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1 Introduction

Banks’ liquidity management takes the center stage in policy debates on financial stability.
Their systemic importance as suppliers of liquidity to both the real and the remaining fi-
nancial sector (e.g., Kashyap, Rajan and Stein, 2002; Gatev and Strahan, 2006; Acharya and
Plantin, 2021) gives rise to the need for regulation with the goal of mitigating liquidity risk.
In addition, the liquidity composition of banks’ balance sheets is a relevant determinant
of monetary-policy transmission (see, among others Kashyap and Stein, 2000). The failure
of some banks to preserve a level of liquidity that would allow them to shield their opera-
tions from disruptions due to bank funding shocks has prompted tighter liquidity regulation
around the globe, in the form of the Liquidity Coverage Ratio (LCR). While some commen-
tators believe this new set of liquidity regulations to have improved the resilience of banks
during the recent COVID-19 crisis (Federal Reserve, 2020), tighter liquidity regulation has
also been associated with reduced liquidity creation in non-crisis times (Roberts, Sarkar and
Shachar, 2018).

A relevant consideration affecting this trade-off is the way banks invest in assets that
have limited eligibility for satisfying liquidity requirements. As securitization is an impor-
tant channel through which banks seek to enhance their liquidity while accommodating risk
taking in other asset classes, banks’ investment in complex assets, such as structured securi-
ties, matters not only for their own solvency but also for other banks’ ability to transfer credit
risk. To shed light on the relationship between liquid and complex assets on the balance
sheets in the banking system, this paper develops a general equilibrium model, and consid-
ers the effects of tighter liquidity regulation on banks’ investment in complex assets, their
provision of liquidity in the interbank market, and the implications for allocative efficiency
arising from the interaction of liquidity regulation and other policies aimed at fostering fi-
nancial stability.

In the model, banks maintain a required fraction of liquid assets, similar to the im-
plementation of the U.S. Liquidity Coverage Ratio of 2013, which requires a subset of bank
holding companies (BHCs) to hold an amount of high quality liquid assets (HQLA) that is
sufficient to withstand their projected total net cash outflows over a 30-day period of signifi-
cant stress.1 They invest the remainder of their portfolios in long-term risky assets that differ
only in terms of their complexity. Complex assets represent investments that are hard to
value before maturity, such as non-agency securitized assets and structured financial prod-
ucts.2 In contrast, simple assets, such as corporate bonds, are relatively easy to value and

1For example, the most liquid assets that can be used to satisfy the LCR without any discount include excess
reserves, Treasury securities, government agency debt and MBS (not including government-sponsored agency
debt and MBS), and sovereign debt with zero risk weights.

2Gorton and Metrick (2012) note that in the case of collateralized debt obligations, it is difficult to predict the
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exhibit an earlier resolution of the uncertainty regarding their payoffs. Some fraction of de-
positors of each bank demand liquidity depending on their intrinsic needs as well as their
confidence in their bank, which in turn can depend on the opacity of their bank’s assets and
the state of the economy. Banks with excess liquidity or shortfalls relative to this demand can
then trade in an interbank market.

Motivated by the observed illiquidity of complex assets during the crisis (Gorton and
Metrick, 2010), we show the existence of an equilibrium in which complexity has two im-
portant implications for bank performance and the pattern of interbank trading. First, it
increases a bank’s exposure to aggregate shocks, resulting in a procyclical quality of liquid-
ity provision to depositors. In good times, which corresponds to states in which risky assets
yield a high expected return, banks that invest in complex assets perform better on average
because depositors, who cannot observe the quality of the complex assets for an individ-
ual bank but are confident in the expected return, maintain their investment until maturity.
Banks that invest in simple assets perform worse on average because depositors run on the
subset of banks whose assets are revealed to be of low quality. In bad times, or crises, banks
that invest in complex assets perform worse on average because uncertainty about the quality
of their assets induces depositors to run. Banks that invest in simple assets perform better on
average because depositors maintain their investments in the subset of banks whose assets
are revealed to be of high quality.3

Second, complex-asset holdings also increase a bank’s capacity to respond to liquidity
stress by selling its long-term assets on the interbank market. This is because the symmetric
opacity associated with complex assets reduces asymmetric information and facilitates trade
(Dang, Gorton and Holmström, 2015). However, if a bank invests in simple assets that turn
out to be of low quality, then it cannot sell them to raise liquidity. In this manner, our
model implicitly takes into account the possibility for banks to securitize their illiquid loans,
thereby making them liquid (interbank loans), as their ability to do so is spurred by their
investment in complex assets.

We use the model to analyze how liquidity regulation affects banks’ investment in com-
plex assets. We illustrate channels by which tighter liquidity regulation can either substitute
for or complement investment in complex assets. On the one hand, requiring banks to hold
greater liquidity buffers reduces the liquidity advantage of complexity in good times. On the

payoff associated with each tranche. Additionally, Brunnermeier (2009) argues that the illiquidity of structured
products during the crisis was associated with a loss of confidence in the ability to value these assets and
in the reliability of ratings. For example, on August 9, 2007, BNP Paribas suspended valuations of three of
its investment funds due to an inability to value assets that were exposed to the U.S. securitization market,
eventually leading to a bank run on Northern Rock.

3Note that complex assets are not assumed to have procyclical inherent risk compared to simple assets.
Their relatively procyclical character is solely due to how their opacity interacts with depositor sentiment in
good versus bad times.
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Figure 1: The effect of the Liquidity Coverage Ratio (LCR) on holdings of complex assets.
This figure shows the mean ratio of complex assets to illiquid assets, separately for all bank
holding companies that were subject to the LCR and those that were exempt from it. Illiquid
assets are total assets minus liquid assets, where liquid assets consist of cash and balances due
from depository institutions, federal funds sold, securities purchased under agreement to
resell, Treasury securities, and government agency debt and MBS (not including government-
sponsored agency debt and MBS). Complex assets consist of GSE MBS, non-agency MBS,
asset-backed securities, and structured financial products. The first dashed line indicates the
first quarter after the proposal of the LCR (2013Q4), and the second dashed line indicates the
first quarter after the implementation of the LCR (2015Q1). Data source: FR Y-9C reports.

other hand, it also increases the supply of liquidity in bad times, which leads to an increase
in asset prices. Higher anticipated asset prices partially insure banks against runs associated
with complex assets, which encourages greater ex-ante investment in the latter. When cali-
brating the model to the Great Financial Crisis, tighter liquidity regulation has a net positive
effect on banks’ investment in complex assets, which in turn dampens the effect of liquid-
ity regulation in supporting asset prices during crises. This characterization of complex and
liquid assets as complements matches our empirical evidence in Figure 1 that following the
implementation of the LCR, affected banks increase the portion of complex assets in their
portfolio of illiquid assets, in comparison to banks that are exempt from the LCR.

To the extent that the availability and use of securitization, fitting our description of
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complex assets, has enabled lending to subprime borrowers, which is seen as a key precursor
to the financial crisis (Mian and Sufi, 2009), our main result points to a potentially destabi-
lizing effect on the financial system as an unintended consequence of liquidity regulation.
Through the lens of our model, we then explore how liquidity regulation can be combined
with other policies to counteract this effect and foster financial stability. Liquidity regulation
can be used to complement ex-ante financial-stability policies, such as asset-specific taxes.
In particular, the equilibrium degree of investment in complex assets is generically ineffi-
cient because the interbank lending market provides incomplete insurance, resulting in a
distortionary pecuniary externality. Liquidity requirements determine how the equilibrium
investment in complex assets compares to the level chosen by a constrained planner.4 The
constrained-efficient investment in complex assets can be induced via asset-specific taxes,
but whether simple or complex assets should be taxed depends on the tightness of liquidity
requirements.

As liquidity regulation affects banks’ liquid-asset portfolio and their willingness to pro-
vide funds in the interbank market, the liquidity of which determines the pass-through of
monetary-policy rates to interbank rates (see, e.g., Bianchi and Bigio, 2021), our model also
links to monetary-policy transmission. Given central-bank purchases of illiquid assets in the
course of quantitative easing (QE), we zoom in on the interaction between liquidity regula-
tion and QE, which are concurrently implemented policies not only in the U.S. but also in the
euro area. We show that tighter liquidity regulation can undermine the benefits of ex-post
policies such as QE, i.e., asset purchases by the government in bad times. QE leads to higher
asset prices to support solvent but illiquid banks, but it also involves a cost since the bond
purchases must be financed with taxes. When undertaken as a surprise, QE always improves
welfare. However, if QE is predictable, then banks respond by shifting their portfolios to-
wards complex assets ex ante, which has an offsetting negative effect on the complex-asset
price. Because of this attenuation, the gains from QE may wind up too small relative to its
financing costs.

Relation to the literature. In this paper, we set out to analyze how liquidity regulation
affects banks’ balance sheets, in particular the composition of illiquid assets that are not
eligible to satisfy liquidity requirements imposed by rules such as the Liquidity Coverage
Ratio. We further consider how this channel influences the effect of liquidity regulation

4To be more precise, on the one hand, the planner may have a stronger incentive to invest in complex assets
compared to the individual banks because it internalizes the full return of these assets in the bad state, whereas
the individual banks that invest in complex assets receive only a fraction of this return based on the interbank
market price. On the other hand, the planner may have a stronger incentive to invest in simple assets because
it internalizes that this would effectively distribute more liquidity to the liquidity-shocked depositors of the
distressed banks. If liquidity requirements are sufficiently tight, each safe bank has a large amount of excess
liquidity that can be used to buy assets from the distressed banks, and the latter effect dominates.
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on interbank debt markets, welfare, and the effectiveness of financial-stability policies in a
general equilibrium model.

Allen and Gale (2017) provide a survey of the literature on liquidity regulation. They
remark that there is little consensus regarding the specific nature of the market failures that
it is intended to target. For example, liquidity regulations have been motivated on the basis
of correcting for fire-sale externalities in short-term funding markets (Perotti and Suarez,
2011) as well as incomplete information of depositors about a bank’s vulnerability to a run
(Diamond and Kashyap, 2016). Dewatripont and Tirole (2018) analyze inconsistent shocks
and interactions between liquidity regulation and solvency concerns. Lutz and Pichler (2021)
study optimal liquidity regulation in an environment where banks face, unlike in our model,
a liability choice and an asset choice, but only between liquid and illiquid investments, i.e.,
without any further differentiation among illiquid assets as in our model.

In terms of the empirical documentation of the effects of the LCR or very similar poli-
cies on banks’ asset portfolio and interbank markets, Banerjee and Mio (2018) show that
liquidity regulation in the UK led to higher investment in liquid assets and reduced reliance
on short-term intra-financial loans and wholesale funding. Bonner and Eijffinger (2016) doc-
ument that liquidity regulation in the Netherlands led to increased demand for long-term
interbank loans. In the U.S., the LCR has been associated with reduced liquidity creation and
fire-sale risk (Roberts, Sarkar and Shachar, 2018). Afonso et al. (2020) argue that liquidity
regulations may have increased banks’ desired level of reserves, potentially contributing to
the high volatility in the U.S. repo market in September 2019. BIS (2017) argues that the
LCR may lead to segmentation in repo markets by increasing the demand for trades that
allow banks to maintain their regulatory ratios. In contrast to these existing findings, we
present motivating evidence that the LCR has increased banks’ ability to invest in complex,
hard-to-value assets, which we rationalize in our model.

Our paper also contributes to a strand of the literature on policy interventions that are
meant to support banks during crises, in particular quantitative easing. A natural connec-
tion to our model arises from the fact that, as pointed out by Chakraborty, Goldstein and
MacKinlay (2020), quantitative easing interacts directly with banks’ complex-asset holdings,
e.g., structured securities, as the latter were targeted during two rounds of asset purchases in
the U.S. Holmström and Tirole (1998) argue that government interventions to actively man-
age liquidity supply can be welfare improving when liquidity shocks are correlated. How-
ever, Farhi and Tirole (2012) show that the anticipation of bailouts can induce banks to take
excessive correlated risks.

Besides considering how liquidity regulation interacts with QE with and without com-
mitment, we also consider ex-ante financial-stability policies such as asset-specific taxes. We
show that they can be used to implement a constrained-efficient level of investment in com-
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plex assets. As such, our paper relates to DiTella (2019) and the characterization of optimal
financial-regulation policy therein, showing that the socially optimal allocation can be im-
plemented with a tax on asset holdings internalizing hidden-trade externalities.

More generally, our model is related to papers on financial crises, which the literature
has argued to result from either weak fundamentals or panics (Goldstein, 2012). A self-
fulfilling crisis can be caused by a panic among bank depositors, as in Diamond and Dybvig
(1983), or among currency speculators, as in Obstfeld (1996). By contrast, fundamentals-
based crises are analyzed by Chari and Jagannathan (1988), Jacklin and Bhattacharya (1988),
Allen and Gale (1998), and Baron, Verner and Xiong (2021) for banks, and by Krugman
(1979) for currency crises. Both of these views have also been considered in global coordina-
tion games by Morris and Shin (1998) and Corsetti et al. (2004) for currency attacks, and by
Morris and Shin (2004) and Corsetti, Guimarães and Roubini (2006) for debt crises.

Our paper also relates to the literature on bank opacity, particularly that driven by
securitization, which focuses on different elements: endogenous information production in
financial markets (Glode, Opp and Zhang, 2018), amplification channels and systemic risks
(Ibragimov, Jaffee and Walden, 2011), the disclosure of bank-specific information in good and
bad times (Bouvard, Chaigneau and de Motta, 2015; Goldstein and Leitner, 2018), or banks’
choice of opacity and financial crises (Babus and Farboodi, 2020), among others. In contrast
to this important line of work, we study under what conditions tighter liquidity requirements
substitute for or complement banks’ investment in complex assets, such as structured secu-
rities. Specifically, the degree of “complexity” in bank portfolios in our setting is somewhat
related to the model in Dang, Gorton and Holmström (2015), who focus on optimal security
design. They show that debt is welfare maximizing and information insensitive, and can give
rise to crises. This is because when a bad systemic shock occurs, information-insensitive se-
curities become more sensitive to information acquisition. In contrast, in our model there is
no information acquisition. More than that, simple and complex securities are identical ex
ante, and neither banks nor depositors obtain any information about complex assets prior to
their maturity. Most importantly, rather than on security design, we focus on how liquid-
ity regulation interacts with banks’ complex-asset holdings that are associated with greater
informational uncertainty, with crucial repercussions for interbank markets, welfare, and
monetary-policy transmission (quantitative easing in particular).

Our model’s implications regarding fire sales in the interbank market link to other the-
ories of asset sell-offs during financial crises (e.g., Shleifer and Vishny, 1992; Kiyotaki and
Moore, 1997; Shleifer and Vishny, 1997). Fire sales can be exacerbated by predatory trading
(Brunnermeier and Pedersen, 2005). In addition, a run-up in either the repo or asset-backed
commercial paper market can occur due to an increase in “money demand” (Gorton and Met-
rick, 2012) or global imbalances (Caballero and Krishnamurthy, 2009). Adverse selection can
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also lead to fire sales in the interbank market. For example, under adverse selection in sec-
ondary debt markets (Gorton and Pennacchi, 1990), costly information acquisition (Ahnert
and Kakhbod, 2018) and information production may be destabilizing (Dang, Gorton and
Holmström, 2015; Gorton and Ordonez, 2014). In contrast, and rather complementary, to
these models, our fire-sale mechanism hinges on interactions between liquidity requirements
and banks’ choice to invest in complex or simple assets.

2 Model

This section introduces a model in which liquidity risk and liquidity regulation affect a bank’s
incentive to invest the portion of its portfolio that is ineligible for satisfying liquidity require-
ments in either complex or simple assets. We then characterize the equilibrium, and illustrate
channels by which tighter liquidity requirements affect asset prices and investment in com-
plex assets. Finally, we show that the equilibrium investment in complex assets can be either
excessive or insufficient depending on the tightness of liquidity requirements.

2.1 Environment

Overview. There are three periods, t ∈ {0,1,2}. There is a mass one of limited-liability banks
indexed by i ∈ [0,1]. At date t = 0, each bank acquires funding from a mass one of depositors
that each deposit one unit of capital. Liquidity regulations require banks to hold a fraction of
their assets in liquid investments. Banks can invest their remaining assets in long-term, risky
investments of varying complexity. At date t = 1, the economic state ω, which is publicly
observed, is realized as either good, ω = g, or bad, ω = b. It is commonly known that the
good state is realized with probability η. Subsequently, some depositors may withdraw early.
Each bank may then have an excess or a shortfall of liquidity that it can trade against in an
interbank market. At date t = 2, asset returns are realized, interbank trades are completed,
and banks distribute any profits back to their depositors.

Depositors. There are two types of depositors. A normal (late) depositor has a constant
marginal utility of 1 for all payoffs, regardless of when they are received. A liquidity-shocked
(early) depositor experiences a liquidity shock at period 1, which is represented by having a
marginal utility that is equal to α > 1 for the first κ > 1 units of capital received in period 1,
and that is equal to 1 for capital in excess of κ in period 1 or any payoffs received in period 2.
A depositor’s utility U (x) in period 1 from consuming x can thus be summarized as follows:

U (x) = x1shocked

(
α1{x≤κ} + 1{x>κ}

)
+ x1normal.
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Each depositor’s type is private information, but the fraction of liquidity-shocked depositors
φ ∈ (0,1) is publicly known.

Liquidity regulation. In period 0, each bank must invest a fraction L of its assets in liquid
investments that can be used to satisfy a regulatory liquidity requirement. In period 1, a
bank can use its liquid assets to pay depositors who withdraw early.5 We assume L > κφ to
ensure that a bank has sufficient liquidity to meet the liquidity needs of the liquidity-shocked
depositors. Liquid assets that are held until period 2 yield a return that is normalized to 1.

A bank’s portfolio choice. The remaining fraction 1−L of a bank’s portfolio can be invested
in long-term, risky investments that mature in period 2. There are two types of investments
that we denote by θ. Complex assets, denoted by θ = C, represent investments the qual-
ity of which is relatively difficult to evaluate before maturity, such as securitized assets and
structured financial products. Simple assets, denoted by θ = S, represent investments the
quality of which can be evaluated relatively easily before maturity, such as corporate bonds.
Specifically, the returns for simple assets become public knowledge in period 1, whereas the
returns for complex assets are not known until they mature in period 2. The two types of
investments have identical return distributions that depend on the realization of the eco-
nomic state ω. Specifically, both yield a return of R > 0 with probability µω (depending on
the economic state) and 0 otherwise, where µg > µb.

