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1 Introduction

In the episode “The Dragon and theWolf”of the fantasy dramaGame of Thrones the

bitterly hostile rulers Cersey Lannister and Daenerys Targaryen have a diplomatic

meeting and deliberate about possible collaboration. The army of the Dead from the

North poses a lethal threat to both dominions. Daenerys whose territory is more im-

mediately threatened by the invasion is interested in a truce. Cersey whose territory

is more distant from the point of possible invasion agrees to a truce, but plans to

break that agreement, let Daenerys fight alone and defeat Daenerys Targaryen when

she has been weakened by the battle with the army from the North. This piece of

fiction alludes to a strategic problem of more general nature. It is well-documented

for major military conflicts in the last two centuries that the members of military

alliances think beyond the time when they might have defeated their enemy. As the

former Secretary of State James F. Byrnes (1947, p. 44) describes from his memories

of the Yalta conference:

One statement of Stalin’s that interested me was: “It is not so diffi cult

to keep unity in time of war since there is a joint aim to defeat the common

enemy, which is clear to everyone. The diffi cult task will come after the

war when diverse interests tend to divide the Allies. It is our duty to see

that our relations in peacetime are as strong as they have been in war.”

Byrnes (1947, p. 45) reminds us that the “tide of Anglo-Soviet-American friend-

ship had reached a new high”at the Yalta conference, but that the “tide began to

ebb”very quickly. The quote illustrates that alliance members think about the con-

tinuation game in which they might have to solve their internal quarrels about how

to split the rents from winning.1 This general insight is in line with findings in the

experimental laboratory2 and has been explored in a number of more specific formal
1Historians discuss this for the Napoleonic wars (O’Connor 1969), for the Great War (Bun-

selmeyer, 1975, p. 15) and for the members of the great alliance in the Second World War (Wein-
berg, 1994, p. 736).

2Ke, Konrad and Morath (2013, 2015) find behavior in line with players who anticipate the
future conflict subgame inside the winner group and adjust their contributions to their group’s
efforts inside their alliance.
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frameworks.3 The analysis often assumes that the players mobilize new resources

and incur additional fighting costs in the internal conflict that follows if their team

wins. However, the strength of a player in the team might be affected, or even deter-

mined by the amount of effort contributed to team effort, and might be the residual

strength that remains after fighting. Assuming a fixed total amount of resources

that a player can use for a sequence of fights, Klumpp, Konrad and Solomon (2019)

analyze this in the context of dynamic multi-battle contests. In a conference paper,

Klumpp and Konrad (2019) study an inter-group contest followed by intra-group

fighting among the winners. Their analysis, like most of the contributions to this

literature, assumes that players inside the group have perfect information about each

other. In particular, they know their own as well as all other players’precise budgets.

The current analysis studies the most natural perspective of incomplete infor-

mation about the players’resource budgets in such a framework. Incomplete infor-

mation gives each of the players an information advantage from being able to make

their plans based on precise knowledge of their own budgets. It also moderates and

smoothens the conflict, as expending an additional unit of resource for the common

good will typically change the win probability only marginally. To illustrate the im-

portance of incomplete information in applications, returning to historical examples,

the members of the Grand Alliance might have anticipated what became the Cold

War after World War II, but they might have been mutually uncertain about each

other’s stocks of army equipment, state of weapon technology, the ability to launch

a nuclear counterstrike, or the other player’s military capacity more generally.

Consider the dilemma of a player with a given stock of fighting resources: using

a larger amount of it to support the group’s military objectives (joint acquisition or

defence) makes them more successful. But it leaves this player in a weaker position

once this joint fight was successful. Even though the resources might be given and

‘use-it-or-lose-it’, as is commonly assumed in Colonel Blotto games, there is an op-

portunity cost of using a unit of resource for the common good: it has a two-fold

positive externality for the other member of the group. It makes success of the group

3Katz and Tokatlidu (1996), Wärneryd (1998), Konrad (2004) and Münster (2007) advance the
theory about the dilemma of an in-group conflict emerging inside a victorious alliance.
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more likely, and it makes it more likely that the other group member can win and

acquire the asset for himself in the ensuing fight inside the group. These effects are

strongest if the two types of conflicts are fully discriminatory in the way assumed

here: in the sense that small differences in the resources expended can make a large

difference. And even a small amount of incomplete information about the budget of

the co-player becomes highly relevant.

We study this problem for a group of two players who are ex ante symmetric.

Two types of symmetric threshold equilibrium are identified. One type is called

joint-contribution threshold equilibrium: the players’joint efforts are just suffi cient

to succeed. The other type is called stand-alone-contribution threshold equilibrium:

the group succeeds because one or potentially both players contribute the full amount

of resources needed to acquire the asset. This type of equilibrium is characterized

by underprovision of group effort for some range of budget combinations, optimal

provision of group effort by only one player, or overprovision for another range of

budget combinations. All the equilibria described are ineffi cient ex ante compared

to coordinated action that maximizes the sum of payoffs of the group members.

The work is related to the literature on private provision of a discrete public good

(see, e.g., Bagnoli and Lipman 1989, 1992) and, in particular, to the contributions

studying this problem when the potential contributors have incomplete information

about how much they value the public good (Menezes, Monteiro and Temini 2000,

Barbieri and Malueg 2008) or about each other’s costs (Bliss and Nalebuff 1983, Fu-

denberg and Tirole 1986). In the Blotto game here the provision occurs with resources

that are ‘use-it-or-lose-it’: The opportunity cost of higher effort emerges indirectly as

the resources have an important alternative use if and only if the amounts contributed

are suffi cient to win the later confrontation with the other group member.

The paper is also related to the guns-and-butter models of conflict and their ex-

tensions (see, e.g., Haavelmo 1954, Hirshleifer 1985, Skaperdas 1992, Münster 2007,

and the survey by Garfinkel and Skaperdas 2007). These models consider players

who have some endowments that can be used for different purposes: ‘butter’and

‘guns’in the simplest case, where butter becomes the public good for the two play-

ers, and with the remainder of their budget they fight about this amount of butter.
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The analysis shares with the guns-and-butter literature that a player who devotes

more resources to the production of consumable output automatically produces less

guns, i.e., is weaker in the distributional conflict between them. Perhaps most close

to the analysis here is the guns-and-butter model by Hodler and Yektaş (2012) who

consider incomplete information about the resource endowment. There, the distribu-

tional conflict is an all-pay-auction without noise, like in the model here, but overall

productive output (‘butter’) is a continuous public good: output is a continuous func-

tion of efforts. In our context the group fights against a given threshold: the group’s

achievement is a discrete public good. This causes a two-fold discontinuity: whether

the collective task is achieved, and who wins the internal conflict.

The analysis is also related to the growing literature on conflict between players

with given budgets who fight along multiple fronts. Framed in the military context,

such games are often described as how Colonel Blotto and his adversary would al-

locate given amounts of military resources on several battlefields, where each player

might allocate idiosyncratic values to winning the various battlefields.4 A version

of this game with incomplete information about competing players’valuations is by

Kovenock and Roberson (2011); incomplete information about players’resource en-

dowments is studied by Adamo and Matros (2009). However, these frameworks are

constant-sum games in which players are rivals throughout, whereas in our frame-

work the game is not a constant-sum game: players have a common goal (‘winning

the asset for the group’) and adversarial goals (‘winning the intra-group contest’).

