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1 Introduction

The paper addresses the question of how meaning is constituted in commu-

nication games in which an informed sender sends a message to a receiver

who then takes an action. Payoffs depend only on the sender’s private infor-

mation and the receiver’s action. Messages are cheap talk. Their meaning

can be thought of as the information conveyed or, closely related, as the

action induced. If players have access to a shared language, we expect the

meaning of a message to depend on both that shared language and on strate-

gic considerations. The shared language provides the semantic meaning of

the message, which is transformed under the influence of incentives. The

paper explores how that transformation is accomplished in an equilibrium

framework, allowing for the possibility that the language may be imperfectly

shared.

‘Meaning’ has been given different meanings and some (Quine [25], Wittgen-

stein [32] in the interpretation of Kripke [20]) have expressed doubt about

whether there are entities that are meanings at all. Part of what appears to

be captured by meaning is reference.1 Reference relates objects to symbolic

representations. We can think of a name for an object as referring to the

named object, as in ‘Wittgenstein’ referring to (or denoting) Wittgenstein,

the philosopher. Proper names, like ‘Wittgenstein’, ‘John Nash’, or ‘Tucson’,

which refer to particular objects, appear to be simple enough. John Stuart

Mill [24] viewed a name’s meaning straightforwardly as the object referred to

by that name, its referent. Still, even something as seemingly simple as the

meaning of proper names turns out to be problematic. Frege [14] observed

that the statement that Hesperus is Phosphorus would be uninformative if

meaning were exhausted by reference – ‘Hesperus’ and ‘Phosphorous’ both

denote Venus and therefore have the same reference. Frege therefore distin-

guished between the ‘reference’ and the ‘sense’ of a name.

There is a long tradition of tying reference and meaning to truth.2 In

1Michaelson and Reimer [23] survey the topic of reference.
2The following discussion relies heavily on Speaks [27].
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a theory of reference (Frege [14]), extending the notion of reference from

proper names to other expressions that are part of a sentence, the reference

of an expression in a sentence is its contribution to the truth value of that

sentence: the sentence “Saguaros are green” is true, whereas “Saguaros are

red” is false. Replacing “green” by “red” in the first sentence switches its

truth value. The predicate “green” acts as a function that maps objects into

truth values.

Propositional semantics assigns a content/meaning to expressions, what

Frege called their “sense” (Sinn), in addition to their reference. It pairs

sentences with propositions as their meaning. Possible world semantics views

the content/meaning of an expression as a function that indicates what that

expression stands for in different states of the world. Carnap [7] refers to these

functions as “intensions.” Intensions map states of the world to truth values;

the predicate “is rich” maps into ‘true’ in all worlds in which the person

referred to is rich. In this view meanings are rules that determine reference

as a function of the state of the world. Davidson [11] proposes a theory

of semantics that is not propositional, i.e., does not introduce propositions

as the meanings of sentences, based on Tarski’s [29] theory of truth. One

question concerning communication games is whether and how meaning in

communication games can be grounded in truth. A second related question

is whether effective communication in games is necessarily truthful.

A widely accepted distinction is that between semantic meanings and

meanings as mental entities, which are tied to the use of language. Semantic

meanings relate expressions in a language to the world. In contrast, meanings

as mental entities are psychological states that may be the speaker’s inten-

tions (Grice [17]) or beliefs (Lewis [21]). The distinction between semantic

meanings and and meanings as mental entities parallels somewhat the dis-

tinction I am interested in between the given meanings of a pre-existing

language and the meanings arising as equilibrium phenomena in a game.

From a purely game-theoretic perspective the meaning of a message is

captured by what players believe about each other’s strategies. There is no
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overt role for truth. A receiver having a belief about the sender’s strategy,

after observing any message consistent with that strategy can form a belief

about the sender’s type. We can think of that belief as the meaning of that

message to the receiver. Analogously, a sender having a belief about the

receiver’s strategy can anticipate how the receiver responds to any message

and choose a message that induces an intended response. We can think of

that intention as the meaning of that message to the sender.

A problem with this purely game-theoretic conception of meaning is that,

even if we commit to a solution concept (like Bayesian Nash equilibrium),

it does not pin down the meanings of messages. Regardless of the incentive

structure, for any solution we can find another game-theoretically equivalent

solution by simply permuting messages. Anything that can be meant by one

message according to the solution can also be meant by any other message.

A closely related problem is that in any communication situation in which

interlocutors are given only a generic set of messages (that have no plausible

association with states of the world or actions), we would not expect them to

be able communicate. Having a large set of messages available is not enough

to make effective communication possible if the messages do not already

relate to the world in which the interlocutors interact. In terms of (Bayesian

Nash) equilibria, in such an artificially constructed situation, regardless of

the incentive structure (including those with perfectly aligned preferences),

none of the equilibria in which the sender shares information are plausible.

To make effective communication plausible, an additional ingredient is

needed. That ingredient is a pre-existing language. The role of a pre-existing

language in making sense of behavior in communication games was first ex-

plored by Farrell [13]. Farrell posits that there is a rich language with com-

monly understood meanings. He appeals to richness to argue that for any

equilibrium there are unused messages that can be activated to express any

desired meaning. While messages are understood they are not necessarily

believed. Farrell formulates a condition for an unused message to be credible

relative to an equilibrium: a message is credible if the types indicated by that
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message gain relative to the equilibrium, and only those types gain. Farrell

calls such a message a credible neologism, and proposes to reject equilibria

for which there is a credible neologism. Equilibria that cannot be rejected

are called neologism proof.

Neologism proofness predicts that there is effective communication in

some games, including when interests are perfectly aligned. In that case, and

others, it rejects the ever present “babbling equilibria” in which the sender’s

messages do not vary with the type and the receiver ignores messages. Rabin

[26] gives a sui generis definition of when messages are credible, independent

of a solution concept. According to his definition, for example, a message

is credible for a set of types if all types in that set achieve their maximal

payoff conditional on the message being believed and all other types receive

their lowest payoff. Rabin’s idea combines with both rationalizability and

equilibrium.

Not all communication games have neologism proof equilibria. When

such equilibria exist, neologism proofness places no constraints on message

use in equilibrium. Rabin’s credible message rationalizability makes sharp

predictions about message use only for types who have credible messages.

It is intuitive, and Blume, DeJong, Kim and Sprinkle [4] demonstrate

experimentally, that there are regularities in the use of exogenously given

message meanings if a meaningful language is available. Crawford [10] pro-

poses to account for such regularities with a level-k model that is anchored

in truthful behavior by senders. Level 0 senders are truthful; level 0 receivers

best respond to level 0 senders; level 1 senders best respond to level 0 re-

ceivers; level 1 receivers best respond to level 1 senders; etc. Cai and Wang [6]

and Wang, Spezio, and Camerer [31] conduct experiments on sender-receiver

games and show that Crawford’s level-k model applied to these games has ex-

planatory power. It captures that senders are excessively truthful, receivers

are excessively credulous, communication varies systematically with the bias,

and senders inflate messages relative to truthfulness.

Truth matters, although in different ways, in the approaches of Farrell,
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Rabin, and Crawford. Farrell’s credible neologisms are truthful statements.

They are, however, only used to reject equilibria. Neologism proofness makes

no prediction about message use, even in games with influential equilibria

that pass the neologism-proofness test. Rabin adds truth-telling as a behav-

ioral assumption, capturing the idea that agents will tell the truth as long as

that is consistent with incentives. In his case, a message is credible if is “true

enough”: if it is believed, all types indicated by that message send it because

by doing so they receive their maximal payoff; and, if additional types might

benefit from sending the message, them doing so does not alter the receiver’s

set of best replies. Rabin’s senders will send credible messages when avail-

able, at least some of the types doing so will be truthful, and the receiver

suffers no loss from taking credible messages at face value. Rabin does not

predict message use when there are no credible messages. Crawford anchors

his level-k analysis in truth by assuming that level-0 senders are truthful. At

higher levels, however, message use need not be truthful. Indeed, it is easy

to come up with examples in which a level-1 sender fails to be truthful for

all of her types.

Level-k models require commitments to the number of relevant levels and

the proportion of these levels in the population. By design, they do not

assume or predict equilibrium behavior, although they can accommodate

equilibrium behavior and, as Wang, Spezio, and Camerer point out, they

can be used to select among equilibria. Regardless of the details, level-

k models appeal to iterative reasoning. The goal of the present paper is

to leverage the power of iterative reasoning to select equilibria and predict

language use. It aims to tether strategic meaning, as expressed in message

use, to semantic meaning, as given by a pre-established language. It proposes

a general model that anchors meaning in a language, respects the strategic

motives of interlocutors, predicts equilibrium behavior for rational players,

satisfies existence in all games, and predicts message use for all types of the

sender.

The paper employs four ideas to link (a preexisting) language with its
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strategic use: (1) (Anchoring) iterating best replies from the language; (2)

(Non-proliferation) containing the proliferation of best replies (by provision-

ally dropping unused messages, minimizing message use, and adjusting best

replies only when necessary); (3) (Expansion) minimally expanding any limit

set of strategies that is reached this way to the point where it includes a best

reply to every belief concentrated on that set and focussing on equilibria

belonging to that expansion; and, (4) (Restoration) restoring provisionally

eliminated message in a way that extends the equilibria obtained to the en-

tire game. A language equilibrium (relative to the pre-existing language in

question) is any equilibrium identified in this manner.3

The proposed iterative procedure that links the preexisting language to

equilibria of the game is meant to capture the sender’s deliberation: She

contemplates what to say in a given situation. She latches on to what seems

natural according to the preexisting language, reflects on strategic implica-

tions, and stops when she has reached a point where everything coheres.

The assumptions that unused messages get provisionally eliminated, that

message use is minimized, and that message adjustments are only contem-

plated if they lead to strict improvements help ensure that the deliberation

comes to a conclusion – the sender is aware that at some point she needs to

speak and stop reflecting. Unlike in learning models, here the language and

player’s beliefs about language are fixed and the proposed iterative procedure

is conceived as mental process that determines sender’s message on a given

fixed occasion.

Language is modeled as a function that assigns interpretations to mes-

sages. In addition to addressing the question of how that function helps

determine message use when it is common knowledge, the paper considers

imperfectly shared languages. Players may be uncertain about the language

or have private information about it. Languages being imperfectly shared

3When the language is common knowledge restoration is always possible. When players
do no share a common language restoration may be an issue. For that reason, we declare
every equilibrium a language equilibrium if restoration is impossible for any candidate
equilibrium obtained via anchoring, non-proliferation, and expansion.
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imposes constraints on communication. The model uses translations as a

device for capturing these constraints. A translation is a mapping from

sender messages to receiver messages and is drawn from a set of possible

translations. A translation limits communication options if it is not an in-

jective function; there may be uncertainty about which translation has been

drawn; and, sender and receiver may have private information about which

translation has been drawn. The translation apparatus is flexible enough

to accommodate (complete) absence of a common language, as in Crawford

and Haller [9], gradations of language sharing, as well as uncertainty and

private information about language constraints, as in Blume and Board [5],

and Giovannoni and Xiong [15].

2 An informal introduction: examples

Consider a game, Game 1, between a sender and a receiver in which the

sender’s payoff type t belongs to the set T = {t1, t1} and the receiver takes

actions a in the set A = {a1, a2, a3}. After privately observing her payoff type,

the sender sends a message m from the message space M = {m1,m2,m3} to

the receiver. In response to the sender’s message, the receiver takes an action

a ∈ A. Payoff types are equally likely and payoffs from any combination (t, a)

of a payoff type t and an action a are given in Figure 1, with the first entry

denoting the sender’s payoff and the second entry denoting the receiver’s

payoff.

t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 -1,3 1,2

Figure 1: Dropping messages

In addition to this standard structure of a sender-receiver game, assume
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that sender and receiver have a common language λ : M → A, with λ(mi) =

ai, i = 1, 2, 3. The language gives the semantic meaning of messages. It can

be interpreted as the conventional way of referring to the receiver’s actions,

when incentives are of no concern.

The solution concept proposed in this paper, language equilibrium, is

meant to capture the sender’s reasoning about which message to send, given

her type. The basic idea is that starting with the language λ, the sender

iterates pure-strategy best replies until she reaches an equilibrium. In order

to make this work, it is necessary to deal with a number of issues that may

derail convergence: these include how to handle unused messages and how to

deal with situations in which the iteration settles on a set instead of a single

strategy profile, e.g., by reaching a cycle.

