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Abstract

We study social distancing in an epidemiological model. Distancing reduces the

individual’s probability of getting infected but comes at a cost. Equilibrium dis-

tancing flattens the curve and decreases the final size of the epidemic. We examine

the effects of distancing on the outset, the peak, and the final size of the epidemic.

Our results suggest that public policies that decrease the transmission rate can

lead to unintended negative consequences in the short run but not in the long run.

Therefore, it is important to distinguish between the interventions that affect the

transmission rate and the interventions that affect contact rates.
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1 Introduction

When faced with the possibility of contracting a hazardous disease, people undertake

protective measures. Social interactions are reduced due to the risk of meeting an infected

person. Such behavior is not novel. During the plague pandemics citizens would flee

affected areas and wear costumes to protect themselves from the infection. Long-beaked

masks worn by physicians in the 17th century achieved particular notoriety. Public

authorities eventually began to coordinate the response to epidemics. Famously, Venice

required that the passengers on ships from affected areas confine themselves for the period

of forty days, thus the term “quarantine” was minted.1 Such behavior calls for the explicit

incorporation of human behavior in epidemiological models. Yet, the standard SIR model

of epidemics, introduced by Ross and Hudson (1917) and Kermack and McKendrick

(1927), assumes that individuals engage in as many interactions at the height of the

epidemic as they do when the disease is barely present.

We study a tractable model of epidemics that incorporates social distancing and show

that explicitly modeling human behavior has important consequences on the predicted

trajectory of an infectious disease.2 Susceptible individuals non-cooperatively decide to

which extent to reduce interactions at each point in time. Such distancing is costly but

reduces the probability of getting infected. The cost of getting infected is fixed; building

on the work of Chen (2012). We show that an equilibrium exists and that it is unique. If

the disease spreads, the epidemic has a single peak: it propagates through the population

until it reaches the peak prevalence, then it recedes and eventually dies out. Susceptible

individuals distance throughout the epidemic, though the intensity of their distancing

varies with the amount of actively infected individuals. Distancing affects three crucial

and commonly discussed features: the conditions for an epidemic to start, its peak, and

its final size.

First, we define a basic reproduction number taking distancing into account—the

behavioral basic reproduction number. It consists of the classical, epidemiological basic

reproduction number, R0, multiplied by a behavioral term; similar concept was intro-

duced in Fenichel et al. (2011).3 We show that the disease propagates itself if and only

if the behavioral basic reproduction number is larger than one. The novelty is that the

1After the italian word quaranta for forty; see Snowden (2019).
2Ours is not the first model of behavior during an epidemic. An account of the related literature

follows below.
3One can derive an analogous behavioral effective reproduction number. That the basic reproduction

number without distancing may be misleading when trying to understand epidemic dynamics has been
recognized before. For example, Caley et al. (2008) find that the observed attack rate of the 1918-
1919 influenza pandemic was substantially lower than the one expected based on the basic reproduction
number and attribute this discrepancy to social distancing.
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behavioral basic reproduction number is concave in the transmission rate and that the

disease spreads only for intermediate values of the transmission rate. If the transmis-

sion rate is too high, individuals distance with such fervor that the disease never spreads

beyond the initial seed of infection. This finding stands in stark contrast with the pre-

dictions offered by the SIR model without distancing where the infection spreads if the

transmission rate is high enough; see for example Brauer and Castillo-Chavez (2012).

Second, we derive results about the peak prevalence of the disease. The peak preva-

lence is of crucial importance to understand whether a disease might cause the health

system to reach its capacity. For example, the 1918 influenza pandemic hit an unprepared

health system which soon became overwhelmed; see Jester et al. (2018) and Schoch-Spana

(2001). In March 2020—less than a month after the coronavirus erupted in Italy—, the

healthcare system in Northern Italy was under such severe pressure that some pneumonia

patients could not be treated.4 In order to avoid the active number of infected individ-

uals exceeding the health care system’s capacity the goal became to flatten the curve.5

We show that an increase in the cost of distancing unequivocally leads to a reduction in

distancing and therefore to a higher peak prevalence of the disease. However, peak preva-

lence is non-monotonic in the transmission rate. If the transmission rate is high enough

for the disease to spread but not too high, an increase in the transmission rate leads to

an increase in the peak prevalence. In contrast, when the transmission rate is sufficiently

high, an increase in the transmission rate decreases the peak prevalence and causes a

flattening of the curve. This is of utmost importance for public health policies. Namely,

our results suggest that a policy that decreases the transmission rate could lead to a

higher peak prevalence.6 In addition, the fact that peak prevalence is monotonic in the

cost of distancing and non-monotonic in the transmission rate has important implications

on how interventions should be modeled.

The body of work that studies non-pharmaceutical interventions models these either

as reductions in the transmission rate (see, for example, Kruse and Strack, 2020; Rachel,

2020a) or as directly choosing the social activity level of individuals (see, for example,

Acemoglu et al., 2020; Alvarez et al., forthcoming; Farboodi et al., 2020)—which are

equivalent approaches in the SIR dynamics without behavior. Our results suggest that

modeling individual distancing choices explicitly requires a careful choice of modeling

interventions as qualitative implications differ through the behavioral channel. On the

4See https://www.nytimes.com/2020/03/12/world/europe/12italy-coronavirus-health-care.html.
5McCabe et al. (2020) provide a calibration assessment of the risk of health system capacities being

exceeded in the winter of 2020/21 due to COVID-19 patients in different European countries under
various levels of lockdown effectiveness. They highlight that capacity constraints may become a severe
concern again.

6The idea that a policy which is meant to protect can lead to more risky behavior, known as risk
compensation, was first documented by Peltzman (1975).
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one hand, those interventions affecting the rate at which the disease propagates condi-

tional on meetings, e.g., mandatory mask mandates, should be modeled as a decrease in

the transmission rate.7 On the other hand, those interventions that directly affect the

incentives to distance, e.g., restaurant, bar or museum closures, should be modeled as a

decrease in the cost of distancing.

Third, we find that the possible detrimental short-run effects of a decrease in the

transmission rate disappear in the long run. The total number of infected individuals

throughout the epidemic is monotonically increasing in both the cost of distancing and

the transmission rate. In the SIR model without distancing, the number of infected in-

dividuals starts decreasing once the number of susceptible individuals is sufficiently low,

in particular, once it falls below γ/β. When the number of susceptible individuals is

too small, the pool of infected individuals is being depleted due to the rate of recovery

being greater than the inflow of newly infected individuals. The number of susceptibles

converges to a number strictly larger than 0 and smaller than γ/β; for a derivation, see

Brauer and Castillo-Chavez (2012). Our model predicts a smaller final size of epidemic

(more susceptibles, i.e., less total infections) than the standard SIR model due to distanc-

ing. Indeed, our model converges to the SIR model without distancing when the cost of

distancing grows and so does the final size of the epidemic. Notably, as long as the cost

of distancing is large enough for the disease to spread, the final size is below γ/β—even

with distancing.

With these findings, we highlight an important trade-off between short-run mitigation,

i.e., flattening the curve to avoid an overburdened health system, and long-run size of

epidemics when considering the transmission rate. This trade-off arises due to the varying

degree to which behavior matters during an epidemic. At the peak, the infection risks

are high and individuals’ distancing decisions have a strong impact on the dynamics

of the epidemic. When an epidemic fades out, however, behavior is of less importance

as individual risks are low and the standard SIR mechanics dominate the behavioral

effects. However, the trade-off disappears once policies are considered that directly affect

distancing incentives of individuals and both short-run mitigation and long-run size of

the epidemic are obtained with similar policies, i.e., lowering the cost of distancing.

In the final section we present the environment with endogenous cost of infection.

We derive the cost of infection and show numerically that the non-monotonicity of peak

prevalence in the transmission rate extends to that environment.

7Note that this result does not necessarily imply that mandating mask wearing in public spaces will
worsen the epidemic; it may flatten the curve as well. However, we want to highlight the possibility of
this perverse effect arising. Indeed, Chernozhukov et al. (2021) show that mask mandates have reduced
the number of COVID-19 cases and deaths in the US.
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Related Literature. The model of Capasso and Serio (1978) generalizes the stan-

dard model to non-linear or time-dependent contact rates, which can be thought of as a

reduced form of modeling behavior; for a more recent overview, see Funk et al. (2010)

and Verelst et al. (2016). A strong point for explicitly modeling behavior is made by Fer-

guson (2007). Reluga (2010) proposes an SIR model with behavior and provides mostly

numerical results. Chen (2012) introduces an SIR model with a constant cost of infection.

His focus is on conditions on the contact functions that deliver uniqueness of the Nash

equilibrium in each period for a given prevalence of the disease. Fenichel et al. (2011)

and Fenichel (2013) study a model in which the cost of getting infected is endogenous.

They derive necessary conditions for equilibria and perform numerical analysis. Rachel

(2020a) and Toxvaerd (2020) analyze a model of behavior with a linear cost of distanc-

ing and an endogenous time-varying cost of getting infected. They derive the necessary

conditions for an equilibrium and derive two different paths that satisfy the necessary

conditions but do not establish that these are indeed equilibria. Rachel (2020b) builds on

this work to study lockdown effectiveness and the possibility of a second wave occurring.

Farboodi et al. (2020) study a similar model numerically. Dasaratha (2020) analyzes a

model where the infected individuals do not necessarily know whether they are infected.

The complexity of his model requires that he mostly focuses on local results. McAdams

(2020) proposes a model in which an individual’s benefit of social activities depends on

the actions of other individuals and shows that there is a unique equilibrium of social

activity choices in each period. McAdams (2021) provides an excellent account of the

rapidly growing literature.

