundamentals are given by (θ, z), with θ drawn from Θ according to F , and with z drawn from

[z, z̄] according to Qθ(z), with the cdf Qθ(z) weakly decreasing in θ, for any z (first order stochastic

dominance).40 The variable θ continues to parametrize the maximal information the policy maker

can collect about the fundamentals. Likewise, any information the agents possess about z is encoded

in the signals x they receive about θ.41 The additional variable z parametrizes risk that the agents

and the policy maker face at the time of the stress test (e.g., macroeconomic variables that are only

imperfectly correlated with the bank’s fundamentals, and/or the exogenous supply of funds to the

bank from sources other than the agents under consideration, as in the next section).

There exists a function R : Θ × [0, 1] × [z, z̄] → R such that, given (θ,A, z), default occurs (i.e.,

r = 0) if, and only if, R(θ,A, z) ≤ 0. The function R thus implicitly defines the critical size of the

pledge necessary for the bank to avoid default. It is continuous, strictly increasing in (θ, z, A), and

such that R(θ, 1, z) = R(θ̄, 0, z) = 0, for some θ, θ̄ ∈ R, with θ < θ̄. The thresholds θ and θ̄ thus

define the “critical region” (θ, θ̄] where the fate of the bank depends on the response of the market.42

The policy maker’s payoff is equal to

ÛP (θ,A, z) =

Ŵ (θ,A, z) if R(θ,A, z) > 0

L̂(θ,A, z) if R(θ,A, z) ≤ 0.
(7)

The agents’ payoff differential between playing the “friendly” action (which we continue to inter-

pret as pledging to the bank, or abstaining from speculating against it) and the “adversarial” action

(refusing to pledge, or speculating against the bank) is equal to

û(θ,A, z) =

ĝ(θ,A, z) if R(θ,A, z) > 0

b̂(θ,A, z) if R(θ,A, z) ≤ 0.

We assume that the payoff differential is positive in case of no default and negative otherwise:

ĝ(θ,A, z) > 0 > b̂(θ,A, z), for any (θ,A, z). With a slight abuse of notation, for any (θ,A), we then

40We assume that the support of each distribution Qθ(z) is contained in a bounded interval [z, z̄] only to ease the

exposition. All the results below extend to the case where Qθ(z) has unbounded support, for some θ.
41As in the baseline model, conditional on θ, the private signals (xi)i∈[0,1] are i.i.d. draws from an (absolutely

continuous) cumulative distribution function P (x|θ), with associated density p(x|θ) strictly positive over the interval

%θ ∈ R.
42In the baseline model R = A− 1 + θ so that θ = 0 and θ̄ = 1.
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let r(θ,A) ≡ Pr {R(θ,A, z) > 0|θ,A} denote the probability the bank avoids default,

g(θ,A) ≡ E [I(R(θ,A, z) > 0)ĝ(θ,A, z)|θ,A]

r(θ,A)
and b(θ,A) ≡

E
[
I(R(θ,A, z) ≤ 0)b̂(θ,A, z)|θ

]
1− r(θ,A)

the agents’ expected payoff differential in case of no default and in case of default, respectively, and

W (θ,A) ≡
E
[
I(R(θ,A, z) > 0)Ŵ (θ,A, z)|θ,A

]
r(θ,A)

and L(θ,A) ≡
E
[
I(R(θ,A, z) ≤ 0)L̂(θ,A, z)|θ,A

]
1− r(θ,A)

the policy maker’s expected payoff, again in case of no default and default, respectively. With this

notation in hands, the agents’ and the policy maker’s expected payoffs can then be conveniently

expressed as a function of θ and A only, by letting

u(θ,A) ≡ r(θ,A)g(θ,A) + (1− r(θ,A))b(θ,A)

denote a representative agent’s expected payoff differential and

UP (θ,A) ≡ r(θ,A)W (θ,A) + (1− r(θ,A))L(θ,A)

denoting the policy maker’s expected payoff.

Hereafter, we assume that both u(θ,A) and UP (θ,A) are non-decreasing in A and that UP (θ, 1) >

UP (θ, 0) for all θ ∈ (θ, θ̄]. That u(θ,A) is monotone in A implies that the continuation game among

the agents remains supermodular. That UP (θ,A) is non-decreasing in A implies that, for any Γ,

MARP continues to coincide with the “smallest” rationalizable profile, that is, the one involving the

smallest measure of agents pledging. Finally, that, for any θ in the critical region, the policy maker

strictly prefers that all agents pledge to no agent pledging guarantees that, when the optimal policy

has a pass/fail structure, it is obtained by maximizing the probability that a pass grade is given to

banks whose fundamentals are in the critical range.

4.2 Results

Condition FB. For any x, u(θ, 1 − P (x|θ)) ≥ 0 (alternatively, u(θ, 1 − P (x|θ)) ≤ 0) implies that

u(θ′′, 1− P (x|θ′′)) > 0 for all θ′′ > θ (alternatively, u(θ′, 1− P (x|θ′)) < 0 for all θ′ < θ).

Condition FB is a single-crossing property requiring that, for any x, u(θ, 1 − P (x|θ)) changes

sign only once, from negative to positive. This property clearly holds when u(θ,A), in addition

to being non-decreasing in A as assumed above, is also non-decreasing in θ. It also holds when the

default outcome is a deterministic function of (θ,A), as in the baseline model, because, for any (θ,A),

g(θ,A) > 0 > b(θ,A).

Given any common posterior G ∈ ∆(Θ), for any x such that
´
p(x|θ)G(dθ) > 0, let

ŪG(x) ≡
´
u(θ, 1− P (x|θ))p(x|θ)G(dθ)´

p(x|θ)G(dθ)
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denote the expected payoff differential of an agent with signal x who expects all other agents to

pledge if their private signal exceeds x and to not pledge otherwise. Let ξG be the largest solution

to ŪG(x) = 0 if such an equation admits a solution, ξG = +∞ if ŪG(x) < 0 for all x such that´
p(x|θ)G(dθ) > 0, and ξG = −∞ if ŪG(x) > 0 for all x such that

´
p(x|θ)G(dθ). Finally, let

θG ≡ inf
{
θ : u(θ, 1− P (ξG|θ)) ≥ 0

}
. The interpretation of ξG and θG is the following. Suppose that

the policy maker induces a common posterior G over Θ, p(x|θ) is log-supermodular (i.e., satisfies

MLRP), and Condition FB holds. Then, in the continuation game that starts after the realization

s of the policy Γ induces the common posterior G, MARP is in threshold strategies and is defined

by the cut-off ξG.43 When agents play according to MARP given the induced posterior G, their

expected payoff differential is non-positive for all θ ≤ θG and non-negative for all θ > θG.

Condition PC. For any distribution Λ ∈ ∆(∆(Θ)) over posterior beliefs consistent with the

common prior F (i.e., such that
´
GΛ(dG) = F ), the following condition holds:

´ (´ θG
−∞ U

P (θ, 0)G(dθ) +
´ +∞
θG UP (θ, 1)G(dθ)

)
Λ(dG) ≥

´ (´
UP (θ, 1− P (ξG|θ))G(dθ)

)
Λ(dG).

(8)

Condition PC trivially holds when the policy maker faces no aggregate uncertainty (i.e., when each

distribution Qθ is degenerate), and W and L are invariant in A, as in the baseline model. More

generally, Condition PC accommodates for the possibility that both W and L depend on A, possibly

non-monotonically, provided that, on average, the loss to the policy maker from having no agent

pledging in states θ ≤ θG is more than compensated by the benefit from having all agents pledging

in states θ > θG. The average is over both the posteriors induced by the policy maker and the

fundamentals. The condition thus requires that the policy maker’s and the agents’ payoffs be not

too misaligned.44

We then have the following result:45

Theorem 4. (a) Given any (regular) policy Γ, there exists a (regular) policy Γ∗ satisfying the perfect-

coordination property and such that, when agents play according to MARP, at any θ, their expected

payoff differential under Γ∗ is at least as high as under Γ. Furthermore, when, under MARP, θ

43The proof for this claim follows from arguments similar to those in the proof of Theorem 2.
44To see this, first observe that the right-hand side of (8) is the policy maker’s expected payoff when the agents play

according to MARP. Next, as explained above, when Condition FB holds and p(x|θ) is log-supermodular, the agents’

expected payoff differential under MARP is negative for θ ≤ θG and positive for θ > θG. The left-hand side of (8)

is thus the policy maker’s expected payoff when, for any (G, θ), she induces all agents to (a) pledge, irrespective of

their private signals, if the agents’ expected payoff differential under MARP at (θ,G) is positive, and (b) refrain from

pledging, irrespective of their signals, if their expected payoff differential is negative.
45Consistently with the definition in the baseline model, we say that a policy Γ is regular if MARP under Γ is well

defined and the sign of the agents’ expected payoff differential under MARP is measurable in θ (in the definition in

Section 3, we required that the regime outcome is measurable in θ; because, in the baseline model, there is no aggregate

uncertainty and payoffs depend only on θ and the regime outcome, in that version of the model, measurability of the

regime outcome in θ is equivalent to measurability of the sign of the agents’ payoff differential in θ).
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perfectly predicts the default outcome (e.g., when, for any θ, Qθ is a Dirac measure), the probability of

default under Γ∗ is the same as under Γ. (b) Suppose that p(x|θ) is log-supermodular and Condition

FB holds. The policy Γ∗ from part (a) is a pass/fail policy. (c) Suppose that, in addition to the

conditions in part (b), Condition PC also holds. Then the policy maker’s payoff under Γ∗ is at least

as high as under Γ. (d) Suppose that, in addition to the conditions in part (c), Condition M also

holds. Then the policy Γ∗ is monotone (that is, there exists a threshold θ∗ such that, for any θ ≤ θ∗,
π∗(θ) assigns probability one to s = 0, whereas for any θ > θ∗, π∗(θ) assigns probability one to

s = 1).

Proof of Theorem 4. The formal proof follows from arguments similar to those establishing

Theorems 1-3 and is omitted for brevity.46 Here we discuss the novel effects due to the enrichments

introduced above and the role played by the conditions in the theorem.

First, consider part (a). When default depends on variables only imperfectly correlated with

θ, perfect coordination cannot be induced by announcing to the agents the fate of the bank under

MARP, as in the proof of Theorem 1. Perfect coordination, however, can still be induced by an-

nouncing, at any θ, the sign of the agents’ expected payoff differential under the original policy.

Arguments similar to those establishing Theorem 1 then imply that, when the agents learn that

their expected payoff differential under the original policy was positive, under the new policy, they

all pledge, irrespective of their signals. Likewise, when they hear their payoff was negative, they

all refrain from pledging. That the new policy makes the agents better off then follows from the

fact that the agents’ payoff differentials are non-decreasing in the size of the aggregate pledge. In

the special case in which θ is a perfect predictor of the default outcome, because the sign of the

agents’ expected payoff differential is determined by the default outcome, perfect coordination is

obtained by informing the agents of the default outcome, as in the baseline model. In the online

Supplement, we show that, in this case, the ability to coordinate perfectly the market while inducing

the same default outcome as under the original policy extends to an even richer class of economies.

In particular, economies in which (i) agents’ prior beliefs need not be consistent with a common

prior, nor be generated by signals drawn independently across agents, conditionally on θ, (ii) the

number of agents is arbitrary (in particular, finitely many agents), (iii) agents’ have a level-K degree

of sophistication, (iv) payoffs may be heterogenous across agents, and (v) the designer may disclose

different information to different agents.

