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1 Introduction and Motivation

The rational-expectations paradigm is the traditional approach to explaining phenomena in

financial markets and the macroeconomy. It assumes that investors are risk-averse utility op-

timizers with unbiased Bayesian forecasts. However, the rational paradigm has been criticized

because these assumptions are descriptively false and its predictions fail to explain the data

(Gennaioli and Shleifer, 2018). An alternative behavioral paradigm has been developed, which

relaxes the assumptions of rational expectations and consequently is much more successful in

explaining the observed behavior of individual investors. But the behavioral paradigm has

been criticized on the grounds that it has not shown that the psychological biases exhibited

by individual investors lead to aggregate effects. For instance, while Fama (2012) agrees that

behavioral finance is very good at describing individual behavior, he argues that the “jumps

that [behaviorists] make from there to markets aren’t validated by the data.” Similarly, Scholes

(2009) says that the trouble with behavioral economics is that “it really hasn’t shown in ag-

gregate how it affects prices.” Hirshleifer (2001, p. 1540) summarizes this perspective stating

that “Economists often argue that errors are independent across individuals, and therefore can-

cel out in equilibrium.” Motivated by this observation, our paper aims to provide a model of

behavioral finance to demonstrate that even if individual “errors” in decisions or beliefs cancel

out in equilibrium, their impact on asset prices and the macroeconomy will not.

There are two building blocks of behavioral finance—psychological biases of investors and

limits to arbitrage.1 The model we develop relies on the first—psychological biases in decision

making. We do not impose exogenous belief configurations on investors. Instead we endogenize

beliefs, following the lead of Hansen and Sargent (2007), who argue that doing so ensures

deviations from the rational benchmark are reasonable. However, the framework of Hansen and

Sargent (2007) can only generate endogenous pessimism.2 We therefore develop a novel model

of belief formation where both optimism and pessimism can arise endogenously.

Both psychology and neuroscience find that human behavior is the result of a complex

interaction between cognitive and emotional responses to stimuli (Kahneman, 2003, Camerer,

Loewenstein, and Prelec, 2004, Pessoa, 2008); for instance, studies in neuroscience identify

distinct brain modules that specialize in different activities, with the amygdala associated with

1Excellent surveys of these two building blocks are provided by Shleifer (2000), Barberis and Thaler (2003),
Hirshleifer (2001, 2015), Shefrin (2007, 2010), and Statman (2010, 2011).

2Similarly, Bhamra, Uppal, and Walden (2021) only generate pessimism, while Brunnermeier and Parker
(2005) and Bracha and Brown (2012) can generate only endogenous optimism.
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emotions and the prefrontal cortex with analytical thinking (Reisberg, 2001). Motivated by

these findings, we develop a framework in which we postulate an emotional process for belief

formation together with a rational process that, for a given set of beliefs, chooses actions to

maximize expected utility.

Specifically, an investor’s decisions are determined in two stages. In the first stage, each

investor chooses her beliefs about the expected returns for each firm based on her psychological

distance from that firm. Trope and Liberman (2010) explain that psychological distance is

a subjective experience. Its reference point is the self, here and now, and the different ways

in which an object might be removed from that point—in time, space, social distance, and

likelihood—constitute different distance dimensions. This endogenous selection of beliefs leads

to biases relative to the rational-expectations benchmark. The bias in beliefs can be positive,

which signifies optimism, or negative, signifying pessimism. Importantly, an investor’s degree

of bias can vary across firms. In the second stage, the investor chooses her optimal consumption

and portfolio, given her beliefs. Effectively, the investor engages in a simultaneous-move intrap-

ersonal game. The simultaneous choice of beliefs and actions represents the interaction of two

processes: a psychological process governing belief selection and a rational process governing

action choices.

In order to study the effect of behavioral biases on macroeconomic quantities, we combine

our model of belief formation with the Cox, Ingersoll, and Ross (1985) framework, where both

asset prices and economic growth are endogenous. As in Cox, Ingersoll, and Ross (1985), we

consider a setting with a finite number of heterogeneous firms whose physical capital is subject

to exogenous shocks. But, in contrast with Cox, Ingersoll, and Ross, we have heterogeneous

investors with Epstein and Zin (1989) and Weil (1990) preferences coupled with beliefs that

deviate from rational expectations. We then specify the behavioral biases so that they “cancel

out” when aggregated across all investors. We show that, even in this case, the individual biases

in beliefs affect both the interest rate and the market price of risk; that is, both the mean and

volatility of the stochastic discount factor. The belief biases have an effect also on individual

consumption, which does not cancel out in aggregate, and hence influences macroeconomic

quantities such as aggregate investment and growth.

We consider two distinct approaches to ensuring biases “cancel out.” First, we ensure that

the portfolio errors resulting from biased beliefs cancel out when aggregated across investors.

To implement this approach, we consider the case where each investor is more optimistic about
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a small subset of firms, which are psychologically close to her, and pessimistic about the rest,

which are psychologically distant. Hence, investors tilt their portfolios towards the firms about

which they are optimistic. We specify that investors are optimistic and pessimistic about

different firms, so there is heterogeneity in portfolio errors that cancels out when added across

investors. We also restrict the mean level of bias to be identical across investors. Even though

portfolio errors cancel out, each investor has the same biased demand for the bond, which

distorts the interest rate. In the second approach, we specify the biased beliefs themselves to

cancel out when aggregated across investors and firms. However, these biases still distort the

interest rate, because as the wealth distribution fluctuates over time, the relative importance of

an individual’s biases changes. Thus, fluctuations in relative wealth lead to a dislocation in the

money market, which changes both the mean and volatility of the stochastic discount factor.3

Hirshleifer (2001, page 1534) states that “Over time I believe that the purely rational

paradigm will be subsumed by a broader psychological paradigm that includes full rationality

as a significant special case. . . . The central task of asset pricing is to examine how expected

returns are related to risk and to investor misvaluation.” Our framework provides a way to

connect investor misvaluations of expected returns to psychological distance. Importantly, our

model needs only two free parameters to characterize fully the deviation of beliefs from rational

expectations for all investors, with rational expectations a special case of our general framework.

The single key driver of the results in our model, that investors hold biased portfolios, is

one for which economists have gathered a great deal of empirical evidence. Guiso, Haliassos,

and Jappelli (2002), Haliassos (2002), Campbell (2006), Calvet, Campbell, and Sodini (2007),

and Guiso and Sodini (2013) highlight underdiversification in the portfolios of individual in-

vestors. Polkovnichenko (2005), using data from the Survey of Consumer Finances, finds that

for investors that invest in individual stocks directly, the median number of stocks held was two

from 1983 until 2001, when it increased to three. Barber and Odean (2000) and Goetzman and

Kumar (2008) report similar findings based on data for individual investors at a U.S. brokerage

firm. This evidence can be interpreted as suggesting that investors are optimistic about a small

number of stocks and pessimistic about the rest.

Huberman (2001) introduces the idea that investors are optimistic about assets with which

they are “familiar,” that is, assets that are psychologically close, and provides evidence of this

3Our focus on the money market complements the analysis of the effects of speculation on asset prices in
exchange economies in Atmaz and Basak (2018) and Martin and Papadimitriou (2021), where the risk-free interest
rate is exogenous.
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in a multitude of contexts. Grinblatt and Keloharju (2001) find that not just temporal dis-

tance but also other aspects of an asset, such as the language in which the annual reports are

published and the cultural background of the chief executive, may affect investors’ portfolio

holdings. Massa and Simonov (2006) also find that investors bias their portfolios toward stocks

that are geographically and professionally close to the investor. Keloharju, Knüpfer, and Lin-

nainmaa (2012) find that people tend to invest in firms they know through their product-market

experiences, and that this bias is linked to preferences as opposed to information. The most

striking example of biased investing is the holding of “own-company stock,” that is, stock of

the company where the person is employed (Haliassos, 2002).4 Cohen (2009) shows that this

biased perspective of own-company stock may be driven by loyalty considerations. French and

Poterba (1990) and Cooper and Kaplanis (1994) document that investors bias their portfolios

toward “home equity” rather than diversifying internationally.

A paper close to our work is Heyerdahl-Larsen and Walden (2021) that studies in a produc-

tion economy the effects of disagreement amongst investors on both financial and real quantities.

We also study a production economy with disagreement, but with Epstein and Zin (1989) pref-

erences and under the restriction that either portfolio differences or belief differences cancel

out. Moreover, our model allows for multiple trading dates, which makes it possible to study

the impact of changes in the wealth distribution—a key driver of our results. Our paper is

related also to other theoretical models where investors choose not to invest in all available

assets. For example, Merton (1987) develops a static mean-variance model where each investor

is aware only of a subset of the available securities. Cao, Han, Hirshleifer, and Zhang (2011)

develop a model to explain how the portfolio holdings in Merton (1987) can arise endogenously

when investors are averse to changes from the status quo. Garleânu, Panageas, and Yu (2014)

use distance-dependent participation costs to generate differences in portfolio holdings across

investors and study the implications for crashes and contagion in financial markets.

The rest of this paper is organized as follows. Section 2 describes the general model. In

Section 3, we consider the setting where the portfolio errors of investors cancel out, but the

implications of their errors do not cancel out. In Section 4, we consider the setting where the

biased beliefs of investors cancel out, but the implications of their biases do not. We conclude

in Section 5. Proofs for all our results are presented in the appendix.

4Mitchell and Utkus (2004) report that five million Americans have over sixty percent of their retirement
savings invested in company stock and that about eleven million participants in 401(k) plans invest more than
twenty percent of their retirement savings in their employer’s stock.
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2 The General Model

In this section, we describe a model of a production economy where investors have biased beliefs

and recursive utility. In the next two sections, we then make particular parametric assumptions

in order to characterize the equilibrium in this economy in closed form, which makes it easy to

understand the economic intuition underlying the key results.

2.1 Firms and Wealth Dynamics of Investors

There are N firms indexed by n ∈ {1, . . . , N}. Firms are modeled as in Cox, Ingersoll, and Ross

(1985). The value of the capital stock in each of the N firms at date t is denoted by Kn,t and

the output flow by

Yn,t = αnKn,t, (1)

for some constant technology level αn > 0. The level of a firm’s capital stock can be increased

by investing at the rate In,t. We thus have the following capital accumulation equation for an

individual firm:

dKn,t = In,t dt+Kn,t σndZn,t,

where dZn,t is the increment in a standard Brownian motion, such that EP
t [dZn,tdZm,t] = 0 for

n 6= m. Firm-level heterogeneity creates benefits from diversifying investments across firms. A

firm’s output flow is divided between its investment flow and dividend flow:

Yn,t = In,t +Dn,t. (2)

Using (1) and (2), we can therefore write the capital accumulation equation as

dKn,t =
(
αnKn,t −Dn,t

)
dt+Kn,t σndZn,t. (3)

In the Cox, Ingersoll, and Ross (1985) model, the return on a firm’s physical capital, αn,

equals the return on its stock. Similarly, the volatility of the return on a firm’s capital, σn,

equals the volatility of the return on its stock. In addition to investing in these N risky firms,

or equivalently, in the stocks of these firms, investors put Bh,t in the risk-free asset at date t,

which has an interest rate it.