The majority of the literature on behavior and policy over an epidemic focuses on

numerical results and simulations. Makris and Toxvaerd (2020) numerically study how

the expectation of the arrival of a pharmaceutical innovation affects individuals’ opti-

mal distancing. Toxvaerd and Rowthorn (2020) compare the individual and planner’s

decisions to apply treatments and vaccinations as pharmaceutical interventions during

an epidemic. Giannitsarou et al. (forthcoming) provide numerical projections for the

COVID-19 pandemic under waning immunity, based on a model with endogenous dis-

tancing. Acemoglu et al. (2020) and Brotherhood et al. (2020) study the importance of

age composition in the COVID-19 pandemic.

2 The Model

We study behavior in an otherwise standard SIR model. A continuum of individuals,

indexed by i and normalized to unity, are infinitely lived with time indexed by t ∈ [0,∞).

4



Each individual can be in one of three states: susceptible, infected (and infectious),

or recovered. Susceptible individuals might get infected in which case they transition

into the infected state. Infected individuals can recover, but cannot become susceptible

again. Recovered individuals acquire permanent immunity. This model is suitable for

viral diseases which are transmitted directly from human to human. We denote the share

of the population that is susceptible at time t by S(t), infected by I(t) and recovered by

R(t).

At each moment in time, susceptible individual i chooses how much activity to engage

in, denoted by εi(t) ∈ [0, 1]. The individuals enjoy the activity, but it exposes them to

the danger of infection; hence, termed exposure. The converse, di(t) := 1 − εi(t), is

the measure of distancing. While susceptible, an individual incurs a flow payoff, πS.

Distancing is uncomfortable and comes at a cost c
2
(di(t))

2. Getting infected comes at

a cost η > 0. Later in the paper we explore the model where the cost of infection is

determined endogenously and might vary over time.

Individuals meet through a pairwise-matching technology where each individual has

an equal chance of meeting any other individual—regardless of which state they are in.

The only matches with an infection risk are the ones between a susceptible and an infected

individual. The rate at which a susceptible individual who chooses exposure level εi(t)

meets an infected individual and gets infected at time t is βεi(t)I(t), where β > 0 is the

transmission rate.8 Finally, infected individuals recover at rate γ > 0.

At each point in time t, a susceptible individual i solves the problem

max
εi(t)∈[0,1]

πS −
c

2
(1− εi(t))2 − βI(t)εi(t)η. (1)

Let ε(t) := 1
S(t)

∫
i
εi(t)di be the average exposure of susceptible individuals at time t.

Analogously, define d(t) := 1− ε(t) as the average distancing at time t. Then, the model

is governed by the following dynamics

Ṡ(t) = −βε(t)I(t)S(t), (2)

İ(t) = βε(t)S(t)I(t)− γI(t), (3)

Ṙ(t) = γI(t), (4)

with the assumption that there is a seed of infected, I(0) = I0 ∈ (0, 1), and susceptible

8We implicitly assume that infected individuals choose full exposure. Though strong, the assumption
is not as stark as it might at first seem. It is straightforward to accommodate exposure of infected with
some parameter e, as long as it is fixed over time. Then, the same model as ours can be obtained by
defining β̃ = eβ.

5



individuals, S(0) = S0 = 1− I0. Since S, I and R are the only three states S(t) + I(t) +

R(t) = 1 at each instance of time.

Definition 1. An equilibrium is a tuple of functions (S, I, R, (εi)i) with the following two

properties: (i) (S, I, R) follow (2), (3) and (4) with the initial condition (S(0), I(0), R(0)) =

(S0, I0, 0), where ε is the average exposure; and (ii) each εi solves (1), that is, εi is a best-

response to (S, I, R). An equilibrium is symmetric if ε = εi for all i.

The first-order condition to the individual’s problem yields the individual’s optimal

distancing choice

di(t) := 1− εi(t) = min

(
ηβ

c
I(t), 1

)
. (5)

When ηβ
c
I(t) exceeds unity, individuals fully distance. Distancing at time t depends

only on the infected population at time t—up to constants β, c and η. In equilibrium,

εi = ε for all i, that is, every equilibrium is symmetric. By equation (5), exposure in a

symmetric equilibrium is

ε(t) = max

(
1− ηβ

c
I(t), 0

)
.

Plugging (5) into the SIR dynamics yields a system of differential equations with an initial

condition. All the proofs are collected in Appendix A.

Proposition 1. An equilibrium exists, is unique and symmetric.

3 Analysis

We establish several qualitative properties of the equilibrium and the resulting epidemic

dynamics. First, observe that if ε(t̃) > 0 for some t̃, then ε(t) > 0 for all t > t̃. This

follows from the observation that as long as ε(t) ∈ (0, γ/β), İ(t) < 0 and thus ε̇(t) > 0.

ε(t) can, therefore, be 0 only at the beginning. To avoid this tedious contingency, we will

often assume ε(0) > 0, or equivalently, I0 < c/(βη). Next, we establish that the number

of active cases peaks at most once.

Proposition 2. If t̂ is such that İ(t̂) = 0, then Ï(t̂) < 0.

Proposition 2 implies that if I has a critical point, this critical point has to be a

local maximum. Together with the continuous differentiability of I, this implies that I
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can have at most one peak. The infection either immediately dies out, or becomes an

epidemic with a single peak.

In the standard SIR model, the infection propagates itself (İ(0) > 0) only if the basic

reproduction number, R0 := β
γ
S0, is larger than 1; see Heesterbeek and Dietz (1996).9

However, the observed and measurable variable is how many secondary infections have

been caused given an individual’s behavior. To capture this, we define the behavioral

basic reproduction number as:

Rb
0 :=

β

γ
S0ε(0). (6)

Notice that Rb
0 = ε(0)R0; the concept of a basic reproduction number that depends on

the individuals’ behavior was introduced in Fenichel et al. (2011). Equation (3) at t = 0

can now be rewritten as İ(0) = I0
γ

(Rb
0 − 1). Therefore, the infection spreads, İ(0) > 0, if

and only if Rb
0 > 1, paralleling a similar result in the model without distancing. However,

while in the standard SIR model R0 is increasing in β, the behavioral basic reproduction

number Rb
0 is non-monotonic and, in particular, concave. This finding has important

implications on which types of an infection will spread.

Proposition 3. Fix I0 ∈ (0, 1). Then, İ(0) > 0 if and only if Rb
0 > 1. Moreover:

(i) if I0 <
1

1+ 4ηγ
c

, there exist β and β, with γ
1−I0 < β < β < c

ηI0
, such that İ(0) > 0 if

and only if β ∈ (β, β).

(ii) If I0 ≥ 1

1+ 4ηγ
c

, then İ(t) ≤ 0 for all t.

In the standard SIR model, for the infection to spread, β must be high enough (β >
γ
S0

). In the model with distancing, instead, the transmission rate has to be large enough

to also overcome the initial distancing:

β >
γ

(1− d(0))S0

>
γ

S0

.10

Our model predicts that a higher transmission rate is needed for the epidemic to start

than in the standard SIR model. What differentiates the model with distancing even more

starkly is that the infection peters out if the transmission rate is too high. If the disease

is highly contagious, individuals are much more cautious, up to the point where their

9Depending on the source R0 is defined either as β/γ or βS0/γ. We use the latter definition as it
allows for an easier presentation of results.

10It should be noted that d(0) depends on β as well.
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Figure 1: The Onset of an Epidemic. Left: Our SIR model; Right: Standard SIR model.
The solid line in each panel depicts the combination of (β, I0) with İ(0) = 0.

resolute distancing alone is sufficient to stop the disease in its tracks from the onset.11

Due to preventive behavior, the infection spreads only if its transmission rate is large

enough, but not too large, as illustrated in the left panel of Figure 1.12

Proposition 3 derives conditions on the transmission rate such that an epidemic takes

off. The same question can be analyzed along other dimensions. For example, the

CDC has adopted a categorization for influenza viruses along the severity-transmissibility

dimensions (see Reed et al., 2013). In our model, this can be interpreted as categorizing

the combination of the cost of infection, η, and the transmission rate, β.

Recall that in the SIR model without behavior—which is nested in our model as the

case η = 0—the epidemic takes off whenever βS0 > γ. As the cost of the infection, η,

increases, individuals’ distancing incentives start to matter for the onset of an epidemic.

In particular, for a fixed β, the higher the cost of infection, the more individuals engage

in distancing. If the cost of infection becomes very large, it prevents the disease from

spreading altogether: İ(0) < 0. There is a cutoff cost of infection such that the disease

will never spread when η > c
4γ

S0

I0
as getting infected is so costly for individuals that their

distancing behavior compensates for any transmission rate β. By implication, a disease

can only spread if its (β, η)-combination is intermediate. For a given β, the infection

cost must not be too high; while for a given η, the transmission rate must neither be too

high nor too low. The existence of an upper and a lower bound for β follows the same

intuition as the one applying for Proposition 3.

11An informal discussion of the role of disease-intrinsic parameters and its effect on the outbreak of
an epidemic can be found in Christakis (2020).

12We use parameters for COVID-19 in our simulations. A summary and justification of the parameters
chosen can be found in Appendix B. We also describe our numerical algorithm there.
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3.1 Phase Diagram

A phase diagram in the (S, I)-space is a graph showing how the number of infected

individuals changes with the number of susceptible individuals. To find the solution path

(S, I) := (S(t), I(t))t≥0 in the phase space, one derives the quotient differential equation

dI

dS
= −1 +

γ

β

1

S

1

max
(
1− βη

c
I, 0
) (7)

by dividing equation (3) by equation (2) and using (5) for ε.

Proposition 4. Suppose d(0) < 1.13 The solution path (S, I) is implicitly determined

by

S =

exp

(
−β2η
2γc

(
S + I − c

βη

)2)
exp

(
−β

2η

2γc

(
1− c

βη

)2
)

1

S0
+ 2β

√
η

2γc

∫ β
√

η
2γc

(
1− c

βη

)
β
√

η
2γc

(
S+I− c

βη

) e−v2dv
. (8)

Figure 2: Solutions Paths for Different Transmission Rates.

Figure 2 depicts the solution paths in the phase space for different transmission rates.