In Game 1 the sender’s unique best reply against the receiver strategy

r1 = λ, defined by the language λ, is given by s1 = (t1 7→ m1, t2 7→ m3).

Notice that s1 does not use message m2. The iterative procedure we will use

to define language equilibrium provisionally drops unused messages. With

message m2 out of the picture, the receiver has a unique best reply r2 =

(m1 7→ a1,m3 7→ a2) against s1. The sender’s unique best reply to r2 is

s2 = (t1 7→ m1, t2 7→ m1). The unused message m3 is (provisionally) dropped,

the receiver’s unique best reply in the game without messages m2 and m3

is the pooling action a3, and the iterative procedure has converged. At this

point messages m2 and m3 are restored and a language equilibrium is defined

as any equilibrium of the original game in which s2 is the sender strategy

and the receiver responds to message m1 with action a3.4

A few points are worth noting. First, in Game 1 Farrell’s neologism-

proofness test rejects all equilibria: Every equilibrium is a pooling equilib-

rium, with the receiver taking action a3 on the equilibrium path, and given

any such equilibrium the message “I am type t1” is a credible neologism.

Type t1 prefers this message to be believed rather than receiving the pooling

4In games with a common language this type of restoration of message is always pos-
sible. Simply have the receiver’s off-equilibrium responses to messages coincide with one
of the responses to a message that is sent in equilibrium.
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payoff and type t2 prefers the pooling payoff to having it believed. Second,

there is no credible message profile, as defined by Rabin: Type t1 would like to

be identified, but type t2 would have reason to mimic type t1; type t2 prefers

not to be identified; and, type t1 would not receive her maximal payoff if both

types identified themselves as belonging to {t1, t2}. Third, level-k reasoning

would reach the same conclusion as language equilibrium, for high enough

levels and with suitable assumptions for how to deal with unused message.

Finally, language equilibrium is consistent with equilibrium by construction

and, in this game, makes a sharp prediction about message use: both types

send message m1.

What if the iterative procedure just described instead of converging enters

a cycle? Game 2 with the payoff structure in Figure 2 illustrates this problem

and how we address it.

t1

t2

a1 a2 a3

0,9 9,0 0,8

9,0 0,9 0,8

Figure 2: A role for Prep-sets

As before, suppose that the two payoff types t1 and t2 are equally likely,

that the message space is M = {m1,m2,m3}, and players have a common

language λ with λ(mi) = ai, i = 1, 2, 3.

The sender’s unique best reply against the receiver’s strategy r1 = λ,

defined by the language λ, is the strategy s1 = (t1 → m2, t2 → m1). Con-

sider the reduced game, in which the unused message m3 is provisionally

dropped. The receiver’s unique best reply against the sender’s strategy s1

in the reduced game is the strategy r2 = (m1 → a2,m2 → a1). Iterating

further generates a sequence of best replies that are unique at every step and

form a cycle. Denote the set of pure strategies that support this cycle by

S′ × R′. The set of strategies S′ × R′ does not support an equilibrium of the
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reduced game, in either pure or mixed strategies. To satisfy the desideratum

of having the iterative procedure reach rest points that are equilibria, the

procedure expands the set S′×R′. Voorneveld [30] defines a prep set as a set

of pure strategy profile that includes a best reply to every belief concentrated

on that set. This inspires the definition of an S′×R′-prep set as a set of pure

strategy profiles in the reduced game that includes S′ × R′ as well as a best

reply to every belief concentrated on that set. The procedure expands S′×R′

to a minimal S′ × R′-prep set. Minimality is with respect to set inclusion. A

minimal S′ × R′-prep set does not strictly contain another S′ × R′-prep set.

Given a receiver belief that assigns equal probability to all sender strate-

gies in S′ the receiver’s unique best reply in the reduced game is the strategy

r̃ = (m1 → a3,m2 → a3). Therefore, the strategy r̃ must be in any S′ × R′-

prep set. Indeed, once that strategy is included we have a minimal S′×R′-prep

set and that set includes an equilibrium of the reduced game. In any such

equilibrium both messages m1 and m2 are used and the receiver responds to

both messages with the action a3. Finally, we can restore the unused message

m3 to the game. Therefore, in every language equilibrium the sender uses

both messages m1 and m2 and the receiver responds to all three messages

with the pooling action a3.

In Game 2 Farrell’s neologism-proofness criterion does not reject pooling,

the only outcome supported by an equilibrium. It does not, however, commit

to which message or messages the sender uses. Likewise, since there is no

credible message profile, Rabin’s solution make no predictions about message

use. A level-k analysis anchored at the language λ is inconclusive without

additional commitments to how to treat unused messages and to the number

of levels. Language equilibrium arrives at a sharp prediction: both message

m1 and m2, and only those messages, will be used and the receiver responds

to all messages with action a3.

In both of our examples thus far the language has been common knowl-

edge. The next example suggests a way of modeling lack of common knowl-

edge of the language and explores the consequences for effective communica-
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tion and message use.

t1

t2

a1 a2 a3

10,10 9,0 0,9

9,0 10,10 0,9

Figure 3: Uncertainty about language

Consider Game 3 with the payoff structure in Figure 3, two equally likely

payoff types t1 and t2, and a message space M = {m1,m2}. Rabin [26] uses

the example to demonstrate that the credibility of one message may depend

on the credibility of others; Stalnaker [28] elaborates on this by raising the

possibility of “ignorance or error about credibility.”

Rabin points out that the message m1, interpreted as “my type is t1” is

not credible, unless m2 (similarly interpreted) is credible: if m1 were credible

but there was sufficient doubt about the credibility of m2, then type t2 would

prefer to send m1 (to receive the payoff 9 rather than the pooling payoff 0),

undermining the credibility of m1. In Rabin’s case, with the assumption

that the language is common knowledge, this ends up being unproblematic

because the messages are jointly credible.

Suppose, as before, that there is a language λ with λ(mi) = ai, i =

1, 2, that corresponds to the receiver’s interpretation of messages. Now,

however, we want to capture the possibility that when sending a message the

sender is uncertain about how it is interpreted. In order to have this be a

material constraint, we add to the game a set of translations and a probability

distribution over that set. A translation θ : M →M maps intended messages

into interpreted messages.

Specifically, suppose the sender has doubts about her ability to convey

to the receiver her wish that action a1 be taken. She believes that there is a

small chance that whatever she says will be interpreted as asking for action

a2. Formally, there are two translations θ′ and θ′′, defined by θ′(m) = m and
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θ′′(m) = m2 for both m ∈ M. Assume that there is common prior µ over

translations with µ(θ′′) = p, where p satisfies 1
9
< p < 1.

It may help to have in mind the following scenario: The sender wants

to either express qualified skepticism about a scientific claim, t1, or provide

a qualified endorsement, t2. The receiver interprets the sender’s messages

as either qualified skepticism, a1, a qualified endorsement, a2, or pays no

attention, a3. The appropriate qualifications in the possible statements the

sender could make require careful wording and the sender may worry that

despite her best effort her statements are misinterpreted. In addition, she

worries that the receiver is aware of the possibility of misinterpretation and

therefore pays no attention.

The iterative procedure singles out a language equilibrium as follows.

The sender’s unique best reply against the receiver’s strategy r1 = λ, defined

by the language λ, is the strategy s1 = (t1 → m1, t2 → m2). Given that

the sender uses the strategy s1, the receiver’s posterior probability that the

sender’s type is t2 after observing message m2 equals 1
p+1

. Therefore, as long

as p > 1
9
, the receiver has a unique best reply r2 = (m1 → a1,m2 → a3) to

the sender’s strategy s1. Against r2, the sender has a unique best reply s2 =

(t1 → m1, t2 → m1). At that point message m2 is dropped from the iteration.

In any λ-equilibrium, the sender sends message m1 exclusively. In order to

have a λ-equilibrium, it is necessary that the receiver responds to message

m2 also with action a3. This implies that there is a unique λ-equilibrium

strategy profile (σ, ρ) = ((t1 → m1, t2 → m1), (m1 → a3,m2 → a3)).

Note that we get a sharp prediction about message use. The sender sends

message m1 in both states of the world. That message is natural for type t1

to send. Type t2 sends it out of concern for otherwise being ignored. In the

end, the sender expects to be ignored regardless of the message send.

12



3 Setup

I consider sender-receiver games with a sender, S, who has private informa-

tion about a payoff-relevant state, and a receiver, R, who takes an action

that affects both players’ payoffs. Prior to the receiver taking his action the

sender sends a message to the receiver. There is a finite payoff type space

T , a finite action space A, and a finite message space M .5 For any (finite)

set X, ∆(X) is the set of probability distributions over X. Players have a

common prior π ∈ ∆(T ) over the payoff type space, with π(t) > 0 for all

t ∈ T. Players’ payoffs ui(t, a), i = S,R, depend only on the sender’s payoff

type t ∈ T and the receiver’s action a ∈ A.

I refer to the structure described thus far as the base game. In the base

game messages have no semantic meanings and are received as sent. The

games considered modify the base game by adding a language, which endows

messages with semantic meanings, and by introducing translations, which

loosen the link between sent and received messages.

A language λ : M → A represents the receiver’s non-strategic interpre-

tation of messages. While the existence of such a language is assumed to

be common knowledge, the sender may be uncertain about that language.

She may, for example, know that for every action a ∈ A the receiver has a

term ma ∈M that refers to that action but may have no knowledge of which

term refers to which action. In that case every language λ′ = λ ◦ θ, where

θ : M → M is a permutation of M , is just as likely as the language λ from

the sender’s perspective.

I assume that sent messages are subject to a translation θ : M → M.

When the sender sends a message m ∈M , the receiver observes the message

θ(m) ∈M. Translations can but need not be permutations. Translations are

drawn from a common prior distribution µ over a set of translations Θ, with

5Finiteness of the message space is not essential; in fact, one of the merits of approach
here is that the cardinality of the message space is largely irrelevant. With a common
language, for example, having any number of synonyms for messages or having the message
space be unbounded does not present a problem.
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µ(θ) > 0 for all θ ∈ Θ, and are not directly observed by either the sender or

the receiver.6

From the standpoint of an equilibrium analysis, adding a language to the

base game has no consequence. The language can always be ignored. Subject-

ing messages to translations, in contrast, does impact the equilibrium struc-

ture whenever translations are not bijections or there is uncertainty about

the translation. It is through the solution concept that I propose, which

uses the language to select among equilibria, that language and translations

become intertwined. Uncertainty about the translation becomes uncertainty

about language. That way language and uncertainty about that language

jointly determine the (set of) equilibria that are selected.

Each player i receives a private signal hi about the translation from a

finite set of signals H i. The signal pair h = (hS, hR) is generated by a

conditional probability system η : Θ → ∆(HS × HR) that assigns strictly

positive probability to each pair of signals (hS, hR) ∈ HS × HR. Denote

player i’s posterior probability of θ ∈ Θ given his signal hi by ηi(θ|hi). I

say that player i learns the translation if for each signal hi ∈ H i there is a

translation θhi such that ηi(θhi |hi) = 1; that is, player i’s signal reveals the

translation.

After obtaining her private information
(
t, hS

)
∈ T×HS the sender sends

a message m ∈ M to the receiver. After observing (θ(m), hR) ∈ M × HR

the receiver takes an action a ∈ A. A pure strategy s : T ×HS → M of the

sender maps pairs of payoff states and sender signals about the translation

into messages. A pure strategy r : M × HR → A of the receiver maps

pairs of messages and receiver signals about the translation into actions. I

denote the sender’s set of pure strategies by S and the receiver’s set of pure

strategies by R. The corresponding sets of mixed strategies are ΣS = ∆(S)

and ΣR = ∆(R), with typical elements σ ∈ ΣS and ρ ∈ ΣR. Expected payoffs

as a function of mixed strategy profiles (σ, ρ) are denoted by U i(σ, ρ).