Given that the investor’s wealth, Wh,t, is held in either the risk-free asset or invested in a

risky firm, we have that:

Wh,t = Bh,t +
N∑
n=1

Khn,t.
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Denoting the proportion of an investor’s wealth invested in firm n by ωhn, we have that the

amount of investor h’s wealth invested in firm n is Khn,t = ωhnWh,t and the amount invested

in the risk-free asset is Bh,t =
(
1−

∑N
h=1 ωhn

)
Wh,t.

The dividends distributed by firm n are consumed by investor h:

Chn,t = Dhn,t =
Khn,t

Kn,t
Dn,t,

where Chn,t is the consumption rate of investor h from the dividend flow of firm n. The resulting

dynamic budget constraint for investor h is given by

dWh,t

Wh,t
=
(

1−
N∑
n=1

ωhn,t

)
itdt+

N∑
n=1

ωhn,t

(
αndt+ σndZn,t

)
−
Ch,t
Wh,t

dt,

where Ch,t =
∑N

n=1Chn,t is the consumption rate of investor h.

2.2 Psychological Distance and Psychological Bias

Motivated by the empirical evidence in Bhamra, Uppal, and Walden (2021), we develop a frame-

work in which an investor’s biases about stocks are determined by the psychological distance

between the investor and the stock. In contrast to Bhamra, Uppal, and Walden (2021), where

investors can only be pessimistic about stocks (with the level of pessimism depending on the

psychological distance between a firm and the investor), our model allows an investor to be

optimistic about some firms and pessimistic about others.5 As we show below, the level of

optimism an investor has about a particular firm decreases with her psychological distance from

that firm. Once psychological distance is beyond some threshold, optimism turns to pessimism.

We denote the psychological distance between an investor h and firm n by dhn, which could

represent geographical distance, temporal distance, and/or social distance. We now explain

how the psychological bias of an investor h to firm n, denoted by bhn, is related to psychological

distance.

We assume that each investor has a trust region of length 2S centered on the investor,

where S is a random variable that is identically and independently distributed across investors.

5There is a large literature in psychology that documents that individual are optimistically biased when
making certain decisions. For instance, when assessing the likelihood of getting Covid or being involved in a car
accident, individuals tend to overestimate the likelihood of favorable outcomes (Weinstein, 1980, Slovic, Fischhoff,
and Lichtenstein, 1980, Slovic, 1987). These psychological biases are present also when entrepreneurs decide to
launch new businesses (Baker and Wurgler, 2013) and chief executives pursue mergers (Malmendier and Tate,
2008). Similarly, Shiller (2015) describes how “wishful thinking on the part of investors that blinds us to the
truth of our situation” leads to irrational exuberance in financial markets.
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Investors know the mean of S, denoted by E[S], but do not know S. When dhn < S, the firm is

within the investor’s trust region and when dhn > S, the firm is outside the trust region. The

fraction of the trust region which is penetrated by the firm is S−dhn
2S . We now define the level of

trust investor h has in expected return measurements for firm n as being directly proportional

to the mean of the positive part of this fraction.

Definition 2.1. The level of trust an investor h has in measurements about expected returns

for firm n is a random variable given by

Thn = T max

(
S − dhn

S
, 0

)
,

where T > 1 is the maximum level of trust.

From the above definition, we can see that when dhn = 0, then Thn = T . Also, when

dhn > S, we have Thn = 0. Thus, the level of trust investor h has about expected returns for

firm n is a random variable taking values between 0 and T . Trust will have a mean value, which

we use to define psychological bias as shown below.

Definition 2.2. The psychological bias investor h has about firm n is given by

bhn = E[Thn]− 1. (4)

In order to connect explicitly the psychological bias of an investor about a firm to the

psychological distance between them, we need to make an assumption about the probability

distribution for S, the size of the trust region. We compute the expected level of trust, and

hence, the psychological bias by updating the prior distribution for the trust region. A key

element of this is choosing the prior. We choose the least-informative prior according to the

Principle of Maximum Entropy (Jaynes, 1957, 1986). Choosing the least-informative prior is

motivated by the desire for cautiousness. We update the prior using Bayes’ Law, as in Shepard

(1987). Using the resulting posterior, we compute expected trust to obtain the expression for

psychological bias shown in the proposition below.

Proposition 2.1. The psychological bias of investor h about firm n, in terms of the psycho-

logical distance between investor h and firm n, is

bhn = e−κ(dhn−d) − 1 ∈ (−1, T − 1], (5)

where the decay factor κ is given by κ = 2
E[S] and d = 1

κ lnT .
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Observe that bhn decays exponentially, where the decay factor κ is inversely proportional

to the mean value of the size of the investor’s trust region, E[S]. At dhn = 0, an investor’s

psychological bias about a firm is at its maximum positive value, eκd − 1 = T − 1 > 0, indi-

cating optimism. As dhn increases, bhn falls, reducing the level of optimism until the rational-

expectations threshold, dhn = d, is reached so that investor h has rational beliefs, in which case

bhn = 0. Beyond the rational-expectations threshold, bhn < 0, indicating a pessimistic bias. The

rational-expectations threshold psychological distance at which optimism turns to pessimism is

increasing in the mean size of the trust region and the maximum level of trust.

2.3 Biased Beliefs, Martingales, and Relative Entropy

While under the rational-expectations measure P the expected rate of return on firm n’s stock

is αn, investor h believes it to be αn + νhn,t. We can summarize how investor h’s beliefs about

expected returns on the N stocks deviate from P by the vector νh,t = (νh1,t, . . . , νhN,t)
>. We

denote investor h’s subjective beliefs by the probability measure Ph. Before describing how

the belief Ph is formed, we describe how one can use an exponential martingale to distort the

rational beliefs P to obtain Ph and to measure the distortion of Ph relative to P.

For expositional ease, we start by considering the special case where the expected return on

a single firm n is distorted, i.e. νhn,t 6= 0, but νhn′,t = 0 for all n′ 6= n.6 We denote the resulting

probability measure by Phn.7 We denote the exponential martingale which distorts P into Phn

via Mhn, where

Mhn,t = exp

(
−1

2

∫ t

0

(
νhn,u
σn

)2

du+

∫ t

0

νhn,u
σn

dZn,u

)
.

We start by using the exponential martingale Mhn to define the expected returns on firm n over

the interval [t, t+ dt) under the probability measure Phn, EPhn
t [dRn,t], where

EPhn
t [dRn,t] = Et

[
Mhn,t+dt

Mhn,t
dRn,t

]
. (6)

To understand how the martingale distorts the rational-expectations probability measure P,

observe that Mhn,t+dt = Mhn,t + dMhn,t and so Mhn,t+dt/Mhn,t = 1 + dMhn,t/Mhn,t. Therefore,

(6) implies that

EPhn
t [dRn,t] = Et [dRn,t] + Et

[
dMhn,t

Mhn,t
dRn,t

]
.

6We provide a heuristic explanation for why a distortion in a probability must be carried out via an exponential
martingale in Appendix C.

7The probability measure Ph is obtained by combining the probability measures Ph1, . . . ,PhN . Formally, the
probability measure Ph is the product measure Ph1 × . . .× PhN .
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The above equation is useful, because we can see that the expected return under P is distorted

by the amount Et

[
dMhn,t

Mhn,t
dRn,t

]
to give the expected return under Phn. This is known as

Girsanov’s theorem.

We can measure the size of the distortion in the probabilities by using the concept of relative

entropy.

Definition 2.3. The conditional relative entropy per unit time from the personal belief Phn to

the objective belief P is

DKL[P|Phn] = − 1

dt
EP
t

[
ln
Mhn,t+dt

Mhn,t

]
,

which, using Ito’s Lemma, can be rewritten as

=
1

2

1

dt
EP
t

[(
dMhn,t

Mhn,t

)2
]

=
1

2

(
νhn,t
σn

)2

.

The size of the distortion in beliefs represented by Phn relative to P is given by 1
2

(
νhn,t
σn

)2
.

When beliefs about expected returns for all N stocks can change, we obtain the relative entropy

from Ph to P,

DKL[P|Ph] =
1

2

N∑
n=1

(
νhn,t
σn

)2

.

The relative entropy, DKL[P|Ph], will play a key role in the way we generate biased beliefs

endogenously.

2.4 Epstein-Zin Preferences with Biased Beliefs

An investor h’s time-t utility level, Uh,t, is defined by an intertemporal aggregation of date-t

consumption flow, Ch,t, and the time-t certainty-equivalent of date t+ dt utility:8

Uh,t = A(Ch,t, µ
Ph
h,t[Uh,t+dt]),

8The only difference with Epstein and Zin (1989) is that we work in continuous time, whereas they work
in discrete time. The continuous-time version of recursive preferences is known as stochastic differential utility
(SDU), and is derived formally in Duffie and Epstein (1992). Schroder and Skiadas (1999) provide a proof of
existence and uniqueness for the finite-horizon case.
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where A(·, ·) is the time aggregator, defined by

A(x, y) =
[
(1− e−δdt)x1− 1

ψ + e−δdty
1− 1

ψ

] 1

1− 1
ψ ,

in which δ > 0 is the rate of time preference, ψ > 0 is the elasticity of intertemporal substitution.

The expression µP
h

h,t[Uh,t+dt] is the certainty-equivalent operator of utility at time t + dt under

biased beliefs and is defined below.

Definition 2.4. The date-t (biased) certainty equivalent of date-t+ dt utility is given by

µP
h

h,t[Uh,t+dt] = µ̂P
h

h,t[Uh,t+dt] + Uh,tLh,tdt, (7)

where the certainty equivalent µ̂P
h

h,t[Uh,t+dt] is defined by

uγh

(
µ̂P

h

h,t[Uh,t+dt]
)

= EPh
t [uγh (Uh,t+dt)], (8)

γh is investor h’s relative risk aversion, and

Lh,t[P|Ph] = − 1

γh

N∑
n=1

1 + bhn
bhn

DKL[P|Phn] = − 1

γh

N∑
n=1

1

1− eκ(dhn−d)
DKL[P|Phn]. (9)

The definition of the certainty equivalent in (7) consists of two new elements. First, in

(8) we see the standard definition of a certainty equivalent but where the expectation is taken

under the investor’s personal beliefs Ph. Second, (7) includes a penalty for deviating from the

rational-expectations belief P, which is given in (9).

The following proposition makes the intuition underlying Definition 2.4 more transparent.

Proposition 2.2. The date-t biased certainty equivalent of date-t+ dt utility is equivalent to

µP
h

h,t[Uh,t+dt] = EPh
t [Uh,t+dt]−

1

2
γhUh,tV art

[
dUh,t
Uh,t

]
+ Uh,tLh,t[P|Ph]. (10)

We can now see that the investor’s beliefs enter naturally into the certainty equivalent via the

term EPh
t [Uh,t+dt]. There is also, as is standard, a penalty for risk, given by 1

2γhUh,tV art

[
dUh,t
Uh,t

]
.

The third term, which is a novel, reflects the penalty for deviating from the rational belief P.

