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1 Introduction

This paper proposes a bargaining framework to study collective decisions

when agents hold different beliefs. This study is motivated by the public

policy debates where opposing sides may share similar goals, yet profoundly

disagree about the best ways to achieve them. As a concrete example, con-

sider the debate on whether capital punishment deters homicide. Donohue

and Wolfers (2009) observe that “[g]iven the availability of relatively high-

quality data [...] one would think that a consensus would have emerged about

the answer to this ostensibly simple question.” Yet, such consensus is hard

to reach because of “the large number of choices that must be made when

specifying the various panel data models.” Durlauf, Fu, and Navarro (2013)

provide a striking illustration of this: models that differ only in plausible

econometric assumptions imply a net number of lives saved per execution

that varies from 20 lives to minus 60 lives.1

Instances of disagreement—our shorthand for rational differences in prior

beliefs—are, of course, not limited to the criminal justice system. There is

no shortage of examples where rational agents face complex policy problems

in areas ranging from macroeconomics, to climate change and education,

disagree on how to frame these problems and interpret available evidence.

One source of such disagreements is the radical uncertainty about key pa-

rameters, as witnessed during the 2020-21 coronavirus pandemic. Different

researchers with access to identical data can and do reach different conclu-

sions about infection and mortality rates, resulting in strikingly different

policy recommendations about the effectiveness of testing, lockdowns, and

hospitalization protocols. Ultimately, the source of disagreement is the diffi-

culty of identifying causal mechanisms when—as it is often the case—policy

counterfactuals cannot be observed. This difficulty, which is central to mod-

ern empirical work, implies that differences in prior beliefs can persist despite

1A 2012 study by the National Research Council (cited in Nagin (2013)) concludes
that “Research to date on the effect of capital punishment on homicide is not informative
about whether capital punishment decreases, increases, or has no effect on homicide rates.”
More generally, the fact that different sets of plausible assumptions can lead to sharply
different conclusions is well-recognized in applied econometrics. For example, Heckman
and Vytlacil (2005) write: “Two economists analyzing the same dataset but using dif-
ferent valid instruments will estimate different parameters that have different economic
interpretations.”
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the accumulation of a large and public body of evidence.

However significant the disagreements may be, a collective decision must

still be made—including the option of doing nothing. We propose a model

where disagreements are resolved through bargaining. We consider an en-

vironment with a group of n “experts” who share the same utilities but

hold different beliefs. The group’s decision is reached by bargaining over

treatments—equivalent terms commonly used in the literature include poli-

cies and programs. We assume that the outcome of bargaining is determined

according to the Nash bargaining solution.

A key measure of the effectiveness of a decision-making process is how

well it incorporates new evidence. Adapting collective decisions to the new

realities created by clinical trials, empirical studies, or intelligence reports

often makes the difference between success and failure. To model the dy-

namic nature of the experts’ decisions, we consider bargaining over policy

rules that condition the collective decision on publicly observed information.

This richer setting is consistent with a variety of bargaining procedures that

differ in the degree of commitment available to the experts.

Consider first an ex ante bargaining procedure where experts can commit

to an enforceable rule that prescribes how the treatment choice changes in

response to new information. Since the Nash bargaining solution is Pareto

optimal, the chosen treatment rule is also optimal and must therefore lead

to an efficient use of information.

Enforceable ex ante commitments require a group of experts to plan for

every future signal (i.e., future observations), and to credibly commit to

quashing all attempts to renegotiate after a signal is observed. Since this

is unrealistic in many contexts, we consider a bargaining procedure where

collective decisions are made after new evidence becomes available. This in-

terim bargaining procedure is less onerous and, arguably, more natural since

experts engage in bargaining only at the signal that is actually observed. No

advance planning for all conceivable signals is necessary. We investigate the

properties of interim bargaining and show that, with sufficient diversity of

beliefs, interim bargaining is generally inefficient in the sense of Pareto. But,

even more radically, it can lead to collective decisions that are inadmissible,

meaning that there exist ex ante treatment rules that perform better than

the bargaining solution in each state—and, thus, for every possible expert
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belief. A compact way to state the source of this problem is that Nash

bargaining and Bayesian updating do not commute: bargaining over policy

rules followed by updating always leads to Pareto-optimal allocations, while

Bayesian updating, followed by bargaining result in Pareto-inefficient, if not

inadmissible, collective decisions.

This loss in welfare, which can be severe in magnitude, is the result of an

inefficient use of information. In Section 3, we pinpoint the form this inef-

ficiency takes in a setting with two states. In a sense made precise, interim

bargaining causes collective decisions to under-react to new public infor-

mation. Roughly, collective decisions are characterized by inertia, because

Nash bargaining tends to put more weight on the more skeptical experts

whose beliefs change more slowly with the new evidence.

A by-product of our analysis is a simple, yet very useful characteriza-

tion: the Nash bargaining outcome is chosen as if to maximize the expected

utility of a “Nash planner” whose belief is a weighted average of the experts’

beliefs. The weights are determined by the Nash bargaining solution accord-

ing to a simple and intuitive formula. Roughly, in evaluating a treatment

t, the weight attached to an expert is inversely proportional to this expert’s

expected surplus if t were implemented. This means that the expert who is

most pessimistic about t carries a higher weight in determining whether it

is chosen. Collective decisions reached through bargaining therefore tend to

be more cautious.

Our interest in differences in prior beliefs has two sets of motivations.

First, the assumption that agents share a common prior belief, while en-

trenched in economic modeling practice, has long been questioned in theo-

retical work. It is well-known that this assumption has weak foundational

standing and leads to paradoxical implications, such as the no-trade theo-

rems.2

Our second motivation for focusing on differences in prior beliefs is prac-

tical. One compelling argument for assuming a common prior is learning:

while experts may start with different beliefs, these differences are washed

out as evidence accumulates. In our context, experts eventually end up

2The common prior assumption has been forcefully advocated by Aumann (1987). It
is controversial from a theoretical point of view, as seen, for example, in the arguments
presented in Gul (1998) and Aumann (1998). Morris (1995) contains a vigorous defense
of using differences in prior beliefs in economic models.
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agreeing on the consequences of new treatments as data swamps differences

in their priors. This idea stands in contrast with the modern empirical lit-

erature, which emphasizes the limitations of observational data, however

abundant, in revealing critical policy counterfactuals.3

A useful perspective on these issues is that of partial identification, an

empirical method that aims to limit reliance on strong non-testable assump-

tions (see Manski (2003)). Rather than relying on such assumptions to

point-identify the “true” parameter, partial identification aims to identify

bounds on this parameter, using minimal assumptions. Although one would

expect rational agents to agree that the true parameter must fall within

the bounds derived from the data, it is impossible, by definition, to further

narrow down their beliefs without adding non-testable assumptions about

which rational experts may disagree. Unless the identification bounds de-

fine a single parameter (point identification), complete agreement among

rational experts would be little more than an improbable coincidence.

We relate our results to the Bayesian model averaging methodology in

Statistics (see Brock, Durlauf, and West (2003), Steel (2019)). Nash bargain-

ing provides a legitimate way of finding a compromise between competing

models, assigning weights to different models. To the best of our knowledge,

our approach has not been proposed or studied before, except in the work

of Weerahandi and Zidek (1983). In this work, a group of Bayesian experts,

endowed with different utilities and beliefs must select a decision rule. The

authors show that the Nash solution has desirable properties in this context,

mainly because of invariance with respect to linear-affine transformations of

utilities4, but they did not prove or conjecture the type of results that we

present below. Our approach builds on the intuition that ex ante Nash

bargaining is likely to be the simplest and most compelling way of find-

ing a compromise between rational agents endowed with different beliefs.

3For example, according to Milton and Rose Friedman: “Legalize drugs, and street
crime would drop dramatically and immediately” Friedman and Friedman (1984). In the
debate on whether to legalize recreational drugs, little is known about the potential impact
of legalization of drugs on demand because all that is available is data collected under the
current policy regime. Such data, however massive, would do little to compel rational
agents to hold the same beliefs about counter-factual outcomes.

4Weerahandi and Zidek also consider the case in which a random subsample of experts
bargains to choose the decision, noting that decisions are invariant under Nash bargaining,
because sampling probabilities factor out.
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The bargaining model synthesizes the main elements of a collective-decision

problem: the different beliefs and utilities, the technological constraints,

the individual rationality constraints, and pins down the weights used to

compute an average of the agents’ beliefs.

In the following, Section 2 presents the model and shows that it applies

to collective decision-making. In Section 3, we focus on Nash bargaining;

we contrast ex ante and interim bargaining situations, then present results

on inertia and inadmissibility; we also show that bargaining solutions are

supported by a particular weighted average of the experts’ beliefs. We finally

discuss applications to statistical decision problems. In Section 4, subsection

4.1 studies a class of examples called hard choices, in which the diversity of

beliefs allows for improvements through ex ante negotiation. Subsection

4.2 states the result that interim-bargaining is always inefficient under the

condition that beliefs are sufficiently dispersed. Proofs are gathered in the

Appendix.

