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The vast majority of firms issue debt. In some cases, like in most start-up firms, debt is

the only external source of financing. A large theoretical literature has therefore aimed to

understand when debt contracts are optimal. Most justifications of debt are based on moral

hazard. In a costly state verification framework, Townsend (1979) and Gale and Hellwig (1985)

show that debt contracts minimize audit costs while inducing truthful reporting of the firm’s

output. In a model where the entrepreneur can affect both the mean and the dispersion

of output, Hébert (2018) shows that debt is optimal because it is the least risky security.

Hart and Moore (1998) show that collateralized debt allows for external funding even when

the firm’s output is not contractible and can be diverted by the entrepreneur. When output

is contractible, Innes (1990) demonstrates that debt is the optimal contract if the manager

is protected by limited liability and investors’ payoff cannot be decreasing in output (the

monotonicity constraint). Intuitively, limited liability prevents investors from punishing the

manager for low output, so they instead incentivize him by maximizing his rewards for high

output. Due to the monotonicity constraint, the manager cannot gain more than one-for-one.

He is thus the residual claimant, receiving equity; investors receive debt.

These frameworks assume that output is the only signal of the agent’s effort. This assump-

tion seems to be critical in generating debt as the optimal contract. When output q is lower

than a threshold q∗, the principal concludes that the agent has shirked and pays him zero – un-

der a debt contract, q∗ is the face value of debt and the agent’s equity is worthless if firm value

q is below it. In reality, principals have access to multiple additional signals of performance,

such as sales, profits, market share, credit ratings, or peer performance. If these signals are

sufficiently indicative of effort, it may seem optimal to pay the agent a strictly positive amount

even if q < q∗, and so debt is no longer the optimal contract. Similarly, a negative signal may

mean it is optimal to pay the agent less than the residual even if q > q∗.

This paper studies whether and how the optimal contract changes if the principal has access

to a signal s of effort in addition to output q. The signal could affect the optimal contract in

two ways. First, debt might no longer be the optimal contract. Debt is “bang-bang” in that

the agent receives the lowest possible amount (zero) below a threshold, and the highest possible

amount (the residual) above. It may seem that even an infinitesimally informative signal will

perturb the optimal contract so that the agent’s payoff optimally lies between the extremes.

In contrast, we show that debt remains the optimal contract even under strictly informative

signals – and even if the signals are informative everywhere, i.e. provide information about

effort regardless of the output level.

Second, the signal could affect the optimal contract by changing the threshold q∗s . Then, the

contract becomes performance-sensitive debt, where the face value depends on the signal and
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so it is denoted q∗s . For example, a signal that indicates high effort (such as a high credit rating)

could lower q∗ and increase the agent’s payoff. Indeed, Holmström’s (1979) informativeness

principle showed that any informative signal has value, i.e. will change the contract. However,

we show that a signal may be informative almost everywhere, yet have no value – i.e. affect

neither the form of the contract nor the face value of debt. The difference from Holmström

(1979) is that there are no binding contracting constraints in his model, and so the principal can

always make use of a signal by changing the contract in response. However, when contracting

constraints bind, the contract cannot change in response to the signal. If q < q∗ and the signal

indicates that the manager has shirked (i.e. low q is due to low effort rather than bad luck),

the principal cannot use the signal to reduce the payment since the manager is receiving zero

anyway: the limited liability constraint binds. Likewise, for q > q∗, the principal cannot use

the signal to increase the payment since the monotonicity constraint binds.

We derive a new necessary and sufficient condition for a signal to have value under con-

tracting constraints. We show that a signal only has value if it affects the face value of debt.

In turn, the face value of debt depends on the likelihood ratio of the event q ≥ q∗ – in contrast

to typical likelihood ratios which concern a single output level. Intuitively, with a binding

monotonicity constraint, changing the debt repayment changes the payment for all q ≥ q∗.

Thus, a signal only has value if it affects the likelihood ratio that q ≥ q∗, i.e. is informative

about whether output exceeding the face value is the outcome of effort or luck. This is a much

stronger condition than in Holmström (1979): even if a signal is informative almost everywhere,

it has no value if it is not informative about this specific event.

Finally, we study how a signal adds value if it is informative – i.e. how debt should be

sensitive to performance. The informativeness principle studies whether a signal should be

incorporated into a contract, but not how since, in general, it is impossible to solve for the

optimal contract in closed form. We show that there are three channels through which a

signal may affect the debt contract. First, it may be individually informative about effort.

A signal that individually indicates high effort will optimally increase the agent’s payment;

under a debt contract, this is achieved by lowering the face value q∗. Second, the signal may

indicate that the location of the output distribution has shifted. A signal that indicates that

the output distribution has shifted to the right (e.g. good peer performance) should lower the

agent’s payment for any given output level, which is achieved by increasing q∗. Third, the

signal may indicate that output is a more precise measure of effort, either because effort has

a greater impact on output, or because output volatility is low. In general, greater precision

increases the pay-performance sensitivity of the optimal contract. However, since the slope

of the contract is capped at 1 for q > q∗, this increase in sensitivity is instead achieved by
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lowering the face value q∗ as doing so raises the “delta” of the agent’s equity.

1 The Model

There are two risk neutral parties, a principal (firm), and an agent (manager). The manager

exerts an unobservable effort e ∈ [0, ē]. As is standard, effort can be interpreted as any action

that improves output but is costly to the manager, such as working rather than shirking,

choosing projects that generate cash flows rather than private benefits, or not extracting rents.

The manager’s cost of effort C(·) is strictly increasing, strictly convex, twice continuously

differentiable in [0, ē), with C(0) = C ′(0) = 0 and lime↗ēC
′(e) = +∞.

Effort affects the probability distribution of output q and a signal s, which are both observ-

able and contractible. Output is continuously distributed with full support on (q,+∞), where

q is either −∞ or 0. To ensure that an optimal contract exists, we assume that the signal is

discrete, s ∈ {s1, ..., sS}. This formulation allows the signal to have one or multiple dimensions

(i.e., signals can be vectors).

The signal is distributed according to the probability mass function φse := Pr (s̃ = s|ẽ = e),

which is strictly positive and twice continuously differentiable in e. Output is distributed

according to the cumulative distribution function F (q|e, s), which is twice continuously dif-

ferentiable in q and e and has a strictly positive density f(q|e, s). The joint distribution of

output and the signal is f (q, s|e) = φsef (q|e, s). We assume that the likelihood ratio of output,
∂f
∂e

(q|e,s)
f(q|e,s) , is strictly increasing in output q (“MLRP”). The likelihood ratio associated with the

event (q̃ = q, s̃ = s) is:

LRs(q|e) :=
∂φsê/∂e

φsê
+

∂f
∂e

(q|e, s)
f(q|e, s)

(1)

Consistently with any standard unbounded distributions, we assume that limq↗+∞
∂f
∂e

(q, s|e) =

0, which implies that debt with arbitrarily high face value has low effort incentives. More-

over, when the support is unbounded below, we assume that limq↗+∞ LRs(q|e) = ∞, and

limq↘−∞ LRs(q|e) = −∞ for all s. These assumptions simplify expressions by ruling out

corner solutions, but are not important for our results.

