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1 Introduction

Whether the equity premium is predictable has been the subject of long debate in finance. A

large literature documents in-sample predictability using a host of financial and economic vari-

ables such as valuation ratios, the default spread or the consumption-wealth ratio as predictors

(see, e.g. Fama and French (1988), Campbell and Shiller (1988), Lettau and Ludvigson (2001)).

However, in an influential paper Welch and Goyal (2008) show that none of the proposed pre-

dictors would have consistently outperformed a simple historical average return out-of-sample.

Since then, a growing literature proposes alternative predictors and forecasting methods which

appear to provide superior statistical predictability relative to the historical average benchmark,

see Rapach and Zhou (2013) for an overview.1 A common finding is that predictability primarily

arises around recessions.

This is consistent with a related literature suggesting that expected equity returns vary over

the business cycle (e.g. Fama and French (1989), Ferson and Harvey (1991), Cochrane (2007),

Campbell and Diebold (2009)). Lustig and Verdelhan (2012) document significant variation in

realized excess returns around recessions, showing that they are negative at the business cycle

peak and then sharply rise over following quarters. This is confirmed by Figure 1 which depicts

the forward-looking arithmetic mean and median of the U.S. log equity premium over different

time windows around the ten NBER recessions for the period from March 1951 to December

2019. The equity premium is mostly negative but relatively volatile for the one-month and

three-month window around the beginning of recessions. However, a clear v-shape emerges

for the cumulative six- and twelve-month ahead horizons, highlighting that equity returns are

sharply negative around business cycle peaks but strongly recover thereafter.

Table 1 presents moments of the annualized log equity premium over the business cycle for the

same 70-year period. The total annual equity premium was 6.3% with a standard deviation

of 14.3%, implying a Sharpe ratio of 0.4. Focusing only on NBER expansions, the equity pre-

mium amounted to 8.4% with an annualized Sharpe ratio of 0.6. In recessions, it was negative

at -5.9%. Zooming in around business cycle peaks, we see that the equity premium tended

1Among others, recently proposed predictors include the output gap (Cooper and Priestley, 2009), short
interest (Rapach et al., 2016), industrial electricity usage (Da et al., 2017), gold-to-platinum ratio (Huang and
Kilic, 2019), variance risk premium (Pyun, 2019), and investor attention (Chen et al., 2020). Methodological
contributions include non-negativity constraints (Campbell and Thompson, 2008), combination forecasts (Rapach
et al., 2010), time-varying coefficient models (Dangl and Halling, 2012), principal component analysis (Neely et
al., 2014), economic constraints (Pettenuzzo et al., 2014), and machine learning techniques (Gu et al., 2020).
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Figure 1
Log equity premium around business cycle peaks
This figure presents the arithmetic average and median of the (cumulative) log equity premium around the 10
recessions in the sample from 1951:3 to 2019:12. The equity premium is the difference between value-weighted
returns on the S&P 500 index (including dividends) and the Treasury bill rate. The vertical axis depicts

∑h−1
j=0 rt+j

for t = −24, . . . ,−1, 0, 1, . . . , 24, whereby rt+j is the log equity premium in month t + j. The horizontal axis
displays the 24 months before and after a business cycle peak - with t = 0 referring to the first month of a
NBER-dated recession. Results are shown for h = 1, 3, 6, 12.

to be strongly negative during the six months before and after the business cycle peak, with

annualized values of almost -10% and -18%, respectively. Hence, the stock market on average

incurs large losses in the one-year window around the beginning of recessions. While it tends

to recover in the subsequent months, on average it only gains an annualized 1.5% six to eleven

months after the peak. The last two rows in Table 1 show the annualized log equity premium

for samples that exclude the 12 months and the 24 months around the beginning of recessions,

respectively. When excluding two years (one year) of observations around each peak, the aver-

age equity premium and Sharpe ratio rise to 11.1% and 0.8 (9.7% and 0.7), compared to 6.3%

and 0.4 for the full sample. This evidence strongly suggests that, to the extent that one can
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Table 1
Log equity premium over the business cycle

This table reports the annualized mean, median, standard deviation, and Sharpe ratio of the monthly U.S. log
equity premium. The equity premium is the difference between value-weighted returns on the S&P 500 index
(including dividends) and the Treasury bill rate. ρ(1) (N) denotes the first order serial correlation (number of
observations). The descriptive statistics are presented for the full sample from March 1951 to December 2019, as
well as separately for recessions and expansions. Further statistics are provided for sub-samples before and after
business cycle peaks. Peak refers to the peak month of NBER-dated business cycle contractions (first month of
a recession). The total number of recessions in the sample is 10.

1951:3 to 2019:12

log equity premium Mean Median Std. dev. Sharpe ratio Skewness Kurtosis ρ(1) N

Full sample 6.31 10.9 14.38 0.44 -0.67 5.41 0.04 826

Recessions -5.90 -3.75 19.83 -0.30 -0.26 3.01 0.18 121
Expansions 8.40 11.25 13.14 0.64 -0.70 6.20 -0.06 705

Before the peak:
peak−12 to peak−7 6.64 7.99 12.25 0.54 0.39 2.61 -0.10 60
peak−6 to peak−1 -9.85 -7.84 13.11 -0.75 -0.27 2.80 -0.14 60

At/after the peak:
peak to peak+5 -17.80 -12.36 16.01 -1.11 -0.29 2.24 0.03 60
peak+6 to peak+11 1.50 15.20 19.89 0.08 -0.65 3.95 0.32 60

Excl. peak−6 to peak+5 9.73 12.31 14.11 0.69 -0.74 6.21 0.02 706
Excl. peak−12 to peak+11 11.07 12.95 13.60 0.81 -0.75 6.53 -0.02 592

predict the beginning of recessions, one should be able to time the market.

It is well documented that the term spread is a robust predictor of recessions for horizons of one

year ahead and longer (see, e.g., Estrella and Mishkin (1998)). In the post-war period, every

single U.S. recession was preceded by an inverted yield curve. In this paper, we show that re-

cession probabilities derived from the term spread are strong predictors of the equity premium.

The forecasts from probit models in the spirit of Estrella and Hardouvelis (1991) significantly

forecast the cumulative equity premium over horizons from 1 to 12 months out-of-sample. Liu

and Moench (2016) document that the additional incorporation of lagged observations of the

term spread further improves short-horizon recession forecasts. We build on this finding and

document that a backward-looking three-year moving average of the term spread substantially

strengthens the recession classification ability of the term spread by reducing false positives and

better timing the beginning of recessions. The improved recession predictability goes hand in

hand with strong improvements in equity premium forecasts: especially at short horizons, eq-

uity premium predictability is substantially enhanced by including a backward-looking moving

average of the term spread into the probit models. Our results highlight the close link between

recession expectations and equity market returns. Specifically, we show that the v-shaped
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pattern of excess returns around business cycle peaks is well captured by real-time recession

probability forecasts based on information in the yield curve. Our findings are thus in line

with Rapach et al. (2010) and Dangl and Halling (2012) who find that the predictive power of

combination forecasts and time-varying coefficient models primarily arises from business-cycle

variation in the equity premium. Importantly, however, equity premium forecasts based on

recession probabilities outperform the historical average benchmark also in expansions. The

reason is that by correctly anticipating low equity market returns heading into recessions, they

also correctly predict higher returns in business cycle booms.

Several authors have argued that the probit model for forecasting recessions suffers from a struc-

tural break (see, e.g., Chauvet and Potter (2002, 2010)). We indeed document strong evidence

for a structural break in the mean of the term spread in 1982 and show that it would have

been possible for investors to identify this break in real-time a few years after it occurred. We

follow Lettau and Van Nieuwerburgh (2008) and Pesaran and Timmermann (2007) and apply

four different methods to correct for the break in the term spread. All further improve the

out-of-sample R2 for forecasting the equity premium. This improvement is partly due to the

fact that the real-time break-corrected recession probabilities better predict the beginning of

the 2001 and 2008-2009 recessions.

In terms of predictive ability our approach outperforms other recently proposed predictors

including “short interest” of Rapach et al. (2016) and the “gold-to-platinum” ratio of Huang

and Kilic (2019). The out-of-sample R2 is as high as 3% for monthly forecasts and often higher

than 10% for cumulative one-year ahead forecasts. Moreover, we perform an asset allocation ex-

ercise for a mean-variance investor who invests in the equity market and the risk-free rate. This

exercise reveals an excellent market timing ability of recession probability forecasts, which is

even more pronounced for the break-correction methods. The models signal to run down equity

exposure before the onset of recessions when the yield curve flattens and to re-enter the market

toward the end of recessions when the yield curve steepens. An investor who forecasts with

(break-corrected) recession probabilities increases the Sharpe ratio to around 0.85 compared to

0.50 for the buy-and-hold investor. Using a VAR-based decomposition in the spirit of Campbell

(1991), we find that the predictability is driven by both higher anticipated discount rates and

lower expected future dividends, consistent with countercyclical risk premia. We also show that
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our results are robust to taking into account transaction costs and that model-implied recession

probabilities predict the equity premium in other countries.

In a related recent paper, Gómez-Cram (2021) studies one-month ahead equity premium pre-

dictability over the business cycle. Consistent with his results, we find that stock returns are

negative at the beginning of recessions and that business cycle variables help to time these

periods. Despite this broad similarity, there are a number of important differences between

our and his paper. First, while Gómez-Cram (2021) studies only one-month ahead forecasts,

we predict equity returns also over longer horizons. Second and more importantly, we combine

the recession and equity premium prediction literatures by directly using recession probability

forecasts to forecast equity returns, while Gómez-Cram (2021) uses a state-space model to link

expected excess equity returns to the business cycle. He estimates a common growth compo-

nent from real-time data of nine U.S. macroeconomic variables related to real output, income,

employment, consumer spending, investment, and inflation. We instead confirm that the term

spread is a robust leading indicator of recessions and strongly improves equity premium fore-

casts. Related to our finding Andreasen et al. (2021) show that the yield spread better predicts

bond risk premiums when conditioning on the business cycle.

The paper proceeds as follows. Section 2 summarizes the data used. Section 3 presents the

main results, focusing first on the recession probability forecasts and then on the equity pre-

mium prediction using model-implied recession probabilities. Section 4 provides additional

robustness checks and Section 5 concludes.

2 Data

We obtain data on the equity premium and term spread from Amit Goyal’s homepage.2 The

equity premium is computed as the continuously compounded log return on the S&P 500 index,

including dividends, minus the Treasury bill rate (Welch and Goyal, 2008). The term spread

(TMS) is calculated as the difference between the long-term government bond yield and the

Treasury bill rate. The yields are taken from Ibbotson’s Stocks, Bonds, Bills, and Inflation

Yearbook and have a maturity of approximately 20 years (Ibbotson and Sinquefield, 1976). Our

data set consists of monthly observations from March 1951 to December 2019. We start our

analysis in March 1951 after the Treasury-Federal Reserve Accord - which laid the foundation

2http://www.hec.unil.ch/agoyal/
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for an independent monetary policy (Lacker, 2001). During World War II and the six years af-

terwards the Fed was tasked to support the financing requirements of the Treasury by stabilizing

long-term interest rates (Eichengreen and Garber, 1991; Carlson and Wheelock, 2014). Hence,

we begin our analysis after this extraordinary period of pegged interest rates. The business

cycle chronology with classifications into expansions and recessions is taken from the National

Bureau of Economic Research (NBER). A business cycle peak is defined to be the first month of

a recession. We start our pseudo out-of-sample forecasting exercise in 1980 when the Business

Cycle Dating Committee of the NBER began to release timely announcements of its business

cycle classifications.

3 Empirical results

This section provides our empirical results. In Sections 3.1 and 3.2, we first confirm the ability

of probit models along the lines of Estrella and Mishkin (1998) to predict NBER recessions. We

show that the forecast performance of the standard probit model using the term spread as the

only explanatory variable strongly improves when lagged information about the term spread

is added. We then document in Section 3.3 that the recession probability forecasts implied

by probit models have strong predictive power for the U.S. equity premium. In Section 3.4,

we compare the results to OLS regressions based on term spread information. In Section 3.5,

we provide evidence for a structural break in the mean of the term spread in 1982, and show

that this break could have been identified in real-time. We then show in Sections 3.6 and 3.7

that break-correction methods can further improve recession and equity premium forecasts. In

Section 3.8, we perform an asset allocation exercise showing that the recession forecasts based

on information in the yield curve significantly improve market timing. In Section 3.9, we extend

our analysis to characteristics portfolios and in Section 3.10 we provide additional international

evidence. Finally, in Section 3.11 we show that estimated recession probabilities forecast the

equity premium by predicting higher discount rates and lower future dividends.

3.1 Predicting recessions

In this section we are interested in predicting U.S. recessions as classified by the NBER Business

Cycle Dating Committee. The literature typically distinguishes between the probability of a

recession in exactly h months and the probability of a recession within the next h months. Here,

we focus on the latter, as we aim to forecast cumulative log equity premiums over the next h
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months in later sections; for similar definitions see Wright (2006) and Johansson (2018). More

precisely, let Yt+1:t+h = 1 if the NBER has classified at least one month between t + 1 and

t+ h as a recession. We follow common practice and assume that Yt+1:t+h is based on a latent

variable Y ∗t+1:t+h where Yt+1:t+h = 1 for Y ∗t+1:t+h ≥ 0 and Yt+1:t+h = 0 for Y ∗t+1:t+h < 0. The

latent variable is assumed to follow a (multivariate) linear regression model:

Y ∗t+1:t+h = X
′
tβ + εt+1:t+h, (1)

Pr
[
Yt+1:t+h = 1|Xt

]
= Φ

[
X
′
tβ
]
, (2)

where X
′
t = (1, x1,t, . . . , xp,t)

′
is the 1× (p+ 1) vector of predictor variables including the inter-

cept, β is the (p+ 1)× 1 vector of coefficients, and εt+1:t+h is the error term. Further, Φ
[
·
]

is

the cumulative distribution function of the standard normal distribution and Pr denotes prob-

ability. Let p̂t+1:t+h be the out-of-sample forecast for Pr
[
Yt+1:t+h = 1

]
based on information

contained in Xt. We follow Jacobsen et al. (2019) and account for the fact that the NBER

typically publishes business cycle classifications with a substantial delay by estimating the β

coefficients with information up to t − 24. This is a conservative choice as other authors (see,

e.g., Kauppi and Saikkonen (2008)) only account for a delay of one year.3 The sample with

T observations is split into an in-sample estimation period of M months and an out-of-sample

period of T −M months. We only use data that are available in real-time mimicking as closely

as possible the information an investor would have had.

In their seminal paper Estrella and Hardouvelis (1991) show that an inverted yield curve is a

strong predictor of recessions and future real economic activity. They find that a decline of

the term spread is associated with an increase in the probability of a recession four quarters

ahead, and that this predictability is not incorporated in other variables such as lagged infla-

tion, lagged real output growth, and survey data. Estrella and Mishkin (1998) complement this

finding by comparing the predictive power of the term spread with financial variables such as

stock prices and other spreads, as well as monetary aggregates. While some alternative pre-

dictors are useful over one- to three-quarter horizons, it is the term spread that predicts best

over horizons of one-year and longer. Moreover, the binary models for recessions are found to

be more stable than continuous models for economic growth (Estrella et al., 2003), and the

3The longest delay in our sample was 21 months: the NBER announced the November 2001 business cycle
trough on July 17, 2003. Results are very similar when we use information up to t− 12.

7



relation is also present in other countries including Germany, Japan, and the U.K. (Bernard

and Gerlach, 1998). Wheelock and Wohar (2009) provide a comprehensive survey of the ability

of the term spread to predict recessions.4

The observed predictability of an inverted or flat yield curve for future recessions is in line with

counter-cyclical monetary policy: if the central bank tightens monetary policy by raising short-

term interest rates, the yield curve tends to flatten and the economy slows down (Estrella et

al., 2003). Estrella (2005) demonstrates this mechanism in a rational expectations model where

the monetary policy regime and the reaction function are key determinants for the predictive

power of the term spread. More recently, Adrian et al. (2019) argue that the predictive power of

the term spread for future economic activity may result from active balance sheet management

of financial intermediaries. If the liabilities of intermediaries are of shorter maturity than their

loans, then a narrowing of the interest margin has a negative effect on the profitability of the

marginal loan. As a result, they reduce the supply of credit. Following this logic, a decrease in

the term spread has a negative effect on real activity and thus offers a causal mechanism for its

strong forecasting power.

In what follows, we focus on the simple probit model using (transformations of) the term spread

as input. The first model only includes a constant and the term spread as predictors - this is

the model of Estrella and Hardouvelis (1991). It is well known that this model performs well

for forecast horizons of one to two years, with only weak predictability for shorter horizons.