It is important to note that the penalty Lh,t[P|Ph] contains a weighted-sum of Kullback-Leibler

divergences, where the weight 1

1−eκ(dhn−d)
is positive if and only if dhn < d. The change in sign

of the weights occurs in just the right way, making it possible to obtain endogenous optimism

and pessimism.

11



Investor h aims to maximize her time-t utility by optimally choosing her beliefs, portfolio

weights, and consumption according to the following Bellman equation

Uh,t = sup
Ch,t

A
(
Ch,t, sup

ωh,t

inf
{Phn}n∈AP

sup
{Phn}n∈AO

µP
h

h,t[Uh,t+dt]
)
, (11)

where Uh,t is now optimized time t utility, AO is the set of firms about which the investor is

optimistic, i.e. dhn < d, and AP is the set of firms about which the investor is pessimistic, i.e.

dhn > d. Recall that the investor’s subjective beliefs are represented by the probability measure

Ph, which be written as the product measure Ph = Ph1 × · · · × PhN , as in Section 2.3.

Proposition 2.3. The investor’s consumption-portfolio choice problem in (11) can be rewritten

as the following Hamilton-Jacobi-Bellman equation:

0 = sup
Ch,t

δh uψh

(
Ch,t
Uh,t

)
+ sup

ωh,t

inf
{Phn}n∈AP

sup
{Phn}n∈AO

1

Uh,t
µP

h

h,t

[
dUh,t
dt

]
, (12)

where uψh(x) = x
1− 1

ψh

1− 1
ψh

.

In general, for the economy described above, the choices of individual investors and the

resulting equilibrium cannot be characterized in closed form. The main challenge in obtaining a

closed-form solution arises because investors demand to hedge against a stochastic investment

opportunity set, which in our model is a consequence of the interest rate being stochastic. There

are two conditions under which investors would not have a demand for intertemporal hedging,

and hence, it would be possible to solve the model in closed form. One, if the interest rate were

constant, and two, if investors were to have unitary risk aversion.9

We provide two examples below, in Sections 3 and 4, that correspond to these two conditions.

In each example, we characterize the equilibrium in closed form and show that, even when the

biases are specified in such a way that they cancel out, they still impact asset prices. We provide

two complementary definitions of what it means for biases to “cancel out.” Our first definition,

given in Section 3, is framed in terms of portfolio errors relative to the case where all investors

are rational. The second definition, given in Section 4, is defined directly in terms of the biases

themselves. The first example shows that even if the portfolio biases of investors cancel out,

there is still an impact on asset prices and macroeconomic variables. The second example shows

that even if the biases themselves cancel out, they still distort asset prices.

9If the interest rate were constant, then the investment opportunity set would be nonstochastic and so there
would be nothing to hedge. And, if investors were to have unitary risk aversion, they would be myopic and have
no desire to hedge against future changes investment opportunities—their intertemporal hedging demand would
be zero.
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3 Example 1: Economy where Portfolio Biases Cancel Out

In this section we show that, even if behavioral biases lead to “errors” in the portfolios of

individual investors that cancel out in the aggregate, the biases still impact asset prices and

macroeconomic variables.

Our focus is on the impact of behavioral biases, not heterogeneous preferences, so we as-

sume the N investors have the same time discount rate δ, the same elasticity of intertemporal

substitution ψ, and identical relative risk aversion γ.

In order to characterize the equilibrium in closed form, we make the following assumption.

Assumption 3.1. In the economy considered in this example, we assume expected returns and

return volatilities are the same across risky assets; that is, αn = α and σn = σ. We also assume

that the mean bias is the same across all investors; that is, µb,h = µb, where

µb,h =
1

N

N∑
n=1

bhn.

The assumption that the moments of asset returns are identical across assets implies that

the optimal (unbiased) portfolio is one that invests 1/N in each of the risky assets. This allows

us to define precisely the “canceling out” of portfolio errors when these errors are aggregated

across investors.

Definition 3.1. Suppose investor h’s optimal portfolio weight in equilibrium for firm n is

ωhn =
1

N
+ εhn,

where 1
N is the unbiased portfolio weight and εhn is the ‘error’ of investor h’s portfolio when

investing in firm n. The portfolio errors εhn “cancel out across investors” if

∀n, 1

H

H∑
h=1

εhn = 0. (13)

It is important to understand that the above definition is not just market clearing in disguise,

because it pertains to the portfolio errors for a single stock n.

3.1 Portfolio and Consumption Choices of Individual Investors

We assume for now, and confirm in Proposition 3.4 below, that Assumption 3.1 leads to an equi-

librium where the interest rate is constant. In this case, the Hamilton-Jacobi-Bellman equation

13



can be decomposed into two parts: a single-period linear-quadratic optimization problem for the

joint determination of beliefs and portfolios and an intertemporal consumption choice problem.

In the following proposition, we see that our model provides a tractable formulation of

both endogenous optimism and pessimism—existing work that endogenizes beliefs, such as

Brunnermeier and Parker (2005), Hansen and Sargent (2007), and Bhamra, Uppal, and Walden

(2021), cannot generate both optimism and pessimism.

Proposition 3.1. The investor’s optimization problem consists of two parts, a linear-quadratic

joint beliefs-portfolio optimization problem

max
ωh,t

min
{Phn}n∈AP

max
{Phn}n∈AO

LQh(ωh,νh), (14)

and an intertemporal consumption choice problem

0 = sup
Ch

(
δ uψ

(
Ch
Uh

)
− Ch
Wh

+ max
ωh,t

min
{Phn}n∈AP

max
{Phn}n∈AO

LQh(ωh,νh)

)
, (15)

where

LQh(ωh,νh) = EPh
t [dRh,t]−

1

2
γV art[dRh,t] + Lh,t[P|Ph], (16)

where AO is the set of firms about which the investor is optimistic (dhn < d), AP the set about

which the investor is pessimistic (dhn ≥ d), and the penalty Lh,t[P|Ph] is defined in (9).

The expression in (16) is the standard definition of mean-variance utility, but with two

changes. One, the expectation is taken under the investor’s personal beliefs Ph. Two, there is a

penalty for deviating from the rational-expectations belief P, which is given in (9). In the above

optimization problem, optimal portfolios and beliefs about expected returns are determined

simultaneously via an intrapersonal game. Belief selection is the psychological aspect of the

game, whereby beliefs are determined for a given portfolio. Portfolio choice is the rational

aspect of the game, in which an optimal portfolio is selected based on beliefs.

To understand this intrapersonal game between the psychological and rational selves of an

individual, we first focus on the psychological aspect, i.e.

min
{Phn}n∈AP

max
{Phn}n∈AO

N∑
n=1

(EPhn
t − EP

t )

[
dRh,t
dt

]
− 1

γ

N∑
n=1

1

1− eκ(dhn−d)
DKL[P|Phn],

which we can separate into the selection of the optimistic beliefs

max
{Phn}n∈AO

∑
n∈AO

(EPhn
t − EP

t )

[
dRh,t
dt

]
− 1

γ

∑
n∈AO

1

1− eκ(dhn−d)
DKL[P|Phn],
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and the pessimistic beliefs

min
{Phn}n∈AP

∑
n∈AP

(EPhn
t − EP

t )

[
dRh,t
dt

]
− 1

γ

∑
n∈AP

1

1− eκ(dhn−d)
DKL[P|Phn].

Observe that the separation of beliefs into optimistic and pessimistic depends on psychological

distance: investor h has optimistic beliefs about firm h if dhn < d and pessimistic beliefs if

dhn > d. The case of dhn = d corresponds to rational beliefs about firm n.

The optimistic beliefs are selected by trading off higher perceived expected portfolio returns,

achieved by making the term EPh
t [dRh,t/dt] − EP

t [dRh,t/dt] =
∑N

n=1 νhn,tωhn,t more positive,

against a penalty for deviating from the rational-expectations belief. The penalty is a weighted

sum of the relative entropies of the probability measures Ph1, . . . ,PhN , which together form Ph.

The weights, 1

1−eκ(dhn−d)
, are positive because dhn < d and become smaller as the psychological

distance dhn decreases. Therefore, an optimistic deviation in beliefs from P is penalized less

severely when the psychological distance between the investor and firm is closer to zero—this

generates increasingly optimistic beliefs for dhn < d as dhn gets closer to zero. Beliefs are most

optimistic when dhn = 0.

The pessimistic beliefs are selected by trading off higher perceived expected portfolios re-

turns, acheived by making the term EPh
t [dRh,t/dt]−EP

t [dRh,t/dt] =
∑N

n=1 νhn,tωhn,t more neg-

ative, against a penalty for deviating from the rational-expectations belief. In contrast to the

case of optimistic beliefs, the weights in the penalty function are now negative (because dhn > d)

and become smaller in magnitude as the psychological distance dhn increases. Therefore a pes-

simistic deviation in beliefs from P is penalized less severely when the psychological distance

between the investor and firm is larger.

The solution to the optimal belief problem for a given portfolio ωh,t is

νhn,t = γh
bhn

1 + bhn
ωhn,tσ

2 = γh(1− eκ(dhn−d))ωhn,tσ
2. (17)

We see that for a positive portfolio weight (ωhn,t > 0), the distorted expected return on a firm

is increased when the investor has a positive bias toward a firm (bhn > 0, because dhn < d) and

decreased when an investor has a negative bias towards a firm, (bhn < 0, because dhn > d).

Substituting (17) into (16) and simplifying gives

max
ωh,t

EPh

t [dRh,t]−
1

2
γV art[dRh,t]−

1

2
γσ2

N∑
n=1

bhn
1 + bhn

ω2
hn,t

= max
ωh,t

i+

N∑
n=1

(α− i)ωhn,t −
1

2
γσ2

N∑
n=1

1

1 + bhn
ω2
hn,t. (18)

15



We can now see that a positive bias reduces the penalty for risk, while a negative bias increases

it. Thus, the investor chooses the following beliefs and portfolio.

Proposition 3.2. The investor’s deviation in beliefs is

νhn = (α− i)bhn = (α− i)
(
e−κ(dhn−d) − 1

)
, (19)

implying that investor h’s beliefs about the expected risk premium for firm n are

α− i+ νhn = (α− i)(1 + bhn) = (α− i)e−κ(dhn−d),

and the investor’s portfolio choice is

ωhn =
1

γ

α− i+ νhn
σ2

=
1

γ

α− i
σ2

(1 + bhn) =
1

γ

α− i
σ2

e−κ(dhn−d). (20)

From (19), we see that an investor h has optimistic beliefs about firm n’s expected risk

premium when dhn < d, rational beliefs when dhn = d, and pessimistic beliefs when dhn > d.

The expression for the portfolio weights in (20) is the standard Merton portfolio weight but using

investor h’s personal subjective expectation of stock n’s return. We see from this expression

that if an investor’s psychological distance from a firm is less than the threshold, d, she has a

positive bias towards a firm, and so she overweights it in her portfolio; and if her psychological

distance from a firm exceeds the threshold d, she has a negative bias, so she underweights it.