2 The framework

Consider a group with n = 2 members. Each of them has an initial budget, and

these budgets are denoted by mi with i ∈ {1, 2}. The budget size characterizes
the player’s type. These budgets are independent random draws from the same

cumulative distribution function F with full support on [0, m̄]. We assume F to be

4The name for this game is attributed to Gross and Wagner (1950). Major more recent con-
tributions are Roberson (2006) and Roberson and Kvasov (2012). For a survey see Roberson and
Kovenock (2010).
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continuous, differentiable and concave on [0, m̄].5 This characterizes the type space

and distribution of types. Each player knows his own budget and believes that the

other player’s budget is a random draw from the distribution F .

The players simultaneously choose their contributions x1 ∈ [0,m1] and x2 ∈
[0,m2] that sum up to joint contributions x1 + x2 and also determine the player’s

remaining resourcesmi−xi. Given the players’beliefs about their co-player’s budget,
their strategies are functions that map their own budget into contributions: x1(m1)

and x2(m2). Payoff of player 1 is determined as

π1 =


1 if x1 + x2 ≥ b and m1 − x1 > m2 − x2

1
2

if x1 + x2 ≥ b and m1 − x1 = m2 − x2

0 otherwise

(1)

and the payoff of player 2 is described analogously, replacing 1 by 2 and vice-versa.

The payoff function (1) shows that the budget is ‘use-it-or-lose-it’. Players are in a

special type of Blotto game. They are members in a fight of their team for a common

threshold goal but they also fight inside the own team about the allocation of what

the team wins by reaching the goal. The variable b > 0 is a given positive constant

and observed by the players prior to their effort choices x1 and x2. It is the threshold

which needs to be matched or topped by the joint efforts of players 1 and 2.

A pair of strategies x∗1(m1) and x∗2(m2) is a Bayesian Nash equilibrium if, given the

players’beliefs about the co-players’budgets, these strategies are mutually optimal

replies, i.e., if

x∗1(m1) = arg max
x1∈[0,m1]

{
∫ m̄

0

π1(x1;x∗2(m2))dF (m2)}

and analogously for player 2.

The conflict game studied has two discontinuities for each player. The first dis-

5In addition to F (m) being a smooth and atomless cumulative distribution function, the con-
cavity assumption deserves to be highlighted. The uniform distribution and many right-skewed
distributions comply with this assumption. Prominent examples are the exponential distribution
and the Pareto distribution that is empirically particularly relevant as a characterization of incomes
(or endowments).
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continuity is on the sum of contributions x1 + x2 that need to match or exceed b in

order to generate positive payoff inside the group. The second discontinuity is on

the determination of the winner inside the group, conditional on x1 +x2 exceeding b.

As players want to make group victory likely but also to outbid their internal rival

exactly in this case of victory, this begs the question of existence of (pure-strategy)

equilibrium. Klumpp and Konrad (2019) showed that such equilibria exist with a

specific knife-edge property, basically making the discontinuity in whether the group

wins interact with the discontinuity for how they split the gain from winning.6 In-

complete information makes this type of knife-edge equilibrium infeasible, but at the

same time smoothens the problem and allows for different types of equilibrium.

We focus on symmetric equilibrium in monotonic threshold strategies, i.e., equi-

libria in which the mutually optimal replies have the following property: x∗i (mi) = 0

for all mi ∈ [0,m∗) and x∗i (mi) = t for all mi ∈ [m∗, m̄], for some m∗ ∈ (0, m̄) and

t ∈ (0,m∗]. The equilibrium concept is Bayesian Nash equilibrium.

2.1 Stand-alone equilibria

First we consider equilibria in which single players might make contributions that

are suffi cient to ‘stand alone’, i.e., suffi cient to match or exceed b. Hence, in the

equilibrium with threshold m∗, the players contribute an amount x∗i (mi) = b if and

only if mi ≥ m∗.

Proposition 1 Let b < m̄ and suppose that F is (weakly) concave on the support

[0, m̄]. There is a unique symmetric standalone equilibrium with threshold m∗ defined

by

F (m∗) = F (m∗ + b)− F (m∗ − b) , (2)

where m∗ satisfies m∗ ∈ (b, 2b] and m∗ < m̄.

As we prove in the appendix, existence of stand-alone threshold equilibrium

mainly requires two conditions. First, types just above the threshold m∗ (who con-

6For instance, for m1 +m2 > b and max{m1,m2} −min{m1,m2} < b an equilibrium exists for
which m1 − x1 = m2 − x2 and x1 + x2 = b.
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tribute an amount b) lose against any other type who contributes. Those types can

only win against types with a very low budget: a budget smaller thanmi−b→ m∗−b.
This requires the threshold m∗ to be suffi ciently large for standalone contributions

to be optimal. Formally, for types mi ↓ m∗, the probability that their remaining
budget is suffi cient to beat their internal rival (Pr (mj < m∗ − b)) must be larger
than the probability that deviating to a free-riding strategy is successful, which is

Pr (mj > m∗ and mj − b < m∗). A suffi ciently high threshold m∗ guarantees a suffi -

ciently high win probability even when contributing.

Second, types mi just below the threshold (who free-ride in the equilibrium) need

to face a suffi ciently high probability that their internal rival contributes b (otherwise

the group does not win) but, net of contributing, has left less than the endowment of

type mi. This requires the threshold m∗ to be suffi ciently small. Formally, for types

mi ↑ m∗, the probability that their internal rival contributes and has a remaining
budget smaller than their own (Pr (mj > m∗ and mj − b < m∗)) must be larger than

the probability that deviating to a contribution is successful (Pr (mj < m∗ − b)).
These two restrictions on incentives of types just above and just below the threshold

characterize a unique symmetric standalone equilibrium.7

Figure 1 shows that there are four different sets of player types and that player i’s

equilibrium expected payoff is non-monotone in mj for intermediate values budgets

mi. First, there are players i who never win: those with mi < m∗−b whose resources
are not suffi cient to beat a player j who contributes. As m∗ ∈ (b, 2b] and, hence,

m∗ − b ≤ b, those players do not have suffi cient resources to make a stand-alone

contribution. Second, there are players who free-ride and get a positive expected

payoff: those with mi ∈ (m∗ − b,m∗). Those players would be able to contribute (at
least if mi is suffi ciently close to m∗) but they prefer to contribute zero, hoping that

mj is in some intermediate interval so that they have a chance to beat j in the internal

conflict. Third, there are players who contribute (with mi ∈ [m∗,m∗ + b)) but only

win if mj is either below mi− b or between m∗ and mi. Those players are suffi ciently

strong to contribute and still win against at least a share of the free-riding players j

7Concavity of F ensures that considering incentives to deviate reduces to considering the types
around the threshold m∗. For details see the proof in the appendix.
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m*

m*

mj

mim

m

m*+b

m*+bm*–b

m*–b

i wins

i wins

i wins

j wins
j wins

j wins

Figure 1: The figure illustrates the different combinations (mi,mj) for which either
i or j wins in the standalone equilibrium. Focusing on player i, there are four
different regions (player types). From left to right, there are (i) players i with mi <
m∗ − b who never win since mj − b > mi for all j who contribute; (ii) players i
with mi ∈ (m∗ − b,m∗) who win if and only if mj ∈ (m∗,mi + b); (iii) players i with
mi ∈ (m∗,m∗ + b) who win if mj < mi − b or if mj ∈ (m∗,mi); (iv) players i with
mi > m∗ + b who win if and only if mj < mi. The expected payoff of a type m̃i is
obtained by drawing a vertical line at mi = m̃i and calculating the probability that
mj is in the interval where m̃i wins. Hence, the arrow just to the left of m∗ indicates
the expected payoff of types mi just below m∗ and the arrow just to the right of m∗

indicates the expected payoff of types mi just above m∗. In equilibrium, these two
payoffs must be identical in order for deviations of types just below and just above
m∗ to be non-profitable.