Next, consider part (b). As explained above, when p(x|θ) is log-supermodular and u(θ, 1−P (x|θ))
has the single-crossing property, then, under MARP, the agents’ strategies are monotone in their

46Because, in the generalized model, the default outcome need not be a deterministic function of θ, the definition

of x∗(θ) and θ0(x) in the proofs leading to Theorems 1-3 in the Appendix, must be amended as follows: x∗(θ) is the

critical signal threshold such that, when agents pledge of x > x∗(θ) and do not pledge for x < x∗(θ), the agents’

expected payoff differential u(θ̃, 1− P (x∗(θ)|θ̃)) changes sign at θ̃ = θ; θ0(x) is the critical fundamental threshold such

that, when agents pledge of x̃ > x and do not pledge for x̃ < x, the agents’ expected payoff differential u(θ, 1−P (x|θ))
changes sign at θ = θ0(x). As in the baseline model, we assume that these functions are continuous.
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private signals. Arguments similar to those establishing Theorem 2 then imply that the new policy

that perfectly coordinates the agents does not need to reveal anything more than the sign of the

agents’ expected payoff differential under the original policy.

Next, consider part (c). The pass/fail policy described above clearly makes all agents weakly

better off. In general, it need not make the policy maker better off. However, when Condition PC

also holds, possible losses to the policy maker from inducing fewer agents pledging in states in which

the agents’ expected payoff differential is negative are compensated by having more agents pledging

in those states in which their expected payoff differential is positive. When this is the case, the new

policy leads to a Pareto improvement.

Finally, consider part (d). As discussed in the previous section, in general, the optimal policy

need not be monotone in θ. It is always monotone when, in addition to the conditions in part (c),

Condition M also holds.

5 Micro-foundations and Comparative Statics

We conclude by showing how the general model of Section 4 accommodates as special cases an econ-

omy in which banks fund themselves with equity issuances, and one in which they fund themselves

with debt. After showing how these two economies are nested into the general framework of the

previous section, we illustrate how the model can be used for comparative statics analysis.

Consider a representative bank that, at the beginning of period 1, has former liabilities in the

amount of D which need to be repaid by the end of the period for the bank to continue operating.

The bank has legacy assets that deliver liquid funds l(θ) ∈ R+ at the end of period 1 and, conditional

on the bank repaying its period-1 liabilities, a cash flow C (θ) ∈ R+ in period 2. In addition, in case

of default, the liquidation of the bank’s assets in period 1 delivers an extra cash flow equal to γ(θ),

where the functions C and γ are bounded, differentiable, and Lipschitz continuous. Additionally,

the bank has outstanding shares whose total amount is normalized to 1.

In order to pay for its former liabilities, the bank can either issue new shares or new short-term

debt. We study each of these two cases separately. In both cases, we assume that each potential

investor is endowed with 1 unit of capital and has to decide whether to "invest" by purchasing the

security issued by the bank, "bet against" the bank by short-selling the security, or do nothing.

Depending on the case of interest, the decision to do nothing may correspond to the decision to

invest in other securities or, in case of an existing stakeholder, to maintain the existing portfolio. To

keep the portfolio decision simple, we assume that each investor is constrained in the position he can

take and let that position be normalized to 1. That is, each investor can either buy or sell at most

one unit of the security issued (see Albagli et al. (2015) and Brunnermeier and Pedersen (2005) for

similar assumptions). We also simplify the analysis by assuming that investors submit market orders

(see, e.g., Kyle (1985)). This allows us to abstain from the role of the market as an aggregator of

the investors’ information which is beyond the scope of the analysis here.
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Each investor i ∈ [0, 1] is endowed with an exogenous private signal xi = θ+σεi of the bank’s un-

derlying fundamentals θ, with the noise εi drawn independently across investors (and independently

of θ) from a log-concave distribution. For simplicity, assume here that supp[P (·|θ)] = R for all θ,

in which case %θ = R for all θ. We also assume that the policy maker confines attention to mono-

tone policies, which, by virtue of Theorem 3, is without loss of optimality provided that the agents’

expected payoffs differentials u(θ, 1 − P (x|θ)) between purchasing and selling the bank’s securities

are log-supermodular over
{

(θ, x) ∈ [θ, θ̄]× R : u(θ, 1− P (x|θ)) ≤ 0
}

and the policy maker’s payoff

satisfies Condition PC and part 3 of Condition M.

Finally, to simplify the exposition, we assume that θ is drawn from an improper uniform prior over

R. This assumption is inconsequential to our results. The agents’ hierarchies of beliefs over θ (and

hence their expected payoffs) are well defined despite the improperness of the prior. Furthermore,

given the focus on monotone rules, optimal policies are also well defined (as discussed at the end of

Section 4, a monotone policy is optimal if and only if its threshold θ∗ satisfies Condition 3 and such

a condition is well defined despite the improperness of the prior).

5.1 Equity issuances

The bank issues q > 1 new shares at a price p which is determined in equilibrium. After observing

their private signals, all investors simultaneously decide whether to submit a market order to pur-

chase one share of the bank (ai = 1), short-sell the bank’s equity (ai = 0), or do nothing (ai = ∅).
Let A denote the amount of investors who decide to purchase the shares. We assume that the

aggregate demand for the bank’s shares is given by A + YE (p, z), where YE (p, z) represents addi-

tional demand coming from sources exogenous to the model (e.g., a combination of high-frequency

traders submitting limit-orders and of short-term liquidity traders submitting market orders). The

variable z parametrizes residual uncertainty that may correlate with the bank’s fundamentals (e.g.,

the "amount" of liquidity traders, and/or the short-term value the high-frequency traders derive

from purchasing the shares). We assume that YE (·, ·) is a non-increasing function of the price of the

bank’s shares, p, and a non-decreasing function of z.

Investors are risk-neutral. Along with the fact that investors submit market orders and face

constraints on their positions, this last assumption implies that doing nothing is dominated by either

purchasing or short-selling a share.47 Because each investor who does not purchase a share, short-

sells one, the total supply of shares is thus given by 1−A+ q, where 1−A is the amount of shares

shorted by the investors. It follows that the equilibrium price of the shares, p?E (A, z), is implicitly

determined by the market-clearing condition

1−A+ q = A+ YE (p, z) . (9)

47Whether an investor sells a share he already owns or short-sells one that he borrows makes no difference in this

settings. For simplicity, hereafter we focus on the case of short-selling.
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Given the monotonicities of YE , p?E (A, z) is increasing in A and in z, and decreasing in q. Hereafter,

we assume that a solution to (9) exists for any (z,A) and is bounded over (A, z) ∈ [0, 1]× [z, z̄].

The bank avoids default as long as the proceeds from the period-1 equity issuance are sufficient

to cover the bank’s liabilities D, that is, if and only if,

RE (θ,A, z) ≡ l(θ) + ρSqp
?
E(A, z)−D > 0,

where ρS is the short-term return on the cash qp?E collected through the equity issuance.

The investors’ payoff differential (between buying and short-selling a share) in case of no default

is then equal to

ĝE (θ,A, z) ≡ 2

(
C(θ) + ρL (l(θ) + ρSqp

?
E (A, z)−D)

1 + q
− p?E (A, z)

)
whereas the payoff differential in case of default is equal to

b̂E (θ,A, z) ≡ −2p?E (A, z) ,

where ρL is the long-term return on the extra cash l(θ) + ρSqp
?
E − D available to the bank at the

end of period 1, after the bank pays its liabilities D. Note that, in writing ĝE and b̂E , we used the

fact that, in case of no default, the long-term equilibrium price of equity is equal to to the long-term

cash flow C (θ) augmented by the long-term return on the funds l(θ) + ρSqp
?
E −D invested at the

end of period 1, divided by the amount of outstanding shares, 1 + q. In case of default, instead,

the long-term price of equity is equal to zero.48 The payoff from short-selling the bank’s shares is

equal to the negative of the payoff from purchasing the shares and, therefore, the payoff differential

between the two actions is equal to twice the payoff from purchasing the shares.

This economy is thus a special case of the general model in the previous section with the agents’

expected payoff differential taking the form of

uE(θ,A) ≡ −2
´ z̄
z p

?
E (A, z) dQθ(z) + 2

´ z̄
ẑE(θ,A)

[
C(θ)+ρL(l(θ)+ρSqp?E(A,z)−D)

1+q

]
dQθ(z) (10)

with ẑE(θ,A) denoting the critical level of z below which the bank defaults.49 Provided that uE(θ,A)

is non-decreasing in A, and that, for any x, uE (θ, 1− P (x|θ)) has the single-crossing property of

condition FB, all the conclusions from the previous section apply.50

48That, in case of default, the long-term price of equity is equal to zero reflects the fact that equity is junior to all

other existing claims and the assets’ liquidation value γ(θ) is small and hence insufficient to provide any funds to the

equity holders.
49Formally, ẑE(θ,A) is implicitly defined by the solution to l(θ) + ρSqp

?
E (A, z) = D whenever the equation has a

solution, is equal to z when l(θ) + ρSqp
?
E (A, z) > D, and is equal to z̄ when l(θ) + ρSqp

?
E (A, z̄) < D.

50Note that the first term in (10) is decreasing in A, as p?E (A, z) is increasing in A, for any z. However, the second

term is increasing in A (the integrand is increasing in A and the threshold ẑ(θ,A) is decreasing in A). Hence, provided

the effects from the second term prevail, uE(θ,A) is increasing in A. When θ and z are independent, the first term
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5.2 Debt issuances

Next, consider the case of debt issuances. The bank issues q > 1 bonds at the beginning of period 1.

Each bond is a contract that specifies a payment of FD in period 2, in case the bank does not default,

and covenants LD that discipline the way the proceeds from liquidation will be divided between old

and new debt-holders in case of default. Investors either purchase (ai = 1) or short-sell (ai = 0) one

unit of the bond by submitting a market order.51

Letting A denote the fraction of investors purchasing the bond and p its price, we then have that

the total demand for the bond is equal to A + YD (p, z), where YD (p, z) represents the exogenous

(net) demand for the bonds by high-frequency and noisy traders. As in the case of equity issuances,

YD is non-increasing in p and non-decreasing in z. We assume that, for all z ∈ [z, z̄] , if p > FD, then

YD (p, z) < 0, which guarantees that the equilibrium price of debt, p?D, is smaller than its face value

FD.

As in the case of equity issuances, the bank avoids default as long as its liquid funds at the end

of period 1, l(θ) + ρSqp
?
D, exceed the amount of former liabilities, D. Formally, default is avoided if,

and only if,

RD(θ,A, z) ≡ l(θ) + ρSqp
?
D(A, z)−D > 0,

where the equilibrium price for the newly issued bonds p?D(A, z) is implicitly given by the market-

clearing condition

q + 1−A = A+ YD (p?D, z) . (11)

As in the case of equity issuances, we assume that a solution to (11) exists for any (z,A) and is

bounded over (z,A) ∈ [z, z̄]× [0, 1].

The payoff differential between purchasing the bond versus short-selling it is then equal to

ĝD (θ,A, z) ≡ 2

(
min

{
FD,

C (θ) + ρL (l(θ) + ρSqp
?
D (A, z)−D)

q

}
− p?D (A, z)

)
in case the bank does not default, and is equal to

b̂D (θ,A, z) ≡ 2

(
LD

qLD +D
(γ (θ) + l(θ) + ρSqp

?
D (A, z))− p?D (A, z)

)
in case of default. That is, in case the bank is able to repay its short-term liabilities, investors

that purchased the bond receive in period 2 the minimum between the bond’s face value, FD, and

the bank’s period-2 net cash-flows, C (θ) + ρL (l(θ) + ρSqp
?
D (A, z)−D), divided by the amount of

is invariant in θ whereas the second term is increasing in θ. When, instead θ and z are positively correlated, the first

term may be decreasing in θ (this is because a higher a θ implies a FOSD shift in the distribution of z, i.e., Qθ(z) is

weakly decreasing in θ, for any z). However, provided the dependence of z on θ is small, uE(θ,A) is increasing in θ.