In Figure 1, we show geometrically how biases impact beliefs. To fix ideas, we set the

number of firms to two, N = 2. In this case the rational-expectations belief P is summarized by

the vector νh = (νh1, νh2)> = (0, 0)>, placing it at the origin in (νh1, νh2)-space. For reference,

we also show the location of beliefs represented by the risk-neutral measure, Q, summarized

by the vector νh = (−(α − i),−(α − i))>, which lies in the third quadrant and its constituent

measures Q1 and Q2, represented by νh = (−(α− i), 0)> and νh = (0,−(α− i))>, respectively.

Figure 1 also shows how optimism and pessimism can be visualized in the space of beliefs.

The belief Ph is summarized by the vector νh = ((α− i)bh1, (α− i)bh2)>, which lies in the first

quadrant if the investor has positive bias with respect to both firms (bh1 > 0 and bh2 > 0),

the second quadrant if bh1 < 0 and bh2 > 0, the third quadrant if bh1 < 0 and bh2 < 0, and

the fourth quadrant if bh1 > 0 and bh2 < 0. That is, optimistic beliefs lie in the first quadrant

and pessimistic beliefs in the third quadrant. Beliefs which are pessimistic about firm 1, but

optimistic about firm 2 lie in the second quadrant and beliefs which are optimistic about firm 1,

but pessimistic about firm 2 lie in the fourth quadrant.
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Figure 1: The beliefs of an individual investor
This figure shows optimism and pessimism in the space of beliefs. The rational-expectations belief P is
summarized by the vector νh = (νh1, νh2)> = (0, 0)>. The location of beliefs represented by the risk-neutral
measure, Q, summarized by the vector νh = (−(α− i),−(α− i))>, lies in the third quadrant. The belief Ph
is summarized by the vector νh = ((α− i)bh1, (α− i)bh2)>, which lies in the first quadrant if the investor has
positive bias with respect to both firms (bh1 > 0 and bh2 > 0), the second quadrant if bh1 < 0 and bh2 > 0,
the third quadrant if bh1 < 0 and bh2 < 0, and the fourth quadrant if bh1 > 0 and bh2 < 0.

P

νh2

νh1

Optimism
νh1 > 0
νh2 > 0

Pessimism, Optimism
νh1 < 0
νh2 > 0

Pessimism

νh1 < 0
νh2 < 0

Optimism, Pessimism

νh1 > 0
νh2 < 0

Q

Q1

Q2
−(α− i)

−(α− i)

When the investment opportunity set is constant, the individual’s optimal consumption is

given by the following proposition.

Proposition 3.3. The optimal consumption-wealth ratio is identical across investors and given

by

c =
Ch,t
Wh,t

= ψδ + (1− ψ)

(
i+

1

2γ

(
α− i
σ1/N

)2

(1 + µb)

)
, (21)

where σ1/N = σ/
√
N is the volatility of the equally weighted portfolio.

Optimism and pessimism impact the consumption to wealth ratio in opposing directions.

When the income effect dominates (i.e., ψ > 1), optimism about a stock, that is, greater return

expectations leads to increased savings and decreased consumption. The opposite is true when

the substitution effect dominates (i.e., ψ < 1).
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3.2 Equilibrium Risk-free Interest Rate

By imposing market clearing in the risk-free bond market, we obtain the equilibrium risk-free

interest rate.

Proposition 3.4. If Assumption 3.1 holds, then the equilibrium risk-free interest rate is given

by the constant

i = iNB + γ
µb

1 + µb
σ2

1/N , (22)

where iNB is the equilibrium risk-free interest rate when there are no biases, i.e.

iNB = α− γ σ2
1/N .

We can see that investors’ biases impact the equilibrium interest rate, even when their

portfolio errors cancel out. To see the intuition, suppose for the sake of simplicity that we have

two investors and two firms, whose biases are symmetric in the following sense: Investor 1 is

unbiased with respect to Firm 1, but biased with respect to Firm 2, with a level of bias equal

to b; Investor 2 is unbiased with respect to Firm 2, but biased with respect to Firm 1, with

a level of bias equal to b. The mean bias of each investor is the same and equal to µb = b/2,

thereby satisfying Assumption 3.1. If the mean bias, µb = b/2, is positive, then there is greater

demand for risky assets relative to the case where all investors are fully rational. Hence, there

is reduced demand for the bond, which increases the equilibrium risk-free interest rate. If the

mean bias is negative, the opposite is true and the risk-free interest rate is lower.10

Rearranging Equation (22), we see that both the aggregate stock market equity premium

and the expected return on each stock in excess of the risk-free return, are given by:

α− i = γ σ2
1/N − γ

µb
1 + µb

σ2
1/N . (23)

From the right-hand side of the above expression, we see in the case where all investors are

fully rational (µb = 0), the expected excess return is given by γ σ2
1/N . When µb > 0, optimism

increases overall demand for risky assets, thereby depressing the equilibrium excess return, while

pessimism (µb < 0) has the opposite effect.11

10A simple back-of-the-envelope calculation based on (22) allows us to see that even for small values of µb,
the distortion to the equilibrium interest rate is significant. For example, with µb = ±0.05, γ = 5, and σ1/N = 20
percent per annum, the distortion is equal to approximately 1 percent per annum.

11Substituting the expression for the equilibrium interest rate in (22) into the expression for the optimal
portfolio weights in (20) leads to the optimal portfolio in equilibrium, ωhn = 1

N
+ εhn, where εhn = 1

N
bhn−µb
1+µb

.

Aggregating the expression for εhn across investors, as in (13), confirms that the portfolio errors , εhn, “cancel
out across investors” if 1

H

∑H
h=1 bhn = µb.
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3.3 Aggregate Investment and Growth

Above, we have examined the effect of the belief biases on the risk-free interest rate and the

equity risk premium. We now study how belief biases impact aggregate investment and growth.

Proposition 3.5. The aggregate growth rate of the economy is the aggregate investment-capital

ratio,

g =
Iaggt

Kagg
t

= ψ(α− δ) + (1− ψ)
1

2

(
γ

1 + µb

)
σ2

1/N . (24)

An increase in an individual investor’s optimism, that is µb becoming more positive, de-

creases γ
1+µb

σ2
1/N . When the substitution effect dominates (ψ > 1), a more optimistic investor

will consume less and invest more, causing the aggregate investment-capital ratio to rise. Nat-

urally, an increase in the aggregate investment-capital ratio boosts output growth.

3.4 Equilibrium Price of the Aggregate Stock Market

We denote by pagg
t the price-dividend ratio of the aggregate capital stock, or equivalently, the

aggregate wealth-consumption ratio:

pagg
t =

Kagg
t

Cagg
t

=
W agg
t

Cagg
t

.

The following proposition gives that the aggregate price-dividend ratio, first in terms of the

endogenous expected growth rate of aggregate output, g, and then in terms of exogenous vari-

ables.

Proposition 3.6. The aggregate price-dividend ratio is

paggt =
1

i+ γ
1+µb

σ2
1/N − g

(25)

=
1

ψδ + (1− ψ)
(
α− 1

2
γ

1+µb
σ2

1/N

) . (26)

where i is the risk-free interest rate given in (22), g is the endogenous expected growth rate of

aggregate output in (24), α and σ1/N are the expected return and volatility of the equally-weighted

portfolio return, γ is the risk aversion of investors, and µb is their mean level of bias.

Observe that (25) is the well-known Gordon-growth formula for a perpetuity with constant

growth rate g, but where the discount rate and the growth rate are linked explicitly to the
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behavioral economics of time and risk. The discount rate is seen to be the sum of the constant

risk-free rate and the risk premium, γ
1+µb

σ2
1/N .

In (26) where the aggregate price-dividend ratio is expressed purely in terms of exogenous

variables, the term α− 1
2

γ
1+µb

σ2
1/N can be interpreted as the expected return on the aggregate

stock market adjusted for risk and belief biases. Thus, the denominator is a weighted sum of

the rate of time preference and the adjusted expected return, with the weights depending on

the elasticity of intertemporal substitution, ψ. A decrease in the mean level of bias, µb, reduces

the equilibrium expected return adjusted for risk and biases, α− 1
2

γ
1+µb

σ2
1/N . The effect of this

on the aggregate price-dividend ratio will depend on whether ψ is greater or less than unity,

which determines whether the substitution or income effect dominates.

3.5 Stochastic Discount Factors

In this section, we see that each investor has her own stochastic discount factor, which implies

that each investor prices assets using her own individual factor model. The following proposition

gives the stochastic discount factor for investor h.

Proposition 3.7. Investor h’s stochastic discount factor is given by

dΛh,t
Λh,t

= −idt− γ 1

N
σ

[
N∑
n=1

dZhn,t +
1

1 + µb

N∑
n=1

(bhn − µb)dZhn,t

]
,

where Zhn , n ∈ {1, . . . , N} are standard Brownian motions under Ph such that EPh
t [dZhn,tdZ

h
n′,t] =

0 when n 6= n′. The volatility of investor h’s stochastic discount factor is given by

γ σ1/N

√
1 +

(
σb,h

1 + µb

)2

,

where σb,h is the standard deviation of her biases

σb,h =

√√√√ 1

N

N∑
n=1

(bhn − µb)2.

Individuals agree on the equilibrium risk-free rate. However, heterogeneity in their biases

for different firms drives individuals to perceive firm-level risk differently. The key determinant

of investor-specific risk prices for a given firm is an investor’s level of bias with respect to a firm,

bhn relative to the mean bias, µb, as we can see from the term bhn − µb inside the expression

for investor’s h risk price for firm n: γ 1
N σ
(

1 + bhn−µb
1+µb

)
. When an investor is relatively more
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optimistic about a firm than the mean investor, i.e. bhn−µb, her perceived risk price is distorted

upwards relative to the case of no bias. The volatility of investor h ’s stochastic discount factor

is given by γ multiplied by the volatility of her portfolio, which is given by σ1/N

√
1 +

(
σb,h
1+µb

)2
.

The following proposition gives the equilibrium stochastic discount factor.

Proposition 3.8. The equilibrium stochastic discount factor is given by Λ, where

dΛt
Λt

= −idt− γ 1

1 + µb

σ

N

N∑
n=1

dZn,t. (27)

The volatility of the equilibrium stochastic discount factor is given by

γ
1

1 + µb
σ1/N .

This proposition shows that the equilibrium price of risk is distorted: relative to the case

where all investors are fully rational, the price of risk for firm n is γ 1
1+µb

σ
N instead of just γ σN .

When the mean bias µb is positive, i.e. there is optimism, the risk price for each firm is reduced.

For the case of pessimism, the opposite is the case.

4 Example 2: Economy where Biases Themselves Cancel Out

In the previous section, we showed that even if the portfolio errors resulting from behavioral

biases canceled out when aggregated across investors, the biases would still impact asset prices.

One might object to this on the grounds that even though portfolio errors cancel out, the mean

bias across firms for each individual investor, µb,h = 1
N

∑N
n=1 bhn, is not zero. In this section,

we address this potential objection by showing that even if the behavioral biases themselves

cancel out in the aggregate, they still impact asset prices.

A formal definition of what exactly we mean by behavioral biases “canceling out” across

both firms and investors is given below.