9



(those with mj < mi− b ) but they are beaten by free-riding players j with a budget
close to m∗. Finally, there is a group of players with very high resources. Provision

of the stand-alone effort to the team is best for them and they never lose against

free-riding players j. But still, if such a player fights with another, even stronger

team member, then this other member also contributes the stand-alone effort, and

still beats this player.

Corollary 1 summarizes the equilibrium strategies for the special case of a uniform

distribution, for which a closed form solution for m∗(b) exists.

Corollary 1 Suppose F is a uniform distribution on [0, 1].

(i) If b < 1/3, there is a unique symmetric standalone equilibrium where x∗i = b if

mi ≥ m∗ = 2b and x∗i = 0 otherwise.

(ii) If b ∈ [1/3, 1), there is a unique symmetric standalone equilibrium where x∗i = b

if mi ≥ m∗ = (1 + b) /2 and x∗i = 0 otherwise.

The proof for the more general proposition for weakly concave or concave F in

the appendix also proves the corollary, but the uniform distribution case offers some

illustration, as probabilities for mj being in some interval from [0, 1] is equal to

the length of the interval. Let the required contributions are small (Corollary 1(i)).

Players contribute if and only ifmi ≥ 2b. This means that a player gets zero expected

payoff if and only if mi < m∗ − b = b (compare Figure 1). Here, only players with

resources smaller than b get zero expected payoff. The players who free ride but still

realize a strictly positive expected payoff would all be suffi ciently powerful to make

a stand-alone contribution. But doing so they reduce their remaining resources so

much that they would be defeated by players from the first group. Thus, they prefer

to hold back their resources, hoping that the other player has just somewhat more

resources, provides the stand-alone effort and can then be beaten.

To illustrate the reason for uniqueness of the threshold m∗ = 2b, suppose that

player 2 chooses a threshold different from 2b. For a smaller equilibrium candidate

threshold m∗2 ∈ [b, 2b) consider player 1 with m1 = m∗2. This player’s probability

to win for x1 = b is m∗2 − b. For x1 = 0 this player’s probability to win is b. But

b > m∗2 − b for all m∗2 ∈ [b, 2b). Hence, player 1 with m1 = m∗2 is strictly better-off
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contributing 0 than contributing b. This contradicts a symmetric equilibrium with a

thresholdm∗ below 2b. Suppose next that the candidate threshold ism∗2 ∈ (2b, 1− b].
Consider player 1 with m1 = m∗2. This player’s payoff from x1 = b is m∗2 − b and
from x1 = 0 it is m∗2 − (m∗2 − b) = b < m∗2 − b. This rules out that the optimal

threshold m∗1(m∗2) = m∗2 for player 1. Similar contradictions can be constructed for

the remaining parameter values in the corollary.

These stand-alone equilibria can be compared with several generic games of non-

cooperative provision of a discrete public good with stand-alone contributions: the

various versions of the volunteer’s dilemma. A static version of this problem is stud-

ied by Diekmann (1985). Its dynamic version is the waiting game, as in Bliss and

Nalebuff (1984) and Fudenberg and Tirole (1986). In these games the provision of

the public good has a direct cost for the stand-alone contributor, and contributors’

individual benefit from provision of the public good exceeds this cost of stand-alone

provision. Players are willing to incur the cost of stand-alone provision if the alter-

native is that the public good is not provided. But if several players might volunteer,

players prefer most to free-ride if they anticipate that others make the provision.

Players randomize in Diekmann’s (1985) static volunteers’game. Zero, one or mul-

tiple players might then expend the cost of stand-alone provision in the equilibrium.

In the dynamic versions the problem turns into a waiting game, and incomplete in-

formation about other players’contribution cost and the choice of timing for own

action resolves the coordination problem between the players.

The stand-alone equilibria here start with a very different framework and focus

on a different trade-off. A major goal is also the provision of a discrete public

good, but contributions to it are made from a given individual budget and do not

cause a genuine cost for the contributing player. They are costly only insofar as they

reduce the resource endowment of the contributing player in the internal conflict that

might follow the public good provision. This opportunity cost matters if the players’

contributions are suffi ciently high to be successful. As players do not know the

resource endowment of the other player in their group, they face strategic uncertainty.

This can make none, one or both players contribute independently. Overprovision

occurs if both players are very resource-rich. For uniformly distributed budgets with
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maximum budget m̄ > 3b this happens if both have budgets that exceed 2b. Their

independent decisions can also lead to what can be seen as underprovision from the

perspective of the group. Think of the case with uniform F , and with m̄ > 3b.

If players have budgets in the range between b and 2b, each of them has suffi cient

resources to make the group win, but none of them contributes the standalone effort

and the group does not win. This is precisely the range in which the player prefers

to free-ride and hope that the other group member is suffi ciently rich to make the

contribution, but not too rich so that he could still beat the free-riding player.

2.2 Joint contribution equilibria

Now let us turn to a different type of symmetric threshold equilibrium: an equilibrium

in which players might contribute zero or half of the necessary joint amount b. Hence,

in the equilibrium with contribution threshold m̂, the players contribute an amount

x̂i (mi) = b/2 if and only if mi ≥ m̂.

Proposition 2 Let b < 2m̄ and suppose that F is (weakly) concave on the support

[0, m̄].

(i) Suppose that b < 2m̄/3. If

F (m̄)− F (m̄− b/2)− F (b/2) ≥ 0, (3)

there is a unique symmetric joint contribution equilibrium characterized by m̂ = b/2.

If (3) is violated, no symmetric joint contribution equilibrium exists.

(ii) Suppose that b ∈ [2m̄/3, m̄) and define b̃ as the (unique) solution to

F (m̄)− F
(
m̄− b̃

)
− F

(
m̄− b̃

2

)
= 0, (4)

where b̃ satisfies b̃ ∈ [2m̄/3, m̄). If b < b̃, no symmetric joint contribution equilibrium

exists. If b ≥ b̃, the set of symmetric joint contribution equilibria is characterized by
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m̂ ∈ [b/2, z] where z ∈ (b/2, b] is the solution to

F (m̄)− F (m̄− b)− F (z) = 0. (5)

(iii) If b ∈ [m̄, 2m̄), the set of symmetric joint contribution equilibria is characterized

by m̂ ∈ [b/2, m̄).