2 Treatment Choice under Disagreement

2.1 The Model

A set of n experts, indexed i = 1, . . . , n, with different beliefs, must select a

treatment t that results in an uncertain outcome z ∈ Z, where Z is the set

of possible outcomes.

Uncertainty and Treatments. We model uncertainty as a product Θ × S

where Θ is an index set of (unobservable) states of nature, or theories, and

S is a set of publicly observed data (or signals). A treatment is any function

t : Θ× S → ∆(Z)

where ∆(Z) denotes the set of probability distributions on Z. To fix ideas,

we assume that Z is a closed and bounded subset of RH , so that outcomes

may be multidimensional. Assume, for expository simplicity, that Θ and

S are finite. Let K be the number of states in Θ and L be the number

of signals in S. Then, a treatment t can be viewed as list of LK proba-

bility distributions t(θ, s), and t(., s) denotes a sub-vector of t, giving the

probability distributions on outcomes for a given s. A treatment that is
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not signal-contingent is denoted a = (a(θ1), . . . , a(θK)), and called a ba-

sic treatment. Let A denote the feasible set of basic treatments, which we

assume to be convex. Thus, feasibility requires t(., s) ∈ A. The set of treat-

ments, represented as T = A|S| has a natural convex structure by averaging

distributions.

Information and Likelihood. The signal s can be any information, such as

a data set in an empirical study, historical time series, or the results of an

experiment. The distribution of signals conditional on the state is given by

a likelihood function q(s | θ). The likelihood q is common to all experts. This

is an innocuous assumption which can be satisfied without loss of generality

by expanding the set of states Θ. Differences of opinions then amount to

different beliefs about the true state θ.

Beliefs and Disagreement. Expert i’s model of the consequences of a treat-

ment is represented by a probability distribution pi on Θ × S, with a like-

lihood function q. We use pi(θ) and pi(s) to denote the marginals of pi on

Θ and S, respectively. We shall assume that pi(s) > 0 for every i and s, so

beliefs can always be updated once a signal is observed.

To focus on the role of disagreement—rather than asymmetric infor-

mation—we assume that the belief profile (p1, . . . , pn) is commonly known.

By Aumann’s theorem (cf. Aumann (1976)), these beliefs are not the pos-

teriors derived from updating a common prior based on (possibly private)

information. Experts therefore “agree to disagree.” Using the language

of applied econometrics, even when all available data are made public, the

experts’ models are not fully identified. It follows that experts may legit-

imately use different identifying assumptions that cannot be proved to be

false.

2.2 Utility

Assume a common a cardinal utility v on Z. Under this assumption, given

a true state θ, we can integrate out the outcome and the signal to obtain

the state-utility:

u(t)(θ) =
∑
s∈S

q(s | θ)Et(θ,s)v(z),
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where Et(θ,s)v(z) is expected utility with respect to the distribution on out-

comes t(θ, s), induced by the chosen treatment t. Note that u(t) doesn’t

depend on i’s beliefs. Now, expert i’s expected utility is by definition,

Epiu(t) =
∑
θ∈Θ

pi(θ)u(t)(θ).

Our bargaining model can be extended to the case of different utilities.

This, however, will obscure the role of differences in beliefs—our main fo-

cus in this paper. Common utility, on the other hand, makes it possible

to cleanly separate the types of uncertainty in the model. First, we have

uncertainty about the outcomes and the samples, conditional on the true

state. The state-utilities capture the impact of this uncertainty, which is

not subject to disagreement. Second, the experts’ prior beliefs pi represent

their subjective models of the likelihood of different states.

3 Treatment Choice as a Bargaining Problem

Like any conflict among economic agents, interactions between experts with

different beliefs should be modeled as a game. The main idea of this paper

is to think of the experts’ collective decision as a bargaining process whose

outcome is determined according to the Nash bargaining solution (cf. Nash

(1950)). We comment on the interpretation of bargaining as a mechanism

to resolve disagreements after a formal statement of the problem.

3.1 Ex Ante Nash Bargaining

Recall the standard definition of a bargaining problem with n players as: (1)

a convex set U ⊂ Rn of feasible expected utility vectors, and (2) the status

quo u◦ ∈ U indicating the expected utilities if no agreement is reached. The

Nash bargaining solution selects the unique vector u? ∈ U that maximizes

the Nash product
∏n
i=1(ui − u◦i ) over U .

We are interested in bargaining problems over treatment choice. A nat-

ural starting point is ex ante bargaining where experts bargain before any

new information is received. We formally define this problem as:

B? =
(
T, a◦,

(
Epiu(t)

)
i∈N

)
,
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where T is a compact and convex set of feasible treatments, a◦ ∈ T is the

status quo treatment, and N = {1, . . . , n} is the set of players.5

Let t? denote any treatment that produces the (necessarily unique) Nash

bargaining solution vector of expected utilities for this problem. Although t?

is not in general unique,6 any other such treatment must generate the same

expected utility for each expert. For this reason we simplify the exposition

by referring to t? as the Nash bargaining solution.

To simplify notation, we defining the surplus generated by treatment t

to be the vector δ(t) in RK , with components

δ(t)(θ) ≡ u(t)(θ)− u(a◦)(θ)

indicating, for each state θ, the change in expected utility under t relative

to the status quo a◦. We will also use the notation, δ(t)(θ, s) = Et(θ,s)v(z)−
u(a◦)(θ) to denote the surplus at point (θ, s).

3.2 Interim Nash Bargaining

Ex ante bargaining assumes that experts are bound to implement a data-

contingent policy rule that is agreed to in advance. We view ex ante bar-

gaining as an ideal, normative solution. There are certainly contexts where

such commitments are reasonable. For instance, institutions, such as federal

agencies and research journals, increasingly enforce pre-analysis plans in ex-

perimental and observational studies. See Christensen and Miguel (2018) for

discussion and surveys of the use of pre-analysis plans in economics, medical

science, and other fields.

In other contexts, such pre-commitments can be daunting, if not outright

impossible. Researchers and policy makers may find it unrealistic to plan

for all conceivable, yet to be observed, data sets. This leads us to consider

treatment choices when bargaining takes place at the interim stage, after

the information s has been revealed but before the consequence is realized.

5To map this into a bargaining problem over expected utilities, define U to be the
set of vectors of expected utilities

(
Ep1u(t), . . . , Epnu(t)

)
obtained from each t ∈ T and

u◦ =
(
Ep1u(a◦), . . . , Epnu(a◦)

)
.

6For example, if there are more states than experts then there will necessarily be a
non-zero linear subspace of state-utility vectors that generate identical expected utilities
for all experts.
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Define the interim bargaining problem as:

B(s) =
(
A, a◦,

(
Epi(· | s)u(t)

)
i∈N

)
.

The main difference with ex ante bargaining is that experts evaluate treat-

ments using their updated beliefs pi(· | s). Although the outcome of a treat-

ment at signals other than s is irrelevant, this redundancy will be convenient

below.

The interim Nash bargaining solution t̂ is the treatment t̂ = (t̂(., s))s∈S
belonging to A|S| such that, for every signal s, t̂(., s) maximizes the Nash

product:
n∏
i=1

[Epi(· | s)u(t)− Epi(· | s)u(a◦)].

As before, we will refer to t̂ as the interim Nash bargaining solution since

any two solutions must generate the same expected utility for each expert

at each signal s.

We now identify a range of plausible conditions where bargaining and

disagreement distort the way a group of experts uses information, and lead to

overly conservative decisions that under-react to new evidence (i.e., inertia).

3.3 Bargaining and the Efficient Use of Information: Inertia

To make progress and discover the structure of interim solutions, we assume

here that there are two states, denoted θ0 and θ1, n experts, L signals, and

a regularity condition on the set of feasible state-utility vectors u(A). We

discuss below the extent to which these assumptions may be relaxed.

The likelihood ratio of state θ1 to state θ0 at signal s,

`(s) =
q(s | θ1)

q(s | θ0)

defines a linear ordering on signals. A higher value of `(s) indicates greater

support for state θ1. To simplify notation, for a signal s define:

δ?θk(s) ≡ δ(t?(θk, s)) and δ̂θk(s) ≡ δ(t̂(θk, s))

for the surplus in state θk under the ex ante and interim solutions, respec-

tively.
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We can state the following result.

Proposition 1. Suppose that:

1. Beliefs disagree: pi 6= pj for some i and j;

2. The experiment (S, q) is informative in the sense that there exists a

signal s such that q(s|θ0) 6= q(s|θ1) for two different states θ0, θ1;

3. The set u(A) is strictly convex with differentiable boundary;

4. There are two states.

Then, there exists a positive real number ¯̀ such that, for any signal s,

`(s) > ¯̀ =⇒ δ?θ1(s) > δ̂θ1(s),

and

`(s) < ¯̀ =⇒ δ?θ0(s) > δ̂θ0(s).

To illustrate the result, assume that there is a signal s̄ such that `(s̄) = ¯̀

and consider a signal s with `(s) > `(s̄) (the case for s with `(s) < `(s̄) is

similar). Since s provides stronger evidence in favor of θ1 compared to s̄, the

ex ante planner, who now believes θ1 is more likely, will select a treatment

t?(., s) that does better than t?(., s̄) in state θ1.7 That is, we must have:

δ?θ1(s) > δ?θ1(s̄).

