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contact has systematic effects on behavior: subjects often link the strategies in the two games
when they play with the same partner. Such linkage turns out to be a double-edged sword: while it
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1 Introduction
Many strategic situations involve a pair of players repeatedly interacting across multiple
games. Even if two repeated games are payoff-independent, in the sense that the payoffs
accruing in each stage game depend only on the actions chosen in that game, the two repeated
games become connected if the players’ actions in one game depend on the outcome of the
other game. For instance, some coworkers are also neighbors and how loud they play their
music at home may influence how they collaborate at work. Likewise, spouses that are
business partners must still share household chores, and countries that are trading partners
may hold different views about human rights.

Repeated interactions in a single game have been widely studied from both a theory and
an experimental perspective. Most relevant to our work is the recent experimental literature
on indefinitely repeated prisoner’s dilemmas which studies the determinants of cooperation
(see Dal Bó and Fréchette (2018) for a comprehensive overview). The main findings of
this literature are that factors such as the continuation probability (Dal Bó, 2005; Duffy
& Ochs, 2009; Normann & Wallace, 2012), communication possibilities (Cooper & Kühn,
2014), the monitoring structure (Aoyagi et al., 2019; Camera & Casari, 2009), costly personal
punishment (Camera & Casari, 2009), continuous-time play (Bigoni et al., 2015; Friedman
& Oprea, 2012), group decision making (Cason & Mui, 2019), as well as behavioral spillovers
(Bednar et al., 2012) determine the extent to which players cooperate in these games.1 None
of these studies, however, examines how simultaneously playing two indefinitely repeated
prisoner’s dilemmas and strategically linking these games influences cooperation. This is our
contribution to that literature.

We study cooperation in indefinitely repeated prisoner’s dilemmas with multigame con-
tact.2 The theoretical understanding of the issue has been a staple in industrial economics,
where it has been by now well understood that multimarket contact can increase collusive
behavior among firms in pricing games that have a prisoner’s dilemma structure. This idea
was first formalized by Bernheim and Whinston (1990). The mechanism for deriving this
result is that firms can pool their incentive constraints across markets, i.e., using the slack
in the collusion incentives of one market to compensate for the lack of incentives to collude
in another market. Collusive equilibria are then more easily sustainable, as captured by a
reduction in the critical discount factor that equalizes the long term gains from continuing
collusion with the gains from a deviating strategy.3 Some empirical studies have found evi-
dence which is consistent with multimarket contact leading to a less competitive environment
in a variety of industries, but the endogeneity problem is a hard one to address.4

1There is also a recent literature on the behavioral effects of playing multiple finitely repeated (coop-
eration) games with different players at the same time (Cason et al., 2012; Falk et al., 2013; Savikhin &
Sheremeta, 2013).

2The theoretical part of our analysis uses infinitely repeated games as workhorse. We will use the term
indefinitely repeated games because that is what we can implement in the laboratory. The literature tends
to use the two terms interchangeably (Dal Bó & Fréchette, 2018).

3With linear utility functions collusion is weakly more sustainable (Bernheim & Whinston, 1990) and
becomes strongly more sustainable if utility functions are concave (Spagnolo, 1999a, 1999b).

4These industries include cement (Ghemawat & Thomas, 2008; Jans & Rosenbaum, 1997), telecommu-
nications (Busse, 2000; Parker & Röller, 1997), radio (Waldfogel & Wulf, 2006), hotels (Fernandez & Marin,
1998), airlines (Ciliberto & Williams, 2014; Evans & Kessides, 1994; Miller, 2010; Singal, 1996), hospitals
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We set up a laboratory experiment where each subject plays a pair of indefinitely repeated
prisoner’s dilemmas, which are played synchronously. Our main treatment consists in the
presence or absence of multigame contact. Multigame contact is present when an agent
interacts with the same partner in both indefinitely repeated prisoner’s dilemmas, and it is
absent when the agent faces a distinct agent in each of the two games.

In theory, multigame contact should have no effect on the critical discount factor above
which cooperation is sustainable if players interact in multiple identical games.5 For our
main treatment variation to have some bite, we pair a hard with an easy game such that the
incentives to deviate from the most cooperative path are higher in the former than in the
latter. This implies that—in the absence of multigame contact—the critical discount factor
at which cooperation is sustainable is lower in the easy than in the hard game.

In this framework, theory predicts that the effect of multigame contact varies for different
discount factors. For this reason, we consider three distinct conditions with different levels of
continuation probabilities such that, in theory: i) with a low a discount factor, cooperation
is possible in neither of the games with and without multigame contact, ii) with a medium
discount factor, cooperation is possible in both games with multigame contact (and otherwise
only possible in the easy game), and iii) with a high discount factor, cooperation is possible
with and without multigame contact.

In contrast to the theoretical predictions, we find no evidence that multigame contact
facilitates overall cooperation. Yet, we should not conclude from this that multigame con-
tact does not affect the structure of cooperation. Indeed, we find that multigame contact
increases both all-out cooperation as well as all-out defection. In line with the theory, we find
support for the fact that players more often link strategies across games in the presence of
multigame contact. In particular, we observe that in those cases, i) subjects tend to revert to
uncooperative behavior in all games in reaction to a deviation from cooperative behavior in
a single game, and ii) cooperation in the easy game is more strongly linked with cooperative
outcomes in the hard game. To the extent that people resort to uncooperative behavior at
times, this implies that punishment occurs more often than theory would predict, and, in
this particular experiment, the effect of multigame contact averages out.

This mechanism is reminiscent of the theoretical concept of contagion described by
(Thomas & Willig, 2006). In a setting with imperfect monitoring, they show that strate-
gically linking multiple games may be disadvantageous because a mistaken deviations from
cooperation in one game trigger punishments with uncooperative behavior in all games.
There, the losses due to this contagion outweigh the gains from strategic linkage when ac-
tions in one game are very imperfectly observed. In that case, players may want to avoid
linkages if they have the possibility to do so.

To explore the mechanism further, we set up a second experiment with a sequential
variant of the game, in which the cooperation enhancing effect of multigame contact is
particularly strong in theory. We again find compelling evidence for linkage but no effect
on overall cooperation. We conclude that multigame contact is a double-edged sword—a

(Schmitt, 2018), and banking (Coccorese & Pellecchia, 2009; Heggestad & Rhoades, 1978).
5While Spagnolo (1999a, 1999b) shows that the discount factor will be lower if utility is concave, for the

monetary payoffs involved in a typical experimental setting, any significant reduction in the critical discount
factor would require an extreme curvature of the utility function (akin to the calibration theorem (Rabin,
2000)).
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benefit for some, a curse for others.
Our paper is related to the experimental literature on multimarket contact. There are

a number of papers that investigate the theoretical predictions of Bernheim and Whinston
(1990) in the laboratory albeit in different settings. These experiments provide mixed re-
sults: Feinberg and Sherman (1985, 1988), Phillips and Mason (1992, 1996), and Freitag
et al. (2021) lend some support to the hypothesis that multimarket contact leads to more
cooperation between firms while Güth et al. (2016) find no and Yang et al. (2016) find even
a negative effect of multimarket contact on cooperation. Our approach differs from these
studies in two important ways. First, we consider an indefinitely repeated setup with a
commonly known probability of continuation of the game. A proper test of Bernheim and
Whinston (1990) requires that the experimental subjects have identical beliefs regarding the
possibility of future interaction when they evaluate game payoffs. None of the above studies
except Yang et al. (2016) uses randomly terminated games. Second, our treatments consist of
a ceteris paribus variation regarding the different contact schemes. We vary only the number
of fronts on which the players interact—one versus two—while keeping all remaining aspects
of the environment constant. Yang et al. (2016) compare a treatment where subjects play
only one repeated prisoner’s dilemma with a treatment where subjects play two repeated
prisoner’s dilemmas at the same time. Such a design is problematic because neither strategic
linkages can be observed (they become apparent only if deviation and punishment strategies
can be compared across treatments) nor can the effect of multiple contacts be disentangled
from the effect of making decisions in a more complex environment. Our experimental design
takes care of these shortcomings.