The proof of Proposition 2 is in the appendix. To understand the result intuitively

it is crucial to note that only incentives to deviate to stand-alone contributions need

to be considered. First of all, players who free ride in the candidate equilibrium

(with mi < m̂) do not have suffi cient resources to beat a player j who contributes

in equilibrium, in case they decide to contribute b/2 themselves. Second, players

who contribute in equilibrium reduce the probability of winning to zero in case they

decide to contribute zero.

For large amounts of resource investments b required by the players (Proposition

2(ii) and (iii)), there is a continuum of joint contribution equilibria characterized by

contribution thresholds m̂ ∈ [b/2, z] with z ∈ (b/2, b]. This becomes most obvious for

the case where b ≥ m̄ (Proposition 2(iii)). Here, stand-alone contributions are not

feasible for types mi in the support of F . Since no other contribution may constitute

a profitable deviation, any threshold m̂ ∈ [b/2, m̄) can be supported as part of a

symmetric joint contribution equilibrium. Hence, the set of equilibria includes the

joint contribution equilibrium with effi cient participation (the one with m̂ = b/2

where players contribute their share whenever they are able to do so) as well as joint

contribution equilibria with ineffi ciently low participation.

For investment thresholds b ∈ [2m̄/3, m̄) as in Proposition 2(ii), a continuum of

joint contribution equilibria can exist because incentives to deviate from a candidate

equilibrium are, in some range, independent of the threshold m̂. To see why, consider

the player with the maximum endowment (with mi → m̄) and suppose that m̂ ∈
(m̄− b, m̄− b/2). The candidate equilibrium payoff of this player i is 1−F (m̂): she

wins if and only if j contributes (i wins the internal conflict against all those players

j). If i deviates and contributes xi = b, she also wins against some non-contributing

players (those with mj < mi − b) but now wins against the contributing players j
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only ifmj is small (that is, ifmj ∈ (m̂,mi − b/2)). Comparing candidate equilibrium

payoff and deviation payoff shows that the incentive to deviate is independent of m̂

in this range.8 If m̂ becomes too large, however, then equilibrium participation is

low and so are equilibrium payoffs. Thus, condition (5) defines an upper bound on

the contribution thresholds m̂ that can be supported in equilibrium.

For small amounts b of resource investments required, existence of a joint contri-

bution equilibrium is not guaranteed since deviations to stand-alone contributions

are particularly attractive if the required resources are small. For b < 2m̄/3, Propo-

sition 2(i) shows that a joint contribution equilibrium may only exist if it involves

effi cient participation, that is, if m̂ = b/2 so that all players withmi ≥ b/2 contribute

in equilibrium. As the two corollaries below show formally, such an equilibrium exists

for uniformly distributed budgets but does not exist for strictly concave probability

distributions.

Figure 2 illustrates equilibrium payoffs and incentives to deviate to a standalone

contribution for the highest possible types (mi → m̄). Since types mi < m̂ get

zero equilibrium expected payoff (the threshold is never reached), we must have

m̂ ∈ [b/2, b]: If m̂ was larger than b, types mi ∈ (b, m̂) could get a strictly posi-

tive payoff (equal to Pr (mj < mi − b)) when deviating to a standalone contribution.
Types mi > m̂ win in equilibrium whenever mj ∈ (m̂,mi) so that j contributes but

has fewer remaining resources than i. The deviation payoff of the highest possible

types (mi → m̄) depends on whether the threshold m̂ is smaller or larger than m̄− b
and m̄ − b/2, respectively. Case (i) in the left panel considers the case where b is
small. Here, m̂ < m̄ − b ensures that, when deviating to a standalone contribu-

tion, types mi → m̄ win against all non-contributing types j. But a deviation to

a standalone contribution means that i does not win anymore if j contributes and

mj ∈ (mi − b/2,mi). The solid and the dashed arrow in the left panel of Figure 2

show candidate equilibrium payoff and deviation payoff, respectively. In case (i), if

8For details see the proof in the appendix. Formally, the left-hand side of equation (4) is the
difference between candidate payoff and deviation payoff for the highest possible budget mi = m̄,
in case the required resources are b̃. Since the incentive to deviate is stronger the lower b (the
left-hand side of (4) is increasing in b), the threshold b̃ defined by (4) is a lower bound for existence
of a joint contribution equilibrium in the range of Proposition 2(ii).
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mj

mim

m

i wins

j wins

m̂

m̂

m–b m–b/2

m–b/2

m–b

Case (i): b small mj

mim

m

i wins

j wins

m̂

m̂

m–b m–b/2

m–b/2

m–b

Case (ii): b large

Figure 2: The figure illustrates the different combinations (mi,mj) for which either
i or j wins in the joint contribution equilibrium, for small vs. large amounts b
of resources required. The expected payoff of a type m̃i is obtained by drawing a
vertical line at mi = m̃i and calculating the probability that mj is in the interval
where m̃i wins. Thus, the (solid) arrow at the far right of each of the panels indicates
the expected equilibrium payoff of types mi → m̄. The dashed arrow indicates the
expected deviation payoff of types mi → m̄ when choosing xi = b. Upon deviating,
the highest types mi → m̄ win if mj < m̄ − b or if mj ∈ (m̂, m̄− b/2). In case (i)
where b is small, high types mi win against all non-participating types of j when
making a contribution b. In case (ii) where b is large, high types mi lose against
some non-participating types of j when making a contribution b.
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low values of mj are particularly likely (as for strictly concave distribution functions

F ), a symmetric joint contribution equilibrium does not exist.9

The right panel of Figure 2 considers a case where b is large and, hence, m̂ > m̄−b.
(Again, necessary condition in equilibrium is m̂ ∈ [b/2, b].) For larger values of b,

deviations to standalone contributions are less attractive since, upon deviating to

xi = b, i does not only lose against contributing players j with mj ∈ (mi − b/2,mi),

but also loses against non-contributing players j with mj ∈ (mi − b, m̂). Whether

types mi → m̄ with xi = b can still win against contributing players j depends on

whether m̂ < m̄−b/2. As seen in case (ii) of Figure 2 from the solid arrow (candidate
equilibrium payoffof types mi → m̄) and the dashed arrow (deviation payoffof types

mi → m̄ when choosing xi = b), the incentive to deviate is reduced if b is increased

(keeping m̂ fixed). In this case, a continuum of thresholds m̂ can be supported as

part of joint contribution equilibria.10

The characterization of joint contribution equilibria is simplified when consider-

ing the case of uniformly distributed budgets. Corollary 2 illustrates the result of

Proposition 2 for this case.

Corollary 2 Suppose F (m) = m on [0, 1].

(i) If b < 2/3, there is a unique symmetric joint contribution equilibrium character-

ized by m̂ = b/2.

(ii) If b ∈ [2/3, 1), the set of symmetric joint contribution equilibria is characterized

by m̂ ∈ [b/2, b].