Appendix A shows that this monotonicity in the likelihood ratio also holds

for the interim solution t̂(., s). Observing an s with `(s) > `(s̄) causes both

the ex ante and interim solutions to adjust the treatment choice towards

one that does better in state θ1 and (necessarily) worse in state θ0. The

question is: how strong is this adjustment under the two solutions? The

key assertion in the proposition, δ?θ1(s) > δ̂θ1(s), states that the adjustment

is smaller under interim bargaining than ex ante bargaining. That is, the

interim solution displays inertia with respect to the information contained

in s.

Inertia reflects the way information is processed under the two bargaining

procedures. Both procedures update the experts’ beliefs using Bayes rule.

7And does necessarily worse in state θ0, since t?(., s) is on the frontier of A.
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For example, when `(s) increases, all of the experts’ posteriors put more

weight on θ1. The difference is in the way the two procedures aggregate

the posteriors. A careful analysis of interim bargaining reveals that interim

bargaining places more weight on the “hold-outs,” i.e., the experts with the

least favorable posterior about state θ1.

3.4 Inadmissibility of Interim Bargaining

Recall that under interim bargaining, each signal gives rise to a distinct

bargaining problem B(s) whose solution varies in subtle ways with s.8 An

interesting by-product of the proof of Proposition 1 is that interim bargain-

ing can result, not only in Pareto-inefficient choices, but, more radically, in

inadmissible treatment rules, i.e., rules that can be improved on in every

state. This is always true in the two-states case.

Proposition 2. Under the assumptions of Proposition 1, the interim Nash

bargaining solution t̂ is inadmissible.

The proofs of Propositions 1 and 2 are complicated by the fact that they

require a careful analysis of how the interim bargaining solution, t̂(θ, s),

changes as beliefs are updated. We can, however, provide a rough informal

argument which, despite many gaps, may help the reader develop an intu-

ition for the result. To this end, it will be useful to state another result,

which plays the role of a Lemma in the proof of the above propositions,

and we will then return to our discussion of their meaning. Finally, Section

5 below provides sufficient conditions under which the interim bargaining

solution is always Pareto-inefficient in the K-states, 2 experts case.

3.5 The Nash Planner

The bargaining solution can be described as the decision of a fictitious plan-

ner (i.e., the “Nash planner”) whose belief is a particular weighted average

of the expert’s beliefs. We can now state the following Proposition.

8This difficulty disappears when beliefs are dogmatic, because the experts’ posterior
beliefs are always equal to their priors.
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Proposition 3. For the bargaining problem B?, with Nash bargaining solu-

tion t?, there is a probability distribution π? over Θ such that:

t? ∈ argmax t∈T Eπ?δ(t). (1)

The distribution π? is the unique weighted average of the experts’ beliefs

given by:

π?(θ) =
n∑
i=1

m?
i pi(θ) (2)

where

m?
i =

c

Epiδ(t
?)

and c is the normalization constant defined by
∑

i m
?
i = 1.

Proposition 3 applies to the interim bargaining problem as well as the ex

ante bargaining problem. The statement remains true if we replace t? and

π? with t̂ and π̂, B? with B(s) and beliefs with updated beliefs.

In the statement of Proposition 3, the probability distribution π? may

be interpreted as a compromise between the beliefs of the n experts. The

fact that the weight m?
i is inversely proportional to expert i’s expected

surplus reflects a fundamental property of Nash bargaining as a mechanism

to mediate differences in beliefs: experts who are more pessimistic about a

treatment t, in the sense of a small expected surplus Epiδ(t), tend to carry

a higher weight in determining whether t is chosen.

Once the signal s is observed, Bayes’ rule requires that t(., s) maximizes

expected utility with respect to the updated compromise belief:9

π?(θ | s) =
n∑
i=1

m?
i (s) pi(θ | s) (3)

where

m?
i (s) = c(s)

pi(s)

Epiδ(t
?)

(4)

9Proposition 3 tells us that t? maximizes
∑
s π

?(s)
∑
θ π

?(θ|s)δ(t)(s, θ), where π?(s) =∑
θ q(s|θ)π

?(θ). It follows that each t?(., s) ∈ A must maximize
∑
θ π

?(θ|s)δ(t)(s, θ). The
rest follows easily.
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and c(s) is the normalization constant defined by
∑

im
?
i (s) = 1. It is con-

venient to eliminate the normalization constant by writing:

m?
i (s)

m?
j (s)

=
pi(s)

pj(s)︸ ︷︷ ︸
Bayes Factor

× m?
i

m?
j

.

In the statistics literature, the Bayes factor measures the support that new

evidence lends to one model over another (cf. Wasserman (2000)). It deter-

mines how the prior odds ratio m?
i /m

?
j of the two models changes as a result

of observing the data: when the observed sample s is more likely under pi
than pj , this is interpreted as evidence supporting i’s model, boosting its

weight.

The interim bargaining process will not lead to the same compromise

over updated probabilities that the Nash planner would use to implement

the solution of the ex ante bargaining problem.

3.6 Discussion and Intuition for the Results

The Complete Class Theorem (see Appendix B) states that for the interim

solution to be admissible, it must maximize expected utility with respect

to some Bayesian belief, say π??. In addition, Bayes’ rule implies that the

updated bargaining weights for the ex ante planner must satisfy:

π??(θ1 | s)
π??(θ0 | s)

∝ `(s).

When the feasible set is strictly convex with differentiable boundary,

then, at each signal s, the updated belief π??(θ | s) must coincide with the

interim planner’s belief (that can be expressed as a weighted average of the

experts’ beliefs, according to Proposition 3), that is,

π̂(θ | s) =
∑
i

m̂i(s)pi(θ|s).

This, in turn, implies:10

π̂(θ1 | s)
π̂(θ0 | s)

∝ `(s).

10The factor of proportionality is, in fact, π??(θ1)/π??(θ0), a constant that does not
depend on s.
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A careful analysis of the interim bargaining problems shows that such a

proportionality is in contradiction with the characterization of the interim

compromise beliefs π̂(θ|s). Intuitively, admissibility requires the interim

bargaining weights to vary only with the informational content of the signal,

measured by the likelihood ratio `(s), while the expression of π̂(θ|s) shows

that it must also depend on the experts’ expected utilities, through the

weights m̂i(s).

To see the intuition, recall from the discussion of the Bayes factor (in

Section 3.5) that ex ante bargaining selects a treatment t?(s) based on as-

signing experts weights that vary proportionally with the relative accuracy

of their predictions, measured by pi(s) / pj(s). Contrast this with interim

bargaining, where the interim bargaining weight of expert i relative to expert

j at t̂(., s) is:
1

Epi(· | s)δ̂(s)

/ 1

Epj(· | s)δ̂(s)
.

Here, the relative accuracy of the predictions, pi(s) / pj(s), plays no role in

how the updated beliefs are weighted. Instead, the Nash bargaining solution

now dictates that weights are influenced by the experts’ conditional expected

utilities. The injection of such non-informational consideration tends to give

greater weight to the expert with the lowest expected utility conditional on

s.

Next, we review the assumptions of Propositions 1 and 2. Assumption

1, stating that experts disagree, is clearly needed: under complete agree-

ment, interim Nash bargaining is Bayesian, and therefore admissible (by the

Complete Class Theorem). In addition, if the signals were perfectly infor-

mative, then all non-dogmatic experts would agree in the interim stage, and

the outcome, again, would be Bayesian. The strict convexity and differen-

tiability assumptions cannot be removed entirely, for somewhat more subtle

technical reasons.11

Finally, the assumption that there are only two states is used in the

proof to ensure that the likelihood ratio `(s) introduces a linear ordering on

signals, so that a higher value of `(s) indicates greater support for state θ1.

We suspect that the result would hold more generally under monotonicity

assumptions about the signal structure.

11See a detailed discussion in the Appendix.

14



To sum up, with ex ante commitments, ex ante expected utilities deter-

mine the ex ante relative bargaining positions of the experts. Once these

are determined, the response to new information depends only on the infor-

mational content of the observed signal, as seen in Section 3.5 above. When

experts have no access to such commitments, their interim bargaining posi-

tions are calculated based on their interim expected utilities and not on the

informational content of the signal alone.

Groups and organizations that lack the ability to enforce ex ante agree-

ments will fall into a potentially inferior interim solution. In special cases,

when beliefs are dogmatic, the result is complete paralysis: the status quo

is sustained despite overwhelming evidence favoring change. Section 4.1

studies a class of examples, called “hard choices”, in which these problems

appear. Our model provides a new perspective on the problem of commit-

ment in organizations, namely the role of commitment in efficiently resolving

differences in beliefs.

3.7 Regression, Prediction, and Treatment Assignments

The abstract setting above applies to collective public-policy decisions as

well as a statistical decision problems. We illustrate this connection in the

context of generalized regression.

Basic Set-up. We are given a real-valued policy-relevant consequence y ∈ Y
and an l-dimensional vector of covariates (regressors) x ∈ X . To maintain

consistency with our earlier assumptions, assume that X is a finite set. The

x’s can, for instance, be indicator (i.e., dummy) variables.