Definition 4.1. The psychological biases cancel out across investors if

∀n ∈ {1 . . . , N},
H∑
h=1

bhn = 0.

The psychological biases cancel out across firms if

∀h ∈ {1 . . . , H},
N∑
n=1

bhn = 0.
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In order to characterize the equilibrium in closed form for the version of the economy

considered in this section, we make the following assumption, which ensures Definition 4.1 is

satisfied.

Assumption 4.1. In the economy considered in this section, asset returns are distinct across

the N firms, but H = N and γh = 1 for all investors h, with investor-firm psychological biases

given by

bhn =

{
b, n = h

− b
N−1 , n 6= h

,

where b > 0, which via (5) is equivalent to the following investor-firm psychological distances

dhn =

{
d− 1

κ ln(1 + b) < d, n = h

d− 1
κ ln

(
1− b

N−1

)
> d, n 6= h

.

The above definition implies that investor h is optimistic about firm h and pessimistic about

all other firms, because dhh < d and dhn > d for n 6= h.

We can define the psychological bias of all investors towards firm n as the wealth-weighted

average of each investor’s biases towards firm n,

b̂n,t =

H∑
h=1

wh,tbhn,t,

where wh,t =
Wh,t∑H
i=1Wi,t

is the fraction of aggregate wealth held by investor h. Under Assump-

tion 4.1, b̂n,t reduces to

b̂n,t = b

wn,t − 1

N − 1

∑
i 6=n

wi,t

 = b

(
wn,t −

1

N − 1
(1− wn,t)

)
= b

N

N − 1

(
wn,t −

1

N

)
. (28)

If we define the psychological distance of firm n from the representative investor by dn,t =

− 1
κ ln

∑H
h=1wh,te

−κdhn , to ensure that

b̂n,t = e−κ(dn,t−d) − 1, (29)

we see that the psychological distance of firm n from the representative investor varies with

the wealth distribution. We shall see below that the impact of fundamental shocks on asset

prices will be amplified by their effect on the wealth distribution. Importantly this amplification

occurs even when biases cancel out.

The aggregate psychological bias in the economy, defined as the following arithmetic mean,

b̂t =
1

N

N∑
n=1

b̂n,t, (30)
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is constant and equal to zero under Assumption 4.1 because in (28) the sum of the wealth shares

equals 1 and 1
N ×N = 1. Thus, behavioral biases canceling out implies that the aggregate psy-

chological bias in the economy is zero. Correspondingly, by defining the psychological distance

of the representative investor from the representative firm by dt, where

e−κ(dt−d) = 1 + b̂t,

we see that the psychological distance of the representative investor from the representative

firm reduces to the rational expectations threshold under Assumption 4.1; i.e., dt = d.

4.1 Equilibrium Risk-Free Interest Rate

Proposition 4.1. In the absence of any investor-level biases, i.e., bhn = 0 for all h and n, the

equilibrium interest rate iNB is given by the constant

iNB = α− 1

N
σ2, (31)

where α is the risk-weighted mean of firm-level expected returns and σ2 is the harmonic mean
of the firms’ return variances

α =

∑N
n=1

αn
σ2
n∑N

n=1
1
σ2
n

,

σ2 =

(
1

N

N∑
n=1

1

σ2
n

)−1

.

On the other hand, in the presence of biases that “cancel out,” the equilibrium interest rate

is given by

it = α̂t −
σ̂2
t

N
, (32)

where α̂t is the distorted risk-weighted mean of firm-level expected returns and σ̂t is the distorted

harmonic mean of the firms’ return variances:

α̂t =

∑N
n=1

αn
σ2
n

(1 + b̂n,t)∑N
n=1

1
σ2
n

(1 + b̂n,t)
=

∑N
n=1

αn
σ2
n
e−κdn,t∑N

n=1
1
σ2
n
e−κdn,t

, (33)

σ̂2
t =

(
1

N

N∑
n=1

1

σ2
n

(1 + b̂n,t)

)−1

=

(
1

N

N∑
n=1

1

σ2
n

e−κ(dn,t−d)

)−1

. (34)

The equilibrium interest rate in the absence of any investor-level biases, iNB, serves as a

benchmark. In the single-firm setting we know that the interest rate is the difference between the
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expected return and the return variance (recall that we have assumed relative risk aversion γ =

1). When there are multiple firms, we obtain in (31) a similar expression, but where the expected

returns are risk-weighted and the return variance is the harmonic mean of individual firms

variances, which is multiplied by 1/N to reflect the impact of diversification. The expression

for the interest rate in (31) satisfies the usual comparative static: when expected returns are

higher or risk is lower, the risk-free bond becomes less attractive, leading to an increase in the

interest rate.

In the presence of behavioral biases that “cancel out,” the expression for the interest rate

in (32) still has the familiar form of the difference between an average expected return and an

average return variance. However, both the averages are distorted by behavioral biases, as can

be seen in (33) and (34). That is, even though the behavioral biases in (30) cancel out when

summed across firms, they do not cancel out once they are weighted by firm-level expected

returns or variances.

The difference between the interest rate in the presence of behavioral biases that “cancel

out”, it, and the interest rate in the absence of any investor-level biases, iNB, is, as we show in

the proof of Proposition 4.1, given by

iε,t = it − iNB = b
1

N − 1
σ2

∑H
h=1

(
wh,t − 1

N

)
αh−iNB

σ2
h

1 + b 1
N−1σ

2
∑H

h=1

(
wh,t − 1

N

)
1
σ2
h

, (35)

where wh,t is the wealth share of investor h. We see from (35) that the dislocation of the money

market is driven by shocks to the portfolios of investors. The distortion vanishes momentarily

only when the fraction of aggregate wealth held by each investor is the same, but returns

immediately as new shocks arrive. This makes it clear that the distortion in the interest rate

is driven by wealth inequality, which is a consequence of portfolio heterogeneity driven by

behavioral biases.

4.2 Stochastic Discount Factors

The following proposition gives the equilibrium stochastic discount factor.

Proposition 4.2. If Assumption 4.1 holds, then the equilibrium stochastic discount factor is

dΛt
Λt

= −itdt−
N∑
n=1

(
ΘNB,n −

1

σn
iε,t

)
dZn,t

= −itdt−
N∑
n=1

αn − it
σn

dZn,t,
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where ΘNB,n is the risk price when there are no biases (b = 0):

ΘNB,n =
αn − iNB

σn
=
αn − α+ 1

N σ
2

σn
. (36)

The price of risk for shocks to firm n is given by ΘNB,n− 1
σn
iε,t, where ΘNB,n is the risk price

when there are no biases, i.e. b = 0. We therefore see that distortions in the money market lead

to distortions in the price of risk, impacting the entire financial market. In particular, greater

demand for precautionary savings implies iε,t < 0, leading to increases in the price of risk for

each firm.

The following proposition gives investor-specific stochastic discount factors.

Proposition 4.3.

dΛh,t
Λh,t

= −itdt− (1 + b)

(
ΘNB,h −

1

σh
iε,t

)
dZhh,t −

(
1− b

N − 1

)∑
n6=h

(
ΘNB,n −

1

σn
iε,t

)
dZhn,t.

Here, we can see each investor prices risk according to her own biases. An investor who is

optimistic about a specific firm will have a higher price of risk for that firm than an investor

who is pessimistic about the firm. The higher risk price will lead to a greater expected excess

return.

5 Conclusion

In this paper, we develop a model where investors’ beliefs about expected stock returns are

determined endogenously based on their psychological distances from firms. Consequently, in-

vestors are optimistic about some stocks and pessimistic about others, which results in biased

portfolios that are underdiversified. We then embed these beliefs in a general-equilibrium pro-

duction economy with a large number of heterogeneous firms and investors. We characterize in

closed form the equilibrium in two examples of this economy. In the first example, the portfolio

“errors” resulting from the behavioral biases of individual investors cancel out when aggregated

across all investors. In the second example, the behavioral biases themselves cancel out when

aggregated across all investors. For both examples, the behavioral biases lead to a dislocation

in the money market, which distorts both aggregate financial variables and macroeconomic

quantities. In particular, both the drift and the volatility of the stochastic discount factor are

affected. This implies that behavioral biases of individual investors will have an affect on the

prices of all assets even though the biases cancel out in aggregate.
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The two specific examples we have constructed show that the effects of idiosyncratic be-

havioral biases at the individual level do not wash out in aggregate even under very restrictive

assumptions that lead to a canceling out of the portfolio errors caused by psychological biases

or a canceling out of the biases themselves. This implies that under less restrictive assumptions,

the effects of psychological biases will be evident in asset prices and macroeconomic variables.

Other behavioral biases, such as overconfidence about some assets relative to others, will also

have a similar impact. Thus, our work indicates that the effects of behavioral biases on finan-

cial markets and the macroeconomy are pervasive and economists should focus on investigating

their impact instead of suggesting that such biases wash out in aggregate.
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A Proofs for Propositions

In this appendix, we provide the derivations for all the results in the main text.

Proof of Proposition 2.1

We shall derive (5) from (4). We see that

bhn = T

∫ ∞
0

p1(s) max

(
s− dhn

s
, 0

)
ds− 1,

where p1(s) is the probability density for the trust region.

The Principle of Maximum Entropy (Jaynes, 1957, 1986) states that if nothing is known

about a distribution except that it belongs to a certain class, then the distribution with the

largest entropy should be chosen as the least informative. Thus, the following static optimization

problem determines the prior distribution of S, which defines the size of the trust region.

max
p(s)
−
∫ ∞

0
p(s) ln p(s)ds

subject to ∫ ∞
0

p(s)ds = 1, (A1)

and ∫ ∞
0

sp(s)ds = µ, (A2)

where µ = E[S] is the known mean of S.

To solve the above constrained maximization problem, we form the Lagrangian

L = −
∫ ∞

0
p(s) ln p(s)ds− κ0

(
1−

∫ ∞
0

p(s)ds

)
− κ

(
µ−

∫ ∞
0

sp(s)ds

)
.

We have the first order condition

0 = − ln p(s)− 1 + κ0 + κs,

and so

p(s) = e−(1−κ0)e−κs, s ≥ 0.

From (A1), we see that

p(s) =
1

κ
e−κs, s ≥ 0.
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We now use the constraint (A2) to determine κ, starting with

µ = κ

∫ ∞
0

se−κsds.

It follows that
1

κ
= µ.

Starting from the prior density p(s), the posterior density for S is given by Bayes’ Law via

p1(s) ∝ sp(s),

where s is the likelihood of an object being in its trust region. Therefore,

p1(s) = κse−κs, s ≥ 0.

Hence,

bhn = Tκ

∫ ∞
0

e−κs max (s− dhn, 0) ds− 1

= Tκ

∫ ∞
dhn

e−κs (s− dhn) ds− 1

= T
e−κdhn

κ
− 1.

We define

d =
1

κ
lnT ,

Therefore

bhn = e−κ(d−dhn) − 1,

where d is the threshold psychological distance at which investor h has zero bias for firm n.

One can show that if biases are additive, then psychological distances are subadditive, which

has important consequences for how psychological distances can be reduced.