(iii) If b ∈ [1, 2), the set of symmetric joint contribution equilibria is characterized

by m̂ ∈ [b/2, 1).

For the uniform distribution, there is a unique joint contribution equilibrium

without effi cient participation in case b is small. Once b is large, there is a continuum

of equilibria with threshold m̂ ∈ [b/2,min {b, 1}]. This set includes the equilibrium
9In case (i) of Figure 2, a no-deviation condition is F (m̄) − F (m̄− b/2) ≥ F (m̂) which, as

m̂ ≥ b/2, is violated if F is strictly concave.
10In the right panel of Figure 2, if m̂ > m̄−b/2, then equilibrium payoff for typesmi → m̄ remains

F (m̄) − F (m̂) whereas the payoff from deviating to xi = b is F (m̄− b) and, hence, independent
of m̂. This eplains the upper bound z in Proposition 2(ii) for equilibrium thresholds m̂.
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where players’participation is effi cient as well as equilibria where the threshold is

not reached even though the players jointly have suffi cient resources. The latter

arises because the risk of losing the internal conflict makes the players refrain from

increasing their contribution up to b even when they are very resource-rich.

To illustrate this equilibrium further, consider the function ∆ that describes the

difference between the equilibrium payoff from xi = b/2 and the deviation payoff

from xi = b for F (mi) = mi and mi = m̄ = 1, which corresponds to (9) in the

appendix. As explained above in the context of Figure 2, for the deviation payoff of

types mi → m̄ we need to distinguish whether m̂ > m̄− b and m̂ > m̄− b/2.11 This
yields

∆(mi = 1) =


b− m̂ if 1 > m̂ > 1− b

2
3
2
b− 1 if m̂ ∈ [1− b, 1− b

2
]

b
2
− m̂ if m̂ < 1− b

so that the requirement ∆ (mi = 1) ≥ 0 together with the necessary condition m̂ ∈
[b/2, b] can be mapped into Figure 3. The dark (red) line and the dark (red) area

are combinations of b and m̂(b) for which ∆(mi = 1) ≥ 0 holds, i.e., combinations

of b and m̂ for which a deviation to xi = b does not pay, not even for player types

mi = 1 for which this deviation is most attractive among all player types. Figure

3 illustrates that for b ∈ [0, 2/3) there is precisely one corresponding value of value

of m̂ that is feasible and does not invite a profitable deviation. This identifies the

unique equilibrium for a given b, for all b < 2/3, along the red line.12 For any larger

b ∈ (2/3, 2) there is a whole set of thresholds m̂(b) ∈ [b/2,min {b, 1}) for which no
profitable deviations exist.

The uniform distribution is a special case in that joint contribution equilibria also

exist for low values of b. This is no longer true for strictly concave probability dis-

tributions. Intuitively, low budgets become more likely if F is concave; the resulting

11Referring back to the two cases illustrated in Figure 2, ∆(mi = 1) for m̂ < 1 − b corresponds
to the payoff difference illustrated by the solid and the dashed arrow in case (i) of Figure 2 and
∆(mi = 1) for m̂ ∈ [1− b, 1− b/2] corresponds to the payoff difference illustrated by the solid and
the dashed arrow in case (ii) of Figure 2.
12With m̂ ∈ [b/2, b], ∆ (mi = 1) ≥ 0 requires m̂ ≤ b/2 if m̂ < 1− b. If m̂ ≥ 1− b, ∆ (mi = 1) ≥ 0

is violated for b < 2/3 (compare the respective conditions illustrated in Figure 3).
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1

0 2/3 1 2 b

m = b^ m = b/2^m̂

m = 1–b/2^

m = 1–b^

Figure 3: The figure illustrates the set of equilibria characterized in Corollary 2, i.e.,
for a uniform distribution F (mi) = mi on the unit interval [0, 1]. The equilibrium
combinations of (b, m̂(b)) are represented by the highlighted (thick) line for small val-
ues of b and the highlighted area for larger values of b. Any equilibrium combination
must necessarily be inside the cone generated by the feasibility constraint m̂ ≥ b/2
and the condition m̂ ≤ b which is a necessary equilibrium condition (see step 3 in the
proof of Proposition 2). For b ∈ [2/3, 1) all m̂(b) ∈ [b/2, b] are thresholds for which
xi(mi) = 0 if mi < m̂ and xi(mi) = b/2 if mi ≥ m̂ characterize the equilibrium
choices. Since m̂ cannot be larger than m̄ = 1 by definition, for b ∈ [1, 2) the interval
for equilibrium thresholds becomes m̂ (b) ∈ [b/2, 1). For b < 2/3, however, there is
one single threshold m̂(b) = b/2 for which a symmetric joint contribution equilibrium
exists. For small b, if a higher threshold than m̂ = b/2 is chosen, it is too attractive
for resource-rich players to deviate to a standalone contribution which has low cost
and still ensures a suffi ciently high probability of winning.
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low probability that the required resources b are met and the strengthened incentives

to deviate to stand-alone contributions cause the non-existence of a symmetric joint

contribution equilibrium.

Corollary 3 Suppose F is strictly concave on (0, 1). If b < b̃ where b̃ is defined by

(4) and satisfies b̃ > 2/3, no symmetric joint contribution equilibrium exists.

The proof of this corollary is in the appendix. For strictly concave distribution

functions F of the budgets, there is either no joint contribution equilibrium (if b is

small) or a continuum of equilibria (if b is large), the latter including the one with

m̂ = b/2 as well as joint contribution equilibria with ineffi ciently low participation.

The joint-contributions results are reminiscent to Bagnoli and Lipman (1989,

1992) who study how several players might effi ciently fund a threshold public good.

In their framework this is a possible equilibrium outcome if their joint benefits from

provision exceed the total cost. A natural non-cooperative equilibrium in their set-up

is the one in which the players share the necessary contribution costs evenly.

In the context here the provision of joint effort that is larger or equal to b can be

seen as the provision of a threshold public good. If players’resources are suffi cient,

there is a symmetric equilibrium in which they share the burden. An even split is a

symmetric equilibrium that is part of the set of symmetric equilibria, unless players’

budgets are likely to be large compared to the amount of team effort needed. Of

course, the incentives and conditions are quite different to the standard analysis of

non-cooperative provision of a threshold public good. In the provision game the

quantity of resources can be freely chosen, but each unit contributed has a determin-

istic provision cost that enters into the contributor’s budget. In the Blotto-alliance

the provision occurs with resources that are useless if the provision does not occur:

players allocate a “use-it-or-lose-it”budget. The opportunity cost emerges indirectly

because the resources have an important alternative use if and only if the amounts

contributed are suffi cient to reach the group goal. If the total provisions sum up to b

or more, then, and only then, the resources become very valuable for a confrontation

with the other member of the group that emerges. A player cares about relative re-

source endowment in this confrontation. A player might increase the contributions,
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and this might be crucial reaching a given group benefit. But exactly the increased

contribution of a player might make that player weaker than the other group member

in the fight between them about the benefit. This trade-off differs and is stronger

than the free-riding problem in standard voluntary contributions games. There a

player might weigh the additional cost of own contributions and the higher likeli-

hood of enjoyment of the public good. The player has private costs of contributing,

but they generate a public benefit if they succeed to provide the threshold public

good. Here the player who withholds resources not only brings the provision of the

public good into question. The player also harms the co-player directly, because the

player becomes a stronger rival in the internal conflict once they jointly reach the

group goal.