More recently, Liu and Moench (2016) show that the short-horizon forecasts substantially im-

prove when adding lagged observations of the term spread. Building on this, the second model

includes the term spread lagged by six months as an additional predictor. As we will see below,

the recession probabilities implied by the two models closely track the dynamics of the term

spread and thus tend to be quite volatile. This implies a number of false positive signals about

impending recessions. To address this issue, we also consider a specification that includes a

constant, the term spread, as well as a backward-looking three-year moving average of the term

spread (MA-TMS) which we construct as 1
36

∑35
j=0TMSt−j . We show in the Online Appendix

4Additionally, the literature has studied the predictive power of other variables and methods in detail. Fornaro
(2016) analyzes the performance of a probit model with large-dimensional datasets and Bayesian shrinkage. The
model performs well over short-horizons and generates smoother forecasts than benchmark models. Several
articles document forecasting gains by including credit data like credit spreads, credit growth, and illiquidity
measures (Chen et al., 2016; Ponka, 2017; Mihai, 2020), as well as by including sentiment variables (Christiansen
et al., 2014). Similarly, there is increasing interest in whether daily and weekly data can improve monthly
recession forecasts - for example in MIDAS regressions (Galvão and Owyang, 2020).
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Term spread and moving average term spread
This figure presents the term spread (dashed line) and the moving average term spread (solid line), whereby the
latter is the moving average of past three-year observations of the term spread. The time series are normalized
to a mean of zero and a standard deviation of one. The sample is 1951:3 to 2019:12 and shaded areas indicate
NBER-dated recession periods.

B that our results are robust to the length of the moving average window.

Figure 2 superimposes TMS and MA-TMS. While the local minima of the term spread usually

lead the beginning of recessions by several months, the moving average term spread reaches its

troughs often just before the onset of recessions. Moreover, the smoothed series averages out

some local minima that are not followed by recessions. The smoothing thus emphasizes lower

frequency components of the term spread which appear to be more relevant for signaling reces-

sions. We will indeed show below that the incorporation of lagged and averaged term spread

information into the probit model significantly enhances short horizon forecasts.

Figure 3 shows the out-of-sample recession probability forecasts for the three models from 1980:1

to 2019:12. Several points are noteworthy. First, the model with only a constant and the term

spread performs relatively poorly for h = 1 and h = 3, with several false positives and no

pronounced differences between expansions and recessions since the mid-1980s. The perfor-

mance for this model gradually increases in the forecast horizon. This is consistent with the

prior literature which has documented an improved recession prediction with the term spread
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for horizons beyond six months. Second, the models adding lagged term spread information

perform substantially better for short-horizon forecasts, where the model with the moving av-

erage term spread implies substantially smoother recession probabilities. This is in line with

Rudebusch et al. (2007) who show that the one-year lagged term premium predicts future GDP

growth, and that differences rather than levels of the expectations component and term pre-

mium matter more for forecasting real output growth. The finding that lagged observations of

the term spread improve recession predictability is consistent with monetary policy affecting

the economy with a delay of a few quarters (Rudebusch and Williams, 2009).

Third, the recession probabilities in the 1990s and 2000s are less pronounced compared to the

probabilities in the early 1980s - with values rarely exceeding 50% even in recessions. Similarly,

Estrella et al. (2003) document that the signal of the models was weaker in the 1990-91 reces-

sion compared to the early 1980s. Kauppi and Saikkonen (2008) also document - using probit

models with lagged dependent variables - that the 1990-91 and 2001 recessions were difficult

to predict. This pattern is not unique to models using the term spread as predictor, the lack

of predictability is also documented for models with larger sets of predictors (Hamilton, 2011;

Fornaro, 2016). We show in Section 3.5 that the weaker recession signals result from a structural

break in the mean of the term spread in the early 1980s. The probabilities are considerably

stronger when this break is accounted for.

3.2 Forecast evaluation

We follow the recession prediction literature and use the quadratic probability score (QPS),

the logarithm score (LS) and the diagonal elementary score (DES) to formally evaluate the

accuracy of recession probability forecasts.5 Perfect classification ability results in values of zero

for all three scores; otherwise they have positive values, with higher values indicating poorer

forecast performance, see, e.g., Nyberg (2013); Christiansen et al. (2014); Fornaro (2016) for

recent applications. The loss function of LS penalizes large forecast errors more heavily than

the loss function of QPS (Diebold and Rudebusch, 1989). Galvão and Owyang (2020) argue

that the loss functions of LS and DES are more suitable in the context of rare events such as

recessions. We further calculate the out-of-sample pseudo R2 (Estrella, 1998) and the area under

the receiver operating characteristic curve (AUROC). While the QPS, LS and DES metrics

evaluate the model accuracy, the AUROC is a metric to evaluate the classification ability - here

5Details on the estimation of all statistics in this section are provided in the Online Appendix.
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Figure 3
Out-of-sample recession probability forecasts
This figure shows the out-of-sample recession probability forecasts at the 1-, 3-, 6-, 12-month horizons. Results
are presented for three different forecasting models: the solid gray line depicts forecasts from a model with the
term spread as a predictor, whereas the solid (dashed) black line denotes a model with the term spread and the
moving average of the past three years (six month lagged value) of the term spread as predictors. Gray bars
denote NBER-dated recession periods and the out-of-sample period is 1980:1 to 2019:12.

into recessions and expansions - of a forecasting model. A perfect classifier has an AUROC

of one and a coin-toss classifier has an AUROC of 0.5; for further details see Berge and Jordà

(2011).

Table 2 presents values of the QPS, LS, DES, pseudo R2 and AUROC for the three different

models for horizons h = 1, 3, 6, 12 months ahead. The model with a constant and the term

spread performs worst, with an AUROC close to 0.5 and a negative pseudo R2 for h = 1

and h = 3. The performance improves with the forecast horizon, with an AUROC of 0.73

and a pseudo R2 of 0.18 for h = 12, reflecting the well known finding that the term spread
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has a lead time of about four to six quarters (Estrella and Mishkin, 1998). When adding the

six-months lagged term spread and the moving average term spread as predictors the model

accuracy and classification ability substantially increase, especially for short-horizon forecasts.

Each of the evaluation statistics improves for these more sophisticated probit models. At the

one-month ahead horizon the AUROC jumps from 0.47 for the model with only the term spread

to 0.81 for the model adding the lagged term spread and to 0.92 for the model adding MA-

TMS. These differences in AUROC values, shown in the second to last column of the table, are

highly statistically significant according to the test of Hanley and McNeil (1983). While the

marginal improvement of predicting recessions by adding TMSt−6 or MA-TMS declines with

the forecast horizon, it is statistically significant at the 1% level at all horizons. This highlights

that adding lagged term spread information increases the recession classification precision of

the probit models.6

The last column of Table 2 provides the correlation between the implied recession probability

forecasts and the (cumulative) log equity premium over the next h months (ρ). The negative

figures indicate that the equity premium tends to decrease when the recession probability rises,

and that this correlation pattern is more pronounced for the models including lagged term spread

information and for longer forecast horizons. At the one-year ahead horizon, the model using the

backward-looking moving average term spread as additional regressor features a sizable negative

37% correlation of the implied recession probability with the cumulative equity premium over

the next year.

The classification into expansions and recessions based on model-implied probabilities requires

one to define a threshold level above which one calls a recession. Hence, the proportion of

correctly predicted recessions (percentage of true positives, PTP) and the proportion of falsely

predicted recessions (percentage of false positives, PFP) are functions of this threshold. The

receiver operating characteristic (ROC) curve traces all combinations of PTP and PFP for

different thresholds in the unit box. The diagonal line represents uninformative forecasts

(PTP = PFP). Curves above the diagonal line depict informative forecasts and the ROC curve

of a perfect classifier ”will hug the north-west border of the positive unit quadrant” (Berge and

6We also formally test the null hypothesis that the AUROC value for the model with TMS and MA-TMS is
equal to the AUROC value for the model with TMS and lagged TMS against the one-sided alternative that the
former is statistically significantly larger than the latter (Hanley and McNeil, 1983). While the null is rejected
at the 5% level for h = 1, 3, 6, it cannot be rejected for h = 12.
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Table 2
Out-of-sample performance of probit models: Forecast evaluation statistics

This table presents five forecast evaluation statistics for the out-of-sample performance of three different probit
models, as well as the correlation between the probability forecasts and the (cumulative) log equity premium
(ρ). The statistics are the quadratic probability score (QPS), logarithm score (LS), diagonal elementary score
(DES), pseudo R2, as well as the area under the receiver operating characteristic curve (AUROC). The predictor
variables are the term spread (TMS) and lagged and averaged variants of the term spread. MA-TMSt refers to
the backward-looking three-year moving average of the term spread, and ”Historical average” depicts forecasts
from a probit model with only a constant. The recession probability forecasts refer to the probability that a
recession occurs within the next h months. Results are shown for h = 1, 3, 6, 12 and the out-of-sample period is
1980:1 to 2019:12. We test the null hypothesis that AUROC = 0.5 (random classification) against the two-sided
alternative (Hanley and McNeil, 1982); asterisks for this test are provided next to the AUROC value. ∆AUROC
shows the gains relative to the probit model with TMSt only and asterisks denote that the AUROC of the
respective bivariate model is significantly larger than the AUROC of the probit model with TMSt only based on
the test of Hanley and McNeil (1983). ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% significance
levels.

1980:1 to 2019:12

Variables in probit model QPS LS DES pseudo R2 AUROC ∆AUROC ρ

Panel A: h = 1
TMSt 0.23 0.40 0.12 -0.01 0.47 -0.04
TMSt, TMSt−6 0.17 0.34 0.05 0.12 0.81∗∗∗ 0.34∗∗∗ -0.07
TMSt, MA-TMSt 0.17 0.27 0.05 0.27 0.92∗∗∗ 0.45∗∗∗ -0.14

Historical average 0.23 0.39 0.11 0.00 0.43∗∗ 0.05

Panel B: h = 3
TMSt 0.25 0.43 0.12 -0.01 0.54 -0.08
TMSt, TMSt−6 0.18 0.36 0.06 0.15 0.82∗∗∗ 0.28∗∗∗ -0.15
TMSt, MA-TMSt 0.20 0.31 0.07 0.25 0.90∗∗∗ 0.36∗∗∗ -0.22

Historical average 0.26 0.43 0.12 0.00 0.43∗∗ 0.09

Panel C: h = 6
TMSt 0.27 0.46 0.12 0.03 0.63∗∗∗ -0.11
TMSt, TMSt−6 0.21 0.40 0.08 0.17 0.81∗∗∗ 0.18∗∗∗ -0.19
TMSt, MA-TMSt 0.22 0.36 0.09 0.25 0.87∗∗∗ 0.24∗∗∗ -0.25

Historical average 0.30 0.48 0.14 0.00 0.43∗ 0.11

Panel D: h = 12
TMSt 0.29 0.48 0.12 0.18 0.73∗∗∗ -0.24
TMSt, TMSt−6 0.21 0.39 0.07 0.36 0.86∗∗∗ 0.13∗∗∗ -0.33
TMSt, MA-TMSt 0.25 0.41 0.10 0.32 0.86∗∗∗ 0.13∗∗∗ -0.37

Historical average 0.38 0.57 0.17 0.00 0.47 0.12

Jordà, 2011).

Figure 4 presents ROC curves for the three different forecasting models. The model with a

constant and the term spread (solid gray line) is close to the diagonal line for h = 1 and h = 3

but shifts toward the north-west corner for h = 6 and h = 12. Hence, the model is relatively

uninformative for short-horizons but gains predictive power with increasing h. Adding the

lagged term spread and the moving average component helps to predict recessions especially
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Figure 4
Out-of-sample performance: ROC curves
This figure shows the receiver operating characteristic (ROC) curve for three different probit models. The solid
gray line depicts a model with a constant and the term spread, and the solid (dashed) black line presents the
performance of a model when the moving average term spread (six-month lagged term spread) is added as a
predictor. The dashed gray line is the 45 degree line. Results are shown for the out-of-sample period from 1980:1
to 2019:12. The vertical axis depicts the percentage of true positives (PTP) and the horizontal axis depicts the
percentage of false positives (PFP). Predictions are made for a recession starting within the next h = 1, 3, 6, 12
months.

at these shorter horizons. The ROC curves substantially shift toward the north-west and the

improvements for the moving average component are highest for h = 1, 3, 6. This is consistent

with Figure 3: the first and second model have relatively high recession probabilities during

the 1990s and 2010s, thus generating some false positives for low threshold levels. Overall, the

ROC curves of the models with lagged and averaged term spread information lie well above the

ROC curve of the spread only model for any forecast horizon and any threshold value. Thus,

adding lagged term spread information strongly improves recession prediction.
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3.3 Forecasting the equity premium with recession probability forecasts

Having shown that equity premiums are particularly low around business cycle peaks and that

the onset of recessions can be well predicted using yield curve information, we next assess the

usefulness of implied recession probabilities to forecast the equity premium out-of-sample. We

use the standard linear predictive regression model:

rt+1:t+h = αt+h + βt+hp̂t+1:t+h + εt+1:t+h, (3)

where rt+1:t+h = 1
h

∑h
j=1 rt+j is the average of the cumulative log equity premium between

t+ 1 and t+ h, αt+h and βt+h are coefficients, and εt+1:t+h is the error term. Here, we use the

recession probability forecasts p̂t+1:t+h as predictor variables. It is important to note that we

only use information that is available to investors in real-time. Suppose that we are interested

in forecasting rt+1:t+h at time t. First, we estimate the coefficients of the probit model with

information up to time t − 24 to account for the fact that the NBER calls recessions typically

with a few months delay. We then combine these estimated coefficients with the values of the

term spread and its backward-looking moving average up to month t into the implied recession

probabilities p̂t+1:t+h. Second, we regress the log equity premium until time t on a constant

and the estimated in-sample recession probabilities until p̂t−h+1:t. Third, we use the estimated

coefficients α̂t and β̂t and the out-of-sample recession probability forecast p̂t+1:t+h to predict

rt+1:t+h. Thus, the log equity premium forecast is r̂t+1:t+h = α̂t + β̂tp̂t+1:t+h. We recursively

re-estimate the coefficients of the probit model and the linear predictive regression model and

real-time forecasts for each month over the period from 1980:1 to 2019:12.

We follow the convention in the literature and evaluate the forecast performance based on

the out-of-sample R2 of Campbell and Thompson (2008). The R2
OS statistic measures the

proportional reduction in mean squared forecast error (MSFE) relative to the benchmark model

with only a constant (βt = 0), see, among others, Rapach et al. (2010); Jiang et al. (2019):

R2
OS = 1−

∑T−h
j=M (rj+1:j+h − r̂j+1:j+h)2∑T−h
j=M (rj+1:j+h − r̄j+h)2

, (4)

where r̄j+h is the prevailing mean with information up to period t. Welch and Goyal (2008)

show that none of the theoretically motivated predictors such as the dividend-price ratio, term

spread or book-to-market ratio can consistently outperform this naive benchmark. In fact,
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they find that the predictive power is mainly driven by the 1973-1975 oil shock, and that the

period from 1975 to 2005 is characterized by “30 years of poor performanc” (Welch and Goyal,

2008, page 1504). We test the null hypothesis of a lower or equal MSFE from forecasts of the

historical average benchmark (R2
OS ≤ 0) against the alternative that forecasts from the models

using recession probabilities as predictors have a lower MSFE (R2
OS > 0) using the MSFE-

adjusted statistic of Clark and West (2007), which corrects for the fact that the Diebold and

Mariano (1995) statistic follows a non-standard distribution for nested models. We account for

serial correlation in the residuals by estimating Newey and West (1987) standard errors with

lag lengths of h months.

Panel A in Table 3 presents the R2
OS statistics (in %) when using the same three probit models

as in the previous sections to derive recession probability forecasts. The following results are

worth noting. First, while the R2
OS statistic for TMS is negative (-0.83%) and insignificant for

h = 1, it is positive (4.21%) and significant at the 5% level for h = 12. Hence, the forecasts from

the standard probit model with the term spread as explanatory variable are helpful in predicting

cumulative log equity premiums over the next year, although the reduction in MSFE relative to

the historical average is below 5%. Second, the models with lagged term spread information have

consistently positive R2
OS values. The improvements for h = 1 are relatively small with values

of 0.23% and 1.11%, respectively, but increase to almost 10% for h = 12. While these gains

may appear small, Campbell and Thompson (2008) show that a monthly R2
OS of only 0.50%

can already translate into significant economic gains for an investor. Third, the best performing

model uses the term spread and the moving average term spread to predict recessions. The R2
OS

values are significant at the 5% level for each forecast horizon and monotonically increase in h.

In terms of magnitude, the R2
OS statistics of these simple models are comparable to or larger

than those of other predictors for longer horizons but are somewhat smaller for shorter forecast

horizons (Huang et al., 2015; Chen et al., 2020). As noted by Rapach and Zhou (2013), the

forecast performance heavily depends on the data set and on the state of economy. A thorough

comparison with two recently proposed benchmark predictors follows in Section 3.7.