Clearly uE(θ,A) being monotone in (θ,A) suffices for uE (θ, 1− P (x|θ)) to have the single-crossing property, but is not

necessary.
51Investors may also do nothing (ai = ∅). As in the case of equity issuances, such a decision is dominated by either

purchasing or short-selling one unit of the bond. The arguments are the same as with equity issuances.
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bonds issued, q. If, instead, the bank is unable to repay its short-term liabilities, and hence defaults,

the amount that each debt-holder receives is equal to a fraction qLD/[qLD +D] of the total cash

l(θ) + ρSqp
?
D available at the end of period 1, augmented by the additional funds γ(θ) obtained by

liquidating the bank’s assets, and divided by the amount of bonds issued, q. In other words, the

available cash is divided between old and new debt holders in a pro-rated manner. Hereafter, we

assume that, in case the bank does not default, the amount of cash C(θ) generated by the bank’s

legacy asset in period 2 is sufficiently large to cover the bond’s face value FD for all (θ,A, z).

This economy too is thus a special case of the general model of the previous section with the

agents’ expected payoff differential between purchasing and short-selling the bond taking the form

of
uD(θ,A) = −2

´ z̄
z p

?
D (A, z) dQθ(z) + 2FD

´ z̄
ẑD(θ,A) dQθ(z)

+2
´ ẑD(θ,A)
z

LD
qLD+D (γ (θ) + l(θ) + ρSqp

?
D (A, z)) dQθ(z)

(12)

where ẑD(θ,A) is the critical level below which the bank defaults, defined in the same way as in

the case of equity issuances. Provided that uD(θ,A) is non-decreasing in A and that, for any x,

uD (θ, 1− P (x|θ)) has the single-crossing property of Condition FB, all the conclusions from the

previous section apply.52

5.3 Effects of market uncertainty on toughness of optimal stress tests

The results in the previous sections can also be used for comparative-statics analysis relating the

properties of optimal stress tests to the primitives of the model. In this subsection, we show how the

toughness of the optimal stress tests is affected by an increase in risk about the bank’s fundamentals.

Specifically, we use the two micro-foundations above to investigate how an increase in risk (formally

captured by an increase in the parameter σ scaling the noise in the agents’ signals xi = θ + σεi)

affects the critical threshold θ∗ below which the policy maker fails the bank under examination.

Let θ∗E(σ) and θ∗D(σ) denote the thresholds characterizing the optimal monotone policies when

the precision of the agents’ exogenous information is σ−2 and the bank funds itself with equity and

debt, respectively. Also let θMS
E and θMS

D be the Laplacian thresholds for the two economies under

consideration (defined by
´ 1

0 uh(θMS
h , A)dA = 0, h = E,D) and recall that, in the absence of any

public information disclosure, when σ → 0+, purchasing (alternatively, short-selling) security h is

the unique rationalizable action for x > θMS
h (alternatively, for x < θMS

h ). Lastly, let θ4h be defined

by the solution to uh(θ4h , 1/2) = 0, h = D,E, and note that the threshold θ4h is the critical value of

the fundamentals at which an investor who knows the fundamentals and expects 1/2 of the investors

to purchase security h and 1/2 to short-sell it is indifferent between purchasing and short-selling the

security, for h = E,D. Hereafter, we assume that the problem the policy maker faces is “severe”

52As in the case of equity issuances, the properties that uD(θ,A) is non-decreasing in A and uD (θ, 1− P (x|θ)) has

the single-crossing property of Condition FB may be consistent with the first term in (12) being decreasing in A.
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in the sense that θMS
h ≥ θ4h , h = E,D. Under a few further simplifying assumptions that ease the

derivations (stated in the next proposition), we then have the following result:

Proposition 1. Suppose that (a) θ and z are independent, (b) ρS = 1, (c) xi = θ + σεi, with εi

drawn from a standard Normal distribution, independently of (θ, z), (d) there exists l ∈ R+ such that

l(θ) = l for all θ, and (e) γ(θ) and C(θ) are strictly increasing. There exists σ† > 0 such that, for

any σ, σ′ ∈ (0, σ†], with σ′ > σ, θ∗E(σ′) < θ∗E(σ) and θ∗D(σ′) > θ∗D(σ).

The result in the proposition says the following. Take an economy in which the precision of the

agents’ exogenous information is sufficiently high (that is, σ is small) and consider the effect of an

increase in risk (formally captured by the transition to σ′ > σ) on the toughness of the optimal stress

test (formally captured by the threshold in θ below which the policy maker fails the bank). More

risk leads to a reduction in the toughness of the optimal stress test when the bank finances itself

with equity and to an increase in the toughness of the optimal stress test when the bank finances

itself with debt.

Intuitively, the reason why, under the assumed specification, risk is beneficial to the bank in case

of equity financing but not in case of debt financing is the following. Under equity financing, investors

are exposed to variations in fundamentals primarily through upside risk. Their payoff differential

(between purchasing and short-selling equity) is increasing in θ in case of no default and is equal to

−2p?E in case of default. Provided that the price of equity does not vary much with (θ, z), which

is the case under the assumed specification, an increase in risk then makes investors more willing

to purchase equity. The policy maker can then decrease the critical threshold θ∗E below which she

fails the bank while guaranteeing that, after announcing that the bank passed the test, the unique

rationalizable profile continues to feature all investors pledging by purchasing equity.

Under debt financing, instead, investors are exposed to variations in fundamentals primarily

through downside risk. When the liquidation value γ(θ) is increasing in θ and p?D is not very sensitive

to (θ, z), the investors’ payoff differential (between purchasing and short-selling debt) is increasing in

θ in case of default but constant in fundamentals in case the bank survives. An increase in risk then

makes investors less willing to pledge. The policy maker must then increase the critical threshold

θ∗D below which she fails the bank if she wants to guarantee that, after announcing that the bank

passed the test, the unique rationalizable profile features all investors pledging by purchasing the

newly issued debt.

That risk is beneficial to the bank in case of equity financing but detrimental in case of debt

financing need not extend to alternative specifications of the investors’ payoffs under the two secu-

rities. What appears to be true more generally is the following single-crossing property. Whenever

more risk is beneficial to the bank in case of debt financing, the same tends to be true under equity

financing.53

53Clearly, for this single-crossing result to hold, one needs to make sure that the two cases are comparable. This

requires, among other things, that the exogenous demand for the bank’s securities is the same in the two cases, i.e.,
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6 Conclusions

We consider the design of optimal persuasion policies in coordination settings in which the receivers

cannot be trusted to play favorably to the designer (e.g., pledging to a solvent but illiquid bank). We

show that the optimal policy completely removes any strategic uncertainty, while retaining structural

uncertainty: each agent can perfectly predict the actions of any other agent, but not the beliefs that

rationalize such actions. We identify conditions under which the optimal policy has a pass/fail

structure, as well as conditions under which the optimal policy is monotone, passing with certainty

institutions with strong fundamentals and failing the others.

The results are worth extending in a few directions. The analysis assumes the policy maker knows

how the distribution of market beliefs correlates with the banks’ fundamentals. Such knowledge may

come from previous experience with banks of similar characteristics, polls, data on professional

forecasters, the IOWA betting markets, and the like. While this is a natural starting point, in future

work it would be interesting to investigate how the structure of the optimal policy is affected by the

policy maker’s ambiguity about the joint distribution of the underlying fundamentals and market

beliefs.54

The analysis in the present paper is static. Many applications of interest are intrinsically dynamic,

with agents coordinating on multiple attacks and learning over time (see the discussion in Angeletos

et al. (2007)). In future work, it would be interesting to consider dynamic extensions and investigate

how the timing of information disclosures is affected by the agents’ behavior in previous periods.55

Finally, the analysis is conducted by assuming that the maximal information that the designer can

collect about the fundamentals (in the paper, θ) is exogenous. In future work, it would be interesting

to accommodate for the possibility that part of the information is provided by the banks themselves.

This creates an interesting screening+persuasion problem in the spirit of what is examined in the

literature on privacy in sequential contacting (e.g., Calzolari and Pavan (2006a) Calzolari and Pavan

(2006b), and Dworczak (2020)).56

Appendix

Proof of Theorem 1. Given any regular policy Γ = (S, π) and any n ∈ N, let TΓ
(n) be the set

of strategies surviving n rounds of IDISDS, with TΓ
(0) denoting the entire set of strategy profiles

a = (ai(·))i∈[0,1], where for any i ∈ [0, 1], ai(x, s) denotes the probability agent i pledges, given (x, s).

Let aΓ
(n) ≡

(
aΓ

(n),i(·)
)
i∈[0,1]∈ TΓ

(n) denote the most aggressive profile surviving n rounds of IDISDS

(that is, the profile in TΓ
(n) that minimizes the policy maker’s ex-ante payoff). The profiles

(
aΓ

(n)

)
n∈N

that YD(p, z) = YE(p, z), for any (p, z).
54For some recent work in this direction, see Dworczak and Pavan (2021).
55For some recent work in this direction, see Basak and Zhou (2020).
56See also Inostroza (2021) for recent developments in this direction.
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can be constructed inductively as follows. The profile aΓ
(0) ≡

(
aΓ

(0),i(·)
)
i∈[0,1]

prescribes that all

agents refrain from pledging, irrespective of (x, s). Next, let UΓ
i (xi, s; a) denote the payoff differential

between pledging and not pledging for agent i when, under Γ, all other agents follow the strategy in a.

Then, aΓ
(n),i(xi, s) = 0 if UΓ

i

(
xi, s; a

Γ
(n−1)

)
≤ 0 and aΓ

(n),i(xi, s) = 1 if UΓ
i

(
xi, s; a

Γ
(n−1)

)
> 0. MARP

consistent with Γ is then the profile aΓ = (aΓ
i (·))i∈[0,1] given by aΓ

i (·) = lim
n→∞

aΓ
(n),i(·), all i ∈ [0, 1].

Next, consider the policy Γ+ = (S+, π+), S+ ≡ S × {0, 1}, that, for each θ, draws the score s

from the same distribution π(θ) ∈ ∆(S) as the original policy Γ, and then, for each s it draws, it also

announces the regime outcome rΓ(θ, s) that would have prevailed at θ when agents play according

to MARP consistent with Γ; that is, for any θ, and any s ∈ supp(π(θ)), it announces
(
s, rΓ(θ, s)

)
.

Define TΓ+

(n) and aΓ+

(n) analogously to TΓ
(n) and aΓ

(n), but with respect to the policy Γ+ so defined.

The proof is in three steps. Steps 1 and 2 show that any agent i who, given (xi, s), finds it

dominant (alternatively, iteratively dominant) to pledge under Γ also finds it dominant (alternatively,

iteratively dominant) to pledge under Γ+ when receiving information (xi, (s, 1)). Step 3 uses the

above property to establish that, because the game is supermodular and aΓ+
is “less aggressive”

than aΓ (meaning that any agent who, given (x, s), pledges under aΓ also pledges under aΓ+
when

receiving the information (x, (s, 1)), then, under aΓ+
, all agents pledge (alternatively, refrain from

pledging) when receiving information (s, 1) (alternatively, (s, 0)).