If the language λ is surjective, then λ is a rich language. If Θ is a set

6Since M is finite, so is Θ.
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of permutations of M , then the language λ is accessible.7 If Θ = {θ} is a

singleton set, then the language λ is a determinate language. A language that

is both accessible and determinate is a shared language. A shared language

for which the translation θ is the identity mapping is a common language. A

language that is rich, accessible and determinate is a rich shared language,

and if θ is the identity, it is a rich common language. If Θ is the set of all

permutations of M , µ is the uniform distribution on Θ, and η(θ′) = η(θ′′) for

all θ′, θ′′, then then we have have absence of a shared language.

4 Language Equilibrium

The key idea for what I propose is exceedingly simple: starting with the lan-

guage λ, iterate pure-strategy best replies, changing strategies only when this

increases payoffs, while at each step eliminating unused messages. This gen-

erates a sequence of strategy profiles in games with reduced message spaces.

There is a limit game, with a reduced message space, and a limit set of

strategies in that “reduced game” that recur infinitely often. If the limit

set of strategies is a singleton, we have an equilibrium in the reduced game.

Under some conditions (e.g., if there is no uncertainty about translations)

the equilibrium in the reduced game can be extended to an equilibrium in

the original game – by adding appropriate receiver responses to off-path mes-

sages. If this is the case, we have a language equilibrium for the language λ,

or a λ-equilibrium.

Two issues have to be addressed. The procedure just described need not

converge to a single strategy profile and, even if it does, need not generate

a profile that can be extended to an equilibrium of the original game. To

deal with the first issue, I take limit sets of pure strategy profiles under this

procedure, S′ × R′ ⊆ S × R, which always exist, and consider minimal sets

7The properties of Θ, µ and ηi, i = S,R, affect the use players can make of the
language λ. In a broader sense they are part of the language. For that reason, and to save
on notation, I refer to accessibility as an attribute of the language, and similarly for the
attributes defined below.
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of strategy profiles P that contain S′ × R′ and a best reply for each player

to every belief that is concentrated on P. Each P is a prep set, as defined by

Voorneveld [30] that contains S′ × R′, and is minimal among all such sets.

These sets always exist and contain an equilibrium of the reduced game.

If such an equilibrium can be extended to an equilibrium in the original

game, I designate the extension as a language equilibrium of the original

game. Finally, if none of the equilibria of reduced games identified by this

procedure can be extended to an equilibrium in the original game (which is

only a potential issue when there is uncertainty about translations), this is

taken to indicate that the language λ does not single out any of the equilibria

of the original game. In that case, all of the equilibria of the original game

are designated as language equilibria of the original game (for the language

λ).

The proposed iterative procedure provisionally eliminates messages. This

motivates introducing reduced games on subsets of the original message

space. For any subset M0 of the message space M , define Θ(M0) = {m′ ∈
M |∃m ∈M0, θ ∈ Θ such that m′ = θ(m)} as the set of all messages that are

possible for the receiver to observe if the sender is restricted to sending mes-

sages in M0. For each M0 ⊆M , use Γ(M0) to denote the game in which the

sender is restricted to sending messages in M0 and the receiver responds to

messages in Θ(M0). In the game Γ(M0), the sender’s set of pure strategies is

S(M0) and the receiver’s set of pure strategies is R(M0). The corresponding

sets of mixed strategies are ΣS(M0) and ΣR(M0).

For any game Γ(M0) and any set of strategy profiles S′ × R′ ⊆ S(M0)×
R(M0), a set P = PS × PR ⊆ S(M0) × R(M0) is an S′ × R′-prep set if it

satisfies:

1. S′ × R′ ⊆ PS × PR; and,

2. Pi contains a best reply in Γ(M0) to every belief concentrated on P−i

for i = S,R.

In our analysis, the sets S′ × R′ will be limit sets reached by iterating
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from the language λ. There may not be an equilibrium strategy profile of

the game Γ(M0) that is supported on S′ × R′. This motivates considering

S′ × R′-prep sets that are minimal with respect to set inclusion. Minimal

S′ × R′-prep sets are the smallest expansions of the limit sets S′ × R′ to

sets that satisfy a best-reply property and, as a result, support equilibrium

strategy profiles of Γ(M0). For any game Γ(M0) and any set of strategy profile

S′ × R′ ⊆ S(M0) × R(M0), denote the collection of all minimal S′ × R′-prep

sets P , by P (S′ × R′) .

Slightly abusing notation, I will use the same notation for sender strate-

gies defined for different codomains (i.e., message spaces) but identical im-

ages. More formally, for any M ′ ⊆M and any sender strategy s : T ×HS →
M ′ in Γ(M ′), if s(T × HS) = M ′′ ⊂ M ′, I will also use s to denote the

strategy s̃ : T ×HS →M ′′ in Γ(M ′′) that is defined by s̃(t, hS) = s(t, hS) for

all (t, hS) ∈ T ×HS.

Central to the definition of a language equilibrium is an iterative reasoning

process anchored at the language λ : M → A. For this purpose I will define

a λ-path as a sequence (Mk, sk, rk)
∞
k=1 of triples, each consisting of a message

space, a pure sender strategy sk, and a pure receiver strategy rk. Each

sender strategy sk is a best response to the receiver strategy rk; rk is a best

response to sk−1; and, message space Mk is the set of messages used by sk−1.

In addition, M1 = M and r1 = λ. In the formal definition of λ-paths I make

use the following notation: For any pure receiver strategy r of the game

Γ(M ′), M ′ ⊆ M , define BRS(r) as the set of pure-strategy best replies of

the sender in Γ(M ′). Likewise, define BRR as the pure strategy best reply

correspondence of the receiver (in the relevant game). For the sender, in

addition, define BRS(r) as the set of sender best replies (in the relevant

game) that are minimal with respect to the sets of messages used; that is

s ∈ BRS(r) if s ∈ BRS(r) and there is no strategy s′ ∈ BRS(r) that uses a

strict subset of the set of messages used by s. I refer to the set BRS(r) as

the sender’s minimal-message best replies to strategy r of the receiver.

Best replies in the definition of a λ-path are “sticky”: for either player,
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if a strategy from the previous iteration remains a best reply, it is retained

in the current iteration. I also assume that the sender uses minimal-message

best replies: when given a choice between two best replies whose message

sets are nested, she picks the one with the smaller set of messages. The first

of these properties rules out spurious iterations and helps minimize the sets

of strategies reached in the limit. The second property rules out that the

receiver makes spurious distinctions among sender types that have identical

best replies.8

Definition 1 A sequence (Mk, sk, rk)
∞
k=1 with Mk ⊆ M , sk ∈ S(Mk) and

rk ∈ R(Mk) for all k ≥ 1 is a λ-path if

1. M1 = M and r1(m,hr) = λ(m) for all m ∈ Θ(M1) and all hR ∈ HR;

2. for all k, sk ∈ BRS(rk) in Γ(Mk) – in addtion, if k > 1 and sk−1 ∈
BRS(rk) in Γ(Mk), then sk = sk−1;

3. Mk+1 = sk(T ×HS); and,

4. for all k, rk+1 ∈ BRR(sk) in Γ(Mk+1) – in addition, if rk ∈ BRR(sk)

in Γ(Mk), then rk+1(m,hR) = rk(m,h
R) for all m ∈ Θ(Mk+1) and all

hR ∈ HR.

To deal with cases in which λ-paths do not converge, I introduce λ-sets.

A λ-set is a minimal prep set that contains the limit set of strategies reached

by a λ path in the game Γ(M0), where M0 is the limit message space reached

through successive deletion of unused messages.

Definition 2 A set of pure strategy profiles S̃× R̃ in Γ(M0) is a λ-set for

Γ(M0) if there is a λ-path (Mk, sk, rk)
∞
k=1, M0 =

⋂∞
k=1Mk and S̃ × R̃ ∈

P ({
⋂∞
n=1

⋃∞
k=n {sk}} × {

⋂∞
n=1

⋃∞
k=n {rk}}) for the game Γ(M0).

8In addition, one might want to define a λ-path in terms of the game in which actions
that are dominated for the receiver have been eliminated. This would not affect any of our
results, but does make a difference in examples. A sender who believes that the receiver
is rational should not expect to be able to induce dominated receiver actions and should
therefore never use such an expectation as a starting point for her deliberations.
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By construction, a λ-set for a game Γ(M0) contains the support of an

equilibrium in Γ(M0). Any such equilibrium, I refer to as a λ-profile for

Γ(M0).

Definition 3 A strategy profile (σ, ρ) in Γ(M0) is a λ-profile for Γ(M0)

if there is a λ-set S̃× R̃ for Γ(M0) with (σ, ρ) ∈ ∆(S̃)×∆(R̃) such that (σ, ρ)

is an equilibrium strategy profile in Γ(M0) .

Once we have a λ-profile for some game Γ(M0), the question arises

whether we can extend it to the original game by picking suitable receiver

responses after the messages that have zero probability to be observed by

the receiver under the λ-profile. Conversely, and equivalently, we can ask

whether there is a way of reducing an equilibrium strategy profile of the

original game to a λ-profile of a game with a reduced message space. A

strategy profile (σ, ρ) in the original game Γ(M) is a λ-equilibrium profile if

it is an equilibrium profile in Γ(M) and there is a message space M0 ⊆ M

such that after restricting the receiver strategy to messages that can be ob-

served in Γ(M0) it is a λ-profile in Γ(M0). For any receiver strategy ρ in

Γ(M) and any M0 ⊆M let ρ|M0 denote the restriction of ρ to messages that

can be received with positive probability in Γ(M).

Definition 4 An equilibrium strategy strategy profile (σ, ρ) in Γ(M)is a λ-

equilibrium profile if either

1. there exists M0 ⊆M such that (σ, ρ|M0) is a λ-strategy profile in Γ(M0);

or,

2. there is no equilibrium strategy strategy profile (σ′, ρ′) in Γ(M) and

M ′ ⊆M such that (σ′, ρ′|M ′) is a λ-strategy profile in Γ(M ′).

For each player, a strategy that is part of a λ-equilibrium profile is a λ-

equilibrium strategy.

The first condition, which I refer to as reducibility, can always be satisfied

for some equilibrium in a class of games that includes all games with a com-

mon language. When there is uncertainty about the language, however, it
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may be impossible to satisfy reducibility. In that case, the second condition

ensures existence.

The following preliminary result establishes existence of λ-profiles. It is

a simple consequence of the fact that a λ-path either converges or reaches

non-singleton limit set and that any minimal prep set containing that limit

set supports an equilibrium of the limit game Γ(M0).

Lemma 1 For every game Γ(M) and every language λ : M → A there exists

M0 ⊆M and a λ-profile for Γ(M0).

Proof: Existence of a λ-path follows from the fact that all games Γ(M ′)

with M ′ ⊆ M are finite: Given any Mk ⊆ M and any receiver strategy

in R(Mk) (sender strategy in S(Mk)) there exists a pure-strategy best reply

for the sender (receiver) since the set of pure strategies S(Mk) (R(Mk)) is

finite. Given any Mk ⊆M and any pure sender strategy sk in Γ(Mk) the set

Mk+1 = sk(T ×HS) is well defined.

Given a λ-path (Mk, sk, rk)
∞
k=1, the set M0 =

⋂∞
k=1{Mk} is well defined

and non-empty since each Mk is a finite non-empty subset of Mk−1. For

sufficiently large k, each sk is a pure strategy in Γ(M0). Since there are finitely

many such strategies, at least one must appear infinitely often. Hence, the

set
⋂∞
n=1

⋃∞
k=n {sk} is well-defined and non-empty. Likewise, for sufficiently

large k, each rk is a pure strategy in Γ(M0). Since there are finitely many

such strategies, at least one must appear infinitely often. Hence, the set⋂∞
n=1

⋃∞
k=n {rk} is well-defined and non-empty.

Trivially, the set PS×PR = S(M0)×R(M0) satisfies {
⋂∞
n=1

⋃∞
k=n {sk}}×

{
⋂∞
n=1

⋃∞
k=n {rk}} ⊆ PS × PR and for every belief concentrated on P−i con-

tains a best reply in Pi, i = S,R. Finiteness then implies that there must be

a minimal set with that property. Hence, there is a λ-set S̃× R̃ for the game

Γ(M0).

Since the λ-set S̃ × R̃ is a Prep set for the game Γ(M0), it contains an
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equilibrium in mixed strategies of Γ(M0). 2

The next result shows that whenever the set of translations is a singleton

every λ-equilibrium profile can be obtained as an extension of a λ-profile to

the entire game.