Endogenous choice of transparency. An important feature of our model is that any bank
can choose at date t = 0, by deciding on its investment in either complex or simple assets,
whether the return on its long-term, risky assets will become public knowledge in period 1
or not. Banks also have the option to invest their entire portfolio in liquid assets. A bank de-
termines its portfolio so as to maximize the expected utility of its depositors.6 For simplicity
of language, we refer to banks invested in simple, complex, or liquid investments as simple,
complex, or liquid banks, respectively. A bank’s portfolio choice is publicly observed.

Debt contract. In period 0, each bank promises to pay Rd,i to depositors that withdraw
early in period 1, assuming it can meet the demand for liquidity. In period 2, the bank pays
the remaining value of its assets to depositors that withdraw late. If the bank cannot meet the
demand for liquidity in period 1, then it is said to experience a run. Specifically, the bank is
liquidated in period 1, and each depositor receives a return in proportion to the bank’s total

5This is consistent with the guidance for the implementation of the Liquidity Coverage Ratio articulated in
Basel Committee on Banking Supervision (2013), which states that firms may temporarily break the require-
ment during periods of financial stress.

6Each bank can be understood as being mutually owned by its depositors, as in Diamond and Dybvig (1983).
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value after liquidation.7 Any remaining long-term assets that are not sold in the interbank
market are liquidated and yield a return of zero. A bank chooses its early repayment to
maximize the expected utility of its depositors.

Interbank market. In period 1, an interbank market allows banks with insufficient liquid-
ity relative to the demand from early depositors to sell their long-term assets to banks with
excess liquidity.

For convenience of notation, define a normalized unit of complex assets as the amount
that yields an expected payoff of 1. In particular, a normalized unit of complex assets is
equal to 1

µωR
units of complex assets. Denote the state-dependent price for a normalized unit

of complex assets by PC(ω). Similarly, a normalized unit of simple assets with a high return
is equal to 1

R units of simple assets. Denote the price for a normalized unit of simple assets
with a high return by PS(ω). Note that simple assets with a low return cannot be sold since
they are publicly observed to be worthless. Normalized units will be implicitly assumed for
the rest of the paper.

The pattern of trade is as follows. If the mass of withdrawals in period 1 for bank
i is equal to αi(ω), then the bank’s net liquidity position in period 1 is given by yi(ω) =
L−αi(ω)Rd,i . If a bank has a liquidity shortfall, i.e., yi(ω) < 0, then it would like to sell −yi(ω)

Pθ(ω)
of its assets to generate enough liquidity to avoid a run. However, a bank can only sell up to
1−L units of long-term assets, which corresponds to µωR(1−L) normalized units of complex
assets or R(1−L) normalized units of simple assets. A bank’s supply of assets on the interbank
market can be summarized by

SB,i(PC(ω)) =
[
−yi(ω)
PC(ω)

∧
(
1{θi=C}µωR+ 1{θi=S & Ri=R}R

)
(1−L)

]+

,

where A∧B denotes min{A,B} and [A]+ denotes max{0,A}.
If a bank has excess liquidity, i.e., yi(ω) > 0, then its demand for long-term assets de-

pends on how the return compares to the return of 1 on its liquid assets. Specifically, in
the market for long-term assets of type θ, the bank fully invests in yi(ω)

Pθ(ω) normalized units if
Pθ(ω) < 1, it is indifferent if Pθ(ω) = 1, and it will hold on to its liquid assets if Pθ(ω) > 1. A
bank’s demand can thus be summarized by

Dθ,i(Pθ(ω)) = 1{Pθ(ω)<1}
yi(ω)
Pθ(ω)

+ 1{Pθ(ω)=1}[0, yi(ω)],

where [0, yi(ω)] indicates the respective range as the bank is indifferent between investing

7It is mathematically equivalent to alternatively suppose that each depositor receives Rd with a uniform
probability that depends on the bank’s value after liquidation.
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any amount up to yi(ω) if Pθ(ω) = 1.
The price is determined by the market-clearing condition:∫

Dθ,i(Pθ(ω))di =
∫
Sθ,i(Pθ(ω))di.

Note that the interbank market can also be interpreted as a repo market with a haircut of
hθ(ω) = 1 − Pθ(ω), where in the repo-market interpretation Pθ(ω) represents the price of a
bond backed by assets of type θ. See Online Appendix A for details.

2.2 Equilibrium

We consider the following equilibrium.

Proposition 1 (Equilibrium). Assume the following parametric restrictions:

η(αφ+ 1−φ) + (1− η)α
ηµg + (1− η)µb

< R (1)

η(1−µg)φ(κ −L)(α − 1) + (1− η)µb(1−φ−αφ(κ − 1))

(1− η)µb(1−φκ)
< R (2)

R <
L(1−φ)

1−L
(α − 1) (3)

R <
L(1−φ)
1−Lφ

α (4)

(L+µbR(1−L))
(
1 +

(1− η)(1−φ)
ηφ

)
< κ (5)

κ < L+µgR(1−L). (6)

Then there exists an equilibrium in which the following hold:

1. All banks invest in long-term assets and do not hold excess liquidity.

2. Banks pay depositors that withdraw early a return of Rd = κ.

3. Liquidity-shocked depositors always withdraw early, and normal depositors withdraw early
if and only if

• the bank is complex and the economic state is bad.

• the bank is simple and its individual return is low.

4. The price for simple assets is P ∗S(ω) = 1, and the price for complex assets satisfies 1
α <

1
R <

P ∗C(b) < P ∗C(g) = 1.

The proofs of all propositions are relegated to the Appendix.
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Depositor choices. The existence of an equilibrium in which depositors run under the de-
scribed conditions follows from the stated assumptions. The assumptions in (3) and (4) en-
sure that the maximal return on long-term assets R is small enough relative to the liquidity
shock α that liquidity-shocked depositors always withdraw early. The assumptions in (5) and
(6) ensure that the early payment Rd = κ is large enough that there exists an equilibrium in
which normal depositors have an incentive to withdraw early under the described conditions,
but small enough that there exists an equilibrium in which normal depositors withdraw late
under the described conditions (see the proof of Lemma 2 in the Appendix for details).

Note that if all of a bank’s depositors withdraw early, then the bank experiences a run.8

The feature that complex banks, i.e., banks invested in complex assets, experience a run
when the economic state is bad is consistent with the observation that uncertainty regarding
asset valuations was associated with illiquidity during the Great Financial Crisis (Gorton and
Metrick, 2012).9 The bank-run conditions for the two types of banks are summarized in Table
1 below.

Table 1: This table indicates when a run occurs for a complex bank (left panel) and a simple
bank (right panel).

(a) Complex

Individual return
High Low

State
Good
Bad X X

(b) Simple

Individual return
High Low

State
Good X
Bad X

Bank choices. Banks optimally invest in one of the two types of long-term assets because
they have a sufficiently high return compared to liquid assets, which is given by the assump-
tion in (1).10 Banks optimally pay a return of Rd = κ to depositors that withdraw early be-
cause the elevated marginal utility α > 1 of liquidity-shocked depositors creates an incentive
to provide their full liquidity need κ.11

8For a complex bank, this follows from the assumption in (5). Specifically, (5) implies that the liquidity
demand when all depositors withdraw early, κ, is greater than the sum of the bank’s liquid assets, L, and the
funds that it can generate by selling complex assets in the bad state, P ∗C(b)µbR(1 − L). Similarly, for a simple
bank that draws a low return, the assumption L < 1 < κ implies that the liquidity demand when all depositors
withdraw early, κ, is greater than sum of the bank’s liquid assets, L, and the funds that it can generate by selling
assets, which in this case is zero.

9Note that in general, the equilibrium in which depositors run on complex banks in bad times is not unique.
We choose to focus on that equilibrium to match the motivating evidence from Gorton and Metrick (2012). It
can be interpreted as a “panic” among depositors in the bad state.

10See the proof of Lemma 1 in the Appendix for details.
11The optimal debt contract is also supported by the assumption in (5), which ensures that the liquidity need

κ is large enough that banks are willing to experience a run in bad times in order to meet the full need in good
times. See the proof of Lemma 2 in the Appendix for details.
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Interbank market equilibrium. The supply of simple assets is always equal to zero. This
is because only simple banks with a low return experience a run, but they cannot sell their
observably worthless assets. Therefore, the price is at the maximum level, P ∗S(g) = P ∗S(b) = 1.

For complex assets, the price depends on the economic state. In good times, the supply
is equal to zero since complex banks do not experience a run. Therefore, the price is at the
maximum level, P ∗C(g) = 1. In bad times, complex banks experience a run and need to raise
funds by selling their assets. At the same time, simple banks with a positive individual return
have excess liquidity. Thus, the equilibrium price P ∗C(b) may be less than 1.

Since banks are ex-ante identical and both types of risky assets are held in equilibrium
(cf. the proof of Lemma 3 in the Appendix), the equilibrium price is determined by the
condition that banks are indifferent between investing in complex and simple assets. Given
the debt contract, Rd = κ, and bank-run conditions as described in Proposition 1, the expected
utility from investing in complex assets as a function of PC(b) can be written as

E[UC |PC(b)] = η

 ακφ︸︷︷︸
return to shocked dep.

+L−κφ+µgR(1−L)︸                  ︷︷                  ︸
return to normal dep.


+ (1− η) (αφ+ 1−φ)︸         ︷︷         ︸

proportional distribution

L+ PC(b) µb R(1−L)︸                    ︷︷                    ︸
liquidation value

, (7)

and the expected utility from investing in simple assets can be written as

E[US |PC(b)] = η

µg( ακφ︸︷︷︸
return to shocked dep.

+L−κφ+R(1−L)︸               ︷︷               ︸
return to normal dep.

)

+ (1−µg) (αφ+ 1−φ)︸         ︷︷         ︸
proportional distribution

L︸︷︷︸
liquidation value



+ (1− η)

µb( ακφ︸︷︷︸
return to shocked dep.

+

buy complex assets︷  ︸︸  ︷
L−κφ
PC(b)

+R(1−L)︸                          ︷︷                          ︸
return to normal dep.

)

+ (1−µb) (αφ+ 1−φ)︸         ︷︷         ︸
proportional distribution

L︸︷︷︸
liquidation value

, (8)
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where the blue terms correspond to cases where there is no bank run and the red terms
correspond to cases where there is a bank run.

The relative benefit of investing in complex assets is then given by subtracting (8) from
(7):

∆(PC(b)) ≡ E[UC |PC(b)]−E[US |PC(b)]

= ηµg ∗ 0
+ η(1−µg)φ(κ −L)(α − 1)

+ (1− η)µb

[
(αφ+ 1−φ)(L+ PC(b)µbR(1−L))−

(
ακφ+

L−κφ
PC(b)

+R(1−L)
)]

+ (1− η)(1−µb)(αφ+ 1−φ)PC(b)µbR(1−L). (9)

The intuition is as follows. The first line of (9) reflects the fact that conditional on drawing a
high return in the good state, complex and simple banks both achieve the same utility.

The second line reflects the fact that conditional on drawing a low return in the good
state, complex banks achieve a higher utility because they can still service the full liquidity
need of the liquidity-shocked depositors in period 1, whereas simple banks experience a run.

The third line reflects the fact that conditional on drawing a high return in the bad state,
simple banks achieve a higher utility because they can service the full liquidity need of the
liquidity-shocked depositors, earn a return on asset purchases from the interbank market,
and accrue the return on its long-term assets, whereas complex banks experience a run.

The fourth line reflects the fact that conditional on drawing a low return in the bad state,
complex banks achieve a higher utility because they can sell assets to reduce the liquidity
shortfall in a run.

Table 2 summarizes which asset has an advantage depending on the individual return
and aggregate state.

Table 2: This table shows which type of asset (simple or complex) has an advantage depend-
ing on the individual return and aggregate state.

Individual return
High Low

State
Good Neither Complex
Bad Simple Complex

The equilibrium complex-asset price is determined by equating the net advantage of simple
banks in the bad state to the net advantage of complex banks in the good state. Lemma 3
in the Appendix shows that the price satisfies 1

R < P
∗
C(b) < 1. The relationship 1

R < P
∗
C(b) is

supported by the assumption in (2). The feature that the asset price is lower in bad times
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compared to good times, P ∗C(b) < 1, is consistent with the drop in asset prices that was ob-
served during the Great Financial Crisis (Gorton and Metrick, 2012), but also with the idea
that complex banks made use of securitization to increase their liquidity during the run-up
to the crisis.

Total investment in complex assets. Finally, the complex-asset price in bad times and the
mass of investment in complex assets, which we dub the “volume of complex banks” and
denote by V ∗, are inversely related based on the market-clearing condition.

Proposition 2 (Volume of complex banks). The volume of complex banks is related to the complex-
asset price in bad times as follows:

V ∗R
(
1−L

)
µb︸          ︷︷          ︸

complex-asset supply

=
(
1−V ∗

)
µb
L−κφ
P ∗C(b)︸                  ︷︷                  ︸

complex-asset demand

. (10)

2.3 The Effect of Tightening the Liquidity Requirements

This subsection illustrates channels by which tighter liquidity requirements affect the equi-
librium complex-asset price and the degree of investment in complex assets.

First, note that the effect of tightening liquidity requirements on the equilibrium complex-
asset price in bad times is inversely related to its effect on the incentive to invest in complex
assets. In particular, if tightening liquidity requirements decreases the incentive to invest in
complex assets, then the price must increase to restore the indifference between investing in
complex and simple assets in equilibrium.

To elaborate, recall the relative advantage of complex assets ∆ as summarized by equa-
tion (9). Differentiating with respect to the liquidity requirement L at the equilibrium price
P ∗C(b) obtains:

∂∆
∂L

= −η(1−µg)φ(α − 1) + (1− η)µb(P
∗
C(b)R− 1)

[
−(αφ+ 1−φ) +

1
P ∗C(b)

]
. (11)

The first term −η(1 − µg)φ(α − 1) < 0 reflects the fact that tightening liquidity requirements
reduces complex banks’ superior ability to provide liquidity to early depositors, by increasing
the liquidity that simple banks with a low return can distribute back to investors when they
experience a run.

The second term corresponding to the bad state has two subterms with opposite signs.
Recall that P ∗C(b)R > 1 (see Proposition 1). The first subterm, −(αφ + 1 −φ), is negative and
reflects the fact that tightening liquidity requirements mitigates the advantage of complex
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banks relative to simple banks that draw a low return, which is their ability to mitigate runs
by selling their long-term assets. Like in good times, tighter liquidity requirements lead to an
increase in the liquidity that simple banks with a low return can distribute back to investors
when they experience a run.

The second subterm, 1
P ∗C(b) , is positive and reflects the fact that higher liquidity mitigates

the disadvantage of complex banks relative to simple banks that draw a high return, which is
their proneness to runs and subsequent inability to survive until period 2 to accrue the yield
on their long-term assets. This is because tighter liquidity requirements lead to a reduction
in the fraction of long-term assets that simple banks can invest in.

The net effect of tightening liquidity requirements on the complex-asset price is positive
under a sufficient condition given by the following bound on the return probabilities.

Proposition 3. If
η(1−µg )
(1−η)µb

∈
[
1, 1−φ

1−1/κ

]
, the equilibrium complex-asset price in bad times P ∗C(b) is

increasing in the liquidity level L.

The change in the complex-asset price is mediated by two mechanisms. First, liquidity re-
quirements reduce the complex-asset supply for each individual complex bank while in-
creasing the aggregate supply of liquidity, which directly increases the complex-asset price.
Second, depending on how this direct effect compares to the change in the price that is re-
quired to maintain indifference between investing in the two types of long-term assets, banks
shift either towards or away from complex assets ex ante, which in general can lead to either
a dampening or amplification of the price response.

2.4 Planner Solution

We next show that the equilibrium is generically inefficient, and that the pattern of ineffi-
ciency is monotonically related to the tightness of liquidity requirements.

Consider a regulator whose objective is to choose the volume of complex banks, denoted
by VW , to maximize the welfare in the economy, which is defined as the expected utility
of depositors. The regulator is constrained to choices for which there is an equilibrium in
which the privately optimal debt contract and bank-run conditions match the description in
Proposition 1. The regulator also internalizes how the volume of complex banks affects the
endogenous determination of the complex-asset price in interbank markets, which means
that the complex-asset price in bad times PWC (b) is related to the volume of complex assets in
a manner analogous to equation (10):

VWR
(
1−L

)
µb =

(
1−VW

)
µb
L−κφ
PWC (b)

. (12)
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The welfare in the economy can then be written as

W
(
VW

)
= VWE

[
UC |PC(b) = PWC (b)

]
+
(
1−VW

)
E
[
US |PC(b) = PWC (b)

]
. (13)

The equilibrium may exhibit excessive or insufficient investment in complex assets relative
to the regulator’s solution, depending on the magnitude of liquidity requirements relative to
a threshold level.

Proposition 4 (Welfare-maximizing volume of complex banks). Let L̂ = κ
(
1− (1−φ)(1−η)µb

(1−µg )η

)
.

When liquidity requirements are tight, L > L̂, then there is excess investment in complex assets,
i.e., VW < V ∗. Moreover, the welfare-maximizing complex-asset price in bad times is equal to
the maximum level of 1, i.e., PWC (b) = 1 > P ∗C(b). When liquidity requirements are loose, L < L̂,
then there is underinvestment in complex assets, i.e., VW > V ∗. Moreover, the welfare-maximizing
complex-asset price in bad times PWC (b) satisfies 0 < PWC (b) < P ∗C(b).

The equilibrium is generically inefficient because the interbank lending market provides in-
complete insurance. Banks do not take into account the impact of their portfolio choice on
the interbank complex-asset price, and how that affects the quality of insurance that can be
achieved on the interbank market.12

The intuition for the pivotal role of the tightness of liquidity requirements is as follows.
On the one hand, the planner may have a stronger incentive to invest in complex assets com-
pared to the individual banks because it internalizes the full return of these assets in the bad
state, whereas the individual banks that invest in complex assets receive only a fraction of
this return based on the interbank market price. On the other hand, the planner may have
a stronger incentive to invest in simple assets because it internalizes that this would effec-
tively distribute more liquidity to the liquidity-shocked depositors of the distressed banks.
If liquidity requirements are sufficiently tight, each safe bank has a large amount of excess
liquidity that can be used to buy assets from the distressed banks, so the latter effect domi-
nates. Otherwise, the former effect dominates.13

12This is similar to the result in Geanakoplos and Polemarchakis (1985), which states that in the presence of
incomplete markets, a competitive equilibrium is generically constrained inefficient.