13The assumption is made for ease of exposition directly on d(0); Formula (5) provides the correspond-
ing assumptions on primitives. Also, if d(0) = 1, then individuals engage in full distancing up to some
point, after which an equation analogous to (8) determines the dynamics of the epidemic.
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Notice that the solution paths are not monotonically ordered.

We show that the solution path (S, I) moves upwards as the cost of infection η de-

creases. The SIR model without distancing can be recovered as the special case of our

model with no cost of infection (η = 0).14 Hence, for any level of the susceptible pop-

ulation, the corresponding number of active infections is lower in the SIR model with

distancing. In particular, the peak prevalence in our model is below that of the standard

model. This comparison is depicted in Figure 3.

Figure 3: Solution Paths for the SIR Models With and Without Behavior. The solid curve
depicts the solution path for our SIR model with behavior. The dashed curve depicts the
solution path of the SIR model without behavior.

Proposition 5. Assume that d(0) < 1. Then, if η decreases, the solution path (S, I)

moves upwards (lies above the original solution path). In particular, the solution path

(Ŝ, Î) of the standard SIR model, which is associated with η = 0, lies above the original

solution path.

Increasing the cost of infection, η, raises the incentives to distance and pushes the

solution path down, that is, it decreases the infected population at any level of susceptibles

14We denote by (Ŝ, Î, R̂) the proportion of susceptible, infected, and recovered individuals in the
standard SIR model. The dynamics of the standard SIR model is obtained by replacing (S, I,R, ε) with
(Ŝ, Î, R̂, 1) in equations (2), (3) and (4). The solution path (Ŝ, Î) of the standard SIR model is captured

by dÎ
dŜ

= −1 + γ
β

1
Ŝ
.
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in the phase space. Since the SIR model without distancing is the special case with η = 0,

its solution path is above the path for any η > 0.

3.2 Peak Prevalence

The peak prevalence of an epidemic has profound consequences on the overall provision of

health care services. A large number of infected individuals may lead to an overwhelming

demand of personal protective equipment such as face masks and that of medical devices

such as ICU beds and ventilators. The shortage of medical resources, in turn, may cause

a suboptimal treatment and health care coverage; see, for example, Schoch-Spana (2001)

for the 1918 influenza pandemic, Ferguson et al. (2020) for the COVID-19 pandemic,

and Reed et al. (2013) for influenza epidemics. The high demands of the epidemic on

the health system also divert medical resources from other important activities. What

is more, health-care workers themselves are at high risk of infection.15 The peak preva-

lence is, therefore, of paramount interest for epidemic preparedness and optimal policy

responses.

When the epidemic takes off (İ(0) > 0), Proposition 2 implies that the prevalence is

maximized when İ(t) = 0, that is, when

ε(t)S(t) = γ/β.

Denote by I∗ := maxt I(t) the peak prevalence. In the standard SIR model with R0 > 1,

the peak prevalence Î∗ := maxt Î(t) is given by Î∗ = 1− γ
β

+ γ
β

log
(

γ
βS0

)
; see, for example,

Brauer and Castillo-Chavez (2012) or Hethcote (2008). The peak prevalence is attained

when the population Ŝ(t) of susceptibles reaches the threshold of herd immunity γ
β
. When

the peak prevalence I∗ of our model is attained, the population S(t) of susceptibles is

larger than γ
β
. Since the solution path (S, I) is below the path (Ŝ, Î), our model predicts

a smaller peak prevalence than the SIR model without behavior, I∗ < Î∗.

We study how the peak prevalence changes with the parameters β and c. To focus on

the case in which the infection can take place, we assume I0 <
1

1+ 4ηγ
c

; see Proposition 3.

When this assumption fails, the infection dies out irrespective of the transmission rate:

I∗ = I0.

Proposition 6. The following holds:

15Elston et al. (2017) survey the health impact of the 2014-15 Ebola outbreak in West Africa. For
Siera Leone, they report a 20 % decrease in measles coverage, an overall 20-23 % decrease in deliveries
and Caesarian sections. 10.7 % of the health-care workforce were infected and 6.9 % died from Ebola
virus disease.
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Figure 4: Peak Prevalence as Function of Transmission Rate for the SIR Models with
and without Behavior. The left panel depicts the peak prevalence of the SIR model with
behavior. The right panel depicts the peak prevalence of the SIR model without behavior.

(i) Fix γ, c and η and let I0 < 1

1+ 4ηγ
c

. Then, there exist β1 < β2 such that I∗ is

increasing in β for β ∈ (β, β1) and decreasing in β for β ∈ (β2, β).

(ii) The peak prevalence I∗ is non-decreasing in c. It is strictly increasing in c whenever

İ(0) > 0.

In the SIR model without behavior, the peak prevalence Î∗ is monotonically increasing

in the transmission rate β, as illustrated in the right panel of Figure 4. In contrast, in

our model, a higher rate of transmission leads to, ceteris paribus, more distancing. This

effect can be so strong that a higher transmission rate reduces the peak prevalence and

flattens the infection curve. Indeed, peak prevalence is non-monotonic in β; see the

simulation in the left panel of Figure 4. When the rate of transmission is low, the peak

of the infection is increasing in β. In contrast, when the rate of transmission is high,

the peak prevalence decreases with β. A measure imposed to fight the epidemic through

a reduction in β could, therefore, have a daunting short-run effect; for example, if the

potential resulting increase in prevalence leads to stress of the health care system. We

want to emphasize that this effect arises only for a subset of potential parameters. In

particular, Chernozhukov et al. (2021) show that the introduction of mask mandates—a

β-reducing policy—reduced the number of active cases in 2020 during the COVID-19

pandemic in the US. At the same time, Knotek II et al. (2020) report survey evidence

that some individuals view mask wearing as a substitute for physical distancing. This

issue has been discussed in Howard et al. (2021).16

16This indirect effect of a measure reducing individual risk on taking less precautions is reminiscent of
risk compensation; introduced by Peltzman (1975), for a survey see Hedlund (2000).
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In contrast, an increase in the cost of distancing always increases the peak prevalence.

A higher cost of distancing leads to less distancing, all else equal. The disparity in

effects of changes in c and β on peak prevalence can be seen by studying how the slope

of the solution path at a fixed point in the phase space varies with changes in the two

parameters. Differentiating the slope with respect to the cost of distancing parameter

yields

∂

∂c

(
dI

dS

)
= − γ

βε2S

∂ε

∂c
< 0,

where the inequality follows from the observation that for a fixed I the exposure increases

if the cost of distancing increases. Importantly, the only effect an increase in the cost

has on the solution path is through the change in distancing. By implication, the slope

of a solution path with a higher cost is smaller than the slope of a solution path with a

smaller cost of distancing at any point of intersection. The fact that they start from the

same point, (S0, I0), then implies that everywhere else the solution path corresponding

to a higher cost must be above the one with the lower cost.

The change in the transmission rate, though, has a more nuanced effect. Differenti-

ating the slope of the solution path at a fixed point yields

∂

∂β

(
dI

dS

)
= − γ

β2εS
− γ

βε2S

∂ε

∂β
.

An increase in β has two effects. Holding everything else fixed, it results in more secondary

infections from each infected individual, thereby increasing the speed of the spread of the

disease. Such a direct effect is absent from changes in the cost of distancing. The second,

indirect, effect is due to the response of distancing to the change in the transmission rate.

A more infectious disease results in more distancing and thus dampens the evolution of

the epidemic. The two effects run in opposite directions. Depending on which of the two

dominates, an increase in β can lead to either a smaller or a larger slope of the solution

path.

The above finding has an important implication on how various preventive policies

should be studied in models with an epidemiological component. Such models commonly

adopt one of two apparatuses: behavior is either modeled implicitly by changes in β in

the standard SIR model (see, for example, Capasso and Serio, 1978; Brauer, 2019; Kruse

and Strack, 2020) or by directly imposing behavioral changes (see, for example, Acemoglu

et al., 2020; Alvarez et al., forthcoming; Farboodi et al., 2020; Rachel, 2020a). Our results

point to the importance of differentiating between changes in the transmission rate and

changes in the cost of distancing. For example, if a government imposes temporary
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restaurant closures to slow the spread of the disease, this gives individuals fewer reasons

to go out and should be modeled as a decrease in the cost of distancing, and not as a

decrease in the transmission rate directly. Holidays or vacation periods can be seen as

increases in the cost of distancing.

3.3 Final Size of the Epidemic

In the long run, the epidemic dies out, I∞ := lim
t→∞

I(t) = 0. After S falls below the

threshold γ/β, so does εS, leading to a reduction in the incidence rate. An important

long-run property of the disease is S∞ := lim
t→∞

S(t), the number of remaining susceptible

individuals once the epidemic is over. Conversely, 1 − S∞ is the size of the epidemic.

In the SIR model without distancing, Ŝ∞ := lim
t→∞

Ŝ(t) ∈ (0, γ/β).17 At the end of the

epidemic, a strictly positive fraction of the population remains susceptible, Ŝ∞ > 0. The

upper bound on this number is given by γ/β. This follows immediately in the standard

model without distancing as the number of infected individuals is increasing whenever

Ŝ(t) > γ
β
. Only after this threshold has been reached, the share of susceptibles falls

and the epidemic starts to falter. The following result establishes how the model with

distancing compares with respect to the size of the epidemic.

Proposition 7. The following chain of inequalities holds:

0 < S0e
−β
γ ≤ Ŝ∞ ≤ S∞ <

γ

β
.

The model with distancing predicts a smaller final size of the epidemic, 1 − S∞,

than the model without distancing. More surprising is the fact that—even with distanc-

ing—the final number of susceptibles, S∞, cannot exceed γ/β. The reason is that in the

limit I tends to 0. If S∞ was strictly above γ/β, then, as the epidemic would be winding

down, so would the distancing. Since the exposure would be close to one, εS ≈ S > γ/β.

But then equation (3) implies that the epidemic should reignite, contradicting the sup-

position that it was winding down.

The following result studies the effect of the transmission rate and the cost of distanc-

ing on the final size of susceptibles.