The article is organized as follows. Section 2 derives the theoretical predictions. Section 3
describes the experimental design. Section 4 discusses our results. Section 5 briefly concludes.

2 Theoretical predictions
In this section, we explain the theory underlying our experiment. We start by investigating
the effect of multigame contact in indefinitely repeated prisoner’s dilemmas when players
choose their actions for both games at the same time. Later, we will examine a sequential
variant of multigame contact, which is the game we use for our second experiment.

Consider the stage game in Table 1 where C stands for cooperation, and D for defection.
The payoff matrix consists of four elements: the reward from joint cooperation (R), the
temptation payoff earned from defection when the other player cooperates (T ), the sucker’s
payoff from cooperation when the other player defects (S), and the punishment payoff from
mutual defection (P ). Under the restriction T > R > P > S, the game is a prisoner’s
dilemma with (D,D) as a unique Nash equilibrium in the stage game. Moreover, we assume
2R > T+S to ensure that a dynamic cooperative path with (C,C) in every period dominates
a path with alternating strategies (C,D) and (D,C) across periods.

This stage game is repeated infinitely, and players discount the future with a common
discount factor δ ∈ (0, 1). In our experiment, we interpret δ as the probability with which
the game will continue into the next date t. In laboratory experiments, such games are
known as indefinitely repeated games since players know the game can stop after any period
with probability (1− δ) but they cannot infer for sure how long the game will last.
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Table 1: Payoff matrix of a single stage game

Player 2

C D

Player 1
C R,R S, T

D T, S P, P

For sufficiently high discount factors, cooperation in every period can be sustained as
a subgame-perfect equilibrium. The lowest δ at which cooperation is subgame perfect is
achieved with the following grim trigger strategies: play C in every t, and play D forever
after any deviation from (C,C). This critical threshold for δ is obtained by solving the
incentive compatibility constraint below:

R

1− δ
≥ T +

δP

1− δ
⇔ δ ≥ T −R

T − P

The left-hand side of the inequality denotes the present discounted payoff from cooperation in
every period while the right-hand side denotes the present discounted payoff from deviation.
This critical threshold is lower the higher is R, and P , and the lower is T .

We are interested in the effect of multigame contact on cooperation. We now turn our
attention to a situation where an agent plays two indefinitely repeated prisoner’s dilemmas
simultaneously and learns immediately the outcome of each stage game she plays. Playing
simultaneously the stage games of two identical indefinitely repeated prisoner’s dilemmas,
with either the same or different partners, does not affect the critical discount factor at
which cooperation is sustainable (Bernheim & Whinston, 1990).6 We thus consider stage
games with asymmetric payoffs, where we add a factor z > 0 to the temptation payoff T
in one game and subtract z from T in the other one (see Table 2). Because the gain from
deviating from (C,C) in the game where we added z is higher than in the game where we
subtracted it, we call the former the hard game and the latter the easy game. To keep a
similar incentive structure to the stage game above, we assume that T − z > R > P > S,
and 2R > (T + z) + S.

Table 2: Payoff matrices of the two stage games

Hard game Easy game

C D c d

C R,R S, T + z c R,R S, T − z
D T + z, S P, P d T − z, S P, P

In the absence of multigame contact, i.e., when facing a different partner in each game,
a player’s strategy in one game cannot affect the action of her partner in the other game.

6See also the discussion in the introduction.
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Therefore, each game can be treated independently, and cooperation in each game is sus-
tainable if:

δ ≥ (T + z)−R
(T + z)− P

= δhard, δ ≥ (T − z)−R
(T − z)− P

= δeasy

Note that cooperation is easier to sustain in the easy than in the hard game, i.e., δeasy < δhard.
Consider now the situation where two players interact with each other in both the easy

and the hard game, i.e., a situation of multigame contact. The two players may still sustain
cooperation in each game by playing as if they faced a different partner in each game, i.e.,
as if the games were independent, so that the critical discount factors would still be the
ones presented above. However, the two players may achieve cooperation in both games
more easily if they link the strategies, as discussed next. When facing the same opponent, a
player can use the threat of punishment in both games following any deviation. This threat
will pool the two incentive constraints, which induces cooperation in both games if, for each
player, the following incentive constraint is satisfied:

2R

1− δ
≥ (T + z) + (T − z) + δ2P

1− δ
(1)

⇔ 2R

1− δ
≥ 2T +

δ2P

1− δ
⇔ δ ≥ T −R

T − P
= δpool

The payoff from perpetual cooperation in both games is given by the left-hand side. The
payoff from defection, triggering perpetual punishment, is given by the right-hand side:
as punishment is expected to occur in both games regardless of the form of deviation, a
player will optimally defect in both the easy and the hard game simultaneously. Because
δpool < δhard cooperation in both games is indeed easier to sustain if strategies are linked.

The most cooperative outcomes are achieved, using grim trigger strategies, as follows:
for δpool ≤ δ < δhard, players should link the strategies in the two games; for δ ≥ δhard,
players should cooperate in each game separately, and thus linkage becomes superfluous; for
δ < δeasy players will not cooperate in either game and again linkage becomes superfluous;
and finally, for δeasy ≤ δ < δpool, players should not link the strategies to be able to cooperate
in at least the easy game.