13An alternative explanation that is slightly more mathematical is the following. The regulator’s incentive
to increase the complex-asset price is increasing in the level of the equilibrium complex-asset price. This is
because increasing the price improves the performance of complex banks, which sell assets, but decreases the
performance of simple banks that draw a high return, which buy assets. The marginal benefit of increasing the
price is constant since it enters linearly into the complex-bank return (see equation (7)), whereas the marginal
cost is decreasing in the level of the price since it enters hyperbolically into the simple-bank return (see equation
(8)). Hence, the marginal net benefit of increasing the price is increasing in the level of the price. Now, consider
a case in which the equilibrium complex-asset price in bad times P ∗C(b) is increasing in the liquidity ratio L (see
Proposition 3). If liquidity requirements exceed L̂, then the equilibrium complex-asset price is high enough that
the marginal net benefit of further increasing the complex-asset price is positive. In that case, the planner has
an incentive to increase the complex-asset price relative to the equilibrium by reducing the volume of complex
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2.5 Optimal Liquidity Requirements

We next discuss the optimal level of liquidity requirements. In particular, we show that it is
optimal to keep liquidity requirements relatively loose regardless of whether a policymaker
can simultaneously implement the efficient level of investment in complex assets.

Proposition 5 (Welfare-maximizing tightness of liquidity requirements). If a policymaker can
implement the efficient level of investment in complex assets, then the optimal tightness of liquidity
requirements is no greater than L̂. If a policymaker allows the volume of complex assets to be deter-

mined in equilibrium and
η(1−µg )
(1−η)µb

∈
[
1, 1−φ

1− 1
κ

]
, then the optimal tightness of liquidity requirements is

the minimum level that is consistent with the parametric restrictions described in Proposition 1.

Liquidity requirements have the benefit of improving a bank’s liquidation value upon facing
a run, but they also have an opportunity cost associated with curtailing investment in higher-
yielding illiquid assets.14 Liquidity requirements are more likely to have a net cost when the
complex-asset price in bad times is high. In particular, as the complex-asset price in bad
times increases, complex banks facing a run are relatively better able to generate liquidity
by selling their long-term assets compared to holding liquid assets. Additionally, simple
banks are relatively less able to generate a return from investing their excess liquidity in
the interbank market. In the case where a policymaker can implement the efficient level
of investment in complex assets, the complex-asset price in bad times is high when L > L̂,
as shown in Proposition 4. In the case where a policymaker allows the volume of complex
assets to be determined in equilibrium, the price is always sufficiently high.15, 16

If the optimal tightness of liquidity requirements is the minimum level that is consis-
tent with the parametric restrictions described in Proposition 1, the comparative statics are
determined accordingly by these restrictions.

Proposition 6. If µbR < 1, then the minimum level of liquidity requirements that is consistent
with the parametric restrictions described in Proposition 1, denoted Lmin, satisfies the following:

• ∂Lmin
∂η ≥ 0

• ∂Lmin
∂µg
≤ 0

• ∂Lmin
∂µb
≤ 0

banks. An analogous argument holds if the liquidity level is lower than L̂.
14This opportunity cost is driven by the assumption in (1).
15Recall that Proposition 1 shows that 1

α < P
∗
C(b).

16Liquidity requirements can also improve the equilibrium by reducing the discrepancy between the equi-
librium and optimal prices. However, we show in the proof that the effect on the price is either in the wrong
direction or insufficient to overcome the direct opportunity cost.
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• If additionally
η(1−µg )
(1−η)µb

≥ 1, then ∂Lmin
∂φ ≥ 0

• ∂Lmin
∂κ has the same sign as

η(1−µg )
(1−η)µb

− 1−φ
1−L .

The comparative statics with respect to R and α depend on which constraint binds at Lmin.

This result is driven by the fact that the binding restriction at Lmin must be one of (2), (3), or
(4). These restrictions ensure that the liquidity-shocked depositors always withdraw early.
Specifically, (3) and (4) imply that liquidity-shocked depositors have a high utility of early
consumption relative to the return of long-term investments, while (2) ensures that the equi-
librium complex-asset price in bad times, P ∗C(b), is greater than 1

R , which can be interpreted as
ensuring that the return to buying distressed assets in the interbank market is not too high.

As an illustration, Figure 2 shows how Lmin varies with the long-term return R and the
probability of the good state η (using the parameter values from the calibration in Section 3).
In this case, (4) is binding. As R increases, the liquidity-shocked depositors have a stronger
incentive to withdraw late. This implies that Lmin must simultaneously rise to increase the
payoff from withdrawing late so as to maintain an equilibrium in which depositors withdraw
early. As η increases, Lmin is constant as long as the binding restriction is (4). Eventually,
(2) becomes the binding restriction. In that case, as η increases, the incentive to invest in
complex assets increases due to their superior performance in the good state. This forces
the equilibrium complex-asset price in bad times, P ∗C(b), to decrease so as to maintain the
indifference between investing in either type of long-term asset. However, if the equilibrium
price is already equal to the lower bound of 1

R , then Lmin must alternatively increase to reduce
the advantage of complex banks in good times. The intuition for the other parameters can be
observed by following a similar pattern of reasoning.

Figure 2: Consistent liquidity requirements. This figure shows the minimum liquidity level
that is consistent with the parametric restrictions described in Proposition 1, Lmin, as a func-
tion of the long-term return R (left) and the probability of the good state η (right).
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3 Calibration

As argued in Section 2.3, the relationship between tighter liquidity regulation and banks’
investment in complex assets is ambiguous, and depends on which one of the following two
effects dominates: a reduction in the comparative liquidity-provision advantage of complex
banks or the greater insurance against runs associated with complex assets thanks to higher
asset prices. To quantify the net effect of tighter liquidity regulation on banks’ investment in
complex assets, we calibrate our model to the Great Financial Crisis (GFC). At the calibrated
parameters, the volume of complex assets and the interbank complex-asset price in bad times
are increasing in the tightness of liquidity requirements, while welfare is decreasing.

We calibrate the eight parameters R, L, κ, η, µg , µb, α, φ to satisfy the six paramet-
ric restrictions in Proposition 1 and to match five empirical counterparts. We include the
parametric restrictions in the calibration to ensure the existence of an equilibrium with the
characteristics described in Proposition 1, which is motivated by the observed illiquidity of
complex assets during the crisis (Gorton and Metrick, 2010). The empirical counterparts are
as follows:

• The long-term return R is calibrated to match 1.102, which is approximately the mean
of the 30-year fixed-rate mortgage rate (1.064)17 and the yield of high-yield bonds
(1.1403) in September 2008.18

• The short-term interest rate RD = κ is calibrated to match 1.018, which is the federal
funds rate in September 2008.19

• The liquidity level L is calibrated to match 0.179, which is approximately the ratio
of total liquid assets to total assets based on 2008Q3 FR Y-9C filings for bank hold-
ing companies. Liquid assets include cash and balances due from depository insti-
tutions, federal funds sold, securities purchased under agreement to resell, Treasury
securities, and government agency debt and mortgage-backed securities (not including
government-sponsored agency (GSE) debt and MBS).20

• The complex-asset price in bad times P ∗C(b), which is also the ratio of the complex-asset

17Source: Freddie Mac, 30-Year Fixed Rate Mortgage Average in the United States [MORTGAGE30US], re-
trieved from FRED, Federal Reserve Bank of St. Louis.

18Source: Ice Data Indices, LLC, ICE BofA US High Yield Index Effective Yield [BAMLH0A0HYM2EY], re-
trieved from FRED, Federal Reserve Bank of St. Louis.

19Source: Board of Governors of the Federal Reserve System (US), Federal Funds Effective Rate [FEDFUNDS],
retrieved from FRED, Federal Reserve Bank of St. Louis.

20This definition of liquid assets is an approximation for the set of (level 1) high quality liquid assets that can
be used to satisfy the LCR without any discount, which includes excess reserves, Treasury securities, govern-
ment agency debt and MBS (not including government-sponsored agency debt and MBS), and sovereign debt
with zero risk-weights.
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price in bad times to the complex-asset price in good times, is calibrated to match 0.966,
which corresponds to the ratio of the 3-month U.S. dollar London interbank offer rate
(LIBOR)-OIS spread at its peak on October 10, 2008 (365 basis points, which corre-
sponds to price of 1/1.0365 ≈ 0.965) to its level just before the onset of the GFC in the
summer of 2007 (10 basis points, which corresponds to a price 1/1.001 ≈ 0.999).21 The
LIBOR-OIS spread, defined as the difference between lending rates for short-term, un-
secured loans in the interbank market and the expected policy rate for overnight loans,
reflects premia for both credit risk and liquidity risk (Gorton and Metrick, 2012). Aside
from lending, liquidity risk as well as concerns about the asset quality of potential
counterparties could also lead to negative price pressure for asset purchases.

• The fraction of complex assets V ∗ is calibrated to match 0.139, which is the ratio of
complex assets to total illiquid assets based on 2008Q3 FR Y-9C filings. Illiquid assets
are defined as assets minus liquid assets, as given above. Complex assets include GSE
MBS, non-agency MBS, and asset-backed securities.22

Table 3 presents the calibrated parameters, and Table 4 compares the empirical and model-
generated values for the observables. The model achieves a close fit despite there being more
restrictions than parameters. In particular, the set of parametric restrictions is binding at the
calibrated equilibrium, which indicates that the parameter set that achieves the closest fit of
the model is uniquely determined.

Table 3: Calibrated parameters.

Parameter Value

High return (R) 1.104
Liquidity ratio (L) 0.179
Short-term return (κ) 1.018
Probability of good state (η) 0.999
Probability of high return in good state (µg) 0.999
Probability of high return in bad state (µb) 0.775
Fraction of liquidity-shocked depositors (φ) 0.007
Marginal utility from liquidity shock (α) 6.23

For validation, we also find that the calibrated values of 1−µg = 0.001 and 1−µb = 0.225,
which correspond to the rate of non-performing long-term assets in good times and bad
times, respectively, match the default rate of high-yield bonds before the crisis (0.5% in 2007)

21Source: Sengupta and Tam (2008).
22Note that structured financial products are omitted for this exercise since banks were not required to report

them at the time.
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and at the peak during the crisis (14% in 2009).23,24 We also find that the calibrated value
of η = 0.999, which corresponds to the probability of the good state, matches the fraction of
months in 1990− 2007 during which there was not a recession (0.926).25

Table 4: Comparison of empirical and model-generated variables.

Variable Empirical Model

Calibration
High return (R) 1.104 1.104
Liquidity ratio (L) 0.179 0.179
Short-term return (κ) 1.018 1.018
Price in bad times (P ∗C(b)) 0.966 0.962
Fraction of complex assets (V ∗) 0.139 0.165

Validation
Probability of high return in good state (µg) 0.995 0.999
Probability of high return in bad state (µb) 0.86 0.775
Probability of good state (η) 0.926 0.999

In the calibration, the threshold level of liquidity is L̂ = 0.234, which is greater than
L = 0.179. Therefore, Proposition 4 implies that, perhaps surprisingly, there was underin-
vestment in complex assets during this time. Following the reasoning in Section 2.4, this is
because the gains for the buyers in the interbank market associated with increasing the vol-
ume of complex banks, and hence decreasing the complex-asset price during the crisis, was
larger than the losses for the sellers.

Across rows and in this order, Figure 3 shows how the complex-asset price in bad times,
the gross rate of return on complex-asset purchases, the volume of complex banks, and wel-
fare vary with L in the equilibrium solution, the planner solution, and the difference between
them (across columns).26 Note that the figure only shows values of L that are greater than
the calibrated value, since the calibrated L is at the boundary of the parameter space that is
consistent with the restrictions stated in Proposition 1. The equilibrium price and the vol-
ume of complex banks are both increasing in L at these parameters, which is consistent with

23Source: Fitch U.S. Leveraged Loan and High-Yield Default Indices.
24They are also close to the corresponding delinquency rates of residential mortgages, which are 2.55% in

2007 and 10.9% at the peak in 2010. Source: Board of Governors of the Federal Reserve System, Delinquency
Rate on Single-Family Residential Mortgages, Booked in Domestic Offices, All Commercial Banks [DRSFRMA-
CBS], retrieved from FRED, Federal Reserve Bank of St. Louis.

25Source: NBER-based Recession Indicators for the United States from the Period following the Peak through
the Trough [USREC], retrieved from FRED, Federal Reserve Bank of St. Louis.

26It also shows the haircut if the interbank market is interpreted as a repo market. See Online Appendix A
for details about how the haircut is defined.
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the motivating empirical observation in Figure 1.27

Consistent with Proposition 5, the last row of Figure 3 also indicates that the optimal
level of liquidity requirements L that maximizes welfareW is given by the left boundary in
the figure. This is true whether the fraction of complex assets is determined in equilibrium
or chosen by the planner. This is driven by the opportunity cost associated with holding
low-yielding liquid assets in states where a bank does not experience a run.

Figure 3: Variation in L. This figure shows how the complex-asset price in bad times, the
gross rate of return on complex-asset purchases, the haircut, the volume of complex banks,
and welfare vary with L in the equilibrium, the planner solution, and the difference between
them.
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Online Appendix B calibrates the model to the COVID-19 crisis. We compare the GFC
and the COVID-19 crisis since they are two major crises that occurred before and after the
introduction of the Liquidity Coverage Ratio. We find that the results are qualitatively simi-
lar.

27In Online Appendix C.1, we present additional suggestive evidence that tighter liquidity requirements are
associated with higher complex-asset prices in bad times.
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4 Financial-stability Implications of Different Policies

The previous analysis has uncovered the conditions under which tighter liquidity require-
ments give rise to greater investment in complex assets, with potential repercussions for
financial stability. This section describes how liquidity regulation interacts with three alter-
native policies aimed at fostering financial stability: unconventional monetary policy in the
form of quantitative easing, an ex-ante insurance system, and asset-specific taxes.

4.1 Quantitative Easing

By affecting interbank trading, our model naturally connects with the transmission of mon-
etary policy through banks’ funding costs, which are (at least partially) determined on the
interbank market, and through the extent to which they are financially constrained, which
is reflected by the liquidity composition of their asset side. Since the Great Financial Crisis,
central banks around the world have responded by implementing unconventional monetary
policies. In particular, quantitative easing (QE) refers to asset purchases by central banks.
QE has been implemented by the Federal Reserve in the U.S. during both the Great Finan-
cial Crisis and the COVID-19 crisis to stabilize asset prices. This section analyzes how QE
interacts with liquidity regulation, and describes conditions under which it may or may not
improve welfare.

QE general implementation. To characterize the implementation of QE, we first enrich the
model. We assume that at the beginning of period 1 each depositor randomly receives an
income shock ν̂ ∈ {0,ν}, where it is commonly known that the probability of receiving ν is
equal to δ. We assume δ is sufficiently small, so that all of the previous results still hold.
After potentially paying an income tax, the depositors deposit their income in banks.

The government only charges a tax if the aggregate state is bad. Specifically, the gov-
ernment requires all depositors with a positive income shock to pay a tax τ , which creates a
total tax revenue of τδ. The government then uses the tax income to buy complex assets from
the distressed banks. If the volume of complex banks at tax level τ is equal to V (τ), then the
resulting equilibrium complex-asset price P τC (b) satisfies

V (τ)R
(
1−L

)
µb︸             ︷︷             ︸

complex-asset supply

=
(
1−V (τ)

)
µb
L−κφ
P τC (b)︸                    ︷︷                    ︸

complex-asset demand from simple banks

+
τδ
P τC (b)︸︷︷︸

complex-asset purchase by gov.

. (14)

Finally, in period 2 the government returns these assets to the late depositors as a lump sum.
Given the debt contract and bank-run conditions in Proposition 1, the expected utility from
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investing in complex assets as a function of the complex-asset price in bad times PC(b) can
now be written as

E[UC |PC(b)] = η

 ακφ︸︷︷︸
return to shocked dep.

+L−κφ+µgR(1−L)︸                  ︷︷                  ︸
return to normal dep.

+ δv︸︷︷︸
income


+ (1− η) (αφ+ 1−φ)︸         ︷︷         ︸

proportional distribution

L+ PC(b) µb R(1−L) + δ(ν − τ)︸                                  ︷︷                                  ︸
liquidation value

+ (1− η)
τδ
P τC (b)︸         ︷︷         ︸

gov. payoff

,

(15)

and the expected utility from investing in simple assets can now be written as

E[US |PC(b)] = η

µg( ακφ︸︷︷︸
return to shocked dep.

+L−κφ+R(1−L)︸               ︷︷               ︸
return to normal dep.

+ δν︸︷︷︸
income

)

+ (1−µg) (αφ+ 1−φ)︸         ︷︷         ︸
proportional distribution

(L+ δν)︸  ︷︷  ︸
liquidation value



+ (1− η)

µb( ακφ︸︷︷︸
return to shocked dep.

+

buy complex assets︷  ︸︸  ︷
L−κφ
PC(b)

+R(1−L)︸                          ︷︷                          ︸
return to normal dep.

+δ(ν − τ)︸  ︷︷  ︸
income

)

+ (1−µb) (αφ+ 1−φ)︸         ︷︷         ︸
proportional distribution

(L+ δ(ν − τ))︸         ︷︷         ︸
liquidation value

+ (1− η)
τδ
P τC (b)︸         ︷︷         ︸

gov. payoff

. (16)

We distinguish the welfare implications of QE based on whether it is undertaken with or
without commitment.

QE without commitment. When implementing QE without commitment, or in a manner
that comes as a surprise in period 1 after bank portfolios have already been determined, the
government takes as given the volume of complex banks that would occur if banks expected
no tax, V (0), and chooses the tax τ to maximize welfare:

W (τ) = V (0)E
[
UC |PC(b) = P τC (b)

]
+ (1−V (0))E

[
US |PC(b) = P τC (b)

]
. (17)
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Charging a higher tax rate allows the government to accrue more funds that it can use to buy
complex assets, which in turn increases the complex-asset price.

Proposition 7. If QE is undertaken without commitment and P τC (b) < 1, then the equilibrium

complex-asset price is increasing in the tax τ : ∂P
τ
C (b)
∂τ > 0.

Increasing the complex-asset price has the benefit of mitigating the severity of runs on com-
plex banks during bad times, which always outweighs the cost of the tax when QE is under-
taken without commitment.