The firm has full bargaining power and offers the manager a schedule of payments {ws (q)}
conditional on each realization of (q, s). As in Innes (1990), both the firm and the manager

are protected by limited liability. Because we allow output to be negative, the limited liability

constraints can be written as:

0 ≤ ws(q) ≤ max{0, q}.
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Limited liability on the manager’s side requires payments to be non-negative. Limited liability

on the firm’s side means that the firm cannot pay more than the entire output. Since payments

cannot be negative, limited liability on the firm’s side also implies that the firm cannot be forced

to make payments when output falls below zero.1

We follow Grossman and Hart (1983) and separate the principal’s problem into two stages.

The first stage determines the optimal contract and the associated cost of implementing each

effort. Given this cost, the second stage determines which effort to implement. To induce effort

ê, the firm solves the following program:

min
{ws(q)}

∑
s

φsê

∫ ∞
q

ws (q) f(q|ê, s)dq (2)

subject to
∑
s

φsê

∫ ∞
q

ws (q) f(q|ê, s)dq ≥ C(ê), (3)

ê ∈ arg max
e

∑
s

φse

∫ ∞
q

ws (q) f(q|e, s)dq − C(e), (4)

0 ≤ ws (q) ≤ max{0, q}, (5)

q − ws (q) non-decreasing in q. (6)

The firm minimizes the expected payment (2) subject to the manager’s individual rationality

constraint (“IR”) (3), incentive compatibility constraint (“IC”) (4), limited liability constraints

(“LL”) (5), and a monotonicity constraint with respect to output (6). The monotonicity

constraint is the final ingredient of the Innes (1990) model. It means that a dollar increase in

output cannot increase the payment to the manager by more than a dollar (else he would inject

his own money into the firm to increase output), or equivalently the payoff to the principal

cannot decrease in output (else she would exercise her control rights to “burn” output).

With C(0) = 0, the IC (4) and LL (5) imply that the IR (3) is automatically satisfied,

and so we ignore it in the analysis that follows. To study a nontrivial incentive problem, we

consider ê > 0 (with ê = 0, the optimal contract is simply ws(q) = 0 for all {q, s}). To ensure

that an incentive compatible contract exists, we assume:

∑
s

∫ ∞
0

q
∂f

∂e
(q, s|ê)dq > C ′(ê). (7)

Note that the best contract that can be offered to the agent pays the entire output whenever

1When output can be negative, bilateral limited liability requires a third party – e.g., a creditor, supplier,
or the government – to bear the loss.
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it is positive. The previous condition states that offering this contract is enough to incentivize

the agent to choose an effort of at least ê. When this condition fails, there is no contract that

induces the agent to choose ê. As in Grossman and Hart (1983), effort levels for which this

condition fails can be treated as having “infinite cost.”

2 Debt Contracts

2.1 When Is Debt Optimal?

As a preliminary result, Lemma 1 below presents a new condition for the validity of the

First-Order Approach (FOA) to the effort choice problem in the above program.2 Let Ke be

defined as:

Ke :=
∑
s

∫ ∞
0

qmax

{
∂2f

∂e2
(q, s|e), 0

}
dq.

Lemma 1 Suppose that Ke < C ′′(e) ∀e ∈ (0, ē). Then the FOA is valid.

The condition in Lemma 1 relies on the contracting constraints and the associated bounds

on the payment ws(q) to the manager to derive an upper bound on the convexity of the expected

payment with respect to effort, Ke. The FOA is then valid if the cost of effort is more convex

than this upper bound. We henceforth assume that the condition in Lemma 1 holds. Let

LRs (q) :=
∂φsê/∂e

φsê
+

∫∞
q

∂f
∂e

(z|ê, s)dz∫∞
q
f(z|ê, s)dz

(8)

denote the likelihood ratio associated with the event (q̃ ≥ q, s̃ = s). The likelihood ratio

comprises two terms. The first,
∂φsê/∂e

φsê
, captures how individually informative the signal is about

effort. For example, if s is profits, high profits indicate high effort. The second,
∫∞
q

∂f
∂e

(z|ê,s)dz∫∞
q f(z|ê,s)dz ,

captures the effect of effort on the output density conditional on the signal not just at the

output realization q, but over all outputs greater than q. For example, if the signal s is peer

firm performance, this likelihood ratio will be lower if peer performance is strong.

In Innes (1990), without an additional signal s, the principal receives debt and the agent

receives equity. The manager receives zero if output is less than the face value of debt q∗s ,

and the residual q − q∗s otherwise. The intuition is as follows. Due to MLRP, output is most

2Innes (1990) assumes the FOA and gives examples of sufficient conditions for it to hold, such as Rogerson’s
(1985) condition on the convexity of the cumulative distribution function. However, this condition is not
satisfied by many distributions with location and scale parameters, which we use in Section 2.3.
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informative about effort in the tails of the distribution of q. The firm cannot incentivize the

manager in the left tail by giving negative payments (due to limited liability), so it incentivizes

him in the right tail by giving high payments. Under the monotonicity constraint, the maximum

possible incentives involve the manager gaining one-for-one from any increase in output, so he

receives the residual.

With an additional signal s, is it not clear that the optimal contract remains debt. It may

be that, for low outputs, if the signal is sufficiently individually indicative of effort (e.g.
∂φsê/∂e

φsê

is high), it becomes optimal to pay the agent a strictly positive amount, rather than zero as

under a debt contract. Conversely, it may be that, for high outputs, if the signal is sufficiently

individually indicative of shirking, it becomes optimal to pay the agent less than the residual.

However, Proposition 1 below shows that the contract actually remains debt.

Separately, it may seem that we can apply the logic in Innes (1990) signal-by-signal to show

that the optimal contract remains debt in the presence of an additional signal – specifically,

that any feasible initial contract is dominated by debt (i.e. can be replaced by a debt contract

that provides the same incentives at lower cost). This turns out not to be the case. Indeed,

there might not exist a debt contract that provides the same level of incentives as the initial

contract on a signal-by-signal basis. The intuition is as follows. As in the standard Innes model,

for a given signal, increasing the face value of debt decreases the manager’s effort incentives

(by lowering the delta of his equity) and reduces the cost of the contract. However, for a

signal which is individually bad news about effort (
∂φsê/∂e

φsê
is negative), there is a countervailing

effect: increasing the face value of debt reduces the manager’s expected payment for this signal

realization, which encourages him to work harder to avoid this signal. If this second effect

dominates, increasing the face value of debt for a signal that is bad news about effort will

increase incentives. For example, if shirking leads to a low credit rating, and a low credit

rating leads to a high face value of debt, the manager will increase effort to avoid the low

rating.

Proposition 1 The optimal contract is ws(q) = max {q − q∗s , 0}. For interior solutions, debt

repayments {q∗s} are such that LRs (qsi) = LRs

(
qsj
)
, where LRs (q) is strictly increasing in q.

Proposition 1 shows that, with an additional signal of performance, limited liability and

monotonicity continue to bind for any output, so that the optimal contract is still debt. Instead

of affecting the form of the optimal contract, which remains debt, the signal realization affects

the debt repayment. The intuition is as follows. A negative signal means that it is optimal

to pay the manager less, but this reduction can only occur for high output levels where the

payment is strictly positive. Conceptually, this decrease could be achieved by lowering the
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slope of the manager’s pay, but it turns out to be optimal instead to lower the debt repayment.