Lemma 2 For every game Γ(M) and every determinate language λ : M →
A, if (σ̃, ρ̃) is a λ-profile in Γ(M0), there is a λ-equilibrium profile (σ, ρ) in

Γ(M) with (σ̃, ρ̃) = (σ, ρ|M0) .

Proof: Recall that λ is a determinate language if the set of translations

contains a single element, θ. Let (σ̃, ρ̃) be a λ-profile in Γ(M0). Since (σ̃, ρ̃)

is an equilibrium profile in Γ(M0), the receiver strategy ρ̃ specifies a best

reply to all messages in θ(M0). Extend the receiver strategy ρ̃ from the game

Γ(M0) to the game Γ(M) by letting ρ(m) = ρ̃(m0) for all m ∈ θ(M \M0)

and some m0 ∈ θ(M0). In the game Γ(M), if the receiver uses the strategy ρ,

then every action the sender can induce by sending a message in M \M0 she

can also induce by sending a message in M0. Hence, if we let σ = σ̃, (σ, ρ) is

an equilibrium strategy profile for the game Γ(M) with (σ, ρ|M0) = (σ̃, ρ̃). 2

A key element of the definition of a λ-path and therefore of a λ-equilibrium

is the requirement that at each iteration unused messages are provisionally

dropped. Like the requirements that best replies are sticky and that the

sender use minimal-message best replies, dropping unused messages serves

to contain the proliferation of best replies. The next example illustrates

the role dropping messages, while retaining sticky best replies and minimal-

message best replies; I will discuss the impact of the other two requirements

later, in a more appropriate context.

Consider a sender-receiver game with the payoff structure in Figure 4,

in which the two payoff types are equally likely, the message space is M =

{m1,m2}, and there is a common language λ with λ(mi) = ai, i = 1, 2.
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t1

t2

a1 a2

3,3 0,2

3,-3 0,2

Figure 4: Not dropping messages

The game has a unique λ-equilibrium: the sender sends m1 regardless of

type and the receiver responds to both messages with action a2.

Suppose, instead, that in the definition of a λ-path we did not prescribe

to drop unused messages. Given the receiver strategy r1 = λ defined by

r(mi) = ai the following is a sequence of pure-strategy best replies starting

with the sender’s best reply s1 to r1:

s1 = (t1 → m1, t2 → m1)

r2 = (m1 → a2,m2 → a1)

s2 = (t1 → m2, t2 → m2)

r3 = (m1 → a1,m2 → a2)

s3 = (t1 → m1, t2 → m1)

. . .

Since the sender uses only one message at every iteration, clearly the

minimal message best reply condition is satisfied. Also, at every iteration

each player’s payoff from changing their strategy is strictly higher than from

staying put and therefore the stickiness condition is satisfied. Unlike with

dropping messages, however, we do not get a sharp prediction for language

use. If we did not require that unused messages be dropped in the definition

of a λ-path, there would be language equilibria in which either one of the

messages is used as well as language equilibria in which both messages are

used.

22



4.1 Common-interest games

The following result characterizes language use in games in which sender

and receiver agree on which strategy profiles they prefer and they have a

rich shared language. Following Blume, Kim and Sobel [2], say that a game

is a common-interest game if in the corresponding base game there exists

a strategy profile (σ∗, ρ∗) such that for any strategy profile (σ, ρ) either

Ui(σ, ρ) = Ui(σ
∗, ρ∗) for i = S,R, or Ui(σ, ρ) < Ui(σ

∗, ρ∗) for i = S,R.

That is, there is a unique efficient payoff pair.

Proposition 1 In a common-interest game with a rich shared language λ

every λ-equilibrium profile (σ, ρ) achieves the maximal payoff and satisfies

ρ(m) = λ(m) for all messages m ∈ M that are received with positive proba-

bility.

Proof: For every payoff type t ∈ T let at ∈ arg maxa u
S(a, t). Since the

language λ is rich, for any t ∈ T and any action at ∈ A, there is a message

mt ∈ M1 with λ(mt) = at. Because the language λ is shared and r1(m) =

λ(m) for all m ∈M1, each payoff type t ∈ T can achieve her maximal feasible

payoff by sending the message θ−1(mt). Since the sender has a strategy that

achieves her maximal feasible payoff against r1 for each of her payoff types,

for every λ-path the strategy s1 of the sender must achieve the maximal

feasible payoff US(σ∗, ρ∗).

The common-interest assumption implies that a profile that achieves the

sender’s maximal payoff also achieves the receiver’s maximal payoff. Hence s1

and r1 are mutual best replies in Γ(M1). Therefore r2 agrees with r1 in Γ(M2),

where M2 = s1(T ). Since s1 is a minimal message best reply to r1, s2 = s1

uses all messages in M2. For any λ-path, if sk and rk, are mutual best replies

in Γ(Mk) and sk uses all messages in Mk, then sk = sk+1, rk = rk+1, and

Mk+1 = Mk Hence, by induction, (sk, rk,Mk) = (s2, r2,M2) = (s1, r2,M2) for

all k ≥ 2. This implies that (s1, r2) is a λ-profile for Γ(M2).
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The receiver strategy r2 in Γ(M2) agrees with r1 for all messages received

with positive probability given s1 and therefore satisfies r2(m) = λ(m) for

all messages m ∈ M that are received with positive probability. The result

follows from Definition 4 and Lemma 2. 2

With absence of a shared language, communication is impossible. The

following result confirms that in this case pooling is the only feasible outcome

and shows in addition that in every λ-equilibrium all types of the sender send

the same message.

Proposition 2 For every game Γ(M) with absence of a shared language,

the set of λ-equilibrium strategies of the sender equals {s ∈ S(M)|s(t′) =

s(t′′),∀t′, t′′ ∈ T}.

This result differentiates the mental process that is captured through

our iterative procedure from learning. Given that the translation, while

uncertain, is fixed, repeated interaction would make it possible for sender

and receiver to adjust their strategies toward effective communication, with

sufficiently aligned preferences.

Proof: With absence of a shared language the sender assigns equal prob-

ability to every possible translation, regardless of her signal. As a result,

all of her strategies have the same expected payoff against rk for all k ≥ 1,

regardless of the receiver strategies rk. Thus every strategy s1 ∈ S(M) is a

best reply to rk for all k ≥ 1, independent of the specification of rk. Since

the sender is using minimal message best replies, s1 prescribes that all types

use the same message. Since for k > 1 if sk−1 ∈ BRS(rk) in Γ(Mk) we have

sk = sk−1, it follows that for every λ-path, sk = s1 for all k ≥ 1. 2

Having the language be shared, or even common, is not necessary for

achieving efficient communication in common-interest games. With a rich

and accessible language, it suffices that the the sender learns the translation.
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In contrast, as we will see later, it is not enough that the receiver learns the

translation.

Proposition 3 In a common-interest game with a rich and accessible lan-

guage λ, if the sender learns the translation then every λ-equilibrium profile

(σ, ρ) achieves the maximal payoff and satisfies ρ(m,hR) = λ(m) for all mes-

sages m ∈ Θ(M) that are received with positive probability and all receiver

signals hR ∈ HR.

Proof: Recall that for every payoff type t ∈ T , at ∈ arg maxa u
S(a, t). For

notational convenience, write θ for θhS .

Since the language λ is rich and accessible and the sender learns the trans-

lation, for every t ∈ T , every at ∈ A, and every hS ∈ HS there is a message

mt ∈ M1 with λ(θ(mt)) = at. Denote that message by mθ
t . Therefore, since

the receiver strategy r1 satisfies r1(m,hR) = λ(m) for all m ∈ Θ(M1) and

all hR ∈ HR, each payoff type t ∈ T can achieve her maximal feasible payoff

against the strategy r1 by sending the message mθ
t . Hence the sender strategy

ŝ that is defined by ŝ(t, θ) = mθ
t for all t ∈ T and all θ ∈ Θ is a best reply to

r1 and achieves the sender’s maximal feasible payoff US(σ∗, ρ∗).

Since the sender has a strategy that achieves her maximal feasible payoff

against r1, for every λ-path the strategy s1 of the sender (which may be

different from ŝ) must achieve the maximal feasible payoff. The common-

interest assumption implies that a strategy profile that achieves the sender’s

maximal payoff also achieves the receiver’s maximal payoff. Hence s1 and r1

are mutual best replies in Γ(M1)

Therefore r2 agrees with r1 on M2 = s1(T × HS) and s2 = s1 uses all

messages in M2. For any λ-path, if sk and rk, are mutual best replies in Γ(Mk)

and sk uses all messages in Mk, then sk = sk+1, rk = rk+1, and Mk+1 = Mk.

Hence, by induction (sk, rk,Mk) = (s2, r2,M2) = (s1, r2,M2) for all k ≥ 2

and r2 agrees with r1 for all messages received with positive probability given

s1. This implies that (s1, r2) is a λ-profile for Γ(M2). The receiver strategy
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r2 in Γ(M2) agrees with r1 for all messages received with positive probability

given s1 and therefore satisfies r2(m,hR) = λ(m) for all hR ∈ HR and for all

messages m ∈ Θ(M) that are received with positive probability.

We can extend the receiver’s strategy to Γ(M) by letting ρ(m,hR) =

λ(m) for all ∈M. Hence there exists an equilibrium strategy strategy profile

(σ, ρ) = (s1, ρ) in Γ(M) that satisfies (σ, ρ|M2) is a λ-strategy profile in Γ(M2).

This implies that every λ-equilibrium profile in Γ(M) must satisfy condition

1 in Definition 4 and thus be reducible to a λ-profile for some M0 ⊂M.

The result follows by combining the facts that (1) every λ-strategy profile

(s, r) for some M0 achieves the maximal payoff and satisfies r(m,hR) = λ(m)

for all hR ∈ HR for all messages m ∈ Θ(M) that are received with positive

probability and (2) every λ-equilibrium profile is reducible to a λ-strategy

profile for some M0. 2

With a rich and accessible language, as long as one of the players learns

the translation, a common-interest game has multiple equilibria that achieve

the maximal payoff: If the sender (or both players) learn the translation,

any pure strategy profile (s, r) in which r is surjective and s is a best reply

to r given the realized translation θ is an equilibrium profile that achieves

the maximal payoff. Likewise, if only the receiver learns the translation, any

pure strategy profile in which s is an arbitrary separating strategy and r is a

best reply to s given the realized translation θ is an equilibrium profile that

achieves the maximal payoff.

The language equilibrium selection, in contrast, differentiates among these

cases. In the case in which the sender learns the translation Proposition 3

shows that any λ-equilibrium is efficient and satisfies that the receiver’s strat-

egy conforms with the pre-specified language. If, however, only the receiver

learns the translation, language equilibria need not be either efficient or, if

they are efficient, conform with the pre-specified language. The following

example illustrates this.

Suppose that payoffs are the ones given in Figure 5 and that the two

payoff types are equally likely; the message space is M = {m1,m2}; the
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t1

t2

a1 a2

1,1 0,0

0,0 2,2

Figure 5: Common interest

set of translations is Θ = {θ1, θ2}, with θ1(mi) = mi and θ2(mi) = m3−i;

µ(θi) = 1
2
, i = 1, 2, so that a priori both translations are equally likely; and,

the language λ satisfies λ(mi) = ai i = 1, 2. This is a common-interest game

with a rich and accessible language. Let HR = {hR1 , hR2 }, HS = {hS}, with

ηR(θi|hRi ) = 1, so that the receiver signals fully reveal the translation and

the set of sender signals is degenerate. Since the sender does not learn the

translation and a priori both translations are equally likely, she expects the

receiver to observe each message with equal probability independent of the

message sent. Since λ is not a function of the translation, against r1 = λ the

sender expects to induce each receiver action with equal probability. Hence,

every sender strategy, including pooling on a single message, is a best reply

against r1 = λ. A minimal message best reply requires that s1 pools on a

single message. If s1 is pooling on m1 then r1 = λ is not a best reply to

s1 (and therefore stickiness does not prevent the receiver from updating his

strategy), and for the receiver taking action a2 independent of the message

received and the signal observed is a best reply. Let this be r2. s1 and r2 are

mutual best replies and hence the profile (s1, r2) is a λ-equilibrium profile.