Proposition 8 (QE without commitment). If QE is implemented without commitment, then the
optimal tax is positive and equal to the minimum of income ν and the minimum tax necessary to
increase the complex-asset price in bad times P τC (b) to 1.

Figure 4 shows how features of the model vary with L in equilibrium, under optimal QE
without commitment, and the difference between them. Note that ν = 1, δ = 0.01, and the
remaining parameters are the same as in the baseline calibration (see Table 3).

QE with commitment. When implementing QE with commitment, or in a manner that can
be predicted when banks choose their portfolios in period 0, the government internalizes the
fact that increasing the price of complex assets in bad times affects the volume of banks that
invest in complex assets, V (τ). Welfare then becomes

W (τ) = V (τ)E
[
UC |PC(b) = P τC (b)

]
+ (1−V (τ))E

[
US |PC(b) = P τC (b)

]
. (18)

When undertaken with commitment, QE increases both the complex-asset price and the vol-
ume of complex banks.

Proposition 9. If QE is undertaken with commitment and P τC (b) < 1, then

(a) the equilibrium complex-asset price is increasing in the tax τ : ∂P
τ
C (b)
∂τ > 0, and

(b) the equilibrium volume of complex banks is increasing in the tax τ : ∂V (τ)
∂τ > 0.

Part (a) has a similar intuition as Proposition 7. Part (b) follows from the fact that increasing
the complex-asset price partially insures against the runs experienced by complex banks in
bad times. In contrast to the case without commitment, the anticipation of QE strengthens
the incentive for banks to invest in complex assets ex ante.

This, in turn, has an offsetting negative effect on the complex-asset price. Therefore,
when QE is undertaken with commitment, the attenuated benefit of increasing the complex-
asset price in bad times can be smaller than the cost associated with the tax.
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Figure 4: Variation in L under QE without commitment. This figure shows how the complex-
asset price in bad times, the gross rate of return on complex-asset purchases, the haircut, the
volume of complex banks, and welfare vary with L in equilibrium, under optimal QE without
commitment, and the difference between them.
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Proposition 10 (QE with commitment). Under QE with commitment, the optimal tax can in
general be either positive or zero. If the liquidity level L is sufficiently high, then the optimal tax is
zero.

The intuition is that QE with commitment has a weaker effect on the complex-asset price
than QE without commitment since it encourages more banks to invest in complex assets.
When liquidity requirements are tight, then this shift towards complex assets reduces wel-
fare since there is overinvestment in complex assets in equilibrium (see Proposition 4).28

Moreover, tightening liquidity requirements decreases the extent to which banks rely on in-
terbank markets for managing their liquidity. For sufficiently tight liquidity requirements,
the benefit of QE increasing the complex-asset price falls short of the financing costs.

Figure 5 shows how features of the model vary with L in equilibrium, under optimal

28Note that when liquidity requirements are loose, this shift towards complex assets improves welfare since
there is underinvestment in complex assets in equilibrium.
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QE with commitment, and the difference between them. Note that QE with commitment
improves welfare for values of L near the calibrated value. Tighter liquidity requirements
increase the effect of QE on asset prices but decrease the overall contribution to welfare,
since banks are less reliant on asset prices as a means to respond to liquidity stress.29

Figure 5: Variation in L under QE with commitment. This figure shows how the complex-
asset price in bad times, the gross rate of return on complex-asset purchases, the haircut (or
“hair.”), the volume of complex banks, and welfare vary with L in equilibrium, under optimal
QE with commitment (“Policy” or “Pol.”), and the difference between them.
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29Tightening liquidity requirements amplifies the effect of QE on asset prices when QE is implemented with
commitment since it attenuates the complementarity between QE and investment in complex assets. In par-
ticular, it reduces the volume of complex assets an individual bank can hold, which reduces the benefit of the
anticipated price support associated with QE. The weaker degree of substitution with complex assets therefore
leads to a weaker reduction in the price relative to the direct effect of QE. Online Appendix C.2 presents sug-
gestive evidence that asset prices were more responsive to QE announcements after the implementation of the
LCR compared to before, consistent with this mechanism.
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4.2 Ex-ante Insurance

We next turn to an ex-ante insurance policy that always improves welfare. Consider the
original environment as introduced in Section 2.2. If in period 1 the state is good, then in
period 2 the government taxes high-return banks at the rate τ and distributes the proceeds
equally to low-return banks. The tax is predictable in period 0. The tax rate is τ = 1 − µg ,
which sets equal the after-tax long-term return in good times for all banks:

(1− τ)R(1−L)︸           ︷︷           ︸
return of a high return bank

= τ
µg

1−µg
R(1−L)︸             ︷︷             ︸

return of a low return bank

= µgR(1−L). (19)

Note that the government must implement this arrangement since banks with a high realized
return would have no incentive to honor a promise to pay the banks with a low realized
return. This policy always improves welfare.

Proposition 11 (Ex-ante insurance). Implementing the ex-ante insurance policy (i) increases the
equilibrium complex-asset price in bad times, (ii) decreases the volume of complex banks, and (iii)
increases overall welfare.

The intuition is as follows. The ex-ante insurance policy increases the period-2 income of
simple banks with a low return such that they no longer experience a run. This directly
increases the expected utility from investing in simple assets since by avoiding runs in the
good state, it shifts a greater share of the expected return of a simple bank to liquidity-
shocked depositors with a higher marginal utility.

Since the policy is predictable, it additionally motivates banks to switch to simple assets
ex ante, which allows a greater fraction of banks to benefit from the redistribution in the
good state.30 This shift away from complex assets, in turn, leads to a reduction in liquidity
demand during bad times and, thus, an increase in the equilibrium complex-asset price.
Note that there is no incentive to implement an analogous redistribution in the bad state
because the average return is less than the promised repayment to the early depositors due to
the parametric assumption in (5). In particular, committing to redistribute in the bad state
would trigger a run on all banks.

Figure 6 shows how features of the model vary with L in equilibrium, under the ex-ante
insurance policy, and the difference between them. Note that this exercise is conducted using
the calibrated parameters (see Table 3).

30Note that as more banks switch to simple assets, the price for complex assets in bad times increases, which
decreases the expected utility of simple banks relative to the case where there is no adjustment of bank portfo-
lios. However, the net effect of the adjustment on the expected utility across all banks is clearly positive because
banks only switch to simple assets when the expected utility is greater compared to sticking with complex
assets.
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Figure 6: Variation in L under ex-ante insurance policy. This figure shows how the complex-
asset price in bad times, the gross rate of return on complex-asset purchases, the haircut,
the volume of complex banks, and welfare vary with L in equilibrium, under the ex-ante
insurance policy, and the difference between them.
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4.3 Implementation through Asset-specific Taxes

Finally, we consider asset-specific taxes as a means of implementing the constrained-efficient
volume of complex banks (similar to Dávila and Korinek, 2018). For this purpose, recall
that the equilibrium is generically inefficient and that the degree of investment in complex
assets can be greater or less than in the planner solution depending on whether liquidity
requirements are tighter or looser than a threshold level L̂, respectively (Proposition 4). This
subsection first shows that QE and ex-ante insurance cannot always be used to implement
the constrained-efficient volume of complex banks. It then provides conditions under which
the constrained-efficient volume of complex banks can be implemented with a tax on either
complex or simple assets.

Proposition 12. If L < L̂ and ν is sufficiently large, then the constrained-efficient volume of com-
plex banks can be implemented via QE with commitment. However, the tax that implements the
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constrained-efficient volume of complex banks may not be welfare-optimizing. If L > L̂, then neither
QE nor the ex-ante insurance policy can implement the constrained-efficient volume of complex
banks.

The intuition is as follows. If L < L̂, then the constrained-efficient volume of complex banks
is greater than under the equilibrium solution (Proposition 4). Recall that QE with com-
mitment increases the incentive to invest in complex assets since it supports the complex-
asset price in bad times (Proposition 9). In particular, there is a tax that implements the
constrained-efficient volume of complex banks. However, this tax level does not necessarily
maximize welfare because QE also affects welfare through channels other than the volume
of complex banks. To illustrate this, Figure 7 shows how the volume of complex banks and
total welfare vary with the tax τ used to implement QE with commitment at the calibrated
liquidity level L.

Figure 7: Variation in τ under QE with commitment. This figure shows how the volume of
complex banks and welfare vary with τ under QE with commitment. The vertical dashed
line corresponds to the welfare-optimizing tax. The horizontal dashed line corresponds to
the constrained-efficient volume of complex banks.
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If L > L̂, then the constrained-efficient volume of complex banks is less than that in
the equilibrium solution (Proposition 4). The constrained-efficient volume of complex banks
cannot be implemented with QE, since QE without commitment has no effect on the volume
of complex banks and QE with commitment can only increase the volume of complex banks.
The ex-ante insurance policy decreases the volume of complex banks (Proposition 11), but
not enough to implement the constrained-efficient level.

The constrained-efficient volume of complex banks for any level of L can be imple-
mented with a tax on either complex or simple assets. The tax can be described as follows: if
in period 1 the state is good, then in period 2 the government taxes high-return complex (or
simple) banks at a rate of τ , and distributes the proceeds equally to the high-return simple
(or complex) banks.

Proposition 13. Denote by ∆(PC(b)) = E[UC |PC(b)]−E[US |PC(b)] the relative benefit of investing
in complex assets without the tax as expressed in equation (9), by VW the constrained-efficient
volume of complex banks, and by PWC (b) the complex-asset price in bad times for the constrained-
efficient allocation. Then the following hold:

• If L < L̂ and −∆(PWC (b))VW

ηµgR(1−L) < R(1−L)−(κ−L)
R(1−L) , then the constrained-efficient volume of complex

banks can be implemented by transferring from simple to complex banks via a tax at the rate

τ∗ =
−∆(PWC (b))VW

ηµgR(1−L) .

• If L > L̂ and ∆(PWC (b))(1−VW )
ηµgR(1−L) <

µgR(1−L)−(L−κ)
µgR(1−L) , then the constrained-efficient volume of complex

banks can be implemented by transferring from complex to simple banks via a tax at the rate

τ∗ =
∆(PWC (b))(1−VW )

ηµgR(1−L) .

Additionally, the tax level that implements the constrained-efficient volume of complex banks also
maximizes welfare.

Note that the parametric assumptions in this proposition ensure that the tax is consistent
with the incentive-compatibility conditions supporting an equilibrium of the form as de-
scribed in Proposition 1.

4.4 Comparison of Policies

Figure 8 compares welfare as a function of the liquidity level L for the various policy sce-
narios. The first row shows welfare in the baseline equilibrium in the version of the model
with income shocks, as introduced at the beginning of Section 4.1. Note that ν = 1, δ = 0.01,
and the remaining parameters are the same as in the baseline calibration (see Table 3). It
also shows the improvement in utility associated with the constrained-efficient volume of
complex banks, which can be implemented using asset-specific taxes (see Proposition 13).
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The second row shows the welfare gains associated with QE without commitment, QE
with commitment, and ex-ante insurance. At the calibrated liquidity level L = 0.179, the ex-
ante insurance policy achieves the greatest welfare gain, followed by the planner solution,
QE with commitment, and QE without commitment. For tighter liquidity requirements,
the ex-ante insurance policy continues to achieve the greatest welfare gain, but QE without
commitment may become more effective than the planner solution and QE with commitment.

Figure 8: Comparison of welfare gains under different policies. This figure shows welfare as
a function of the liquidity level L in the baseline equilibrium with income shocks as well as
the improvement in utility associated with QE without commitment (“Surp. QE”), QE with
commitment (“Pred. QE”), and the ex-ante insurance policy.
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5 Conclusion

The Liquidity Coverage Ratio, alongside the Net Stable Funding Ratio, has been put in place
to foster financial stability by forcing large banks to maintain sufficient liquidity on their
balance sheets. This paper shows under what conditions tighter liquidity requirements sub-
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stitute for or complement banks’ investment in complex assets, such as structured securities,
that may contribute to destabilizing trends in the economy.

In our model, the symmetric opacity associated with complex assets supports bank liq-
uidity in good times, but it has a mixed effect on liquidity during crises. On the one hand,
it causes panic-stricken depositors to run on banks that may turn out to be solvent. On
the other hand, it also allows banks to draw liquidity from interbank lending markets. The
model shows that tighter liquidity requirements can support asset prices during crises by in-
creasing the supply of liquidity on interbank markets, but by doing so, it can also encourage
greater investment in complex assets beforehand.

We provide a rich assessment of the welfare properties of the interaction of liquidity
regulation and other policies aimed at fostering financial stability. First, the degree of invest-
ment in complex assets can be inefficiently high or low depending on liquidity requirements.
Therefore, the tightness of liquidity requirements determines the asset-specific taxes that
can be used to implement the constrained-efficient investment in complex assets. Second,
liquidity regulation can undermine the benefit of ex-post interventions such as unconven-
tional monetary policy, in particular quantitative easing (QE). This is more likely to be true
if QE is implemented in a predictable manner, in which case the benefit of QE in supporting
asset prices is offset by higher ex-ante investment in complex assets.

We rely on parameters calibrated to the Great Financial Crisis. Doing so, we find that
there was potentially underinvestment in complex assets, which suggests that the dry-up of
the market for mortgage-backed securities following the crisis may have been excessive, or
that information frictions outside of our model are at play (Daley and Green, 2016). Fur-
thermore, at the calibrated liquidity level, the constrained-efficient level of total investment
in complex assets under an ex-ante insurance policy achieves the greatest welfare gain com-
pared to quantitative easing. These considerations may give rise to a more general model of
how the regulation of different portions of banks’ balance sheets affects the extent of pecu-
niary externalities that, in turn, determine the efficacy of different financial-market interven-
tions, which we leave for future research.
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Proofs

Proof of Proposition 1

Proposition 1 (Equilibrium). Assume the following parametric restrictions:

η(αφ+ 1−φ) + (1− η)α
ηµg + (1− η)µb

< R (1)

η(1−µg)φ(κ −L)(α − 1) + (1− η)µb(1−φ−αφ(κ − 1))

(1− η)µb(1−φκ)
< R (2)

R <
L(1−φ)

1−L
(α − 1) (3)

R <
L(1−φ)
1−Lφ

α (4)

(L+µbR(1−L))
(
1 +

(1− η)(1−φ)
ηφ

)
< κ (5)

κ < L+µgR(1−L). (6)

Then there exists an equilibrium in which the following hold:

1. All banks invest in long-term assets and do not hold excess liquidity.

2. Banks pay depositors that withdraw early a return of Rd = κ.

3. Liquidity-shocked depositors always withdraw early, and normal depositors withdraw early
if and only if

• the bank is complex and the economic state is bad.
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• the bank is simple and its individual return is low.

4. The price for simple assets is P ∗S(ω) = 1, and the price for complex assets satisfies 1
α <

1
R <

P ∗C(b) < P ∗C(g) = 1.

We prove this via a lemma for each part taking the other parts as given.

Lemma 1 (Preference for risky assets). All banks invest in long-term assets and do not hold excess
liquidity.

Proof. The proof has two parts. In the first part, we show that holding only liquid assets is a
dominated portfolio. In the second part, we show that banks have no incentive to hold excess
liquidity conditional on investing in either complex or simple assets and maintaining a debt
contract of Rd = κ.

Part 1: In Part 1, we show that holding only liquid assets is a dominated portfolio. To
determine the optimal early repayment for a bank fully invested in liquid assets, we consider
three cases depending on the magnitude of the early repayment Rd .

Case 1: If Rd > 1, we consider an equilibrium in which all depositors withdraw early. If
all depositors withdraw from the bank in period 1, then the bank defaults since the maximum
liquidity it can supply, 1, is less than the demand Rd . Therefore the best response for an
individual depositor of either type is to withdraw early since the payment from withdrawing
early, which is the total liquidation value of 1 since the bank experiences a run, is greater
than the payment from withdrawing late, which is zero. Therefore, there is an equilibrium
as described. In this equilibrium, the utility of the bank is

E[Ul] = αφ+ 1−φ. (20)

Case 2: If 1
αP ∗C(b)(1−φ)+φ ≤ Rd ≤ 1, we consider an equilibrium in which liquidity-shocked

depositors always withdraw early and normal depositors always withdraw late.31 Note that
this case is well-defined since αP ∗C(b) > 1 implies 1

αP ∗C(b)(1−φ)+φ < 1.
If the economic state in period 1 is ω, a mass φ of liquidity-shocked depositors with-

draws in period 1 and a mass 1−φ of normal depositors withdraws in period 2, then the ex-

pected payment from withdrawing late is
(1−Rdφ)/P ∗C(ω)

1−φ > 1 ≥ Rd , which implies that the best

response for an individual normal depositor is to withdraw late. Moreover,
(1−Rdφ)/P ∗C(ω)

1−φ ≤
αRd , which implies that the best response for a liquidity-shocked depositor is to withdraw
early. Therefore, there is an equilibrium as described. In this equilibrium, the utility of the
bank is

E[Ul] = η
(
αRdφ+ 1−Rdφ

)
+ (1− η)

(
αRdφ+

1−Rdφ
P ∗C(b)

)
.

31Note that under this condition there is no equilibrium in which normal depositors withdraw early. In
particular, the bank cannot default in period 1 even if all depositors withdraw early. As a result, if all other
depositors withdraw early, then the best response for an individual depositor is to withdraw late because the
individual payoff is infinite.
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The locally optimal Rd is the upper bound of 1 since α > 1 and αP ∗C(b) > 1. The maximum
expected utility is then

E[Ul |Rd = 1] = η
(
αφ+ 1−φ

)
+ (1− η)

(
αφ+

1−φ
P ∗C(b)

)
. (21)

Since P ∗C(b) < 1, it is clear to see that the expected utility from Case 2 (equation (21)) is greater
than the expected utility from Case 1 (equation (20)).

Case 3: If Rd ≤ 1
αP ∗C(b)(1−φ)+φ , then there is no equilibrium in which liquidity-shocked

depositors withdraw early in the bad state.32 If liquidity-shocked depositors withdraw late
in the bad state, then the utility of the bank in the bad state, 1

P ∗C(b) , is less than the utility in

the bad state from Case 2 from equation (21) since αP ∗C(b) > 1. Similarly, if liquidity-shocked
depositors withdraw late in the good state then the utility of the bank in the good state, 1, is
less than the utility in the good state from Case 2 from equation (21) since α > 1. Therefore
Case 3 is dominated by Case 2.