Proposition A.1. Consider an investor h with biases bh1, . . . , bhN generated by the psycho-

logical distances, dh1, . . . , dhN via (5). The mean bias of investor h is given by

µb,h =
1

N

N∑
n=1

bhn.

If the psychological distance of investor h from the representative firm for the group of firms

1, . . . , N is given by dh, where

µb,h = e−κ(dh−d) − 1,
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then

dh = −1

κ
ln

1

N

N∑
n=1

e−κdhn , (A3)

and

dh ≤
1

N

N∑
n=1

dhn, (A4)

with equality if and only if dh1 = . . . = dhN .

Proof of Proposition A.1

The result follows by applying Jensen’s inequality to (A3).

The expression (A3) is useful, because it tells us straight away via Jensen’s inequality that

psychological distance is subadditive, i.e., (A4) holds. Volatility is also subadditive and it is

precisely this property which makes it possible to diversify risk by holding more risky assets. By

analogy with volatility, we can see that the psychological distance of an investor from a group

of firms with a mean psychological distance d is actually smaller than d. Hence, the overall

level of bias in an economy can be reduced by spreading out the firms, even while their keeping

their mean psychological distances from investors fixed.

We can make the consequences of subadditivity more concrete by considering an investor

and 2 firms, with psychological distances from the investor of d − y and d + y. The mean

psychological distance is clearly d. However, the psychological distance of the investor from the

representative firm is less than or equal to d, as shown below:

dh = −1

κ
ln

1

2
(e−κ(d−y) + e−κ(d+y))

= d− 1

κ
ln

1

2
(eκy + e−κy)

= d− 1

κ
ln cosh(κy) ≤ d, with equality if and only if y = 0.

In this example, we can see clearly that as the two firms move farther apart, i.e., y increases,

ln cosh(κy) increases, and so the psychological distance of the investor from the representative

firm decreases, reaching an exterior minimum when y = d.

Proof of Propostion 2.2

Equation (8) implies that

µ̂P
h

h,t[Uh,t+dt] =
(
EPh
t [uγh (Uh,t+dt)]

) 1
1−γh ,
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Therefore

µ̂P
h

h,t[Uh,t+dt] = EPh
t

[
U1−γh
h,t+dt

] 1
1−γ

= EPh
t

[
U1−γh
h,t + d(U1−γh

h,t )
] 1

1−γh .

Applying Ito’s Lemma, we obtain

d(U1−γh
h,t ) = (1− γh)U−γhh,t dUh,t −

1

2
(1− γh)γhU

−γh−1
h,t (dUh,t)

2

= (1− γh)U1−γh
h,t

[
dUh,t
Uh,t

− 1

2
γh

(
dUh,t
Uh,t

)2
]
.

Therefore,

µ̂P
h

h,t[Uh,t+dt] = EPh
t

[
U1−γh
h,t+dt

] 1
1−γh = Uh,t

(
EPh
t

[
1 + (1− γh)

[
dUh,t
Uh,t

− 1

2
γh

(
dUh,t
Uh,t

)2
]]) 1

1−γh

= Uh,t

(
1 + (1− γh)

[
EPh
t

[
dUh,t
Uh,t

]
− 1

2
γhE

Ph
t

[(
dUh,t
Uh,t

)2
]]) 1

1−γh

.

Hence,

µ̂P
h

h,t[Uh,t+dt] = Uh,t

(
1 + EPh

t

[
dUh,t
Uh,t

]
− 1

2
γEPh

t

[(
dUh,t
Uh,t

)2
])

+ o(dt).

Therefore, in the continuous time limit, we obtain

µ̂P
h

h,t[dUh,t+dt]

dt
=
µ̂P

h

h,t[Uh,t+dt]− Uh,t
dt

= Uh,t

(
EPh
t

[
dUh,t
Uh,t

]
− 1

2
γhE

Ph
t

[(
dUh,t
Uh,t

)2
])

.

The result therefore follows from (7).

Proof of Proposition 2.3

Writing out (11) explicitly gives

U
1− 1

ψ

h,t

1− 1
ψ

= (1− e−δdt) sup
Ch,t

C
1− 1

ψ

h,t

1− 1
ψ

+ e−δdt sup
ωh,t

inf
{Phn}n∈AP

sup
{Phn}n∈AO

(
µP

h

h,t[Uh,t+dt]
)1− 1

ψ

1− 1
ψ

.

Now (
µ̂P

h

h,t[Uh,t+dt]
)1− 1

ψ
=
(
Uh,t + µP

h

h,t[dUh,t]
)1− 1

ψ

= U
1− 1

ψ

h,t

(
1 + µP

h

h,t

[
dUh,t
Uh,t

])1− 1
ψ

= U
1− 1

ψ

h,t

(
1 +

(
1− 1

ψ

)
µP

h

h,t

[
dUh,t
Uh,t

])
+ o(dt).
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Hence,

U
1− 1

ψ

h,t

1− 1
ψ

= δ sup
Ch,t

C
1− 1

ψ

h,t

1− 1
ψ

dt+ sup
ωh,t

inf
{Phn}n∈AP

sup
{Phn}n∈AO

U
1− 1

ψ

h,t

1− 1
ψ

(
1 +

(
1− 1

ψ

)
µP

h

h,t

[
dUh,t
Uh,t

])

− δ
U

1− 1
ψ

h,t

1− 1
ψ

dt+ o(dt),

from which we obtain (12).

Proof of Proposition 3.1

We assume the investment opportunity set is constant. The only state variable therefore is

wealth, so we start with the Ansatz Uh,t = κhWh,t. Therefore, dUh,t/Uh,t = dWh,t/Wh,t.

Consequently, (10) implies that

µP
h

h,t

[
dUh,t
Uh,t

]
= EPh

t

[
dWh,t

Wh,t

]
− 1

2
γV art

[
dWh,t

Wh,t

]
− 1

γ

N∑
n=1

1 + bhn
bhn

DKL[P|Phn]. (A5)

Therefore, (12) reduces to (15).

Proof of Proposition 3.2

The unique solution to (18) is

ωhn =
1

γ

α− i
σ2

(1 + bhn),

and substituting the above expression into (17) gives (19).

Proof of Proposition 3.3

We assume the investment opportunity set is constant. Therefore, (A5) holds and the beliefs-

portfolio choice problem supωh,t
inf{Phn}n∈AP

sup{Phn}n∈AO
µP

h

h,t [dUh,t/dt] reduces to (16). We

substitute in the optimal beliefs and portfolios, given in (19) and (20), respectively, to obtain

sup
ωh,t

inf
{Phn}n∈AP

sup
{Phn}n∈AO

µP
h

h,t

[
dUh,t
dt

]
= Uh,t

[
i+

1

2γ

(
α− i
σ2/N

+
α− i
σ2/N

1

N

N∑
n=1

bhn

)
−
Ch,t
Wh,t

]
.

We now observe that

α− i
σ2/N

+
α− i
σ2/N

1

N

N∑
n=1

bhn =
α− i
σ2/N

(1 + µb,h),
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where µb,h = µb is constant across investors. Therefore,

sup
ωh,t

inf
{Phn}n∈AP

sup
{Phn}n∈AO

µP
h

h,t

1

Uh,t

[
dUh,t
dt

]
= i+

1

2γ

(
α− i
σ1/N

)2

(1 + µb)−
Ch,t
Wh,t

,

where σ1/N = σ/
√
N .

The optimal consumption problem is

sup
Ch,t

δ

(
Ch,t
Uh,t

)1− 1
ψ − 1

1− 1
ψ

−
Ch,t
Wh,t

.

The FOC is

δ

(
Ch,t
Uh,t

)− 1
ψ 1

Uh,t
=

1

Wh,t
.

Therefore,

Ch,t
Wh,t

= δψκ1−ψ
h ,

and so

sup
Ch,t

δ

(
Ch,t
Uh,t

)1− 1
ψ − 1

1− 1
ψ

−
Ch,t
Wh,t

=
δψhκ1−ψ

h − ψδ
1− ψh

.

Thus, the HJB equation simplifies to

0 =
δψhκ1−ψ − ψδ

1− ψ
−

[
i+

1

2γ

(
α− i
σ1/N

)2

(1 + µb)

]
,

and so the consumption-wealth ratio is identical across investors and given by

c =
Ch,t
Wh,t

= δψκ1−ψ
h = ψδ + (1− ψ)

(
i+

1

2γ

(
α− i
σ1/N

)2

(1 + µb)

)
,

and the optimized value of the investor’s utility function per unit wealth is

Uh,t
Wh,t

=

ψδ + (1− ψ)
(
i+ 1

2γ

(
α−i
σ1/N

)2
(1 + µb)

)
δψ


1

1−ψ

.
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Proof of Proposition 3.4

From (20), we see that the optimal portfolio policy is given by

ωhn =
1

γ

α− i
σ2

(1 + bhn).

Therefore, πh, the fraction of wealth held in risky assets by investor h is

πh =

N∑
n=1

ωhn =
1

γ

α− i
σ2/N

(1 + µb,h).

If µb,h = µb, then πh is identical across investors and the proportion of wealth each investor

desires to hold in the bond is the same and given by

Bh,t
Wh,t

=

(
1− 1

γ

α− i
σ2/N

(1 + µb)

)
.

Market clearing in the bond market implies
∑H

h=1Bh,t = 0, and so

0 =

(
1− 1

γ

α− i
σ2/N

(1 + µb)

) H∑
h=1

Wh,t.

We know that
∑H

h=1Wh,t > 0, and so

i = α− γ

1 + µb

σ2

N
,

which implies (22) holds.

Proof of Proposition 3.5

We want to derive an expression for trend output growth, g, defined as

g dt = Et

[
dY agg

t

Y agg
t

]
.

Equation (1) implies

Y agg
t =

N∑
n=1

Yn,t = α
N∑
n=1

Kn,t,

and Equation (3) implies

dEt

[
N∑
n=1

Kn,t

]
= Et

[
d

N∑
n=1

Kn,t

]
= α

N∑
n=1

Kn,t −
N∑
n=1

Dn,tdt.

In equilibrium
∑N

n=1Kn,t = W agg
t and

∑N
n=1Dn,t = Cagg

t . Therefore,

Et

[
dW agg

t

W agg
t

]
=

(
α− Cagg

t

W agg
t

)
dt.
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We also know that

dW agg
t

W agg
t

=
dY agg

t

Y agg
t

and so

g dt = Et

[
dY agg

t

Y agg
t

]
=

(
α− Cagg

t

W agg
t

)
dt.

The aggregate investment flow must be equal to aggregate output flow less the aggregate

consumption flow:

Iagg
t = αKagg

t − Cagg
t .

Therefore

Iagg
t

Kagg
t

= α− Cagg
t

Kagg
t

= α− Cagg
t

W agg
t

= g.

Now we observe that

Cagg
t

W agg
t

=

∑H
h=1Ch,t∑H
h=1Wh,t

=
c
∑H

h=1Wh,t∑H
h=1Wh,t

,

because the consumption-wealth ratio c = Ch,t/Wh,t is identical across investors. Therefore,

g =
Iagg
t

Kagg
t

= α− c. (A6)

We substitute the equilibrium interest rate given in (22) into the expression in (21) for the

consumption-wealth ratio to obtain the general-equilibrium consumption-wealth ratio:

Ch,t
Wh,t

= c,

where

c = ψδ + (1− ψ)
(
α− 1

2

γ

1 + µb
σ2

1/N

)
. (A7)

Substituting the above expression into α− c gives the desired result.