3.4 A comparison to the standard OLS approach

So far, we have shown that recession probabilities derived from probit models using the term

spread as predictor significantly outperform the historical average benchmark. This contrasts
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Table 3
Out-of-sample R2 statistics for log equity premium forecasts

This table reports R2
OS statistics in % for the out-of-sample predictability of (cumulative) log excess returns on

the S&P 500 index at the h-month ahead horizon relative to forecasts from the historical average. Forecasts are
based on the linear predictive regression model with a constant and one predictor variable. Panel A shows results
when forecasting with model-implied recession probabilities. The recession probability forecasts are derived by
three different probit models: the first model only includes a constant and the term spread, whereas the second
and third model add either the term spread lagged by six-months (TMSt−6) or the three-year moving average of
the term spread (MA-TMSt) as additional predictors. Panel B shows results when the term spread variables are
directly used as predictors in the OLS regression. CF-MEAN refers to an equally-weighted average of forecasts
from univariate regressions with TMSt, TMSt−6, and MA-TMSt, respectively. ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5%, and 1% levels according to the Clark and West (2007) MSFE-adjusted statistic. The null
hypothesis is equal MSFE and the alternative is that the more sophisticated model has smaller MSFE than the
historical average benchmark. The out-of-sample period runs from 1980:1 to 2019:12.

(1) (2) (3) (4) (5)

Variable h = 1 h = 3 h = 6 h = 12

Panel A: Probit model
TMSt -0.83 -1.38 -1.68 4.21∗∗
TMSt, TMSt−6 0.23 1.58∗∗ 1.98∗∗ 8.23∗∗∗
TMSt, MA-TMSt 1.11∗∗ 3.09∗∗∗ 3.83∗∗ 9.27∗∗∗

Panel B: OLS model
TMSt -0.99 -2.17 -3.23 2.04∗∗
TMSt−6 -0.05 1.02∗∗ 2.40∗∗ 4.80∗∗∗
MA-TMSt 0.39∗ 1.22∗∗ 2.18∗∗ 4.26∗∗
CF-MEAN 0.21 1.10∗ 1.96∗∗ 5.87∗∗∗

TMSt, MA-TMSt -1.18 -2.61 -4.18 0.24∗∗

the common finding that forecasts from a regression of the equity premium on the term spread

perform poorly for short horizons (Rapach and Zhou, 2013). In this section we compare forecasts

from model-implied recession probabilities to forecasts from linear predictive regressions with

TMS and MA-TMS as predictors. Panel B in Table 3 shows the R2
OS statistics when directly

forecasting the equity premium with the three variants of the term spread. This corresponds to

Equation (3) replacing p̂t+1:t+h with TMSt, TMSt−6, and MA-TMSt, respectively. We further

show results for a simple combination forecast that takes the average of the three individual

OLS regression forecasts (CF-MEAN). While TMS only has mild predictive power over one-year

ahead forecast horizons, TMSt−6 and MA-TMSt also significantly predict the equity premium

for h = 3 and h = 6. MA-TMSt further outperforms the historical average for h = 1, although

with only a R2
OS of 0.39%.

Our finding that adding lagged information significantly improves equity premium forecasts is

surprising in light of the efficient market hypothesis. However, it is consistent with Gómez-

Cram (2021) who documents that analysts only sluggishly revise their expectations downward

and that stock prices do not fully reflect publicly available information on turning points. The
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last row in Panel B shows the performance of a joint OLS regression with TMSt and MA-TMSt.

The OLS regression analogue to our probit model performs worst, in line with the common

finding that multivariate regression models with several parameters often underperform the

historical average. Importantly, at all forecast horizons even the best linear models are sub-

stantially outperformed by the equity premium forecasts based on recession probabilities.

The upper panel of Figure 5 superimposes one-month ahead equity premium forecasts from the

recession probability based on TMSt and MA-TMSt (solid black line), the analogue OLS model

with the two predictors (dashed black line), and the historical average benchmark (solid gray

line). While the OLS model generates forecasts that are volatile both in recessions and expan-

sions, the probit model forecasts are relatively stable in expansions and markedly higher than

the historical average. As the implied recession probabilities are high just before the 1981-82

recession, the implied equity premium forecasts are sharply negative around that time. This

effect, although substantially less pronounced, is also visible around the business cycle peaks in

2001 and 2007.

Welch and Goyal (2008) have popularized a simple way to visualize the relative forecast per-

formance of different prediction models over time. The lower panel in Figure 5 follows their

approach and plots the difference in cumulative squared forecast errors (CSFE) for the historical

average and the CSFE for two different models: the solid black line depicts equity premium

forecasts based on the implied recession probability using TMS and MA-TMS, whereas the

dashed black line shows the OLS model with both TMS and MA-TMS. An increasing curve

indicates superior performance relative to the naive benchmark. We can see that the curve for

the OLS model is decreasing over most of the sample, with reversed trends only around the

1981-82 and 2001 recessions. In contrast, the curve for the probit model forecasts is rising over

most of the sample, indicating that the recession probability forecast of the equity premium

consistently outperforms the historical average.

This superior performance is driven by two distinct effects. First, and similar to the OLS model,

the model significantly predicts the negative excess returns in the one-year window around the

peak in 1981. This is consistent with Table 1 and with the notion that term spread information

anticipates recessions. Second, and more importantly, the model-implied recession probabilities

outperform the naive benchmark also in expansions. This contrasts the “no predictability in

good times puzzle” that is often documented in related articles (Huang et al., 2017). The ex-
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planation is simple: Table 1 shows that the annualized equity premium averages 6.31% in our

sample, but is even higher at an annualized 8.40% in expansions. While the historical average

closely tracks the full-sample average, our recession probability-based forecast corrects for neg-

ative values around business cycle peaks and thus correctly predicts a higher equity premium

in expansions.

3.5 Structural break in the mean of the term spread

We have seen above that the implied recession probabilities are muted and rarely exceed 50%

after the mid-1980s. This is consistent with e.g. Chauvet and Potter (2002) who find evidence

for a structural break in the probit model based on the term spread but argue that the exact

date of the break is difficult to localize. When fixing the break to 1984, they show that the

model is able to predict the recession in 2001 with probabilities as high as 90% for the 12 month

ahead forecast horizon. Galvão (2006) proposes a structural break threshold-VAR (SBTVAR)

model that allows for non-linearities and breaks in the link between the term spread and U.S.

output growth and identifies a break in 1985:2. She further shows that the SBTVAR model

correctly anticipates the 2001 recession in real-time. Other papers also document breaks in the

dynamic relationship between the term spread and real growth. Chauvet and Potter (2010)

find evidence for recurrent breaks in a probit model with industrial production, sales, personal

income, and employment. Schrimpf and Wang (2010) analyze whether the predictive power

of the term spread on output growth suffers from structural breaks. They allow for multiple

breaks using the test procedure of Bai and Perron (1998, 2003) and find evidence for breaks in

Germany, Canada, U.K., and the U.S.

To summarize, there is ample prior evidence for a structural break in the link between the term

spread and output growth, as well as for a break in the estimated recession probabilities from

the standard probit model. This suggests that accounting for such a break may improve the

recession probability forecasts and hence the equity premium predictability. In what follows, we

provide further evidence for a structural break. Instead of focusing on a break in the estimated

relation between the term spread and future recessions, we focus our attention on a break in

the mean of the term spread. The reason is that a break in the parameters of the probit model

is generally difficult to identify and even more so difficult to narrow down to an exact point in

time - not least because of the infrequent occurrence of recessions (Wright, 2006). In contrast,

19



1980 1990 2000 2010 2020

−2 %

−1 %

0 %

1 %

2 %

TMSt and  MA−TMSt  (probit model)
TMSt and MA−TMSt  (OLS model)
Historical average

1980 1990 2000 2010 2020

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

TMSt and MA−TMSt  (probit model)
TMSt and MA−TMSt  (OLS model)

Figure 5
Out-of-sample forecasts and performance over time
This figure shows one-month ahead forecasts of the log equity premium for three different models (upper panel).
The solid black line depicts forecasts from model-implied recession probability forecasts of a probit model with
the term spread (TMS) and the backward-looking three-year moving average of the term spread (MA-TMS). The
dashed black line presents forecasts from a standard linear predictive regression model with TMS and MA-TMS
as predictors, and the solid gray line denotes the historical average. The lower panel shows the difference between
cumulative squared forecast errors (CSFE) of the historical average and the CSFE of the probit model forecasts
(solid black line) and the OLS model forecasts (dashed black line). All forecasts are estimated with a recursively
expanding information set that mimics the real-time situation of an investor. The out-of-sample period is 1980:1
to 2019:12.
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as we will see below, the shift in the mean of the term spread can be identified in a more timely

manner regardless of the state of economy. Figure 2 plots the normalized term spread from

1951:3 to 2019:12. Eyeballing this time series shows that the mean of the term spread has

shifted upwards in the early 1980s. This is most visible when comparing the period from 1965

to 1982 with the period from 1983 to 2019: the mean of the former period is -0.61 whereas it is

0.46 for the latter period. In what follows, we formally test the hypothesis of a structural break

in the mean of the term spread.

The classical break test for coefficients in linear regression models goes back to Chow (1960).

A critical limitation of the Chow-test is that the break date has to be known a priori. Here,

we treat the break date as unknown and perform break tests over a grid of candidate values

– namely on a fraction of the sample between [τ1, τ2] with τ1 = πτT and τ2 = (1 − πτ )T . We

refer to πτ as the trimming value. When performing the Chow test on a sequence of dates the

standard chi-square critical values are not applicable; for a discussion of this point see Hansen

(2001). We estimate the following model for all z values between [τ1, τ2]:

TMSt = β1I{t ≤ z}+ β2I{t > z}+ εt, (5)

where I{t ≤ z} (I{t > z}) is an indicator function that equals one for t ≤ z (t > z). The

coefficients β1 and β2 are re-estimated for a grid of z values and the SSE values are saved for

each of these grid points. If there is no structural break in the coefficients then the SSE values

vary randomly over time. However, if there is a unique structural break, then the time series

will have a well-defined global minimum near the true break date (Hansen, 2001).

The upper panel in Figure 6 presents the SSE as a function of z with a trimming value of

πτ = 0.15. The SSE is thus calculated for potential breaks from 1961:6 to 2009:8. The resulting

SSE clearly shows a strong v-shape, indicating a well defined and unique break point. The

break date corresponds to the month with the lowest sum of squared errors (Bai, 1997). This

global minimum is in 1982:5. We formally test the null hypothesis of no structural break by

using the Sup-F, Ave-F, and Exp-F statistics of Andrews (1993) and Andrews and Ploberger

(1994). The variance-covariance matrix is estimated according to Newey and West (1994) and

the p-values are computed following Hansen (1997). The null hypothesis of no structural break

is rejected at the 1% significance level for Sup-F, Ave-F, and Exp-F and is robust to changes
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in the trimming value and pre-whitening of the residuals; details are provided in the Online

Appendix. The middle panel in Figure 6 presents the estimated sub-sample means in the term

spread with full sample information. The upward shift in the mean is consistent with attenuated

recession probabilities after the break that we have observed above.

The previous test results are based on full sample information. Would an investor have been

able to identify the break in real-time? To answer this question we estimate the p-values with

a recursively expanding sample from 1980:1 onwards and re-estimate the p-values each month

until 2019:12. The lower panel in Figure 6 presents the resulting series of p-values. The null

hypothesis of no structural break is first rejected at the 10% critical value by the Sup-F, Ave-

F, and Exp-F tests in 1986:7, 1987:3, and 1986:9. Since then, the p-values have consistently

remained below 5%, providing strong evidence that the break in the mean of the term spread

could have been identified in real-time as early as the mid 1980s. From 1995:1 to 2019:12 the

null hypothesis is always rejected at the 1% level for each of the test statistics. The estimated

break date is identical for the different test statistics as it is simply localized at the global

minimum of the sum of squared errors (Bai, 1997).7 Overall, the results are in line with other

evidence of structural breaks in the standard probit model and the estimated break date is close

to the structural change in variance of U.S. GDP growth in the early 1980s, see e.g. Kim and

Nelson (1999), McConnell and Perez-Quiros (2000), and Pettenuzzo and Timmermann (2017).8

3.6 Forecasting in the presence of structural breaks

We have documented in the previous section that the term spread suffers from a structural

break in the mean in 1982. We now show how to adjust the recession prediction and equity

premium forecasts in the presence of this break.

First, we apply the procedure by Lettau and Van Nieuwerburgh (2008). They find evidence in

favor of multiple shifts in the mean of the dividend-price ratio. To correct for these breaks, they

create a break-adjusted time series by subtracting the sub-sample means from the dividend-

7Figure A.2 in the Online Appendix displays recursively estimated break dates from 1980:1 to 2019:12. This
shows that the identified break dates are very stable around the full-sample break date 1982:5.

8We also test for multiple breaks in the mean of the term spread by applying the methods proposed in Bai
and Perron (1998, 2003). The sequential tests do not provide evidence in favor of multiple breaks. Moreover, we
apply the sequential tests to a longer sample that starts in 1933:4, just after the Great Depression. Interestingly,
we find evidence for another break in the mean in 1947:6, in addition to the one in 1982:5. The additional break
aligns well with the Treasury-Federal Reserve Accord, indicating a change in monetary policy after longer-term
interest rates were pegged during wartime (Eichengreen and Garber, 1991; Carlson and Wheelock, 2014).
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Figure 6
SSE as a function of the break date and real-time detection of the break
This figure presents the sum of squared errors (SSE) when testing for a structural beak in the mean of the
term spread (upper panel). The change point is allowed to lie between 1961:6 and 2009:8, which corresponds
to a trimming value of 15%. The analysis is based on full sample information and the coefficients and SSE are
re-estimated for each potential break date. The middle panel shows the term spread from 1951:3 to 2019:12
(solid line) and the sub-sample means from 1951:3 to 1982:5 and from 1982:6 to 2019:12 (dashed line). The
estimated break date is in 1982:5 and corresponds to the global minimum in SSE (Bai, 1997). The lower panel
reports the recursively estimated p-values of the null hypothesis of no structural break (Hansen, 1997). This
analysis is feasible in real-time and recursively expands the information set. Sup-F, Ave-F, and Exp-F refer to
the Wald-type statistics of Andrews (1993) and Andrews and Ploberger (1994). The dashed (dotted) horizontal
line shows the 10% (5%) level. The estimation of p-values is carried out from 1980:1 to 2019:12.
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price ratio. They then show that the adjusted time series has robust in-sample predictive power

for the equity premium but fails to beat the historical average out-of-sample.9 Specifically, we

carry out the following steps: we first test for a break in the mean of the term spread by esti-

mating the Sup-F statistic and by using a significance level of 10% and a trimming value of 15%.

Only real-time information is used to mimic the situation of an investor. Second, if the null

hypothesis of no break is rejected, we estimate the two sub-sample means and subtract them

from the term spread to create a break-adjusted term spread, denoted by TMSbreak. Finally, we

estimate the probit model with this adjusted time series and generate out-of-sample forecasts

for recession probabilities and the log equity premium. If the null hypothesis is not rejected,

we predict with the unadjusted term spread.

Alternative approaches have been proposed by Pesaran and Timmermann (2007). They present

methods to determine the optimal estimation window in the presence of structural breaks.

These methods are based on the insight that if the pre-break data follow a data generating

process that is different from the one characterizing the post-break data, then the coefficient

estimates are biased when using all data. Pesaran and Timmermann (2007) show in a simula-

tion study that the MSFE can be significantly reduced by combining different forecasts from

the same model when a structural break is present. The individual forecasts only differ in their

estimation window.

We implement the combination of different forecasts from our probit models as follows. If the

null hypothesis of no break is rejected, we estimate the probit model over an equally-spaced grid

of starting values. This grid covers the beginning of our data set until the estimated break date.

To reduce computing time, we only estimate models at annual increments in the starting date.

This provides us with multiple recession forecasts and equity premium forecasts that only differ

in the start date of the estimation window. Then, our pooled forecast is simply the average of

the individual forecasts over the grid of start values, denoted as ”Pooling (average)”.10

9Lettau and Van Nieuwerburgh (2008) argue that the break dates can be estimated in real-time but that the
uncertainty about the shift in the mean prevents significant forecasting gains. Smith and Timmermann (2021)
present a method that uses cross-sectional information and economically motivated priors to (i) better detect
breaks in real-time and to (ii) estimate parameters more accurately. The latter point is especially relevant when
only few post-break observations are available.

10Additionally, we have estimated forecasts from weighted pooling. As the differences are negligible, we only
show results for the equal-weighted combination of forecasts. We demand at least 15 years of data in the probit
model to guarantee reliable coefficient estimates. Suppose that the Sup-F test first identifies in 1986:7 that a
break has occurred in 1981:3. Then, the shortest estimation window uses data starting in 1969:7. This is because
we have to lag the data by 17 years (not 15 years) to account for the delay in NBER announcements. Hence, the
probit model is estimated over the grid of start dates from 1969:7,1968:7,... until the beginning of the forecast
sample.
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A disadvantage of the pooling approach is that one includes many forecasts with a large fraction

of pre-break data when the sample is long or when the break occurs relatively late in the sample.