To understand the last point, notice that, if a player expects her partner to use a grim
trigger strategy following a deviation in one game, her optimal response is to deviate imme-
diately in both games since incentive constraint (1) is violated. Then, cooperation will not
be achieved in either game. However, cooperation in the easy game alone is still achievable
if players were not to link the grim trigger strategies in the two games. This point might be
missed in a casual reading of the literature: while linkage may help sustain full cooperation
for intermediate discount factors, it may yet destroy partial cooperation when the discount
factor is sufficiently low.7

Now turning to our main treatment of the absence and presence of multigame contact,
and focusing on the most cooperative outcome, our theoretical predictions are summarized
in Figure 1 below: if δ < δeasy then in both cases, with and without multigame contact, no

7We are not aware of other explicit mentioning of this point with the exception of Thomas and Willig
(2006), who reaches a similar conclusion in a setting with imperfect monitoring. The argument exposed here
shows that the desirability to uncouple strategies does not hinge on the existence of imperfect monitoring.
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cooperation is sustainable in either game; if δeasy ≤ δ < δpool, then cooperation is sustainable
only in the easy game in both cases; if δpool ≤ δ < δhard, then cooperation is sustainable in
both games in the presence of multigame contact while cooperation is only sustainable in
the easy game in the absence of multigame contact; if δ ≥ δhard, cooperation is sustainable
in both games in the presence and in the absence of multigame contact.8

0
1Partner

δeasy coop. in easy δpool coop. in both games 1

0
2Partner

δeasy coop. in easy δhard coop. in both 1

Figure 1: Most cooperative outcomes

Let us now consider the sequential variant of the game, which we use for our second
experiment. In this variant, each period consists of two stages: players first interact in the
hard game and then—knowing the outcome of that stage game—play the easy game. In
the absence of multigame contact, cooperation is independent of playing the stage games
sequentially or simultaneously, and there is no effect on the critical discount factors at which
cooperation is sustainable in the easy and the hard game. However, in the presence of
multigame contact, cooperation in both the easy and the hard game is achievable for lower
discount factors when played sequentially rather than simultaneously. The reason is that
when players can link the two games, the information on the outcome of the first game mat-
ters for how they play the second. Intuitively, cooperation becomes more easily sustainable
because a partner who defects gets the temptation payoff in at most one game, i.e., she gets a
lower benefit from deviation than in simultaneous play. Moreover, the punishment is weakly
harsher: it is harsher if she deviates in the hard game (as then she will see her punishment
start immediately within the same period in the easy game), and it is the same if she de-
viates later only in the easy game (as then the punishment is the same as in simultaneous
play). These considerations alter the incentive constraint and make cooperation more easy
to sustain. In particular, cooperation in both games is sustainable for

δ ≥


T+z+P−2R

T+z−P
, if 2z + P −R ≥ 0,

T−z−R
T−z+R−2P

, otherwise.

Moreover, with multigame contact, the critical discount factor at which cooperation in
both games can be sustained in this sequential game is even lower than the critical discount
factor for the easy game alone. Thus, in order to achieve the most cooperative outcome, with
simultaneous play linkage is required for δ sufficiently high but will hurt for δ sufficiently
low (meaning that linkage may need to be avoided), while with sequential play there is no
region where linkage should be avoided.

8The qualitative predictions are identical using risk dominance instead of subgame perfection as an
equilibrium selection criteria. See Table A.1 for the critical discount factors that emerge with the payoffs
used in our experiments.
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3 Experimental procedures
Subjects play a sequence of indefinitely repeated prisoner’s dilemmas. In every round, they
play two prisoner’s dilemma games in parallel. Table 3 presents the stage game payoffs.
Henceforth, we will refer to the hard game as hard and to the easy game as easy.9 We
call the combination of both indefinitely repeated prisoner’s dilemmas a supergame. The
first three rounds of a supergame are played for sure and at the end of the third round, a
computerized stopping rule is introduced. From round three onward, the supergame either
continues (with the continuation probability δ), or the computer stops the supergame. We
differ from the standard approach in which only the first round is played for sure. Adding two
guaranteed rounds of play enables us to observe how subjects deviate and react to deviations.
This is especially helpful for low and intermediate continuation probabilities, where longer
supergames are very rare. Indeed, at least three rounds are required to observe the effect of
a deviation. In a round t, subjects have to cooperate, a deviation occurs in round t+1, and
the reaction is observed in round t+2. For example, at least 50% of the indefinitely repeated
games would not reach the third round if δ < 0.71 if the probabilistic continuation would
be in place right from the start.10 After termination of a supergame, subjects are randomly
rematched for the subsequent supergame. All this information is common knowledge to
subjects.

The subjects within a session are randomly allocated to matching groups. At the begin-
ning of each supergame, the computer randomly matches subjects with one or two partners
depending on the treatment.11

Table 3: Payoff matrices of the experimental stage games

hard easy

C D c d

C 135, 135 45, 216 c 135, 135 45, 144

D 216, 45 60, 60 d 144, 45 60, 60

The main treatment variation manipulates multigame contact: Within a supergame,
subjects either interact in both games with one partner (multigame contact, henceforth

9For half of the subjects, hard is always displayed on the left of the screen and easy on the right. The
order is reversed for the other half. We use neutral labels (A, B and X, Y ) for the actions in the games. We
randomize by subject whether they see A, B or X, Y as labels for hard or easy.

10It is true that adding two certain rounds may alter subjects’ perceptions of the true continuation
probability. However, our main interest is in the effect of multigame contact and not in precisely estimating
cooperation rates at different continuation probabilities. From a theoretical perspective the guaranteed
rounds should not matter, as adding any finite number of rounds before introducing the random stopping
rule does not affect the incentive to cooperate in round one and two by backward induction.

11Matching groups comprise 6 to 20 subjects. Subjects are only matched with other subjects in the same
matching group. The matching group sizes are chosen such as to keep the expected number of times a subject
interacts with another subject comparable across treatments. Labels do not allow subjects to identify with
whom they interact. The other subject in the game is always labelled as “Your partner” in the treatments
with one partner, and “Your partner 1” and “Your partner 2” in the treatments with two partners. At the
beginning of each supergame, we inform subjects that a new partner or new partners 1 and 2 are drawn.
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1Partner) or they play hard with one subject and easy with another subject from the
matching group (no multigame contact, henceforth 2Partner). The matching is fixed within
the supergame. The second treatment variation is the expected length of the supergames:
We implement three different continuation probabilities δ ∈ {0.1, 0.5, 0.9}.

We run our two by three factorial design as a between subject design, i.e., subjects play
only one of the six treatments. All subjects in a session play the same treatment. When the
total number of rounds reaches 100 the experiment continues with the current supergame
until this is terminated by the random stopping rule. Supergames within a matching group
all stop and start at the same time but matching groups within a session go through an
independent sequence of supergame durations. In order for all the matching groups of a
session to finish the experiment at the same time, we add a finite supergame for matching
groups, which are not last to finish. Data from these finite supergames are not part of the
analysis.12

Participants were paid out the sum of the payoffs of all rounds. We measured earnings in
points during the experiment and the exchange rate was 1000 points = 1 CHF (≈ 1.10 USD).
In addition, participants received a show-up fee of 10 CHF (≈ 11 USD). Sessions were run
in the laboratory of the University of Lausanne (LABEX) with undergraduate students from
the University of Lausanne and the EPFL recruited with ORSEE (Greiner, 2015). The
experiment was programmed in oTree (Chen et al., 2016).

A total of 436 subjects participated in the experiment. Table A.2 in the appendix pro-
vides detailed information about the observations per treatment. The average payment per
participant was 31 CHF (≈ 34 USD) and sessions lasted between 70 and 113 minutes. The
design of the experiment and the hypotheses were preregistered prior to the data collection
in an OSF registry.

4 Results
This section is organized in three parts. First, we test our preregistered hypotheses. Second,
we perform an exploratory analysis of the data, which leads to new hypotheses. Finally, we
present the design and results from the second experiment.