This λ-equilibrium profile does not induce the common maximal payoff and

the receiver strategy does not conform with the language λ.

A game is an equilibrium-common-interest game if in the base game there

exists an equilibrium strategy profile (σ∗, ρ∗) such that for any equilibrium

strategy profile (σ, ρ) either Ui(σ, ρ) = Ui(σ
∗, ρ∗) for i = S,R, or Ui(σ, ρ) <

Ui(σ
∗, ρ∗) for i = S,R. That is, there is a unique payoff pair that is efficient

in the set of equilibrium payoff pairs.
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Propositions 1 and 3 do not extend to games with only equilibrium-

common interest. Consider Game 6 with the payoff structure in Figure 6,

two equally likely payoff types t1 and t2, a message space M = {m1,m2,m3},
and a rich shared language λ with λ(mi) = ai, i = 1, 2, 3, where the single

translation is the identity map.9

t1

t2

a1 a2 a3

2,3 1,-3 0,1

2,-3 1,3 0,1

Figure 6: State-independent preferences

The game has a continuum of equilibria, with payoffs ranging from 0 to 1

for the sender and from 1 to 1.5 for the receiver. There is a unique efficient

equilibrium payoff pair with a payoff of 1 for the sender and 1.5 for the

receiver. This payoff pair can be achieved by a strategy profile in which type

t1 sends message m1, type t2 sends messages m1 and m2 with probability

1/2 each, and the receiver responds to message m1 with an equal-probability

randomization over actions a1 and a3 and to both messages m2 and m3 with

action a2.

The set M0 = {m1} is the unique subset of M with a λ-profile for M0.

For the sender, this λ-profile prescribes sending m1 regardless of the payoff

type. The receiver responds to m1 with action a3. The only way to extend

this profile to all of Γ(M) is to have the receiver respond to all messages with

action a3. Hence, for this game there is a unique λ-equilibrium profile. This

equilibrium is inefficient and does not conform with the language.

Recall that in the definition of a λ-path best replies are “sticky”: if a

strategy from the previous iteration remains a best reply, it is retained in the

current iteration. The next example demonstrates that Propositions 1 and

9This is a game with state-independent sender-preferences, which are analyzed by Lip-
nowski and Ravid [22].
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3 would fail if we dropped stickiness in the definition of a λ-path. Consider

a sender-receiver game with the payoff structure in Figure 7, in which the

three payoff types are equally likely, the message space is M = {m1,m2,m3},
and there is a rich common language λ with λ(mi) = ai, i = 1, 2, 3.

t1

t2

t3

a1 a2 a3

1,1 0,0 1,1

1,1 1,1 0,0

0,0 1,1 1,1

Figure 7: Payoff ties

The following is a sequence of best replies with elimination of unused

messages and minimum-message best replies for the sender, starting with

the sender’s best reply s1 to the receiver’s strategy r1 = λ:

1. s1 = (t1 → m1, t2 → m1, t3 → m3)

2. r2 = (m1 → a1,m3 → a3)

3. s2 = (t1 → m3, t2 → m1, t3 → m3)

4. r3 = (m1 → a2,m3 → a3)

5. s3 = (t1 → m3, t2 → m1, t3 → m1)

6. r4 = (m1 → a2,m3 → a1)

7. s4 = (t1 → m3, t2 → m3, t3 → m1)

8. r5 = (m1 → a3,m3 → a1)

At this point the roles of the messages m1 and m3 have been exchanged.

This means that there is a cycle in which the sender strategies s1 and s4

and the receiver strategies r2 and r5 appear infinitely often. The strategy
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profile in which the sender mixes with equal probability over s1 and s4 and

the receiver mixes with equal probability over r2 and r5 is an equilibrium

profile supported on this cycle. This equilibrium is inefficient and does not

conform with the language.

With sticky best replies the inefficiency is removed. There are multiple λ-

equilibria, but in all of these equilibria the receiver’s interpretation conforms

with the language λ. This seems plausible: the sender tells the receiver which

action to take and the receiver, realizing that it is a common interest game,

complies.

4.2 Block-aligned preferences

In this section I examine language use for a class of games in which preferences

are imperfectly aligned. There is a partition of the payoff type space such

that payoff types in every partition element strictly prefer to be thought of

as belonging to their partition element rather than to any other partition

element. For every set of types T ′ ⊆ T , define BR(T ′) as the set of receiver

actions that are best replies to beliefs that assign positive probability only

to types t ∈ T ′.

Definition 5 Players have block-aligned preferences for a nontrivial par-

tition T = {T1, . . . , TJ} of the payoff type space T if

1. arg maxa u
S(t, a) ⊆ BR(Tj), and

2. min
a∈BR(Tj)

uS(t, a) > max
a∈BR(T`)

uS(t, a)

for all t ∈ Tj, all j = 1, . . . , J , and all ` 6= j.

Game 8 with the payoff structure in Figure 8, four equally likely payoff

types, the message space M = {m1, . . .m5}, and a common language λ with

λ(mi) = ai, i = 1, . . . , 5, has block-aligned preferences for the partition

T = {{t1, t2}, {t3, t4}}.
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t1

t2

t3

t4

a1 a2 a3 a4 a5

5,2 1,6 -1,-1 -1,-1 4,3

1,5 5,2 -1,-1 -1,-1 4,3

-1,-1 -1,-1 5,2 1,6 4,3

-1,-1 -1,-1 1,5 5,2 4,3

Figure 8: Block-aligned preferences

In every λ-equilibrium, types t1 and t2 send a combination of messages

m1 and m2 and types t3 and t4 send a combination of messages m3 and m4.

There are λ-equilibria in which the sender uses mixed strategies as well as

λ-equilibria in which the sender does not mix. In all of these equilibria, the

receiver responds to messages m1 and m2 that are sent in equilibrium with

action a2 and to messages m3 and m4 that are sent in equilibrium with action

a4. Note that the sender ex ante prefers pooling to any λ-equilibrium, that

there is no credible message profile, and that λ-equilibria are not neologism

proof: the set of types t1 and t3 has a credible neologism.

In Game 8 language equilibrium does not pin down language use exactly,

put it places sensible constraints on language use that reflect the payoff struc-

ture. This holds more generally. To show this, given a partition of the payoff

type space I define what it means for language use to block conform with a lan-

guage: Each sender type only induces received messages whose pre-specified

meanings according to the language are best replies to beliefs concentrated

on her partition element. The receiver responds to every received message

whose pre-specified meaning is a best reply to beliefs concentrated on a par-

tition element with an action that is a best reply to beliefs concentrated on

the same partition element.

For any partition T of the payoff type space and every t ∈ T denote the

partition element that contains t by T (t).
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Definition 6 Given a partition T of the payoff-type space, a set of strategy

profiles Σ̃S×Σ̃R ⊆ ΣS×ΣR in Γ(M0) block conforms with the language

λ if

1. [σ(m|t, hS) > 0 and ηS(θ|hS) > 0] ⇒ λ(θ(m)) ∈ BR(T (t)), ∀σ ∈
Σ̃S, t ∈ T, hS ∈ HS.

2. λ(m) ∈ BR(Tj) ⇒ ρ(m,hR) ∈ BR(Tj), ∀ρ ∈ Σ̃R, j = 1, . . . , J , all

messages m ∈ Θ(M0) that are received with positive probability given

some sender strategy σ ∈ Σ̃S, and all receiver signals hR ∈ HR.

The next result ensures that if a limit set of strategies reached by a λ-path

block conforms with the language λ, then any minimal prep set containing

that limit set also block conforms with the language λ.

Lemma 3 Suppose that players have block aligned preferences for the parti-

tion T , that S′ × R′ ⊆ S × R in Γ(M0) block conforms with the language λ

for the partition T , and that for each m ∈ Θ(M0) there is a strategy s ∈ S′

such that message m is received with positive probability, then every minimal

S′ × R′-Prep Set in Γ(M0) block conforms with the language λ.

Proof: Suppose that S′ × R′ satisfies the conditions in the statement of the

Lemma for the partition T . Let PS × PR be an S′ × R′-Prep Set in Γ(M0).

Eliminate all sender strategies from PS that do not satisfy Condition 1 for

block conformity in Definition 6. Denote the resulting set by P̃S and observe

that it is nonempty. Eliminate all receiver strategies from PR that do not

satisfy Condition 2 for block conformity in Definition 6, with Σ̃S the set of

mixed strategy profiles of the sender supported on P̃S. Denote the resulting

set by P̃R and observe that it is nonempty.

Since P̃R satisfies Condition 2 for block conformity, since every message

available to the sender induces a message in Θ(M0) that is received with

positive probability by the receiver for some sender strategy in S′ ⊆ P̃S, and
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since preferences are block aligned for the partition T , every sender best

reply in Γ(M0) to beliefs concentrated on P̃R satisfies Condition 1 for block

conformity. Since by assumption PS × PR is a Prep Set, PS must contain a

best reply for every belief that is concentrated on P̃R. Since, as we saw, all

such best replies satisfy Condition 1 for block conformity, they remain in P̃S.

Thus P̃S contains a best reply to every belief concentrated on P̃R.

Let σ′ ∈ ∆(S′) have full support on S′, let σ̃ ∈ ∆(P̃S), and for all ε ∈
(0, 1), let σ(ε) = (1 − ε)σ̃ + εσ′. Then σ(ε) ∈ ∆(P̃S) and σ(ε) induces every

message in Θ(M0) with positive probability. Since all strategies in P̃S satisfy

Condition 1 for block conformity, for all ε > 0 the strategy σ(ε) satisfies that

condition. Since the strategy σ(ε) satisfies Condition 1 for block conformity

and it induces every message in Θ(M0) with positive probability, any receiver

best reply to σ(ε) satisfies Condition 2 for block conformity. Since PS×PR is

assumed to be a Prep Set, and P̃R is obtained from PR by eliminating (only)

strategies that do not satisfy Condition 2, the set P̃R contains a best reply to

σ(ε) for all ε > 0. Consider a sequence (εn, ρ(εn))∞n=1 with lim
n→∞

εn = 0, ρ(εn) a

best reply to σ(εn) and ρ(εn) ∈ P̃R. Since P̃R is finite, there is a subsequence

(εnj
, ρ(εnj

))∞j=1 and ρ̃ ∈ P̃R with ρ(εnj
) = ρ̃ for all j. By continuity of the

payoff function, ρ̃ is a best reply to σ̃. Hence P̃R contains a best reply to σ̃

for all σ̃ ∈ ∆(P̃S). Therefore, P̃S × P̃R is an S′ × R′-Prep Set. 2

Using this observation, we now show that with a rich and accessible lan-

guage and block-aligned preferences, all language equilibria block conform

with the pre-specified language. Types belonging to an element of the parti-

tion for which there is block alignment send only messages whose pre-specified

meanings are best replies to beliefs concentrated on that element. The proof

proceeds by showing that for every λ-path block conformity is preserved at

every iteration, then using Lemma 3 to establish that any set that is mini-

mal in the class of prep sets that contain the limit set reached in this manner

block conforms with the language, and finally to infer that any equlibrium

supported on such a prep set must block conform with the language.
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Proposition 4 In games with block-aligned preferences and a rich and acces-

sible language λ, if the sender learns the translation then every λ-equilibrium

profile (σ, ρ) block conforms with the language λ.

Proof: For every payoff type t ∈ T , let at ∈ arg maxa u
S(a, t). For notational

convenience, write θ for θhS .

Since the language λ is rich and accessible and the sender learns the trans-

lation, for every t ∈ T , every at ∈ A, and every hS ∈ HS there is a message

mt ∈ M1 with λ(θ(mt)) = at. Denote that message by mθ
t . Therefore, since

the receiver strategy r1 satisfies r1(m,hR) = λ(m) for all m ∈ Θ(M1) and

all hR ∈ HR, each payoff type t ∈ T can achieve her maximal feasible payoff

against the strategy r1 by sending the message mθ
t .

Block alignment of preferences implies that

max
a
uS(t, a) = max

a∈BR(T (t))
uS(t, a) ≥ min

a∈BR(T (t))
uS(t, a) > max

a∈BR(T`)
uS(t, a)

for all T` 6= T (t). Hence, for every λ-path the strategy s1 satisfies Condition

1 in Definition 6. Given the strategy s1, for any message m that the receiver

observes with positive probability and that satisfies λ(m) ∈ BR(Tj), he knows

that message was sent by a type in Tj. Hence r2 satisfies Condition 2 in

Definition 6.