Step 1. First, we prove that, for each i ∈ [0, 1],

{(xi, s) : UΓ
i (xi, s; a) > 0 ∀a} ⊆ {(xi, s) : UΓ+

i (xi, (s, 1); a) > 0 ∀a}.

That is, any agent i who, under Γ, finds it dominant to pledge, given the information (xi, s), also

finds it dominant to pledge under Γ+ when receiving the information (xi, (s, 1)).

To see this, first use the fact that the game is supermodular to observe that

{(xi, s) : UΓ
i (xi, s; a) > 0 ∀a} =

{
(xi, s) : UΓ

i

(
xi, s; a

Γ
(0)

)
> 0
}

and {(xi, s) : UΓ+

i (xi, (s, 1); a) > 0 ∀a} =
{

(xi, s) : UΓ+

i

(
xi, (s, 1); aΓ+

(0)

)
> 0
}

.

Now let ΛΓ
i (θ,x|xi, s) denote the beliefs of agent i ∈ [0, 1] over the fundamentals, θ, and the

cross-sectional distribution of signals, x ∈ R[0,1], when receiving information (xi, s) ∈ R × S under

Γ, and ΛΓ+

i (θ,x|xi, (s, 1)) the corresponding beliefs under Γ+. Bayesian updating implies that

∂ΛΓ+

i (θ,x|xi, (s, 1)) =
I
(
rΓ(θ, s) = 1

)
ΛΓ
i (1|xi, s)

∂ΛΓ
i (θ,x|xi, s), (13)

where I
(
rΓ(θ, s) = 1

)
is the indicator function, taking value 1 if θ is such that rΓ(θ, s) = 1, and 0

otherwise, and where ΛΓ
i (1|xi, s) ≡

´
{(θ,x):rΓ(θ,s)=1} ΛΓ

i (d(θ,x)|xi, s).
Next, observe that, under both aΓ

(0) and aΓ+

(0) , default occurs if, and only if, θ ≤ 1. Take any

i ∈ [0, 1] and (xi, s) ∈ R× S such that

UΓ
i

(
xi, s; a

Γ
(0)

)
=

ˆ
(θ,x)

(b(θ)I (θ ≤ 1) + g(θ)I(θ > 1)) ΛΓ
i (d(θ,x)|xi, s) > 0. (14)
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The aforementioned property of Bayesian updating implies that

UΓ+

i

(
xi, (s, 1); aΓ+

(0)

)
= 1

ΛΓ
i (1|xi,s)

´
(θ,x) (b(θ)I (θ ≤ 1) + g(θ)I(θ > 1)) I

(
rΓ(θ, s) = 1

)
ΛΓ
i (d(θ,x)|xi, s)

≥ 1
ΛΓ
i (1|xi,s)

´
(θ,x) (b(θ)I (θ ≤ 1) + g(θ)I(θ > 1)) ΛΓ

i (d(θ,x)|xi, s) = 1
ΛΓ
i (1|xi,s)

UΓ
i

(
(xi, s); a

Γ
(0)

)
> 0,

where the first equality follows from (13), the first inequality from the fact that, for all θ such that

rΓ(θ, s) = 0, b(θ)I (θ ≤ 1) + g(θ)I(θ > 1) = b(θ) < 0, the second equality follows from the definition

of UΓ
i

(
xi, s; a

Γ
(0)

)
, and the second inequality from (14).

This means that any agent for whom pledging was dominant after receiving information (xi, s)

under Γ, continues to find it dominant to pledge after receiving information (xi, (s, 1)) under Γ+.

Step 2. Next, take any n > 1. Assume that, for any 1 ≤ k ≤ n− 1, any i ∈ [0, 1],{
(xi, s) : UΓ

i (xi, s; a) > 0 ∀a ∈ TΓ
(k−1)

}
⊆
{

(xi, s) : UΓ+

i (xi, (s, 1); a) > 0, ∀a ∈ TΓ+

(k−1)

}
. (15)

Arguments similar to those establishing the result in Step 1 above imply that{
(xi, s) : UΓ

i (xi, s; a) > 0 ∀a ∈ TΓ
(n−1)

}
⊆
{

(xi, s) : UΓ+

i (xi, (s, 1); a) > 0, ∀a ∈ TΓ+

(n−1)

}
. (16)

Intuitively, the result follows from the combination of the following two properties: (a) because the

game is supermodular,
{

(xi, s) : UΓ
i (xi, s; a) > 0 ∀a ∈ TΓ

(n−1)

}
=
{

(xi, s) : UΓ
i

(
xi, s; a

Γ
(n−1)

)
> 0
}

where recall that aΓ
(n−1) is the most aggressive profile surviving n− 1 rounds of IDISDS (clearly, the

same property holds for Γ+); (b) aΓ+

(n−1) is “less aggressive” than aΓ
(n−1), in the sense that any agent

who, given (x, s), pledges under aΓ
(n−1) also pledges under Γ+ when receiving information (x, (s, 1));

and (c) the observation that rΓ(θ, s) = 1 removes from the support of the agents’ posterior beliefs

states in which default would have occurred under aΓ and hence under aΓ
(n−1) as well (observe that

aΓ
(n−1) is more aggressive that aΓ, meaning that any agent who, given (x, s), pledges under aΓ

(n−1),

also pledges under aΓ when receiving the same information (x, 1)).

Step 3. Equipped with the results in steps 1 and 2 above, we now prove that, for all θ ∈ Θ

and all s ∈ supp(π(θ)) such that rΓ(θ, s) = 1, for any x ∈ X(θ), and any i ∈ [0, 1], aΓ+

i (xi, (s, 1)) ≡
lim
n→∞

aΓ+

(n),i(xi, (s, 1)) = 1. This follows directly from the fact that, as shown above,

aΓ
i (xi, s) = 1⇒ aΓ+

i (xi, (s, 1)) = 1. (17)

The announcement that θ is such that rΓ(θ, s) = 1 thus reveals to each agent that, when agents play

according to aΓ+
, default does not occur. Because the payoff from pledging is strictly positive when

default does not occur, any agent i receiving information (s, 1) under Γ+ thus necessarily pledges,

no matter xi. Under the new policy Γ+, all agents thus pledge when they learn that θ is such that

rΓ(θ, s) = 1 . That they all refrain from pledging when they learn that θ is such that rΓ(θ, 0) = 0

follows from the fact that such an announcement makes it common certainty that θ ≤ 1.

We conclude that the new policy Γ+ satisfies the perfect-coordination property and is such that,

for any θ, the probability of default under Γ+ is the same as under Γ. The result in the theorem

then follows by taking Γ∗ = Γ+. Q.E.D.
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Proof of Theorem 2. The proof is in 2 steps. Step 1 shows that, when p(x|θ) is log-

supermodular, i.e., it satisfies MLRP, then, irrespective of Γ, MARP is in cut-off strategies. Step 2

then shows that, starting from any Γ satisfying the perfect-coordination property, one can drop any

signal other than the predicted fate of the bank without changing the agents’ behavior.

Step 1. Fix an arbitrary policy Γ = (S, π) and, for any pair (x, s) ∈ R × S, let ΛΓ(θ|x, s)
represent the endogenous posterior beliefs over Θ of each agent receiving exogenous information x

and endogenous information s.57 Let u(θ,A) ≡ g(θ)I(A > 1 − θ) + b(θ)I(A ≤ 1 − θ) be the payoff

differential between pledging and not pledging when the fundamentals are θ and the aggregate size

of the pledge is A.

Next, let UΓ(x, s|k) ≡
´
u(θ, 1− P (k|θ))dΛΓ(θ|x, s) denote the expected payoff differential of an

agent with information (x, s), when all other agents follow a cut-off strategy with cut-off k (i.e., they

pledge if their private signal exceeds k and refrain from pledging if it is below k). The following result

establishes that, when the distribution p(x|θ) from which the signals are drawn satisfies MLRP, no

matter Γ, MARP is in cut-off strategies:

Lemma 1. Suppose that p(x|θ) is log-supermodular. Given any policy Γ = (S, π), for any s ∈ S,

there exists ξΓ;s ∈ R such that MARP consistent with Γ is given by the strategy profile aΓ ≡ (aΓ
i )i∈[0,1]

such that, for any s ∈ S, x ∈ R, i ∈ [0, 1], aΓ
i (x, s) = I{x > ξΓ;s} with ξΓ;s ≡ sup{x : UΓ(x, s|x) ≤ 0}

if {x : UΓ(x, s|x) ≤ 0} 6= ∅, and ξΓ;s ≡ −∞ otherwise. Moreover, the strategy profile aΓ is a BNE of

the continuation game that starts with the announcement of the policy Γ.

Proof of Lemma 1. Fix the policy Γ = (S, π). For any s ∈ S, let ξΓ;s
(1) ≡ sup{x : lim

k→∞
UΓ(x, s|k) ≤

0}. Given the public signal s, it is dominant for any agent with private signal x exceeding ξΓ;s
1 to

pledge. Next, recall that, for any n ∈ N, TΓ
(n) denotes the set of strategy profiles that survive the first

n rounds of IDISDS and aΓ
(n) ≡

(
aΓ

(1),i

)
i∈[0,1]

denotes the most aggressive profile in TΓ
(n). Observe

that the profile aΓ
(1) is given by aΓ

(1),i(x, s) = I{x > ξΓ;s
(1) } for all (x, s) ∈ R× S, and all i ∈ [0, 1],

and minimizes the policy maker’s payoff not just in expectation but for any (θ, s). This follows from

the fact that, when nobody else pledges, the expected payoff differential
´
u(θ, 0)dΛΓ(θ|x, s) between

pledging and not pledging crosses 0 only once and from below at x = ξΓ;s
(1) . The single-crossing

property of
´
u(θ, 0)dΛΓ(θ|x, s) in turn is a consequence of the fact that u(θ, 0) crosses 0 only once

from below at θ = 1 along with Property SCB below.

Property SCB. Suppose that the function h : R → R crosses 0 only once from below at θ = θ0

(that is, h (θ) ≤ 0 for all θ ≤ θ0 and h (θ) ≥ 0 for all θ > θ0). Let g : R2 → R+ be a log-supermodular

function and suppose that, for any θ, there is an open interval %θ = (%θ, %̄θ) ⊂ R containing θ such

that g (x, θ) > 0 for all x ∈ %θ and g (x, θ) = 0 for (almost) all x ∈ R \ %θ, with the bounds %θ, %̄θ

non-decreasing in θ. Choose any (Lebesgue) measurable subset Ω ⊆ R containing θ0 and, for any

x ∈ R, let Ψ(x; Ω) ≡
´

Ω h(θ)g(x, θ)dθ. Suppose there exists x? ∈ %θ0 such that Ψ(x?; Ω) = 0. Then,

57Because Θ ⊂ R, ΛΓ(θ|x, s) can be taken to be the cdf of the agent’s posterior beliefs.
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necessarily, Ψ(x; Ω) ≥ 0 for all x ∈ %θ0 with x > x?, and Ψ(x; Ω) ≤ 0 for all x ∈ %θ0 with x < x?,

with both inequalities strict if (a) {θ ∈ Ω : h (θ) 6= 0} has strict positive Lebesgue measure, (b) g is

strictly log-supermodular over R2. 58

Proof of Property SCB. For any x ∈ R, let Ωx ≡ {θ ∈ Ω : x ∈ %θ}. The monotonicity of %θ in

θ implies that Ωx is monotone in x in the strong-order sense. Pick any x′ ∈ %θ0 with x′ > x?. That

x? and x′ belong to %θ0 implies that θ0 ∈ Ωx? ∩ Ωx′ . Next, observe that

Ψ(x′; Ω) =

ˆ
Ωx′

h(θ)g(x′, θ)dθ

=

ˆ
Ωx′∩Ωx?

h(θ)g(x′, θ)dθ +

ˆ
Ωx′\Ωx?

h(θ)g(x′, θ)dθ

=

ˆ
Ωx?∩Ωx′∩(−∞,θ0)

h(θ)g(x?, θ)
g(x′, θ)

g(x?, θ)
dθ +

ˆ
Ωx?∩Ωx′∩(θ0,∞)

h(θ)g(x?, θ)
g(x′, θ)

g(x?, θ)
dθ +

+

ˆ
Ωx′\Ωx?

h(θ)g(x′, θ)dθ

≥ g(x′, θ0)

g(x?, θ0)

(ˆ
Ωx?∩Ωx′∩(−∞,θ0)

h(θ)g(x?, θ)dθ +

ˆ
Ωx?∩Ωx′∩(θ0,∞)

h(θ)g(x?, θ)dθ

)
+

+

ˆ
Ωx′\Ωx?

h(θ)g(x′, θ)dθ

≥ g(x′, θ0)

g(x?, θ0)
Ψ(x?; Ω)︸ ︷︷ ︸

=0

+

ˆ
Ωx′\Ωx?

h(θ)g(x′, θ)dθ ≥ 0.