Due to MLRP, it is more efficient to provide strong incentives for only high output levels than

moderate incentives for a larger range of output levels. Conversely, if output is low, a positive

signal only leads to a strictly positive payment if it raises the likelihood ratio (8) above a

minimum threshold. Due to MLRP, it is efficient to provide the manager with the minimum

possible payment (zero) over a wide range of output levels; thus, a positive signal should lead

to a positive payment only at the top end of this range. Overall, the “incentive zone” – the

subset of outputs where the manager receives a strictly positive payment – depends on the

signal realization. Intuitively, the signal allows the firm to concentrate incentives in states of

the world that are stronger positive signals of effort.

Proposition 1 also shows that the optimal debt repayment depends on the likelihood ratio

of the event q̃ ≥ q conditional on signal s. Note that the relevant likelihood ratio LRs is over

a range of outputs q̃ ≥ q, rather than at a single output level q̃ = q. The firm cannot increase

the payment at a specific output level in isolation without increasing it at all lower outputs, as

this would violate the monotonicity constraint; similarly, it cannot decrease the payment at a

specific output level in isolation without decreasing it at all higher outputs.

This optimal contract is consistent with the financing decisions of both mature firms and

also young firms since they frequently raise debt and the entrepreneur holds levered equity, as

shown by Robb and Robinson (2014) and Hwang, Desai, and Baird (2019). Leary and Roberts

(2010) argue that debt issuance behavior is primarily driven by moral hazard, rather than

information asymmetry.

2.2 When Is Performance-Sensitive Debt Optimal?

With the debt contract derived in Proposition 1, the principal’s only degree of freedom is the

face value of debt q∗s . Thus, the signal realization can only affect the contract via changing the

required debt repayment, as with performance-sensitive debt. Part (i) of Proposition 2 gives

a necessary and sufficient condition under which the contract is independent of the signal, i.e.

q∗s = q∗ ∀s. Part (ii) gives a sufficient condition for the payment to be independent of the

signal, and part (iii) gives a sufficient condition for the debt repayment to optimally be zero.

Proposition 2 (i) The optimal contract is independent of the signal if and only if LRs

(
q∗si
)

=

LRs

(
q∗sj
)

for all si, sj.

(ii) Given output q, the payment ws(q) is independent of the signal if q ≤ mins {q∗s}.
(iii) The debt repayment is zero under signal s if

∂φsê/∂e

φsê
is sufficiently high.
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Part (i) of Proposition 2 asks whether a signal is valuable ex ante – before observing output,

would the principal like to make the contract contingent on the signal? It shows that limited

liability requires us to refine the informativeness principle. A signal has positive value if and

only if it affects the firm’s optimal choice of the face value q∗, since this is the only element

of the contract that the firm will change according to the signal realization (see Proposition

1). It cannot change the contract for q < q∗ because it is already paying zero, nor for q > q∗

because it is already paying the residual. The firm optimally sets the same face value q∗ if and

only if the likelihood ratio that q ≥ q∗ is the same across signals. With a binding IC, q∗ solves

the following equation:

∑
s

φse

∫ ∞
q∗

(q − q∗) ∂f
∂e

(q|e, s)dq = C ′(e).

A signal only has value if it shifts probability mass from below q∗ to above q∗ (or vice-

versa). A signal that redistributes mass within the left tail, or within the right tail, has zero

value. A “smoking gun” indicates that a bad event is due to poor performance rather than bad

luck, but the bad event will likely lead to the agent being fired and being paid zero anyway.3

For instance, investors only noticed that Enron was adopting misleading accounting practices

when it was already going bankrupt.

Proposition 2 has implications for when debt contracts should be performance-sensitive.

In theory, the face value of debt could depend on many signals, but in practice it is often

signal-independent. Proposition 2 potentially rationalizes this practice – even if signals are

informative about effort, they should not enter the contract if they are only informative in

the tails. In addition, Proposition 2 provides conditions under which the repayment should

depend on additional signals, as in performance-sensitive debt – if and only if the signal is

informative about effort conditional on output exceeding the promised repayment. In addition

to studying the optimality of performance-sensitive debt, Proposition 2 also allows us to study

the conditions under which the entrepreneur’s equity claim should depend on performance

milestones, as documented empirically by Kaplan and Strömberg (2003) for venture capital

contracts.4

Part (ii) asks whether a signal is valuable ex post – after observing output, will the payment

3The “smoking gun” could be generated by an audit that is only undertaken upon a bad event, in which
case the signal realization is zero absent a bad event.

4While the original informativeness principle in Holmström (1979) would suggest that contracts should
depend on performance milestones, it does not generally deliver debt and equity as optimal contracts. Kaplan
and Strömberg (2004) find that the debt and equity contracts used in venture capital are determined primarily
by agency problems, not risk-sharing considerations.
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to the agent depend on the signal? In other words, while part (i) asks whether the optimal

contract depends on the signal, part (ii) asks whether the optimal payment depends on the

signal. If output is sufficiently low, the signal has no value since the agent will be paid zero

even under the most favorable signal realization. Thus, even if the signal realization reduced

the optimal face value of debt – i.e. changed the optimal contract – it would not change the

payment as it remains zero. Part (ii) is relevant if signals are costly, and the principal can

observe output before deciding whether to gather the signal.

Part (iii) shows that, if a signal is a sufficiently positive signal of effort, then q∗s = 0.

Intuitively, to provide strong incentives, the principal may be willing to completely forgive the

debt in rare states that are very positive signals of effort. Indeed,
∂φsê/∂e

φsê
will be high when

effort has a strong effect on the probability of observing signal s, and when the probability

φsê of observing signal s is low. Note that the debt repayment could not be zero in a model

without an additional signal, as the principal would never obtain a return in any state. This

also means that the debt repayment may be the same under two different signal realizations,

if they are both sufficiently positive that the optimal debt repayment is zero.

We close with two examples that apply Proposition 2 to a real-world setting. First, we

consider whether contracts should depend on s, a signal of economic conditions. Economic

conditions are informative about effort – for any given level of output, a high s suggests

that the output was due to good economic conditions rather than effort, and so it increases

the likelihood that the manager has shirked. However, Proposition 2 shows that economic

conditions s should only affect the contract if they affect the probability that q > q∗ under

high versus low effort. This will fail to hold if they affect the level of output but not the

probability that output exceeds q∗.5 For example, consider a start-up which is developing a

major new software; the manager’s effort affects the probability that the software is adopted by

the industry. If the software is adopted, q > q∗ (regardless of economic conditions); if it is not

adopted, q < q∗ (again, regardless of economic conditions). Economic conditions could affect

the actual level of q (both if the software is adopted and if it is not), but if they do not affect

the probability that q > q∗, because they do not affect the likelihood that the software will

be adopted, then they should not be included in the contract. In contrast, for an “everyday”

software product, where the probability that q > q∗ does depend on economic conditions (as

well as the manager’s effort), then the face value of debt should depend on economic conditions.