3 Conclusions

Acting as a volunteer in the interest of the group often has major disadvantages:

this action dissipates resources that could be used in the power struggle within the

group, and in a fully non-cooperative world a player who contributes much to the

group effort might generate benefits to the group, but be left with too little resources

to succeed in the internal power struggle that decides the allocation of these benefits.

So, while a volunteer acquires some desirable goods for the group, protects or rescues

the group or accomplishes other tasks that benefit the group, this very act might be

unattractive as it weakens this player in the internal struggle. We show that even in

the face of such adverse incentives, group members can often coordinate their efforts

in a non-cooperative equilibrium to achieve a common goal. This, and a more pre-

cise description of the determinants of such non-cooperative but coordinated action

in equilibrium is the core result of this work. The analysis focuses on two kinds of

equilibria: those in which the group members achieve the common goal by joining

forces, and equilibria in which the group achieves the goal because there are members

who are willing to achieve the group goal by their own efforts alone. Both types of

equilibrium exist for larger and partially overlapping parameter ranges. The joint-

contribution equilibrium is particularly relevant if each single player’s resources are
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insuffi cient to make a stand-alone contribution; the volunteer’s (standalone) equilib-

rium is particularly relevant if range of possible resource endowments includes large

endowments.

A Appendix

A.1 Proof of Proposition 1

Before we show equilibrium existence, we show that there is a unique solution m∗ ∈
(b, 2b] to (2). For all m∗ ≤ b, the left-hand side is strictly smaller than the right-hand

side (RHS) of equation (2). Moreover, the left-hand side (LHS) strictly increases in

m∗ whereas the RHS weakly decreases in m∗ (given that F ′′ ≤ 0). If m∗ approaches

min {2b, m̄}, the LHS is weakly larger than the RHS. To show the latter, suppose
first that 2b < m̄. We need to show that

F (2b) ≥ F (2b+ b)− F (2b− b)

which is equivalent to ∫ 2b

0

F ′ (x) dx−
∫ 2b

0

F ′ (x+ b) dx ≥ 0.

This inequality is true since F is weakly concave; it holds with strict inequality if F

is strictly concave on some non-empty interval. If 2b ≥ m̄ and m∗ → m̄, the LHS of

(2) approaches one while the RHS of (2) approaches 1− F (m̄− b) < 1. Thus, there

is a unique solution m∗ > b to (2) which is weakly smaller than 2b if 2b < m̄ and

strictly smaller than m̄ (and 2b) if 2b ≥ m̄.

We first show existence. Consider the candidate standalone equilibrium with

threshold m∗ > b as given in (2). Suppose first that mi ≥ m∗ where i is supposed to

choose x∗i = b and realizes an expected payoff of

F (mi)− F (m∗) + F (min {m∗,mi − b}) ,
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that is, a positive payoff if (i) j contributes but has a budget lower than mi or (ii)

j does not contribute and has a budget lower than mi − xi. Any xi > b is strictly

dominated by xi = b and any xi ∈ (0, b) leads to a strictly lower payoff than xi = 0

if j follows the candidate strategy. If i deviates to xi = 0, her deviation payoff is

F (mi + b)− F (m∗)

since she gets a positive payoff whenever j contributes but has a budget lower than

mi + b. The candidate strategy x∗i = b is a best reply if and only if

F (mi)− F (m∗) + F (min {m∗,mi − b}) ≥ F (mi + b)− F (m∗) .

If mi ∈ [m∗,m∗ + b), this no-deviation condition becomes

F (mi) + F (mi − b)− F (mi + b) ≥ 0.

Since the left-hand side of this inequality is (weakly) increasing inmi if F is (weakly)

concave, a necessary condition for existence of the equilibrium is

F (m∗) ≥ F (m∗ + b)− F (m∗ − b) , (6)

and this inequality holds if m∗ is given by (2). Note that (6) requires m∗ > b: at

m∗ = b, (6) is equivalent to F (b) ≥ F (2b)− F (0) which is violated due to b < m̄.

If insteadmi ∈ [m∗ + b, m̄) (and this interval is non-empty, which, due tom∗ > b,

requires m̄ > 2b), the no-deviation condition is equivalent to

F (m∗) + F (mi)− F (mi + b) ≥ 0.

If F is (weakly) concave, the left-hand side of this inequality is (weakly) increasing
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in mi and is, thus, larger than

F (m∗) + F (m∗ + b)− F (m∗ + b+ b) ≥ F (m∗) + F (m∗)− F (m∗ + b)

> F (m∗) + F (m∗ − b)− F (m∗ + b) = 0

where the first (weak) inequality uses (weak) concavity of F and the equality uses

(2). Altogether, the candidate strategy x∗i = b is a best reply if and only if m∗ > b

and (6) holds.

Now suppose that mi < m∗ where i is supposed to choose x∗i = 0 and realize an

expected payoff of

max {F (mi + b)− F (m∗) , 0} ,

that is, a positive payoffin situations where j contributes (i.e.,mj ≥ m∗) butmj−b <
mi, provided this interval is non-empty. Consider possible deviations. Any xi > b

is strictly dominated by xi = b; any xi ∈ (0, b) does not change the probability that

joint contributions are at least b but lowers the probability that i wins against j, as

compared to xi = 0. Thus, if mi ∈ [0, b), no profitable deviation exists.

From the case of mi ≥ m∗ above, it follows that equilibrium existence requires

m∗ > b. If mi ∈ [b,m∗) and i deviates to xi = b, i gets a positive payoff if and only if

j does not contribute and, in addition, has a budget below mi− b. (If j contributes,
too, mj must be larger than m∗ so that mj − xj > mi − xi in the case of mi < m∗.)

Thus, i’s deviation payoff is

F (min {m∗,mi − b}) = F (mi − b) ,

which is strictly positive if mi is in the (non-empty) interval (b,m∗). The candidate

strategy x∗i = 0 is a best reply if and only if

max {F (mi + b)− F (m∗) , 0} ≥ F (mi − b)

for all mi ∈ (b,m∗). First of all, since F (mi − b) > 0 if mi > b, this requires
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mi + b > m∗ for all mi ∈ (b,m∗), that is, requires

m∗ ≤ 2b,

which holds for m∗ as given by (2), where m∗ ∈ (b, 2b] if 2b < m̄ and m∗ ∈ (b, m̄)

if 2b ≥ m̄ (see above). In this case, the no-deviation condition is equivalent to

F (m∗) ≤ F (mi + b) − F (mi − b) for all mi ∈ (b,m∗). Since the right-hand side

of this inequality is (weakly) decreasing in mi if F is (weakly) concave, a necessary

condition for existence of the equilibrium is

F (m∗) ≤ F (m∗ + b)− F (m∗ − b) , (7)

and this inequality holds if for a threshold m∗ as given by (2).

Uniqueness follows directly from the arguments above. Since necessary conditions

for equilibrium existence are (6) and (7), m∗ must be given by (2) in any equilibrium.