Alternatively, one can only choose the best performing grid point. We implement this approach

by performing a pseudo out-of-sample exercise over the most recent five years of data. Then

we evaluate all start dates over this holdout period and select the start date that minimizes

the MSFE for the equity premium. The selection of the grid point is chosen based on forecasts

of the log equity premium and not on forecasts of the probit model as the former is the main

purpose of this paper. Forecasts from this approach are denoted as ”Cross-validation”.

Finally, we consider one estimation strategy that only uses post-break data to estimate param-

eters of the probit model and to forecast recession probabilities and the equity premium. We

denote this strategy as ”Post-break window”.11 If the null hypothesis of no structural break

is not rejected, then the forecasts of the break-correction methods are identical to forecasts by

the unadjusted probit model. In what follows, we apply these break-adjustment methods to the

probit model with TMS and MA-TMS as predictors.

Figure 7 shows recession probability forecasts for cross-validation and for post-break window,

as well as for the standard probit model with the term spread. The estimated probabilities for

cross-validation remain at fairly low levels during the 1990-91 and 2001 recessions for short-

horizon forecasts. However, the probabilities for the 2008-09 recession increase substantially

relative to the unadjusted full-sample models. They rise above 60% for cross-validation and

are thus considerably higher than the probabilities in Figure 3 which are less than 30% for

h = 1 and unadjusted models. Moreover, for h = 12 we see a substantially improved forecast

performance with estimated probabilities as high as 90% for the 2001 and 2008-09 recessions.

Post-break window generates out-of-sample probabilities as high as 90% for the 2001 recession,

however, this approach also gives rise to a false positive in the late 1990s. Overall, we confirm

previous findings that the implied recession probabilities are more pronounced when properly

correcting for instabilities and breaks (Galvão, 2006; Chauvet and Potter, 2010). We provide

forecast evaluation statistics for the break-correction methods in the Online Appendix.

11We use at least 15 years of data. Hence, while the sample of post-break data is shorter than 15 years we use
the most recent 15 years of data for estimation and forecasting.
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Figure 7
Out-of-sample performance: (break-corrected) recession probabilities
This figure presents out-of-sample recession probability forecasts for four different forecast horizons and three
different models. The forecasts denote the probability of a recession within the next h = 1, 3, 6, 12 months.
The solid gray line shows forecasts from the standard probit model with the term spread as the only predictor
(TMSt). The solid black line depicts forecasts from a probit model with the term spread and the moving average
component (MA-TMSt), where the optimal estimation window is determined by cross-validation over a holdout
period of 60 months. The dashed black line presents forecasts from a probit model with TMS and MA-TMS
that only uses post-break data for coefficient estimation. Out-of-sample forecasts are recursively estimated for
the sample from 1980:1 to 2019:12.

3.7 Correcting for structural breaks: Out-of-sample equity premium prediction

We have seen in the previous section that the recession probability forecasts are substantially

higher in the second part of the sample when using the cross-validation and post-break window

approaches to correct for the break in the mean of the term spread in 1982. In this section

we compare the equity premium forecasts from recession probabilities of the probit model with

the unadjusted term spread and moving average term spread with forecasts from the same

26



model when applying the break-correction methods. We will see that the break adjustment

substantially improves the equity premium predictability of the implied recession probabilities.

Table 4 provides the R2
OS statistics for the out-of-sample equity premium prediction using the

break-correction methods to adjust the term spread relative to the historical average. Panel A

shows that the one month ahead forecasts improve for each of the four methods, and that the

R2
OS is as high as 3.2% for post-break window for the prediction sample from 1980:1 to 2019:12,

shown in column (1). Columns (2) to (4) show the R2
OS values for different subsamples. While

the gains in statistical predictability relative to the historical average are significant also from

1980-1999 (column (2)), they are much stronger for the period since 2000 (column (3)). The

R2
OS statistics in this sub-period exceed 3% for break-adjusted term spread, cross-validation,

and post-break window. It is worth noting that the estimated predictive coefficients (not shown)

are consistently negative and highlight that the superior performance relative to the historical

average is driven by negative equity premium forecasts during recessions. This is in contrast

with Campbell and Thompson (2008) who argue that imposing non-negativity constraints on

the equity premium can improve performance.

The results are qualitatively the same for longer forecast horizons, shown in panels B to D. The

R2
OS statistics are consistently positive for the different sub-samples and gradually increase in

the forecast horizon h - with R2
OS values above 10% for cumulative one year ahead equity pre-

miums. The only exception is the probit model with the break-adjusted term spread which has

negative values between 1980:1 to 1999:12, resulting from a poor performance during the 1990s.

Comparing the different break-adjustment methods of Pesaran and Timmermann (2007), we

observe a clear pattern. The approach that only uses post-break data performs best, closely fol-

lowed by cross-validation, and with some distance followed by pooling. In our setting, the break

in the mean is relatively sizable and the break-date can be estimated accurately in real-time.

Therefore, the improvements from pooling are smallest, due to the large impact of pre-break

information. Cross-validation seems to be the most robust choice both for improving recession

and equity premium forecasts. The post-break window also works well in our application but

may be more risky from an ex ante perspective, putting all weight on post-break forecasts.

Hence, our preferred break-correction method is cross-validation.12

12We show the recursively selected estimation windows for one-year ahead forecasts from cross-validation in
the Online Appendix.
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Table 4
Out-of-sample R2 statistics when correcting for a structural break

This table presents R2
OS statistics (in %) for forecasts of the h = 1, 3, 6, 12 months ahead (cumulative) log equity

premium. This statistic measures the reduction in MSFE relative to forecasts from the historical average. Results
are shown for a probit model with the term spread and the moving average component as predictors, and for
four methods that correct for a structural break in the mean of the term spread. The first method forecasts
with a break-adjusted term spread (TMSbreak

t , 1
36

∑35
j=0TMSbreak

t−j ), see Lettau and Van Nieuwerburgh (2008).
Cross-validation selects an optimal estimation window over a holdout period, whereas pooling combines forecasts
from several models with a grid of different starting values. Post-break window refers to forecasts from a model
that only uses post-break data. For further details see Section 3.6 and Pesaran and Timmermann (2007). Short
interest and gold-to-platinum ratio are the predictors of Rapach et al. (2016) and Huang and Kilic (2019), and

perfect classifier refers to a simple two-state model that can perfectly anticipate NBER-dated recessions. ∗,
∗∗, ∗∗∗ denote significance at the 10%, 5%, and 1% significance levels according to the Clark and West (2007)
MSFE-adjusted statistic. Columns (1) to (4) report results for different sub-samples, and panels A to D present
results for different forecasting horizons.

(1) (2) (3) (4)
Variable 1980:1-2019:12 1980:1-1999:12 2000:1-2019:12 1990:1-2013:12
Panel A: h = 1
TMSt, MA-TMSt 1.11∗∗ 1.52∗∗ 0.67∗∗ 0.74∗∗

TMSbreak
t , MA-TMSbreak

t 1.60∗∗∗ 0.03 3.29∗∗∗ 2.17∗∗
Cross-validation 2.27∗∗∗ 1.30∗∗ 3.31∗∗ 2.94∗∗
Pooling (average) 1.45∗∗∗ 1.33∗∗ 1.59∗∗∗ 1.40∗∗∗
Post-break window 3.21∗∗∗ 1.64∗∗ 4.89∗∗∗ 4.57∗∗∗

Perfect classifier 1.06∗ 0.10 2.09∗ 1.74∗
Short interest 1.67∗∗
Gold-to-platinum ratio 1.15∗∗

Panel B: h = 3
TMSt, MA-TMSt 3.09∗∗∗ 4.40∗∗ 1.84∗∗ 2.17∗∗

TMSbreak
t , MA-TMSbreak

t 3.41∗∗∗ -1.11 7.80∗∗∗ 4.56∗∗
Cross-validation 7.25∗∗∗ 3.70∗∗ 10.76∗∗ 9.25∗∗
Pooling (average) 4.10∗∗∗ 3.95∗∗ 4.26∗∗∗ 3.78∗∗∗
Post-break window 8.78∗∗∗ 4.43∗∗ 13.12∗∗∗ 11.69∗∗∗

Perfect classifier 2.50∗ 0.27 4.71∗ 3.74∗
Short interest 5.46∗∗∗
Gold-to-platinum ratio 4.54∗∗

Panel C: h = 6
TMSt, MA-TMSt 3.83∗∗ 5.04∗∗ 2.91∗ 3.54∗∗

TMSbreak
t , MA-TMSbreak

t 3.02∗∗ -7.34 10.94∗∗∗ 5.91∗∗
Cross-validation 10.53∗∗∗ 3.16∗ 16.04∗∗ 14.25∗∗
Pooling (average) 5.54∗∗∗ 4.10∗ 6.62∗∗∗ 6.01∗∗∗
Post-break window 11.36∗∗∗ 5.45∗∗ 15.78∗∗ 15.49∗∗

Perfect classifier 3.63∗ -0.13 6.43∗ 5.49∗
Short interest 9.44∗∗
Gold-to-platinum ratio 8.52∗∗

Panel D: h = 12
TMSt, MA-TMSt 9.27∗∗∗ 10.10∗∗ 8.87∗∗ 8.58∗∗∗

TMSbreak
t , MA-TMSbreak

t 8.08∗∗ -8.75 18.74∗∗∗ 8.17∗
Cross-validation 12.28∗∗∗ 7.76∗ 15.27∗∗∗ 14.13∗∗
Pooling (average) 11.89∗∗∗ 7.73∗ 14.56∗∗∗ 11.38∗∗∗
Post-break window 16.67∗∗∗ 13.22∗∗ 19.10∗∗ 18.45∗∗

Perfect classifier 10.23∗∗∗ 3.70∗ 14.52∗∗∗ 12.55∗∗
Short interest 7.85∗
Gold-to-platinum ratio 9.55∗∗

To better understand the strong predictive power of recession probabilities for the equity pre-

mium, we provide separate R2
OS statistics for expansions and recessions in Table 5. Strikingly,
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Table 5
Out-of-sample R2 statistics in recessions and expansions

This table presents R2
OS statistics (in %) for forecasts of the h = 1, 3, 6, 12 months ahead (cumulative) log equity

premium. Results are shown for a probit model with the term spread (TMS) and the moving average component
(MA-TMS) as predictors, and for four methods that correct for a structural break in the steady state mean of
the term spread. For further details see Section 3.6. The R2

OS statistics are displayed separately for recessions
and expansions. ∗, ∗∗, ∗∗∗ denote significance at the 10%, 5%, and 1% significance levels according to the Clark
and West (2007) MSFE-adjusted statistic. Column (1) reports the respective forecasting model, and columns (2)
to (5) present results for different forecasting horizons. The out-of-sample period is 1980:1 to 2019:12.

(1) (2) (3) (4) (5)

Variable h = 1 h = 3 h = 6 h = 12

Panel A: Recessions
TMSt, MA-TMSt 1.83∗ 2.59∗ -1.08 -1.20
TMSbreak

t , MA-TMSbreak
t 5.94∗∗ 9.00∗∗ 5.95∗∗ 9.44∗∗

Cross-validation 6.72∗∗ 14.15∗∗ 15.11∗∗ 8.33∗∗∗
Pooling (average) 3.40∗∗ 5.41∗∗ 2.74∗∗ 4.77∗∗∗
Post-break window 9.84∗∗∗ 17.62∗∗∗ 18.20∗∗ 17.72∗∗

Panel B: Expansions
TMSt, MA-TMSt 0.86∗∗ 3.35∗∗∗ 7.03∗∗ 15.31∗∗∗
TMSbreak

t , MA-TMSbreak
t 0.11 0.54∗∗ 1.11∗ 7.29∗∗

Cross-validation 0.75∗∗ 3.70∗∗∗ 7.56∗∗∗ 14.56∗∗∗
Pooling (average) 0.79∗∗ 3.43∗∗∗ 7.37∗∗∗ 16.00∗∗∗
Post-break window 0.93∗∗ 4.22∗∗∗ 6.91∗∗∗ 16.07∗∗∗

we see that for essentially all considered models and forecast horizons, there is an economically

and statistically significant improvement over the historical average benchmark in both reces-

sions and expansions. As discussed above, the reason is the following. Recession probabilities

correctly predict low equity premiums in recessions. In addition, by adjusting for low equity pre-

miums in recessions they correctly predict higher equity premiums than the historical average

benchmark in expansions.13 That said, the break-correction methods improve the performance

primarily in recessions, as the adjusted recession probabilities predict a highly negative equity

premium around the peak in 2007. For example, the R2
OS for the one-month ahead forecasts

improves from 1.8% to 6.7% and 9.8% for cross-validation and post-break window.14

13Note that the R2
OS statistic for the unadjusted probit model turns negative in recessions for six- and twelve-

month ahead forecasts and becomes highly significant in expansions. This reflects the fact that for longer horizons
the recession forecasts substantially decrease prior to the peak and, therefore, have the strongest predictive power
already before the beginning of the recession, see Figure 1.

14We perform encompassing tests to study whether the forecasting models provide distinct information. Specif-
ically, we apply the ENC-T statistic of Harvey et al. (1998) to test whether post-break window encompasses the
information of the other four forecasting models. Formally, we test the null hypothesis that λ = 0 in a con-
vex combination of forecasts, r̂ct+1:t+h = (1 − λ)r̂post-break window

t+1:t+h + λr̂jt+1:t+h with j being equal to one of the

four alternative models (TMSt, MA-TMSt; TMSbreak
t , MA-TMSbreak

t ; Cross-validation; Pooling (average)). We
cannot reject the null hypothesis that post-break window encompasses the other forecasts. It may, however,
still be possible that the other models provide equally good forecasts. We thus test whether the other forecasts
encompass the forecasts from post-break window (λ = 1). For h = 1 and h = 3 we reject the null hypothesis for
all models. However, for h = 6 and h = 12 we cannot reject the null that cross-validation encompasses post-break
window. For h = 12 we can likewise not reject the null that TMSt, MA-TMSt and Pooling (average) encompass
post-break window. In sum, we conclude that post-break window encompasses the other forecasts for h = 1 and
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To assess the relative performance of our approach, we compare our results with three addi-

tional benchmark models. First, we generate forecasts from a simple two-state model that can

perfectly foresee NBER recessions. We recursively estimate the following regression:

rt = α+ β × I{NBERt = 1}+ εt, (6)

where I{NBERt = 1} is an indicator function that equals one in recessions. If there is a recession

in the next month then the forecast equals the average log equity premium in past recessions and,

vice versa, if the next month is in an expansion then the forecast equals the average during past

expansions. We implement this benchmark to see if the inverse v-shape in estimated recession

probabilities has any value above and beyond simply classifying periods into expansions and

recessions. The second benchmark predictor is the short interest variable of Rapach et al. (2016),

which they characterize as ”the strongest known predictor of aggregate stock returns”. Short

interest is calculated as the log of the equally-weighted mean of short interest across publicly

listed stocks on U.S. exchanges. The series shows a strong linear upward trend and is therefore

recursively detrended. Our third benchmark is the (log) gold-to-platinum ratio of Huang and

Kilic (2019), constructed as the log of the ratio of gold to platinum prices, which the authors

show to perform particularly well out-of-sample over longer forecast horizons.15 Due to data

availability, we can only evaluate the latter two predictors over a shorter sample from 1990:1 to

2013:12.

We see in Column (4) of Table 4 that cross-validation and post-break window consistently

outperform the three benchmark models for each forecast horizon. The gains in reduced MSFEs

are substantial, with an R2
OS statistic that is often twice as large. The R2

OS of cross-validation

is 2.94% for h = 1, compared to 1.67% for short interest, 1.15% for gold-to-platinum ratio,

and 1.74% for a perfect recession classifier.16 At the one-year ahead horizon, cross-validation

delivers an R2
OS statistic of more than 14%, compared to 7.85% for short interest and 9.55% for

the gold-to-platinum ratio.

h = 3 but that other models contain similar information for longer horizons. We therefore report results for all
three break-adjustment methods.

15We thank Dave Rapach for making the data publicly available on his homepage, and Darien Huang and Mete
Kilic for kindly sharing their data with us.

16The results differ slightly compared to those published in the papers because our historical average uses data
from 1951:3 onwards. We re-estimate the predictive coefficients recursively using expanding data available in
real-time.
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Figure 8 plots the difference in CSFE for the historical average and CSFE for different models

using recession probabilities: the unadjusted probit model, as well as cross-validation, pooling,

and post-break window. An increasing line indicates that the historical mean is outperformed

during this period, whereas the opposite is true for a decreasing line. The upper panel presents

results for one month ahead forecasts. The solid gray line shows the relative performance for

the unadjusted probit model. It performs very well during the 1981-82 recession but does only

increase slightly compared to the other models thereafter. For cross-validation and pooling

we see a similar pattern until 2007, which is followed by a positive jump during the Great

Recession. The post-break window performs best, with a positive trend since the mid 1990s,

and the sharpest rise during the 2008-09 recession. The chart thus shows that the predictability

is strongest during recessions, but still weakly present during some expansionary periods. This

is consistent with previous evidence of time-varying predictive power (Rapach and Zhou, 2013;

Jiang et al., 2019).