The first equality follows from the fact that g(x′, θ) = 0 for almost all θ ∈ Ω \ Ωx′ . The second

equality follows from the fact that Ωx′ can be partitioned into Ωx′ ∩ Ωx? and Ωx′ \ Ωx? . The third

equality follows from the fact that g(x?, θ) > 0 for all θ ∈ Ωx? . The first inequality follows from the

fact that g(x′, θ)/g(x?, θ) is increasing over Ωx? ∩Ωx′ as a consequence of g being log-supermodular,

along with the fact that θ0 ∈ Ωx? ∩ Ωx′ and the assumption that h crosses 0 only once from below

at θ = θ0. The second inequality follows from the fact that, for any θ ∈ (Ωx? \ Ωx′) ∩ (−∞, θ0),

h(θ) ≤ 0, along with the fact that Ωx? ∩ (θ0,+∞) = Ωx? ∩ Ωx′ ∩ (θ0,∞), with the last property

following from the fact that Ωx are ranked in the strong-order sense. The last inequality follows

from the observation that, for any θ ∈ Ωx′ \ Ωx? , h (θ) ≥ 0, which in turn is a consequence of (i)

the monotonicity of the sets Ωx in x, (ii) the assumption that h crosses 0 only once from below at

θ = θ0, and (iii) the assumption that θ0 ∈ Ωx? ∩ Ωx′ .

Similar arguments imply that, for x < x? , Ψ(x; Ω) ≤ 0. The same arguments also imply

that, when (a) {θ ∈ Ω : h (θ) 6= 0} has strict positive Lebesgue measure and (b) g is strictly log-

supermodular over R2, then Ψ(x; Ω) < 0 for all x < x? and Ψ(x; Ω) > 0 for all x > x?. This

completes the proof of Property SCB.�

The facts that (a) the continuation game is supermodular, (b) the density p(x|θ) is log-supermodular,

and (c) when agents follow monotone strategies, the fate of the bank is monotone in θ imply that,

58That g is strictly log-supermodular over R2 also implies that g(x, θ) > 0 for all (x, θ) ∈ R2.
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for any s ∈ S, there exists a unique sequence
(
ξΓ;s

(n)

)
n∈N

such that, for any n ≥ 1, aΓ
(n) is such that

aΓ
(n),i(x, s) = I{x > ξΓ;s

(n)}, all (x, s) ∈ R× S, all i ∈ [0, 1],

with each ξΓ;s
(1) as defined above, and with all other cut-offs ξΓ;s

(n), n > 1, s ∈ S, defined inductively by

ξΓ;s
(n) ≡ sup{x : UΓ(x, s|ξΓ;s

(n−1)) ≤ 0}.
Next, let TΓ ≡ ∩∞n=1T

Γ
n denote the set of strategy profiles that are rationalizable for the agents

under the policy Γ. The most aggressive strategy profile in TΓ is then given by

aΓ
i (x, s) ≡ I{x > ξΓ;s}, all (x, s) ∈ R× S, all i ∈ [0, 1],

where, for any s ∈ S, ξΓ;s ≡ lim
n→∞

ξΓ;s
(n). The sequence (ξΓ;s

(n))n is monotone and its limit is given

by ξΓ;s = sup{x : UΓ(x, s|x) ≤ 0} if {x : UΓ(x, s|x) ≤ 0} 6= ∅, and ξΓ;s ≡ −∞ otherwise. This

establishes the first part of the lemma. That the profile aΓ is a BNE for the continuation game

that starts with the announcement of the policy Γ follows from the fact that, given any s∈ S, when

all agents follow a cut-off strategy with cutoff ξΓ;s, the best response for each agent i ∈ [0, 1] is to

pledge for xi > ξΓ;s and to refrain from pledging for xi < ξΓ;s (he is indifferent for xi = ξΓ;s). This

completes the proof of the lemma. �

Step 2. Now take any policy Γ = (S, π) satisfying the perfect-coordination property. Given the

result in Theorem 1, without loss of generality, assume that Γ = (S, π) is such that S = {0, 1}×Ŝ, for

some measurable set Ŝ, and is such that (a) when the policy discloses any signal s = (ŝ, 1), all agents

pledge and default does not happen, whereas (b) when the policy discloses any signal s = (ŝ, 0), all

agents refrain from pledging and default happens.

Equipped with the result in Lemma 1, we then show that, starting from Γ = (S, π), one can

construct a binary policy Γ∗ = ({0, 1}, π∗) also satisfying the perfect-coordination property and such

that the probability of default under Γ∗ is the same as under Γ. The policy Γ∗ = ({0, 1}, π∗) is such

that, for any θ, π∗(1|θ) =
´
Ŝ π (d (ŝ, 1) |θ) . That is, for each θ, the binary policy Γ∗ recommends to

pledge (equivalently, announces a “pass” grade) with the same total probability the original policy

Γ discloses signals leading all agents to pledge.59

We now show that, under Γ∗, when the policy announces that s = 1, the unique rationalizable

action for each agent is to pledge. To see this, for any (x, 1) that are mutually consistent given Γ∗,

let UΓ∗(x, 1|k) denote the expected payoff differential for any agent with private signal x, when the

policy Γ∗ announces s = 1, and all other agents follow a cut-off strategy with cut-off k.60 From the

law of iterated expectations, we have that

UΓ∗(x, 1|k) =

ˆ
Ŝ
UΓ(x, (ŝ, 1)|k)ςΓ(dŝ|x, 1) (18)

59The notation
´
Ŝ π (d (ŝ, 1) |θ) represents the total probability that the measure π(θ) assigns to signal (ŝ, r) such

that r = 1.
60Recall that (x, 1) are mutually consistent under Γ∗ if pΓ∗ (x, 1) ≡

´
p(x|θ)π∗(1|θ)dF (θ) > 0.
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where ςΓ(·|x, 1) is the probability measure over Ŝ obtained by conditioning on the event (x, 1), under

the policy Γ. For any signal s = (ŝ, 1) in the range of π, MARP consistent with Γ is such that

aΓ
i (x, (ŝ, 1)) = 1 all x ∈ R, meaning that pledging is the unique rationalizable action after the policy

Γ announces s = (ŝ, 1). Lemma 1 in turn implies that, for all s = (ŝ, 1) in the range of π, ŝ ∈ Ŝ, all

k ∈ R, UΓ(k, (ŝ, 1)|k) > 0. From (18), we then have that, for all all k ∈ R , UΓ∗(k, 1|k) > 0. In turn,

this implies that, given the new policy Γ∗, when s = 1 is disclosed, under the unique rationalizable

profile, all agents pledge, that is, aΓ∗
i (x, 1) = 1 all x, all i ∈ [0, 1]. It is also easy to see that, when

the policy Γ∗ discloses the signal s = 0, it becomes common certainty among the agents that θ ≤ 1.

Hence, under MARP consistent with Γ∗, after s = 0 is disclosed, all agents refrain from pledging,

irrespective of their private signals. The new pass/fail policy Γ∗ so constructed thus (a) satisfies the

perfect-coordination property, and (b) is such that, for any θ, the probability of default under Γ∗ is

the same as under Γ. Q.E.D.

Proof of Theorem 3. Without loss of generality, assume that the policy Γ = (S, π) (a) is

a (possibly stochastic) “pass/fail”policy (i.e., S = {0, 1}, with π(1|θ) = 1 − π(0|θ) denoting the

probability that signal s = 1 is disclosed when the fundamentals are θ), (b) is such that π(1|θ) = 0

for all θ ≤ 0 and π(1|θ) = 1 for all θ > 1, and (c) satisfies the perfect-coordination property.

Theorems 1 and 2 imply that, if Γ does not satisfy these properties, there exists another policy Γ′

that satisfies these properties and yields the policy maker a payoff weakly higher than Γ. The proof

then follows from applying the arguments below to Γ′ instead of Γ.

Suppose that Γ is such that there exists no θ̂ such that π(1|θ) = 0 for F -almost all θ ≤ θ̂

and π(1|θ) = 1 for F -almost all θ > θ̂.61 We establish the result by showing that there exists a

deterministic monotone policy Γθ̂ = ({0, 1}, πθ̂) satisfying the perfect-coordination property that

yields the policy maker a payoff strictly higher than Γ.

Recall that, for the policy Γ to satisfy the perfect-coordination property, it must be that, when

the policy discloses the signal s = 1, UΓ(x, 1|x) > 0 for all x such that (x, 1) are mutually consistent,

where UΓ(x, 1|x) is the expected payoff of an agent with signal x who hears that s = 1 and who

expects all other agents to follow a cut-off policy with cut-off x.

Now let G denote the set of policies Γ′ = (S, π′) that, in addition to properties (a) and (b) above,

are such that UΓ′(x, 1|x) ≥ 0 for all x such that (x, 1) are mutually consistent. Observe that some

policies Γ′ in G need not satisfy the perfect-coordination property (namely, those for which there

exists x such that (x, 1) are mutually consistent and UΓ′(x, 1|x) = 0). For any Γ, let UP [Γ] denote

the policy maker’s ex-ante expected payoff under MARP consistent with the policy Γ. Denote by

61Clearly, if the policy Γ = ({0, 1}, π) is such that there does exists θ̂ ∈ [0, 1] such that π(1|θ) = 0 for F -almost all

θ ≤ θ̂ and π(1|θ) = 1 for F -almost all θ ≥ θ̂, then the deterministic monotone policy Γθ̂ = ({0, 1}, πθ̂) with cut-off θ̂

(that is, the policy such that πθ̂(1|θ) = I(θ > θ̂) for all θ) also satisfies the perfect-coordination property and yields the

policy maker the same payoff as Γ, in which case the result trivially holds.
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arg max
Γ̃∈G

{
UP [Γ̃]

}
the set of policies that maximize the policy maker’s payoff over the set G.62

Step 1 below shows that any Γ
′ ∈ arg max

Γ̃∈G

{
UP [Γ̃]

}
is such that π′(1|θ) = 0 for F -almost all

θ ≤ θ∗ and π′(1|θ) = 1 for F -almost all θ > θ∗, where θ∗ is the cut-off defined in (3).