Proposition 8. S∞ is decreasing in β, for β ∈ [0, c
ηI0

], and in c.

17In particular, see e.g., Brauer and Castillo-Chavez (2012) or Hethcote (2008), 1− Ŝ∞ = γ
β log

(
S0

Ŝ∞

)
.
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The size of the epidemic, 1 − S∞, is monotone in β and c, as long as İ(0) > 0.18

A higher β leads to a larger amount of individuals that contract the disease during the

course of the epidemic, as does an increase in the cost of distancing. The monotonicity of

the final size of the epidemic in the transmission rate is in contrast with the result that

the peak prevalence is non-monotonic in the same parameter. While policies that affect

β might have perverse effects in the short run—e.g., a decrease in the transmission rate,

β, may lead to an increase in peak prevalence—the effects in the long run are desirable.

If the hospital capacities are not expected to be exhausted, such policies will achieve the

desired result, a reduction in cumulative infections, in the long run. In the short run,

however, one needs to be circumspect if the medical capabilities are at or close to the

capacity and a trade-off between short-run prevalence and long-run epidemic size might

occur.

Intuitively, the effect of changes in the transmission rate on the final epidemic size is

monotone and resembles the comparative statics of the standard SIR model: When the

epidemic vanishes, i.e., when I(t) approaches 0, individuals stop distancing. Hence, the

only effect that changes in β have in this final phase of the epidemic is the direct effect

on infections.

4 Endogenous Cost of Infection

In this section, we present a model with an endogenous cost of infection, develop the

formula for the cost and provide numerical support for the non-monotonicity of peak

prevalence in the transmission rate also in the model with endogenous cost of infection.

As before, the individuals at each point in time decide to which extent to distance, which

determines how likely they are to get infected. An individual’s flow payoff from being

in state θ ∈ {S, I, R} is πθ. We assume πS ≥ πR ≥ πI .
19 The endogeneity of costs of

infection results from differences in the flow payoff across the states and the individual

taking future infection risks into account. The individual discounts the future at rate

ρ > 0.

A susceptible individual i with exposure εi(t) enjoys the instantaneous payoff πS −
18To see this, note that β < c

ηI0
.

19Models with endogenous cost of infection have been presented in Reluga (2010); Fenichel et al. (2011);
Fenichel (2013); McAdams (2020); Rachel (2020a); Toxvaerd (2020), among others. Yet, analytical
characterizations of equilibria are rather elusive.
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c
2
(1− εi(t))2. Let pi(t) be the probability of being infected at time t. Then,

ṗi(t) = εi(t)βI(t)(1− pi(t)), (9)

with pi(0) = 0; since we model the behavior of susceptible individuals, the probability that

they are infected at the outset is zero. Once an individual gets infected, her progression

to recovery is independent of her behavior. Her continuation payoff from the moment she

became infected, VI , is:

VI =
1

ρ+ γ

(
πI +

γ

ρ
πR

)
. (10)

See Remark 1 in Appendix A for the derivation.

A susceptible individual who faces average exposure ε from her peers solves the prob-

lem

max
εi(·)∈[0,1]

∫ ∞
0

e−ρt
{

(1− pi(t))[πS −
c

2
(1− εi(t))2] + pi(t)ρVI

}
dt (11)

s.t.

ṗi(t) = βεi(t)I(t)(1− pi(t)),

pi(0) = 0,

and the underlying dynamics given by equations (2), (3) and (4) with the initial condition

(S(0), I(0), R(0)) = (1− I0, I0, 0) and I0 ∈ (0, 1). The individual’s payoff can be thought

of as the expected value of being susceptible or infected at each point in time where

the flow payoff of an infected individual is ρVI . An individual’s behavior affects her

probability of infection directly, but none of the population dynamics as she is small.

We study symmetric equilibria (equilibria for short).

Definition 2. A symmetric equilibrium is a tuple of functions (S, I, R, (εi, pi)i) with the

following three properties: (i) (S, I, R) follow (2), (3) and (4) with the initial condition

(S(0), I(0), R(0)) = (S0, I0, 0), where ε is the average exposure; (ii) each εi solves (11),

that is, εi is a best-response to (S, I, R), where the average exposure ε is induced by

(εj)j 6=i; and (iii) εi = ε for all i.

In equilibrium, each pi is determined by the average exposure ε and I, and thus p = pi

for each i ∈ [0, 1]. For ease of exposition, we denote an equilibrium by (S, I, R, ε, p).

Assumption 1. πS − c
2
> ρVI .

Even if a susceptible individual is fully distancing, her flow payoff of being suceptible is
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greater than the flow payoff of being infected. The current-value Hamiltonian of problem

(11) is

Hi = (1− pi(t))[πS −
c

2
(1− εi(t))2] + pi(t)ρVI − ηi(t)βεi(t)I(t)(1− pi(t)),

where ηi(t) is the current-value co-state variable.20 It represents the marginal cost of an

increase in the probability of being infected at time t. The optimality condition with

respect to exposure εi(t) at time t is

∂Hi

∂εi(t)
= (1− pi(t))[c(t)(1− εi(t))− βηi(t)I(t)] = 0.

It can be verified that pi(t) < 1; see Remark 2 in Appendix A. Thus, the optimality

condition delivers equilibrium distancing

di(t) =
β

c
ηi(t)I(t), (12)

provided that the entire distancing path admits an interior solution, i.e., that di(t) ∈ [0, 1]

for all t. One should keep in mind that the marginal cost of an increased probability of

infection, ηi(t), is positive due to Assumption 1. The extent to which an individual dis-

tances is, ceteris paribus, increasing in the infection rate, β, and the size of the infected

population, I(t), and the co-state, ηi(t) and decreasing in the cost parameter, c. Impor-

tantly, the decisions today influence the probability of getting infected both today and in

the future, which in turn affects the distancing decisions today—a fact that is captured

by the co-state ηi(t). The current-value co-state variable ηi follows the adjoint equation

η̇i(t) = ρηi(t) +
∂Hi

∂pi(t)

= ηi(t) (ρ+ εi(t)βI(t)) +
(
πS −

c

2
(1− εi(t))2 − ρVI

)
. (13)

The transversality condition is lim
t→∞

e−ρtηi(t) = 0. In equilibrium, η = ηi for all i. Using

the adjoint equation and the transversality condition, we solve for η.

Lemma 1. Suppose that the rest of the population is following the strategy ε, and εi is

the individual i’s best response. Then

ηi(t) =

∫ ∞
t

e−ρ(s−t)
1− pi(s)
1− pi(t)

(
πS −

c

2
(1− εi(s))2 − ρVI

)
ds. (14)

20Note that we define the co-state as the negative of the usual co-state to interpret it as a cost of
infection rather than as benefit of being susceptible to relate it directly to our constant cost of infection
model.
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Let (S, I, R, ε, p) be an equilibrium. Then

η(t) =

∫ ∞
t

e−ρ(s−t)
S(s)

S(t)

(
πS −

c

2
(1− ε(s))2 − ρVI

)
ds. (15)

We term πS − c
2
(1 − ε(t))2 − ρVI the susceptibility premium at time t. It is the

difference in flow payoffs between being susceptible and being infected. The cost of

getting infected, η(t), is the discounted value of the susceptibility premium over time

weighted by the conditional probability of being susceptible at each time in the future,

s ≥ t, S(s)
S(t)

. Distancing over a period of time reduces the quality of life and, thus, the

susceptibility premium. However, it also decreases the probability that the individual will

get infected and rewards her with the premium for a longer period of time. The functional

form of ηi demonstrates the difficulty of the dynamic problem. Optimal exposure at time

t depends on exposure of the remaining individuals through the effect it has on the spread

of the infection, as well as on the exposure of individual i at each instance in the future.

Alternatively, one can decompose η in two parts

η(t) = (VS(t)− VI(t))

where

VS(t) =

∫ ∞
t

e−ρ(s−t)
(
S(s)

S(t)

(
πS −

c

2
(1− ε(s))2

)
+

(
1− S(s)

S(t)

)
ρVI

)
ds

is the continuation payoff of being susceptible and

VI(t) = VI ,

is the continuation payoff of being infected.

The above discussion implies that characterizing the set of equilibria analytically is

untenable. To verify, whether a distancing function ε can be part of an equilibrium, one

needs to posit that the individuals use it, derive S, I, R and η, and then verify that ε

is indeed a best reply given the dynamics. This task is made more challenging by the

fact that even the SIR model without distancing does not have a tractable closed-form

solution and that η is pinned down only in the limit rather than at any point.

However, we can make use of the model with an endogenous cost of infection to

inform our parameter choices in the constant cost of infection model. The following

lemma provides bounds for η, which enable us to connect the two models.
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Lemma 2. Let (S, I, R, ε, p) be an equilibrium. Then

πS − ρVI − c
2

ρ+ β
≤ η(t) ≤ πS − ρVI

ρ
, (16)

and

lim
t→∞

η(t) =
πS − ρVI

ρ
. (17)

If η̇(0) < 0, then

η(t) ≥
πS − ρVI − c

2

ρ
. (18)

As time passes, η eventually converges to the upper bound. The bound is attained

when individuals choose full exposure in perpetuity without facing any risk of becoming

infected. This is the scenario in which getting infected would be most costly as there

is no need to distance and no risk of future infection. The convergence to this bound

is intuitive: as times goes to infinity the infection dies out and obviates the need for

distancing.

The above lemma also provides a lower bound on η. This bound applies even if

η is locally increasing at time 0. When η is decreasing at the onset, which occurs if

I0 is sufficiently small, the lower bound
πS−ρVI− c2

ρ
is approximately tight. This bound

corresponds to the cost of infection when individuals are fully distancing from now until

eternity.