The lower panel depicts the performance for one year ahead forecasts. While the picture is

qualitatively the same as for the one month ahead forecasts, the basic model without break

corrections shows a strong upward trend since 1995, which is not exclusively driven by recessions.

The model clearly outperforms the historical average since 2009.17 Nonetheless, the break-

correction approaches still perform better, and the ordering remains unchanged: the post-break

window performs best, followed by cross-validation and pooling. The distance between the

latter two approaches substantially shrinks compared to the one month ahead forecasts. This

can be explained by the observation that the unadjusted model performs better for h = 12 than

for h = 1, and, as pooling includes many forecasts that are similar to this model, pooling also

performs comparatively well.

Figure 9 compares the relative performance of cross-validation and post-break window with

the performance of short interest and gold-to-platinum ratio. The upper (lower) panel shows

results for one month (cumulative one year) ahead forecasts. None of the depicted models

strongly outperforms the historical average between 1990 and the onset of the Great Recession.

Even though the gold-to-platinum ratio performs well from 2001 to 2003 the gains are offset

between 2004 to 2007. The models have in common that the positive R2
OS statistics are the

17The range of the vertical axis is smaller for h = 1 than for h = 12. This simply reflects that averaging
of 12 month ahead log equity premiums generates a substantially smoother time-series. This smoothed series
can better be predicted, resulting in smaller squared forecast errors than for the one month ahead log equity
premium.
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result of superior predictability between 2007 to 2013. The picture is similar for one-year ahead

forecasts: the curves for short interest and gold-to-platinum ratio have negative values prior to

the 2008-09 crisis and strongly outperform the historical average in the subsequent years. The

CSFE curves for cross-validation and post-break window are solidly above the curves for the

two benchmark predictors for both horizons.

3.8 Implications for asset allocation

In this section we analyze the economic value of the improved equity premium predictions.

Cenesizoglu and Timmermann (2012) show that the correlation between statistical and economic

measures of forecast performance is positive but typically of low magnitude. Specifically, many

models produce negative R2
OS values while still providing investors with improved Sharpe ratios

and gains in the certainty equivalent return. Interestingly, the reverse – positive R2
OS values

and negative economic gains – is observed less often. We follow Dangl and Halling (2012) and

Rapach et al. (2016) and others and consider a mean-variance investor who allocates funds

across the equity market portfolio and the risk-free rate. At the end of period t, the investor

optimally invests a share ωt in the risky asset:

ωt =
1

γ

r̂t+1

σ̂2
t+1

, (7)

where γ is the coefficient of relative risk aversion and r̂t+1 is a forecast of the equity premium.18

Similar to Rapach et al. (2016), we estimate the variance of excess returns, σ̂2
t+1, as a 10-year

rolling window of past data. Thus, ωt only differs because of the different equity premium

forecasts implied by the various models, r̂t+1. The realized portfolio return, rPt+1, is:

rPt+1 = ωtrt+1 + rft+1, (8)

where rt+1 is the realized excess equity market return in period t + 1 and rft+1 is the risk-free

rate between period t and t + 1. Furthermore, the certainty equivalent return (CER) can be

calculated as:

CERP = µ̂P −
γ

2
σ̂2
P , (9)

18Forecasts in this section are based on excess returns rather than log excess returns.
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Figure 8
Out-of-sample performance over time
This figure presents the difference between cumulative squared forecast errors (CSFE) of the historical average
and the CSFE of four different forecasting models. The upper panel (lower panel) shows results for forecasts of
the one month ahead (cumulative one year ahead) log equity premium. Recession probabilities are derived by
the probit model with TMS and MA-TMS (solid gray line), and for three methods that correct for a structural
break in the term spread. These methods are cross-validation (solid black line), pooling (dotted black line), and
post-break window (dashed black line). The forecasting period is 1980:1 to 2019:12 and vertical bars denote
recessions.
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Figure 9
Out-of-sample performance relative to two benchmark predictors
This figure presents the difference between cumulative squared forecast errors (CSFE) of the historical average
and the CSFE of four different forecasting models. The upper panel (lower panel) shows results for forecasts of
the one month ahead (cumulative one year ahead) log equity premium. The solid (dashed) black line presents
results for cross-validation (post-break window) and the solid (dashed) gray line shows the performance of short
interest (gold-to-platinum ratio). The latter two predictors are suggested by Rapach et al. (2016) and Huang
and Kilic (2019). The sample is 1990:1 to 2013:12 and vertical bars denote recessions.
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where µ̂P and σ̂2
P are the sample mean and variance of the portfolio over the out-of-sample

period. We multiply the CER by 12 to interpret it as the annual risk-free rate that an investor

would be willing to accept to not hold the risky portfolio (Chen et al., 2020). The difference

in CER of two models – also known as utility gain – can be interpreted as the annual portfo-

lio management fee that an investor would be willing to pay to have access to the alternative

forecasting model (Ferreira and Santa-Clara, 2011). Additionally, we calculate the annualized

Sharpe ratio (SR) to evaluate the risk-return profile of the chosen portfolio allocations.

Table 6 presents ∆CER and ∆SR for monthly re-balancing for the sample periods 1980-2019

(Panel A) and 1990-2013 (Panel B).19 The CER and SR values for the prevailing mean model are

shown in the first row of each panel. All subsequent rows then provide differences of CER and

SR with respect to that benchmark. We implement a bootstrap approach similar to DeMiguel

et al. (2013) to evaluate the statistical significance.20 We consider different specifications for the

coefficient of relative risk aversion (γ) and for leverage and short-selling constraints (range of

ω). Over the baseline sample period from 1980-2019, the probit model with TMS and MA-TMS

provides utility gains in the range of 1.4% to 2.7%. Hence, an investor would be willing to pay

between 140 to 270 basis points annually - depending on risk preferences and constraints - to

have access to the equity premium forecasts of this model. The gains are highest when γ is

three and when leveraging and short-selling up to 50% is allowed. Nonetheless, even an investor

with ω between zero and one would be willing to pay a portfolio management fee above 100

basis points annually. These gains further increase when correcting for the structural break

in the mean of the term spread. We see a similar pattern as for the statistical predictability:

the post-break window performs best, followed by cross-validation and the break-adjusted term

spread, while gains for pooling are smallest. That said, any of these strategies outperforms

a simple buy-and-hold strategy shown in the last row – often the gains more than triple or

quadruple. Similarly, the annualized Sharpe ratio rises from around 0.50 for the historical av-

erage to between 0.65 to 0.85 for the break-correction methods. Panel B shows that the gains

are comparable with and often substantially better than those for short interest and the gold-

to-platinum ratio.

The upper panel in Figure 10 displays the optimal share in risky assets over time for the post-

19We show in the Online Appendix that the results remain qualitatively the same when re-balancing in 3-, 6-,
12-month intervals.

20We set the average block length to three months (Politis and Romano, 1994).
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break window and pooling approaches relative to the historical average; γ is set to three and

ω is allowed to vary between -0.5 and 1.5. Naturally, equity premium forecasts based on the

historical average are continuously positive and change only slowly, hence the weights are very

persistent and always above 0.5. In contrast, the portfolio weights for pooling are most often

above those for the historical average in expansions and below in recessions. This is most salient

in the early 1980s, where the share in risky assets runs down to -0.5 at the beginning of the

recession and then quickly reverses to more than 1.0 toward the end of the recession. Similar

patterns – even though less pronounced – are observed for the 2001 and 2008-09 recessions. The

post-break window signals for four of five recessions in the sample to short the equity market

prior to the beginning of a recession when the yield curve has been flattening for some time and

to move back aggressively into the market towards the end of the recession when the yield curve

is steepening again. Interestingly, both break-adjustment models signal to run down equity

exposure at the end of our sample in 2019 due to rising recession probability forecasts.

The lower panel in Figure 10 shows the log cumulative wealth for five portfolio allocations: post-

break window, cross-validation, pooling, historical average, and for the buy-and-hold strategy.

While the buy-and-hold and historical average portfolios suffer severe losses in the Global Fi-

nancial Crisis of 2008-2009, this plunge is less pronounced for pooling and even reversed for

post-break window and cross-validation. Post-break window performs best, as it further signals

to go short prior to the 2001 recession. An investor that would have started with $1 in 1979:12,

reinvests all proceeds, and forecasts according to post-break window (cross-validation) would

have earned $957 ($528) in 2019:12, compared to $90 for the buy-and-hold strategy. Overall,

the results in this section show that the break-correction methods outperform the naive bench-

marks, and generate utility gains that are mostly superior to those of other recently proposed

predictors.

3.9 Forecasting characteristics portfolios

In this section, we extend our analysis to a rich set of equity portfolios. Specifically, we fol-

low Huang et al. (2015) and analyze the predictive power of recession probability forecasts for

portfolios sorted on different characteristics. We focus on 10 industry portfolios, 10 momen-

tum portfolios, 10 size portfolios, and 10 book-to-market portfolios, all obtained from Kenneth

French’s homepage.21 We predict the log excess return for these portfolios with the same re-

21The returns are value-weighted and include dividends.
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Table 6
Asset allocation exercise

This table reports the annualized ∆CER and the annualized ∆SR for a mean-variance investor relative to forecasts
from the historical average. The investor can invest in the S&P 500 index and the risk-free rate. Results are shown for
one month ahead forecasts of the equity premium and different values for the coefficient of relative risk aversion (γ),
and different restrictions on the equity weights (ω). The ”Prevailing mean” shows the CER and SR values, whereas
all other values denote the improvements relative to this benchmark. Panel A (Panel B) shows results for the out-

of-sample period from 1980:1 to 2019:12 (1990:1 to 2013:12). ∗, ∗∗, ∗∗∗ indicate significantly improved performance
relative to the prevailing mean benchmark at the 10%, 5%, and 1% significance level. The p-values are obtained by
using a bootstrap approach similar to DeMiguel et al. (2013) with the average block length set to three months (Politis
and Romano, 1994).

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: 1980:1 to 2019:12
∆CER ∆SR

γ 3 5 3 3 3 5 3 3
ω [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1] [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1]

Prevailing mean 8.30 6.59 8.30 8.69 0.49 0.48 0.49 0.53

Gains relative to prevailing mean:
TMSt, MA-TMSt 2.73∗∗∗ 1.49∗∗ 2.41∗∗∗ 1.39∗∗∗ 0.15∗∗∗ 0.14∗∗ 0.13∗∗∗ 0.10∗∗∗

TMSbreak
t , MA-TMSbreak

t 4.07∗∗ 2.62∗∗ 3.33∗∗ 1.91∗ 0.30∗∗ 0.31∗∗ 0.25∗∗ 0.23∗∗
Cross-validation 4.18∗∗∗ 2.77∗∗ 3.39∗∗∗ 2.29∗∗∗ 0.23∗∗∗ 0.24∗∗∗ 0.19∗∗∗ 0.18∗∗∗
Pooling (average) 3.44∗∗∗ 2.10∗∗∗ 3.13∗∗∗ 2.12∗∗∗ 0.20∗∗∗ 0.20∗∗∗ 0.18∗∗∗ 0.16∗∗∗
Post-break window 6.02∗∗∗ 4.20∗∗∗ 4.83∗∗∗ 3.01∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.28∗∗∗ 0.25∗∗∗

Buy-and-hold 0.84∗ 0.36 0.84∗ 0.45∗ 0.06∗∗∗ 0.07∗∗ 0.06∗ 0.02∗

Panel B: 1990:1 to 2013:12
∆CER ∆SR

γ 3 5 3 3 3 5 3 3
ω [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1] [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1]

Prevailing mean 5.80 4.61 5.80 6.56 0.41 0.39 0.41 0.45

Gains relative to prevailing mean:
TMSt, MA-TMSt 2.05∗∗ 1.24∗∗ 2.05∗∗ 0.72∗∗ 0.12∗∗∗ 0.13∗∗∗ 0.12∗∗∗ 0.05∗∗

TMSbreak
t , MA-TMSbreak

t 5.68∗∗ 3.71∗∗ 4.71∗∗ 2.68 0.45∗∗ 0.47∗∗ 0.38∗∗ 0.32∗∗
Cross-validation 4.44∗∗ 3.29∗∗ 3.66∗∗ 2.23∗ 0.26∗∗ 0.29∗∗ 0.21∗∗ 0.17∗
Pooling (average) 3.56∗∗∗ 2.16∗∗ 3.56∗∗∗ 2.04∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 0.15∗∗∗
Post-break window 8.11∗∗∗ 5.69∗∗ 6.59∗∗∗ 3.89∗∗∗ 0.48∗∗∗ 0.49∗∗∗ 0.39∗∗∗ 0.32∗∗∗

Short interest 3.58∗ 2.40∗ 3.24∗∗ 1.71 0.22∗ 0.22∗ 0.20∗∗ 0.16
Gold-to-platinum ratio 4.03∗ 2.93∗ 4.11∗∗ 2.67∗ 0.28∗ 0.31∗ 0.30∗∗ 0.27∗∗
Buy-and-hold 1.23∗ 0.23 1.23∗ 0.48∗ 0.08∗∗ 0.09∗ 0.08∗∗ 0.03∗

cession probability forecasts as in the previous sections. Results are shown in Table 7. We find

that durable, manufacturing, energy, technology, and telecom portfolios are most predictable,

whereas health, utility and nondurables are not significantly predictable. This is intuitive as the

former sectors are more exposed to business cycle variation.22 Interestingly, all of the momen-

tum portfolios – independently of the break-correction method – have positive and significant

22It is also consistent with Da et al. (2017), who find that electricity usage better forecasts excess returns of
capital-intensive producers that are more exposed to fluctuations in the business cycle and have higher operating
leverage.

37



1980 1990 2000 2010 2020

−
0.

5
0.

0
0.

5
1.

0
1.

5

Post−break window
Pooling (average)
Historical average

1980 1990 2000 2010 2020

0
1

2
3

4
5

6
7 Post−break window

Cross−validation
Pooling (average)
Historical average
Buy−and−hold

Figure 10
Share in risky assets and log cumulative wealth
The upper panel presents the optimal share in risky assets over time for three different forecasting models.
The solid (dashed) black line shows the equity weights for post-break window (pooling) and the solid gray line
depicts the equity weights for the historical average. The coefficient of relative risk aversion is three and ω is
restricted to lie between -0.5 and 1.5. The lower panel plots the log cumulative wealth for an investor that starts
with $1 in 1979:12 and reinvests all proceeds. Results are shown for three break-correction portfolios, as well
as for the historical average and the buy-and-hold strategy. Vertical bars denote recessions and the forecasting
period is 1980:1 to 2019:12.
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Table 7
Forecasting characteristics portfolios with recession probability forecasts

This table presents R2
OS statistics (in %) for one month ahead equity premium forecasts of 10 industry portfolios

(Panel A), 10 momentum portfolios (Panel B), 10 size portfolios (Panel C), and 10 book-to-market portfolios (Panel
D). Forecasts are derived from the linear predictive regression model with recession probability forecasts as a predictor
variable. These recession probabilities are estimated by a probit model with the term spread (TMS) and the
backward-looking three-year moving average of the term spread (MA-TMS) - results are shown in column (2) - as
well as for four break-correction methods - columns (3) to (6). These correction methods include cross-validation,
pooling, post-break window, and forecasts from a break-adjusted term spread series (Pesaran and Timmermann,

2007; Lettau and Van Nieuwerburgh, 2008). The out-of-sample period is 1980:1 to 2019:12. ∗, ∗∗, ∗∗∗ denote
significance at the 10%, 5%, and 1% significance levels according to the Clark and West (2007) MSFE-adjusted
statistic.