We establish the result by showing that, given any policy Γ′ ∈ G for which there exists no θ̂ such

that π′(1|θ) = 0 for F -almost all θ ≤ θ̂ and π′(1|θ) = 1 for F -almost all θ > θ̂, there exists another

policy Γ′′ ∈ G that that yields the policy maker a payoff strictly higher than Γ′. This property,

together with the fact that any policy Γ′ = ({0, 1}, π′) such that π′(1|θ) = 0 for F -almost all θ ≤ θ̂

and π′(1|θ) = 1 for F -almost all θ > θ̂, for some θ̂, belongs to G only if θ̂ ∈ [θ∗, 1] then gives the

result.

Step 2 then shows that the policy maker’s payoff under the optimal deterministic monotone

policy Γθ
∗

= ({0, 1}, πθ∗) with cut-off θ∗ can be approximated arbitrarily well by a deterministic

monotone policy Γθ̂ = ({0, 1}, πθ̂) ∈ G that satisfies the perfect-coordination property (i.e., such

that UΓθ̂(x, 1|x) > 0 for all x such that (x, 1) are mutually consistent), thus establishing the result

in the theorem.

For brevity, the proof below considers the case where the prior F from which the fundamentals θ

are drawn and the distribution P from which the agents’ signals are drawn have unbounded support:

Θ = R and (%θ, %̄θ) = R for all θ ∈ Θ. In the online Supplement, we dispense with these restrictions.

Step 1. Take any policy Γ′ ∈ G for which there exists no θ̂ such that π′(1|θ) = 0 for F -almost all

θ ≤ θ̂ and π′(1|θ) = 1 for F -almost all θ > θ̂. Let XΓ′ ≡
{
x : UΓ′(x, 1|x) = 0

}
. Clearly, if XΓ′ = ∅,

there exists another policy Γ
′′ ∈ G that yields the policy maker a payoff strictly higher than Γ′.63

Thus, assume that XΓ′ 6= ∅, and let x̄ ≡ supXΓ′ .64

For any x, let θ0(x) be the fundamental threshold such that, when agents pledge when their

private signal exceeds x and refrain from pledging otherwise, then their expected payoff u(θ, 1 −
P (x|θ)) crosses zero from below at θ = θ0(x).65 For any policy Γ = {{0, 1} , π} ∈ G, let pΓ(x, 1) ≡´ +∞
−∞ π(1|θ)p(x|θ)dF (θ) represent the joint probability density of observing the exogenous signal x

and the endogenous signal s = 1. Let

θH ≡ sup
{
θ ∈ Θ : ∃δ > 0 s.t. π′(1|θ′) < 1 forF -almost all θ′ ∈ [θ − δ, θ)

}
,

62That arg max
Γ̃∈G

{
UP [Γ̃]

}
6= ∅ follows from the compactness of G and the upper hemi-continuity of UP over G.

63To see this, note that, because there exists no θ̂ such that π′(1|θ) = 0 for F -almost all θ ≤ θ̂ and π′(1|θ) = 1 for

F -almost all θ > θ̂, if XΓ′ = ∅, there must exists a set (θ′, θ′′) ⊆ [0, 1] of F -positive probability over which π′(1|θ) < 1.

The policy Γ′′ can then be obtained from Γ′ by increasing π′(1|θ) over such a set. Provided the increase is small, the

new policy is such that UΓ′′(x, 1|x) ≥ 0 for all x, and hence Γ′′ ∈ G. Because UP (θ, 1) > UP (θ, 0) over [0, 1], the new

policy improves over the original one.
64Clearly, x̄ depends on the policy Γ′. We do not highlight the dependence to ease the notation.
65Because the sign of u(θ, 1 − P (x|θ)) is determined by the default outcome, θ0 (x) is implicitly defined by

P (x|θ0 (x)) = θ0 (x).
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θL ≡ inf{θ ∈ Θ : ∃δ > 0 s.t. π′(1|θ′) > 0 forF -almost all θ′ ∈ [θ, θ + δ)}.

That Γ′ ∈ G guarantees that θH and θL are well-defined. That, under Γ′, there exists no θ̂ such that

π′(1|θ) = 0 for F -almost all θ ≤ θ̂ and π′(1|θ) = 1 for F -almost all θ > θ̂ implies that θL < θH .

Furthermore, u (θL, 1− P (x̄|θL)) < 0.66

We distinguish between two cases.

Case 1 : θ0 (x̄) < θH .

Consider the policy Γε,δ = ({0, 1}, πε,δ) defined by πε,δ(1|θ) = π′(1|θ) for all θ ≤ θ0 (x̄+ δ), with

δ > 0 small so that θ0 (x̄+ δ) < θH , and πε,δ(1|θ) = min{π′(1|θ) + ε, 1}) for all θ > θ0 (x̄+ δ), with

ε > 0 also small. To see that, when ε and δ are small, Γε,δ ∈ G, note that, by definition of θ0 (·), for

any x, and any θ > θ0 (x), u (θ, 1− P (x|θ)) > 0. This fact, together with the monotonicity of θ0 (·),
jointly imply that, for any x ≤ x̄+ δ,

UΓε,δ(x, 1|x)pΓε,δ (x, 1) =

ˆ θ0(x̄+δ)

−∞
u(θ, 1− P (x|θ))π′(1|θ)p(x|θ)dF (θ) +

+

ˆ +∞

θ0(x̄+δ)
u(θ, 1− P (x|θ)) min{π′(1|θ) + ε, 1})p(x|θ)dF (θ)

> UΓ′(x, 1|x)pΓ′ (x, 1) ≥ 0.

The strict inequality obtains from the fact that, for any θ ∈ [θ0 (x̄+ δ) , θH ], πε,δ(1|θ) ≥ π′(1|θ),
with the inequality strict over a subset of [θ0 (x̄+ δ) , θH ] of strictly positive F -measure, along with

the fact that, because x ≤ x̄ + δ, u (θ, 1− P (x|θ)) > 0 for all θ ≥ θ0 (x̄+ δ). That, when ε > 0 is

sufficiently small, UΓε,δ(x, 1|x) > 0 also for all x > x̄+ δ follows from the fact that, by definition of

x̄, for any x > x̄+ δ, UΓ′(x, 1|x) is bounded away from 0 along with the fact that, for any δ > 0, the

function family
(
UΓε,δ(·, 1|·)

)
ε

is continuous in ε in the sup-norm, in a neighborhood of 0.67

Case 2: θ0 (x̄) ≥ θH .

Consider the monotone policy Γ0 =
{
{0, 1} , π0

}
such that π0 (1|θ) ≡ I (θ ≥ 0). Note that, for

any x ≥ x̄,

UΓ′(x, 1|x)pΓ′ (x, 1) =
´ θ0(x)

0 u(θ, 1− P (x|θ))π′(1|θ)p(x|θ)dF (θ)

+
´ +∞
θ0(x) u(θ, 1− P (x|θ))π′(1|θ)p(x|θ)dF (θ)

>
´ θ0(x)

0 u(θ, 1− P (x|θ))p(x|θ)dF (θ) +
´ +∞
θ0(x) u(θ, 1− P (x|θ))p(x|θ)dF (θ)

= UΓ0
(x, 1|x)pΓ0

(x, 1) ,

66That u (θL, 1− P (x̄|θL)) < 0 follows from the fact that, by definition of x̄ and θL, UΓ′(x̄, 1|x̄) =
1

pΓ′ (x̄,1)

´ +∞
θL

u(θ, 1 − P (x̄|θ))π′(1|θ)p(x̄|θ)dF (θ) = 0, together with the single-crossing property of u(θ, 1 − P (x̄|θ))
in θ.

67This means that, for any z > 0, there exists ∆ > 0 such that, for any 0 ≤ ε < ∆, and all x, |UΓε,δ (x, 1|x) −
UΓ0,δ

(x, 1|x)| ≤ z, where, by definition, Γ0,δ = Γ′.
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where the inequality follows from the fact that (i) u (θ, 1− P (x|θ)) < 0 for any θ ≤ θ0 (x) along with

(ii) the fact that π′(1|θ) = 1 for F -almost all θ ≥ θ0 (x) ≥ θ0 (x̄) ≥ θH . As a result,

UΓ0
(x̄, 1|x̄) < UΓ′(x̄, 1|x̄)

pΓ′ (x, 1)

pΓ0 (x, 1)
= 0.

We conclude that, necessarily, x̄ < x̄G, where x̄G is the threshold defined in (1). This property in

turn permits us to apply part (3) of Condition M to x̄ in the arguments below.

For any γ > 0, let θγL ≡ θL + γ and θγH ≡ θH − γ. Pick γ, eL, eH > 0 small such that (i)

π′
(
1|θγL

)
> 0 and π′ (1|θ) > 0 for F−almost θ ∈

(
θγL, θ

γ
L + eL

)
, (ii) π′

(
1|θγH

)
< 1 and π′ (1|θ) < 1 for

F−almost all θ ∈
(
θγH − eH , θ

γ
H

)
, and (iii) θγL + eL < θγH − eH .68 Next, pick η ∈ (0, x̄G − x̄) small

such that UΓ′(x, 1|x) > η for all x ≥ x̄+ η. Pick ε > 0 also small and let δ(ε, η) be implicitly defined

by

ˆ θγL+ε

θγL

u(θ, 1− P (x̄+ η|θ))π′(1|θ)p(x̄+ η|θ)dF (θ) (19)

=

ˆ θγH

θγH−δ(ε,η)
u(θ, 1− P (x̄+ η|θ))(1− π′(1|θ))p(x̄+ η|θ)dF (θ).

Note that, for ε > 0 small, θγL + ε < θγH − δ(ε, η). Consider the policy Γε,γ,η = {{0, 1}, πε,γ,η} defined

by the following properties: (a) πε,γ,η(1|θ) = π′(1|θ) for all θ /∈
{

[θγL, θ
γ
L + ε]

⋃
[θγH − δ(ε, η), θγH ]

}
; (b)

πε,γ,η(1|θ) = 0 for all θ ∈ [θγL, θ
γ
L + ε]; and (c) πε,γ,η(1|θ) = 1 for all θ ∈ [θγH − δ(ε, η), θγH ]. Note that

Condition (19) implies that UΓε,γ,η(x̄+ η, 1|x̄+ η) = UΓ′(x̄+ η, 1|x̄+ η) > 0.

We now show that, under the new policy, UΓε,γ,η(x, 1|x) ≥ 0 for any x. Recall that, for any

θ ∈ (0, 1), x∗(θ) is the critical threshold such that, when agents pledge for x > x∗(θ) and do not

pledge for x < x∗(θ), default occurs when fundamentals are below θ and does not occur when they

are above θ, and hence u(θ̃, 1− P (x∗(θ)|θ̃) turns from negative to positive at θ̃ = θ.