Lemma 2 connects the solution paths of the model analyzed here and the model with

a fixed cost of infection. Towards that, let (S, I, R, ε, p) be an equilibrium of the endoge-

nous infection cost model with η being the corresponding co-state given by (15). Let

ηL and ηH be the lower and the upper bound on η as given by Lemma 2. Finally, let

(Sj, Ij, Rj, εj), for j ∈ {L,H}, be the equilibria of the model with the constant cost of

infection corresponding to the lower and upper bounds of η.

Proposition 9. In the phase space, the graph of (SL, IL) is above that of (S, I), which,

in turn, is above that of (SH , IH).

Finally, we numerically solve the endogenous cost of infection model using commonly

used parameters for COVID-19 following Farboodi et al. (2020) with our objective func-

tion and show how peak prevalence varies with the transmission rate; see Figure 5. The

non-monotonicity of the peak prevalence in β persists in the environment with the en-

dogenous cost of infection.
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Figure 5: Peak Prevalence and Solution Path of the Endogenous Cost of Infection Model.
In the left panel, the solid blue curve shows the peak prevalence in the endogenous
cost of infection model as a function of the transmission rate. The dashed and dotted
curves reproduce the constant cost of infection model’s peak prevalence using the derived
bounds on η. In the right panel, the solid blue curve represents the solution path of the
endogenous cost of infection model. The dashed and dotted curves represent the constant
cost of infection model’s solution paths using the derived bounds on η.

5 Conclusion

We analyze an epidemiological model with human behavior. Among other results, we

establish that changes in the cost of distancing have a markedly different effect on the

progression of a pandemic than changes in the transmission rate. This result has impor-

tant implications on how public interventions should be modeled. While the existing lit-

erature invariably models public interventions as direct changes in the transmission rates,

our paper demonstrates that interventions affecting distancing incentives directly—e.g.,

via bar and restaurant closures—rather than the likelihood of transmission conditional on

a meeting—e.g., via mask mandates—should be more appropriately modeled as changes

in the cost of distancing. Similarly, changes in the transmission rate should be modeled

together with a behavioral response rather than only as a direct change in the transmis-

sion rate in a standard SIR model because the indirect behavioral effects may outweigh

the direct effect on transmission.

Our model is a stylized depiction of reality. Many details require more thorough

investigation. In future work, we plan to study in more detail how the variations in the

cost of distancing affect the model’s predictions. Two types of changes are of particular

interest. First, over time, distancing becomes more costly due to increasing distancing

fatigue. This effect can be captured by having the cost of distancing dependent on the

amount of distancing in the past. Second, sudden and significant increases in distancing
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cost may occur that alter the course of the epidemic. A salient example is holidays

around which families and friends would gather in normal times. Distancing in such

circumstances is much more difficult to sustain as the opportunity cost is high.

At the time of writing, vaccines against COVID-19 have proven successful and sig-

nificant parts of population around the world have been vaccinated. The fight against

COVID-19 is edging towards victory; though there are many roadblocks still to be over-

come. Nevertheless, prudence and further study of the spread of infectious diseases is

of utmost importance. Not a quarter way into the century, COVID-19 is already the

third coronavirus outbreak—after SARS and MERS—, not to mention other outbreaks

of diseases like Ebola virus, and swine flu, to name a few.
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A Appendix

Proof of Proposition 1. An individual’s problem (1) is concave; therefore, the first-

order condition (5) is also sufficient. This pins down the individual’s optimal distancing

in the SIR dynamics.

Using the exposure obtained from (5) in the SIR dynamics yields

Ṡ(t) = −βS(t)I(t) max

(
1− ηβI(t)

c
, 0

)
, (19)

İ(t) = βS(t)I(t) max

(
1− ηβI(t)

c
, 0

)
− γI(t), (20)

Ṙ(t) = γI(t). (21)

Thus, in any equilibrium (S, I, R) is characterized by the system of differential equa-

tions d
dt

(S, I, R) = F (t, S, I, R), where F is defined by (19), (20), and (21). The ini-

tial condition is (S(0), I(0), R(0)) = (S0, I0, 0). Then, the initial value problem admits

a unique solution (S, I, R) on [0,∞), as the system satisfies the standard conditions.

Namely, the function F is continuous on the domain D = [0,∞) × [0, 1]3, and F is uni-

formly Lipschitz continuous in (S, I, R): there exists a Lipschitz constant L satisfying

‖F (t, S, I, R) − F (t, S̃, Ĩ , R̃)‖ ≤ L‖(S, I, R) − (S̃, Ĩ , R̃)‖ for each t ∈ [0,∞). See, for ex-

ample, Walter (1998). Now, ε = εi is uniquely determined, and hence the model admits

a unique and symmetric equilibrium.

Proof of Proposition 2. Let t̂ be as in the supposition of the proposition. We first

show ε(t̂) ∈ (0, 1). Since I(t) > 0 for all t, evaluating İ(t) = 0 at t̂ yields βS(t̂)ε(t̂) = γ.

Hence, ε(t̂) ∈ (0, 1).

Next, since İ is differentiable at t̂, it follows that Ï(t̂) exists. We show:

Ï(t̂) = β
(
Ṡ(t̂)I(t̂)ε(t̂) + S(t̂)İ(t̂)ε(t̂) + S(t̂)I(t̂)ε̇(t̂)

)
− γİ(t̂)

= βI(t̂)
(
Ṡ(t̂)ε(t̂) + S(t̂)ε̇(t̂)

)
= βS(t̂)I(t̂)

(
−βI(t̂)ε2(t̂) + ε̇(t̂)

)
= −βS(t̂)I2(t̂)ε2(t̂) < 0.

The second equality follows from İ(t̂) = 0, the third from equation (2), and the fourth
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from

ε̇(t̂) = −ηβ
c
İ(t̂) = 0, (22)

which, in turn, follows from optimality condition (5) and ε(t̂) ∈ (0, 1).

Proof of Proposition 3. The first statement follows from the equality İ(0) = I0
γ

(
Rb

0 − 1
)
.

Part (i): From (3) it follows that

İ(0) > 0 if and only if I0

(
β

(
1− βη

c
I0

)
(1− I0)− γ

)
> 0.

Therefore, İ(0) > 0 if and only if β ∈ (β, β) where β and β are solutions to the quadratic

equation

β

(
1− ηI0

c
β

)
(1− I0)− γ = 0. (23)

The discriminant of the quadratic equation is positive if and only if I0 <
1

1+ 4ηγ
c

; the solid

curve in the left panel of Figure 1 corresponds to equation (23). Since ε(0) = 1− ηI0
c
β < 1

and I0 > 0, the left-hand side of the above equation is negative at β = γ
1−I0 . Thus,

β > γ
1−I0 . If β = c

ηI0
, then ε(0) = 0 and İ(0) < 0. Thus, β < c

ηI0
.

Part (ii): Let I0 ≥ 1

1+ 4ηγ
c

. If ε(0) > 0, then the quadratic equation (23) has at most one

solution. Thus, İ(0) ≤ 0. Proposition 2 then implies that if İ(t) ≤ 0 for some t (take

t = 0) then İ(s) < 0 for all s > t. If ε(0) = 0, then there exists a t such that ε(t) = 0

on t ∈ [0, t) and ε(t) > 0 on t ∈ (t,∞). By implication İ(t) = −γI(t) < 0 for t ∈ [0, t),

while ε(t) > 0 for t ∈ (t,∞) by the same reasoning as in the ε(0) > 0 case. Finally,

İ(t) = −γI(t).

Proof of Proposition 4. By Assumption d(0) < 1, it can be seen that ε(t) ∈ (0, 1) for

all t. Then, we have

dS

d(S + I)
=
β

γ
Sε =

β

γ

(
βη

c
S2 + S − βη

c
(S + I)S

)
,

where the first equality follows from dividing (2) by the sum of (2) and (3), and the

second uses (5) and simple manipulations. The above expression can be rewritten as

d

d(S + I)

(
1

S

)
+

(
β

γ
− β2η

γc
(S + I)

)
1

S
= −β

2η

γc
,
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which is a linear first-order differential equation with respect to 1
S

and (S + I). For ease

of notation, let y = 1
S

and x = S + I. Then,

dy

dx
+

(
β

γ
− β2η

γc
x

)
y = −β

2η

γc
. (24)

Let µ(x) := exp
(∫ (

β
γ
− β2η

γc
x
)
dx
)

be the integrating factor. We have

µ(x) = k · exp

(
−β

2η

2γc

(
x− c

βη

)2
)
, (25)

where k is the constant of integration. Then, equation (24) reduces to

d

dx
[µ(x)y] = µ(x)

[
d

dx
y +

(
β

γ
− β2η

γc
x

)
y

]
= −µ(x)

β2η

γc
. (26)

Integrating the outer most sides of Expression (26) and using (25) yield[
exp

(
−β

2η

2γc

(
x− c

βη

)2
)
y

]1
S+I

=
−β2η

γc

∫ 1

S+I

exp

(
−β

2η

2γc

(
x− c

βη

)2
)
dx. (27)

The left-hand side of (27) reduces to

exp

(
−β

2η

2γc

(
1− c

βη

)2
)

1

S0
− exp

(
−β

2η

2γc

(
S + I − c

βη

)2
)

1

S
.

For the right-hand side of (27), let v = β
√

η
2γc

(
x− c

βη

)
. Since dv

dx
= β

√
η

2γc
, the right-

hand side of (27) reduces to

−β
√

2η

γc

∫ β
√

η
2γc(1−

c
βη )

β
√

η
2γc(S+I−

c
βη )

e−v
2

dv.

Hence, we can rewrite equation (27) as

exp

(
−β

2η

2γc

(
S + I − c

βη

)2
)

1

S
= exp

(
−β

2η

2γc

(
1− c

βη

)2
)

1

S0

+ β

√
2η

γc

∫ β
√

η
2γc(1−

c
βη )

β
√

η
2γc(S+I−

c
βη )

e−v
2

dv,

and finally we obtain (8), as desired.

Proof of Proposition 5. We prove the assertion with respect to η
c
. Denote by (S, I(S))

a point on the solution path. Differentiating the quotient differential equation dI
dS

with
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respect to η
c

at a fixed point (S, I(S)) yields

∂

∂ η
c

dI

dS
=
γI

S

1

(1− βI η
c
)2
> 0.