The likelihood function q(s | θ) represents i.i.d. samples of m observations

s ∈ (Y × X )m. The distribution of the outcome conditional on the state

and a vector of covariates is assumed to follow the generalized regression

equation:

y = Fθ(x) + ε,

where Fθ is a regression function and ε is a random error term. For expos-

itory simplicity, the distribution of ε is fully specified if θ is given (i.e., it

is parameterized by θ). For instance, and to fix ideas, the error can be a

mixture of normal distributions.

The state θ therefore encodes all information about how samples are
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generated, including the marginal distribution on covariates, possible cor-

relations between covariates and the error term, causal interpretations of

coefficients, etc. The regression function Fθ may be linear, a more complex

non-linear classifier, or a neural network. In a linear regression, Fθ cor-

responds to a vector of regression parameters β that encodes assumptions

about model specification such as exclusion restrictions.

Prediction Problems. Consider first the problem where experts must for-

mulate conditional predictions of y. To this end, they choose an estimator

f̂(x, s) of the expected value of the consequence y, given an observed vector

of covariates x. Any such estimator f̂ : X × S → Y defines a probability

distribution of the prediction error y − f̂(x, s) given θ and s. We interpret

this prediction error as the outcome, i.e., z = y− f̂(x, s) and its distribution

for a given sample as t(θ, s).

The common utility assumption in this case is quite natural: experts

(econometricians) equally care about reducing out-of-sample prediction er-

rors, all the while disagreeing about the procedure to accomplish that.

If, as common in practice, estimators are evaluated based on their mean

square errors, then the loss function is z2 and the common utility function

is v(z) = −z2. The state-utility is then, for each model or parameter θ,

u(t)(θ) = −
∑
s∈S

q(s|θ)Et(θ,s)
(
y − f̂(x; s)

)2
.

Treatment Assignment. Next, we consider the problem of assigning a binary

treatment D ∈ {0, 1} to individual cases characterized by a covariate vector

x. Here, samples are m observations s ∈ ({0, 1}×Y ×X )m and the regression

function is Fθ(D,x), indicating the dependence of y on the treatment as well

as the covariate vector. The likelihood function q(s | θ) then represents, in

addition, how treatments were assigned in-sample.12

A treatment allocation rule in this case selects d(x, s) ∈ {0, 1} for an out-

of-sample observation x, given s. This allocation rule may be constant (treat

every new patient with the new drug), randomized (treat every patient with

12For example, in an experiment with random assignment, potential outcomes y1 =
Fθ(1,x) + ε, y0 = Fθ(0,x) + ε and treatment D would be assumed conditionally indepen-
dent, given x, as usual in the treatment-effects literature (see e.g., Heckman and Smith
(1998), Angrist and Pischke (2009)).
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probability 0.5), or based on maximizing expected utility. In the latter case,

the outcome is z = (y(x))x∈X where y(x) = Fθ(d(x, s),x) + ε. The utility

v is some welfare function, such as a weighted average of the outcomes

v(z) =
∑

x α(x)y(x), with weights α(x) ≥ 0.13 The treatment allocation

rule d generates a distribution of the outcome y(x), denoted t(θ, s; d,x).

The state-utility can now be defined as follows:

u(t(.,d))(θ) =
∑
s

q(s|θ)
∑
x

α(x)Et(θ,s;d,x)y(x).

A single Bayesian expert with prior p over states θ would choose d to max-

imize Epu(t(.; d)). The group of experts may be constrained to choose the

rule d in a certain class, for instance, in the class of rules d(x, s) ∈ {0, 1}
such that d(x, s) = 1 if and only if some estimate of the average treatment

effect satisfies

ATE(x; s) = f̂(1,x; s)− f̂(0,x; s) ≥ c(s),

where c(s) is a cutoff in outcome space and f̂(D,x; s) is an estimator of the

conditional expectation of y given x. We would then study which estimator

f̂ (and which cutoff c) would be the result of bargaining among experts.

3.8 Bargaining and Bayesian Model Averaging

If we now discuss our approach in terms of Statistical Decision Theory, we

see that bargaining provides a solution to the problem of model selection

when there is disagreement about the correct model. In statistics—and

increasingly in economics—an important methodology to deal with model

uncertainty is Bayesian model averaging. This methodology starts with a

space of possible models (different specifications, variable selections, func-

tional forms, exclusion restrictions, etc.) and assigns to each model p in

that space a weight mp that measures the belief that the true model is p.

Prediction, estimation, and policy analysis can then be conducted using the

weighted average of the models.

Brock, Durlauf, and West (2003) develop persuasive arguments for using

Bayesian model averaging in policy evaluation when the structure of the

13Manski (2004) proposes a related framework, using Minimax regret as a decision
criterion.
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economic environment is not known. Steel (2019) provides a survey of the

vast number of applications in econometric practice. See Hoeting, Madigan,

Raftery, and Volinsky (1999) and Wasserman (2000) for motivation and

exposition of the underlying statistics.

Bargaining provides a better economic motivation for model averaging

in treatment choice. Under bargaining, the set of models corresponds to

the economic agents actually competing to achieve policy objectives. The

weights derived in Proposition 3 are determined by bargaining and take into

account the economically relevant information about the decision problem

they face: beliefs, payoffs, feasibility, and the status quo.

In the statistical model averaging literature, weights are assigned to mod-

els based on statistical considerations such as diffuseness of priors or penal-

ties for model complexity and overfitting. Since policy evaluation is made

by the economic agents involved, diffuseness or controlling overfitting are

not desirable per se, but appear only in so far as these agents believe in

them or through the bargaining process itself.

Another difficulty in using statistical model averaging techniques is that

they ignore payoffs. Downside risk, potential rewards, or concern about

equity are obviously crucial in treatment choice. The model weights in

Nash bargaining are determined not just as a function of the model space

(the belief profile) {p1, . . . , pn} but also by the utility function.

While the Nash bargaining solution is extensively used in economics, our

use of this concept differs from its traditional applications to distributive

conflicts (i.e., cake-division problems). A natural question, then, is: how

appropriate is Nash bargaining as a model of resolving conflicts in beliefs?

The Nash bargaining solution may be viewed as a description of the equi-

librium outcome of some underlying non-cooperative game. The literature

on this topic, known as the Nash Program, is too large to be adequately

reviewed here. See Serrano (2005) for a survey. For example, Binmore,

Rubinstein, and Wolinsky (1986) show that the Nash bargaining solution

emerges from an alternating offer bargaining game when the frequency of

offers increases. Taking this perspective, the axioms defining the Nash bar-

gaining solution provide a compact representation of what to expect in actual

bargaining among experts.

A key feature of bargaining, compared to individual decisions, is the
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pivotal role the status quo plays in treatment choice. This reflects well how

real-world legislative, regulatory, and legal decisions are made (cf. Manski

(2013)). New medical drugs and procedures are not approved unless they

undergo stringent tests that compare them to existing ones. New legislations

and regulations are proposed as alternatives to a status quo that is reverted

to if no agreement is reached. The Nash bargaining solution captures this.14

We return to this point in greater depth in the next section.

4 Hard Choices and Inefficiency

4.1 Hard Choices : An Example

To illustrate the impact of interim bargaining, we begin with a symmetric

example. There are two states, two experts, and two treatments. Signals,

payoffs, and beliefs are symmetric. The payoffs are given in the table:

a◦ a1 a2

θ1 0 α −β
θ2 0 −β α

with β > α > 0.

The idea is that each expert can identify a treatment ai that improves

on the status quo but not by enough to out-weigh the harm caused by

implementing the treatment favored by the other. The key characteristic

of this environment is the potential absence of a mutually agreed way to

improve on the status quo. For a concrete example, suppose that a choice

has to be made whether to move from the status quo to one of two new

medical procedures. There is significant uncertainty about the performance

of both procedures: while ai improves welfare by α in state θi, it causes

greater harm β if the state is θj .

Next consider sampling m observations from the set S◦ = {s1, s2}.
Define q(s | θ) as follows.

Let qm denote the probability distribution of i.i.d. samples of m observations

of s.

14As shown in Roth (1977), the Pareto-optimality axiom can be replaced by individual
rationality, which grants each expert a veto power over treatments deemed inferior to the
status quo.
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s1 s2

θ1 q 1− q
θ2 1− q q

q > 0.5.

The two experts have symmetric beliefs: for i 6= j, pi(θi) = p and

pi(θj) = 1 − p, for some 1 > p > β
α+β . This restricts attention to the

interesting case where both experts believe the status quo can be strictly

improved on, but cannot agree on which alternative should be used to im-

prove on it.

Consider first the ex ante bargaining procedure of the last section. The

symmetry of the problem implies that the Nash bargaining solution must

generate the same (ex ante) expected payoff to the two experts. In particu-

lar, the ex ante Nash bargaining implies equal weights on the two experts.

Since beliefs are symmetric, π? must satisfy π?(θ1) = π?(θ2).

Bayes rule implies that, under ex ante Nash bargaining, the collective

decision is determined by the likelihood ratio:

l(s) =
π?(θ1 | s)
π?(θ2 | s)

=
qm(s | θ1)

qm(s | θ2)
.