4.1 Cooperation rates across treatments

Given the monetary payoffs and the continuation probabilities we can predict cooperation
rates in our experiment. In case of δ = 0.1 the theory predicts no cooperation in 1Partner
and 2Partner, for δ = 0.9 cooperation can be part of an equilibrium in both cases and in
both games. The beneficial effects of multigame contact should appear, however, in δ = 0.5.
While cooperation in easy is sustainable in both treatments, cooperation in hard should only
be possible in 1Partner.

Figure 2 shows mean cooperation rates and 95 percent confidence intervals in hard and
easy for each treatment. The left panel contains data for all the rounds, whereas the right

12Rather than drawing a random number after each round for the stopping rule, all supergame durations
are randomly drawn from a geometric distribution at the beginning of the session. This allows us to fix the
duration of the finite game for each matching group beforehand.
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panel only contains data for the last round in each supergame. Because of the random
termination rule, subjects cannot infer for sure when the last round will take place in the
supergame. Looking at the last round in the supergame is interesting because it gives us a
sense to which decisions subjects converge to.
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Figure 2: Cooperation rates by treatment. Mean cooperation rates and 95% confidence intervals
are computed using the matching group averages. The left panel contains all the rounds; the right
panel shows the last round in each supergame.

In line with the literature (Dal Bó & Fréchette, 2018) we observe an increase in coopera-
tion for both games and for both partner treatments as the continuation probability increases.
This is especially true when looking at the last supergame round. Comparing δ = 0.1 to
δ = 0.5 and δ = 0.5 to δ = 0.9, we find large and statistically significant differences for both
partner treatments.13

Comparing 1Partner and 2Partner, we find no consistent difference in the average co-
operation rates. In particular, contrary to the theoretical predictions, we do not observe a
systematic increase in cooperation in the hard game for δ = 0.5. This is true for both when
we look at all rounds in a supergame, or at the last round in each supergame.14

While a strict reading of the theory does not predict differences in any of the other
comparisons, it is clear that we should not take these results too literally. After all, we observe
quite some cooperation at δ = 0.1, as well as defection in δ = 0.9. Given this variation, it
seems reasonable to suspect that the general mechanism of multigame contact should also

13p < .05 for all comparisons except the difference between δ = 0.1 and δ = 0.5 in hard for 1Partner
(p = .054), Wilcoxon rank-sum tests on matching group averages.

14Figure A.1 in the appendix shows that this also holds when we split the supergame between the first
two rounds and from round three onward.

10



affect behavior in the remaining comparisons.15 However, none of the comparisons between
1Partner and 2Partner is anywhere close significance in our data. This holds also for overall
cooperation, i.e., pooling the actions of hard and easy (p > .522 at any δ, Wilcoxon rank-sum
tests). This leads to our first result:

Result 1: Multigame contact does not affect overall cooperation.
Cooperation rates in both hard and easy are statistically indistinguishable between 1Partner
and 2Partner, and the same holds for overall cooperation.

However, merely observing average cooperation rates in hard and easy does not tell us
much about whether subjects link the two games when playing with the same partner. A first
indication may come from the fact that, at least for δ = 0.5, the confidence intervals shown
in Figure 2 are substantially larger with multigame contact. Next, we take a closer look at
individual decisions. Because we have no further preregistered hypotheses beyond the effects
on average cooperation rates seen above, Section 4.2 has an exploratory character. This leads
to new hypotheses which we test in Section 4.3, this time in a preregistered experiment.

4.2 Strategic linkage

The prediction that multigame contact helps to sustain simultaneous cooperation in both
games relies on the assumption that players link the two games when matched with a sin-
gle partner. Even though we find no difference in average cooperation across the partner
treatments, subjects’ behavior may still react to the treatment.

If subjects link the two games under multigame contact we should observe different re-
actions to the partner(s)’ previous decisions between 1Partner and 2Partner. To better
understand if and how subjects’ reactions differ across treatments, we first restrict our at-
tention to situations where theory helps us explain observed behaviors. Specifically, we look
at how previously cooperative subjects react to different outcomes in the previous round.

Figure 3 shows heatplots with the decisions of a subject’s partner(s) in the round t−1 of
a supergame on the horizontal axis and the subjects’ reaction in t on the vertical axis. Each
label contains one or two action pairs referring to the decision in hard (capital letter) and
easy (lowercase). To simplify matters we pool the action pairs Cd and Dc. The partner(s)’
decisions are from the point of view of the subject. In 1Partner, those are the decisions of
her partner whereas for 2Partner, the first letter is the decision of her partner in hard and
the second is the decision of her partner in easy.

Each cell reports the mean proportion of the corresponding reaction (in percent) condi-
tional on the decision of the partner(s). Cells within a column add up to 100.

To investigate whether subjects in 1Partner link the two games, we will focus our atten-
tion on the middle column of each heatplot. This column shows how a subject having played
Cc reacts after facing Cd or Dc. At any continuation probability, the reaction (Cd/Dc) is
clearly the modal response in 2Partner. Thus, the most common reaction is to treat the two
games separately. In contrast, for 1Partner we observe that the reaction Dd (deviation in

15Bruttel (2009) and Dal Bó and Fréchette (2018) argue that—rather than a stepwise increase—the dis-
tance between the implemented discount factor and the critical discount factor (δ∗) is a continuous predictor
of cooperation. For discount factors below δ∗ the cooperation rates are typically at a low level, while above
δ∗ cooperation gradually increases in δ.
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Figure 3: Reactions across treatments in percent. Partner’s or partners’ decisions in round t − 1
of a supergame on the horizontal axis and the subject’s reaction in (t) on the vertical axis. We
restrict our attention to rounds where the subject played Cc in round t− 1. Bold numbers indicate
that the Pearson’s χ2 test for the differences in the reactions to a given partner’s decisions between
1Partner and 2Partner are statistically significant (p < .05). The coloring indicates frequencies,
going from purple for values close to 0 up to green for values close to 100.

one game is punished in both games) is substantially more frequent. Interestingly, the same
holds for the forgiving action pair Cc. For all three δ these differences reach significance
(indicated by the bold numbers in Figure 3).

When subjects face Cc or Dd in t − 1 (first and third columns of each graph), we do
not see important differences in the reactions between 1Partner and 2Partner. The only
exception reaching significance is the reaction after having faced Cc at δ = 0.1. In this
case, subjects in both partner treatments are as likely to react with full cooperation (Cc),
but we observe almost twice as often defection in both games (Dd) in 1Partner. This is
again in line with the concept of linkage, since a subject who wishes to deviate in 1Partner
should anticipate her partner’s reaction Dd and should thus deviate in both games in the
first place. This difference is not observed for higher continuation probabilities because the
modal reaction to Cc is by a large margin to maintain cooperation (Cc).
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In a next step, we will provide a more general test for linkage. In a broad sense, linkage
between the two games can be understood as mutual dependence of the actions between the
two games. There is no obvious reason to link the two games in 2Partner. In 1Partner, on the
other hand, links can go in both directions. The strongest link is presumably the willingness
to cooperate in the hard game. If two subjects are willing to maintain cooperation in this
game, they should find it easy to cooperate in the easy game as well. On the other hand, if
subjects do not link the two games, then the predominant determinant of cooperation should
be the outcome of the particular game in the previous round. We investigate these effects in
a regression analysis.