Clearly, for any (ε, γ, η), and any x ≤ x∗(θL), UΓ′(x, 1|x), UΓε,γ,η(x, 1|x) > 0. This is because, for

any such x, θ0(x) < θL and hence u (θ, 1− P (x|θ)) > 0 for all θ > θL. The result then follows from

the fact that, under both Γ′ and Γε,γ,η,

ˆ θL

−∞
π′ (1|θ) dF (θ) =

ˆ θL

−∞
πε,γ,η (1|θ) dF (θ) = 0

meaning that all agents assign probability one to the event that θ ≥ θL. Furthermore, that

UΓ′(x∗(θL), 1|x∗(θL)) > 0

along with the fact that UΓ′(x, 1|x) > η for all x ≥ x̄+ η and the continuity of

UΓ′(x, 1|x)pΓ′ (x, 1) =

ˆ
u(θ, 1− P (x|θ))π′(1|θ)p(x|θ)dF (θ)

68If a single γ satisfying properties (i)-(iii) does not exist, let γ = (γL, γH)∈ R2
++. The arguments below then apply

verbatim by letting θγL = θL + γL and θγH = θH + γH and noting that a γ = (γL, γH) satisfying properties (i)-(iii)

always exists.
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in x imply that there exists ξ > 0 such that, for any x ∈ [x∗(θL), x∗(θL) + ξ] ∪ [x̄ + η,+∞),

UΓ′(x, 1|x)pΓ′ (x, 1) > ξ. Because, for any η, the function family
(
UΓε,γ,η(·, 1|·)pΓε,γ,η (·, 1)

)
ε,γ

is

continuous in (γ, ε) in the sup-norm, in a neighborhood of (0, 0).69 and x∗ (θ) is continuous in

θ, there exist γ̄, ε̄ > 0 such that, when γ ≤ γ̄ and ε ≤ ε̄, UΓε,γ,η(x, 1|x) ≥ 0 for any x ∈
(−∞, x∗

(
θγL + ε

)
] ∪ [x̄+ η,+∞).

Next observe that, for any x ∈
(
x∗(θγL + ε), x∗

(
θγH − δ (ε, η)

)]
,

UΓε,γ,η(x, 1|x)pΓε,γ,η(1, x)− UΓ′(x, 1|x)pΓ′(1, x)

= −
´ θγL+ε

θγL
u (θ, 1− P (x|θ)) p (x|θ)π′ (1|θ) dF (θ)

+
´ θγH
θγH−δ(ε,η)

u (θ, 1− P (x|θ)) p (x|θ) (1− π′ (1|θ)) dF (θ) > 0,

where the inequality follows from the fact that the integrand in the first integral is negative, whereas

that in the second integral is positive. Because UΓ′(x, 1|x) ≥ 0 for all x, this implies that for any

such x, UΓε,γ,η(x, 1|x) ≥ 0.

Next, consider x ∈
(
x∗
(
θγH − δ (ε, η)

)
, x∗(θγH)

)
. For any x, and any θ, let

q (θ, x) ≡ |u (θ, 1− P (x|θ))| p (x|θ) .

For any x ≤ x̄+ η, let ∆U(x) ≡ UΓε,γ,η(x, 1|x)pΓε,γ,η(1, x)− UΓ′(x, 1|x)pΓ′(1, x). Note then that, for

any x ∈
(
x∗
(
θγH − δ (ε, η)

)
, x∗(θγH)

)
,

∆U(x) =

ˆ θγH−δ(ε,η)

θγL

−u (θ, 1− P (x|θ)) p (x|θ) f(θ)
(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

+

ˆ θ0(x)

θγH−δ(ε,η)
−u (θ, 1− P (x|θ)) p (x|θ) f(θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

+

ˆ θγH

θ0(x)
−u (θ, 1− P (x|θ)) p (x|θ) f(θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

≥
ˆ θγH−δ(ε,η)

θγL

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η) f(θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

+

ˆ θ0(x)

θγH−δ(ε,η)

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η) f(θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

+
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)

ˆ θγH

θ0(x)
q (θ, x̄+ η) f(θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

≥
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)

ˆ θγH

θγL

q (θ, x̄+ η) f(θ)
(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

=
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)
∆U(x̄+ η)

= 0.
69This means that, for any z > 0, there exists ∆ > 0 such that, for any (ε, γ) with 0 ≤ ε < ∆ and 0 ≤ γ < ∆, and

all x, |UΓε,γ,η (x, 1|x)− UΓ0,0,η

(x, 1|x)| ≤ z, where, by definition, Γ0,0,η = Γ′.
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The first equality is by definition. The first inequality follows from the fact that (i) for any θ ≤ θ0(x),

u (θ, 1− P (x|θ)) < 0, whereas, for any θ > θ0(x), u (θ, 1− P (x|θ)) > 0, along with the fact that (ii)

for θ ∈ [θ0(x), θγH ], π′ (1|θ) ≤ πε,γ,η (1|θ). Together, these two properties imply that

ˆ θγH

θ0(x)
−u (θ, 1− P (x|θ)) p (x|θ) f(θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

≥ 0 ≥
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)

ˆ θγH

θ0(x)
q (θ, x̄+ η) f(θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ.

The second inequality follows from the fact that π′ (1|θ)−πε,γ,η (1|θ) turns from positive to negative at

θ = θγH−δ(ε, η) ≤ θ0(x), along with the fact that, for any θ ∈
[
θγL, θ0 (x)

]
, the function q(θ, x)/q(θ, x̄+

η) is non-increasing in θ as implied by the log-supermodularity of |u (θ, 1− P (x|θ))| p (x|θ) over

{(θ, x) ∈ [0, 1]× R : u(θ, 1− P (x|θ)) ≤ 0}, by virtue of part 2 of Condition M. Finally, the last two

equalities follow from the fact that θ0(x̄+ η) > θ0(x̄) > θH ≥ θγH , which implies that u(θ, 1− P (x̄+

η|θ)) ≤ 0 for all θ ≤ θγH , and hence that

ˆ θγH

θγL

q (θ, x̄+ η) f(θ)
(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ = ∆U(x̄+ η)

along with the fact that, by construction of the policy Γε,γ,η, ∆U(x̄ + η) = 0. Hence, for any

x ∈
(
x∗
(
θγH − δ (ε, η)

)
, x∗(θγH)

)
, ∆U(x) ≥ 0, which implies that UΓε,γ,η(x, 1|x) ≥ 0.

Similar arguments imply that, for any x ∈
[
x∗(θγH), x+ η

]
,

∆U(x) =

ˆ θγH

θγL

−u (θ, 1− P (x|θ)) p (x|θ) f(θ)
(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

=

ˆ θγH−δ(ε,γ)

θγL

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η) f(θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

+

ˆ θγH

θγH−δ(ε,η)

q (θ, x)

q (θ, x̄+ η)
q (θ, x̄+ η) f(θ)

(
π′ (1|θ)− πε,γ,η (1|θ)

)
dθ

≥
q(θγH − δ(ε, η), x)

q(θγH − δ(ε, η), x̄+ η)
∆U(x̄+ η) = 0,

which implies that, for such x too, UΓε,γ,η(x, 1|x) ≥ 0.70

We conclude that, when ε, γ, η are small, UΓε,γ,η(x, 1|x) ≥ 0 for all x and hence Γε,γ,η ∈ G.
We now show that, when property 3 in Condition M holds, the new policy yields the policy maker

an expected payoff strictly higher than Γ′. To see this, observe that, fixing (γ, η), for any ε > 0, the

70The first equality is by definition. The second equality follows from the fact that, for such x, u(θ, 1− P (x|θ)) ≤ 0

for all θ ≤ θγH . The inequality follows from the fact that q(θ, x)/q(θ, x̄+η) is non-increasing in θ over [θγL, θ
γ
H ] along with

the fact that π′ (1|θ)−πε,γ,η (1|θ) changes sign only once, turning from non-negative to non-positive at θ = θγH−δ(ε, γ).
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policy maker’s payoff under the policy Γε,γ,η is equal to

UP [Γε,γ,η] =

ˆ θγL+ε

−∞
UP (θ, 0)dF (θ) +

ˆ θγH

θγH−δ(ε,η)
UP (θ, 1)dF (θ)

+

ˆ
(θγL+ε,θγH−δ(ε,η))∪(θγH ,+∞)

{
π′(1|θ)UP (θ, 1) + (1− π′(1|θ))UP (θ, 0)

}
dF (θ).

Differentiating UP [Γε,γ,η] with respect to ε, and taking the limit as ε→ 0+, we have that

lim
ε→0+

dUP [Γε,γ,η ]
dε = f(θγH)(1− π′(1|θγH))

[
UP (θγH , 1)− UP (θγH , 0)

](
lim
ε→0+

∂δ(ε,η)
∂ε

)
−f(θγL)π′(1|θγL)

[
UP (θγL, 1)− UP (θγL, 0)

]
= f(θγL)π′(1|θγL)

([
UP (θγH , 1)− UP (θγH , 0)

] p(x̄+η|θγL)u(θγL,1−P (x̄+η|θγL))

p(x̄+η|θγH)u(θγH ,1−P (x̄+η|θγH))
−
[
UP (θγL, 1)− UP (θγL, 0)

])
.

Therefore, lim
ε→0+

dUP [Γε,γ,η ]
dε > 0 if and only if

UP
(
θγH , 1

)
− UP

(
θγH , 0

)
UP

(
θγL, 1

)
− UP

(
θγL, 0

) > p
(
x̄+ η|θγH

)
u
(
θγH , 1− P

(
x̄+ η|θγH

))
p
(
x̄+ η|θγL

)
u
(
θγL, 1− P

(
x̄+ η|θγL

)) .
Property 3 in Condition M, together with the fact that x̄ ≤ x̄G (as proved above), guarantee this

is the case. We conclude that, when ε is small, the policy Γε,γ,η ∈ G strictly improves upon Γ′.

Furthermore, the construction of Γε,γ,η above can be iterated to arrive to a monotone deterministic

policy. Because any monotone deterministic policy Γθ̂ with cut-off θ̂ > θ∗ yields the policy maker

a payoff strictly smaller than the monotone deterministic policy with cut-off θ∗ (and no monotone

deterministic policy Γθ̂ with cut-ff θ̂ < θ∗ is in G), we conclude that any policy Γ′ ∈ arg max
Γ̃∈G

{
UP [Γ̃]

}
is such that π′(1|θ) = 0 for F -almost all θ ≤ θ∗ and π′(1|θ) = 1 for F -almost all θ > θ∗.

Step 2. Take any policy Γ′ ∈ arg max
Γ̃∈G

{
UP [Γ̃]

}
. The result in step 1 implies that π′(1|θ) = 0

for F -almost all θ ≤ θ∗ and π′(1|θ) = 1 for F -almost all θ > θ∗. The result in the theorem then

follows from observing that, given Γ′, there exists a nearby deterministic monotone policy Γθ̂ ∈ G
with cut-off θ̂ = θ∗ + ε̃, for ε̃ > 0 but small, such that Γθ̂ satisfies the perfect-coordination property

(i.e., UΓθ̂(x, 1|x) > 0 all x) and yields the policy maker a payoff arbitrarily close to that under Γ′.

Q.E.D.

Proof of Proposition 1. Given any threshold θ̂, and any signal x, let

ψh(x, θ̂, σ) ≡
ˆ

Θ
uh

(
θ, 1− Φ

(
x− θ
σ

))
dΛ (θ|x, 1;σ)

denote the payoff of an agent with signal x, of precision σ−2, who, after hearing that the bank passed

the test, learns that θ > θ̂, and who expects all other agents to buy security h when their signal

exceeds x and short-sell it otherwise, with h = D in case the bank finances itself with debt, and

h = E in the case the bank finances itself with equity. Here Λ (·|x, 1;σ) represents the posterior

belief over Θ for an agent with exogenous signal x of precision σ−2 who learns that the bank passed

the test (and hence that θ > θ̂). We start with the following result:

47



Lemma 2. For any θ̂ ∈ (θ, θ̄), any x > θ̂,

lim
σ→0+

∂

∂σ
ψE(x, θ̂, σ) > 0 > lim

σ→0+

∂

∂σ
ψD(x, θ̂, σ).