If sk satisfies Condition 1 in Definition 6, then for every message that

has positive probability given sk the receiver can infer the partition element

containing the type who sent that message from the language λ. Therefore

rk+1 satisfies Condition 2 in Definition 6 and for every t ∈ T there is a

message m ∈ sk(T ×HS) = Mk+1 with rk+1(θ(m), hR) ∈ BR(T (t)).

Since Mk = sk−1(T × HS) and rk ∈ BRR(sk−1) in Γ(Mk), the strategy

rk specifies responses only for message in Θ(Mk), all of which are received

with positive probability given sk−1. Given sk−1, if rk satisfies Condition

2 in Definition 6 and for every t ∈ T there is a message m ∈ Mk with

rk(θ(m), hR) ∈ BR(T (t)) then sk satisfies Condition 1 in Definition 6.

34



Hence, by induction for every (sk, rk+1) and every k ≥ 1, sk satisfies Con-

dition 1 in Definition 6 and given sk, rk+1 satisfies Condition 2 in Definition

6.

Since M is finite and Mk+1 ⊂ Mk in the sequence (M)∞k=1, there exists

K ≥ 1 such that Mk = M0 for all k ≥ K.

Let S′ =
⋂∞
n=1

⋃∞
k=n {sk} and R′ =

⋂∞
n=1

⋃∞
k=n {sk}. Note that for every

message m ∈ M0 there is a sender strategy in S′ for which m is sent with

positive probability. Hence, the set S′×R′ ⊆ S×R in Γ(M0) block conforms

with the language λ and for each m ∈ Θ(M0) there is a strategy s ∈ S′ such

that message m is received with positive probability.

Let P = PS × PR ⊆ S(M0) × R(M0) be a minimal S′ × R′-prep set in

Γ(M0). Since S′ × R′ satisfies the conditions of Lemma 3, the set P block-

conforms with the language λ. Hence, there there exists a λ-profile (σ0, ρ0)

in Γ(M0) with support P , and every λ profile in Γ(M0) block conforms with

the language λ.

We can extend the receiver’s strategy to Γ(M) by letting ρ(m,hR) =

ρ0(m0, hR) for all m ∈ Θ(M)\Θ(M0) and some m0 ∈ Θ(M0) and ρ(m,hR) =

ρ0(m,hR) for all m ∈ Θ(M0) and all hR ∈ HR. The sender strategy σ0

remains a best reply to ρ in Γ(M).

Hence, there exists an equilibrium strategy strategy profile (σ, ρ) = (σ0, ρ)

in Γ(M) that satisfies (σ, ρ|M0) is a λ-strategy profile in Γ(M0). This implies

that every λ-equilibrium profile in Γ(M) must satisfy condition 1 in Definition

4 and thus be reducible to a λ-profile for some M0 ⊂ M. The result follows

since every every λ profile in Γ(M0) block conforms with the language λ. 2

4.3 Sender-preferred equilibria

One might suspect that if there is an equilibrium that maximizes the payoff of

every type of the sender, the sender would be able to induce that equilibrium.

In this section I show that this is the case with some qualifications.

A sender-receiver game is generic if uS(t, a′) 6= uS(t, a′′) for a′, a′′ ∈ A

with a′ 6= a′′ and for each T ′ ⊆ T the receiver has a unique best reply to
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the belief that equals the prior, π, restricted to T ′. In the base game, an

equilibrium is sender ideal if type t’s payoff is maxa∈A u
S(t, a) for all t ∈ T.10

The proof of the main result in this section makes use of the following

observation about generic games.

Lemma 4 Suppose that a generic base game has a sender-ideal equilibrium.

Then, if all types with the same ideal action a ∈ A exclusively send message

m ∈M and no other types send that message, action a is a best reply for the

receiver to message m.

t1

t2

a1 a2 a3

3,3 3,0 0,2

2,0 2,3 0,2

Figure 9: Perils of pooling

The game in Figure 9 (with two equally likely types and at least two

messages) illustrates the role of genericity in Lemma 4. The game has a

sender-ideal equilibrium and both types agree on the set of actions that

induce their ideal payoffs. If, however, the two types pool on a common

message the receiver’s best reply is not one of these actions.

Proof: Let A∗ := {a ∈ A|∃t ∈ T s.t. a = arg maxa′∈A u
S(t, a′)} be the set of

receiver actions that maximize some type’s payoff. For any action a ∈ A∗,
define T (a) := {t ∈ T |a = arg maxa′∈A u

S(t, a′)} as the set of types for whom

action a is the preferred action. This set is well defined by our genericity

assumption. In a sender-ideal equilibrium each type t ∈ T (a) sends only

messages that induce action a.

Let σ be the strategy of the sender in a sender-ideal equilibrium e. For

every m ∈ M and t ∈ T , denote the receiver’s posterior probability of type

10This matches the sender’s favorite equilibria of Blume, Kim and Sobel [2].
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t given message m by β(t|m). For any a ∈ A∗, let M(a) := {m ∈ M |∃t ∈
T (a) s.t σ(m|t) > 0} be the set of messages that are sent with positive prob-

ability by some type in T (a).

Then, in the presumed equilibrium, for any a ∈ A∗ and any m ∈M(a),

a ∈ arg max
a′

∑
t∈T (a)

β(t|m)uR(t, a′).

For any m ∈M(a) let p(m) =
∑

t∈T (a) σ(m|t)π(t).

Then the receiver’s expected payoff from types in T (a) equals

∑
m∈M(a)

p(m)
∑
t∈T (a)

β(t|m)uR(t, a) =
∑

m∈M(a)

p(m)
∑
t∈T (a)

σ(m|t)π(t)

p(m)
uR(t, a)

=
∑

m∈M(a)

∑
t∈T (a)

σ(m|t)π(t)uR(t, a)

=
∑
t∈T (a)

∑
m∈M(a)

σ(m|t)π(t)uR(t, a)

=
∑
t∈T (a)

π(t)uR(t, a)

The action a must be a maximizer of
∑

t∈T (a) π(t)uR(t, a′) since otherwise

we could find at least one message m ∈ M(a) for which a is not a maxi-

mizer of
∑

t∈T (a) β(t|m)uR(t, a′), contradicting the assumption that we have

an equilibrium. 2

The next result confirms the introductory conjecture for generic games

with a rich and accessible language whose base games have a sender-ideal

equilibrium and in which the sender learns the translation. Furthermore the

receiver responds to every message that he receives with positive probability

with an action that matches the pre-specified meaning of that message.

Proposition 5 Suppose a generic game has a rich and accessible language

λ and its base game has a sender-ideal equilibrium. Then, if the sender
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learns the translation, every λ-equilibrium profile (σ, ρ) achieves the sender’s

maximal payoff and satisfies ρ(m,hR) = λ(m) for all messages m ∈ Θ(M)

that are received with positive probability and all receiver signals hR ∈ HR.

Proof: In a generic game, for each type t there is a single receiver action

aS(t) = arg maxa u
S(a, t) that maximizes that type’s payoff. For notational

convenience, write θ for θhS . Since the language λ is rich and accessible and

the sender learns the translation, for every t ∈ T , every aS(t), and every

hS ∈ HS there is a message mt ∈ M1 with λ(θ(mt)) = aS(t). Denote that

message by mθ
t .

Therefore, since the receiver strategy r1 satisfies r1(m,hR) = λ(m) for

all m ∈ Θ(M1) and all hR ∈ HR, each payoff type t ∈ T can achieve her

maximal feasible payoff against the strategy r1 by sending the message mθ
t .

Since in each iteration of a λ path the sender uses minimal-message

best replies, we have that for all types t and t′ with the same ideal ac-

tion, s1(t, hS) = s1(t′, hS) for all hS ∈ HS. Let A∗ be the set of all ac-

tions that are some type’s ideal action, and for any action a ∈ A∗, let

T (a) := {t ∈ T |a = arg maxa′∈A u
S(t, a′)}.

By our minimal-message best reply assumption, for any message m that

the receiver observes with positive probability given s1 and that satisfies

λ(m) = a ∈ A∗, his posterior belief is the prior concentrated on T (a). Hence,

by Lemma 4 and genericity, r2(m,hR) = λ(m) for all hR ∈ HR and all

m ∈ s1(T ×HS) = M2.

Since each type t induces her favorite action at, and since by our minimal-

message best reply assumption all types with the same favorite action send

the same message, for each hS ∈ HS there is one and only one message in M2

that induces type t’s favorite action, given strategy r2 of the receiver. This

implies that s2 agrees with s1 on M2, that s2 and r2 are unique best replies

to each other in Γ(M2), and r2(m,hR) = λ(m) for all messages m ∈ Θ(M2)

and all hR ∈ HR.

It follows that for all k ≥ 2 we have Mk = M2, sk = s2, rk = r2, sk and rk
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are unique best replies to each other in Γ(Mk), and rk(m,h
R) = λ(m) for all

messages m ∈ Θ(Mk) and all hR ∈ HR. Hence, there exists a set of message

M0 and a λ-profile (σ0, ρ0) in Γ(M0), and every λ profile (σ′, ρ′) achieves

the sender’s maximal payoff and satisfies ρ′(m,hR) = λ(m) for all messages

m ∈ Θ(M) that are received with positive probability and all receiver signals

hR ∈ HR. Since the sender achieves her maximal payoff for every λ-profile,

each λ-profile can be trivially extended to a λ-equilibrium profile. 2

t1

t2

a1 a2 a3

1,3 0,0 2,2

0,0 1,3 2,2

Figure 10: Sender-preferred equilibrium

Proposition 5 applies to Game 10 with the payoff structure in Figure 10,

two equally likely payoff types t1 and t2, a message space M = {m1,m2,m3,

m′3}, and a rich shared language λ with λ(mi) = ai, i = 1, 2, 3, and λ(m′3) =

a3, where the single translation is the identity map. Notice that if we dropped

the minimal-message reply assumption in the definition of λ-paths, there

would be a λ-path with s1 = (t1 → m3, t2 → m′3) that would converge to a

separating equilibrium with σ = s1, in which the sender would not obtain

her maximal payoff. It seems implausible, however, that the receiver would

be able to tell the two types apart on the basis of which message exactly the

sender chooses to indicate the desire that action a3 be taken.11

For the result in Proposition 5 to hold, it is not enough that all sender

types agree on their favorite equilibrium in the base game. Let Σeqm

R denote

11Assuming nominal message costs as in Blume, Kim and Sobel [2] has a similar effect
as adopting the minimal-message best reply assumption. With nominal message costs,
however, it would frequently not be possible to extend λ-profiles to λ-equilibria for the
entire game – there would be a tension between the pre-specified meanings of messages
and the incentive to use lower-cost messages.
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the set of all receiver strategies that are part of some equilibrium in the base

game. An equilibrium of the base game is sender optimal if type t’s payoff is

max
m∈M,ρ∈Σeqm

R

∑
uS(t, a)ρ(a|m)

for all t ∈ T.
The base game of Game 6 in Figure 6 has a sender-optimal equilibrium

and satisfies our genericity condition. The unique λ-equilibrium profile, how-

ever, results in a payoff 0 for both types, whereas their payoff at a sender-

optimal equilibrium is 1.

4.4 Finite CS games

In this section I examine language use in a class of games that may be thought

of as an adaptation of the setup of Crawford and Sobel [8] to a setting with

finite type and action spaces.

For any linear ordering ≤ of the set of types T and any t′, t′′, refer to

the set [t′, t′′] := {t ∈ T |t′ ≤ t ≤ t′′} as an interval of types. The linear

order ≤ of T induces a partial order - on the set of intervals of T defined

by [t′1, t
′′
1] - [t′2, t

′′
2] ⇔ t′1 ≤ t′2 and t′′1 ≤ t′′2. Observe that in a generic sender-

receiver game for every state t ∈ T , each player i has a unique ideal point

ai(t) = arg maxa u
i(a, t).

A generic sender-receiver game is a finite CS game if there exist orderings

of types and actions such that:

1. The functions ui are unimodal in a for all t ∈ T and i = 1, 2; i.e.,

a < a′ ⇒ ui(a, t) < ui(a′, t) for all a′ ≤ ai(t) and a > a′ ⇒ ui(a, t) <

ui(a′, t) for all a′ ≥ ai(t).