Since Case 2 dominates Case 1 and Case 3, the globally optimal early repayment Rd is
the local optimum from Case 2, Rd = 1, and the maximum utility is given by equation (21).

Now, the portfolio from Case 2 is dominated by investing a fraction 1− L of the bank’s
assets in complex assets and setting Rd = L. To see this, consider an equilibrium in which
liquidity-shocked depositors always withdraw early and normal depositors always withdraw
late.33 If the economic state in period 1 is ω, a mass φ of liquidity-shocked depositors with-
draws in period 1, and a mass 1 − φ of normal depositors withdraws in period 2, then the

expected payment in period 2 for an individual normal depositor is
(L−φL)/P ∗C(ω)+µωR(1−L)

1−φ >

L = Rd . Moreover,
(L−φL)/P ∗C(ω)+µωR(1−L)

1−φ < αL = αRd by 1
P ∗C(b) < R and the assumption in (4),

which implies that the best response for a liquidity-shocked depositor is to withdraw early.
Therefore, there is an equilibrium as described. In this equilibrium the utility of the bank is

E[UC |Rd = L] = η
(
αLφ+L−φL+µgR(1−L)

)
+ (1− η)

(
αLφ+

L−φL
P ∗C(b)

+µbR(1−L)
)
. (22)

32There is no equilibrium in which liquidity-shocked depositors withdraw early in the bad state since the
utility from withdrawing early αRd is less than the payment from withdrawing late (conditional on the other

liquidity-shocked depositors withdrawing early),
(1−Rdφ)/P ∗C (b)

1−φ . Moreover, to have an equilibrium in which
liquidity-shocked depositors withdraw late, the payment from withdrawing late (conditional on the other
liquidity-shocked depositors withdrawing late), 1/P ∗C(b), must be larger than the payment from withdrawing
early, αRd , which requires Rd ≤ 1

αP ∗C (b) . Note that 1
αP ∗C (b) is less than the bound 1

α(1−φ)P ∗C (b)+φ since αP ∗C(b) > 1.

Hence, there is no equilibrium for Rd ∈
[

1
αP ∗C (b) ,

1
α(1−φ)P ∗C (b)+φ

]
.

33Note that there does not exist an equilibrium in which normal depositors withdraw early by similar reason-
ing as in Case 2 above.
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Then, subtracting (21) from (22) obtains

(1−L)η(µgR− {αφ+ 1−φ}) + (1−L)(1− η)
(
µbR−

{
αφ+

1−φ
P ∗C(b)

})
> (1−L)η(µgR− {αφ+ 1−φ}) + (1−L)(1− η)

(
µbR−α

)
> 0.

The penultimate line follows from αP ∗C(b) > 1 and the last line follows from the assumption
in (1). This shows that holding only liquid assets is a dominated portfolio.

Part 2: In Part 2, we show that banks have no incentive to hold excess liquidity con-
ditional on investing in either complex or simple assets and maintaining a debt contract of
Rd = κ.

Complex banks. As shown in the proof of Lemma 2, the utility of a complex bank given
the debt contract of Rd = κ, the bank-run conditions as described in Proposition 1, and an
asset price of PC(b) is given by equation (7). It suffices to show that at the equilibrium price

P ∗C(b) we have
∂E[UC |P ∗C(b)]

∂L < 0. Note that

∂E[UC |P ∗C(b)]
∂L

= η(1−µgR) + (1− η)(αφ+ 1−φ)(1− PC(b)µbR). (23)

Since the equilibrium price satisfies 1
α < P

∗
C(b), we have that

∂E[UC |P ∗C(b)]
∂L

< η(αφ+ 1−φ−µgR) + (1− η)(αφ+ 1−φ)
(
1− 1

α
µbR

)
(24)

= η(αφ+ 1−φ−µgR) + (1− η)
αφ+ 1−φ

α
(α −µbR). (25)

Observe that αφ+1−φ−µgR < α−µbR. Therefore, if α−µbR < 0, then we obtain
∂E[UC |P ∗C(b)]

∂L < 0.

If α −µbR > 0, then since αφ+1−φ
α < 1 we get that

∂E[UC |P ∗C(b)]
∂L

< η(αφ+ 1−φ−µgR) + (1− η)(α −µbR) < 0, (26)

where the latter inequality follows from equation (1).

Simple banks. As shown in the proof of Lemma 2, the utility of a complex bank given the
debt contract of Rd = κ, the bank-run conditions as described in Proposition 1, and an asset
price of PC(b) is given by equation (8). It suffices to show that at the equilibrium price P ∗C(b)
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we have
∂E[US |P ∗C(b)]

∂L < 0. Note that

∂E[US |P ∗C(b)]
∂L

= η(µg(1−R) + (1−µg)(αφ+ 1−φ))

+ (1− η)
(
µb

(
1

PC(b)
−R

)
+ (1−µb)(αφ+ 1−φ)

)
. (27)

Since the equilibrium price satisfies 1
α < P

∗
C(b), we have that

∂E[US |P ∗C(b)]
∂L

< η(µg(1−R) + (1−µg)(αφ+ 1−φ))

+ (1− η) (µb (α −R) + (1−µb)(αφ+ 1−φ)) . (28)

Since α > αφ+ 1−φ > 1, we have

∂E[US |P ∗C(b)]
∂L

< η(µg(αφ+ 1−φ−R) + (1−µg)(αφ+ 1−φ))

+ (1− η) (µb (α −R) + (1−µb)α)
= η(αφ+ 1−φ−µgR) + (1− η)(α −µbR)

< 0, (29)

where the latter inequality follows from equation (1).

Lemma 2 (Debt contract). Banks pay depositors that withdraw early a return of Rd = κ.

Proof. Since liquidity-shocked depositors only have elevated marginal utility for the first κ
of payments, it is clear that a bank has no incentive to pay more than κ.34 Next, we show
that it is also not optimal for banks to offer a rate lower than κ. For the rest of the proof,
assume Rd ≤ κ. Note that the assumption L > κφ implies that, if Rd ≤ κ and only the mass φ
of liquidity-shocked depositors withdraws early, then a bank has excess liquidity L−Rdφ > 0,
which can be used to buy up to (L−Rdφ)/P ∗C(ω) bonds.

Complex banks. Consider a complex bank. We consider three cases depending on the mag-
nitude of the early repayment Rd .

Case 1: If L+ P ∗C(b)µbR(1 − L) < Rd ≤ κ, we consider an equilibrium in which liquidity-
shocked depositors always withdraw early and normal depositors withdraw early only in the
bad state. Note that this case is well-defined since L + P ∗C(b)µbR(1 − L) < κ follows from the
assumption in (5).

If the economic state in period 1 is good, a mass φ of liquidity-shocked depositors with-
draws in period 1, and a mass 1 − φ of normal depositors withdraws in period 2, then the

expected payment in period 2 for an individual normal depositor is
L−Rdφ+µgR(1−L)

1−φ . Therefore

34Note that an individual bank is indifferent to paying slightly higher amounts than κ as long as normal
depositors do not have an incentive to withdraw early. However, we rule out these equilibria because they are
socially less efficient due to their effects on the equilibrium bond price.
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the best response for an individual normal depositor is to withdraw late if and only if

L−Rdφ+µgR(1−L)

1−φ
> Rd

⇐⇒ L+µgR(1−L) > Rd . (30)

This is satisfied since Rd ≤ κ < L+ µgR(1− L) by the assumption in (6). The best response for
an individual liquidity-shocked depositor is to withdraw early if and only if

L−Rdφ+µgR(1−L)

1−φ
< αRd

⇐⇒
L+µgR(1−L)

α(1−φ) +φ
< Rd . (31)

This is satisfied since Rd > L+ P ∗C(b)µbR(1−L) >
L+µgR(1−L)
α(1−φ)+φ by the assumption in (3).

If the economic state in period 1 is bad and all depositors withdraw early, then the bank
defaults since the maximum liquidity it can supply by paying out of its liquid assets, L, and by
selling bonds, µbP ∗C(b)R(1−L), is less than the demand, Rd . Therefore the best response for an
individual normal depositor is to withdraw early since the payment from withdrawing early,
which is the total liquidation value of the bank L+P ∗C(b)µbR(1−L) since the bank experiences
a run, is greater than the payment from withdrawing late, which is zero.

Therefore, there is an equilibrium as described. In this equilibrium, the utility of the
bank is

E[UC] = η
(
αRdφ+L−Rdφ+µgR(1−L)

)
+ (1− η)

(
αφ+ 1−φ

)(
L+ P ∗C(b)µbR(1−L)

)
.

The locally optimal Rd is the upper bound κ since α > 1. The maximum expected utility is
then

E[UC |Rd = κ] = η
(
ακφ+L−κφ+µgR(1−L)

)
+ (1− η)

(
αφ+ 1−φ

)(
L+ P ∗C(b)µbR(1−L)

)
. (32)

Case 2: If max
{L/P ∗C(ω)+µωR(1−L)
α(1−φ)+φ/P ∗C(ω)

}
ω=b,g

≤ Rd ≤ L+ P ∗C(b)µb(1− L)R, we consider an equilib-

rium in which liquidity-shocked depositors always withdraw early and normal depositors al-

ways withdraw late.35 Note that this case is well-defined since
L+µgR(1−L)
α(1−φ)+φ ≤ L+P ∗C(b)µb(1−L)R

follows from the assumption in (3), and
L/P ∗C(b)+µbR(1−L)
α(1−φ)+φ/P ∗C(b) < L + P ∗C(b)µb(1 − L)R follows from

αP ∗C(b) > 1.

35Note that there is no equilibrium in which normal depositors withdraw early. To see this, note that the bank
cannot default in period 1 even if all depositors withdraw early. If all other depositors withdraw early, then the
best response for an individual normal depositor is to withdraw late because the individual payoff is infinite.
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If the economic state in period 1 is good and the equilibrium is as described, then the
best response for an individual normal depositor is to withdraw late since Rd ≤ κ implies
that the condition in equation (30) is satisfied. The best response for an individual liquidity-

shocked depositor is to withdraw early since Rd >
L+µgR(1−L)
α(1−φ)+φ implies that the condition in

equation (34) is satisfied.
If the economic state in period 1 is bad, a mass φ of liquidity-shocked depositors with-

draws in period 1, and a mass 1 − φ of normal depositors withdraws in period 2, then the

expected payment in period 2 for an individual normal depositor is
(L−Rdφ)/P ∗C(b)+µbR(1−L)

1−φ . The
best response for an individual normal depositor is to withdraw late if and only if

(L−Rdφ)/P ∗C(b) +µbR(1−L)
1−φ

> Rd

⇐⇒
L/P ∗C(b) +µbR(1−L)

1−φ+φ/P ∗C(b)
> Rd . (33)

This is satisfied since Rd ≤ L+µbP ∗C(b)(1−L)R <
L/P ∗C(b)+µbR(1−L)

1−φ+φ/P ∗C(b) , which follows from P ∗C(b) < 1.
The best response for an individual liquidity-shocked depositor is to withdraw early if and
only if

(L−Rdφ)/P ∗C(b) +µbR(1−L)
1−φ

≤ αRd

⇐⇒
L/P ∗C(b) +µbR(1−L)
α(1−φ) +φ/P ∗C(b)

≤ Rd . (34)

This is satisfied since Rd ≥
L/P ∗C(b)+µbR(1−L)
α(1−φ)+φ/P ∗C(b) .

Therefore, there is an equilibrium as described. In this equilibrium, the utility of the
bank is

E[UC] = η
(
αRdφ+L−Rdφ+µgR(1−L)

)
+ (1− η)

(
αRdφ+

L−Rdφ
P ∗C(b)

+µbR(1−L)
)
. (35)

The locally optimal Rd is the upper bound L+µbP ∗C(b)(1−L)R since α > 1 and αP ∗C(b) > 1. The
maximum expected utility can then be written as

E
[
UC |Rd = L+µbP

∗
C(b)(1−L)R

]
= η

(
φ(α − 1)

[
L+ P ∗C(b)µb(1−L)R

]
+L+µgR(1−L)

)
+ (1− η)

[
L+ P ∗C(b)µb(1−L)R

](
αφ+

1−φ
P ∗C(b)

)
. (36)

Case 3: IfRd <max
{L/P ∗C(ω)+µωR(1−L)
α(1−φ)+φ/P ∗C(ω)

}
ω=b,g

, then there is no equilibrium in which liquidity-

shocked depositors withdraw early in both states since at least one of (31) or (34) is violated.
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If liquidity-shocked depositors withdraw early in the bad state, then the utility of the bank in
the bad state, L

P ∗C(b) +µbR(1−L), is less than the utility in the bad state from Case 2 in equation

(35) since αP ∗C(b) > 1. Similarly, if liquidity-shocked depositors withdraw early in the good
state then the utility of the bank in the good state, L+µgR(1−L), is less than the utility in the
good state from Case 2 in equation (35) since α > 1. Therefore Case 3 is dominated by Case
2.

To determine the globally optimal payment Rd , we compare the maximum utility be-
tween Case 1 and Case 2. The expected utility from Case 1 (equation (32)) minus the expected
utility from Case 2 (equation (36)) is

ηφ(α − 1)
(
κ −

[
L+ P ∗C(b)µbR(1−L)

])
− (1− η)(1−φ)

[
L+ P ∗C(b)µbR(1−L)

]( 1
P ∗C(b)

− 1
)
> 0, (37)

where the inequality follows by 1 > P ∗C(b) > 1
α and the assumption in (5).36 This implies the

globally optimal payment is Rd = κ.

Simple banks. Consider a simple bank. We consider three cases depending on the magni-
tude of the early repayment Rd .

Case 1: If L < Rd ≤ κ, we consider an equilibrium in which liquidity-shocked depositors
always withdraw early and normal depositors withdraw early only when the bank’s return is
low. Note that this case is well-defined since L < κ.

If return is high, the economic state is ω, a mass φ of liquidity-shocked depositors
withdraws in period 1, and a mass 1 −φ of normal depositors withdraws in period 2, then

the payment in period 2 for an individual normal depositor is (L−Rdφ)/P ∗B(ω)+R(1−L)
1−φ . Therefore

the best response for an individual normal depositor is to withdraw late if and only if

(L−Rdφ)/P ∗C(ω) +R(1−L)
1−φ

> Rd

⇐⇒
L/P ∗C(ω) +R(1−L)

1−φ+φ/P ∗C(ω)
> Rd . (38)

This is satisfied since Rd ≤ κ <
L/P ∗C(ω)+R(1−L)

1−φ+φ/P ∗C(ω) .37 The best response for an individual liquidity-

36To see this, denote the left hand side of (5) by F. Note that L+P ∗C(b)µbR(1−L) < L+µbR(1−L) since P ∗C(b) < 1.

Let x ≡ L+µbR(1−L). Therefore F ≥ ηφ(α − 1)(κ − x)− (1− η)(1−φ)x
(

1
P ∗C (b) − 1

)
. Then note that 1

P ∗C (b) < α, which

implies F ≥ ηφ(α − 1)(κ − x)− (1− η)(1−φ)x(α − 1). Then the result follows from rearranging and applying (5).
37To see this, note that

L/P ∗C (ω)+R(1−L)
1−φ+φ/P ∗C (ω) is between L + R(1 − L) (when evaluated at P ∗C(ω) = 1) and L

φ (when

evaluated at the limit as P ∗C(ω)→ 0). Then note that κ < L+R(1− L) by the assumption in (6) and κ < L
φ by the

assumption L > κφ.
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shocked depositor is to withdraw early if and only if

(L−Rdφ)/P ∗C(ω) +R(1−L)
1−φ

< αRd

⇐⇒
L/P ∗C(ω) +R(1−L)
α(1−φ) +φ/P ∗C(ω)

< Rd . (39)

This is satisfied since
L/P ∗C(ω)+R(1−L)
α(1−φ)+φ/P ∗C(ω) < L < Rd , which follows from P ∗C(R) > 1

R and the assump-

tion in (4).
If the return revealed in period 1 is low and all depositors withdraw early, then the

bank defaults since the maximum liquidity it can supply by paying out of its liquid assets L
is less than the demand Rd .38 Therefore the best response for an individual normal depositor
is to withdraw early since the payment from withdrawing early, which is the total liquida-
tion value of the bank L since the bank experiences a run, is greater than the payment from
withdrawing late, which is zero.

Therefore, there is an equilibrium as described. In this equilibrium, the utility of the
bank is

E[US] = η
(
µg (αRdφ+L−Rdφ+R(1−L)) + (1−µg)(αφ+ 1−φ)L

)
+ (1− η)

(
µb

(
αRdφ+

L−Rdφ
P ∗C(b)

+R(1−L)
)

+ (1−µb)(αφ+ 1−φ)L
)
.

The locally optimal Rd is the upper bound κ since α > 1 and αP ∗B(b) > 1.

Case 2: If
{ L/P ∗C(ω)+R(1−L)
α(1−φ)+φ/P ∗C(ω)

}
ω=b,g

≤ Rd ≤ L, we consider an equilibrium in which liquidity-

shocked depositors always withdraw early and normal depositors always withdraw late.39

Note that this case is well-defined since
L/P ∗C(b)+R(1−L)
α(1−φ)+φ/P ∗C(b) < L follows from P ∗C(R) > 1

R and the

assumption in (4).
If the individual return in period 1 is high and the equilibrium is as described, then

the best response for an individual normal depositor is to withdraw late since Rd ≤ κ implies
that the condition in (38) is satisfied. The best response for an individual liquidity-shocked

depositor is to withdraw early since Rd ≥
L/P ∗C(b)+R(1−L)
α(1−φ)+φ/P ∗C(b) implies that the condition in (40) is

satisfied.
If the return in period 1 is low, the economic state is ω, a mass φ of liquidity-shocked

depositors withdraws in period 1, and a mass 1−φ of normal depositors withdraws in period

2, then the expected payment in period 2 for an individual normal depositor is
(L−κφ)/P ∗C(ω)

1−φ .

38Recall that the bank cannot sell bonds against its observably worthless assets.
39Note that there is no equilibrium in which normal depositors withdraw late when the return is low by a

similar argument as in Case 2 for complex bank.
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The best response for an individual normal depositor is to withdraw late if and only if

(L−Rdφ)/P ∗C(ω)
1−φ

> Rd

⇐⇒
L/P ∗C(b)

1−φ+φ/P ∗C(ω)
≥ Rd . (40)

This is satisfied since PC(ω) ≤ 1. The best response for an individual liquidity-shocked de-
positor is to withdraw early if and only if

(L−Rdφ)/P ∗C(ω)
1−φ

≤ αRd

⇐⇒
L/P ∗C(ω)

α(1−φ) +φ/P ∗C(b)
≤ Rd . (41)

This is satisfied since Rd ≥
L/P ∗C(ω)+R(1−L)
α(1−φ)+φ/P ∗C(ω) .