(1) (2) (3) (4) (5) (6)
Portfolio TMSt, MA-TMSt Cross-validation Pooling (average) Post-break window TMSbreak

t , MA-TMSbreak
t

Panel A: Industry portfolios
Nondurable -0.28 0.07 -0.28 -0.61 -0.07
Durable 0.16∗ 1.65∗∗ 0.37∗ 1.64∗∗ 0.86∗∗
Manufacture 1.09∗∗ 1.57∗∗ 1.22∗∗∗ 2.11∗∗∗ 1.12∗∗
Energy 0.51∗ 0.50∗ 0.63∗ 0.40∗ 0.46∗∗
Technology 0.68∗∗ 1.01∗∗∗ 0.83∗∗ 0.68∗ 0.96∗∗
Telecom 0.21 0.85∗∗ 0.67∗∗ 2.99∗∗∗ 1.31∗∗
Shop -0.68 0.24 -0.63 0.03 -0.50
Health -0.05 0.15 -0.01 -0.28 0.03
Utility -0.01 0.24 0.08 -0.09 0.03
Other 0.51∗ 2.78∗∗∗ 0.87∗∗ 2.63∗∗ 1.26∗∗

Panel B: Momentum portfolios
Loser 0.18 2.05∗∗ 0.67∗∗ 2.56∗∗ 1.33∗∗
2 0.21∗ 1.85∗∗ 0.37∗ 1.25∗ 0.28
3 0.28∗ 1.75∗∗ 0.62∗∗ 2.22∗∗ 0.66∗
4 0.46∗∗ 1.68∗∗ 0.57∗∗ 1.29∗∗ 0.48∗
5 0.90∗∗ 1.43∗∗ 1.10∗∗∗ 1.80∗∗∗ 0.98∗∗
6 0.96∗∗ 1.48∗∗ 1.29∗∗ 2.28∗∗∗ 1.35∗∗
7 0.88∗ 1.26∗∗ 1.09∗∗ 1.99∗∗∗ 1.18∗∗
8 1.17∗∗ 1.69∗∗ 1.36∗∗ 2.15∗∗∗ 1.21∗∗
9 0.67∗ 2.15∗∗ 1.15∗∗ 3.24∗∗∗ 2.00∗∗∗
Winner 0.71∗ 1.01∗∗ 1.03∗∗ 1.05∗∗ 1.12∗∗

Panel C: Size portfolios
Small 0.23 1.12∗∗ 0.40∗ 0.17 1.08∗
2 0.13 0.30 0.20 -0.32 0.52∗
3 0.20 0.73∗ 0.33 0.49 0.86∗∗
4 0.08 0.32 0.21 0.50∗ 0.76∗∗
5 0.19 0.58∗ 0.34 0.96∗∗ 0.75∗∗
6 0.29 0.69∗ 0.45∗ 1.06∗∗ 0.95∗∗
7 0.49∗ 1.66∗∗ 0.68∗∗ 1.81∗∗ 1.04∗∗
8 0.37 1.41∗∗ 0.54∗ 1.34∗∗ 0.78∗∗
9 0.94∗∗ 2.21∗∗ 1.19∗∗∗ 2.38∗∗∗ 1.33∗∗
Large 1.33∗∗∗ 2.36∗∗∗ 1.69∗∗∗ 3.35∗∗∗ 1.62∗∗∗

Panel D: Book-to-market portfolios
Growth 1.32∗∗ 2.03∗∗∗ 1.59∗∗∗ 2.20∗∗∗ 1.24∗∗
2 0.80∗∗ 0.94∗∗ 0.83∗∗ 1.43∗∗∗ 0.52∗
3 1.02∗∗ 2.08∗∗∗ 1.18∗∗ 2.24∗∗∗ 1.06∗∗
4 0.96∗∗ 1.51∗∗ 1.09∗∗ 1.77∗∗∗ 1.08∗∗
5 1.40∗∗ 2.35∗∗∗ 1.71∗∗∗ 2.41∗∗∗ 1.59∗∗∗
6 0.54∗ 1.69∗∗ 0.74∗∗ 1.52∗∗ 1.18∗∗
7 0.39∗ 4.06∗∗ 0.84∗∗ 3.76∗∗ 1.76∗∗
8 -0.30 1.10∗ 0.03 0.91∗ 0.32∗
9 -0.23 0.74∗ -0.08 0.31 0.35∗
Value 0.08 1.23∗ 0.15 0.93∗ 0.75∗∗

R2
OS statistics. Additionally, there is a tendency toward higher predictive power for portfolios

formed on high market equity (large stocks) and low book-to-market ratios (growth stocks).
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3.10 International evidence

In this section, we provide results on equity premium predictability using recession probabilities

for four additional countries: Germany, France, Canada, and the United Kingdom. We obtain

data for long-term interest rates and short-term interest rates from the OECD.23 The long-term

interest rates are for ten-year government bonds, the short-term interest rates are “based on

three-month money market rates where available”. Data are available from 1970:1 to 2019:12.24

The term spread is the difference between the long-term and short-term interest rates. Recession

data are from the Economic Cycle Research Institute. We download end-of-month data for the

DAX 30, CAC 40, S&P/TSX Composite index, and the FTSE 100 from Yahoo Finance and

calculate monthly log excess return series. The data for Canada are available from 1979:7

onward, while the series for Germany, France and the U.K. start in 1988:1, 1990:4, and 1984:1,

respectively. We create a sample for the log equity premium from 1980 onward by combining

these series with data from Rapach et al. (2013) who provide equity premia for several developed

countries starting in 1980.25

Figure 11 shows the evolution of the cumulative one-year ahead log equity premium (
∑11

j=0 rt+j)

for the four countries around recessions. We see a clear v-shape pattern similar to the one for

the U.S. The solid gray lines depict the individual recessions, which show pronounced variation

both in terms of magnitude and timing. Next, we perform a pseudo out-of-sample exercise

for forecasting the log equity premium from 1990:1 to 2019:12. In line with the U.S. results,

we compare the performance of three models: (1) TMSt, (2) TMSt and TMSt−6, (3) TMSt

and MA-TMSt. Table 8 shows the R2
OS statistics for the log equity premium forecasts relative

to a country-specific historical average. The values for Germany, France, and Canada are

positive and statistically significant for almost all horizons when forecasting with the recession

probabilities derived from the probit model with only the term spread. The R2
OS statistics

for the U.K. are positive only for h = 6 and h = 12. In contrast to the U.S., we do not see

23https://data.oecd.org/interest/long-term-interest-rates.htm
24The data for the UK short-term interest rate are downloaded from FRED. We use the three month Treasury

yield series until 2017:6 (https://fred.stlouisfed.org/series/IR3TTS01GBM156N) and the LIBOR (https:
//fred.stlouisfed.org/series/USD3MTD156N) from 2017:7 to 2019:12 (corrected for a minor difference in sample
means).

25The correlation of overlapping return data from Yahoo Finance and Rapach et al. (2013) is above 0.98 for
Germany, France and the U.K. We can thus splice both data sets to extend the sample back until 1980. The
overlapping data have minor differences in their means; we correct for this by adjusting the series to the mean of
Rapach et al. (2013). The results with and without this mean correction are essentially identical.
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Figure 11
Log equity premium around business cycle peaks - International evidence
This figure presents the arithmetic average (solid black line) of the cumulative one-year ahead log equity premium
around the recessions in the sample from 1980:2 to 2019:12. The solid gray lines depict the cumulative log equity
premium of the individual recessions. The equity premium is the difference between the country-specific end-
of-month index return and the country-specific short-term interest rate. The vertical axis depicts

∑11
j=0 rt+j for

t = −24, . . . ,−1, 0, 1, . . . , 24, whereby rt+j is the log equity premium in month t+ j. The horizontal axis displays
the 24 months before and after a business cycle peak - with t = 0 referring to the first month of a recession.
Recession indicators are taken from the Economic Cycle Research Institute and results are shown for Germany,
France, Canada, and the U.K.

significant improvements by adding lagged and averaged term spread information to the probit

model. The reason is that the recession probabilities for models (2) and (3) do not predict the

beginning of recessions better than the simple model (1). Overall, however, the international

data provide additional support for our main finding that recession probabilities derived from

the term spread help to time the equity market. Interestingly, we further find that the recession

probabilities estimated from U.S. data predict the equity premiums in those four countries as

well. Table 8 shows that the U.S. recession probabilities from cross-validation with TMSt and

MA-TMSt often perform similarly to those of the best country-specific recession probabilities.
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Table 8
Out-of-sample performance: Germany, France, Canada, United Kingdom

This table reports R2
OS statistics in % for the out-of-sample predictability of (cumulative) log excess returns at

the h-month ahead horizon relative to forecasts from the historical average. Results are shown for Germany,
France, Canada, and the U.K. Forecasts are based on the linear predictive regression model with a constant and
model-implied recession probabilities as a predictor variable. The recession probability forecasts are derived by
three different probit models: the first model only includes a constant and the term spread, whereas the second
and third model add either the term spread lagged by six-months (TMSt−6) or the three-year moving average
of the term spread (MA-TMSt) as additional predictors. Cross-validation (U.S. data) refers to the probability
forecasts from the U.S. data with TMSt and MA-TMSt and cross-validation as the break-correction method. ∗,
∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels according to the Clark and West (2007) MSFE-
adjusted statistic. The null hypothesis is equal MSFE and the alternative is that the more sophisticated model
has smaller MSFE than the historical average benchmark. The out-of-sample period is 1990:1 to 2019:12.

Variables in probit model h=1 h=3 h=6 h=12

Germany:
TMSt 0.74∗∗ 1.93∗∗ 3.57∗ 7.35∗∗
TMSt, TMSt−6 0.48 1.64∗ 3.57∗ 7.90∗∗
TMSt, MA-TMSt 0.54∗ 1.44∗ 2.84∗ 7.77∗∗
Cross-validation (U.S. data) 0.80∗ 2.14∗ 3.03∗ 9.63∗∗

France:
TMSt 0.16 2.25∗∗ 3.90∗∗ 6.41∗∗∗
TMSt, TMSt−6 0.53∗ 1.07∗∗ 3.46∗∗ 5.69∗∗∗
TMSt, MA-TMSt 0.10 1.44∗∗ 2.75∗∗ -2.49
Cross-validation (U.S. data) 1.12∗ 3.54∗∗ 5.01∗ 8.90∗

Canada:
TMSt 2.32∗∗∗ 4.66∗∗∗ 8.53∗∗∗ 15.47∗∗∗
TMSt, TMSt−6 2.24∗∗∗ 4.87∗∗∗ 7.45∗∗∗ 11.28∗∗∗
TMSt, MA-TMSt -0.43 0.25 3.22∗∗ 7.22∗∗
Cross-validation (U.S. data) 1.47∗∗ 5.29∗∗ 10.87∗∗ 12.58∗∗∗

United Kingdom:
TMSt -0.44 -0.05 0.32 4.11∗∗
TMSt, TMSt−6 0.19 2.12∗∗ 2.92∗∗ 5.45∗∗∗
TMSt, MA-TMSt -0.10 0.10∗ 0.08∗ 0.57
Cross-validation (U.S. data) 0.70∗ 2.08∗∗ 2.53∗ 11.82∗∗

3.11 Dissecting the sources of predictability

In this section, we aim to shed light on the question whether the predictability of excess equity

returns using recession probabilities derives from the cash flow or the discount rate channel.

To this end, we follow Campbell (1991) and Campbell and Ammer (1993) and apply a VAR

decomposition to U.S. equity market returns. According to Campbell and Shiller (1988) the log

return rt+1 can be rewritten as:

rt+1 = Et[rt+1] +NCF
t+1 −NDR

t+1 , (10)

where Et[rt+1] is the conditional expectation of the log return at time t, and NCF
t+1 and NDR

t+1

represent cash flow and discount rate news, respectively. We use a first-order VAR model to
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estimate the three components:

zt+1 = Γzt + ut+1. (11)

Here, zt is a k-dimensional vector of state variables, Γ is a k × k matrix of parameters, and

ut+1 is k-dimensional vector of innovations. We demean the variables in the VAR model and,

therefore, can omit an intercept. The cash flow news and discount rate news can be estimated

as:

NCF
t+1 = (e1′ + e1′λ)ut+1, (12)

NDR
t+1 = e1′λut+1, (13)

where e1 is a k-vector with a one in the first cell and a zero in all remaining cells, and

λ ≡ ρΓ(I − ρΓ)−1. We set ρ = 0.95
1
12 , which corresponds to approximately 5% consump-

tion of total wealth per year (Campbell and Vuolteenaho, 2004; Maio, 2013).

The state vector is assumed to capture the dynamics of log equity market returns. However,

the estimated news components may be sensitive to the variables included in the VAR (Chen

and Zhao, 2009). Therefore, we follow Rapach et al. (2016) and estimate a series of trivariate

VAR models including the log return series, the dividend-price ratio, and one of the 14 com-

monly used Welch and Goyal (2008) predictors at a time.26 Additionally, we show results for

a VAR model, where we add the first three principal components of the predictors of Welch

and Goyal (2008) to the log return and the log dividend-price ratio (Rapach et al., 2016). We

use the OLS estimates of Γ and ut+1 to calculate Êt[rt+1], N̂CF
t+1 , and N̂DR

t+1 . Then, we run the

following regressions to estimate the effect of our model-implied recession probabilities on the

components:

Êt[rt+1] = αE + βE × p̂t+1 + εEt+1 (14)

N̂CF
t+1 = αCF + βCF × p̂t+1 + εCFt+1 (15)

N̂DR
t+1 = αDR + βDR × p̂t+1 + εDRt+1 (16)

26The 14 predictors are the log dividend-price ratio (DP), log dividend yield (DY), log earnings-price ratio
(EP), log dividend-payout ratio (DE), excess stock return volatility (RVOL), book-to-market ratio (BM), net
equity expansion (NTIS), Treasury bill rate (TBL), long-term yield (LTY), long-term return (LTR), term spread
(TMS), default yield spread (DFY), default return spread (DFR), and inflation (INFL).
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While the return decomposition is based on the VAR estimates over the full sample from 1951:3

to 2019:12, we estimate the recession probabilities p̂t+1 with recursively expanding information

sets to rule out any look-ahead bias. Table 9 presents the coefficients β̂E , β̂CF , and β̂DR es-

timated using data from 1980:1 to 2019:12 which corresponds to our out-of-sample forecasting

period. As predictor we use the recession probabilities estimated by cross-validation, but the

results are essentially unchanged for the alternative break-correction methods. The estimates

show that the recession probability has significant predictive power for both the cash flow and

the discount rate news component in most VAR specifications. Specifically, increased recession

probabilities signal low future dividends and high discount rates. The returns recover as the

recession unfolds and recession probabilities approach zero.

Our results are consistent with limited information processing of investors to macroeconomic

news. The term spread is readily available to investors and stock markets should be forward-

looking. This implies that news about the business-cycle embedded in the term spread should

be fully incorporated in stock prices. In contrast, our results show that recession probabilities

using the term spread as input provide valuable information to time the market. This is in line

with studies documenting information rigidities and sluggishness in forecast revisions. Rude-

busch and Williams (2009) document that a simple probit model that is based on the yield

curve performs substantially better than professional forecasters in predicting recessions - even

though evidence in favor of the former model has been known for years. Coibion and Gorod-

nichenko (2015) show for inflation forecasts of professional forecasters that the null hypothesis

of consistency with full-information rational expectations models can primarily be rejected due

to deviations from full-information. Their findings suggest that agents on average update their

information sets every six to seven months. An alternative interpretation of these results is

that agents put a relatively small weight on incoming information. Consistent with such a

view, Loungani et al. (2013) find evidence of information rigidities in growth forecasts for a

cross-section of countries, with an average period of 4 to 6 months until new information is fully

incorporated.

Information rigidities are not restricted to professional forecasters, however. Bouchaud et al.

(2019) document that analysts who are less experienced and follow more industries have stick-

ier beliefs - consistent with information processing constraints (Peng, 2005). Several articles
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Table 9
Predictive regressions for stock market return components

This table presents slope coefficients for regressions of log stock market return components on model-implied

recession probabilities. The stock market return is decomposed into the conditional return expectation (Êt[rt+1]),

a cash flow news component (N̂CF
t+1), and a discount rate news component (N̂DR

t+1). The decomposition is based on
the VAR approach of Campbell (1991) and Campbell and Ammer (1993) and includes as states the variables in
columns (1) and (5). The log return on the S&P 500 index (r) and the log dividend-price ratio (DP) are included
in each of the VAR models. PC denotes the first three principal components of the 14 popular predictors of
Welch and Goyal (2008). The three return components are separately regressed on a constant and model-implied
recession probabilities from cross-validation. The probabilities are recursively estimated and identical to those
used in the out-of-sample exercises in the previous sections. The regressions are based on data from 1980:1 to
2019:12. The t-statistics for the slope coefficients are shown in the brackets below and the standard errors are
HAC-robust (Andrews, 1991). ∗, ∗∗, ∗∗∗ denote significance at the 10%, 5%, and 1% significance levels.