Now, take η
c

and η̃
c̃

with η
c
> η̃

c̃
. Denote by (S̃, Ĩ) the solution path associated with η̃ and

c̃. By the above inequality dI
dS

> dĨ
dS̃

at any point of intersection. It follows that there

exists a δ1 > 0 such that Ĩ(S0 − δ) > I(S0 − δ) for every δ < δ1. Now, it is sufficient

to show that two curves I and Ĩ do not intersect at any other point. Suppose to the

contrary that I and Ĩ did intersect. Let, S := sup{S ∈ (0, S0 − δ1] | Ĩ(S) = I(S)}. Since

the solution curves are continuous they intersect at S and therefore dĨ
dS̃

(S) < dI
dS

(S). But

now we have that dĨ
dS̃

< dI
dS

both at S̄ and S0 and that the two curves do not intersect

anywhere in between, a contradiction.

Proof of Proposition 6. We prove the result with respect to c first, then with respect

to β.

Part (ii): The proof of Proposition 3 has established that

İ(0) > 0 if and only if I0

(
β

(
1− βη

c
I0

)
(1− I0)− γ

)
> 0.

Therefore, İ(0) > 0 if and only if c > c, where c can be recovered from the above

inequality. The peak prevalence when c ≤ c̄ is I0. If c > c, then the peak prevalence is

strictly greater than I0. We show that the peak prevalence is strictly increasing in c > c.

Differentiating equation (7) with respect to c, while holding S and I fixed, yields21

∂

∂c

(
dI

dS

)
= − γηI

c2S
(
1− βI η

c

)2 < 0.

If two solution paths corresponding to c and c′ > c intersect at some point, the solution

path corresponding to c′ has a smaller slope. A certain point of intersection is the

beginning of the infection (S0, I0). At this point in the graph with S on the horizontal

and I on the vertical axis the solution path corresponding to c′ is steeper; the solution

paths are decreasing at (S0, I0). Just below S0, then, the solution path corresponding to

c′ is above the one corresponding to c. If they were to intersect at some other S < S0, the

solution path corresponding to c′ would have to intersect the solution path corresponding

to c from above and stay below it. This would contradict the finding that the solution

path corresponding to c′ is above the one corresponding to c for S slightly below S0.

Finally, given that the solution path under c′ is above the solution path under c, the peak

of infection under c′ must be higher than the peak of infection under c.

21Recall that when İ(0) > 0, exposure is interior for all t.
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Part (i): We break up the proof for β into two steps.

Step 1: I∗ is decreasing in β for β ∈ [ c
2I0η

, β]. The derivative of the quotient differential

equation (7) at a given point (S, I(S)) with respect to β is

∂

∂β

(
dI

dS
(β)

)
= − γ

β2S

1− 2βη
c
I(S)

(1− βη
c
I(S))2

. (28)

The above derivative evaluated at (S0, I0) is greater or equal to 0, for β ≥ c
2I0η

. This

means that at (S0, I0), a higher β leads to a slower spread of the infection when the

starting β is high enough. At (S0, I0) solution paths are decreasing, thus the positive

derivative with respect to β means that the solution path becomes flatter as β increases.

That is, around (S0, I0) the solution path corresponding to a higher β is, therefore, below

the one with the lower β.

Moreover, ∂
∂β

(
dI
dS

(β)
)
≥ 0 at (S0, I0), for β ≥ c

2I0η
, implies that the same is true for

all (S, I) with I > I0. This means that if two solution paths corresponding to some β

and β′ > β in [ c
2I0η

, β] intersect, then the solution path corresponding to β′ must have a

larger slope. One such point of intersection is (S0, I0). Therefore, a solution path for β′ is

below the one of β just below S0 and it cannot intersect it anymore as long as I ≥ I0. In

other words, the solution path of β′ is strictly below the solution path of β for all I > I0.

The maximum of I for β′ is, therefore, strictly below the maximum of I for β.

Step 2: There exists a β1 such that I∗ is increasing in β on (β, β1). We divide this

step into three substeps. First, we show that the peak I∗ is continuous in β. Then, we

show that ∂
∂β

(
dI
dS

(β)
)
< 0 along the entire solution path. Finally, we combine these two

insights to show that for β > β but sufficiently close, ∂
∂β

(
dI
dS

(β)
)
< 0 implying that the

peak is increasing in β for β ∈ (β, β + δ) for some δ > 0.

Step 2.1: We argue that I∗ is continuous in β ∈ (0, β). For β ∈ (0, β), I∗ = I0.

For β ∈ (β, β), in the (S, I)-phase space, (S, I) = (S∗, I∗) satisfies equation (8)

and dI
dS

= 0, i.e., S∗ = γ
β

1

1− ηβ
c
I∗

. Substituting the latter equation into the former and

rearranging, we obtain

exp

(
− η

2γc

(
β − c

η

)2
)

1

S0

+ β

√
2η

γc

∫ √ η
2γc(β−

c
η )

√
η

2γc

(
γ

1−βηc I
∗+βI

∗− c
η

) e−v2dv

=
1

γ

(
β − β2η

c
I∗
)

exp

− η

2γc

(
γ

1− βη
c
I∗

+ βI∗ − c

η

)2
 .
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This implies that I∗ is differentiable and thus continuous in β for β ∈ (β, β).

Finally, if β = β then (S∗, I∗) = (S0, I0) satisfies the above implicit equation. Thus,

I∗ is also continuous at β = β.

Step 2.2: ∂
∂β

(
dI
dS

(β)
)
< 0, along the entire solution path whenever it holds along the

path that 1− 2
βη

c
I(S) > 0. This is satisfied for β = β.

Recall that the sign of ∂
∂β

(
dI
dS

(β)
)

at each (S, I(S)) is determined by the negative of

the sign of 1− 2βη
c
I(S). Thus, it is sufficient for the derivative to be negative along the

entire path that 1− 2βη
c
I∗ > 0.

Observe that the solution β of equation (23) is given by

β =
c

2ηI0

(
1−

(
1− 4

ηγ

c

I0
S0

) 1
2

)
.

Therefore,

1− 2
βη

c
I0 =

(
1− 4

ηγ

c

I0
S0

) 1
2

> 0,

where the inequality follows due to the assumption on I0 in the statement of the result.

Consequently,

∂

∂β

(
dI

dS
(β)

)
< 0.

Step 2.3: I∗ is increasing in β for β ∈ (β, β + δ) for some δ > 0.

Since 1−2
βη

c
I0 > 0, there exists a δ1 > 0 such that 1−2βη

c
I0 > 0 for all β ∈ [β, β+δ1).

By continuity of the peak, for every δ2 > 0, there exists a δ3 > 0, such that β ∈
[β, β + δ3) implies I∗(β) < I0 + δ2. Choose δ2 to correspond to the δ1 argued above Step

2.2, and let δ3 corresponds to such δ2. This guarantees that we consider β to lie in a

range such that the peak is sufficiently low to ensure that the slopes of the solution paths

can be ordered by comparing β.

By Steps 2.1 and 2.2, for any such β, 1− 2βη
c
I(S) > 0 and therefore ∂

∂β

(
dI
dS

(β)
)
< 0.

This implies that whenever two solution paths corresponding to different β in (β, β + δ3)

intersect at a point, the one with the higher β has the smaller slope. Indeed, one point

of intersection is (S0, I0). The solution path with a higher β must be steeper than the
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other path; the two are decreasing at (S0, I0). Suppose the two solution paths were to

intersect at some S < S0 and let S̃ be the largest such S. Then due to ∂
∂β

(
dI
dS

(β)
)
< 0,

the solution path with the higher β would need to intersect the solution path with the

lower β from above, and fall below it for S > S̃. But this contradicts the fact that at S0

the solution path corresponding to a higher β is above the one with the lower β.

Proof of Proposition 7. We first start with showing S0e
−β
γ ≤ Ŝ∞. Let R̂∞ := lim

t→∞
R̂(t).

It follows from the SIR dynamics that

Ŝ∞ = S0 exp

(
−β
∫ ∞
0

Î(s)ds

)
= S0 exp

(
−β
γ
R̂∞

)
≥ S0e

−β
γ .

The first equality follows from integrating both sides of (2) with S and I replaced by

Ŝ and Î, respectively, and with ε = 1. The second equality follows from integrating

(4) (precisely, with R and I replaced by R̂ and Î, respectively). The inequality follows

because R̂∞ ≤ 1.

Second, we show Ŝ∞ ≤ S∞. It suffices to show that Ŝ(t) ≤ S(t), as letting t → ∞
yields the desired result. Suppose to the contrary that there exists some t̃ such that

S(t̃) < Ŝ(t̃). At time 0, S(0) = Ŝ(0) and Ṡ(0) >
˙̂
S(0). Thus, there exists an interval

in which S(·) > Ŝ(·). Then there would have to exist t0 such that S(t0) = Ŝ(t0) and

Ṡ(t0) <
˙̂
S(t0). However, it follows from S(t0) = Ŝ(t0) and the previous argument that

I(t0) ≤ Î(t0), and thus

Ṡ(t0) = −βε(t0)S(t0)I(t0) > −βS(t0)I(t0) > −βŜ(t0)Î(t0) =
˙̂
S(t0),

which is impossible.

Third, we show S∞ < γ
β

in two steps. The first step establishes S∞ ≤ γ
β
. Suppose

not. As S(t) is weakly decreasing throughout, there exists a δ > 0 such that S(t) ≥ δ+ γ
β

for all t ≥ 0. Since lim
t→∞

ε(t) = 1 and δ > 0, for a given κ ∈ (0, δ), there exists t1 ∈ [t0,∞)

such that δε(t)− γ
β
(1− ε(t)) > κ for all t ≥ t1. Then, for all t ≥ t1, we have

İ(t) = βI(t)(S(t)ε(t)− γ

β
) ≥ βI(t)((δ +

γ

β
)ε(t)− γ

β
) > βI(t)κ,

that is, İ(t)
I(t)

> βκ (note that, since İ(t) ≥ −γI(t), I(t) is always positive: I(t) ≥
I(0)e−γt > 0). Thus, I(t) ≥ I(t1)e

βκt, which yields I∞ = +∞. This is a contradic-

tion to I∞ = 0.