Therefore, there is an equilibrium as described. In this equilibrium, the utility of the
bank is

E[US] = η
(
αRdφ+L−Rdφ+µgR(1−L)

)
+ (1− η)

(
αRdφ+

L−Rdφ
P ∗C(b)

+µbR(1−L)
)
. (42)

The locally optimal Rd is the upper bound Rd = L since α > 1 and α > 1
P ∗C(b) . This portfolio

is dominated by investing in complex investments and setting Rd = L+ P ∗C(b)µgR(1− L). This
can be seen by observing that the expected utility is the same function of Rd as Case 2 for a
complex bank (equation (35)), this function is increasing in Rd , and the local optimum from
Case 2 for a complex bank Rd = L+ P ∗C(b)µbR(1−L) is larger than the local optimum for Case
2 of a simple bank L.

Case 3: If Rd <
{ L/P ∗C(ω)+R(1−L)
α(1−φ)+φ/P ∗C(ω)

}
ω=b,g

, then there is no equilibrium in which liquidity-

shocked depositors withdraw early in both states since at least one of (39) or (41) is violated.
If liquidity-shocked depositors withdraw early when the return is low, then the utility of the
bank in the low return state, L

P ∗C(b) , is less than the utility in the low return state from Case 2

in equation (42) since α > 1
P ∗C(b) . Similarly, if liquidity-shocked depositors withdraw early in

the high return state then the utility of the bank in the high return state, L+R(1− L), is less
than the utility in the good state from Case 2 in equation (42) since α > 1. Therefore Case 3
is dominated by Case 2.

Therefore, if a bank invests in simple assets, then the optimal repayment Rd must cor-
respond to the local maximum from Case 1, which is Rd = κ.

Corollary 1 (Bank-run conditions). Liquidity-shocked depositors always withdraw early and nor-
mal depositors withdraw early if and only if
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• the bank is complex and the economic state is bad

• the bank is simple and the observable return is low

Proof. This follows from the proof of Lemma 2 for the special case where Rd = κ.

Lemma 3 (Bond price). The bond price satisfies 1
α <

1
R < P

∗
C(b) < P ∗C(g) = 1.

Proof. We first show that P ∗C(g) = 1. This follows from the fact that, in good times, the only
banks that experience a run are simple banks with a low return. However, these banks cannot
sell bonds against their long-term assets since the low return is publicly observable. As a
result, in good times the supply of bond is zero, which implies that the bond price must be
at the maximum possible level, P ∗C(g) = 1.

Consider the bond price when the economic state is bad PC(b). Recall the relative ad-
vantage of investing in complex assets compared to simple assets ∆ as defined in equation (9).
Since banks are ex-ante identical, the price must be such that banks are indifferent between
complex and simple assets in an equilibrium. Note that there is no equilibrium in which
banks invest in only complex or simple assets. If all banks invested in simple assets, then
the bond price PC(b) would be equal to 1, but in that case banks would prefer to invest in
complex assets. If all banks invested in complex assets, then the bond price would be equal
to zero, but in that case banks would prefer to invest in simple assets.

At the maximum possible price PC(b) = 1, the second term of equation (9) is equal to
(1 − η)µbφ(α − 1)[L + R(1 − L) − κ], which is positive by the assumption κ < L + µgR(1 − L).
Therefore, complex banks have a higher expected utility.

If the price is very low, then it is easy to see that simple banks have a higher expected
utility. Specifically, if the price is as low as PC(b) = 1

R then the difference in utility ∆ expressed
in equation (9) at PC(b) = 1

R is equal to

∆

(1
R

)
= η(1−µg)φ(κ −L)(α − 1) + (1− η)µb[1−φ+αφ−R(1−φκ)−αφκ],

which is negative by the assumption in (2).
Since the relative benefit of complex assets ∆(PC(b)) is increasing and continuous with

∆
(

1
R

)
< 0 < ∆(1), there is a unique equilibrium bond price that satisfies 1

R < P
∗
C(b) < 1.

Finally, note that α > R from the assumption in (4), which implies that 1
α <

1
R < P

∗
C(b).

Proof of Proposition 2

Proposition 2 (Volume of complex banks). The volume of complex banks is related to the complex-
asset price in bad times as follows:

V ∗R
(
1−L

)
µb︸          ︷︷          ︸

complex-asset supply

=
(
1−V ∗

)
µb
L−κφ
P ∗C(b)︸                  ︷︷                  ︸

complex-asset demand

. (10)
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Proof. Consider the equilibrium described Proposition 1. As shown in the proof of Lemma
3, no bonds are issued in the good state. In the bad state, however, all complex banks issue
bonds. In particular, each complex bank issues µb(1 − L)R bonds. Therefore, the overall
supply of bonds is∫

i:ξi=C
SB,i(P

∗
C(b))di =

∫
i:ξi=C

µb(1−L)Rdi = µb(1−L)R V ∗. (43)

At the same time, simple banks with a positive return have excess liquidity, which they fully
invest in bonds since P ∗C(b) < 1. In particular, each simple bank with a positive return de-

mands L−κφ
P ∗C(b) bonds. Therefore, the overall demand for bonds is∫

i:ξi=S

L−κφ
P ∗C(b)

1{RSi (b)=R} di =
L−κφ
P ∗C(b)

µb

(
1−V ∗

)
︸      ︷︷      ︸

mass of simple banks
with postive return

. (44)

Equating market supply and market demand for bonds (i.e., Eqs. (43) and (44)), implies the
result.

Proof of Proposition 3

Proposition 3. If
η(1−µg )
(1−η)µb

∈
[
1, 1−φ

1−1/κ

]
, the equilibrium complex-asset price in bad times P ∗C(b) is

increasing in the liquidity level L.

Proof. Note that P ∗C(b) is well-defined and differentiable for L ∈ [κφ,1] since P ∗C(b) is the posi-
tive solution to the equation ∆(PC(b)) = 0, where ∆ is the relative advantage of complex assets
as defined in equation (9). As shown in the proof of Lemma 3, this has a unique positive
solution.

It’s straightforward to see that ∂∆
∂PC(b) > 0. Therefore, by the implicit function theorem,

we have that
∂P ∗C(b)
∂L has the opposite sign as ∂∆

∂L , which is described in equation (11). Let

L̂ = κ
(
1− (1−φ)(1−η)µb

η(1−µg )

)
. Note that the assumption

η(1−µg )
(1−η)µb

∈
[
1, 1−1/κ

1−φ

]
implies that L̂ ∈ [κφ,1],

which is the applicable range for L. Note that when L = L̂ we have P ∗C(b) = 1
αφ+1−φ and hence

∂∆
∂L < 0, which implies

∂P ∗C(b)
∂L > 0.40

Now suppose for a contradiction that P ∗C(b) is non-monotonic in L. Since P ∗C(b) is a
continuously differentiable function of L, there must exist two distinct points L̄ and L̄′ that

implement the same equilibrium price but for which
∂P ∗C(b)
∂L |L=L̄ ,

∂P ∗C(b)
∂L |L=L̄′ . But this contra-

dicts the fact that ∂∆∂L only depends on L though its effect on P ∗C(b) (see equation (11)).

Since
∂P ∗C(b)
∂L > 0 at L = L̂ and P ∗C(b) must be globally monotonic in L, then P ∗C(b) must be

everywhere increasing in L.

40Note that the strictness of the inequality follows from η(1−µg )φ(α − 1) > 0.
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Proof of Proposition 4

Proposition 4 (Welfare-maximizing volume of complex banks). Let L̂ = κ
(
1− (1−φ)(1−η)µb

(1−µg )η

)
.

When liquidity requirements are tight, L > L̂, then there is excess investment in complex assets,
i.e., VW < V ∗. Moreover, the welfare-maximizing complex-asset price in bad times is equal to
the maximum level of 1, i.e., PWC (b) = 1 > P ∗C(b). When liquidity requirements are loose, L < L̂,
then there is underinvestment in complex assets, i.e., VW > V ∗. Moreover, the welfare-maximizing
complex-asset price in bad times PWC (b) satisfies 0 < PWC (b) < P ∗C(b).

Proof. Consider the total effect of varying the volume of complex banks on welfare

dW
dVW

=
∂W
∂VW

+
∂W

∂PWC (b)

∂PWC (b)

∂VW
.

The first term corresponds to the direct effect and is equal to the relative advantage of in-
vesting in complex assets ∆ as defined in equation (9). The second term corresponds to the
indirect effect through the adjustment of price, which is not internalized by the banks in the
equilibrium. Since PWC (b) is related to VW by the market-clearing condition in equation (10),
we have that the volume of complex banks is inversely related to the price:

∂PWC (b)

∂VW
= −

L−κφ
(1−L)R(VW )2 = −

PWC (b)

VW (1−VW )
< 0. (45)

The price, in turn, affects welfare as follows:

∂W
∂PWC (b)

= (1− η)µb

VW (αφ+ 1−φ)R(1−L)− (1−VW )
L−κφ
PWC (b)2


The first term represents the marginal benefit of increasing the price in terms of supporting
complex banks, which sell bonds, while the second term represents the marginal cost in
terms of decreasing the return for simple banks that draw a high return, which buy bonds.

Then, we can write:

∂W
∂PWC (b)

∂PWC (b)

∂VW
= (1− η)µb

 1
1−VW

(αφ+ 1−φ)PWC (b)R(1−L)− 1
VW

L−κφ
PWC (b)

 .
Therefore, the total effect on welfare can be written as

dW
dVW

= η(1−µg)φ(κ −L)(α − 1)

+ (1− η)µb
[
(αφ+ 1−φ)

(
L+ PWC (b)R(1−L)

(
1− 1

1−VW

))]
− (1− η)µb

ακφ+
L−κφ
PWC (b)

(
1− 1

VW

)
+R(1−L)

 .
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This first term shows that the planner’s incentive to invest in complex assets is increasing
in the liquidity services advantage of complex assets in good times. The second term cor-
responds to the advantage of complex banks in bad times compared to simple banks that
default, which is their ability to issue bonds in the interbank market. This advantage directly
increases the planner’s incentive to invest in complex assets, but the planner also internal-
izes the fact that increasing the volume of complex banks leads to a price reduction that
offsets this advantage. The third term corresponds to the disadvantage of complex banks
in bad times compared to simple banks with a high return, which is the fact that they al-
ways experience a run. This disadvantage directly decreases the planner’s incentive to invest
in complex assets, but the planner also internalizes the fact that increasing the volume of
complex banks leads to a price reduction that has the benefit of increasing the return of the
simple banks.

Further simplifying by substituting the market-clearing condition in equation (10) ob-
tains the following:

dW
dVW

= η(1−µg)φ(κ −L)(α − 1)− (1− η)µbφκ(1−φ)(α − 1)

= (α − 1)φη(1−µg)


κ

(
1−

(1−φ)(1− η)µb
η(1−µg)

)
︸                        ︷︷                        ︸

=L̂

−L


. (46)

This equation illustrates that the direct and price effects of increasing the volume of complex
banks in bad times offset each other such that the net effect is constant in the volume of
complex banks and the price. This drives the solution to the boundaries of the choice space
depending on the sign of equation (46), which in turn depends on the magnitude of the
tightness of liquidity requirements L relative to L̂.

Case 1: If L > L̂, the optimal policy is to reduce the volume of complex banks and
therefore increase the bond price PWC (b) until it is equal to its upper bound of 1. Note that
reducing the volume of complex banks does not create an incentive to deviate from the debt
contract Rd = κ and bank-run conditions as described in Proposition 1. In particular, the
proof of Lemma 2 shows that the debt contract and bank-run conditions hold for any PC(b)
satisfying 1

R ≤ PC(b) ≤ 1. Since 1
R < P

∗
C(b) < 1, they hold for PWC (b) ∈

[
P ∗C(b),1

]
.

Intuitively, increasing the bond price supports complex banks since they experience a
run in the bad state. Once the bond price is equal to 1, which is the return on liquid assets,
there is no incentive to further reduce the volume of complex banks since the bond price
cannot be any higher. Additionally, reducing the volume of complex banks has a cost since
complex assets yield a higher expected utility when PWC (b) = 1.41

41This cost can be seen by differentiating the expected utility for PWC (b) = 1:

sign
(
∂W
∂VW

)
= sign

(1− η)µb(L−κ+R(1−L)) + η(1−µg )(κ −L)

 > 0.
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Case 2: If L < L̂, the optimal policy is to increase the volume of complex banks and
therefore decrease bond price P ∗C(b) until the debt contract of Rd = κ and bank-run conditions
as described in Proposition 1 can no longer be maintained.

The minimal PWC (b) such that banks still prefer to offer an early repayment of Rd = κ is
strictly greater than 0. To see this, note that Lemma 2 shows that a necessary condition for
banks to set Rd = κ is given by (37). Note that the left hand side of (37) has the same sign as
when it is multiplied by PC(b) > 0, which can be denoted by

F(PC(b)) ≡ PC(b)ηφ(α − 1)(κ − {L+µbPC(b)R(1−L)})− (1− η)(1−φ)(L+ PC(b)µbR(1−L))(1− PC(b)).

It is then straightforward to see that F(0) < 0, and 0 < F(1) follows from the assumption in
(5). Since F is quadratic, this implies there is a unique solution PWC (b) ∈ (0,1) to the equation
F(PWC (b)) = 0.

Alternative intuition. Consider the local incentive for the planner to increase the volume
of complex bansk relative to the equilibrium:

dW
dVW

|VW=V ∗ =
∂W
∂VW

|VW=V ∗ +
∂W

∂PWC (b)
|PWC (b)=P ∗C(b)

∂PWC (b)

∂VW
|VW=V ∗ .

Note that ∂W
∂VW
|VW=V ∗ = 0 since banks are indifferent between the two types of assets in the

equilibrium. Recall that
∂PWC (b)
∂VW

< 0 from equation (45). Therefore, ∂W
dVW
|VW=V ∗ has the op-

posite sign as ∂W
∂PWC (b)

|PWC (b)=P ∗C(b), which corresponds to the regulator’s incentive to adjust the

price that is not internalized by the individual banks:

∂W
∂PWC (b)

|PWC (b)=P ∗C(b) = (1− η)µb

[
(αφ+ 1−φ)R(1−L)V ∗ −

(1−V ∗)(L−κφ)
P ∗C(b)2

]
.

As described above, the first term corresponds to the marginal benefit of increasing the price
in terms of increasing the return of complex banks, which sell bonds, while the second term
corresponds to the marginal cost in terms of decreasing the return for simple banks that draw
a high return, which buy bonds.

Using the market-clearing condition in equation (10), we can write:

∂W
∂PWC (b)

|PWC (b)=P ∗C(b) =
(1− η)µb(L−κφ)R(1−L)
L−κφ+ P ∗C(b)(1−L)R

[
(αφ+ 1−φ)− 1

P ∗C(b)

]
.

Therefore, ∂W
∂VW
|VW=V ∗ has the same sign as

(αφ+ 1−φ)− 1
P ∗C(b)

. (47)

Note that the equilibrium price at L̂ is equal to 1
αφ+1−φ . If the equilibrium price is increasing

in L (see Proposition 3 for a sufficient condition), the expression in (47) is positive (negative)
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when L is greater (less) than L̂. Intuitively, L determines whether the equilibrium price is
large enough that the benefit of further increasing the price in terms of insuring complex
banks exceeds the cost in terms of decreasing the returns on asset purchases for simple banks.

Proof of Proposition 5

Proposition 5 (Welfare-maximizing tightness of liquidity requirements). If a policymaker can
implement the efficient level of investment in complex assets, then the optimal tightness of liquidity
requirements is no greater than L̂. If a policymaker allows the volume of complex assets to be deter-

mined in equilibrium and
η(1−µg )
(1−η)µb

∈
[
1, 1−φ

1− 1
κ

]
, then the optimal tightness of liquidity requirements is

the minimum level that is consistent with the parametric restrictions described in Proposition 1.

Proof. Case 1: Suppose the policy-maker implements the optimal degree of investment in
complex assets, VW . By the envelope theorem, we have

dW
dL

= VW
∂E

[
UC |PWC (b)

]
∂L

+
(
1−VW

) ∂E
[
US |PWC (b)

]
∂L

. (48)

Suppose L > L̂. Then by Proposition 4, PWC (b) = 1. In particular, this implies 1
α < P

W
C (b).

Hence, the proof of Part 2 of Lemma 1 can be applied to show that
∂E[UC |PWC (b)]

∂L < 0 and
∂E[US |PWC (b)]

∂L < 0, which implies dW
dL < 0. This implies L ≤ L̂.

Case 2: Suppose the policy-maker faces the equilibrium degree of investment in com-
plex assets, V ∗. Note that

dW
dL

=
∂W
∂L

+
∂W
∂V ∗

∂V ∗

∂L
+

∂W
∂P ∗C(b)

∂P ∗C(b)
∂L

. (49)

The proof of Part 2 of Lemma 1 shows that
∂E[UC |P ∗C(b)]

∂L < 0 and
∂E[US |P ∗C(b)]

∂L < 0. This implies

∂W
∂L

= V ∗
∂E

[
UC |P ∗C(b)

]
∂L

+ (1−V ∗)
∂E

[
US |P ∗C(b)

]
∂L

< 0. (50)

Note that

∂W
∂V ∗

= E
[
UC |P ∗C(b)

]
−E

[
US |P ∗C(b)

]
= 0 (51)

since an equilibrium condition is that banks are indifferent between complex and simple
assets. Hence ∂W

∂V ∗
∂V ∗

∂L = 0.