(1) (2) (3) (4) (5) (6) (7) (8)

VAR variables β̂E β̂CF β̂DR VAR variables β̂E β̂CF β̂DR

r, DP 0.04 -0.17∗∗ 0.30∗∗∗ r, DP, LTY 0.00 -0.17∗∗ 0.26∗∗
[0.65] [-2.50] [2.76] [0.10] [-2.59] [2.36]

r, DP, DY 0.03 -0.17∗∗ 0.29∗∗∗ r, DP, LTR 0.06∗ -0.18∗∗∗ 0.32∗∗∗
[0.58] [-2.49] [2.68] [1.77] [-2.62] [2.79]

r, DP, EP 0.04 -0.76∗∗ -0.29 r, DP, TMS -0.04 -0.15∗∗ 0.24∗∗
[0.60] [-2.02] [-1.16] [-0.85] [-2.16] [2.10]

r, DP, DE 0.04 -0.76∗∗ -0.29 r, DP, DFY 0.07 -0.22∗∗∗ 0.28∗∗∗
[0.60] [-2.02] [-1.16] [1.09] [-2.68] [2.73]

r, DP, RVOL 0.08 -0.20∗∗ 0.31∗∗∗ r, DP, DFR 0.03 -0.17∗∗ 0.30∗∗∗
[1.14] [-2.55] [3.02] [0.53] [-2.49] [2.71]

r, DP, BM -0.01 -0.19∗∗ 0.23∗∗ r, DP, INFL -0.00 -0.17∗∗ 0.26∗∗
[-0.27] [-2.54] [2.05] [-0.03] [-2.51] [2.07]

r, DP, NTIS 0.07 -0.15 0.35∗∗∗ r, DP, PC -0.00 -0.30∗∗∗ 0.13
[1.61] [-1.49] [2.77] [-0.05] [-3.09] [1.17]

r, DP, TBL -0.06∗ -0.14∗ 0.24∗∗
[-1.86] [-1.95] [2.00]

show at the firm level that even though information is publicly available, it is often not fully

incorporated into stock prices, resulting in delayed price reaction to news (see, e.g., Bernard

and Thomas (1989); Huberman and Regev (2001); Hirshleifer et al. (2009)). Chen et al. (2020)

find that aggregate investor attention - extracted from 12 different attention measures - has

predictive power for the aggregate stock market that cannot be explained by macroeconomic

fundamentals. Moreover, Gómez-Cram (2021) shows that news about impending recessions

are incorporated into stock prices only with some delay. Analysts’ earnings forecasts are too

optimistic when the excess return forecast is negative.

4 Robustness

In this section we show the robustness of our results along several dimensions. The results are

provided in the Online Appendix.

First, we provide R2
OS statistics for different averaging windows to construct MA-TMS and

show that the results are robust to the exact choice of moving average. In the main text we have
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focused on a moving average of three years for the US. The long-horizon forecasts for h = 3, 6, 12

are statistically significant also for moving averages between one to five years, whereas the one-

month ahead forecasts perform best for averages between three to five years.

Second, we present out-of-sample R2
OS values for log raw returns (without subtracting the

short rate). The previous results carry over to raw returns, however, the predictive power

decreases slightly for cumulative six- and twelve-month ahead forecasts.

Third, we provide the certainty equivalent returns and Sharpe ratios when correcting for

proportional transaction costs of 50 basis points per transaction (Balduzzi and Lynch, 1999).

The gains relative to the historical average and the buy-and-hold strategy remain sizable.

5 Conclusion

Excess equity market returns are negative around business cycle peaks, and strongly recover

during recessions. In this paper, we have shown that probit models which predict recessions

using the term spread also have strong predictive power for the U.S. equity premium. The

gains are statistically and economically significant and further improve when adding a backward-

looking moving average of the term spread to the probit model. Equity premium forecasts based

on recession probabilities correctly anticipate negative market returns heading into recessions

and positive returns in expansions. We provide evidence for a structural break in the mean of

the term spread in 1982. When correcting for this structural break, both recession and equity

premium forecasts further improve. Our paper thus provides further evidence for the strong link

between the business cycle and the equity premium. More specifically, it shows that information

in the yield curve can be used to time the equity market.
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A Forecast evaluation

The quadratic probability score (QPS), the logarithm score (LS), and the diagonal elementary

score (DES) are given by:

QPS =
2

τ

T−h+1∑
j=M+1

[
Yj:j+h−1 − p̂j:j+h−1

]2
(A.1)

LS =
1

τ

T−h+1∑
j=M+1

− ln
[
|1− Yj:j+h−1 − p̂j:j+h−1|

]
(A.2)

DES =
1

τ

T−h+1∑
j=M+1

πI
[
p̂j:j+h−1 > π

]
(1− Yj:j+h−1) + (1− π)I

[
p̂j:j+h−1 ≤ π

]
Yj:j+h−1 (A.3)

where | · | refers to the absolute value, I
[
·
]

is an indicator function, π equals the unconditional

probability of Yj:j+h−1 = 1 in the evaluation period, and τ = T −M−h+1. QPS assigns values

between 0 and 2 and can be seen as a counterpart to the mean squared forecast error, and LS

ranges between 0 to ∞.

The out-of-sample pseudo R2 and the area under the receiver operating characteristic (AU-

ROC) curve are:

pseudo R2 = 1−
[ lnLu

lnLc

]−2 lnLc
τ , (A.4)

AUROC =
1

n0n1

n0∑
i=1

n1∑
j=1

A(p̂i:i+h−1, p̂j:j+h−1|Yj:j+h−1 > Yi:i+h−1), (A.5)

where lnLu (lnLc) denotes the unconstrained (constrained) log likelihood with out-of-sample

forecasts from the probit model (Estrella, 1998; Chen et al., 2016). The number of expansions

(recessions) in the out-of-sample period is denoted by n0 (n1) and A assigns values similar to

the Mann-Whitney U statistic (Bouallègue et al., 2019).1

1More precisely, we have lnLu =
∑T−h+1
j=M+1 Yj:j+h−1 ln

[
p̂j:j+h−1

]
+ (1−Yj:j+h−1) ln

[
1− p̂j:j+h−1

]
and lnLc =∑T−h+1

j=M+1 Yj:j+h−1 ln
[
p̄j:j+h−1

]
+ (1−Yj:j+h−1) ln

[
1− p̄j:j+h−1

]
, where p̄j:j+h−1 denotes recession forecasts from

a model with only a constant. A assigns values as follows:

A(p̂i:i+h−1, p̂j:j+h−1|Yj:j+h−1 > Yi:i+h−1) =


0 if p̂j:j+h−1 < p̂i:i+h−1, Yj:j+h−1 > Yi:i+h−1,

0.5 if p̂j:j+h−1 = p̂i:i+h−1, Yj:j+h−1 > Yi:i+h−1,

1 if p̂j:j+h−1 > p̂i:i+h−1, Yj:j+h−1 > Yi:i+h−1.

1



B Different lengths for moving average

Figure A.1 presents R2
OS statistics (in %) for forecasts of the log equity premium. The predictor

variable is the recession probability forecast from a probit model with TMSt and 1
l

∑l−1
j=0TMSt−j .

We let the length of the moving average component, denoted by l, vary between values of 2 and

60. The panels on the left of Figure A.1 present the R2
OS values for h = 1, 6, 12 and the panels on

the right depict the Clark and West (2007) statistics. The vertical axis denotes the R2
OS values

and the MSFE-adjusted statistics and the horizontal axis denotes different values of l. We can

see for h = 1 that the R2
OS is above 0.50% for any backward-looking moving average between

30 to 60 months and that the MSFE-adjusted statistic is significant at the 5% level for these

values. A shorter moving average of one year also has a R2
OS above 0.50% and is significant at

the 10%. The R2
OS for one-month ahead forecasts is highest for moving averages between three

to five years. For cumulative six- and twelve-month ahead forecasts the R2
OS is always positive

for moving averages between 2 to 60 months. A moving average between one to five years has

statistically significant R2
OS values above 2.50% (6%) for the six-month (twelve-month) horizon.

Table A.1 presents results for the break-correction methods when using values of l = 12, 24, 48, 60.

The picture is similar to Figure A.1: the longer moving averages perform better for short hori-

zon forecasts, whereas the exact choice of moving average is less important for long horizon

forecasts. The R2
OS values are positive for all break-correction methods and moving averages.

Furthermore, the results are robust to weighted pooling (Pooling (weighted)) and to a minimum

window length of 20 years for post-break window (Post-break window (20 years)).

C Forecasting log raw returns

Table A.2 presents the R2
OS statistics when forecasting the log raw returns instead of the log

equity premium (without subtracting the short rate). The results show that recession probabil-

ities have strong predictive power for equity market returns not only in excess of the risk-free

rate.

D Transaction costs

Table A.3 shows the gains in certainty equivalent return and Sharpe ratio relative to the prevail-

ing mean when correcting for proportional transaction costs of 50 basis points per transaction.

2



This is similar to the base case in Balduzzi and Lynch (1999), which assumes proportional

costs rather than fixed costs per transaction. This specification has often been used in related

articles to account for trading costs; see, for example, Neely et al. (2014); Jiang et al. (2019).

The results show that even when proportional trading costs are taken into account, asset alloca-

tion based on equity premium forecasts using recession probabilities provides investors with an

economically and statistically significant advantage relative to forecasts based on the historical

average.

E Asset allocation exercise for lower frequency re-balancing

Table A.4 shows the gains in certainty equivalent return and Sharpe ratio when an investor only

re-balances the portfolio at the same frequency as the forecast horizons of h = 3, 6, 12 months.

Hence, non-overlapping forecasts are used in this exercise; see Rapach et al. (2016) for details.

F Forecast evaluation: probit model with break-corrections and alternative

lengths of the moving average

Table A.5 presents the forecast evaluation statistics for the probit model with TMSt and

1
36

∑35
j=0TMSt−j as predictors, and for five break-corrected versions of this model. We can

see that the break-adjusted model (TMSbreak
t , 1

36

∑35
j=0TMSbreak

t−j ) does not improve the fore-

cast performance. Contrarily, for h = 1 the other methods - cross-validation, pooling, and

post-break window - have smaller (or identical) values for QPS, LS, and DES. We have seen

in the main text that post-break window with at least 15 years of data in the probit model

generates a false positive prior to 2000. This is canceled out when setting the minimum number

of observations to 20 years. Thus, post-break window with 20 years performs even better for

h = 1, 3, 6, 12 compared to post-break window with 15 years. Overall, cross-validation is most

reliable in improving the performance relative to the unadjusted model; the statistics improve

for each forecast horizon and each forecast evaluation statistic.

Table A.6 presents the forecast evaluation statistics for the probit model with TMSt and

1
l

∑l−1
j=0TMSt−j for values of l = 12, 24, 36, 48, 60. The statistics often improve further for

l = 12 and l = 24 compared to l = 36 but worsen for l = 48 and l = 60. Nonetheless, the

latter two values still provide superior values compared to the probit model without the moving

3



average component. This is most salient for short-horizon forecasts and AUROC values.

G Recursively estimated break dates and optimal starting points for cross-

validation

The Sup-F, Ave-F, and Exp-F statistics are estimated as:

Sup-F = sup
τ1≤τ≤τ2

FT (τ), (A.6)

Ave-F =
1

τ2 − τ1 + 1

τ2∑
τ=τ1

FT (τ), (A.7)

Exp-F = ln
[ 1

τ2 − τ1 + 1

τ2∑
τ=τ1

expFT (τ)
]
, (A.8)

where FT (τ) refers to the Wald statistic for testing β̂2 = β̂1 and τ = τ1, . . . , τ2.

The recursively estimated break dates for the Sup-F test are shown in the upper panel of

Figure A.2. The estimated location of the break is consistently between 1981 and 1983.

The lower panel of Figure A.2 presents the selected start values from cross-validation for one-

year ahead log equity premium forecasts. At each point in time we estimate the probit model

with different estimation windows, and evaluate forecasts from these models over a pseudo out-

of-sample period consisting of the most recent five years of data. The optimal start value refers

to the probit model with the smallest MSFE for the cumulative log equity premium with h = 12.

It is important to mention that this analysis is feasible in real-time without any look-ahead bias

in the data. Our most recently available observation at time t and h = 12 is rt−11:t. The

evaluation period runs from rt−70:t−59, . . . , rt−11:t.

H Break tests with pre-whitening of standard errors

Table A.7 provides p-values for the Ave-F, Exp-F, and Sup-F statistics when applying pre-

whitening to the standard errors. The null of no structural break is rejected for no pre-whitening,

as well as for AR(1), AR(3), AR(6), and AR(12) pre-whitening. Furthermore, the results are

robust to the choice of trimming value.
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Figure A.1
Equity premium forecasts with different values of l in the probit model
This figure presents R2

OS values (in %) for the log equity premium relative to the historical average and MSFE-adjusted statistics.

Forecasts are based on recession probability forecasts from a probit model with TMSt and 1
l

∑l−1
j=0TMSt−j , for l values between

2 and 60 months. The horizontal axis denotes the value of l and the vertical axis denotes the R2
OS statistic (left panels) and the

MSFE-adjusted statistic of Clark and West (2007) (right panels). Results are shown for out-of-sample forecasts from 1980:1 to
2019:12 and for three forecast horizons, namely h = 1, 6, 12. The black dashed line (dotted line) denotes the 1% (5%) critical
value, and the dash-dotted line depicts the 10% critical value of the MSFE-adjusted statistic.
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Table A.1
Out-of-sample R2: Alternative lengths of moving average component

This table shows R2
OS statistics (in %) for forecasts of the log equity premium relative to the historical average

benchmark. The forecasts are based on a linear predictive regression model with a constant and recession
probability forecasts as variables. Hereby, the probability forecasts are derived from a probit model with TMSt
and 1

l

∑l−1
j=0TMSt−j , and for different break-correction methods of this probit model. Results are shown for

different lengths of the moving average component l, namely for l = 12, 24, 48, 60. The out-of-sample period is
1980:1-2019:12 and h = 1, 3, 6, 12 depicts the forecast horizon.

(1) (2) (3) (4) (5)

Variable l=12 l=24 l=48 l=60

Panel A: h = 1
TMSt, MA-TMSt 0.43∗ 0.17 1.07∗∗ 0.90∗∗

TMSbreak
t , MA-TMSbreak

t 0.30 0.69∗∗ 1.25∗∗ 0.82∗∗
Cross-validation 0.10 0.29 1.94∗∗ 1.04∗∗
Pooling (weighted) 0.35 0.12 1.33∗∗∗ 1.02∗∗
Pooling (average) 0.32 0.13 1.32∗∗∗ 1.04∗∗
Post-break window (15 years) 0.10 0.13 2.43∗∗∗ 1.45∗∗∗
Post-break window (20 years) 0.36∗ 0.10 1.94∗∗ 1.01∗∗

Panel B: h = 3
TMSt, MA-TMSt 1.60∗∗ 1.76∗∗ 2.63∗∗∗ 2.37∗∗

TMSbreak
t , MA-TMSbreak

t 0.63∗∗ 2.86∗∗ 2.30∗∗ 1.40∗∗
Cross-validation 1.17∗∗ 2.58∗∗∗ 4.69∗∗∗ 2.67∗∗∗
Pooling (weighted) 1.46∗∗ 1.81∗∗ 3.35∗∗∗ 2.73∗∗∗
Pooling (average) 1.37∗∗ 1.86∗∗ 3.33∗∗∗ 2.81∗∗∗
Post-break window (15 years) 1.24∗∗ 4.68∗∗∗ 6.18∗∗∗ 4.27∗∗∗
Post-break window (20 years) 1.51∗∗ 2.76∗∗∗ 4.74∗∗∗ 2.69∗∗∗

Panel C: h = 6
TMSt, MA-TMSt 3.32∗∗ 3.74∗∗ 3.28∗∗ 3.13∗∗

TMSbreak
t , MA-TMSbreak

t 1.56∗∗ 4.77∗∗ 1.76∗∗ 0.94∗∗
Cross-validation 1.96∗∗ 7.05∗∗∗ 5.90∗∗∗ 2.60∗∗
Pooling (weighted) 3.25∗∗ 4.31∗∗∗ 4.42∗∗ 3.69∗∗
Pooling (average) 3.12∗∗ 4.08∗∗ 4.31∗∗ 3.73∗∗
Post-break window (15 years) 3.91∗∗∗ 7.57∗∗∗ 7.57∗∗∗ 4.95∗∗∗
Post-break window (20 years) 3.42∗∗ 7.32∗∗∗ 6.31∗∗∗ 3.57∗∗

Panel D: h = 12
TMSt, MA-TMSt 8.03∗∗∗ 9.04∗∗∗ 8.36∗∗∗ 6.94∗∗

TMSbreak
t , MA-TMSbreak

t 6.93∗∗ 9.24∗∗∗ 7.63∗∗ 7.12∗∗
Cross-validation 7.67∗∗∗ 9.50∗∗∗ 8.43∗∗∗ 5.98∗∗
Pooling (weighted) 8.64∗∗∗ 10.92∗∗∗ 10.06∗∗∗ 8.05∗∗
Pooling (average) 8.31∗∗∗ 10.54∗∗∗ 10.12∗∗∗ 8.29∗∗∗
Post-break window (15 years) 9.53∗∗∗ 14.65∗∗∗ 14.24∗∗∗ 10.17∗∗∗
Post-break window (20 years) 9.54∗∗∗ 14.81∗∗∗ 13.09∗∗∗ 9.87∗∗∗
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Table A.2
Out-of-sample R2 statistics for log raw returns

This table presents R2
OS statistics (in %) for forecasts of log raw returns relative to the historical average bench-

mark. In contrast to the main text, we do not subtract the short rate from the continuously compounded returns
on the S&P 500 index. The forecasts are based on a linear predictive regression model with a constant and re-
cession probability forecasts as variables. Hereby, the probability forecasts are derived from a probit model with
TMSt and 1

36

∑35
j=0TMSt−j , and for four different break-correction methods of this probit model. Results are

shown for four different out-of-sample periods, and h = 1, 3, 6, 12 depicts the forecast horizon. ∗, ∗∗, ∗∗∗ denote
significance at the 10%, 5%, and 1% significance levels according to the Clark and West (2007) MSFE-adjusted
statistic. ”Short interest” and ”Gold-to-platinum ratio” refer to the predictors of Rapach et al. (2016) and Huang
and Kilic (2019).