Proof of Proposition 3.6

The aggregate price-dividend ratio is equal to the aggregate wealth-consumption ratio. There-

fore,

pagg
t =

1

c
.

In equilibrium the consumption-wealth ratio c is given by (A7), and so

pagg
t =

1

ψδ + (1− ψ)
(
α− 1

2
γ

1+µb
σ2

1/N

) .
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Using (A6), we obtain

pagg
t =

1

α− g
=

1

i+ α− i− g
.

The expected risk premium α− i is given in (23), which can be rewritten as

α− i = γ
1

1 + µb
σ2

1/N .

Therefore, we obtain the Gordon growth formula:

pagg
t =

1

i+ γ 1
1+µb

σ2
1/N − g

.

Proof of Proposition 3.7

Each investor has her own stochastic discount factor. We denote the date-t stochastic discount

factor of investor h via Λh,t. Observe that

dΛh,t
Λh,t

= −idt− γ
(
dWh,t

Wh,t
− EPh

t

[
dWh,t

Wh,t

])
,

provided the interest rate is constant. We know that

dWh,t

Wh,t
− EPh

t

[
dWh,t

Wh,t

]
=

N∑
n=1

ωhn,tσdZ
h
n,t,

where Zhn , n ∈ {1, . . . , N} are standard Brownian motions under Ph such that EPh
t [dZhn,tdZ

h
n′,t] =

0 when n 6= n′.

In equilibrium ωhn,t is given by the expression in Footnote 11 . Hence, we obtain

dWh,t

Wh,t
− EPh

t

[
dWh,t

Wh,t

]
=

1

N
σ

[
N∑
n=1

dZhn,t +
1

1 + µb

N∑
n=1

(bhn − µb)dZhn,t

]
.

Therefore,

dΛh,t
Λh,t

= −idt− γ 1

N
σ

[
N∑
n=1

dZhn,t +
1

1 + µb

N∑
n=1

(bhn − µb)dZhn,t

]
.

The volatility of investor h’s stochastic discount factor is given by

γ
1

N
σ

√√√√N + 2
1

1 + µb

N∑
n=1

(bhn − µb) +
1

(1 + µb)2

N∑
n=1

(bhn − µb)2.
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By assumption,
∑N

n=1(bhn − µb) = 0, and so the stochastic discount factor volatility reduces to

γ
σ√
N

√√√√1 +
1

(1 + µb)2

1

N

N∑
n=1

(bhn − µb)2 = γ
σ√
N

√
1 +

(
σb

1 + µb

)2

,

where σb is the standard deviation of the biases

σb =

√√√√ 1

N

N∑
n=1

(bhn − µb)2.

Proof of Proposition 3.8

The equilibrium stochastic discount factor is given Λ, where

dΛt
Λt

= −idt−
N∑
n=1

Θn,tdZn,t,

where Θn,t, n ∈ {1, . . . , N} are to be determined. Markets are dynamically complete, so shocks

to the stochastic discount factor over the time interval [t, t+dt) can depend only on the Brownian

increments, dZ1,t, . . . , dZN,t. If Λ is a stochastic discount factor, then

α− i = γ
1

1 + µb

σ2

N
= − 1

dt
Et

[
σdZn,t

(
−

N∑
n=1

Θn,tdZn,t

)]
= σΘn,t,

and so

Θn,t = γ
1

1 + µb

σ

N
.

Hence, we obtain (27) and the volatility of the equilibrium stochastic discount factor.

Proof of Proposition 4.1

With γ = 1, the optimal portfolio policy of investor h is

ωhn =
αn − it
σ2
n

(1 + bhn).

Consequently, the proportion of wealth invested in risky assets by investor h is

πh =

N∑
n=1

ωhn =

N∑
n=1

αn − it
σ2
n

(1 + bhn). (A8)
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The market-clearing condition for the bond, which is in zero net supply, is

H∑
h=1

(1− πh,t)Wh,t = 0,

which is equivalent to

H∑
h=1

πh,twh,t = 1, (A9)

where wh,t = Wh,t/
∑H

h=1Wh,t. Substituting (A8) into (A9) gives

H∑
h=1

N∑
n=1

αn − it
σ2
n

(1 + bhn)wh,t = 1.

Therefore,

N∑
n=1

αn − it
σ2
n

(
1 +

H∑
h=1

wh,tbhn

)
= 1.

Define

b̂n,t =

H∑
h=1

wh,tbhn.

Thus,

N∑
n=1

αn − it
σ2
n

(
1 + b̂n,t

)
= 1.

We now make it the subject of the above equation, giving

it =

∑N
n=1

αn
σ2
n

(1 + b̂n,t)− 1∑N
n=1

1
σ2
n

(1 + b̂n,t)
. (A10)

Therefore,

it =

∑N
n=1

αn
σ2
n

(1 + b̂n,t)∑N
n=1

1
σ2
n

(1 + b̂n,t)
− 1

N

(
1

N

N∑
n=1

1

σ2
n

(1 + b̂n,t)

)−1

,

which implies (32), where α̂t and σ̂t are given in terms of b̂n,t, n ∈ {1, . . . , N}.

We now observe that (29) implies

1 + b̂n,t
σ2
n

=
e−κ(dn,t−d)

σ2
n

.

Therefore, we obtain the final expression in (34). Furthermore,

1 + b̂n,t
σ2
n

= e−κd
e−κdn,t

σ2
n

,
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and

N∑
n=1

1 + b̂n,t
σ2
n

= e−κd
e−κdn,t

σ2
n

.

Therefore, we obtain the final expression in (33). So far we have only assumed that all investors

have relative risk aversion of one. If Assumption 4.1 holds, then b̂n,t reduces to the expression

given in (28) and 1
N

∑N
n=1 b̂n,t = 0.

Furthermore, if we set all individual level biases to be zero, bhn = 0 for all h and n, then

(32) reduces to (31).

We can now rewrite (A10) as

it =
iNB +

(
1
N

∑N
n=1

αn
σ2
n
b̂n,t

)
σ2

1 + σ2 1
N

∑N
n=1

1
σ2
n
b̂n,t

. (A11)

The above expression can be rewritten as

it = iNB +

1
N

∑N
n=1

αn−iNB
σ2
n

b̂n,t

1 +
(

1
N

∑N
n=1

1
σ2
n
b̂n,t

)
σ2
σ2. (A12)

Under Assumption 4.1, b̂n,t, reduces to the final expression in (28), and so (A12) implies (35).

Proof of Proposition 4.2

Markets are dynamically complete, so the equilibrium stochastic discount factor must be of the

form

dΛt
Λt

= −itdt−
N∑
n=1

Θn,tdZn,t,

where Θn,t, n ∈ {1, . . . , N} are to be determined. The equilibrium stochastic discount factor

must satisfy

αn − it = − 1

dt
Et

[
σndZn,t

dΛt
Λt

]
,

and so

αn − it = σnΘn,t.

When there are no biases,

αn − iNB = σnΘNB,n,

giving (36). With biases,

αn − iNB − iε,t = σnΘn,t,
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giving

Θn,t = ΘNB,n −
1

σn
iε,t.

Proof of Proposition 4.3

Investors agree on the interest rate, so investor h’s stochastic discount factor must be of the

form

dΛh,t
Λh,t

= −itdt−
N∑
n=1

Θhn,tdZ
h
n,t,

where Θhn,t, n ∈ {1, . . . , N} are to be determined. The SDF of investor h must satisfy

(αh − it)(1 + b) = − 1

dt
Et

[
σhdZh,t

dΛh,t
Λh,t

]
,

and

(αn − it)
(

1− b

N − 1

)
= − 1

dt
Et

[
σndZn,t

dΛh,t
Λh,t

]
, n 6= h.

Therefore,

(αh − it)(1 + b) = σhΘhh,t,

and

(αn − it)
(

1− b

N − 1

)
= σnΘhn,t, n 6= h.

Hence, when there are no biases,

Θhn,t = ΘNB,n =
αn − it
σn

=
αn − α+ 1

N σ
2

σn
, ∀h ∈ {1, . . . ,H}, ∀n ∈ {1, . . . , N},

and with biases

Θhh,t = (1 + b)

(
ΘNB,h −

1

σh
iε,t

)
,

Θhn,t = −
(

1− b

N − 1

)(
ΘNB,n −

1

σn
iε,t

)
, h 6= n.
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B Hamilton-Jacobi-Bellman Equation for Example 2

In this section, we derive the optimal consumption policies for each investor (for the case where

N = H = 2) in terms of solutions to a coupled system of ordinary differential equations.12

We define

xt =
W1,t

W1,t +W2,t
.

Therefore,

xt =
1

1 + e∆t
where ∆t = lnW2,t − lnW1,t.

From Ito’s Lemma, we obtain

d∆t =

[
(ω2,t − ω1,t)

>(α+ νh,t − 1it)−
1

2
ω>1,tV ω1,t +

1

2
ω>2,tV ω2,t +

C1,t

W1,t
− C2,t

W2,t

]
dt

+ (ω2,t − ω1,t)
>ΣdZh

t ,

where Σ = diag(σ1, σ2), V = Σ>Σ = diag(σ2
1, σ

2
2),ωh,t = (ωh1,t, ωh2,t)

>,1 = (1, 1)>,Zh
t =

(Zh1,t, Z
h
2,t)
>, and where Zh1,t and Zh2,t are standard Brownian motions under Ph such that

EPh
t [dZh1,tdZ

h
2,t] = 0. We also have

dxt = −xt(1− xt)(d∆t −
1

2
(1− 2xt)(d∆t)

2).

Therefore,

dxt = xt(1− xt)
[
(ω1,t − ω2,t)

>(α+ νh,t − 1it)−
1

2
ω>1,tV ω1,t +

1

2
ω>2,tV ω2,t −

C1,t

W1,t
+
C2,t

W2,t

−1

2
(2xt − 1)(ω1,t − ω2,t)

>V (ω1,t − ω2,t)

]
dt+ xt(1− xt)(ω1,t − ω2,t)

>ΣdZh
t

= xt(1− xt)
[
(ω1,t − ω2,t)

>(α+ νh,t − 1it − V (xtω1,t + (1− xt)ω2,t)−
C1,t

W1,t
+
C2,t

W2,t

]
dt

+ xt(1− xt)(ω1,t − ω2,t)
>ΣdZh

t .