That is, for each state and each player, the player’s payoff is strictly

increasing in the action below the player’s ideal point and strictly de-

creasing above the player’s ideal point.
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2. The sender’s preference has an upward bias relative to the receiver:

aR(t) < aS(t), ∀t ∈ T.

3. The receiver’s ideal point is responsive: aR(t′) 6= aR(t) for all t, t′ ∈ T
with t 6= t′

4. Each player i’s payoff function ui satisfies the single crossing condi-

tion12:

t2 > t1 and a2 > a1

implies

ui(a2, t1)− ui(a1, t1) > 0⇒ ui(a2, t2)− ui(a1, t2) > 0.

In a finite CS game, the sender has an incentive to exaggerate her type.

This suggests that in equilibrium the receiver may discount the pre-specified

meaning of the messages that he receives: after every message sent in equilib-

rium the receiver takes an action that is lower than the action that matches

the meaning of the message. This is confirmed by the following result.

Proposition 6 In any generic finite CS game with a rich and accessible

language λ, if the sender learns the translation, then for every λ-equilibrium

profile (σ, ρ) and all messages m ∈ Θ(M) that are received with positive

probability,

1. λ(m) = aS(t) for some t ∈ T , and

2. ρ(m,hR) < λ(m) for all receiver signals hR ∈ HR.

Every message that is observed with positive probability has a pre-specified

meaning that matches some sender type’s ideal point and is discounted by

the receiver.

12Genericity implies that we can ignore the possibility that ui(a2, t1)− ui(a1, t1 = 0 for
a2 > a1.
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Proof: Recall that for each type t there is a single receiver action aS(t) =

arg maxa u
S(a, t) that maximizes that type’s payoff. By assumption, for each

hS ∈ HS, the sender learns the translation θhS . For notational convenience,

suppress the explicit dependence of the realized translation on the sender’s

signal hS and write θ for θhS . Since the language λ is rich and accessible, for

every t ∈ T and every realized translation θ there is a message mθ
t ∈M1 with

λ(θ(mθ
t )) = aS(t).

Therefore, since the sender learns the translation θ, since the receiver

strategy r1 satisfies r1(m,hR) = λ(m) for all m ∈ Θ(M1) and all hR ∈ HR,

each payoff type t ∈ T has at least one way of inducing her ideal action

against the strategy r1 by sending the message mθ
t . Since at each iteration

the sender uses minimal-message best replies, for all types t and t′ with the

same ideal action, s1(t, hS) = s1(t′, hS) for all hS ∈ HS.

Since each type t can induce her ideal action by sending messagemθ
t ∈M1,

every message m ∈ Θ(M1) that is received when the sender uses strategy s1

satisfies λ(m) = aS(t) for some t ∈ T. Hence, for all m ∈ Θ(M2) where

M2 = s1(T × HS) there exists a type t ∈ T such that λ(m) = aS(t). This

establishes the first part of the proposition since Mk+1 ⊆Mk for every λ-path.

Let A∗ be the set of all actions that are some type’s ideal action. For any

action a ∈ A∗, let T (a) := {t ∈ T |a = aS(t)}. This is the set of types whose

ideal action is a. Given the single-crossing condition for the sender, for each

a ∈ A∗ the set T (a) is an interval.

Since at each iteration the sender uses minimal-message best replies, s1

prescribes that all types with the same ideal point send the same message, for

any message m that the receiver observes with positive probability given s1

and that satisfies λ(m) = a ∈ A∗, his posterior belief is the prior concentrated

on T (a). This receiver inference is unaffected by the receiver’s signal hR ∈
HR. Hence, by genericity, the receiver has a unique best reply r2(m,hR) to

all m ∈ Θ(M2), which is independent of hR for all hR ∈ HR.

For each m ∈ Θ(M2) define T2(m) as the interval of types who induce (the
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received) message m. Each message in m ∈ Θ(M2) induces a distinct sender

ideal action. Therefore, for each realized translation θ ∈ Θ, the collection of

intervals {T2(m)|m ∈ θ(M2)} forms a partition of T. Moreover, ignoring the

indexing by messages, this partition is the same for all θ ∈ Θ. Denote this

partition by T2. The elements of any partition of T into intervals are linearly

ordered by ≺, the strict linear order associated with -.

For each m ∈ Θ(M2), λ(m) is the common ideal point of types in T2(m).

Hence, for each type t ∈ T2(m), aR(t) < aS(t) = λ(m). Therefore the

single-crossing condition for the receiver implies that for each m ∈ θ(M2),

r2(m,hR) < λ(m) (this uses the fact that the distributions obtained by con-

centrating the support of the prior on intervals [t′, t
′
] and [t, t], with t′ ≤ t

and t
′ ≤ t are MLRP ranked).

We now proceed by induction. We have established that for (s1, r2) there

is a partition T2 of the type space T such that for every m ∈ Θ(M2) (where

M2 = (s1(T×HS)), the partition element T2(m) is the set of types who induce

message m, that this set is an interval, and that r2(m,hR) < r1(m,hR) =

λ(m)

Assume that for (sk, rk+1) there is a partition Tk+1 of the type space T

such that for every m ∈ Θ(Mk+1) (where Mk+1 = (sk(T ×HS)), the partition

element Tk+1(m) is the set of types who induce message m, that this set is an

interval, and that rk+1(m,hR) ≤ rk(m,h
R) < λ(m) Genericity implies that

for each type t ∈ T there is a unique message in Mk+1 that maximizes that

type’s payoff given the realized translation and receiver strategy rk+1.

Consider two messages m′,m′′ ∈ Θ(Mk+1) with Tk+1(m′) ≺ Tk+1(m′′). By

the single-crossing condition for the sender, these messages satisfy rk(m
′, hR)

< rk(m
′′, hR). By the single-crossing condition for the receiver and since

t 6= t′ ⇒ aR(t′) 6= aR(t), these messages satisfy rk+1(m′, hR) < rk+1(m′′, hR).

By assumption, we also have rk+1(m′, hR) ≤ rk(m
′, hR) and rk+1(m′′, hR)

≤ rk(m
′′, hR). Hence, the unimodality of the sender’s payoff function implies

that given the receiver’s strategy rk+1 any type t ∈ Tk+1(m′′) strictly prefers

inducing the received message m′′ to inducing the received message m′.
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Recalling that sk+1(T ×HS) = Mk+2 ⊆Mk+1, and for each m ∈ θ(Mk+2)

defining Tk+2(m) as the interval of types who induce (the received) message m

with the the strategy sk+1, this implies that for every message m ∈ Θ(Mk+2),

Tk+2(m) - Tk+1(m). Hence, from the single crossing condition for the receiver

rj+2(m,hR) ≤ rk+1(m,hR) < λ(m) for all m ∈ Θ(Mk+2). Therefore, for

(sk+1, rk+2) there is a partition Tk+2 of the type space T such that for every

m ∈ Θ(Mk+2) the partition element Tk+2(m) is the set of types who induce

message m, this set is an interval, and rk+2(m,hR) ≤ rk+1(m,hR) < λ(m).

Hence, for every message m ∈ Θ(M0), where M0 =
⋂∞
k=1Mk, the se-

quence (rk(m,h
R))∞k=1 is monotonically decreasing on a finite set, with rk(m,

hR) < λ(m) for all k > 1. Clearly this sequence converges. Denote the limit

by ρ(m,hR) and observe that ρ(m,hR) < λ(m). Hence the sequence (rk)
∞
k=1

restricted to M0 converges to a function ρ̃ : M0 → A. We can ignore the

dependence of ρ̃ on HR.

Let (sk)
∞
k=2 be the sequence of the sender’s unique best replies sk to rk

in Γ(Mk) for k = 2, . . . ,∞. Since (rk)
∞
k=2 restricted to M0 converges, so does

(sk)
∞
k=2 and the limit, σ̃ : T ×HS → M0, is the unique best reply in Γ(M0)

to ρ̃. Likewise, ρ̃ is the unique best reply in Γ(M0) to σ̃.

Extend the receiver strategy ρ̃ from the game Γ(M0) to the game Γ(M)

by letting ρ(m) = ρ̃(m0) for all m ∈ θ(M \M0) and some m0 ∈ θ(M0). In

the game Γ(M), if the receiver uses the strategy ρ, then every action the

sender can induce by sending a message in M \M0 she can also induce by

sending a message in M0. Hence, if we define σ : T × HS → M by letting

σ(t, hS) = σ̃(t, hS) for all t ∈ T and hS ∈ HS, then (σ, ρ) is an equilibrium

strategy profile for the game Γ(M). 2

Game 11 with the payoff structure in Figure 11, four equally likely payoff

types t1, . . . , t4, a message space M = {m1, . . . ,m5}, and a common language

λ with λ(mi) = ai, i = 1, . . . , 5, is a finite CS game.

The sender’s unique best reply against the language λ is the strategy

s1 = (t1 → m1, t2 → m2, t3 → m3, t4 → m4). The receiver’s unique best

reply against the sender’s strategy s1 in the game in which message m5 has
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t1

t2

t3

t4

a1 a2 a3 a4 a5

4,1 3,5 1,2 -1,-1 -3,-3

0,0 4,1 3,5 1,2 -1,-1

-1,-1 0,0 4,1 3,5 1,2

-2,-2 -1,-1 0,0 4,1 3,5

Figure 11: The status of truth

been eliminated is the strategy r2 = (m1 → a2,m2 → a3,m3 → a4,m4 →
a5). The sender’s unique best reply against the receiver’s strategy r2 in the

game in which message m5 has been eliminated is the strategy s2 = (t1 →
m1, t2 → m1, t3 → m2, t4 → m3). The receiver’s unique best reply against

the sender’s strategy s2 in the game in which messages m4 and m5 have

been eliminated is the strategy r3 = (m1 → a3,m2 → a4,m3 → a5). The

sender’s unique best reply against the receiver’s strategy r3 in the game in

which messages m4 and m5 have been eliminated is the strategy s3 = (t1 →
m1, t2 → m1, t3 → m1, t4 → m2). The receiver’s unique best reply against

the sender’s strategy s3 in the game in which messages m3,m4 and m5 have

been eliminated is the strategy r4 = (m1 → a3,m2 → a5). Iterating further

leaves the remaining message space, {m1,m2} unchanged. In the game with

that reduced message space the strategies s3 and r4 are unique best replies

to each other. Hence (s3, r5) is a λ-profile. Since best replies are unique at

every step, it is the unique λ-profile. The λ-profile can be extended to an

equilibrium of the entire game by having the receiver use on-path responses

after off-path messages. In every λ-equilibrium (there is multiplicity because

of different possible specifications of off-path responses) the sender uses the

strategy σ = (t1 → m1, t2 → m1, t3 → m1, t4 → m2).

Thus, in every λ-equilibrium types t1, t2 and t3 send a common message

whose pre-specified meaning is a request for action a1 and type t4 sends a
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message whose meaning is a request for action t2. Except for type t1 none of

the types requests their favorite action, in terms of the language. They are

all strategically distorting message meanings. The receiver takes none of the

messages that he receives with positive probability at face value. Thus, while

there is influential communication, message use is far from being a truthful

expression of intentions on the part of the receiver, and messages are not

being taken as truthful by the receiver.

Neologism proofness rejects the pooling equlibrium outcome in Game

11, since type t4 has a credible neologism. It does not reject the partial

pooling equilibrium outcome that we observe in the language equilibria. It

therefore agrees with the outcome prediction of language equlibrium in this

game, while being silent about message use in equilibrium. Since there is

no credible message profile, credible message rationalizability/equilibrium is

equally silent about language use in Game 11.

The language equilibrium prediction in finite CS games is robust to en-

larging the message space. One can add any number message, introduce any

number of synonyms for messages, or have the message space become infinite.

With such an enlargement there will be a proliferation of language equilibria,

but they will only differ in terms of exchanging synonymous messages. In

Game 11, if for example we added a message m′1 with λ(m′1) = a1, in any

λ-equilibrium types t1, t2 and t3 would either send a common message m1 or

a common message m′1 and the receiver’s equilibrium interpretations of these

messages would be the same.