The second step establishes S∞ 6= γ
β
. Suppose to the contrary S∞ = γ

β
. Then,
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dI
dS

(S∞) = −1 + γ
β

1
S∞

= 0 as lim
t→∞

ε(t) = 1. However, note that

d

dS

dI

dS
(S∞) = −γ

β

1

ε(I(S))S

(
1

S
+

1

ε(I(S))

dε(I(S))

dI(S)

dI

dS

)
= −γ

β

1

ε(I(S))S2
< 0

as dI
dS

(S∞) = 0, where ε(I(S)) = 1 − β η
c
I(S). Thus, there is a δ > 0 such that for

S ∈ (S∞, S∞+δ), dI
dS

(S∞+δ) < 0 and, hence, that I(S∞+δ) < 0, a contradiction. Thus,

S∞ < γ
β
.

Proof of Proposition 8. It follows from Proposition 5 that S∞ is increasing in c. Thus,

we show that S∞ is decreasing in β for the following three cases: (1) β ∈ [0, β]; (2)

β ∈ [β, β]; and (3) β ∈ [β, c
ηI0

].

Case 1. Let β ∈ [0, β]. In this case, I∗ = I0, and İ(t) < 0 for all t ∈ (0,∞). Also,

ε(·) ∈ (0, 1) as ε(t) = 1 − β η
c
I(t) is decreasing in I(t), I(t) > 0 is decreasing, and

β < c
ηI(0)

.

The derivative of the quotient differential equation with respect to β at (S, I(S)) is

∂

∂β

dI

dS
= − γ

βS

1

β(1− βη
c
I(S))

(
1− 2

βη

c
I(S)

)
< 0.

This implies that, for any β, β′ ∈ [0, β] with β < β′, the solution path associated with β′

has a flatter slope than the one associated with β at any point S ∈ (S0, S∞(β)), where

S∞(β) is S∞ associated with β. Thus, I(S∞(β)) > 0 for the solution path associated

with β′, and hence S∞(β′) < S∞(β).

Case 2. Let β ∈ [β, β]. In this case, İ(0) ≥ 0 and ε(·) ∈ (0, 1). Substituting (S, I) =

(S∞, 0) into (8) yields

S∞ =

exp

(
− η

2γc

(
βS∞ − c

η

)2)
exp

(
− η

2γc

(
β − c

η

)2
)

1

S0

+ 2β

√
η

2γc

∫ √ η
2γc(β−

c
η )

√
η

2γc(βS∞−
c
η )
e−v

2

dv

. (29)
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Rewriting Expression (29),

exp

(
− η

2γc

(
β − c

η

)2
)
S∞
S0

+2βS∞

√
η

2γc

∫ √ η
2γc(β−

c
η )

√
η

2γc(βS∞−
c
η )
e−v

2

dv = exp

(
− η

2γc

(
βS∞ −

c

η

)2
)
.

(30)

For the right-hand side,

∂

∂β
(RHS) = − exp

(
− η

2γc

(
βS∞ −

c

η

)2
)

︸ ︷︷ ︸
=(RHS)

η

γc

(
βS∞ −

c

η

)(
S∞ + β

∂S∞
∂β

)
.

For the left-hand side, we obtain

∂

∂β
(LHS) = exp

(
− η

2γc

(
β − c

η

)2
)
S∞
S0

(
− η

γc
β(1− S0) +

1

γ
+

∂S∞
∂β

S∞

)

+ 2βS∞

√
η

2γc

∫ √
η

2γc

(
β− c

η

)
√

η
2γc

(
βS∞− cη

) e−v2dv
(

1

β
+

∂S∞
∂β

S∞

)

− βS∞
η

γc

(
S∞ + β

∂S∞
∂β

)
exp

(
− η

2γc

(
βS∞ −

c

η

)2
)
.

Equating the derivatives of the left-hand and right-hand sides and using Expression (30)

and rearranging yield

exp

(
− η

2γc

(
βS∞ −

c

η

)2
)((

β

γ
− 1

S∞

)
∂S∞
∂β

+
1

γ

(
S∞ −

γ

β

))

= exp

(
− η

2γc

(
β − c

η

)2
)
S∞
S0

(
1

γ

(
1− ηβ(1− S0)

c
− γ

β

))
.

Thus,

(
β

γ
− 1

S∞

)
∂S∞
∂β

=

exp

(
− η

2γc

(
β − c

η

)2)
exp

(
− η

2γc

(
βS∞ − c

η

)2) S∞S0

1

γ

(
ε(0)− γ

β

)
− 1

γ

(
S∞ −

γ

β

)
. (31)

Since S∞ < γ
β

follows from Proposition 7,22 it follows that

∂S∞
∂β

=
S∞
β

 exp

(
− η

2γc

(
β − c

η

)2)
exp

(
− η

2γc

(
βS∞ − c

η

)2) S∞S0

ε(0)− γ
β

S∞ − γ
β

− 1

 < 0.

22In fact, Equation (31) itself yields S∞ 6= γ
β . Since İ(0) ≥ 0, we have ε(0) ≥ γ

βS0
> γ

β . Since the

first-term of the right-hand side of (31) is not zero, it cannot be the case that S∞ = γ
β .
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Case 3. The case with β ∈ [β, c
ηI0

] is analogous to Case 1, and thus the proof is omitted.

Remark 1. First, we derive equation (10). Suppose that an individual gets infected at

time τ . The (conditional) probability that the individual will have been recovered after

time τ + t is 1− e−γt. Therefore,

VI(τ) =

∫ ∞
0

e−ρt
(
e−γtπI + (1− e−γt)πR

)
dt =

1

ρ+ γ

(
πI +

γ

ρ
πR

)
,

which is independent of τ ; see also Toxvaerd (2020).

Second, the payoff in (11) can be obtained from∫ ∞
0

e−ρt(1− pi(t))
[
πS −

c

2
(1− εi(t))2 +

ṗi(t)

1− pi(t)
VI

]
dt.

With probability 1−pi(t) individual i has not been infected by time t and receives the flow

payoff (πS − c
2
(1 − εi(t))2)dt. In addition, with probability ṗi(t)dt she becomes infected

and receives the lump sum payoff VI . The above payoff is obtained by integration by

parts. This approach was previously used in Toxvaerd (2020); for the approach dealing

with all three states (S, I and R) see Rachel (2020a).

Remark 2. We have assumed pi(t) < 1 in deriving equation (12). We show that the

condition is satisfied in three steps. First, the proof of the inequality S0e
−β
γ ≤ S∞ in

Proposition 7 holds for any SIR dynamics (19), (20) and (21) with ε(·) ∈ [0, 1]. Specif-

ically, it holds for the model with the endogenous cost of infection in which η evolves

according to (13). Second, 1−p∞
1−p(0) = S∞

S0
> 0 holds, where p∞ := lim

t→∞
p(t) and where

the equality follows from observations in the proof of Lemma 1 and the inequality from

the first step. Third, pi, which follows (9), is weakly increasing and satisfies pi = p in

equilibrium. Then, p(t) ≤ p∞ < 1, as desired.

Proof of Lemma 1. We prove the equation (14) in two steps. First, it follows from

equation (9) that

d

dt
log(1− pi(t)) = − ṗi(t)

1− pi(t)
= −εi(t)βI(t).
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Integrating both sides from some t0 to t1 > t0 and taking the exponential yield

1− pi(t1)
1− pi(t0)

= exp

(
−
∫ t1

t0

βεi(t)I(t)dt

)
. (32)

Second, since equation (13) is a linear first-order differential equation, let

µ(t) := e−ρt exp

(
−β
∫ t

0

εi(τ)I(τ)dτ

)
be the integrating factor. Since d

dt
[µ(t)ηi(t)] = µ(t) (η̇i(t)− (ρ+ βεi(t)I(t))ηi(t)), it fol-

lows that

d

dt
[µ(t)ηi(t)] = µ(t)

(
(πS − ρVI)−

c

2
(1− εi(t))2

)
.

Integrating both sides on [t,∞) and using the transversality condition give

e−ρt exp

(
−β
∫ t

0

εi(τ)I(τ)dτ

)
ηi(t)

=

∫ ∞
t

e−ρs exp

(
−β
∫ s

0

εi(τ)I(τ)dτ

)(
(πS − ρVI)−

c

2
(1− εi(s))2

)
ds.

Thus,

ηi(t) =

∫ ∞
t

e−ρ(s−t)
exp

(
−β
∫ s
0
εi(τ)I(τ)dτ

)
exp

(
−β
∫ t
0
εi(τ)I(τ)dτ

) ((πS − ρVI)−
c

2
(1− εi(s))2

)
ds (33)

=

∫ ∞
t

e−ρ(s−t)
1− pi(s)
1− pi(t)

(
(πS − ρVI)−

c

2
(1− εi(s))2

)
ds,

where the last equality used (32).

Next, we derive equation (15) in two steps. First, observe that (2) can be rewritten

as
d

dt
log(S(t)) = −βε(t)I(t).

Integrating both sides from some t0 to t1 > t0 and taking the exponential yield

S(t1)

S(t0)
= exp

(
−
∫ t1

t0

β(t)ε(t)I(t)dt

)
. (34)
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Second, in an equilibrium, (33) reduces to

η(t) =

∫ ∞
t

e−ρ(s−t)
exp

(
−β
∫ s
0
ε(τ)I(τ)dτ

)
exp

(
−β
∫ t
0
ε(τ)I(τ)dτ

) ((πS − ρVI)−
c

2
(1− ε(s))2

)
ds

=

∫ ∞
t

e−ρ(s−t)
S(s)

S(t)

(
(πS − ρVI)−

c

2
(1− ε(s))2

)
ds,

where the last equality used (34).