Given that the expected payoff is απ?(θ1 | s)−β π?(θ2 | s) under π? at sample

s and treatment a1, the bargaining outcome is (setting aside indifferences):

� a1 if l(s) > β
α ;

� a2 if l(s) < α
β ; and

� a◦ if l(s) ∈
(
α
β ,

β
α

)
.

To focus on the interesting case, assume that l(s) 6∈
(
α
β ,

β
α

)
with positive

probability. This rules out that the status quo is always selected, regardless

of the sample (this is a joint condition on the states, q and m).

We turn next to interim bargaining: the two experts observe the sample

s, then bargain based on their updated beliefs. If 1 > p > β
α+β , expert i ex

ante believes treatment ai is superior to the status quo and aj , but would

be willing to change his opinion if the evidence strongly suggests otherwise.

In interim bargaining, for a treatment to be selected, it has to satisfy

the individual rationality constraint of both experts. So, for expert 2, say,
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to agree to a1, it is necessary that l(s) > (β/α)(p/1 − p).15 Under ex ante

bargaining, by contrast, a1 is chosen provided only that l(s) > β/α.

To implement a treatment other than the status quo, stronger evidence

in favor of that treatment is required under interim bargaining as compared

to the ex ante case. The sharper the disagreement between the experts (p

close to 1), the higher is p/(1−p) and the stronger the evidence would need

to be to move away from the status quo. In the extreme case where both

experts are dogmatic, so p = 1, we have p/(1 − p) = ∞ and experts are

stuck at the status quo regardless of the strength of the evidence in favor of

moving away.

Both experts are worse off under interim bargaining, as long as there is

positive probability that the sample evidence is strong enough to warrant a

move away from the status quo under π? but not strong enough to overcome

the veto power of each expert.16 This inefficiency echoes long-standing ideas

of the public policy literature about the status quo bias and the tyranny of

the status quo (Friedman and Friedman (1984), Manski (2013)).

In Appendix B, we study the asymptotic properties of the hard-choices

example, showing that when m → ∞, the experts can approach the maxi-

mum payoff α by means of ex ante bargaining.

4.2 Inefficiency of Interim Bargaining Solutions: A General
Result

The example discussed above, although quite special, exhibits a very general

property. Are interim bargaining solutions always ex ante inefficient? The

answer is not obvious, because some interim solutions t̂ may be efficient.

For instance, suppose that the signals are very powerful, in the sense that

updated beliefs pi(θ|s) are close to each other for each s. In addition, suppose

that, once s known, the increase in surplus that expert i could obtain is

small when i’s favorite treatment is chosen instead of t̂(., s). Then, it may

be that the interim solution is Pareto-undominated in the ex ante sense.

But, in “standard cases” (a notion made precise by the proposition below),

15This follows from the fact that p2(θ2 | s1) = pqm(s|θ2)
(1−p)qm(s|θ1)+pqm(s|θ2)

. Thus, for a1 to

be acceptable to expert 2, it must be the case that −βpqm(s|θ2) + α(1− p)qm(s|θ1) > 0.
16The probability, under a1, that (β/α)p/(1−p) > l(s) > β/α—with similar expression

for a2.

21



the interim solution is always inefficient.

To describe the interim solution t̂ in a convenient way, we first introduce

the following notation. The treatment t̂(., s) ∈ A yields a state-utility vector

denoted û(s) ∈ u(A), where u(A) is the set of state-utility vectors generated

by some basic treatment in A. Formally, we have,

u(A) =
{
u ∈ RK

∣∣u =
(
Ea(θ1)v(z), . . . , Ea(θK)v(z)

)
, a ∈ A

}
.

Let ri(s) be expert i’s vector of conditional probabilities given s, that is,

ri(s) =

 pi(θ1|s)
...

pi(θK |s)

 .

For each signal s, define the feasible set F (s) = IR(s) ∩ u(A), where by

definition, IR(s) =
⋂
i IRi(s), and where

IRi(s) = {u ∈ RK | ri(s) · u ≥ ri(s) · u(a◦)},

is the set of individually rational state-utility vectors for expert i under signal

s. Since û(s) is a Nash bargaining solution for all s ∈ S, it follows that û(s)

is a Pareto-optimal point in F (s), i.e., û(s) ∈ F (s) is a state-utility vector

such that there doesn’t exist another feasible u′ with ri(s) · (u′ − û(s)) ≥ 0

for all i and with one strict inequality.

Recall that a state-utility vector u ∈ u(A) is called admissible if there is

no other u′ ∈ u(A) such that u′(θ) ≥ u(θ) for all states θ ∈ Θ and with a

strict inequality at least (see Ferguson (1967)). Now, define the admissible

frontier of u(A) as the set of all admissible points in u(A), denoted A(u(A)).

For each s, define the admissible and individually rational part of the frontier

of u(A) as follows,

F(s) = IR(s) ∩ A(u(A)).

Any ex-ante feasible utility vector u can be described as an array u =

(u(s1), . . . , u(sL)) ∈ RKL where L is the number of signals, and where for

each s, we have u(s)(θ) = Et(θ,s)v(z) for each (θ, s) and for some feasible

t ∈ T (and therefore u(s) ∈ u(A)), and u satisfies the ex ante IR constraints,

that is, for all i,∑
θ∈Θ

∑
s∈S

pi(θ)q(s|θ)
(
u(s)(θ)− u(a◦)(θ)

)
≥ 0.
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An ex ante feasible u is by definition ex ante Pareto-inefficient if there exists

another ex ante feasible u′ such that,∑
θ∈Θ

∑
s∈S

pi(θ)q(s|θ)
(
u′(s)(θ)− u(s)(θ)

)
≥ 0 for all i ∈ I,

with a strict inequality for at least one expert i.

Define the interim surplus δ̂(s) = û(s)− u(a◦). Recall that, by Proposi-

tion 3, the interim solution û(s) is supported by a hyperplane with orthog-

onal vector r̂(s) for each s, such that,

r̂(s) =
∑
i

m̂i(s)ri(s) with m̂i(s) =
c(s)

ri(s) · δ̂(s)
,

where c(s) is chosen so that
∑

i m̂i(s) = 1.

Consider now the case of two experts (i.e., n = 2). Consider the marginal

probabilities on signals of the two experts, and the ratio p1(s)/p2(s). Rela-

beling all signals s ∈ S if necessary, we can write,

p1(s1)

p2(s1)
≥ p1(s2)

p2(s2)
≥ · · · ≥ p1(sL)

p2(sL)
.

Define the maximal relative gap between two signals as follows,

ρ = max
(s,s′)∈S2

 p1(s′)
p2(s′) −

p1(s)
p2(s)

p1(s)
p2(s)

 .

Given our relabeling of signals, we have

1 + ρ =
p1(s1)

p2(s1)

/p1(sL)

p2(sL)
.

Proposition 4 says that if there is enough disagreement, as measured by

ρ, then, the interim solutions of well-behaved bargaining problems are ex

ante inefficient.
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Proposition 4. Let (B(s))s∈S be a bargaining problem.

Assume the following:

(i) there are two experts;

(ii) F (s) is compact with a nonempty interior for all s;

(iii) u(A) is strictly convex;

(iv) the admissible frontier of u(A) is continuously differentiable;

(v) for every signal s, we have pi(s) > 0, i = 1, 2, and r1(s) 6= r2(s), and

the property, for i = 1, 2,

min
u∈F(s)

(ri(s) · δ) > 0.

Then, there exists a threshold value ρ∗ ≥ 0 such that, if ρ > ρ∗, the interim

bargaining solution t̂ is ex ante Pareto-inefficient.

In addition, we can choose ρ∗ in the following ways,

Case 1. If there exists a pair of signals (s′, s′′) ∈ S2 such that m̂1(s′) <

1/2 < m̂1(s′′), then we can set ρ∗ = 0.

Case 2. If m̂1(s) ≥ 1/2 for all s, then we can take any ρ∗ such that

1 + ρ∗ ≥
max
u∈F(s)

(r2(s) · δ)

min
u∈F(s)

(r1(s) · δ)
for all s.

Assumptions (ii)-(v) together define what we may call a “well-behaved”

problem (in Appendix A, we show that these assumptions make sure that

the bargaining problem is “standard” in a precise sense). In these problems,

when experts disagree about the probability of states pi, they also typically

disagree about the marginal probability of signals pi(s). Note that the as-

sumption that ρ is large is rather weak. If the set of signals S is sufficiently

rich, it is quite natural, under disagreement, that p1(s)/p2(s) varies from 0

to infinity, or at least that this ratio has a wide range.