Since there is a unique solution m∗ to (2), the equilibrium must be unique in the

class of symmetric standalone equilibria.

A.2 Proof of Corollary 1

From Proposition 1 it follows that there is a unique solution m∗ ∈ (b, m̄) to (2). For

a uniform distribution, condition (2) is equivalent to

m∗

m̄
= min

{
m∗ + b

m̄
, 1

}
− m∗ − b

m̄
⇔ 2m∗ = min {m∗ + 2b, m̄+ b} . (8)

Supposem∗+2b < m̄+b. Then, (8) is solved form∗ = 2b. In order form∗+2b < m̄+b

to hold at m∗ = 2b, we must have b < m̄/3. This shows part (i).

Now suppose m∗+ 2b ≥ m̄+ b. Then, (8) is solved for m∗ = (m̄+ b) /2. In order

for m∗+2b ≥ m̄+b to hold at m∗ = (m̄+ b) /2, we must have (m̄+ b) /2 ≥ m̄−b or,
equivalently, b ≥ m̄/3. This shows part (ii). Note that (m̄+ b) /2 ≤ 2b if b ≥ m̄/3.

Uniqueness follows from Proposition 1.
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A.3 Proof of Proposition 2

Before we derive the equilibrium set for different values of b, we derive some prelim-

inary results.

Step 1 : We show that investigating equilibrium existence reduces to considering

deviations to xi = b (standalone contributions). To see why, consider first types

mi < m̂ so that x̂i = 0 in the candidate equilibrium. If mi < b/2, x̂i = 0 is

strictly preferred to any xi > 0 if j follows the candidate strategy. If mi ≥ b/2,

x̂i = 0 is strictly preferred to any xi ∈ (0, b/2), and xi = b/2 is strictly preferred

to any xi ∈ (b/2, b). A deviation to x̌i = b/2, however, yields zero expected payoff:

the threshold b would only be met if mj ≥ m̂, in which case it must hold that

mj − b/2 ≥ m̂ − b/2 > mi − b/2. Hence, the only choice that may constitute a

profitable deviation is xi = b. (All xi > b are strictly dominated by xi = b.)

Similarly, for types mi ≥ m̂, deviations to xi < b/2 cannot be profitable since

the threshold b would never be met in this case. Any xi ∈ (b/2, b) is strictly worse

than the candidate strategy x̂i = b/2 and any xi > b is strictly dominated by xi = b.

Again, the only choice that may constitute a profitable deviation is xi = b.

Step 2 : Let b ≥ m̄. From Step 1 it follows that there are no profitable deviations

(since the set of types that can deviate to xi = b has mass zero). By definition of

the joint contribution equilibrium, m̄ > m̂ ≥ b/2 and, hence, b < 2m̄, which shows

part (iii) of Proposition 2.

Step 3 : Let b < m̄. Suppose that m̂ > b and consider types mi ∈ (b, m̂).

Those types’ candidate equilibrium payoff is zero (the threshold is never reached

since they do not contribute). Deviations to xi = b yield an expected payoff of at

least Pr (mj < mi − b) = F (mi − b) > 0 so that xi = 0 cannot be a best reply

for types mi ∈ (b, m̂). Since m̂ ≥ b/2 by assumption, it follows that, for b <

m̄, the contribution threshold m̂ must satisfy m̂ ∈ [b/2, b] in any symmetric joint

contribution equilibrium. With Step 1, m̂ ∈ [b/2, b] implies that the candidate

strategy x̂i = 0 is a best reply for types mi < m̂.
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Step 4 : Let b < m̄. For types mi ≥ max {m̂, b}, the difference between the
candidate equilibrium payoff(under x̂i) and expected payoffwhen deviating to xi = b,

defined as ∆ (mi) := πi (mi; x̂i) − πi (mi;xi = b), is (weakly) decreasing in mi. To

show this, note first that the candidate equilibrium payoff is F (mi) − F (m̂) since

i wins if and only if mj ∈ [m̂,mi). The deviation payoff under xi = b depends on

whether (i) mi−b/2 > m̂ (so that i can still win against contributors j) and (ii) mi−
b > m̂ (so that i wins against all non-contributors j). Formally, if mi ∈ [b, m̂+ b/2)

and this interval is non-empty, i wins with xi = b if and only if mj < mi − b. If

mi ∈ [m̂+ b/2, m̂+ b) and this interval is non-empty, i wins with xi = b ifmj < mi−b
or if mj ∈ [m̂,mi − b/2). If mi ∈ [m̂+ b, m̄] and this interval is non-empty, i wins

with xi = b if mj < m̂ or if mj ∈ [m̂,mi − b/2), that is, if and only if mj < mi− b/2.
Thus, for mi ≥ b, the difference ∆ (mi) between candidate equilibrium payoff and

expected payoff when deviating to xi = b is:

∆ (mi) =


F (mi)− F (m̂)− F (mi − b) if mi ∈

[
b,min

{
m̂+ b

2
, m̄
})

F (mi)− F (mi − b)− F
(
mi − b

2

)
if mi ∈

[min
{
m̂+ b

2
, m̄
}
,

min {m̂+ b, m̄})
F (mi)− F (m̂)− F

(
mi − b

2

)
if mi ∈ [min {m̂+ b, m̄} , m̄]

(9)

∆ (mi) (weakly) decreases in mi if F is (weakly) concave. Thus, a necessary and

suffi cient condition for equilibrium existence is obtained when investigating ∆ (m̄)

(the incentive to deviate to xi = b for the highest possible budget).

Step 5 : We note that F (m) ≥ m/m̄ for all m ∈ (0, m̄) if F is weakly concave.

With F (0) = 0 and F (m̄) = 1, concavity forces F to be weakly above the straight

line between (0, 0) to (m̄, 1).

To show this, note first that weak concavity of F implies F ′ (0) ≥ 1/m̄. If,

to the contrary, F ′ (0) < 1/m̄, then
∫ m̄

0
F ′ (z) dz <

∫ m̄
0

(1/m̄) dz = 1, which con-

tradicts F (m̄) = 1. Now suppose that F (m) < m/m̄ for some m ∈ (0, m̄). If

F ′ (0) = 1/m̄, then, by weak concavity of F , F (m̄) ≤ F (m) + (m̄−m)F ′ (m) <

m/m̄ + (m̄−m) /m̄ = 1; contraction. If F ′ (0) > 1/m̄ then F (m) < m/m̄ for
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some m ∈ (0, m̄) implies that F must cross the line y = m/m̄ from above at

some m̆ ∈ (0,m); hence, F ′ (m̆) < 1/m̄. With weak concavity of F , it follows

that F (m̄) < 1; contradiction. Thus, F (m) ≥ m/m̄ for all m ∈ (0, m̄). A similar

argument shows that F (m) > m/m̄ for all m ∈ (0, m̄) if F is strictly concave on

some non-empty interval (m′,m′′).

Since part (iii) of the proposition follows from Step 2 above, it remains to prove

parts (i) and (ii). Assume b < m̄. By Step 3, let m̂ ∈ [b/2, b]. By Steps 1 and 3, we

only need to consider behavior of types mi ≥ m̂ where, by Step 4, for equilibrium

existence it is suffi cient to focus on types with budget mi → m̄.