As a second example, consider a firm whose production can break down due to a fault, whose

probability can depend on managerial effort. If it does, then output is below q∗ (regardless of

5It will also hold if they affect the probabilities (that q > q∗ under high and low effort) by the same
proportion.
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economic conditions); if it does not, then q > q∗ (regardless of economic conditions). As in the

previous example, economic conditions could affect the actual level of q (both if production

breaks down and if it does not), but if they do not affect the probability that production

breaks down, then they should not be included in the contract. In contrast, if demand depends

on the state of the economy, rather than a breakdown, then debt should be performance-

sensitive. In the first example, what matters is whether the signal is uninformative about

the upside (developing new software); in this example what matters is whether the signal is

uninformative about the downside (production breaking down).

2.3 How Should Debt Be Performance-Sensitive?

Having derived a condition for performance-sensitive debt to be optimal, we finally study

how debt should be sensitive to performance if this condition is satisfied, thus providing testable

predictions (from a positive perspective), and guidance for contract design (from a normative

perspective). To do so, we now parametrize the output distribution. This allows us to model

the signal realization as affecting the distribution’s parameters, and thus study how the face

value of debt varies with these parameters. Specifically, we consider output distributions with

a scale parameter σs, which can be interpreted as the distribution’s volatility, and a location

parameter hs(e) which, for symmetric distributions such as the normal and logistic, is the

mean. We assume h′s(e) > 0 for all e (higher effort shifts the distribution rightward). For

distributions with location and scale parameters, there exists a function g(·) such that we can

rewrite the density as:

f(q|e, s) ≡ 1

σs
g

(
q − hs(e)

σs

)
. (9)

Without loss of generality, let hs(e) = ξs + ζsΥ(e) and normalize Υ(ê) = 0 and Υ′(ê) = 1, so

that hs(ê) = ξs and h′s(ê) = ζs > 0. We refer to ξs as the equilibrium location parameter and

ζs as the impact parameter; the latter captures the effect of effort on output.

Proposition 3 shows how the signal realization affects the face value of debt. It holds “all

else equal across signals”: we are comparing the face value of debt under two different signal

realizations si and sj that differ along only one dimension (e.g. the scale parameter σs); all

other dimensions are constant. Note that we are not undertaking comparative statics (e.g.

changing σs across all signals) that would change the contracting environment.

Proposition 3 All else equal across signals:

(i) If
∂φ

si
ê /∂e

φ
si
ê

>
∂φ

sj
ê /∂e

φ
sj
ê

, q∗si ≤ q∗sj . Higher individual informativeness decreases the debt

repayment.
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(ii) If ξsi < ξsj , q
∗
si
≤ q∗sj . A higher equilibrium location parameter increases the debt

repayment.

(iii) If ζsi > ζsj , q
∗
si
≤ q∗sj . A higher impact parameter decreases the debt repayment.

(iv) If σsi > σsj and q∗s > max{qPs , ξs}, q∗si ≥ q∗sj . A higher scale parameter increases the

debt repayment if debt repayments are high across signals.

Part (i) is the “individual informativeness effect”. If
∂φ

si
ê /∂e

φ
si
ê

>
∂φ

sj
ê /∂e

φ
sj
ê

, then signal realization

si is individually more indicative of high effort than sj. Thus, to reward managerial effort, the

debt repayment should be lower under si than sj. While it is intuitive that signals that are

individually indicative of effort should affect the face value of debt, parts (ii)-(iv) show that

debt should be performance-sensitive even if the signal is not individually informative about

the manager’s “performance”. This is because the likelihood ratio (8) depends not only on the

individual informativeness of the signal (the first term), but how the signal affects the effort

level that the principal infers from observing output (the second term).

Part (ii) is the “location effect”. If sj is associated with a lower equilibrium location

parameter ξsj than si, then it indicates that the output distribution has shifted to the left.

Due to MLRP, this shift means that achieving any given output level is more indicative of

high effort than low effort. Part (ii) may lead to counterintuitive results, since performance

measures that indicate low effort (such as low credit ratings) typically increase the required

debt repayment. While a low credit rating is indeed a negative individual signal of performance,

it may also shift the output distribution to the left as it restricts the firm’s access to financing.

Thus, achieving a given output is a more positive signal of effort, and so the universal practice

of the debt repayment decreasing in the credit rating may not be optimal.

Parts (i) and (ii) echo the results in the model of Chaigneau, Edmans, and Gottlieb (2020)

who study performance-vesting options – the strike price of the option is analogous to the

face value of debt, and thus affected by the individual informativeness and location effects in

similar ways. However, parts (iii) and (iv) are different. They capture the “precision effect” –

how the signal realization affects the precision of output as a measure of effort. In turn, signal

precision is increasing in the impact parameter ζs and decreasing in the scale parameter σs.

Part (iii) shows that, in states in which the impact parameter is high, the principal wishes

to provide strong incentives, i.e. a high sensitivity of pay to performance. When options are the

optimal contract, as in Chaigneau, Edmans, and Gottlieb (2020), this is achieved by increasing

the number of options. However, under a debt contract, the slope is already at its maximum

of 1 and thus cannot be increased further. Thus, the agent’s payment can only be made more

sensitive to performance by lowering the face value of debt qs, as doing so increases the “delta”
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of her equity. Thus, the incentive zone is always enlarged when impact is higher.

Part (iv), on the effect of the scale parameter, is generally the opposite of part (iii). The

principal wishes to provide weak incentives in states where output volatility is high, which is

achieved by increasing the face value of debt to lower the delta of equity. However, the impact

and scale parameters do not always have opposite effects on the debt repayment, because

the scale parameter changes the equilibrium output distribution but the impact parameter

does not. A higher volatility parameter not only reduces the slope of the likelihood ratio

(similar to a lower impact parameter) but it also spreads out the likelihood ratio, because it

spreads out the output distribution. This second effect goes in the same direction as the first

for q∗s > max{qPs , ξs}, explaining the additional condition in part (iv). However, when debt

repayments are low across signals, it is possible for this second effect to dominate. In this

case – somewhat surprisingly – stronger incentives are provided under more volatile signals

– see Example 1. Intuitively, for low debt repayments, the manager is paid unless output is

sufficiently bad news about effort. When output is more volatile, the level below which output

is sufficiently bad news decreases.

Example 1 Let s be output volatility, with s = h (l) corresponding to high (low) volatility

where σh = 1.1 and σl = 1.0. In all cases, output is normally distributed with a mean of 10, an

impact parameter of 1, and volatility is not individually informative about effort. We consider

the case with a high marginal cost of effort, C ′(ê) = 1, so that debt repayments are low across

signals to provide strong incentives. In this case, the second effect from part (iv) of Proposition

3 dominates, and the debt repayment is lower (i.e. stronger incentives are provided) when

output volatility is higher. The debt contract is displayed in Figure 1.