Intuition suggests that experts can improve efficiency by engaging in a

kind of ex ante, signal-contingent trading arrangement. Remark however,

that the treatment decision t(θ, s) is like a public good for the experts. Since

there is no private good, like money, that could be used to pay transfers,
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it follows that transactions, in the ordinary sense, cannot be structured

to compensate an expert for yielding to the demands of others. For the

same reason, there are no real possibilities of ex ante insurance. Yet, in

spite of these constraints creating a nontrivial problem, under the technical

assumptions of the Proposition, experts can do without markets, prices,

private goods or money, but they need to exploit differences in beliefs to

improve on the interim bargaining solution.17

We are accustomed to think that heterogeneous beliefs are a bad thing,

opening the possibility of speculation and giving rise to situations of spurious

unanimity. This leads one to question the notion of Pareto-optimality (on

this question, see e.g., Mongin (1995), Mongin (2016)). A number of recent

papers pointed to the adverse welfare implications of speculative behavior in

private-good environments (especially financial markets). See, for example,

the papers by Brunnermeier, Simsek, and Xiong (2012) and Gilboa, Samuel-

son, and Schmeidler (2014). The analysis of this paper offers an interesting

contrast: ex ante speculation, in a collective decision context, may be es-

sential to improving welfare. As shown above, the ex ante agreement uses

the signal s as an ordeal that will determine which of the experts’ theories

are the most likely in an impartial way. This is as if a social planner, acting

on behalf of the experts, was applying Bayes’ rule before choosing the best

t(., s), once s is revealed. There is a clear sense in which any compromise is

facilitated by the fact that the parties bargaining give a different meaning

to words: in abstract terms, experts think that the probabilities of certain

consequences of the agreed upon choices are different.

5 Summary and Concluding Remarks

We provide a novel application of bargaining theory to the problem of treat-

ment choice under disagreement. In contrast to its traditional role as a

mechanism for dividing private goods, we use Nash bargaining to resolve

differences in prior beliefs. We studied how a group of experts chooses a

treatment, or policy, by means of bargaining, when their prior beliefs (i.e.,

their models, or theories) are different. Our model is very general and appli-

17For these reasons, Proposition 4 has the flavor of, but is not a restatement of Hirsh-
leifer’s paradox (see Hirshleifer (1971)).
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cable to a wide variety of situations. We showed that Nash bargaining pins

down the weights that a fictitious planner should use to compute a compro-

mise belief supporting the collective decision. This approach can be used in

statistical decision theory to find an average of competing models. Taking

into account the fact that the disclosure of new data will lead experts to

update their probabilistic beliefs, we compared the normative solution, ex

ante bargaining, in which experts commit to a plan of action before knowing

the data, and the interim bargaining solution, in which experts bargain once

the data have been publicly revealed. Interim bargaining, which is a more

realistic description of many situations, exhibits inertia, or under-reaction

to new information. A more radical finding, in the case of two competing

models (or two states of nature) is that interim bargaining is inadmissible,

meaning that it is suboptimal for every conceivable prior belief, and hence

for every Bayesian expert. More generally, in the case of K competing mod-

els (i.e., K states) we found that when beliefs are sufficiently different, the

interim bargaining solution is always Pareto-inefficient among experts.

One of the problems that bedevil models of heterogenous priors is that,

by definition, there is no “truth” that everyone agrees on. In the extreme

case of dogmatic beliefs, every expert is certain that the others are wrong.

Since collective decisions must still be made despite these differences, a cen-

tral question is whether information is used efficiently. Our analysis shows

that ex ante commitments exploit differences in beliefs to achieve unambigu-

ous, i.e., prior-independent, welfare improvements and thus, a more efficient

discovery of the truth. In sharp contrast, a lack of commitment leads to a

distorted use of information in the form of inertia.
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A Appendix

We start with the proof of Proposition 3 because this result is used as a

Lemma to prove Propositions 1 and 2. Then we prove several Lemmas

leading to the proof of Proposition 2. The Proof of Proposition 1 follows.

We end with the Proof of Proposition 4.

A.1 Proof of Proposition 3

The logarithm of the Nash product in terms of the surplus in state k is:

n∑
i=1

log

(
K∑
k=1

pi(θk) δ(t)(θk)

)
.

The gradient of this function at t? is the vector whose kth entry is its deriva-

tive with respect to δ(t)(θk):
n∑
i=1

1

Epiδ(t
?)
pi(θk).

Thus, the right hand side of (2) is proportional to the gradient of the log-

Nash product at t?, and π? is its normalization to a probability distribution,

obtained by dividing by
∑n

i=1
1

Epiδ(t
?) . Since T is convex, it must be the case

that t? solves (1).

Proposition 3 has a partial converse: the set of treatments that solve (1)

contains the set of Nash bargaining solutions. In particular, if the solution

to (1) is unique, as it would be if T is strictly convex, for example, then it

must coincide with the (unique) Nash bargaining solution.

A.2 Analysis of Interim Bargaining: Preliminaries

Assume that there are two states and simplify notation by writing, for k =

0, 1:

pi = pi(θ1) i = 1, . . . , n

qk(s) = q(s | θk)
δ̂θk(s) = δ(t̂(θk, s))

δ?θk(s) = δ(t?(θk, s))
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and

δ?θk = δ(t?)(θk) =
∑
s

qk(s)δ
?
θk

(s),

where t̂ = (t̂(., s))s∈S and t? = (t?(., s))s∈S denote interim and ex ante

treatment rules, respectively.

When the feasible set of state-utility vectors u(A) is strictly convex with

a differentiable frontier, we may express the admissible part of that fron-

tier as a strictly concave and differentiable function δ1 = φ(δ0). Applying

Proposition 3 to the interim problem at sample s, we have that δ̂θ0 and δ̂θ1
must be the unique solution to:18

max
δ0,δ1>0

[π̂(θ0 | s)δ0 + π̂(θ1 | s)δ1] subject to δ1 = φ(δ0). (5)

Recall that, in general:

π̂(θ | s) = ξ(s)
n∑
i=1

1

Epi(· | s)δ̂(s)
pi(θ | s),

where ξ(s) is a normalization constant that depends on s. In the two-state

case, Bayes rule makes it possible to simplify this expression to:

π̂(θ1 | s) = ξ(s)

n∑
i=1

piq1(s) + (1− pi)q0(s)

piq1(s)δ̂θ1(s) + (1− pi)q0(s)δ̂θ0(s)
pi(θ1 | s)

= ξ(s) q1(s)

n∑
i=1

pi

piq1(s)δ̂θ1(s) + (1− pi)q0(s)δ̂θ0(s)
,

where piq1(s) + (1 − pi)q0(s) = pi(s) is the probability expert i assigns to

observing sample s. A similar expression holds for π̂(θ0 | s). This leads to

π̂(θ1 | s)
π̂(θ0 | s)

=
q1(s)

q0(s)

∑n
i=1

pi
piq1(s)δ̂θ1 (s)+(1−pi)q0(s)δ̂θ0 (s)∑n

i=1
(1−pi)

piq1(s)δ̂θ1 (s)+(1−pi)q0(s)δ̂θ0 (s)

(6)

18 The reader may be concerned that Problem (5) appears circular: the solution is
defined in terms of probabilities, π̂(θ0 | s), that are themselves defined in terms of the
solution. There is no circularity here: the vector of surpluses δ̂θ0 , δ̂θ1 is defined as the
solution to maximizing the Nash product given sample s over the convex set A. Proposition
3 simply states that this solution has the property that it also solves Problem (5).
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It will be useful to define, for a real number ∆ > −1, the function:

ρ(∆) =

∑
i

pi
pi∆+1∑

i
1−pi
pi∆+1

(7)

With this notation, we may write (6) as:

π̂(θ1 | s)
π̂(θ0 | s)

=
q1(s)

q0(s)
ρ(∆̂(s)) (8)

where

∆̂(s) =
δ̂θ1(s)q1(s)− δ̂θ0(s)q0(s)

δ̂θ0(s)q0(s)
.

Using this notation, we note, for future use, that Problem (5) can be

rewritten as:

max
δ0,δ1>0

[
δ0 +

q1(s)

q0(s)
ρ(∆̂(s))δ1

]
subject to δ1 = φ(δ0). (9)

In a similar fashion, as explained in section 3.5, by Proposition 3, the ex

ante solution δ?θ0(s), δ?θ1(s) is a solution to

max
δ0,δ1>0

[π?(θ0|s)δ0 + π?(θ1|s)δ1] subject to δ1 = φ(δ0),

and using expressions (3) and (4), we easily find that the ex ante solution

δ?θ0(s), δ?θ1(s) is a solution to:

max
δ0,δ1>0

[
δ0 +

q1(s)

q0(s)
ρ(∆?)δ1

]
subject to δ1 = φ(δ0), (10)

where

∆? =
δ?θ1
δ?θ0
− 1.

Next, we collect some useful properties of the function ρ:

1. Note that ∆ > −1 implies 1 + pi∆ > 0, so the function ρ is always

well-defined.

2. If p1 = p2 = · · · = pn = p, then ρ(∆) = p
1−p .
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Consider now the derivative of ρ. We can state the following result.

Lemma A.1. For any ∆ > −1, ρ′(∆) = 0 if p1 = p2 = · · · = pn, and

ρ′(∆) < 0 otherwise.

The proof of Lemma A.1 is in Appendix B.

A.3 Proof of Inadmissibility (Proposition 2)

The inertia and inadmissibility results are both consequences of a set of

common Lemmas. More precisely, Lemmas A.1, A.2, A.3 yield Proposition

2, and Lemmas A.1, A.2, A.4, A.5 are used in the proof of Proposition 1. It

follows that it is natural to prove Proposition 2 first.