By Proposition 3,
∂P ∗C(b)
∂L > 0, so the term ∂W

∂P ∗C(b)
∂P ∗C(b)
∂L has the same sign as ∂W

∂P ∗C(b) . If L < L̂,

the proof of Proposition 4 shows that ∂W
∂P ∗C(b) < 0. This, combined with the signs of the other

terms, implies that dW
dL < 0. Hence, the optimal L is either the minimum possible value or
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greater than L̂. To show it is the former, it is convenient to denote welfare as a function of
both L and V , or W (L,V ). Let V ∗(L) denote the equilibrium volume of complex assets as a
function of L, and let VW (L) denote the optimal volume of complex assets as a function of L.
Then we have

W (L = min,V ∗(min)) >W (L = L̂,V ∗(L̂)) by the preceding paragraph (52)

=W (L = L̂,VW (L̂)) by the proof of Proposition 4 (53)

>W (L > L̂,VW (L)) by Case 1 (54)

>W (L > L̂,V ∗(L)) by Proposition 4. (55)

Proof of Proposition 6

Proposition 6. If µbR < 1, then the minimum level of liquidity requirements that is consistent
with the parametric restrictions described in Proposition 1, denoted Lmin, satisfies the following:

• ∂Lmin
∂η ≥ 0

• ∂Lmin
∂µg
≤ 0

• ∂Lmin
∂µb
≤ 0

• If additionally
η(1−µg )
(1−η)µb

≥ 1, then ∂Lmin
∂φ ≥ 0

• ∂Lmin
∂κ has the same sign as

η(1−µg )
(1−η)µb

− 1−φ
1−L .

The comparative statics with respect to R and α depend on which constraint binds at Lmin.

Proof. First, we rule out parametric restrictions that do not affect the comparative statics of
Lmin. In particular, (1) does not involve L and therefore does not determine the comparative
statics. Additionally, note that (6) implies that µgR > 1. Hence, the right hand side of (1)
is decreasing in L. Hence, (6) is not binding at Lmin and therefore does not determine the
comparative statics. Additionally, note that the assumption µbR < 1 implies that the left
hand side of (5) is increasing in L. Hence, (5) is not binding at Lmin and therefore does not
determine the comparative statics.

Now, suppose (3) binds at Lmin. It’s straightforward to see that the right hand side is
increasing in L and α and decreasing in φ and that the left hand side is increasing in R.
Hence, Lmin is increasing in φ and R and decreasing in α. It’s straightforward to see that (4)
yields the same result.

Next, suppose (2) binds at Lmin. It’s straightforward to see that the left hand side is de-
creasing in L and µg and that the right hand side is increasing in R. Hence, Lmin is decreasing
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in R and µg . For the remaining variables, we examine the corresponding derivatives of the
left hand side in more detail. Denote the left hand side of (2) by LHS. For η, we have

∂LHS
∂η

∝ (1−µg)φ(κ −L)(α − 1) > 0. (56)

Hence, Lmin is increasing in η. For µb, we have

∂LHS
∂µb

∝ −η(1−µg)φ(κ −L)(α − 1) < 0. (57)

Hence, Lmin is decreasing in µb. For φ, we have

∂LHS
∂φ

∝ η(1−µg)(κ −L)(α − 1)− (1− η)µb(κ − 1)(α − 1). (58)

If
η(1−µg )
(1−η)µb

≥ 1 holds, then this is positive since L < 1. Hence, Lmin is increasing in φ. For κ, we
have

∂LHS
∂κ

∝ η(1−µg)φ(α − 1)(1−L)− (1− η)µbφ(α − 1)(1−φ). (59)

This has the same sign as
η(1−µg )
(1−η)µb

− 1−φ
1−L . Hence, ∂Lmin∂κ has the same sign as

η(1−µg )
(1−η)µb

− 1−φ
1−L . For α,

we have

∂LHS
∂α

∝ η(1−µg)φ(κ −L)− (1− η)µbφ(κ − 1). (60)

If
η(1−µg )
(1−η)µb

≥ 1 holds, this is positive since L < 1. Hence, Lmin is increasing in α.

Proof of Proposition 7

Rearranging equation (14) and supposing that the volume of complex banks is equal to the
level corresponding to no tax V (0), the price can be expressed as

P τC (b) =
µb(L−κφ)(1−V (0)) + τδ

RV (0)(1−L)µb
,

hence it follows that

∂P τC (b)
∂τ

=
δ

RV (0)(1−L)µb
> 0. (61)

Note also that increasing the tax maintains the debt contract and bank-run conditions as
stated in Proposition 1. In particular, the proof of Lemma 2 shows that the debt contract and
bank-run conditions hold for any PC(b) satisfying 1

R ≤ PC(b) ≤ 1. Since the price that would
occur in the absence of a tax P 0

C (b) satisfies 1
R ≤ P

0
C (b) < 1, this implies that they hold for
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P τC (b) ∈
[
P 0
C (b),1

]
.42

Proof of Proposition 8

Proposition 8 (QE without commitment). If QE is implemented without commitment, then the
optimal tax is positive and equal to the minimum of income ν and the minimum tax necessary to
increase the complex-asset price in bad times P τC (b) to 1.

Proof. Rearranging the market-clearing condition (equation (14)), we substitute

τδ
P τC (B)

= V (0)R
(
1−L

)
µb −

(
1−V (0)

)
µb
L−κφ
P τC (b)

into the expression for welfare (equation (17)). Then, if P τC (b) < 1, taking the derivative with

respect to τ and using the expression for
∂P τC (b)
∂τ from equation (61) in the proof of Proposition

7 obtains

∂W (τ)
∂τ

= V (0)(1− η)(αφ+ 1−φ)
[ δ
RV (0)(1−L)µb︸             ︷︷             ︸

=
∂P τC (b)
∂τ

µbR(1−L)− δ
]

− (1−V (0))(1− η)[µbδ+ (1−µb)(αφ+ 1−φ)δ]

> (1− η)δ(αφ+ 1−φ)
[
V (0)

(
1

V (0)
− 1

)
− (1−V (0))

]
= 0.

Since welfare is increasing in τ as long as P τC (b) < 1, the government optimally increases taxes
until either P τC (b) = 1 or τ = ν.

Proof of Proposition 9

Proposition 9. If QE is undertaken with commitment and P τC (b) < 1, then

(a) the equilibrium complex-asset price is increasing in the tax τ : ∂P
τ
C (b)
∂τ > 0, and

(b) the equilibrium volume of complex banks is increasing in the tax τ : ∂V (τ)
∂τ > 0.

Proof. Part (a). Note that the relative benefit of investing in complex assets is summarized

42Note that we restrict to δ small enough such that a similar proof as in Lemma 3 works to show that there
exists a unique equilibrium price P τC (b) ∈

(
1
R ,1

)
.
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by subtracting equation (16) from equation (15):

Hτ(PC(b)) ≡ E[UC |PC(b)]−E[US |PC(b)]
= η(1−µg)φ(κ −L)(α − 1)

+ (1− η)µb

[
(αφ+ 1−φ)(L+ PC(b)R(1−L))−

(
ακφ+

L−κφ
PC(b)

+R(1−L)
)]

+ δφ(α − 1)[(1− η)(ν − τ)µb − ην(1−µg)]. (62)

Since banks are ex-ante identical and anticipate the tax, the equilibrium price must be such
that banks are indifferent between complex and simple assets. For δ sufficiently small, there
is a unique price P τC (b) ∈

(
1
R ,1

)
satisfying Hτ(PC(b)) = 0.43 Then, by the implicit function

theorem, we have:

∂P τC (b)
∂τ

= − ∂H/∂τ
∂H/∂PC(b)

=
δφ(α − 1)(

αφ+ 1−φ
)
R(1−L) + L−κφ

P τC (b)2

> 0. (63)

Note that increasing the tax maintains the debt contract and bank-run conditions as stated in
Proposition 1. In particular, the proof of Lemma 2 shows that the debt contract and bank-run
conditions hold for any PC(b) satisfying 1

R ≤ PC(b) ≤ 1. Since the price that would occur in the
absence of a tax P 0

C (b) satisfies 1
R ≤ P

0
C (b) < 1, this implies that they hold for P τC (b) ∈

[
P 0
C (b),1

]
.

Part (b). Rearranging equation (14) implies that

V (τ) =
µb

(
L−κφ

)
+ δτ

P τC (b)µbR(1−L) +µb(L−κφ)
. (64)

Therefore, using equation (63) we have:

∂V (τ)
∂τ

=
δ(P τC (b)µbR(1−L) +µb(L−κφ))− (µb(L−κφ) + δτ)

∂P τC (b)
∂τ µbR(1−L)(

P τC (b)µbR(1−L) +µb(L−κφ)
)2

=

δ(P τC (b)µbR(1−L) +µb(L−κφ))− (µb(L−κφ) + δτ) δφ(α−1)µbR(1−L)

(αφ+1−φ)R(1−L)+ L−κφ
P τC (b)2(

P τC (b)µbR(1−L) +µb(L−κφ)
)2 > 0, (65)

43Note that we restrict to δ small enough such that a similar proof as in Lemma 3 works to show that there
exists a unique equilibrium price P τC (b) ∈

(
1
R ,1

)
.
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where the inequality follows because

φ(α − 1)R(1−L)(
αφ+ 1−φ

)
R(1−L) + L−κφ

P τC (b)2

< 1

since L > κφ, and

P τC (b)R(1−L) +L−κφ = (δτ +µb(L−κφ))
1

V (τ)
≥ δτ +µb(L−κφ)

since V (τ) ≤ 1.

Proof of Proposition 10

Proposition 10 (QE with commitment). Under QE with commitment, the optimal tax can in
general be either positive or zero. If the liquidity level L is sufficiently high, then the optimal tax is
zero.

Proof. Proof that the optimal tax is zero when L is large. Since banks are ex-ante identical
and banks anticipate the tax, the equilibrium price must be such that banks are indifferent
between complex and simple assets. Therefore it suffices to consider how the tax affects
the expected utility from investing in complex assets. Taking the derivative of the expected
utility from investing in complex assets (equation (15)) with respect to τ obtains

∂E[UC |PC(b) = P τC (b)]
∂τ

= (1− η)(αφ+ 1−φ)
[

δφ(α − 1)

(αφ+ 1−φ)R(1−L) + L−κφ
P τC (b)2︸                               ︷︷                               ︸

=
∂P τC (b)
∂τ

µbR(1−L)− δ
]

+ (1− η)
[

δ
P τC (b)

− τδ

P τC (b)2

∂P τC (b)
∂τ

]
. (66)

For L close to 1, this is approximately equal to

∂E[UC |PC(b) = P τC (b)]
∂τ

≈ −(1− η)(αφ+ 1−φ)δ+ (1− η)
[

δ
P τC (b)

− τδ

P τC (b)2

∂P τC (b)
∂τ

]
< (1− η)δ

[
1

P τC (b)
− (αφ+ 1−φ)

]
.

For this to be negative, it suffices to show P τC (b) > 1
αφ+1−φ . Recall that P τC (b) is the unique

positive solution Hτ(P τC (b)) = 0, where Hτ(PC(b)) in equation (62) is the relative advantage of
investing in complex assets for a given price PC(b). Since Hτ is increasing in PC(b), to show
that P τC (b) > 1

αφ+1−φ it suffices to show Hτ
(

1
αφ+1−φ

)
< 0. For L near 1 and δ negligibly small
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compared to the other terms in Hτ , we have:

Hτ

(
1

α + 1−φ

)
≈ φ(α − 1)

[
η(1−µg)(κ − 1)− (1− η)µbκ(1−φ)

]
< 0,

where the inequality follows from the fact that if L is near 1, then the parametric restriction
in 6 implies that κ must also be close to 1.44

Proof that the optimal tax can be positive. Evaluating equation (66) at t = 0 and L
close to κφ obtains

∂E[UC |PC(b) = P τC (b)]
∂τ

|τ=0 ≈ (1− η)δ
[

1
P τC (b)

− (1 + (1−µb)φ(α − 1))
]
.

For this to be positive, it suffices to show that P τC (b) < 1
αφ+1−φ . By similar reasoning as above,

it suffices to show Hτ
(

1
αφ+1−φ

)
> 0. Note that at L = κφ and for δ negligibly small compared

to the other terms in Hτ we have:

Hτ

(
1

αφ+ 1−φ

)
≈ κφ(1−φ)(α − 1)

[
η(1−µg)− (1− η)µb

]
,

which is positive if η(1−µg) > (1− η)µb.45

Proof of Proposition 11

Proposition 11 (Ex-ante insurance). Implementing the ex-ante insurance policy (i) increases the
equilibrium complex-asset price in bad times, (ii) decreases the volume of complex banks, and (iii)
increases overall welfare.

Proof. Denote the volume of complex banks when the redistributive policy is in place by
V τ and the equilibrium price by P τC (b). Note that the optimal debt contract is still given by
Rd = κ. In particular, complex banks offer Rd = κ as long as (37) holds. Since it holds with
P ∗C(b) and P τC (b) > P ∗C(b), it also holds with P τC (b). It is straightforward to see that the incentive
for simple banks to offer Rd = κ is strengthened when they no longer experience a risk of a
run.

Bond price in bad times. First, we show that the policy leads to an increase in the equilib-
rium price, or P τC (b) > P ∗C(b). To see this, first note that the expected utility of a complex bank

44Note that the maximum L that is consistent with the parametric restriction in (6) is generally less than 1
and not necessarily large enough for this result to hold assuming the other parameters are held fixed.

45Note that the minimum L that is consistent with the parametric restrictions in Proposition 1 is generally
greater than κφ and not necessarily small enough for this result to hold assuming the other parameters are held
fixed.
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is

E[UC |P τC (b)] = η
(
φακ+L−φκ+µgR(1−L)

)
+ (1− η)

(
φα + 1−φ

)(
L+ P τC (b)µbR(1−L)

)
. (67)

The redistributive tax changes the period-2 income for all simple banks µgR(1−L). A similar
argument as in the proof of Lemma 1 shows that this is high enough for simple banks to
avoid a run. The expected utility for a simple bank is therefore given by

E[US |P τC (b)] = η
(
φακ+L−φκ+µgR(1−L)

)
+ (1− η)

µb(φακ+
L−φκ
P τC (b)

+R(1−L)
)

+ (1−µb)(φα + 1−φ)L

. (68)

The bond price is determined by the indifference condition:

0 = E[UC |P τC (b)]−E[US |P τC (b)] (69)

=
(

1
P τC (b)

− (φα + 1−φ)
)(
L−φκ+ P τC (b)R(1−L)

)
+φ

(
α − (φα + 1−φ)

)
. (70)

Rearranging the right hand side of (70) obtains

Υ (P τC (b)) := (φα + 1−φ)R(1−L)︸                   ︷︷                   ︸
:=a2

P τC (b)2

+
(
(φα + 1−φ)L−R(1−L)−φακ

)
︸                                    ︷︷                                    ︸

:=a1

P τC (b)

−(L−φκ)︸     ︷︷     ︸
:=a0

. (71)

Clearly, Υ (0) < 0 < Υ (1), meaning that Υ (·) has a unique root in (0,1).46 So, P τC (b) = −a1+
√
a2

1−4a0a2
2a2

.

Recall that P ∗C(b) = −ã1+
√
ã2

1−4a0a2
2a2

where ã1 > a1 (see Proposition 1). Since
∂P ∗C(b)
∂ã1

< 0 thus
P τC (b) > P ∗C(b), finishing the proof of the lemma.

Volume of complex banks. Since the equilibrium price increases, the market-clearing con-
dition in equation (10) implies that the volume of complex banks decreases, or V τ < V ∗.

46Note that Υ (1) = φ
(
L+R(1−L)−κ

)
(α − 1) > 0 and Υ (0) = −(L−φκ) < 0.

59



Welfare. Finally, we show the policy improves welfare. Recall that welfare is defined as the
expected utility of representative depositor, which is given by

Wτ = V τE[UC |P τC (b)] + (1−V τ )E[US |P τC (b)]

= (1−V τ )

(1− η)

µb (φακ+
L−φκ
P τC (b)

+R(1−L)
)

+ (1−µb)
(
φα + 1−φ

)
L


+V τ

(1− η)
(
φα + 1−φ

)(
L+ (1−L)P τC (b)µbR

)
+ η

(
φακ+L−φκ+µgR(1−L)

)
. (72)

Substituting the market-clearing condition in (10) into (72) obtains

Wτ = R(1−L)
(
ηµg + (1− η)µb

)
+
(
η + (1− η)

(
φα + 1−φ

))
L+ ηµgφ(α − 1)κ

+φ(α − 1)κ

η(1−µg) + (1−V τ )µb(1− η)(1−φ)

. (73)

Now, recall that welfare in the original equilibrium is

W = R(1−L)
(
ηµg + (1− η)µb

)
+
(
η + (1− η)

(
φα + 1−φ

))
L+ ηµgφ(α − 1)κ

+φ(α − 1)

V ∗ηκ(1−µg) + (1−V ∗)
(
η(1−µg)L+ (1− η)µg(1−φ)κ

). (74)

Then finally, equation (73) minus equation (74) is(1−V ∗)η(κ −L)(1−µg) + (V ∗ −V τ )︸     ︷︷     ︸
>0

(1−φ)µb(1− η)κ

(α − 1)φ > 0.

Thus, the redistributive policy always improves welfare compared to the original equilib-
rium.

Proof of Proposition 12

Proposition 12. If L < L̂ and ν is sufficiently large, then the constrained-efficient volume of com-
plex banks can be implemented via QE with commitment. However, the tax that implements the
constrained-efficient volume of complex banks may not be welfare-optimizing. If L > L̂, then neither
QE nor the ex-ante insurance policy can implement the constrained-efficient volume of complex
banks.

Proof. Case 1: L < L̂. In this case, the constrained-efficient volume of complex banks is greater
than the equilibrium (Proposition 4). Note that the expression for the volume of complex
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banks V (τ) in equation (64) is increasing and unbounded in the tax τ . Therefore, there is a
tax level for which V (τ) is equal to the volume of complex banks in the planner solution VW ,
which can be implemented as long as ν is sufficiently high.

Case 2: L > L̂. In this case, the constrained-efficient volume of complex banks is
less than the equilibrium (Proposition 4). QE without commitment cannot implement the
constrained-efficient volume of complex banks because it has no effect on the volume of
complex banks. QE with commitment cannot implement the constrained-efficient volume of
complex banks because the investment in complex assets is increasing in the tax (Proposition
9). The redistributive transfers policy described in Section 4.2 also cannot implement the
constrained-efficient volume of complex banks. To see this, note that the redistributive tax
only affects the bond price in bad times through the volume of complex banks. Therefore it
suffices to check whether it can implement the price in the planner solution, which is equal
to PWC (b) = 1 for L > L̂. However, the proof of Proposition 11 shows that the price determined
by the tax is strictly between 0 and 1.