Our rationale for performance-sensitive debt complements existing explanations. Manso,

Strulovici, and Tchistyi (2010) model performance-sensitive debt as a mechanism to signal

the firm’s growth rate in an adverse selection model; there is no moral hazard. Bhanot and

Mello (2006) and Koziol and Lawrenz (2010) show that performance-sensitive debt deters risk

shifting. While none of these papers model an effort decision, Manso et al. (2010, Section

8) conjecture that performance-sensitive debt “could serve as an additional incentive for the

firm’s manager to exert effort” and Tchistyi (2009) shows that performance-sensitive debt can

deter cash flow diversion. This intuition would suggest that the debt repayment should fall

with signals that are individually indicative of effort (part (i) of Proposition 3). However, it

does not have implications for the equilibrium location, impact, and scale parameters (parts

(ii), (iii) and (iv)).
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Figure 1: Payoff ws(q) as a function of q for high and low output volatility.

Innes (1993) derives the optimal contract when profits (which correspond to q in our setting)

can be decomposed into output and the output price, i.e. the price is an additional signal

that can be used in the contract. He shows that the optimal contract is a price-contingent

commodity bond, which has similarities to performance-sensitive debt; however, the only signal

that he analyzes is price (i.e. one component of output). We consider a broad set of signals,

including signals that are informative about the manager’s effort, and signals that affect the

output distribution in different ways to the price. Bensoussan, Chevalier-Roignant, and Rivera

(2019) model performance-sensitive debt as a solution to debt overhang. Adam and Streitz

(2016) test empirically whether performance-sensitive debt is used to reduce hold-up problems,

which arise from the information the lender acquires over the course of the lending relationship.6

Proposition 3 is an “all else equal” result, which compares two signal realizations that

differ only along one parameter, and holds other parameters constant. In reality, signals may

differ along multiple parameters, and so more than one out of the individual informativeness,

location, and precision effects may be at work. Examples 2 and 3 illustrate such cases.

Example 2 Let s be economic conditions, with s = r corresponding to a recession and s = e an

expansion, with φrê = 0.25, and φeê = 0.75. Economic conditions are individually uninformative

about effort. The firm’s business is procyclical but more volatile in bad times. In a recession,

ξr = 10, ζr = 1, σr = 1.5. In an expansion, ξe = 10.5, ζe = 1, σe = 1. In any case, output is

6Asquith, Beatty, and Weber (2005) also conduct an empirical study of performance-sensitive debt. However,
in their setting, the debt contract only includes either potential increases in the promised repayment, or
decreases in the promised repayment – i.e. debt is performance-sensitive in one direction. In our paper, it is
performance-sensitive in both directions.
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Figure 2: Payoff ws(q) as a function of q in an economic recession and an expansion.

normally distributed. The marginal cost of effort is C ′(ê) = 0.5. The debt contract is displayed

in Figure 2. The scale effect dominates the location effect, so that the debt repayment is higher

in a recession.

Example 3 Let s be economic conditions, with s = r corresponding to a recession, and s = e

an expansion, with φrê = 0.25, and φeê = 0.75. Economic conditions are individually uninfor-

mative about effort. The firm’s business is not cyclical, but it is more volatile in bad times,

and the manager’s effort has a stronger impact in bad times. In a recession, ξr = 10, ζr = 1.5,

σr = 1.1. In an expansion, ξe = 10, ζe = 1, σe = 1. In any case, output is normally distributed.

The marginal cost of effort is C ′(ê) = 0.5. The debt contract is displayed in Figure 3. The

impact effect dominates the scale effect, so that the debt repayment is lower in a recession.

Summing up the results of this section, a signal can affect the face value of debt even if

it is not individually informative about effort. If the signal indicates that the entire output

distribution has improved, such as good industry performance, then all output levels are less

indicative of effort and so the face value rises. If the signal indicates that output is a more

precise measure of effort, such as a high impact parameter or low industry volatility, then

incentives should generally be increased by lowering the face value of debt. However, when the

face value of debt is low, higher volatility can instead reduce the face value of debt, as shown

in Example 1.
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Figure 3: Payoff ws(q) as a function of q in an economic recession and an expansion.

3 Conclusion

This paper shows that, in the presence of limited liability and monotonicity constraints,

the optimal contract remains debt even if the principal has access to additional performance

signals. While it may seem intuitive that a good signal should lead to the agent being paid

even if output is low, and a bad signal should lead to him not being the residual claimant even

if output is high, we show that the signal does not affect the form of the contract, but only the

face value of debt. As a result, Holmström’s (1979) informativeness principle needs to be refined

in the presence of the above constraints – a signal is only valuable if it is informative about

whether output exceeds the face value of debt. If this condition is satisfied, then performance-

sensitive debt is optimal.

We show how the signal should affect the face value of debt. As is intuitive, signals that

individually indicate high effort optimally lower the face value of debt. However, in contrast to

the “performance-sensitive debt” terminology, a signal should affect the face value even if it is

individually uninformative about performance. Instead, such signals are valuable because they

affect the inference that the principal makes about the agent’s effort from observing output.

If the signal indicates that the distribution of output has shifted to the right, a given output

level implies lower effort and the face value rises. If it suggests that output is a more precise

measure of effort, it is optimal to provide stronger incentives, which generally involves a lower

face value of debt.
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1 Proofs

Proof of Lemma 1: The FOA is valid if the following objective function is concave in e:

∑
s

φse

∫ ∞
q

ws(q)f(q|e, s)dq − C(e).

A sufficient condition is: ∑
s

∫ ∞
q

ws(q)
∂2f

∂e2
(q, s|e)dq < C ′′(e) ∀e. (10)

From equation (5), ws(q) ∈ [0,max{0, q}] for all q, s, so that ws(q) = 0 for q ≤ 0. Then, a

sufficient condition for equation (10) is:

∑
s

∫ ∞
0

max

{
q
∂2f

∂e2
(q, s|e), 0

}
dq =

∑
s

∫ ∞
0

qmax

{
∂2f

∂e2
(q, s|e), 0

}
dq < C ′′(e) ∀e. �

Proof of Proposition 1:

We first prove that the likelihood ratio LRs(q) in equation (8) is increasing in q:

d

dq

{
∂φsê/∂e

φsê
+

∫∞
q

∂f
∂e

(z|ê, s)dz∫∞
q
f(z|ê, s)dz

}
=
−∂f
∂e

(q|ê, s)
∫∞
q
f(z|ê, s)dz + f(q|ê, s)

∫∞
q

∂f
∂e

(z|ê, s)dz(∫∞
q
f(z|ê, s)dz

)2 .

(11)

For ∂f
∂e

(q|ê, s) ≤ 0, we have−∂f
∂e

(q|ê, s)
∫∞
q
f(z|ê, s)dz ≥ 0. Moreover, f(q|ê, s)

∫∞
q

∂f
∂e

(z|ê, s)dz >
0 because of MLRP and

∫∞
q

∂f
∂e

(z|ê, s)dz = 0. In sum, the RHS of equation (11) is positive.

For ∂f
∂e

(q|ê, s) > 0, the RHS of equation (11) is positive if and only if:

f(q|ê, s)
∫ ∞
q

∂f

∂e
(z|ê, s)dz ≥ ∂f

∂e
(q|ê, s)

∫ ∞
q

f(z|ê, s)dz

⇔
∫ ∞
q

∂f
∂e

(z|ê, s)
∂f
∂e

(q|ê, s)
dz ≥

∫ ∞
q

f(z|ê, s)
f(q|ê, s)

dz

⇔
∫ ∞
q

[
∂f
∂e

(z|ê, s)
∂f
∂e

(q|ê, s)
− f(z|ê, s)
f(q|ê, s)

]
dz ≥ 0,

which holds because by MLRP we have
∂f
∂e

(z|ê,s)
f(z|ê,s) ≥

∂f
∂e

(q|ê,s)
f(q|ê,s) for any q ≥ z.