Table 4: Linkage across games

DV: cooperation in easy (ct)

(1) (2) (3)

δ = 0.1 −0.114∗∗ −0.106∗∗ −0.108∗∗
(0.040) (0.017) (0.018)

δ = 0.9 0.216∗∗ 0.103∗∗ 0.100∗∗

(0.044) (0.015) (0.015)
2Partner 0.007 0.004 −0.023

(0.036) (0.015) (0.025)
(C,C)t 0.180∗∗ 0.296∗∗

(0.019) (0.026)
(C,C)t × 2Partner −0.162∗∗

(0.031)
(c, c)t−1 0.454∗∗ 0.358∗∗

(0.023) (0.037)
(c, c)t−1 × 2Partner 0.130∗∗

(0.043)
Constant 0.369∗∗ 0.248∗∗ 0.267∗∗

(0.039) (0.016) (0.022)
Time controls Yes Yes Yes

χ2-test 462.4 3501.9 3901.7
p 0.000 0.000 0.000
R2 0.109 0.398 0.401
N 44,834 33,964 33,964

Notes: Random effects estimates. Dependent variable is cooperation in
easy. Independent variables are dummies for the continuation probability
and a dummy for the treatments with two partners (with one partner and
δ = 0.5 as baseline case). (C,C)t indicates a cooperative outcome in hard ;
(c, c)t−1 indicates a cooperative outcome in easy in the previous round of
the supergame. Time controls are dummies for the first and second round
of the supergame and the supergame round, as well as the overall round
in the experiment. Robust standard errors, clustered on matching group,
in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.
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Table 4 shows linear probability models with random effects at the subject level and
robust standard errors clustered on the matching groups. The dependent variable, ct, is
a binary variable taking the value one if a subject cooperates in easy. In Model (1) we
regress ct on the exogenous treatment variables only. The baseline is 1Partner and δ = 0.5.
Cooperation in easy clearly increases with the continuation probability, and the coefficient
estimate for 2Partner confirms the lack of differences in cooperation rate in easy between the
partner treatments. In Model (2) we add two dummy variables: (C,C)t takes the value one if
the cooperative outcome in hard is reached in the same round and (c, c)t−1 takes the value one
if the cooperative outcome in easy was reached in the previous round. Both variables predict
a higher likelihood to cooperate in easy. Model (3) is our model of interest. In addition to
Model (2), we add the interaction between (C,C)t and 2Partner and another interaction
between (c, c)t−1 and 2Partner. The coefficient estimate for (C,C)t remains statistically
significant and increases compared to Model (2), indicating that for 1Partner cooperation
in easy strongly increases when subjects reach the cooperative outcome in hard. To our
interest, the interaction term between (C,C)t and 2Partner is negative and statistically
significant. This means that the link between the outcome of hard and cooperation in easy
is much weaker in 2Partner. The reverse is the case considering (c, c)t−1 and its interaction
term with 2Partner. The link between a cooperative outcome in easy in the previous round
and the likelihood to cooperate in easy in the current round is much stronger for 2Partner
than for 1Partner.16 Both the conclusions from these linear probability models and from our
investigation on subjects’ reaction in Figure 3 led us to conclude the following:

Result 2: Under multigame contact subjects strategically link the two games.
In the presence of multigame contact, defection of other subjects is more likely to provoke
full defection in response. The link between outcomes of the hard game and cooperation in
the easy game is much stronger in the presence of multigame contact.

To summarize, we find no support for our hypothesis that multigame contact increases
cooperation in hard (at δ = 0.5 or any other continuation probability), but we find strong
evidence for linkage in 1Partner at all three continuation probabilities. In line with Bern-
heim and Whinston (1990), this often enables subjects to reach fully cooperative outcomes.
However, frequent linkage leads subjects towards fully defective situations as well, which
prevents linkages from producing clear overall benefits. This suggests that multigame con-
tact is a double-edged sword—a blessing for some and a curse for others. As these results
stem from an exploratory analysis we went back to the laboratory in order to provide further
evidence on linkage under multigame contact and its effect on outcomes.

4.3 Powering multigame contact through sequential play

For our second experiment we decided to make a small but theoretically powerful change to
the stage game: Instead of playing the two games simultaneously, subjects take their decision

16(C,C)t and (c, c)t−1 are almost surely correlated, especially in 1Partner, meaning the coefficient esti-
mates in these models may be biased. To account for this correlation issue, we run Model (3) adding two
interaction terms: (C,C)t× (c, c)t−1 and (C,C)t× (c, c)t−1× 2Partner. The coefficients are very similar and
our conclusion do not change.
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sequentially. Subjects first choose their action in the hard game, after which they learn the
outcome of the hard game and proceed to the easy game.

Recall from the theory in Section 2 that in 2Partner playing the two games sequentially
rather than simultaneously within a round has no impact on the sustainability of cooperation
in theory. In 1Partner, the sequential variant of the game should make cooperation in hard
easier to sustain compared to the simultaneous variant. The reason is that defection is less
profitable in the sequential game. While a defecting player can reap the temptation profit of
both games when played simultaneously, this is not possible anymore. A player who wants
to defect has two options. Either she deviates in hard and trigger strategies imply that the
players revert to the stage Nash equilibrium already in easy, or she keeps cooperating in hard
in order to deviate in easy. With our particular payoffs, waiting to deviate in easy is the
optimal defection. This lowers the critical discount factor for cooperation in both games in
1Partner relative to the simultaneous game.

Apart from making the stage game a sequential game, the second experiment uses iden-
tical procedures as the first experiment. We restrict our attention to δ = 0.5, the case in
which multigame contact matters most according to theory.17 The order of events within a
round is the following: Subjects take their decision simultaneously in hard, they are informed
about the outcome in hard, they take their decision in easy, and are finally informed about
the outcome in easy.18 For both 1Partner and 2Partner we have data from six matching
groups. A total of 128 subjects participated in this second experiment. Table A.3 in the
appendix provides detailed information about the observations per treatment. We use the
same subject pool but excluded subjects who did participate in the first series of sessions.
The design of this second experiment and the hypotheses were preregistered anew prior to
the data collection in an OSF registry.

Figure 4 shows mean cooperation rates and 95% confidence intervals. The left panel
contains data for all the rounds whereas the right panel only contains data for the last round
in each supergame. Within each panel, the four bars on the right are the results from the
second experiment. For comparison we include the four bars on the left with the results
of the first experiment for δ = 0.5. Looking at the left panel, the strongest difference we
observe between simultaneous and sequential games is the increase in cooperation rates in
hard for 1Partner (from 0.42 to 0.59, p = .030, Wilcoxon rank-sum test). Cooperation in
easy for 1Partner hardly changes (from 0.57 to 0.61) and is now almost indistinguishable
from the cooperation rate in hard (0.59 and 0.61). For 2Partner, both cooperation in hard
and easy increase by 9 percentage points.19 All these results also hold when looking at the
last round in each supergame. From these results we conclude that the biggest effect of
moving from simultaneous to sequential games is, as expected, the increase in cooperation in
hard for 1Partner. In line with our theoretical arguments, we observe very similar levels of

17To maximize comparability between the first and second experiment we do not generate the supergame
lengths on the spot but use the realizations of the six matching groups of the first experiment at δ = 0.5 in
1Partner for all treatments.