Proof of Lemma 2. We first show (17). We rearrange (15) as

η(t) =

∫ ∞
t

e−ρ(s−t)
S(s)

S(t)
(πS − ρVI)ds−

∫ ∞
t

e−ρ(s−t)
S(s)

S(t)

c

2
(1− ε(s))2ds. (35)

For the first term of (35), since πS − ρVI > 0,

πS − ρVI
ρ

=

∫ ∞
t

e−ρ(s−t)(πS − ρVI)ds ≥
∫ ∞
t

e−ρ(s−t)
S(s)

S(t)
(πS − ρVI)ds ≥

S(∞)

S(t)

πS − ρVI
ρ

.

As t→∞, the first term of (35) converges to πS−ρVI
ρ

. For the second term of (35), observe

I∞ := lim
t→∞

I(t) = 0. This is because, if I∞ > 0, then R is unbounded, which is impossible.

By optimality condition (12), lim
t→∞

εi(t) = 1. Then, for any small number κ > 0, there

exists t0 ∈ [0,∞) such that if t ≥ t0 then

0 ≤
∫ ∞
t

e−ρ(s−t)
S(s)

S(t)

c

2
(1− ε(s))2ds ≤

∫ ∞
t

e−ρ(s−t)
c

2
(1− ε(s))2ds ≤ cκ2

2ρ
.

Thus,

0 ≤ lim
t→∞

∫ ∞
t

e−ρ(s−t)
S(s)

S(t)

c

2
(1− ε(s))2ds ≤ cκ2

2ρ
.

Since κ is arbitrary, the second term of (35) converges to zero. Hence, we obtain (17), as

desired.

As for the bounds, the upper bound is obtained by replacing ε(t) = 1 and S(s)
S(t)

= 1 for

all s ≥ t in (15). For the lower bound, it follows from (13) that η̇i(t) < 0 if and only if

η(t) <
πS − ρVI − c

2
(1− ε(t))2

ρ+ ε(t)βI(t)
.

If η(t) satisfies η(t) <
πS−ρVI− c2

ρ+β
, then from time t on η is always decreasing, which

contradicts the statement that η converges to its upper bound as time goes to infinity.

Next, assume η̇(0) < 0. Observe that η is bounded because it is continuous and
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converges to the finite upper bound (17). Letting tη be a time at which η attains a

minimum, it follows from the assumption η̇(0) < 0 that η̇(tη) = 0. Thus,

η(tη) =
πS − ρVI − c

2
(1− ε(tη))2

ρ+ ε(tη)βI(tη)
.

Substituting for βI(t) from equation (12) for optimal distancing and rearranging yield

η(tη) =
πS − ρVI

ρ
− c

2ρ
(1− ε2(tη)) (36)

≥
πS − ρVI − c

2

ρ
.

Finally, we show that the lower bound
πS−ρVI− c2

ρ
is approximately tight when η̇(0) < 0.

Substituting (36) into optimality condition (12) yields the following quadratic equation

with respect to ε(tη):

βI(tη)

2ρ
ε2(tη) + ε(tη)− 1 +

β

c
I(tη)

πS − ρVI − c
2

ρ
= 0.

This quadratic equation admits a unique solution ε(tη) ∈ [0, 1]:

ε(tη) = − ρ

βI(tη)

(
1−

√
1 + 2

βI(tη)

ρ

(
1− β

c
I(tη)

πS − ρVI − c
2

ρ

))
.

Since 1−
√

1 + 2x ≈ −x and 1−
√

1 + 2x ≥ −x,

ε(tη) ≈
ρ

βI(tη)

(
βI(tη)

ρ

(
1− β

c
I(tη)

πS − ρVI − c
2

ρ

))
= 1− β

c
I(tη)

πS − ρVI − c
2

ρ
.

Comparing the last equation with optimality condition (12), we obtain η(tη) ≈
πS−ρVI− c2

ρ
.

Proof of Proposition 9. Recall that

dI

dS
= −1 +

γ

βSmax
(
0, 1− βη

c
I
) ,

and denote the solution path of the model with endogenous cost of infection by (Se, Ie)

and its co-state by ηe. By construction, ηe(·) ∈ [ηL, ηH ]. Therefore, for any fixed values

of S and I, the following chain of inequalities obtains: dIL
dSL
≤ dIe

dSe
≤ dIH

dSH
. Finally, recall

that all three solution paths go through (S0, I0).
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Consider first the solution path of the model with an endogenous cost of infection and

the model with the fixed cost of infection ηH . Since dIH
dSH
≥ dIe

dSe
, at any point of intersection

the solution path of the model with the fixed cost ηH intersects the model with the

endogenous cost from below. Hence, for δ > 0 small enough IH(S0− δ) ≤ I(S0− δ). But

then there can be no intersection for any S < S0 as otherwise at such an intersection
dIH
dSH

< dIe
dSe

. Thus, IH(S) ≤ Ie(S).

The proof for the case with the fixed cost of infection ηH is analogous and, therefore,

IL(S) ≥ Ie(S).

B Parameters and Computational Algorithm

We simulate the model at a daily frequency. We follow Farboodi et al. (2020) for most

model parameters as summarized in Table 1. We set γ = 1/7, assuming that the average

length of disease is 7 days. For the transmission rate β for the baseline simulation of the

endogenous cost of infection model, we assume that the initial growth rate İ(0)
I(0)

without

behavior is 0.3. Since it is given as β − γ for the dynamics of the standard SIR model

with S0 = 1, we set β = 0.3 + γ = 0.443. This gives R0 = 3.1 without behavior. We

vary β for various numerical simulations. For I0, we match 194 people who died from

COVID-19 in the US on or before March 18, a week after the pandemic declaration of

the WHO on March 11, 2020. Given a population of 328 million and an IFR of 0.0062,

we set I0 = 0.95 × 10−4. We take ρ = ρ̃ + λ = (0.05 + 0.67)/365, where ρ captures a 5

percent annual discount rate, and λ implies an expected time until the arrival of a cure

of 1.5 years as in Alvarez et al. (forthcoming) and Farboodi et al. (2020).

For the flow payoff, we normalize it to be −(1−ε(t))2. Thus, we set c = 2 and πS = 0.

To compute the parameter η of the constant cost of infection model, we follow the same

steps as in Farboodi et al. (2020). We assume the value of a statistical year of life to be

US$ 270, 000 and an average remaining life expectancy of COVID-19 victims to be 14.5

years, which gives US$ 3, 915, 000 where the numerical values are taken from Hall et al.

(2020). Hence, to avoid a 0.1 percent probability of death an individual would be willing

to pay US$ 0.001 × 3, 915, 000. Using the discount rate to translate this into flow units

we obtain US$ ρ · 3, 915 as the willingness to pay to avoid the 0.1 percent probability

of death. To translate this into utils, we also use the US per capita consumption from

Hall et al. (2020) of US$ 45,000 per year implying that an individual is willing to give up
3,915ρ·365
45,000

= 31.755ρ in terms of annual consumption units, i.e., ε = 1− 31.755ρ, to avoid

a 0.1 percent risk of death. Applying the assumed utility function, an individual, who is
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Table 1: Table of Baseline Parameters for Numerical Analysis.

Parameter Description Value Source
γ Recovery Rate 1/7 Farboodi et al. (2020)
β Transmission Rate 0.3 + γ Farboodi et al. (2020)

I0 Initial Seed of Infections 0.95× 10−4
Based on death toll in the
US before March 19, 2020

ρ̃ Discount Rate 0.05/365 Farboodi et al. (2020)
λ Arrival Rate of Cure 0.67/365 Farboodi et al. (2020)
c Cost of Distancing 2 Normalization
πS Flow Payoff of Susceptibles 0 Normalization
η Cost of Infection {2254.68, 2761.63} Hall et al. (2020)

willing to give up 31.755 ρ units of consumption per period to avoid a 0.1 percent risk of

death, is indifferent between this and full exposure with a 0.001 risk of death which has

a utility cost of v:

−(1− 1)2

ρ
− 0.001v = −(1− 31.755ρ)2

ρ
.

Multiplying this value of life in utils by the death rate of 0.0062 (also from Hall et al.,

2020) yields a cost of infection η = 2761.63.

For the endogenous cost of infection model, we set πR = 0 and πI = −399.96 so that

VI = πI
ρ+γ

= −η works as the upper bound of η(t) in the endogenous cost of infection

model. The lower bound of η is 2761.63− c/2
ρ

= 2254.68, which we also use in the constant

cost of infection model.

We have solved the constant cost of infection model using the fourth-order Runge-

Kutta method. For the endogenous cost of infection model, recall that the equilibrium

of the model is characterized as follows. First, (S, I, R) follow (2), (3), and (4) with the

initial condition (S(0), I(0), R(0)) = (S0, I0, 0), where ε(t) = 1 − βη(t)
c
I(t) is the average

exposure. Second, η follows equation (13) with lim
t→∞

η(t) =
πS − ρVI

ρ
as in (17).

To numerically solve (S, I, R, η), we set η(T ) = πS−ρVI
ρ

at T = 400×365 (days). Then,

given η, we solve for (S, I, R) with the initial condition. In turn, given (S, I, R), we solve

for η with the terminal condition η(T ) = πS−ρVI
ρ

. We iterate the procedure until the sum

of the distances of (S, I, R, η) in two successive iterations is below a threshold value. To

facilitate the computation, at each iteration, when S(t)−S(t+ 1) and I(t+ 1) are below

threshold values, we have terminated the simulation of (S, I, R) at t + 1, and we start

the computation of η with η(t + 1) = πS−ρVI
ρ

and (S, I, R). Once the iterations end, we

have checked whether ε(τ) ∈ [0, 1] for every time τ . The right panel of Figure 5 depicts

the peak prevalence when ε(τ) ∈ [0, 1] for every time τ .
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