The rest of the proof is divided into two parts:
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Step 1. Conditional on each signal realization, the optimal contract is debt.

Step 1.a. This part of the proof adapts the proof technique from Lemma 1 in Matthews (2001)

to a setting with continuous output and an additional signal. Let (W ∗
s )s∈{1,...,S} (henceforth

denoted by (W ∗
s ) for brevity) be a feasible payment schedule that induces effort ê. For a given

signal realization s′, consider an alternative payment schedule which is the same as (W ∗
s ) for

any signal other than s′, and W
qs′
s′ = max{0, q− qs′} for a given s′. The face value qs′ is chosen

so that the payment schedules contingent on signal s′, W ∗
s′ and W

qs′
s′ , have the same expected

payment under effort ê:∫ ∞
q

W ∗
s′(q)f(q, s′|ê)dq =

∫ ∞
q

W qs
s′ (q)f(q, s′|ê)dq. (12)

It is straightforward to show that W
qs′
s′ exists and is unique. We will first show that, for a given

s′, replacing W ∗
s′ by W

qs′
s′ increases effort.

For a given s′, define:

W ∗∗
s,s′(q) :=

{
W ∗
s (q) for s 6= s′

W qs
s (q) for s = s′

. (13)

In what follows we will compare the original payment schedule (W ∗
s ) to the payment schedule(

W ∗∗
s,s′

)
as defined in equation (13). Let eDs′ be an optimal effort for the agent when the payment

schedule is
(
W ∗∗
s,s′

)
instead of (W ∗

s ):

eDs′ ∈ arg max
e∈[0,ē]

∑
s

∫ ∞
q

W ∗∗
s,s′f(q, s|e)dq − C(e).

Since the agent chooses ê when the payment schedule is (W ∗
s ) and eDs′ when it is (W ∗∗

s,s′), we

must have:∑
s

∫ ∞
q

W ∗∗
s (q)f(q, s|eDs′ )dq − C(eDs′ ) ≥

∑
s

∫ ∞
q

W ∗∗
s,s′(q)f(q, s|ê)dq − C(ê),

and ∑
s

∫ ∞
q

W ∗
s (q)f(q, s|ê)dq − C(ê) ≥

∑
s

∫ ∞
q

W ∗
s (q)f(q, s|eDs′ )dq − C(eDs′ ).

Combining these two inequalities, we obtain

∑
s

∫ ∞
q

[
W ∗∗
s,s′(q)−W ∗

s (q)
] [
f(q, s|eDs′ )− f(q, s|ê)

]
dq ≥ 0.
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Using equation (13), this rewrites simply as:∫ ∞
q

[
W

qs′
s′ (q)−W ∗

s′(q)
]

[f(q, s′)− f(q, s′|ê)] dq ≥ 0. (14)

Since both contracts have the same expected value under effort ê by construction, and W
qs′
s′

pays the lowest feasible amount for q < qs′ and has the highest possible slope for q > qs′ , there

exists q̄s′ ≥ qs′ such that

W
qs′
s′ (q)

{
≤
≥

}
W ∗
s′(q) for all q

{
≤
≥

}
q̄s′ . (15)

We will now show by contradiction that ê ≤ eDs′ . Suppose that ê > eDs′ . Then:

0 ≤
∫∞
q

[
W

qs′
s′ (q)−W ∗

s′(q)
] [f(q,s′|eD

s′ )

f(q,s′|ê) − 1
]
f(q, s′|ê)dq

=
∫∞
q

[
W

qs′
s′ (q)−W ∗

s′(q)
] f(q,s′|eD

s′ )

f(q,s′|ê) f(q, s′|ê)dq −
∫ ∞
q

[
WD
s′ (q)−W ∗

s′(q)
]
f(q, s′|ê)dq︸ ︷︷ ︸

=0

=
∫ q̄s′
q

[
W

qs′
s′ (q)−W ∗

s′(q)
]
f(q,s′|eD)
f(q,s′|ê) f(q, s′|ê)dq +

∫∞
q̄s′

[
W

qs′
s′ (q)−W ∗

s′(q)
] f(q,s′|eD

s′ )

f(q,s′|ê) f(q, s′|ê)dq

<
∫ q̄s′
q

[
W

qs′
s′ (q)−W ∗

s′(q)
] f(q̄s′ ,s

′|eD
s′ )

f(q̄s′ ,s
′|ê) f(q, s′|ê)dq +

∫∞
q̄s′

[
W

qs′
s′ (q)−W ∗

s′(q)
] f(q̄s′ ,s

′|eD
s′ )

f(q̄s′ ,s
′|ê) f(q, s′|ê)dq

=
f(q̄s′ ,s

′|eD
s′ )

f(q̄s′ ,s
′|ê)

∫∞
q

[
W

qs′
s′ (q)−W ∗

s′(q)
]
f(q, s′|ê)dq = 0,

where, for every s, the first line divides and multiplies the expression inside the integral in

equation (14) by f(q, s′|ê); the second line adds a term that equals zero (due to equation (12));

the third line splits the integral between outputs lower and higher than q̄s′ ; the fourth line

uses MLRP supposing that ê > eDs′ and equation (15); the fifth line uses equation (12). These

inequalities give us a contradiction (0 < 0), showing that ê ≤ eDs′ .

Step 1.b. For a given initial contract (W ∗
s ), repeat the same procedure for every s ∈

{s1, . . . , sS} which is such that the payment schedule under this signal realization does not

take the form of debt. The resulting contract, which we denote by (WD
s ), is a debt contract,

i.e. the payment schedule takes the form of debt for every s. Since the procedure weakly

increased the implemented effort for every s, the effort implemented by this debt contract, de-

noted by eD, is weakly larger than the effort ê to be induced (this directly follows from the fact

that the LHS of the IC is additive across signals). We now show how to modify this contract

to implement the same effort as the initial contract, ê, at a lower cost. Since the resulting

contract will still be a debt contract, it satisfies the contracting constraints in equations (5)
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and (6).

By assumption, the contract (W ∗
s ) is incentive compatible and the FOA holds, so that:

∑
s

∫ ∞
q

W ∗
s (q)

∂f

∂e
(q, s|ê)dq = C ′(ê). (16)

Let ε be an arbitrarily large constant which satisfies the following two conditions: (i) ε >

max{q1, . . . , qS}, and (ii):

∑
s

∫ ∞
ε

(q − ε)∂f
∂e

(q, s|ê)dq < C ′(ê). (17)

There exists ε that satisfies condition (17) because of the assumption that limq↗+∞
∂f
∂e

(q, s|e) =

0. Consider the subset of {s1, . . . , sS} such that:∫ ∞
ε

(q − ε) ∂f
∂e

(q, s|ê)dq <
∫ ∞
q

W ∗
s (q)

∂f

∂e
(q, s|ê)dq, (18)

and denote this subset by S. S is nonempty (if it were, summing over signals in equation (18)

and comparing with equation (17) would yield the contradiction that equation (16) does not

hold).