Suppose, by way of contradiction, that t̂ is admissible. Then the Com-

plete Class Theorem, (see Appendix B, Proposition 5), implies that t̂ must

be optimal with respect to some Bayesian belief π?? (not necessarily related

to ex ante bargaining). In this case, for every s, t̂(s) must maximize:∑
θ

π??(θ | s)δ(a)(θ)

where

π??(θ | s) =
q(s | θ)π??(θ)∑
θ q(s | θ)π??(θ)

.

Given our assumption that the feasible set is strictly convex with smooth

boundary, it follows that π̂(θ | s) = π??(θ | s) for every θ and s. Therefore

we can write,
π̂(θ1 | s)
π̂(θ0 | s)

=
q1(s)

q0(s)

π??(θ1)

π??(θ0)
,

and combining (8) with this observation, it follows that ρ(∆̂(s)) must be

constant in s. We show that this is not the case. We begin with a simple

lemma, which we state without proof:

Lemma A.2. For all x > 0, the maximization problem

max
δ0,δ1>0

[δ0 + xδ1] subject to δ1 = φ(δ0)

has a unique solution δ̄0, δ̄1 and the ratio δ̄1
δ̄0

is differentiable and strictly

increasing as a function of x.

The next lemma, which we also state without proof, applies Lemma A.1

to the interim solution:
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Lemma A.3. The following statements are equivalent:

1. ρ(∆̂(s)) is constant in s.

2. For all s, ∆̂(s) is constant in s.

3. The ratio
δ̂θ1(s)q1(s)

δ̂θ0(s)q0(s)
is constant in s. (A)

To complete the proof of Proposition 2, consider s, s′ such that

q1(s′)

q0(s′)
>
q1(s)

q0(s)
. (11)

If ρ(∆̂(s)) were constant in s, then, from (8),

π̂(θ1 | s′)
π̂(θ0 | s′)

>
π̂(θ1 | s)
π̂(θ0 | s)

. (12)

Applying Lemma A.2 to problem 5 , with x = π̂(θ1 | s)/π̂(θ0 | s), it follows

that
δ̂θ1(s′)

δ̂θ0(s′)
>
δ̂θ1(s)

δ̂θ0(s)
. (13)

From (11) and (13), it follows that:

δ̂θ1(s′)

δ̂θ0(s′)

q1(s′)

q0(s′)
>
δ̂θ1(s)

δ̂θ0(s)

q1(s)

q0(s)
.

By the last lemma, ρ(∆̂(s)) is not constant in s. A contradiction.

Comment on the role of differentiability in the proposition. Suppose that

the feasible set is strictly convex but its frontier contains a kink, so we lose

the differentiability of the function φ. Then (12) would still hold, indicating a

change in the interim planner’s beliefs. But admissibility is a property of the

treatment choices; the supporting beliefs are relevant only as far as they lead

to the choice of different treatments. Without differentiability, we can no

longer appeal to Lemma A.2 to conclude that (13) holds with strict (rather

than just weak) inequality. If (13) held with equality, then π̂(θ1 | s)/π̂(θ0 | s)
and ρ(∆̂(s)) may vary with s, all the while that the treatments chosen

remain unchanged.
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A.4 Proof of Inertia (Proposition 1)

To prove Proposition 1, we begin with preliminary steps. Recall that the

log interim Nash product evaluated at a sample s and an arbitrary vector

of surpluses δ0, δ1, is:

lnN =
∑
i

ln

(
piq1(s)δ1 + (1− pi)q0(s)δ0

piq1(s) + (1− pi)q0(s)

)
. (14)

Differentiating, we obtain:

∂ lnN
∂δ1

=
∑
i

piq1(s)

piq1(s)δ1 + (1− pi)q0(s)δ0

and
∂ lnN
∂δ0

=
∑
i

(1− pi)q1(s)

piq1(s)δ1 + (1− pi)q0(s)δ0
.

Next, we define ζ as the marginal rate of substitution of the Nash product

in the δ0, δ1 space (so −ζ−1 is the slope of the indifference curve of the Nash

product). Define now ∆ as a function of q1/q0 as:

∆ =
q1δ1

q0δ0
− 1.

Below, we express ζ as a function of ∆ (which is itself an increasing function

of the likelihood ratio, q1/q0). In the following string of equalities, we drop

explicit reference to the sample s to simplify notation.

ζ =
∂ lnN
∂δ1
∂ lnN
∂δ0

=

∑
i

piq1
piq1δ1+(1−pi)q0δ0∑

i
(1−pi)q0

piq1δ1+(1−pi)q0δ0

=

1
δ1

∑
i

piq1δ1
piq1δ1+(1−pi)q0δ0

1
δ0

∑
i

(1−pi)q0δ0
piq1δ1+(1−pi)q0δ0

=
δ0

δ1

∑
i
pi(1+∆)
pi∆+1∑

i
(1−pi)
pi∆+1

=
δ0

δ1
(∆ + 1)ρ(∆).
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Lemma A.4. For any fixed δ0, δ1 > 0, the function ζ has strictly positive

derivative in ∆, and therefore also in the likelihood ratio q1/q0.

The proof of Lemma A.4 is given in Appendix B. We now state,

Lemma A.5. For any two samples s, s′,

q1(s′)

q0(s′)
>
q1(s)

q0(s)
=⇒ δ̂θ1(s′)

δ̂θ0(s′)
>
δ̂θ1(s)

δ̂θ0(s)
.

Proof: Write the function ζ as a function of the likelihood ratio and the

ratio of surpluses:

ζ = ζ(q1/q0, δ1/δ0).

By Lemma A.1, for a fixed q1/q0, ∂ζ
∂(δ1/δ0) < 0.

Assume by way of contradiction that q1(s′)
q0(s′) >

q1(s)
q0(s) while

δ̂θ1 (s′)

δ̂θ0 (s′)
≤ δ̂θ1 (s)

δ̂θ0 (s)
.

Since φ′ is decreasing, this implies that φ′(δ̂θ0(s′)) ≤ φ′(δ̂θ0(s)). From the

first order tangency condition at optimum, φ′ = −1/ζ, this implies:

ζ

(
q1(s′)

q0(s′)
,
δ̂θ1(s′)

δ̂θ0(s′)

)
≤ ζ

(
q1(s)

q0(s)
,
δ̂θ1(s)

δ̂θ0(s)

)
.

Since ζ is decreasing in δ1/δ0, we have:

ζ

(
q1(s′)

q0(s′)
,
δ̂θ1(s)

δ̂θ0(s)

)
≤ ζ

(
q1(s)

q0(s)
,
δ̂θ1(s)

δ̂θ0(s)

)
,

contradicting the conclusion of Lemma A.4.

Proof of Proposition 1: It is clear that maximizing the log of the Nash

product at sample s, (14), is equivalent to maximizing

max
δ0,δ1>0

∑
i

ln[piq1(s)δ1 + (1− pi)q0(s)δ0] subject to δ1 = φ(δ0).

The above problem yields the interim solution δ̂0(s), δ̂1(s). This problem, in

turn, is equivalent to

max
δ0,δ1>0

∑
i

ln[pi`(s)δ1 + (1− pi)δ0] subject to δ1 = φ(δ0).
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It is easy to check that this problem has a unique solution δ̂0(`), δ̂1(`), since

the objective to be maximized is strictly concave, and the feasible set, {δ1 ≤
φ(δ0)} is strictly convex. Define ∆̃(`) = ` δ̂1(`)

δ̂0(`)
− 1. By Lemma A.5, ∆̃(`) is

a strictly increasing function of `. Since ∆̃(`) ranges from -1 to infinity and

is continuous, by the intermediate value theorem there exists `? such that

∆̃(`?) = ∆? =
δ?θ1
δ?θ0
− 1.

Then, for any sample s:

q1(s)

q0(s)
> `? =⇒ ∆̃

(
q1(s)

q0(s)

)
> ∆?

=⇒ ρ(∆̂(s)) < ρ(∆?) by Lemma A.1

=⇒ q1(s)

q0(s)
ρ(∆̂(s)) <

q1(s)

q0(s)
ρ(∆?)

=⇒ δ̂θ1(s)

δ̂θ0(s)
<
δ?θ1(s)

δ?θ0(s)
by Lemma A.2, (9), and (10).

The case of q1(s)/q0(s) < `? is similar.

Connection between the proofs of Propositions 2 and 1. Although the

two propositions rely on the same set of assumptions, they deal with differ-

ent properties of the interim solution t̂. Proposition 1 compares the interim

solution t̂ to a specific π?-Bayesian treatment rule, where π? is the plan-

ner’s belief derived from ex ante bargaining. The argument used to prove

the proposition is silent on whether t̂ might coincide with some different

Bayesian treatment rule, unrelated to ex ante bargaining. At the other end,

Proposition 2 shows that t̂ differs from any Bayesian treatment rule for any

belief. Since inertia refers to a specific reference belief (that derived from

ex ante bargaining, say), a result like Proposition 2 that considers all beliefs

cannot shed light on the inertia property.
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A.5 Proof of Proposition 4

We finally prove Proposition 4 (the interim-bargaining inefficiency result).