(1) (2) (3) (4) (5)

Variable 1980:1-2019:12 1980:1-1999:12 2000:1-2019:12 1990:1-2013:12

Panel A: h = 1
TMSt, MA-TMSt 0.33∗ 0.60 0.05 0.28

TMSbreak
t , MA-TMSbreak

t 0.97∗∗ -0.31 2.34∗∗ 1.80∗∗
Cross-validation 1.95∗∗ 0.63 3.36∗ 3.30∗∗
Pooling (average) 0.58∗∗ 0.51 0.65∗ 0.80∗∗
Post-break window 2.54∗∗∗ 0.83∗ 4.38∗∗ 4.51∗∗∗

Short interest 1.19∗∗
Gold-to-platinum ratio 1.56∗∗

Panel B: h = 3
TMSt, MA-TMSt 1.02∗∗ 2.29∗∗ -0.18 0.70

TMSbreak
t , MA-TMSbreak

t 2.04∗∗ -1.31 5.25∗∗ 3.62∗∗
Cross-validation 4.91∗∗ 2.06∗∗ 7.71∗ 7.14∗
Pooling (average) 1.70∗∗ 2.10∗∗ 1.35∗ 1.92∗∗
Post-break window 6.96∗∗∗ 2.67∗∗ 11.22∗∗ 11.25∗∗∗

Short interest 4.09∗∗
Gold-to-platinum ratio 6.12∗∗∗

Panel C: h = 6
TMSt, MA-TMSt 0.61∗ 2.53∗ -0.82 0.79

TMSbreak
t , MA-TMSbreak

t 1.39∗ -5.75 6.71∗∗ 4.25∗∗
Cross-validation 5.44∗ 1.28 8.48 8.34∗
Pooling (average) 1.60∗ 2.20∗ 1.13 2.40∗
Post-break window 8.19∗∗ 4.04∗∗ 11.27∗∗ 13.85∗∗

Short interest 6.93∗∗
Gold-to-platinum ratio 11.93∗∗∗

Panel D: h = 12
TMSt, MA-TMSt 3.38∗∗ 6.77∗∗ 1.40 3.18∗

TMSbreak
t , MA-TMSbreak

t 4.53∗∗ -6.29 11.11∗∗ 5.05∗
Cross-validation 0.39∗ 4.99∗ -2.16 -0.10
Pooling (average) 4.45∗∗ 6.46∗ 3.34 4.47∗
Post-break window 10.50∗∗ 12.57∗∗∗ 9.74 14.50∗

Short interest 4.26∗
Gold-to-platinum ratio 15.82∗∗∗
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Table A.3
Asset allocation exercise with proportional transaction costs

This table reports the annualized ∆CER and the annualized ∆SR for a mean-variance investor relative to forecasts
from the historical average. The investor can invest in the S&P 500 index and the risk-free rate. The gains are corrected
for proportional transaction costs of 50 basis points per transaction. Results are shown for one month ahead forecasts
of the equity premium and different values for the coefficient of relative risk aversion (γ), and different restrictions

on the equity weights (ω). The out-of-sample period is 1980:1 to 2019:12. ∗, ∗∗, ∗∗∗ indicate significantly improved
performance relative to the prevailing mean benchmark at the 10%, 5%, and 1% significance level. The p-values are
obtained by using a bootstrap approach similar to DeMiguel et al. (2013) with the average block length set to three
months (Politis and Romano, 1994).

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: 1980:1 to 2019:12
∆CER ∆SR

γ 3 5 3 3 3 5 3 3
ω [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1] [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1]

Gains relative to prevailing mean:
TMSt, MA-TMSt 2.57∗∗∗ 1.37∗ 2.29∗∗ 1.38∗∗∗ 0.14∗∗∗ 0.13∗∗ 0.13∗∗∗ 0.10∗∗∗

TMSbreak
t , MA-TMSbreak

t 3.80∗∗ 2.41∗∗ 3.16∗∗ 1.77 0.28∗∗ 0.28∗∗ 0.24∗∗ 0.22∗∗
Cross-validation 3.79∗∗∗ 2.42∗∗ 3.09∗∗ 2.20∗∗∗ 0.21∗∗ 0.21∗∗ 0.17∗∗∗ 0.17∗∗
Pooling (average) 3.23∗∗∗ 1.95∗∗∗ 2.96∗∗ 2.07∗∗∗ 0.19∗∗∗ 0.19∗∗∗ 0.17∗∗∗ 0.16∗∗∗
Post-break window 5.69∗∗∗ 3.88∗∗∗ 4.58∗∗ 2.91∗∗∗ 0.33∗∗∗ 0.33∗∗∗ 0.27∗∗∗ 0.25∗∗∗

Buy-and-hold 0.95∗∗ 0.42 0.95∗∗ 0.49∗∗ 0.07∗∗ 0.07∗∗ 0.07∗∗ 0.03∗
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Table A.4
Asset allocation exercise with lower-frequency re-balancing

This table reports the annualized ∆CER and the annualized ∆SR for a mean-variance investor relative to forecasts
from the historical average. The investor can invest in the S&P 500 index and the risk-free rate. Results are
shown for forecast horizons of h = 3, 6, 12 months of the equity premium, where an investor re-balances at the
same frequency as the forecast horizon (Rapach et al., 2016). The coefficient of relative risk aversion is denoted
by γ, and ω states restrictions on the weights in the risky asset. The ”Prevailing mean” shows the CER and SR
values, whereas all other values denote the improvements relative to this benchmark. Results are shown for the
out-of-sample period from 1980:1 to 2019:12.

Panel A: h = 3
∆CER ∆SR

γ 3 5 3 3 3 5 3 3
ω [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1] [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1]

Prevailing mean 7.47 5.92 7.47 8.26 0.44 0.43 0.44 0.49

Gains relative to prevailing mean:
TMSt, MA-TMSt 3.00 1.21 2.84 1.48 0.17 0.14 0.16 0.10

TMSbreak
t , MA-TMSbreak

t 3.01 2.03 3.06 1.97 0.19 0.20 0.19 0.20
Cross-validation 5.05 3.20 4.28 2.92 0.27 0.27 0.23 0.21
Pooling (weighted) 3.68 2.05 3.52 2.32 0.21 0.19 0.20 0.16
Pooling (average) 3.49 1.94 3.34 2.24 0.20 0.18 0.19 0.16
Post-break window 6.02 3.93 5.07 3.26 0.33 0.33 0.28 0.25

Buy-and-hold 1.49 0.58 1.49 0.71 0.09 0.11 0.09 0.04

Panel B: h = 6
∆CER ∆SR

γ 3 5 3 3 3 5 3 3
ω [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1] [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1]

Prevailing mean 8.04 6.29 8.04 8.49 0.48 0.46 0.48 0.52

Gains relative to prevailing mean:
TMSt, MA-TMSt 2.40 1.29 2.20 1.38 0.14 0.14 0.13 0.09

TMSbreak
t , MA-TMSbreak

t 1.64 1.08 1.72 1.10 0.11 0.12 0.12 0.10
Cross-validation 4.55 2.97 3.98 2.50 0.26 0.27 0.22 0.19
Pooling (weighted) 3.14 1.91 2.94 1.90 0.19 0.19 0.17 0.14
Pooling (average) 2.93 1.78 2.74 1.74 0.18 0.18 0.16 0.12
Post-break window 5.24 3.19 4.60 2.43 0.30 0.28 0.27 0.19

Buy-and-hold 1.23 0.71 1.23 0.78 0.08 0.10 0.08 0.04

Panel C: h = 12
∆CER ∆SR

γ 3 5 3 3 3 5 3 3
ω [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1] [−0.5, 1.5] [−0.5, 1.5] [0, 1.5] [0, 1]

Prevailing mean 7.66 5.59 7.66 8.19 0.46 0.41 0.46 0.48

Gains relative to prevailing mean:
TMSt, MA-TMSt 2.85 1.26 2.97 1.99 0.16 0.13 0.16 0.14

TMSbreak
t , MA-TMSbreak

t 0.99 1.03 1.49 1.04 0.06 0.08 0.09 0.11
Cross-validation 2.39 0.99 2.50 1.76 0.13 0.10 0.13 0.13
Pooling (weighted) 2.83 1.76 2.95 2.35 0.16 0.15 0.17 0.18
Pooling (average) 2.68 1.60 2.79 2.24 0.15 0.14 0.16 0.17
Post-break window 2.60 0.75 2.79 2.04 0.14 0.09 0.15 0.16

Buy-and-hold 1.49 0.85 1.49 0.96 0.08 0.12 0.08 0.05
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Table A.5
Out-of-sample forecasting performance - Probit model

This table presents five forecast evaluation statistics for the out-of-sample recession probability forecasts, as well
as the correlation between the probability forecasts and the (cumulative) log equity premium (ρ). The statistics
are the quadratic probability score (QPS), logarithm score (LS), diagonal elementary score (DES), pseudo R2,
and the area under the receiver operating characteristic curve (AUROC). Results are shown for the probit model

with TMSt and 1
36

∑35
j=0TMSt−j as predictors, and for five break-corrected versions of this probit model (Pesaran

and Timmermann, 2007; Lettau and Van Nieuwerburgh, 2008). The recession probability forecasts refer to the
probability that a recession occurs within the next h months. Results are shown for h = 1, 3, 6, 12 and the
out-of-sample period is 1980:1 to 2019:12.

1980:1 to 2019:12

Variables in probit model QPS LS DES pseudo R2 AUROC ρ

Panel A: h = 1
TMSt, MA-TMSt 0.17 0.27 0.05 0.27 0.92 -0.14

TMSbreak
t , MA-TMSbreak

t 0.20 0.32 0.06 0.15 0.84 -0.13
Cross-validation 0.15 0.23 0.03 0.35 0.94 -0.16
Pooling (average) 0.17 0.26 0.04 0.29 0.92 -0.15
Post-break window (15 years) 0.17 0.25 0.04 0.30 0.91 -0.18
Post-break window (20 years) 0.14 0.22 0.04 0.37 0.94 -0.19

Panel B: h = 3
TMSt, MA-TMSt 0.20 0.31 0.07 0.25 0.90 -0.22

TMSbreak
t , MA-TMSbreak

t 0.24 0.37 0.07 0.11 0.81 -0.20
Cross-validation 0.16 0.25 0.04 0.37 0.93 -0.29
Pooling (average) 0.19 0.29 0.06 0.28 0.90 -0.25
Post-break window (15 years) 0.19 0.28 0.05 0.31 0.91 -0.29
Post-break window (20 years) 0.16 0.25 0.05 0.38 0.93 -0.31

Panel C: h = 6
TMSt, MA-TMSt 0.22 0.36 0.09 0.25 0.87 -0.25

TMSbreak
t , MA-TMSbreak

t 0.29 0.44 0.08 0.08 0.79 -0.22
Cross-validation 0.19 0.30 0.07 0.37 0.92 -0.35
Pooling (average) 0.21 0.34 0.08 0.29 0.88 -0.29
Post-break window (15 years) 0.21 0.33 0.06 0.31 0.90 -0.34
Post-break window (20 years) 0.18 0.29 0.06 0.39 0.91 -0.38

Panel D: h = 12
TMSt, MA-TMSt 0.25 0.41 0.10 0.32 0.86 -0.37

TMSbreak
t , MA-TMSbreak

t 0.34 0.52 0.11 0.11 0.80 -0.32
Cross-validation 0.21 0.34 0.08 0.45 0.90 -0.48
Pooling (average) 0.24 0.39 0.09 0.35 0.87 -0.43
Post-break window (15 years) 0.29 0.51 0.09 0.12 0.87 -0.43
Post-break window (20 years) 0.25 0.39 0.08 0.35 0.89 -0.46
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Table A.6
Out-of-sample forecasting performance - Different lengths of the moving average
component

This table presents five forecast evaluation statistics for the out-of-sample performance of the probit model
with the term spread and the moving average term spread as variables, as well as the correlation between the
probability forecasts and the (cumulative) log equity premium (ρ). The statistics are the quadratic probability
score (QPS), logarithm score (LS), diagonal elementary score (DES), pseudo R2, as well as the area under the
receiver operating characteristic curve (AUROC). Results are shown for five different lengths of the moving

average term spread, 1
l

∑l−1
j=0TMSt−j , namely l = 12, 24, 36, 48, 60. The recession probability forecasts refer to

the probability that a recession occurs within the next h months. Results are shown for h = 1, 3, 6, 12 and the
out-of-sample period is 1980:1 to 2019:12.

1980:1 to 2019:12

Variables in probit model QPS LS DES pseudo R2 AUROC ρ

Panel A: h = 1
l = 12 0.15 0.30 0.04 0.19 0.87 -0.08
l = 24 0.15 0.23 0.02 0.34 0.93 -0.09
l = 36 0.17 0.27 0.05 0.27 0.92 -0.14
l = 48 0.19 0.31 0.07 0.16 0.87 -0.12
l = 60 0.21 0.37 0.08 0.05 0.79 -0.12

Panel B: h = 3
l = 12 0.16 0.33 0.05 0.21 0.86 -0.15
l = 24 0.17 0.26 0.03 0.35 0.93 -0.19
l = 36 0.20 0.31 0.07 0.25 0.90 -0.22
l = 48 0.22 0.36 0.09 0.15 0.85 -0.19
l = 60 0.23 0.41 0.09 0.05 0.76 -0.18

Panel C: h = 6
l = 12 0.18 0.35 0.06 0.27 0.87 -0.22
l = 24 0.19 0.30 0.05 0.37 0.91 -0.25
l = 36 0.22 0.36 0.09 0.25 0.87 -0.25
l = 48 0.24 0.40 0.09 0.16 0.83 -0.22
l = 60 0.25 0.45 0.10 0.07 0.74 -0.20

Panel D: h = 12
l = 12 0.18 0.35 0.06 0.44 0.90 -0.37
l = 24 0.21 0.35 0.07 0.44 0.90 -0.40
l = 36 0.25 0.41 0.10 0.32 0.86 -0.37
l = 48 0.26 0.43 0.10 0.28 0.84 -0.33
l = 60 0.27 0.46 0.11 0.21 0.78 -0.29
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Figure A.2
Recursively estimated break dates and optimal starting points for cross-validation
This figure presents the recursively estimated break dates for the Sup-F test (upper panel) and the optimal start
values of the estimation window for cross-validation for one-year ahead equity premium forecasts (lower panel).
The horizontal axis denotes the time of estimation and the vertical axis denotes the respective break date and
start value for the probit model. As an example, from 1990 onward the estimated break date was consistently
between 1982 and 1983. The optimal start value for cross-validation is estimated by performing a pseudo
out-of-sample exercise over the most recent five years of data, whereby the data are recursively expanding. The
selected start date refers to the probit model with the lowest MSFE for the equity premium over the holdout
period.
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Table A.7
Estimated p-values with pre-whitening of standard errors

This table reports p-values for the null hypothesis of no structural break in the mean of the term spread. Ave-F,
Exp-F, and Sup-F refer to the test statistics of Andrews (1993) and Andrews and Ploberger (1994), and p-values
are estimated by Hansen (1997). The standard errors are Newey and West (1994) with an automatic bandwidth
selection and different versions of pre-whitening. Results are shown for no pre-whitening of standard errors and
for AR(1), AR(3), AR(6), and AR(12) pre-whitening of standard errors. The tests are carried out for trimming
values of 15% (Panel A) and 5% (Panel B). The estimations are based on data from 1951:3 to 2019:12 and the
break date refers to the global minimum in the sum of squared errors (Bai, 1997).

(1) (2) (3) (4) (5)

Ave-F Exp-F Sup-F break date

Panel A: 15% trimming
No pre-whitening 0.00 0.00 0.00 1982:5
AR(1) 0.06 0.04 0.01
AR(3) 0.03 0.02 0.01
AR(6) 0.01 0.01 0.01
AR(12) 0.00 0.00 0.00

Panel B: 5% trimming
No pre-whitening 0.00 0.00 0.00 1982:5
AR(1) 0.07 0.05 0.02
AR(3) 0.03 0.02 0.01
AR(6) 0.01 0.01 0.02
AR(12) 0.00 0.00 0.00
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