For any s ∈ S, we claim and establish below that there exists q̂s ≥ qs which solves:∫ ∞
q̂s

(q − q̂s)
∂f

∂e
(q, s|ê)dq =

∫ ∞
q

W ∗
s (q)

∂f

∂e
(q, s|ê)dq. (19)

For a given s ∈ S, using the IC with the FOA and the results on effort under the two payment

schedules W ∗
s and W qs

s established in Step 1.a. gives the following equation:∫ ∞
qs

(q − qs)
∂f

∂e
(q, s|ê)dq ≥

∫ ∞
q

W ∗
s (q)

∂f

∂e
(q, s|ê)dq (20)

For each signal s ∈ S, there are two cases. If, for a given s, equation (20) holds as an equality,

then set q̂s = qs, so that equation (19) holds. If, for a given s, equation (20) holds as a strict

inequality, then for this s, there is q̂s ∈ (qs, ε) such that equation (19) holds because of the

intermediate value theorem, which for a given s we apply on the interval [qs, ε]. The theorem

applies because of equation (18), equation (20) as a strict inequality, and
∫∞
z

(q − z) ∂f
∂e

(q, s|ê)dq
is a continuous function of z.
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First, if S = {s1, . . . , sS} or if

∑
s̃ /∈S

∫ ∞
ε

(q − ε) ∂f
∂e

(q, s̃|ê)dq +
∑
s̃∈S

∫ ∞
q̂s̃

(q − q̂s̃)
∂f

∂e
(q, s̃|ê)dq = C ′(ê), (21)

where for each s ∈ S, the face value q̂s is implicitly defined in equation (19), then for any s ∈ S
use the payment schedule:

W q̂s
s (q) = max{0, q − q̂s}, (22)

and for any s /∈ S the face value is set at ε.

Second, if S ⊂ {s1, . . . , sS} and the condition in equation (21) does not hold, then let the

signals in S be ordered such that S = {sS1 , . . . , sSN}, with N ≥ 1 (since S is nonempty). Denote

by Sc the complement of S. For any s ∈ Sc, set the face value at ε. If

∑
s̃∈Sc∪{sS1 }

∫ ∞
ε

(q − ε) ∂f
∂e

(q, s̃|ê)dq +
∑

s̃∈S\{sS1 }

∫ ∞
q̂s̃

(q − q̂s̃)
∂f

∂e
(q, s̃|ê)dq < C ′(ê), (23)

then let q̌sS1 be implicitly defined by:

∑
s̃∈Sc

∫ ∞
ε

(q − ε) ∂f
∂e

(q, s̃|ê)dq +
∑

s̃∈S\{sS1 }

∫ ∞
q̂s̃

(q − q̂s̃)
∂f

∂e
(q, s̃|ê)dq +

∫ ∞
q̌
sS1

(
q − q̌sS1

) ∂f
∂e

(q, sS1 |ê)dq = C ′(ê).

q̌sS1 exists and is larger than q̂sS1 by application of the intermediate value theorem to the interval

[q̂sS1 , ε], with equations (23) and (24):

∑
s̃∈Sc

∫ ∞
ε

(q − ε) ∂f
∂e

(q, s̃|ê)dq +
∑
s̃∈S

∫ ∞
q̂s̃

(q − q̂s̃)
∂f

∂e
(q, s̃|ê)dq > C ′(ê). (24)

In turn, we get equation (24) because of equation (16) on the one hand, and on the other hand

because for signals in S, the face value q̂s satisfies equation (19), for signals in Sc the condition

in equation (18) does not hold, and equation (21) does not hold here (see above). If condition

(23) holds, then set the face value of signal sS1 at q̌sS1 , and set the face value at q̂s for other

signals in S. If condition (23) does not hold, then set q̂sS1 = ε, repeat the same steps with

signal sS2 (we omit explicit formulation of these steps for brevity), and continue repeating these
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steps to additional signals in S until, for a signal sSi , with i ≤ N , condition

∑
s̃∈Sc∪{sS1 ,...,sSi }

∫ ∞
ε

(q − ε) ∂f
∂e

(q, s̃|ê)dq +
∑

s̃∈S\{sS1 ,...,sSi }

∫ ∞
q̂s̃

(q − q̂s̃)
∂f

∂e
(q, s̃|ê)dq < C ′(ê) (25)

is satisfied, in which case set the face value of signal sSi at q̌sSi , which is implicitly defined by:

∑
s̃∈Sc∪{sS1 ,...,sSi−1}

∫ ∞
ε

(q − ε) ∂f
∂e

(q, s̃|ê)dq +
∑

s̃∈S\{sS1 ,...,sSi }

∫ ∞
q̂s̃

(q − q̂s̃)
∂f

∂e
(q, s̃|ê)dq

+

∫ ∞
q̌
sS
i

(
q − q̌sSi

) ∂f
∂e

(q, sSi |ê)dq = C ′(ê).

q̌sSi exists and is larger than q̂sSi because of the same arguments used above. Because of

equation (17), condition (25) will be satisfied for a signal sSi , with i ≤ N . If i < N , for signals

s ∈ {sSi+1, . . . , s
S
N} in S, set the face value to q̂s as in equation (19).

In sum, for each given s, the new contract is a debt contract with face value equal to either

q̂s or q̌s or ε, such that q̂s ≥ qs if q̂s exists, q̌s > q̂s ≥ qs if q̌s and q̂s exist, and ε > qs. Since

by construction the debt contract (WD
s ) with face values qs has the same cost as the initial

contract (W ∗
s ), and the cost of a debt contract for the principal at a given s is decreasing in

the face value at this signal s, the new debt contract achieves the same effort ê as the initial

contract (W ∗
s ) at a lower cost.

Step 2. Determining the optimal face value of debt.

Since any debt contract satisfies bilateral LL and monotonicity, and since we assumed that

the condition for the FOA in Lemma 1 holds, the firm’s program becomes:

min
{qs}s=1,...,S

∑
s

∫ ∞
qs

(q − qs) f(q, s|ê)dq. (26)

subject to ∑
s

∫ ∞
qs

(q − qs)
∂f

∂e
(q, s|ê)dq = C ′(ê), (27)
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where ∂f
∂e

(q, s|ê) =
∂φsê
∂e
f(q|ê, s) + φsê

∂f
∂e

(q|ê, s). The likelihood ratio can be rewritten as follows:

LRs(q) =

∫∞
q

[
∂φsê
∂e
f(z|ê, s) + φsê

∂f
∂e

(z|ê, s)
]
dz∫∞

q
φsêf(z|ê, s)dz

=

∫∞
q

∂φsê
∂e
f(z|ê, s)dz∫∞

q
φsêf(z|ê, s)dz

+

∫∞
q
φsê

∂f
∂e

(z|ê, s)dz∫∞
q
φsêf(z|ê, s)dz

=
∂φsê/∂e

φsê
+

∫∞
q

∂f
∂e

(z|ê, s)dz∫∞
q
f(z|ê, s)dz

For each fixed κ and signal realization s, construct the threshold q∗s (κ) as follows:

q∗s (κ) :=

{
0 if LRs(0) > κ

LR
−1

s (κ) if LRs(0) ≤ κ
. (28)

The cutoff κ is implicitly determined by the binding IC:

∑
s

∫ ∞
q∗s (κ)

(q − q∗s(κ))
∂f

∂e
(q, s|ê)dq = C ′(ê). (29)

The necessary first-order conditions associated with the program in equations (26) and (27)

are equation (28) and the binding IC:

∑
s

∫ ∞
q∗s (κ)

(q − q∗s(κ))
∂f

∂e
(q, s|ê)dq = C ′(ê). (30)

where κ := 1
µ

and µ is the Lagrange multiplier associated with the IC.