The HJB equation for investor h is

0 = sup
Ch,t

δuψ

(
Ch,t
Uh,t

)
+ sup

ωh,t

inf
{νhn,t}n∈AP

sup
{νhn,t}n∈AO

Wh,tUh,Wh,t

Uh,t

1

dt
EPh

t

[
dWh,t

Wh,t

]
+
Uh,xt

Uh,t
EPh

t

[
dxt
dt

]

+
1

2

W 2
h,tUh,Wh,tWh,t

Uh,t

1

dt
EPh

t

[(
dWh,t

Wh,t

)2
]

+
Wh,tUWh,txt

Uh,t

1

dt
EPh

t

[
dWh,t

Wh,t
dxt

]
+

1

2

Uh,xtxt

Uh,t
EPh

t

[
(dxt)

2

dt

]

− 1

2
γh

((
Wh,tUh,Wh,t

Uh,t

)2
1

dt
EPh

t

[(
dWh,t

Wh,t

)2
]

+ 2
Wh,tUh,Wh,t

Uh,t

Uh,xt

Uh,t

1

dt
EPh

t

[
dWh,t

Wh,t
dxt

]
+

1

2

(
Uh,xt

Uh,t

)2

EPh

t

[
(dxt)

2

dt

])

12Their numerical solution is available upon request.
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− 1

γh

2∑
n=1

1 + bhn
bhn

DKL[P|Phn].

With the Ansatz

Uh,t = gh(xt)Wh,t,

the above HJB reduces to

0 = sup
Ch,t

δuψ

(
Ch,t/Wh,t

gh(xt)

)

+ sup
ωh,t

inf
{νhn,t}n∈AP

sup
{νhn,t}n∈AO

1

dt
EPh

t

[
dWh,t

Wh,t

]
− 1

2
γh

1

dt
EPh

t

[(
dWh,t

Wh,t

)2
]

+ (1− γh)
g′h(xt)

gh(xt)

1

dt
EPh

t

[
dWh,t

Wh,t
dxt

]

− 1

γh

2∑
n=1

1 + bhn
bhn

DKL[P|Phn] +
g′h(xt)

gh(xt)
EPh

t

[
dxt
dt

]
+

1

2

[
g′′h(xt)

gh(xt)
− γh

(
g′h(xt)

gh(xt)

)2
]
EPh

t

[
(dxt)

2

dt

]
. (B13)

The controlled state variable is the investor’s wealth Wh, while the evolution of the exoge-

nous state variable x is taken as given. The investor’s joint belief-portfolio choice problem is

therefore

sup
ωh,t

inf
{νhn,t}n∈AP

sup
{νhn,t}n∈AO

1

dt
EPh
t

[
dWh,t

Wh,t

]
− 1

2
γh

1

dt
EPh
t

[(
dWh,t

Wh,t

)2
]

+ (1− γh)
g′h(xt)

gh(xt)

1

dt
EPh
t

[
dWh,t

Wh,t
dxt

]
− 1

γh

2∑
n=1

1 + bhn
bhn

DKL[P|Phn].

When γh = 1, this reduces to the following linear-quadratic problem

sup
ωh,t

inf
{νhn,t}n∈AP

sup
{νhn,t}n∈AO

1

dt
EPh
t

[
dWh,t

Wh,t

]
− 1

2

1

dt
EPh
t

[(
dWh,t

Wh,t

)2
]
−

2∑
n=1

1 + bhn
bhn

DKL[P|Phn],

which is equivalent to (14) with γh = 1. Using the optimal beliefs and portfolios given in

Proposition 3.2, we see that

sup
ωh,t

inf
{νhn,t}n∈AP

sup
{νhn,t}n∈AO

1

dt
EPh
t

[
dWh,t

Wh,t

]
− 1

2

1

dt
EPh
t

[(
dWh,t

Wh,t

)2
]
−

2∑
n=1

1 + bhn
bhn

DKL[P|Phn]

= it +
1

2

2∑
n=1

(
αn − it
σn

)2

(1 + bhn)2 − 1

2

2∑
n=1

(
αn − it
σn

)2

b2hn −
Ch,t
Wh,t

= it +
1

2

2∑
n=1

(
αn − it
σn

)2

(1 + bhn)−
Ch,t
Wh,t

.

The HJB (B13) then becomes

0 = sup
Ch,t

δuψ

(
Ch,t/Wh,t

gh(xt)

)
−
Ch,t
Wh,t

+ it +
1

2

2∑
n=1

(
αn − it
σn

)2

(1 + bhn)
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+
g′h(xt)

gh(xt)
EPh
t

[
dxt
dt

]
+

1

2

[
g′′h(xt)

gh(xt)
− γh

(
g′h(xt)

gh(xt)

)2
]
EPh
t

[
(dxt)

2

dt

]
. (B14)

The FOC for consumption is

δ

(
Ch,t/Wh,t

gh(xt)

)−ψ 1/Wh,t

gh(xt)
=

1

Wh,t
,

which implies that the optimal consumption policy for investor h is given by

Ch,t = δψgh(xt)
1−ψWh,t.

Substituting the above optimal policy into (B14) gives the coupled system of ordinary differential
equations:

0 =
δψgh(xt)

1−ψ − ψδ
ψ − 1

+ it +
1

2

2∑
n=1

(
αn − it
σn

)2

(1 + bhn)

+
g′h(xt)

gh(xt)
EPh

t

[
dxt
dt

]
+

1

2

[
g′′h(xt)

gh(xt)
−
(
g′h(xt)

gh(xt)

)2
]
EPh

t

[
(dxt)

2

dt

]
, h ∈ {1, 2}. (B15)

By setting N = H = 2 in the expression shown in (A11), we obtain

it =
α− σ2 + σ2

[
xt
∑2

n=1
αnb1n
σ2
n

+ (1− xt)
∑2

n=1
αnb2n
σ2
n

]
1 + σ2

[
xt
∑2

n=1
b1n
σ2
n

+ (1− xt)
∑2

n=1
b2n
σ2
n

]
=
iNB + σ2

[
xt
∑2

n=1
αnb1n
σ2
n

+ (1− xt)
∑2

n=1
αnb2n
σ2
n

]
1 + σ2

[
xt
∑2

n=1
b1n
σ2
n

+ (1− xt)
∑2

n=1
b2n
σ2
n

] ,

which reduces to

it =
iNB + bσ2

∑2
h=1wh,t

(
αh
σ2
h
− α

σ2

)
1 + bσ2

∑2
h=1wh,t

(
1
σ2
h
− 1

σ2

) ,

when b11 = −b12 = b22 = −b21 = b, with xt = w1,t.

We can now specify the boundary conditions for (B15). We have

i(0) = it|xt=0 =
iNB + σ2

[∑2
n=1

αnb2n
σ2
n

]
1 + σ2

[∑2
n=1

b2n
σ2
n

] ,

and

i(1) = it|xt=1 =
iNB + σ2

[∑2
n=1

αnb1n
σ2
n

]
1 + σ2

[∑2
n=1

b1n
σ2
n

] .

Now, setting xt = 0 and xt = 1 in (B15), we obtain the following boundary conditions

gh(0) =

ψδ + (1− ψ)
(
i(0) + 1

2

∑2
n=1

αn−i(0)
σ2
n

(1 + bhn)
)

δψ


1

1−ψ

, h ∈ {1, 2},

gh(1) =

ψδ + (1− ψ)
(
i(1) + 1

2

∑2
n=1

αn−i(1)
σ2
n

(1 + bhn)
)

δψ


1

1−ψ

, h ∈ {1, 2}.
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C Martingales and Beliefs

To see the mechanics of how the rational-expectations probability measure can be distorted into

the subjective probability measure, we focus on the special case where only the expected return

on firm n is distorted, i.e. νhn,t 6= 0, but νhn′,t = 0 for all n′ 6= n. We denote the resulting

probability measure by Phn.

We define the normalized return

dεn,t =
dRn,t − αndt

σn
√
dt

.

We observe that dεn,t is normally distributed, such that under P, dεn,t ∼ N [0, 1], with probability

density function

p(x) =
1√
2π
e−

1
2
x2 .

Under Phn only the mean of the normalized return is changed, so that dεn,t ∼ N
[
νhn,t
σn

√
dt, 1

]
,

with probability density function phn(x) = p
(
x− νhn,t

σn

√
dt
)

. The ratio of the Phn probability

density function to the P probability density function, phn(x)/p(x), simplifies to give

phn(x)

p(x)
= exp

(
−1

2

(
νhn,t
σn

)2

dt+
νhn,u
σn

√
dt x

)
.

It is then straightforward to express an expectation under Phn as an expectation under P:

EPhn
t [dεn,t] =

∫ ∞
−∞

phn(x)xdx =

∫ ∞
−∞

p(x)
phn(x)

p(x)
xdx = Et

[
phn(dεn,t)

p(dεn,t)
dεn,t

]
, (C1)

where the random variable
phn(dεn,t)
p(dεn,t)

distorts rational-expectations probabilities into subjective

probabilities.

We can use the ratio of probability densities to define a stochastic process, Mhn, via

Mhn,t+dt

Mhn,t
=
phn(dZn,t/

√
dt)

p(dZn,t/
√
dt))

= exp

(
−1

2

(
νhn,t
σn

)2

dt+
νhn,t
σn

dZn,t

)
,

which is equivalent to

Mhn,t = exp

(
−1

2

∫ t

0

(
νhn,u
σn

)2

du+

∫ t

0

νhn,u
σn

dZn,u

)
,

an exponential martingale under P.

It follows from (C1) that the exponential martingale, Mhn, distorts the rational-expectations

probability measure, resulting in the subjective probability measure Phn,

EPhn
t [dεn,t] = Et

[
Mhn,t+dt

Mhn,t
dεn,t

]
,

which is equivalent to

EPhn
t [dRn,t] = Et

[
Mhn,t+dt

Mhn,t
dRn,t

]
= Et[dRn,t] + Et

[
dMhn,t

Mhn,t
dRn,t

]
,

which tell us that a distortion of probabilities (i.e., a change in the probability measure), changes

the expected return (i.e., the drift). This is Girsanov’s theorem (Girsanov, 1958).
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stantinides, Milton Harris, and René M. Stulz (ed.), Handbook of the Economics of Finance,

Elsevier, Amsterdam.

Haliassos, M., 2002, “Stockholding: Recent Lessons from Theory and Computations,” Working

Papers in Economics, University of Cyprus.

Hansen, L. P., and T. J. Sargent, 2007, Robustness, Princeton University Press.

Heyerdahl-Larsen, C., and J. Walden, 2021, “Distortions and Efficiency in Production

Economies with Heterogeneous Beliefs,” forthcoming in Review of Financial Studies.

Hirshleifer, D., 2001, “Investor Psychology and Asset Pricing,” Journal of Finance, 56, 1533–

1597.

Hirshleifer, D., 2015, “Behavioral Finance,” Annual Review of Financial Economics, 7, 133–159.

Huberman, G., 2001, “Familiarity Breeds Investment,” Review of Financial Studies, 14, 659–

680.

Jaynes, E. T., 1957, “Information Theory and Statistical Mechanics,” The Physical Review,

106, 620–630.

Jaynes, E. T., 1986, “Monkeys, Kangaroos, and N,” in J. Justice (ed.), Maximum Entropy

and Bayesian Methods in Applied Statistics: Proceedings of the Fourth Maximum Entropy

Workshop University of Calgary, pp. 26–58. Cambridge University Press.

Kahneman, D., 2003, “Maps of Bounded Rationality: Psychology for Behavioral Economics,”

American Economic Review, 93, 1449–1475.
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