Proof of Lemma 2. Note that, for any x > θ̂,

∂
∂σψh(x, θ̂, σ) = ∂

∂σ

´∞
θ̂ uh

(
θ, 1− Φ

(
x−θ
σ

)) φ(x−θσ )
σΦ

(
x−θ̂
σ

)dθ
= ∂

∂σ

{
1

Φ
(
x−θ̂
σ

) ´ 1

1−Φ
(
x−θ̂
σ

) uh (x− σΦ−1 (1−A) , A
)
dA

}
= 1

Φ
(
x−θ̂
σ

) ´ 1

1−Φ
(
x−θ̂
σ

) ∂uh(x−σΦ−1(1−A),A)
∂θ

(
−Φ−1 (1−A)

)
dA

+ 1

Φ
(
x−θ̂
σ

) [ψ (x, θ̂, σ)− uh (θ̂, 1− Φ
(
x−θ̂
σ

))]
φ
(
x−θ̂
σ

)(
x−θ̂
σ2

)
.

(20)

The first equality follows from the change in variables, A = 1−Φ ((x− θ) /σ), whereas the second

equality follows from the chain rule of differentiation.

The proof proceeds in two steps. Step 1 shows that, for any x > θ̂, when σ → 0+, the second

term in the right-hand side of the last equality in (20) vanishes. Step 2 shows that, for any x > θ̂,

when σ → 0+ , the first term in the right-hand side of the last equality in (20) is positive for equity

but negative for debt.

Step 1. Because gh(·) and bh(·) are bounded, for any σ, ψh

(
x, θ̂, σ

)
− uh

(
θ̂, 1− Φ

(
x−θ̂
σ

))
is

also bounded. Furthermore, for any x > θ̂, and any σ, Φ
(
x−θ̂
σ

)
∈ [1/2, 1). Finally, use L’Hopital’s

rule to observe that, for any x > θ̂, limσ→0+ φ
(
x−θ̂
σ

)(
x−θ̂
σ2

)
= 0. Jointly, the above properties imply

that, for any x > θ̂, the second term in the right-hand side of the last equality in (20) vanishes as

σ → 0+.

Step 2. Because z and θ are independent,

uh (θ,A) =

ˆ ẑh(A)

z
b̂h (θ,A, z) dQ (z) +

ˆ z̄

ẑh(A)
ĝh (θ,A, z) dQ (z) ,

where ẑh (A) is a shortcut for ẑh(θ,A) and is independent of θ because l(θ) is invariant in θ.71 This

means that

∂uh (θ,A)

∂θ
=

ˆ ẑh(A)

z

∂b̂h (θ,A, z)

∂θ
dQ (z) +

ˆ z̄

ẑh(A)

∂ĝh (θ,A, z)

∂θ
dQ (z)

where, for h = E,72 ∂b̂E (θ,A, z) /∂θ = 0 and ∂ĝE (θ,A, z) /∂θ = C ′ (θ) /(1 + q), implying that

∂uE (θ,A)

∂θ
=
C ′ (θ)

1 + q
(1−Q (ẑE (A))) ,

71Recall that ẑh(θ,A) is implicitly defined by the solution to l(θ) + ρSqp
?
h (A, z) = D whenever the equation has a

solution, is equal to z when l(θ) + ρSqp
?
h (A, z) > D, and is equal to z̄ when l(θ) + ρSqp

?
h (A, z̄) < D.

72Note that we used the assumption that ρS = 1.
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whereas, for h = D, ∂b̂D (θ,A, z) /∂θ = LDγ
′(θ)/(qLD +D) and ∂ĝD (θ,A, z) /∂θ = 0, implying that

∂uD (θ,A)

∂θ
=

LD
qLD +D

γ′ (θ)Q (ẑD (A)) .

Hence, the above results imply that, for any x > θ̂,

lim
σ→0+

∂
∂σψh(x, θ̂, σ) = lim

σ→0+

1

Φ
(
x−θ̂
σ

) ´ 1

1−Φ
(
x−θ̂
σ

) ∂uh(x−σΦ−1(1−A),A)
∂θ

(
−Φ−1 (1−A)

)
dA

=
´ 1

0
∂uh(x,A)

∂θ

(
−Φ−1 (1−A)

)
dA

where the second equality follows from Lebesgue dominated convergence theorem (that |∂uh (θ,A) /∂θ|
is uniformly bounded follows from the derivations above along with the fact that C and γ are Lips-

chitz continuous).

Next, use the change in variables ω = −Φ−1 (1−A) and the fact that, for any x, φ(x) = φ(−x),

to note that ˆ 1

0

(
−Φ−1 (1−A)

)
dA =

ˆ ∞
−∞

ωφ (ω) dω = 0.

The last property implies that

lim
σ→0+

∂

∂σ
ψh(x, θ̂, σ) =

ˆ 1

0

∂uh (x,A)

∂θ

(
−Φ−1 (1−A)

)
dA = cov

(
∂uh (x,A)

∂θ
,−Φ−1 (1−A)

)
.

Equity. Using the properties above, we have that, for any x > θ̂,

cov
(
∂uE(x,A)

∂θ ,−Φ−1 (1−A)
)

= C′(x)
1+q cov

(
1−Q (ẑE (A)) ,−Φ−1 (1−A)

)
> 0,

where the inequality follows from the fact that ẑE (A) is decreasing in A.

Debt. Using the properties above, we have that, for any x > θ̂,

cov
(
∂uD(x,A)

∂θ ,−Φ−1 (1−A)
)

= LD
qLD+Dγ

′ (θ) cov
(
Q (ẑD (A)) ,−Φ−1 (1−A)

)
< 0,

where the inequality follows again from the fact that ẑD (A) is decreasing in A.

The lemma follows from combining the results from step 1 with those from 2. �

Now observe that, for any precision of private information σ−2 and any monotone pass/fail policy

with threshold θ̂, after the signal s = 1 is disclosed, purchasing the bank’s security h is the unique

rationalizable action for all investors if, and only if, ψh

(
x, θ̂, σ

)
> 0 for all x ∈ R (the arguments

are analogous to the ones in the proof of Theorem 2). From the discussion following Theorem 3,

then observe that the threshold θ∗h(σ) defining the optimal monotone policy when the precision of

the investors’ information is σ−2 and the bank funds itself by issuing security h = D,E is given by

θ∗h (σ) = inf
{
θ̂ : ψh

(
x, θ̂, σ

)
≥ 0 for all x ∈ R

}
.

Next, for any σ > 0, let x∗h (σ) ≡ arg min
x∈R

ψh (x, θ∗h (σ) , σ) and note that x∗h (σ) is a solution

to the equation ψh (x∗h (σ) , θ∗h (σ) , σ) = 0. Next, for any θ̂ ∈ (θ, θ̄), any σ̃ > 0, let Ψh(θ̂, σ̃) ≡
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infx∈R ψh(x, θ̂, σ̃) and, for any (θ̂, σ̃) such that arg minx∈R ψh(x, θ̂, σ̃) 6= ∅, let x∗∗h (θ̂, σ̃) ∈ arg minx∈R ψh(x, θ̂, σ̃).

Note that, when θ̂ = θ∗h(σ) and σ̃ = σ, x∗∗h (θ∗h(σ), σ) = x∗h (σ).

Now observe that limσ→0+ θ∗h (σ) = θMS
h , h = E,D. The definition of θ4h , along with the strict

monotonicity of uh(θ, 1/2) in θ, imply that, for any θ > θ4h , uh(θ, 1/2) > 0. Hence, for any θ̂ > θ4h ,

σ > 0, and x ≤ θ̂,

ψh

(
x, θ̂, σ

)
=

ˆ ∞
θ̂

uh

(
θ, 1− Φ

(
x− θ
σ

))
φ
(
x−θ
σ

)
σΦ
(
x−θ̂
σ

)dθ > 0. (21)

The assumption that θMS
h > θ4h , h = E,D, along with the continuity of θ∗h (σ) in σ,73 then imply

that there exist σ̂ > 0 such that, for any σ ∈ (0, σ̂), θ∗h(σ) > θ4h , for h = E,D. The result in (21)

then implies that, for any σ, σ̃ ∈ (0, σ̂), x∗h (σ) , x∗∗h (θ∗h(σ), σ̃) > θ∗h(σ).

Now observe that the arguments in the proof of Lemma 2 imply that there exists σ#,K > 0 such

that, for any σ, σ̃ ∈ (0, σ#), with σ̃ ≥ σ, and any x > θ∗h(σ), ψh (x, θ∗h(σ), σ̃) is partially differentiable

in its third argument, σ̃, with the partial derivative continuous in (x, θ̂, σ̃) and uniformly bounded

over {
(σ, σ̃, x) ∈ (0, σ#)× (0, σ#)× R : σ̃ ≥ σ, x− θ∗h(σ) ∈ (0,K)

}
, h = E,D.

Also observe that, for any ε > 0, there exists σε such that, for any σ, σ̃ ∈ (0, σε),
74

|θ∗h(σ)− θMS
h |, |x∗h(σ)− θMS

h |, |x∗∗h (θ∗h(σ), σ̃)− θMS
h | < ε. (22)

Now let σ̄ ≡ min{σ#, σ̂, σK/2}. The properties above, along with the envelope theorem of Milgrom

and Segal (2002), imply that, for any σ, σ̃ ∈ (0, σ̄), with σ̃ ≥ σ, and h = E,D,

∂

∂σ̃
Ψh(θ∗h(σ), σ̃) =

∂

∂σ̃
ψh (x∗∗h (θ∗h(σ), σ̃) , θ∗h(σ), σ̃) .

The last property, along with the fact that Ψh(θ∗h(σ), σ) = 0, imply that, for any σ, σ′ ∈ (0, σ̄), with

σ′ > σ,

Ψh(θ∗h(σ), σ′) =

ˆ σ̃=σ′

σ̃=σ

∂

∂σ̃
Ψh(θ∗h(σ), σ̃)dσ̃ =

ˆ σ̃=σ′

σ̃=σ

∂

∂σ̃
ψh (x∗∗h (θ∗h(σ), σ̃) , θ∗h(σ), σ̃) dσ̃.

The continuity of ∂
∂σ̃ψh

(
x, θ̂, σ̃

)
in (x, θ̂, σ̃) around

(
θMS
h , θMS

h , 0
)
, along with Condition (22), imply

that there exists σ† ∈ (0, σ̄) such that, for any σ, σ′ ∈ (0, σ†),

∂

∂σ̃
ψh (x∗∗h (θ∗h(σ), σ̃) , θ∗h(σ), σ̃)

sgn
= lim

σ→0+

∂

∂σ̃
ψh (x∗h (σ) , θ∗h(σ), σ̃)

∣∣∣∣
σ̃=σ

.

73The continuity of θ∗h (σ) in σ in turn follows from the fact that θ∗h (σ) and x∗h (σ) are such that

ψh (x∗h (σ) , θ∗h (σ) , σ) = 0 along with the continuity of ψh
(
x, θ̂, σ

)
in
(
x, θ̂, σ

)
and the strict monotonicity of ψh

(
x, θ̂, σ

)
in θ̂ at any

(
x, θ̂, σ

)
such that ψh

(
x, θ̂, σ

)
= 0.

74The arguments for this claim are similar to those in other global-games papers and omitted for brevity.
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The above properties, along with Lemma (2), thus imply that, for any σ, σ′ ∈ (0, σ†), with σ′ > σ,

ΨE(θ∗E(σ), σ′) > 0 > ΨD(θ∗D(σ), σ′).

The result in the proposition then follows from the above conclusions along with the monotonicity

of Ψh(·, σ′) in the truncation point θ∗h, h = E,D. Q.E.D.
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