18The screens on the computer have the same structure as in the first experiment. What changes is
that at the beginning of the round the part of the screen for easy is shaded and inactive. This part of the
screen becomes active when subjects have to take their decision in easy. The other part of the screen keeps
displaying the results in hard.

19p = .087 in hard and p = .117 in easy, Wilcoxon rank-sum tests on matching group averages.
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Figure 4: Cooperation rates by treatment (δ = 0.5 only). Mean cooperation rates and 95%
confidence intervals are computed using the matching group averages. The left panel contains all
the rounds; the right panel shows the last round in each supergame.

cooperation in hard and easy for 1Partner. The cooperation rate in hard is now significantly
larger in 1Partner than in 2Partner (p = .026, Wilcoxon rank-sum test). Although the
results of this experiment are closer to our theoretical predictions, cooperation rates have also
increased in 2Partner where cooperation in easy is even somewhat higher than in 1Partner.
Similar to the simultaneous sequence, we find no statistically significant difference in overall
cooperation rates (0.60 vs 0.57, p = .521, Wilcoxon rank-sum test). We will postpone the
question as to whether multigame contact improves subjects’ payoffs and leads to more
cooperative outcomes to the next section and first investigate the evidence for linkage in the
sequential game.

Table 5 shows linear probability models with the decision to cooperate in easy in round t
(ct) as the dependent variable. As in Table 4, the explanatory variables are a dummy
for the cooperative outcome in hard in the contemporary round, (C,C)t, a dummy for the
cooperative outcome in easy in the previous round, (c, c)t−1, and two interaction terms for the
dummies with 2Partner. Since hard is played before easy, subjects already know the outcome
in hard before taking their decision in easy. Comparing the coefficients with the results from
Table 4 suggests that the reaction to a cooperative outcome in hard is considerably stronger
in 1Partner of the sequential game (0.519 vs. 0.296). The highly significant and negative
interaction term indicates that the link between the hard and easy game is a lot smaller for
2Partner (0.519− 0.408 = 0.111). Again, having reached a cooperative outcome in easy in
the previous round has a positive effect on cooperation in easy in the following round, and
this effect is stronger in 2Partner.
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Table 5: Linkage in the sequential games

DV: cooperation in easy (ct)

(1) (2) (3)

2Partner 0.052 0.073∗∗ 0.010
(0.044) (0.018) (0.037)

(C,C)t 0.205∗∗ 0.519∗∗

(0.046) (0.046)
(C,C)t × 2Partner −0.408∗∗

(0.046)
(c, c)t−1 0.492∗∗ 0.186∗∗

(0.048) (0.054)
(c, c)t−1 × 2Partner 0.383∗∗

(0.066)
Constant 0.487∗∗ 0.140∗∗ 0.196∗∗

(0.057) (0.023) (0.028)
Time controls Yes Yes Yes

χ2-test 383.1 1574.0 2951.2
p 0.000 0.000 0.000
R2 0.081 0.433 0.463
N 13,076 9,796 9,796

Notes: Random effects estimates. Dependent variable is cooperation in
easy. Independent variables are a dummy for the treatments with two
partners (with one partner as baseline case); (C,C)t indicates a cooperative
outcome in hard ; (c, c)t−1 indicates a cooperative outcome in easy in the
previous round of the supergame. Time controls are dummies for the first
and second round of the supergame and the supergame round, as well as
the overall round in the experiment. Robust standard errors, clustered on
matching group, in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.
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To conclude, our second series of experiments strongly confirm that subjects link the
two games in the presence of multigame contact. While multigame contact seems to help
establish cooperation in the hard game, overall the results of Figure 4 still do not suggest
dramatic improvements in terms of cooperation. In order to study the overall effect we
combine the data sets from the first and second experiment and turn our attention to the
payoffs, arguably the most relevant metric to gauge whether multigame contact is in the
interest of the parties involved.

4.4 Payoffs and outcomes

Table 6 shows random effects regressions for payoffs. The dependent variable is an individ-
ual’s payoff from both the hard and easy game in a given round. The first two models present
the results for the simultaneous and sequential games separately. In all models we control
for time effects with dummies for the first and second round, as well as a linear time trend
afterwards. In both of the separate regressions the treatment dummy 2Partner is far from
significant, and the point estimate is very small when compared to the average payoff of the
baseline case (i.e., the constant). The two dummies for the discount factors (with δ = 0.5 as
the baseline case) have the expected sign and are highly significant. Moving to the estimates
on the full sample shows that the sequential variant enables subjects to realize somewhat
higher payoffs, while the interaction with 2Partner suggests that this holds irrespective of
multigame contact. Finally, in the rightmost model we add a dummy for the second half of
the supergames, again including the interaction with the dummy 2Partner. Both coefficients
do not reach significance and are very small, indicating that support for the beneficial effects
of multigame contact does not arise with experience.

While multigame contact seems to have no effect on overall payoffs, our data provides
strong evidence for the double-edged sword. Table 7 shows the frequencies of fully cooper-
ative and fully non-cooperative outcomes, as well as intermediate outcomes. The left part
of the table shows the results of the 1Partner treatment (δ = 0.5 only), the right part those
of the 2Partner treatment. In the experiment with simultaneous play we observe a cooper-
ative outcome in both or neither game in 82 percent of the cases in 1Partner, relative to 67
percent in 2Partner. Conversely, the two intermediate outcomes (cooperative in only one of
the two games) are more frequent when the two games are played with different partners.
The differences between 1Partner and 2Partner are significant (p = .031, Pearson’s χ2-test
with robust standard errors, clustered on matching group). The right part of Table 7 shows
that we find qualitatively the same for the sequential variant of the game, but the effect
is considerably stronger. With multigame contact, we observe 90 percent of the outcomes
in the two extreme categories, compared to 63 percent for the 2Partner treatment. The
differences in the distribution of outcomes is highly significant (p = .000).

Result 3: Multigame contact is a double-edged sword.
Subjects in 1Partner are significantly more likely to cooperate in both or neither game,
whereas subjects in 2Partner are more likely to realize partially cooperative outcomes. On
average, multigame contact fails to increase cooperation.
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Table 6: Multigame contact and payoffs

DV: Payoff

Simultaneous Sequential Both Both

2Partner −2.412 −3.403 −2.392 −2.707
(5.137) (5.980) (5.110) (5.217)

δ = 0.1 −20.044∗∗ −20.009∗∗ −19.999∗∗
(5.801) (5.788) (5.810)

δ = 0.9 33.684∗∗ 34.222∗∗ 34.006∗∗

(6.232) (6.290) (6.311)
Sequential 16.321∗ 16.342∗

(7.401) (7.410)
Sequential × 2Partner −1.065 −1.005

(7.705) (7.714)
2nd half 2.846

(3.050)
2nd half × 2Partner 0.537

(4.491)
Constant 179.295∗∗ 219.219∗∗ 179.926∗∗ 178.581∗∗

(6.086) (7.490) (6.060) (5.745)
Time controls Yes Yes Yes Yes

χ2-test 561.9 670.9 825.1 1095.8
p 0.000 0.000 0.000 0.000
R2 0.104 0.085 0.105 0.105
N 44,834 13,076 57,910 57,910

Notes: Random effects estimates. Dependent variable is individual payoff from both games in a
round. Independen variables are dummies for the continuation probability and a dummy for the
treatments with two partners (with one partner, δ = 0.5, and simultanous as baseline case). 2nd

half is a dummy for the second half of the supergames played. Time controls are dummies for
the first and second round of the supergame and the supergame round. Robust standard errors,
clustered on matching group, in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.