Part (i): Assume b < 2m̄/3 and consider the incentive to deviate from the can-

didate equilibrium if mi → m̄. If b < m̄/2 then m̄ > 2b ≥ m̂ + b for all m̂ under

consideration. (In words, this implies that, when deviating to xi = b, types mi → m̄

win against all non-contributing types of j.) If b ∈ [m̄/2, 2m̄/3) then m̄ ≥ m̂ + b if

m̂ ∈ [b/2, m̄− b] and m̄ ∈ (m̂+ b/2, m̂+ b) if m̂ ∈ (m̄− b, b]. (Here, whether types
mi → m̄ win against non-contributing players j with mj close to m̂ depends on the

size of the threshold m̂.)

Suppose first that m̂ is such that m̄ ≥ m̂ + b. Then, with (9), the candidate

strategy is a best reply for all mi ∈ [b, m̄] if and only if

F (m̄)− F (m̂)− F (m̄− b/2) ≥ 0. (10)

If F is weakly concave, it holds that F (m) ≥ m/m̄ for all m ∈ (0, m̄) (compare Step

5 above). Thus, the left-hand side of (10) is weakly smaller than

1− m̂

m̄
− m̄− b/2

m̄
=

1

m̄

(
b

2
− m̂

)
,

which is strictly negative if m̂ > b/2. Thus, (10) is violated for all m̂ > b/2 and a

joint contribution equilibrium can exist only if m̂ = b/2. Inserting m̂ = b/2 into (10)

yields (3) as necessary and suffi cient condition for equilibrium existence. (Existence

is ensured under (3) since m̄ ≥ m̂+ b holds at m̂ = b/2 by assumption of b < 2m̄/3
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and, hence, (10) is the relevant no-deviation condition.)

Now suppose that m̂ is such that m̄ ∈ (m̂+ b/2, m̂+ b). (This can occur if and

only if b ∈ [m̄/2, 2m̄/3). Here, note that m̂ + b/2 ≤ 3b/2 < m̄ if b < 2m̄/3.) With

(9), the candidate strategy is a best reply for all mi ∈ [b, m̄] if and only if

F (m̄)− F (m̄− b)− F
(
m̄− b

2

)
≥ 0. (11)

Since weak concavity of F implies F (m) ≥ m/m̄ for all m ∈ (0, m̄), the left-hand

side of (11) is weakly smaller than

F (m̄)− m̄− b
m̄
−
m̄− b

2

m̄
=

1

m̄

(
3b

2
− m̄

)
,

which is strictly negative due to b < 2m̄/3. Thus, (11) is violated and no joint contri-

bution equilibrium can exist with threshold m̂ that is such that m̄ ∈ (m̂+ b/2, m̂+ b).

This completes the proof of part (i).

Part (ii): Suppose that b ∈ [2m̄/3, m̄). Here, we have m̂ + b ≥ b/2 + b ≥ m̄.

If m̂ is small such that m̄ ≥ m̂ + b/2, the candidate strategy is a best reply for all

mi ∈ [b, m̄] if and only if (11) holds. The left-hand side of (11) is strictly negative

if b → 0, strictly increasing in b, and strictly positive if b → m̄. Thus, there exists

a unique solution b̃ ∈ (0, m̄) given by (4) such that the candidate strategy is a best

reply if and only if b ≥ b̃. Since the left-hand side of (11) is weakly smaller than

1

m̄

(
3b

2
− m̄

)

(see the previous paragraph), it must hold that b̃ ∈ [2m̄/3, m̄). If b ∈
[
2m̄/3, b̃

)
, no

symmetric joint contribution equilibrium exists.

If b ∈
[
b̃, m̄

)
, a joint contribution equilibrium can be supported for any m̂ that

is suffi ciently small such that m̄ ≥ m̂ + b/2 ⇔ m̂ ≤ m̄ − b/2. (This upper bound,
m̄ − b/2, on m̂ approaches b if b → 2m̄/3 and approaches b/2 if b → m̄. Hence,

taking into account that m̂ ∈ [b/2, b], the interval m̂ ∈ [b/2, m̄− b/2] for which a
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joint contribution equilibrium exists is non-empty.)

Now consider larger thresholds m̂ for which m̄ < m̂+ b/2⇔ m̂ > m̄− b/2. With
(9), the candidate strategy is a best reply for all mi ∈ [b, m̄] if and only if

F (m̄)− F (m̂)− F (m̄− b) ≥ 0. (12)

The left-hand side of (12) strictly decreases in m̂. If m̂ ↓ m̄− b/2, (12) is equivalent
to (11) and holds if and only if b ≥ b̃; thus, equilibrium existence again requires

b ≥ b̃. If m̂→ b, the left-hand side of (12) is

F (m̄)− F (m̄− b)− F (b) ≤ 1− m̄− b
m̄
− b

m̄
= 0

where the weak inequality holds due to F (m) ≥ m/m̄ for allm ∈ (0, m̄) (due to weak

concavity of F ). Thus, there is a unique solution z ∈ (m̄− b/2, b] to (5) such that
any m̂ ∈ [b/2, z] can be supported as part of a joint contribution equilibrium. Since

(12) is a necessary condition for equilibrium existence, m̂ ∈ [b/2, z] characterizes the

full set of symmetric joint contribution equilibria in the case where b ∈
[
b̃, m̄

)
.

A.4 Proof of Corollary 2

Part (i): Suppose b < 2/3. From Proposition 2(i), there is a unique symmetric joint

contribution equilibrium if and only if (3) holds, which is true (it holds with equality)

if F is a uniform distribution.

Part (ii): Suppose b ∈ [2/3, 1). From Proposition 2(ii), equilibrium existence

requires b ≥ b̃ as given in (4). For a uniform distribution, b̃ = 2/3 so that a joint

contribution equilibrium exists for all b ∈ [2/3, 1). Any m̂ with m̂ ≤ m̄− b/2 can be
supported as equilibrium since (11) holds for all b ∈ [2/3, 1). For larger m̂ (that is,

m̂ > m̄ − b/2), necessary and suffi cient condition for equilibrium existence is (12),

which, for F (m) = m, is equivalent to m̂ ≤ b. This shows part (ii).

Part (iii): Follows from Proposition 2(iii).
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A.5 Proof of Corollary 3

Suppose b < 2/3. From Proposition 2(i), there is a unique symmetric joint con-

tribution equilibrium if and only if (3) holds. Since strict concavity of F implies

F (m) > m/m̄ = m for all m ∈ (0, 1), the left-hand side of (3) is strictly smaller than

1− (1− b/2)− b/2 = 0

so that (3) is violated.13

Suppose b ≥ 2/3. By Proposition 2(ii), equilibrium existence requires b ≥ b̃.

Using again F (m) > m in condition (4) shows that b̃ > 2/3. Altogether, for small

thresholds b < b̃, a symmetric joint contribution equilibrium does not exist. (For

larger values of b, the equilibrium is as characterized in Proposition 2.)
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