Proof of Proposition 13

Proposition 13. Denote by ∆(PC(b)) = E[UC |PC(b)]−E[US |PC(b)] the relative benefit of investing
in complex assets without the tax as expressed in equation (9), by VW the constrained-efficient
volume of complex banks, and by PWC (b) the complex-asset price in bad times for the constrained-
efficient allocation. Then the following hold:

• If L < L̂ and −∆(PWC (b))VW

ηµgR(1−L) < R(1−L)−(κ−L)
R(1−L) , then the constrained-efficient volume of complex

banks can be implemented by transferring from simple to complex banks via a tax at the rate

τ∗ =
−∆(PWC (b))VW

ηµgR(1−L) .

• If L > L̂ and ∆(PWC (b))(1−VW )
ηµgR(1−L) <

µgR(1−L)−(L−κ)
µgR(1−L) , then the constrained-efficient volume of complex

banks can be implemented by transferring from complex to simple banks via a tax at the rate

τ∗ =
∆(PWC (b))(1−VW )

ηµgR(1−L) .

Additionally, the tax level that implements the constrained-efficient volume of complex banks also
maximizes welfare.

Proof. Note that the tax only affects the bond price in bad times through the volume of com-
plex banks. Therefore it suffices to check whether it can implement the price in the planner
solution PWC (b).

First consider the case where L < L̂. For a tax level τ , bond price P τC (b), and volume of
complex banks V τ , the expected return for a complex bank is

E[UC |P τC (b),V τ ] = η
(
φακ+L−φκ+µgR(1−L)

(
1 +

1−V τ

V τ τ

))
+ (1− η)

(
φα + 1−φ

)(
L+ P τC (b)µbR(1−L)

)
,
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and the expected return for a simple bank is

E[US |P τC (b),V τ ] = η
(
µg(ακφ+L−κφ+R(1−L)(1− τ)) + (1−µg)(αφ+ 1−φ)L

)
+ (1− η)

µb(φακ+
L−φκ
P τC (b)

+R(1−L)
)

+ (1−µb)(φα + 1−φ)L

.
The bond price is determined by the indifference condition:

0 = E[UC |P τC (b),V τ ]−E[US |P τC (b),V τ ]

+ η
[
(1−µg)φ(κ −L)(α − 1)−

µgR(1−L)

V τ τ

]
+ (1− η)µb

[
(αφ+ 1−φ)(L+ PC(b)µbR(1−L))−

(
ακφ+

L−κφ
PC(b)

+R(1−L)
)]

+ (1− η)(1−µb)(αφ+ 1−φ)PC(b)µbR(1−L)

= ∆(P τC (b)) +
ηµgR(1−L)

V τ τ. (75)

Therefore, the tax level that is consistent with the constrained-efficient price PWC (b) and vol-
ume VW is given by

τ∗ =
−∆(PWC (b))VW

ηµgR(1−L)
.

The parametric assumptions for this proposition ensure that this tax can be implemented
while maintaining an equilibrium of the form described in Proposition 1. To show this, we
have to check that the tax does not induce a run for banks that invest in the taxed asset.

The incentive-compatibility condition for normal depositors of simple banks to with-
draw late requires

L−κφ+R(1−L)(1− τ)
1−φ

> κ

⇐⇒ τ <
R(1−L)− (κ −L)

R(1−L)
.

This is satisfied by τ∗ by assumption in the proposition. It is simple to show that it is incentive
compatible for both simple and complex banks to continue to offer Rd = κ. Specifically, the
local optima for all of the cases in the proof of Lemma 2 are unaffected by the tax as well as
the inequality in (37).

It is straightforward to check that welfare only depends on the tax through its effect
on the volume of complex banks and the bond price in bad times. Therefore, the welfare-
optimizing tax coincides with the tax that implements the constrained-efficient volume of
complex banks.

The case where L > L̂ follows analogously.
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ONLINE APPENDIX—NOT FOR PUBLICATION

A Repo-market Interpretation

The interbank market for direct asset sales can also be interpreted as a repo market. To see
this, suppose that, instead of selling assets, banks can sell bonds. Denote the state-dependent
price for a bond backed by complex assets by PC(ω) and the price of a bond backed by simple
assets with a high return by PS(ω). Note that simple assets with a low return cannot be used
as collateral since they are publicly observed to be worthless. The repo rate is the rate of
return 1

Pθ(ω) . The haircut hθ(ω) is defined as the percentage difference between the market
value of collateral and the cash that is exchanged at the start of a repo. We assume that the
haircut is equal to hθ(ω) = 1− Pθ(ω), which implies that a lender holds 1 dollar of collateral
for each bond purchased. In that case, the return from investing in either type of repo is
equal to the repo rate, regardless of whether the borrower defaults. The rest of the model
follows as in the original presentation except that the repo interpretation has the additional
feature of a haircut.

B Calibration to the COVID-19 Crisis

This section describes the results when the model is calibrated to the COVID-19 crisis rather
than the GFC.

We calibrate the parameters of the model in a manner analogous to the description in
Section 3:

• The long-term return R is calibrated to match 1.063, which is approximately the mean
of the 30-year fixed-rate mortgage rate in March 2020 (1.0345)47 and the yield of high-
yield bonds in March 2020 (1.092).48

• The short-term interest rate RD = κ is calibrated to match 1.0065, which is the federal
funds rate in March 2020.49

• The liquidity level L is calibrated to match 0.203, which is approximately the ratio
of total liquid assets to total assets based on 2019Q4 FR Y-9C filings for bank hold-
ing companies. Liquid assets include cash and balances due from depository insti-
tutions, federal funds sold, securities purchased under agreement to resell, Treasury
securities, and government agency debt and mortgage-backed securities (not including
government-sponsored agency (GSE) debt and MBS).

• The bond price in bad times P ∗C(b), which is also the ratio of the bond price in bad times
to the bond price in good times, is calibrated to match 0.988, which corresponds to

47Source: Freddie Mac, 30-Year Fixed Rate Mortgage Average in the United States [MORTGAGE30US], re-
trieved from FRED, Federal Reserve Bank of St. Louis.

48Source: Ice Data Indices, LLC, ICE BofA US High Yield Index Effective Yield [BAMLH0A0HYM2EY], re-
trieved from FRED, Federal Reserve Bank of St. Louis.

49Source: Board of Governors of the Federal Reserve System (US), Federal Funds Effective Rate [FEDFUNDS],
retrieved from FRED, Federal Reserve Bank of St. Louis.
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the ratio of the 3-month U.S. dollar London interbank offer rate (LIBOR)-Effective fed-
eral funds rate (EFFR) spread at its peak in April 1, 2020 (138 basis points, which
corresponds to a price of 1/1.0138 ≈ 0.986) to its level just before the onset of the
COVID-19 crisis on February 3, 2020 (15 basis points, which corresponds to a price
1/1.0015 ≈ 0.9985).50

• The fraction of complex assets V ∗ is calibrated to match 0.157, which is approximately
the ratio of complex assets to total illiquid assets based on 2019Q4 FR Y-9C filings.
Illiquid assets are defined as assets minus liquid assets, as given above. Complex assets
include GSE MBS, non-agency MBS, asset-backed securities, and structured financial
products.

Table B.1 presents the calibrated parameters, and Table B.2 compares the empirical and
model-generated values for the observables. Unlike the calibration of the model for the GFC
(see Section 3), the threshold level of liquidity L̂ = 0.231 is greater than L = 0.203, which
implies that there is underinvestment of complex assets in equilibrium.

Table B.1: Calibrated parameters.

Parameter Value

High return (R) 1.063
Liquidity ratio (L) 0.203
Short-term return (κ) 1.006
Probability of good state (η) 0.999
Probability of high return in good state (µg) 0.999
Probability of high return in bad state (µb) 0.775
Fraction of liquidity-shocked depositors (φ) 0.007
Marginal utility from liquidity shock (α) 6.23

Table B.2: Comparison of empirical and model-generated variables.

Variable Empirical Model

High return (R) 1.063 1.063
Liquidity ratio (L) 0.203 0.203
Short-term return (κ) 1.006 1.006
Price in bad times (P ∗C(b)) 0.988 0.963
Fraction of complex assets (V ∗) 0.157 0.194

The remaining results are qualitatively similar to the version of the model calibrated to
the GFC:

50LIBOR source: ICE Benchmark Administration Limited (IBA), 3-Month London Interbank Offered Rate
(LIBOR), based on U.S. Dollar [USD3MTD156N], retrieved from FRED, Federal Reserve Bank of St. Louis. EFFR
source: Board of Governors of the Federal Reserve System (US), Federal Funds Effective Rate [FEDFUNDS],
retrieved from FRED, Federal Reserve Bank of St. Louis.
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• Figure B.1 shows that the variation in the optimal L with respect to the long-run return
R and the probability of normal times η is similar to Figure 2.

• Figure B.2 shows that the comparative statics with respect to L are similar to Figure 3.

• Figure B.3 shows that the effect of QE without commitment is similar to Figure 4.

• Figure B.4 shows that the effect of QE with commitment is similar to Figure 5.

• Figure B.5 shows that the effect of a redistributive policy is similar to Figure 6.

• Figure B.6 shows that the comparison of the welfare effects of the different policies is
similar to Figure 8.

Figure B.1: This panel shows the optimal liquidity level that maximizes welfare in the plan-
ner solution L∗ as a function of the long-term return R (left) and the probability of the good
state η (right) (COVID-19 crisis calibration).

1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11

R (Long-term return)

0.168

0.17

0.172

0.174

0.176

0.178

0.18

L
m

in
 (

M
in

im
a

l 
li

q
u

id
it

y
 l

e
v

e
l)

0.9986 0.9988 0.999 0.9992 0.9994 0.9996 0.9998 1

 (Probability of good state)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
m

in
 (

M
in

im
a

l 
li

q
u

id
it

y
 l

e
v

e
l)

65



Figure B.2: Variation in L (COVID-19 crisis calibration). This figure shows how the bond
price in bad times, the gross rate of return on complex-asset purchases, the haircut, the vol-
ume of complex banks, and welfare vary with L in the equilibrium, the planner solution, and
the difference between them.
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Figure B.3: Variation in L in QE without commitment (COVID-19 crisis calibration). This
figure shows how the bond price in bad times, the gross rate of return on complex-asset
purchases, the haircut, the volume of complex banks, and welfare vary with L in equilibrium,
under optimal QE without commitment, and the difference between them.
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Figure B.4: Variation in L in QE with commitment (COVID-19 crisis calibration). This figure
shows how the bond price in bad times, the gross rate of return on complex-asset purchases,
the haircut (or “hair.”), the volume of complex banks, and welfare vary with L in equilibrium,
under optimal QE with commitment (“Policy” or “Pol.”), and the difference between them.
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Figure B.5: Variation in L in the redistributive policy (COVID-19 crisis calibration). This
figure shows how the bond price in bad times, the gross rate of return on complex-asset
purchases, the haircut, the volume of complex banks, and welfare vary with L in equilibrium,
under the redistributive policy, and the difference between them.
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Figure B.6: Comparison of welfare gains from policy (COVID-19 crisis calibration). This
figure shows welfare as a function of the liquidity level L in the baseline equilibrium with
income shocks as well as the improvement in utility associated with QE without commitment
(“Surp. QE”), QE with commitment (“Pred. QE”), and the ex-ante insurance policy.
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C Additional Empirical Findings

This section presents evidence that the LCR has been associated with higher interbank lend-
ing prices during crises by comparing the great financial crisis (GFC), which occurred before
the introduction of the LCR, with the COVID-19 crisis, which occurred afterwards. Finally,
we show that the LCR was associated with an amplified effect of QE on MBS prices.

C.1 The Effect of Liquidity Regulation on Interbank Lending Prices

Recall that the model shows that higher liquidity requirements are associated with higher
complex-asset prices in bad times (see Proposition 3 and Figure 3). Consistent with this
result, it can be seen from Figure C.1 that the GFC in 2008, the last crisis preceding the intro-
duction of the LCR, was associated with a more dramatic increase in the London interbank
offer rate (LIBOR)-effective federal funds rate (EFFR) spread, which is a measure of concerns
about credit risk and liquidity risk in short-term, unsecured interbank lending markets, com-
pared to the COVID-19 crisis in 2020, the first crisis following the introduction of the LCR
in the U.S. This is consistent with the model. However, we acknowledge that it is difficult
to disentangle the effect of the LCR from that of various other differences between the two
crises, such as the origins of the crises arising from either the financial system or the real
economy, their magnitudes, and other policy responses.

The remainder of this section presents further evidence that is consistent with this re-
sult by comparing the 3-month U.S. dollar LIBOR to the EFFR spread during stock market
corrections, which is a proxy for turbulent times in financial markets, before versus after the
introduction of the LCR. Stock market corrections are periods over which the S&P 500 de-
clines by at least 10% from peak to trough. Precise dates are obtained from Yardeni Research,
Inc.

Figure C.1 shows the LIBOR-EFFR spread from January 2005 to April 2020 as well
as periods with stock market corrections. Table C.1 shows the mean LIBOR-EFFR spread
during stock market corrections before versus after the introduction of the LCR, as well as
the t-statistic for a difference-of-means test. The average LIBOR-EFFR spread during stock
market corrections experiences a drop after the introduction of the LCR that is statistically
significant at the 5% level. This finding is consistent with the calibrated model, although
caveats about interpreting this observation causally still apply because we cannot rule out
confounding effects due to other changes in the financial system that have occurred during
this time period.
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Figure C.1: The LIBOR-EFFR spread. This figure shows the 3-month U.S. dollar LIBOR to
effective federal funds rate (EFFR) spread from January 2000 to April 2020. Periods exhibit-
ing stock market corrections are indicated by grey shading, and the proposal of the LCR in
2013Q4 is indicated by the dashed line. Stock market corrections are periods over which
the S&P 500 declines by at least 10% from peak to trough. Precise dates are obtained from
Yardeni Research, Inc.
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Table C.1: Average LIBOR-EFFR spread. This table shows the average 3-month U.S. dollar
LIBOR to effective federal funds rate spread during stock market corrections since the year
2005 that occurred either before or after the proposal of the LCR in 2013Q4. It also shows
the t-statistic from a difference in means test comparing observations before vs after the in-
troduction of the LCR. Stock market corrections are periods over which the S&P 500 declines
by at least 10% from peak to trough. Precise dates are obtained from Yardeni Research, Inc.

Before LCR After LCR t-statistic

0.709 0.270 -8.936
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C.2 The Effect of Liquidity Regulation on QE

Recall that the model predicts that quantitative easing (QE) increases interbank lending
prices (Proposition 7 and Proposition 9). This is consistent with empirical evidence showing
that QE has been associated with decreased rates of return on assets used as collateral in inter-
bank loans, such as mortgage-backed securities (see Krishnamurthy and Vissing-Jørgensen,
2011, and Figure C.2a for the GFC, and Figure C.2b for the COVID-19 crisis). The calibrated
model shows that tightening liquidity requirements can amplify the effect of QE on inter-
bank lending prices, depending on whether it is implemented without commitment (Figure
4) or with commitment (Figure 5). This subsection presents evidence that MBS yields were
more responsive to QE announcements after the implementation of the LCR compared to
before the implementation of the LCR, consistent with QE with commitment. However, we
acknowledge that it is difficult to attribute this difference solely to the LCR since it could also
reflect other differences between the two crises, such as the magnitude of the QE response
and the market’s confidence in the efficacy of QE.

Figure C.2: The effect of QE announcement dates on MBS yields. Figure (a) shows 15- and
30-year yields, in basis points, of mortgage-backed securities (MBSs) around announcement
dates for QE1 during the great financial crisis, as indicated by the dashed lines. The 15-year
yield is the average of the following MBS yield indices from Bloomberg: MTGEGNJO, MT-
GEFNCI, and MTGEFGCI. The 30-year yield is similarly the average of the following fields:
MTGEGNSF, MTGEFNCL, MTGEFGLM. Figure (b) similarly shows MBS yields around QE
announcement dates during the COVID-19 crisis.
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Following the methodology in Krishnamurthy and Vissing-Jørgensen (2011), we mea-
sure the effect of QE using the change in MBS yields within a 2-day window around QE an-
nouncement dates.51 We average yields for 15-year and 30-year current-coupon MBS backed
by Ginnie Mae, Fannie Mae, and Freddie Mac.52 To assess the effect of QE on MBS yields be-

51Specifically, for each announcement date, we consider the difference in the last price on the trading day
after the announcement date minus the last price on the trading day before the announcement date.

52Specifically, the 15-year yield is the average of the following MBS yield indices from Bloomberg: MTGEG-
NJO, MTGEFNCI, and MTGEFGCI. The 30-year yield is similarly the average of the following fields: MTGEG-
NSF, MTGEFNCL, MTGEFGLM.
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fore the implementation of the LCR, we focus specifically on QE1 since it included purchases
of MBS. We consider the same five dates as in Krishnamurthy and Vissing-Jørgensen (2011).
To assess the effect of QE on MBS yields after the implementation of the LCR, we consider
the QE announcements on March 15, 2020 and March 23, 2020 in response to the COVID-19
crisis. On March 15, the Federal Reserve announced that it would purchase $500 billion in
Treasuries and $200 billion in MBS. On March 23, the Federal Reserve revised this plan, and
announced that it would buy an indefinite volume of Treasuries and MBS in order to support
the smooth functioning of the markets.

Table C.2 presents the findings. The average effect of QE on MBS yields was greater
during the COVID-19 crisis than during the GFC. This is consistent with our result that the
effect of QE with commitment on the interbank complex-asset price in bad times is increasing
in the tightness of liquidity requirements (Figure 5).

Table C.2: Effect of QE on MBS yields. This table shows the change in 30-year and 15-year
mortgage-backed securities (MBS) yields in basis points for a 2-day window around each QE
announcement date. For each announcement date, we consider the difference in the last price
in the trading day after the announcement date minus the last price in the trading day before
the announcement date. The 15-year yield is the average of the following MBS yield indices
from Bloomberg: MTGEGNJO, MTGEFNCI, and MTGEFGCI. The 30-year yield is similarly
the average of the following fields: MTGEGNSF, MTGEFNCL, MTGEFGLM.

Date 30-Year 15-Year

Before LCR

Nov. 25, 2008 -72 -88
Dec. 1, 2008 -14 12
Dec. 16, 2008 -26 -16
Jan. 28, 2009 31 20
Mar. 18, 2009 -27 -16
Average -21.6 -19.8

After LCR

Mar. 15, 2020 -32 -33
Mar. 23, 2020 -39 -73
Average -35.5 -53
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