Table 7: Outcome of the stage games, δ = 0.5

Simultaneous Sequential

1Partner 2Partner 1Partner 2Partner

Cooperative outcome . . .
. . . in hard and easy 0.24 0.14 0.41 0.23
. . . only in hard 0.01 0.07 0.03 0.08
. . . only in easy 0.17 0.26 0.07 0.29
. . . in neither 0.58 0.53 0.49 0.40

N 5,924 11,574 4,496 8,580

Notes: Share estimates of the outcome of the stage games using all rounds.
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5 Conclusion
Should you open a business with your spouse? According to a compelling and well-established
theoretical argument the answer is yes. Interacting on multiple fronts should enable you to
establish and maintain cooperation in situations where incentives to deviate are particularly
strong. The trick is to link the games and use the slack in the incentive constraint of one
game to enforce cooperation in the other.

Our empirical results suggest that things are more complicated when experimental sub-
jects are exposed to multigame contact. In our treatments with δ = 0.5, and especially when
subjects first interact in the hard game, the difference in the critical discount factor for fully
cooperative equilibria differ widely between multigame and single game contact. Given that
a large experimental literature documents systematic variations in δ for standard prisoner’s
dilemma games, it is surprising that subjects do not seem to be able to realize the benefits of
multigame contact. This points to a shortcoming of our theoretical argument. Linking the
two games in the presence of multigame contact is beneficial as long as the players remain
on the equilibrium path. Off the equilibrium path, linkage seems to produce adverse effects,
because subjects cannot even cooperate in games where this should be easy. This led us to
conclude that multigame contact is a double-edged sword.

Our results shed light on both the beneficial and detrimental effects of linking the actions
in one game to the outcome of the other game. However, it remains a conundrum why the
negative effects of linkage cannot be avoided. After all, if linking the two games leads to
unfavorable outcomes, rational players are free to unlink the two situations. In other words,
what is possible with single game contact should be possible with multigame contact as well
(and more).

20



References
Aoyagi, M., Bhaskar, V., & Fréchette, G. R. (2019). The impact of monitoring in infinitely

repeated games: Perfect, public, and private. American Economic Journal: Microeco-
nomics, 11 (1), 1–43.

Bednar, J., Chen, Y., Liu, T. X., & Page, S. (2012). Behavioral spillovers and cognitive load
in multiple games: An experimental study. Games and Economic Behavior, 74 (1),
12–31.

Bernheim, B. D., & Whinston, M. D. (1990). Multimarket Contact and Collusive Behavior.
RAND Journal of Economics, 21 (1), 1.

Bigoni, M., Casari, M., Skrzypacz, A., & Spagnolo, G. (2015). Time horizon and cooperation
in continuous time. Econometrica, 83 (2), 587–616.

Bruttel, L. V. (2009). The critical discount factor as a measure for cartel stability? Journal
of Economics, 96 (2), 113–136.

Busse, M. R. (2000). Multimarket contact and price coordination in the cellular telephone
industry. Journal of Economics & Management Strategy, 9 (3), 287–320.

Camera, G., & Casari, M. (2009). Cooperation among strangers under the shadow of the
future. American Economic Review, 99 (3), 979–1005.

Cason, T. N., & Mui, V.-L. (2019). Individual versus group choices of repeated game strate-
gies: A strategy method approach. Games and Economic Behavior, 114, 128–145.

Cason, T. N., Savikhin, A. C., & Sheremeta, R. M. (2012). Behavioral spillovers in coordi-
nation games. European Economic Review, 56 (2), 233–245.

Chen, D. L., Schonger, M., & Wickens, C. (2016). Otree—an open-source platform for labora-
tory, online, and field experiments. Journal of Behavioral and Experimental Finance,
9, 88–97.

Ciliberto, F., & Williams, J. W. (2014). Does multimarket contact facilitate tacit collusion?
inference on conduct parameters in the airline industry. RAND Journal of Economics,
45 (4), 764–791.

Coccorese, P., & Pellecchia, A. (2009). Multimarket contact and profitability in banking:
Evidence from italy. Journal of Financial Services Research, 35 (3), 245–271.

Cooper, D. J., & Kühn, K.-U. (2014). Communication, renegotiation, and the scope for
collusion. American Economic Journal: Microeconomics, 6 (2), 247–78.

Dal Bó, P. (2005). Cooperation under the shadow of the future: Experimental evidence from
infinitely repeated games. American Economic Review, 95 (5), 1591–1604.

Dal Bó, P., & Fréchette, G. R. (2018). On the determinants of cooperation in infinitely
repeated games: A survey. Journal of Economic Literature, 56 (1), 60–114.

Duffy, J., & Ochs, J. (2009). Cooperative behavior and the frequency of social interaction.
Games and Economic Behavior, 66 (2), 785–812.

Evans, W. N., & Kessides, I. N. (1994). Living by the “golden rule”: Multimarket contact in
the us airline industry. Quarterly Journal of Economics, 109 (2), 341–366.

Falk, A., Fischbacher, U., & Gächter, S. (2013). Living in two neighborhoods—social inter-
action effects in the laboratory. Economic Inquiry, 51 (1), 563–578.

Feinberg, R. M., & Sherman, R. (1985). An experimental investigation of mutual forbearance
by conglomerate firms. Industry Structure and Performance, 139–166.

21



Feinberg, R. M., & Sherman, R. (1988). Mutual forbearance under experimental conditions.
Southern Economic Journal, 985–993.

Fernandez, N., & Marin, P. L. (1998). Market power and multimarket contact: Some evidence
from the Spanish hotel industry. Journal of Industrial Economics, 46 (3), 301–315.

Freitag, A., Roux, C., & Thöni, C. (2021). Communication and market sharing: An experi-
ment on the exchange of soft and hard information. International Economic Review,
62 (1), 175–198.

Friedman, D., & Oprea, R. (2012). A continuous dilemma. American Economic Review,
102 (1), 337–63.

Ghemawat, P., & Thomas, C. (2008). Strategic interaction across countries and multinational
agglomeration: An application to the cement industry. Management Science, 54 (12),
1980–1996.

Greiner, B. (2015). Subject pool recruitment procedures: Organizing experiments with ORSEE.
Journal of the Economic Science Association, 1 (1), 114–125.

Güth, W., Häger, K., Kirchkamp, O., & Schwalbach, J. (2016). Testing forbearance experi-
mentally: Duopolistic competition of conglomerate firms. International Journal of the
Economics of Business, 23 (1), 63–86.