Each κ determines q∗s(κ) according to equation (28). From the Intermediate Value Theorem,

there exists κ that solves equation (30): as κ↘ −∞, the LHS of (30) exceeds C ′(ê) since then

q∗s (κ) = 0 ∀s and ∑
s

∫ ∞
0

q
∂f

∂e
(q, s|ê)dq ≥ C ′(ê)

by the assumption in equation (7), and it converges to 0 < C ′(ê) as κ ↗ +∞. Moreover,

κ must be unique since our conditions for the validity of the FOA ensure that the agent’s

program has a unique solution. �

Proof of Proposition 2. Start with part (i) of the Proposition. From Proposition 1, there

are two possible cases in which the optimal contract does not depend on the signal (q∗s1 = ... =
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q∗sS = q∗): an interior solution q∗ ∈ (q, q) and a boundary solution q∗ ∈ {q, q}. Using the

conditions from equation (28) for an interior solution establishes:

LRsi (q∗) = LRsj (q∗) = κ ∀si, sj. (31)

where κ is determined by (29). Using the definition of LRs(q) and rearranging yields the result

stated in the proposition.

We now verify that the solution cannot be at the boundary. For a boundary solution we

need either LRs(q) > κ for all s or LRs(q) < κ for all s. In the first case, the firm always

receives zero, which contradicts the optimality of implementing high effort (since the firm can

always obtain strictly positive profits by paying zero in all states and implementing low effort).

In the second case, the manager always receives zero, violating equation (29) as the IC is not

satisfied.

For part (ii) of the Proposition, if q ≤ mins {q∗s} then ws(q) = 0 ∀s, i.e., ws(q) is independent

of s.

For part (iii), given signal realization s, according to the optimal contract in Proposition

1 and to equation (28), the debt repayment is zero if LRs(q) is above κ for any q, where κ is

implicitly defined in equation (29). Given that the second term in the likelihood ratio LRs(q)

in equation (8) is increasing in q (as established in the proof of Proposition 1) and is bounded

from below by 0, a sufficient condition for the payment to be the zero under signal s is that

the first term in the likelihood ratio LRs(q) in equation (8) be above κ. �

Proof of Proposition 3:

For distributions with location and scale parameters, the PDF of output can be written as

in equation (9). The likelihood ratio in equation (8) can then be written as:

LRs(q) =
∂φsê/∂e

φsê
− ζs
σs

∫∞
q
g′
(
z−ξs
σs

)
dz∫∞

q
g
(
z−ξs
σs

)
dz
.

For part (i), suppose that signals si and sj differ only in that
∂φ

si
ê /∂e

φ
si
ê

≥ ∂φ
sj
ê /∂e

φ
sj
ê

. Since the

likelihood ratio LRs(q) is increasing in q as shown above, and since the face value of debt q∗s is

given by equation (28), with all else equal across signals we have q∗si ≤ q∗sj .

For part (ii), when LRsi(q) ≥ LRsj(q) for any q, since LRs(q) is increasing in q as shown

above and the face value q∗s is given by (28), we have q∗si ≤ q∗sj . This condition on the likelihood

ratios is satisfied for two signals {si, sj} such that ξsi ≤ ξsj , all else equal across signals.
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For part (iii), for single-peaked distributions, there exists z such that g′(z) > 0 for z < z

and g′(z) < 0 for z > z, and
∫∞
q
g′ (z) dz = 0. Therefore, all else equal:

∂LRs(q)

∂ζs
= − 1

σs

∫∞
q
g′
(
z−hs(ê)
σs

)
dz∫∞

q
g
(
z−hs(ê)
σs

)
dz

> 0 (32)

Consider two signals {si, sj} such that ζsi ≥ ζsj . Then, because of equation (32), we have

LRsi(q) ≥ LRsj(q) for any q. Since the face value q∗s is given by (28), with all else equal across

signals we have q∗si ≤ q∗sj .

For part (iv), for a given s, use the change of variables y = z−hs(ê)
σs

to rewrite the likelihood

ratio as:

LRs(q) =
∂φsê/∂e

φsê
− ζs
σs

∫∞
q−hs(ê)
σs

g′ (y) dy∫∞
q−hs(ê)
σs

g (y) dy
.

Then:

∂LRs(q)

∂σs
=

ζs
σ2
s

∫∞
q−hs(ê)
σs

g′ (y) dy∫∞
q−hs(ê)
σs

g (y) dy

− ζs
σs

g′
(
q−hs(ê)
σs

)
q−hs(ê)
σ2
s

∫∞
q−hs(ê)
σs

g (y) dy − g
(
q−hs(ê)
σs

)
q−hs(ê)
σ2
s

∫∞
q−hs(ê)
σs

g′ (y) dy(∫∞
q−hs(ê)
σs

g (y) dy
)2

The first term on the RHS is negative, for the same reason as in part (iii) above. We now

study the sign of the second term on the RHS. Let y ≡ q−hs(ê)
σs

. For q > hs(ê) and q > qPs
(which implies g′(y) < 0 ∀y ≥ y), the numerator of the second fraction of the second term on

the RHS is positive if and only if:

g′
(
q − hs(ê)

σs

)
q − hs(ê)

σ2
s

∫ ∞
q−hs(ê)
σs

g (y) dy − g
(
q − hs(ê)

σs

)
q − hs(ê)

σ2
s

∫ ∞
q−hs(ê)
σs

g′ (y) dy > 0

⇔ g′
(
y
) ∫ ∞

y

g (y) dy > g
(
y
) ∫ ∞

y

g′ (y) dy ⇔
∫ ∞
y

g (y)

g
(
y
)dy < ∫ ∞

y

g′ (y)

g′
(
y
)dy

⇔
∫ ∞
y

[
g (y)

g
(
y
) − g′ (y)

g′
(
y
)] dy < 0. (33)

Since the distribution g is characterized by MLRP, we have
g′(y)

g(y)
≥ g′(y)

g(y)
∀y ≥ y so that
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g(y)
g(y)
≤ g′(y)

g′(y)
∀y ≥ y. That is, the term in brackets on the same line of equation (33) is negative

for all y ≥ y, so that the integral is negative, and the inequality in equation (33) holds. In

sum, if σsi > σsj , all else equal across signals, then for q > max{qPs , hs(ê)}, LRsi(q) < LRsj(q).

Since the face value q∗s is given by (28), with all else equal across signals we have q∗si ≥ q∗sj . �
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