5 Reflections on uncertainty about language

Blume and Board [5] capture language constraints through limitations on

the sender’s ability to send messages and the receiver’s ability to discrimi-

nate among messages. The translation apparatus employed here nests their

constraints and links them to a language with preexisting meanings. Lan-

guage equilibrium imposes additional constraints on message use. Whereas
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Blume and Board analyze efficient equilibria of games with uncertainty about

the ability to send and differentiate among messages, language equilibrium

captures and emphasizes the requirement that message use be linked to the

meanings of a pre-specified language.

t1

t2

a1 a2 a3

10,10 9,0 0,9

9,0 10,10 0,9

Uncertainty about language

To get a closer look at the connection, consider two variations on Game

3 from Section 2. For convenience, the figure above reproduces the payoff

structure. Also, recall that there are two equally likely payoff types t1 and t2,

a message space M = {m1,m2}, a language λ with λ(mi) = ai, i = 1, 2, and

two translations θ′ and θ′′, defined by θ′(m) = m and θ′′(m) = m2 for both

m ∈M with a common prior µ over translations such that µ(θ′′) = p, where

p satisfies 1
9
< p < 1. With common knowledge of this structure, we found

that there is a unique λ-equilibrium in which the sender sends message m1

regardless of her payoff type.

Now suppose that instead of both players remaining uncertain about the

translation, one of them receives a perfectly informative signal while the other

remains uninformed. Assume that this fact is common knowledge.

First, suppose that it is the sender who becomes perfectly informed about

the translation, while the receiver remains uninformed. This mirrors the

situation in Blume and Board, where the sender is language constrained

with probability p. In the event that she learns that the translation is θ′, the

identity mapping, she is unconstrained and can induce both messages on the

receiver side. Otherwise, she is limited to inducing the received message m2.

While the sender’s strategy space is richer now (she can condition on

both her payoff type and her language type), all that matters is her choice
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of message in the event the translation is the identity mapping. Focussing

on that part of the sender’s strategy, her unique (partial) best reply against

the receiver’s language is the (partial) strategy s1 = ((θ′, t1)→ m1, (θ
′, t2)→

m2). As before, with this (partial) sender strategy, the receiver’s posterior

probability that the sender’s type is t2 after observing message m2 equals 1
p+1

.

Therefore, as long as p > 1
9
, the receiver has a unique best reply r2 = (m1 →

a1,m2 → a3) to the sender’s strategy s1. Against r2, the sender has a unique

minimal-message best reply s1 = ((θ′, t1) → m1, (θ
′, t2) → m1, (θ

′′, t1) →
m1, (θ

′′, t2)→ m1). At that point message m2 is dropped.13

With m2 dropped, from here the iteration of best replies and elimination

of messages proceeds as in the case where both players remain uninformed.

There is a unique λ-equilibrium strategy profile with the sender using message

m1 regardless of type and the receiver responding with action a3 after all

messages.

Second, suppose that it is the receiver who becomes perfectly informed

about the translation, while the sender remains uninformed. This mirrors

the situation in Blume and Board, where the receiver is language constrained

with probability p. In the event that he learns that the translation is θ′, the

identity mapping, he is unconstrained and can differentiate between both sent

messages. Otherwise, he is limited to treating both sent messages identically.

The sender’s unique best reply against the receiver’s language is the strat-

egy s1 = (t1 → m1, t2 → m2). Given the sender strategy s1, the receiver’s

unique best reply is r2 = ((θ′,m1) → a1, (θ
′,m2) → a2, (θ

′′,m2) → a3) (note

that the receiver’s language type θ′′ never observes message m1 and there-

fore does not have to condition on that message). Against r2 the receiver

has a unique best reply s2 = s1. Hence, there is a unique λ-strategy profile,

in which the sender sends message mi if her payoff type is ti, the receiver

responds with ai to mi if she can differentiate messages, and takes the action

13If we did not restrict the sender to minimal message best replies, there would be
other best replies for the sender, including s1 = ((θ′, t1) → m1, (θ

′, t2) → m1, (θ
′′, t1) →

m2, (θ
′′, t2)→ m2). In that case m2 would not be dropped and at the next step all sender

strategies would be best replies. We would not get a sharp prediction for message use.
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a3 otherwise.

I conclude this section with an observation about dropping unused mes-

sages in games with language uncertainty. When there is language uncer-

tainty, dropping a message may have no effect on which messages are ob-

served with positive probability by the receiver. As a result, a message that

that is not part of a sender’s best reply σ to a strategy of the receiver, may

become an indispensable part of the sender’s best reply to a strategy ρ of the

receiver that best responds to σ. It may be the case that a message become

attractive as a result of not being used. One could make the case that such

messages should not be provisionally eliminated.

Call a message m redundant given a sender strategy σ, if there exists a

receiver best reply to σ such no type strictly prefers sending message m. In

the definition of a λ-path, one might consider dropping a message only if

it is redundant. This would make no difference for any of our results – in

particular, with a common language or when the sender learns the transla-

tion, all unsent messages are redundant. The following example illustrates

the impact of only dropping redundant messages on the language equilibrium

prediction.

t1

t2

t3

t4

a1 a2 a3 a4

1,3 0,0.1 0,0 0,0

2,1 1,3 0,0 0,0

0,0 2,1 1,3 0,0

0,0 0,0.1 2,1 1,3

Figure 12: Dropping only redundant messages

Consider Game 12 with the payoff structure in Figure 12, four equally

likely payoff types t1, . . . , t4, a message space M = {m1, . . . ,m4}, a language

λ with λ(mi) = ai, i = 1, . . . , 4, and a set of translations Θ that consists
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of all bijections θ : M → M . Use θ∗ to denote the identity mapping, so

that θ∗(mi) = mi for all i = 1, . . . , 4. Assume that the common prior µ over

translations satisfies µ(θ∗) = 0.95, and µ(θ′) = µ(θ′′) for all θ′, θ′′ 6= θ∗.

The sender’s unique best reply against the language λ is the strategy

s1 = (t1 → m1, t2 → m1, t3 → m2, t4 → m3). Even though message m4 is not

sent by any type, it is received with positive probability since all bijections

are translations that have positive probability.

Given the sender strategy s1, the receiver’s posterior after observing m4

is the uniform distribution on T. Therefore, the receiver’s unique best re-

ply against the sender’s strategy s1 is the strategy r2 = (m1 → a1,m2 →
a3,m3 → a3,m4 → a2). Since a2 is the unique maximizer of type t2’s payoff

and only m4 induces that action, message m4 fails to be redundant. Since

message m4 fails to be redundant, it is not dropped in this iteration (and

similarly, for any other messages and iterations below).

The sender’s unique best reply against the receiver’s strategy r2 is the

strategy s2 = (t1 → m1, t2 → m1, t3 → m4, t4 → m2). From there, we

get the following sequence of unique best replies: r3 = (m1 → a1,m2 →
a4,m3 → a2,m4 → a3), s3 = (t1 → m1, t2 → m1, t3 → m3, t4 → m4),

r4 = (m1 → a1,m2 → a2,m3 → a3,m4 → a4), s4 = (t1 → m1, t2 → m1, t3 →
m2, t4 → m3), . . . . Since s4 coincides with s1, and best replies are unique,

we have a cycle.

Denote the set of pure sender strategies in this game by S and the set

of pure receiver strategies by R. Let S′ = {s1, . . . , s4} and R′ = {r1, . . . , r4}.
These are the sets of strategies that appear in the cycle that is generated by

λ.

Let S′′ = {s ∈ S|s(t) = m1 if and only if t ∈ {t1, t2}} and R′′ = {r ∈
R|r(m) = a1 if and only if m = m1}. S′ × R′ is a (strict) subset of S′′ × R′′.

S′′ × R′′ is an S′ × R′-curb set, i.e., it contains S′ × R′ and all best replies to

beliefs concentrated on S′′ × R′′.14

There is a unique minimal S′×R′-curb set, and it is contained in S′′×R′′;

14Basu and Weibull [1] define and discuss (minimal) curb sets.
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this follows from the fact that the intersection of any two S′ × R′-curb sets

is an S′ × R′-curb set. Every minimal S′ × R′-prep set is contained in the

minimal S′ × R′-curb set and therefore in S′′ × R′′; this follows from the fact

that the intersection of any S′ × R′-curb set and any S′ × R′-prep set is an

S′ × R′-prep set.

Hence, every λ-equilibrium has the property that types t1 and t2, and

only those types, send message m1. Furthermore, there is no pure-strategy

λ-equilibrium. This follows, since for any candidate for such an equilibrium

there would be an unused message, and type t2 would strictly prefer sending

that message.

If instead of dropping only redundant messages we dropped all unused

messages, there would be a unique λ-profile with types t1 and t2 sending

message m1 and types t3 and t4 sending message m2 (and the receiver best

responding to those messages). This λ-profile, however, cannot be extended

to an equilibrium in the entire game. Thus dropping only redundant messages

gives us a sharper, and arguably more plausible, prediction in this game.

6 Discussion

Our analysis of meaning in sender-receiver games is rooted in truth, inter-

preted as the non-strategic meaning of messages, but does not require, or

generally predict, that message use is truthful. In some cases, when play-

ers have common interests or there is a sender-ideal equilibrium, the theory

predicts that the receiver responds to messages in accordance with their

pre-specified meanings. When preferences are only imperfectly aligned this

correspondence breaks down, although the pre-specified message meanings

leave traces in players’ behavior. With block-aligned preferences, the re-

ceiver responds to messages in accordance with pre-specified meanings that

match beliefs concentrated on blocks of sender types. In finite CS games,

the receiver systematically discounts the pre-specified meanings of messages

received in equilibrium.
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The approach is versatile. It yields predictions in a large class of games,

including games in which there is uncertainty about language, games in which

there is private information about language, games with message spaces of

any size, games in which there is any number of synonyms for messages,

etc. The analysis does not require but easily accommodates rich language

assumptions that are customarily made in this literature.

Beside Farrell, Rabin, and the level-k approach of Crawford, a few others

propose ways of giving a pre-existing language a role in the analysis of sender-

receiver games. Blume [3] uses sender trembles to induce exogenous message

meanings – the trembles govern message meanings for any message that is

not used deliberately. Using Kalai and Samet’s [18] persistence concept,

he shows that in some classes of games message use is consistent with the

tremble-induced exogenous meanings. Gordon, Kartik, Lo, Olszewski and

Joel Sobel [16] impose the requirement that players use monotonic strategies

in CS games. Monotonicity can be thought of as a mild condition on language

use. When combining the monotonicity requirement with iterative deletion

of dominated strategies, they find that with a finite message space only the

maximal messages are used. Kartik, Ottaviani and Squintani [19] consider

CS games with lying costs. The message space coincides with the type space

and types pay a cost that is increasing in the distance of messages from the

truth. They show that there are separating equilibria in which the sender

exaggerates her type. Since the receiver can back out the truth, he discounts

the stated message meanings. Analogous to Kartik et al, language equilib-

rium predicts language inflation in finite CS games, but without introducing

lying costs.

It is fairly common in this literature to think of a pre-existing language

in terms of subsets of type space. Message meanings are then of the form

“my type belongs to the following set of types” or equivalently the prior

restricted to the indicated set of types. I chose, instead, to have a language

be a mapping from messages to receiver actions. There is no significant

difference. One advantage of the approach chosen here is that there is a
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natural correspondence between the set of all beliefs and the set of all best

replies to some belief. Thus modeling message meanings in terms of receiver

actions implicitly permits message meanings that are probabilistic statements

about types like “my type is either s or t, but twice as likely to be s than t.”

The framework proposed in this paper permits us to capture different de-

grees of sharing a language and to vary beliefs about what is shared. David-

son [12] is concerned with what it means to share a language. He states,

somewhat provocatively, that “there is no such a thing as a language, not if

a language is anything like what many philosophers and linguists have sup-

posed.” He proposes that what speaker and listener share on a give occasion

is what he calls a “passing theory.” Perhaps it is not too far off the mark

to think of we call a language plus what the sender believes the translation

to be as what Davidson would refer to as the sender’s belief about the re-

ceiver’s “prior theory” of interpretation. Likewise, a language equilibrium in

this paper, which is reached upon reflection starting from a language, shares

parallels with Davidson’s “passing theory.”
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