Heggestad, A. A., & Rhoades, S. A. (1978). Multi-market interdependence and local market
competition in banking. Review of Economics and Statistics, 523–532.

Jans, I., & Rosenbaum, D. I. (1997). Multimarket contact and pricing: Evidence from the us
cement industry. International Journal of Industrial Organization, 15 (3), 391–412.

Miller, A. R. (2010). Did the airline tariff publishing case reduce collusion? Journal of Law
and Economics, 53 (3), 569–586.

Normann, H.-T., & Wallace, B. (2012). The impact of the termination rule on cooperation
in a prisoner’s dilemma experiment. International Journal of Game Theory, 41 (3),
707–718.

Parker, P. M., & Röller, L.-H. (1997). Collusive conduct in duopolies: Multimarket contact
and cross-ownership in the mobile telephone industry. RAND Journal of Economics,
304–322.

Phillips, O. R., & Mason, C. F. (1992). Mutual Forbearance in Experimental Conglomerate
Markets. RAND Journal of Economics, 23 (3), 395.

Phillips, O. R., & Mason, C. F. (1996). Market regulation and multimarket rivalry. RAND
Journal of Economics, 596–617.

Rabin, M. (2000). Risk aversion and expected-utility theory: A calibration theorem. Econo-
metrica, 68 (5), 1281–1292.

Savikhin, A. C., & Sheremeta, R. M. (2013). Simultaneous decision-making in competitive
and cooperative environments. Economic Inquiry, 51 (2), 1311–1323.

Schmitt, M. (2018). Multimarket contact in the hospital industry. American Economic Jour-
nal: Economic Policy, 10 (3), 361–87.

Singal, V. (1996). Airline mergers and multimarket contact. Managerial and Decision Eco-
nomics, 17 (6), 559–574.

Spagnolo, G. (1999a). On Interdependent Supergames: Multimarket Contact, Concavity, and
Collusion. Journal of Economic Theory, 89 (1), 127–139.

Spagnolo, G. (1999b). Social relations and cooperation in organizations. Journal of Economic
Behavior & Organization, 38 (1), 1–25.

22



Thomas, C. J., & Willig, R. D. (2006). The risk of contagion from multimarket contact.
International Journal of Industrial Organization, 24 (6), 1157–1184.

Waldfogel, J., & Wulf, J. (2006). Measuring the effect of multimarket contact on competition:
Evidence from mergers following radio broadcast ownership deregulation. BE Journal
of Economic Analysis & Policy, 5 (1).

Yang, J., Kawamura, T., & Ogawa, K. (2016). Experimental multimarket contact inhibits
cooperation. Metroeconomica, 67 (1), 21–43.

23



Appendix

Table A.1: Cooperation as a Subgame-Perfect Equilibrium (SPE) and a Risk Dominant (RD)
Strategy

Continuation prob. δ = 0.1 δ = 0.5 δ = 0.9

(δSPE
easy = 0.11, δRD

easy = 0.24, δSPE = 0.38, δRD = 0.44, δSPE
hard = 0.52, δRD

hard = 0.56)

- 1 partner
- easy game 7 SPE 7 RD 3 SPE 3 RD 3 SPE 3 RD
- hard game 7 SPE 7 RD 3 SPE 3 RD 3 SPE 3 RD

- 2 partners
- easy game 7 SPE 7 RD 3 SPE 3 RD 3 SPE 3 RD
- hard game 7 SPE 7 RD 7 SPE 7 RD 3 SPE 3 RD

Table A.2: Summary of the sessions (simultaneous)

δ = 0.1 δ = 0.5 δ = 0.9

1Part. 2Part. 1Part. 2Part. 1Part. 2Part.

# sessions 3 6 3 6 2 3
# matching groups 6 6 6 6 5 5
# subjects 60 116 58 114 34 54
avg. # supergames by subject 33 33 26 25 10 9
total # decisions in each game 6030 11754 5924 11574 3752 5800
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Table A.3: Summary of the sessions (sequential)

δ = 0.5

1Part. 2Part.

# sessions 3 6
# matching groups 6 6
# subjects 44 84
avg. # supergames by subject 26 26
total # decisions in each game 4496 8580
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Figure A.1: Cooperation rates by treatment: Cooperation rates refer to the share of participants
who choose to cooperate. Matching groups are the unit of observation and we assume indepen-
dence between them. Mean cooperation rates and 95% confidence intervals are computed using the
matching group averages. The left panel restricts to rounds 1-3 in each supergame and the right
panel contains round 4 to the last round in the supergame.
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Table A.4: Outcome of the stage games by treatment

δ = 0.1 δ = 0.5 δ = 0.9

1Part. 2Part. 1Part. 2Part. 1Part. 2Part.

Cooperative outcome . . .
. . . in hard and easy 0.10 0.07 0.24 0.14 0.46 0.32
. . . only in hard 0.02 0.04 0.01 0.07 0.01 0.09
. . . only in easy 0.17 0.26 0.17 0.26 0.14 0.27
. . . in neither 0.71 0.63 0.58 0.53 0.39 0.33

N 6,030 11,754 5,924 11,574 3,752 5,800

Notes: Share estimates of the outcome of the stage games using all rounds. Pearson’s χ2-test with ro-
bust standard errors, clustered on Unique number for each group, for the difference between 1Partner and
2Partner yields p = .170 at δ = 0.1, p = .031 at δ = 0.5, and p = .060 at δ = 0.9.

Table A.5: Outcome of the stage games in the last supergame round by treatment

δ = 0.1 δ = 0.5 δ = 0.9

1Part. 2Part. 1Part. 2Part. 1Part. 2Part.

Cooperative outcome . . .
. . . in hard and easy 0.02 0.01 0.11 0.06 0.45 0.27
. . . only in hard 0.01 0.02 0.01 0.06 0.00 0.10
. . . only in easy 0.07 0.08 0.15 0.22 0.13 0.32
. . . in neither 0.90 0.89 0.73 0.66 0.42 0.31

N 1,970 3,770 1,488 2,812 330 500

Notes: Share estimates of the outcome of the stage games restricting to the last round in the supergame.
Pearson’s χ2-test with robust standard errors, clustered on Unique number for each group, for the difference
between 1Partner and 2Partner yields p = .387 at δ = 0.1, p = .049 at δ = 0.5, and p = .030 at δ = 0.9.

Table A.6: Outcome of the stage games of the last round in the supergame, δ = 0.5

Simultaneous Sequential

1Partner 2Partner 1Partner 2Partner

Cooperative outcome . . .
. . . in hard and easy 0.11 0.06 0.27 0.11
. . . only in hard 0.01 0.06 0.03 0.05
. . . only in easy 0.15 0.22 0.06 0.30
. . . in neither 0.73 0.66 0.64 0.53

N 1,488 2,812 1,128 2,152

Notes: Share estimates of the outcome of the stage games restricting to the last round in the supergame.
Pearson’s χ2-test with robust standard errors, clustered on Unique number for each group, for the difference
between 1Partner and 2Partner yields p = .049 when the two games are played simultaneously and p = .001
when the two games are played sequentially.
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