To this end we introduce a technical tool, the notion of standard bargaining

problem. Lemma A.6 shows that under the assumptions of Proposition 4,

the bargaining problems are standard. We then rely on this property to

prove the proposition.

Definition 1. (Standard bargaining problems)

(a) A bargaining problem (B(s))s∈S is called standard at signal s if for all

i = 1, . . . , n, there exist a state-utility vector ũi(s) ∈ F (s), a conditional

probability r̃i(s) such that we have

pi(s) > 0, r̃i(s) 6= r̂(s),

ri(s) · ũi(s) > ri(s) · û(s) and

r̃i(s) · ũi(s) > r̃i(s) · û(s),

with

r̃i(s) =
∑
j∈I

αij(s)rj(s), 0 < αij(s) < 1, and
∑
j∈I

αij(s) = 1.

(b) The problem (B(s))s∈S is called simply standard if it is standard at every

signal s.

Remark 1: In the case of two experts, if a problem is standard at s, then

p1 6= p2 (i.e., there is some disagreement). Proof of this claim: Assume that

p1 = p2, then, r1(s) = r2(s), and it follows that 1
2(r1(s) + r2(s)) supports

the Pareto-optimal solution û(s) because any convex combination of r1(s)

and r2(s) is equal to r1(s). In addition, r̃i(s) = r̂i(s) for all i. It follows that

the problem in nonstandard at s.

Remark 2 (Interpretation): The assumption of being standard at s is

not very restrictive. In particular, the well-behaved feasible sets with a

smooth and strictly concave admissible frontier are standard. If u(A) is the

convex hull of a finite number of points, corner solutions are generic, and

if û(s) is located at a corner (or vertex), the problem is more likely to be

nonstandard. In principle, we do not need to require differentiability of the

frontier of u(A), or even strict convexity, to get a standard problem.
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Assume that n = 2. We can state,

Lemma A.6. Assume that pi(s) > 0 for all i; r1(s) 6= r2(s) and F (s) has

a nonempty interior at signal s. Assume in addition that u(A) is strictly

convex with a nonempty interior (in the sense that for any u, u′ ∈ u(A)

and λ ∈ (0, 1), then λu+ (1− λ)u′ belongs to the interior of u(A)), and the

admissible frontier of u(A) is differentiable, then, the problem is standard

at s, and we can take any αii(s) such that 1 > αii(s) > m̂i(s) for i = 1, 2.

Proof of Lemma A.6: Note first that, due to convexity and differentiabil-

ity, the interim solution at s is supported by a unique hyperplane, tangent

to F (s) at solution point û(s), with orthogonal (or normal) vector

r̂(s) = m̂1(s)r1(s) + m̂2(s)r2(s),

where m̂1(s) = 1 − m̂2(s) ∈ (0, 1). The interim solution û(s) is Pareto-

optimal given s and belongs to the admissible frontier of u(A). Due to strict

convexity, for all u ∈ F (s), u 6= û(s), we have r̂(s) · u < r̂(s) · û(s).

Step 1. Consider first i = 1 (the reasoning is the same for i = 2). Fix a

signal s. To lighten notation, we drop ‘(s)’ everywhere when there is no

ambiguity.

First we choose ũ1 ∈ F and r̃1, as in the definition of a standard problem,

such that

r̃1 · (ũ1 − û) > 0.

If r̃1 6= r̂, the intersection F ∩ {u | r̃1 · (u − û) > 0} is nonempty. (If this

intersection was empty, then, for all u ∈ F , we would have r̃1 · u ≤ r̃1 · û,

implying that r̃1 defines a supporting hyperplane, tangent to F at point û,

and therefore, r̃1 = r̂, a contradiction.)

For all s and i, define the set

Gi(s) ={
ũ ∈ F (s)

∣∣∣ ri(s) · (ũ− û(s)) > 0; r̃i(s) · (ũ− û(s)) > 0; r̂(s) · (ũ− û(s)) < 0
}
.

Note that this set does not contain û(s) and that it depends on the choice

of αij . Note, in addition, that the last inequality in the definition of Gi(s)

must be true by definition of û.
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Step 2. Fix an s and take i = 1. Suppose next that we have ũ1 ∈ G1(s),

and a probability r̃1 = α1r1 + (1− α1)r2, with 0 < α1 < 1. Adding the last

two inequalities in the definition of G1 yields (r̂ − r̃1) · (ũ1 − û) < 0, and

we have (r̂ − r̃1) = (m̂1 − α1)(r1 − r2). It follows from this that we have

simultaneously,

r1 · (ũ1 − û) > 0, and

(m̂1 − α1)(r1 − r2) · (û− ũ1) > 0.

Assume now that m̂1 > α1. Multiply the first inequality by m̂1 − α1 > 0

and add the latter two inequalities. This yields,

(m̂1 − α1)r2 · (ũ1 − û) > 0.

But r1 · (ũ1 − û) > 0 and û Pareto-optimal imply r2 · (ũ1 − û) < 0. This is

a contradiction. It follows that G1 nonempty implies α1 > m̂1.

Step 3. By Step 1 above, we know that F ∩{ũ | r̃1 · (ũ− û) > 0} is nonempty.

Assume, by way of contradiction, that G1 = ∅. Then, the following three

inequalities must hold simultaneously for all ũ ∈ F :

r1 · (ũ− û) ≤ 0; r̂ · (ũ− û) < 0; −r̃1 · (ũ− û) < 0.

Introduce nonnegative multipliers for the above three inequalities, respec-

tively, (λ, µ, ν) ≥ 0 such that µ+ ν > 0. We must have,

(λr1+µr̂−νr̃1)·(ũ−û) < 0, (3I)

and it is easy to check that,

λr1 + µr̂ − νr̃1 = (λ+ µm̂1 − να1)r1 + (µ(1− m̂1)− ν(1− α1))r2.

Now, we find positive values λ∗, µ∗, ν∗ solving the following system of two

linear equations, {
λ+ µm̂1 − να1 = α1,
µ(1− m̂1) = 1− α1.

Using the second equation of the latter system, we obviously must choose

µ∗ =
1− α1

1− m̂1
> 0.
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Then, take

ν∗ =
m̂1

α1

(1− α1)

(1− m̂1)
> 0.

Using the first equation of the linear system finally yields λ∗ = α1 > 0.

With these values of the multipliers, the linear combination of the three

inequalities (3I) gives,

(α1r1 + (1− α1)r2) · (ũ− û) < ν∗(1− α1)r2 · (ũ− û),

but the left-hand side of the latter inequality is just r̃1 · (ũ − û) > 0. It

follows that we have r2 · (ũ− û) > 0. A contradiction will follow.

Suppose now that α1 > m̂1. Choose new values (λ0, µ0, ν0) for the

multipliers, namely, λ0 = α1− m̂1 > 0, µ0 = 1 and ν0 = 0. Using these new

values, the linear combination of our three inequalities (3I) now yields,

(α1r1 + (1− m̂1)r2) · (ũ− û) < 0.

But we have shown above that r2 ·(ũ−û) > 0 and we assume 1−α1 < 1−m1.

Hence,

(α1r1 + (1− α1)r2) · (ũ− û) < 0,

in other terms, we have found r̃1 · (ũ− û) < 0, a contradiction. We conclude

that: r1 6= r2 and α1 > m̂1 implies G1 6= ∅.
To end the proof, note that the same reasoning can be applied, mutatis

mutandis, to ũ2 and r̃2, showing that α22 > m̂2 implies G2 6= ∅.

Proof of Proposition 4. Choose a pair of signals sk and s` with k < `.

Let ũi(sh) be as defined in the definition of a standard problem. We

construct u′ ∈ F as follows. Let εh ∈ (0, 1), for h = k, `, and define,

u′(sk) = εkũ1(sk) + (1− εk)û(sk),

u′(s`) = ε`ũ2(s`) + (1− ε`)û(s`),

u′(sh) = û(sh) for all h 6= k, h 6= `.

We can write,∑
s

pi(s)ri(s) · (u′(s)− û(s))

= pi(sk)ri(sk) · (u′(sk)− û(sk)) + pi(s`)ri(s`) · (u′(s`)− û(s`))

= εkpi(sk)ri(sk) · (ũ1(sk)− û(sk)) + ε`pi(s`)ri(s`) · (ũ2(s`)− û(s`))
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Now, define for convenience,

h1k = r1(sk) · (ũ1(sk)− û(sk)); h2k = r2(sk) · (ũ1(sk)− û(sk));

h1` = r1(s`) · (ũ2(s`)− û(s`)); h2` = r2(s`) · (ũ2(s`)− û(s`)).

With this notation, we have
∑

s pi(s)ri(s) · (u′(s)− û(s)) > 0 for i = 1, 2 if

and only if,

εkp1(sk)h1k + ε`p1(s`)h1` > 0,

εkp2(sk)h2k + ε`p2(s`)h2` > 0.

By Lemma A.6, under strict convexity (i.e., Assumption (iii)) and differen-

tiability (i.e., Assumption (iv)) the problem is standard at sk and s`. Since

the problem is standard at sk, with ũ1(sk), we have h1k > 0. Similarly, since

the problem is standard at s` with ũ2(s`), we have h2` > 0. Remark that,

given this, we have h2k < 0 since û(sk) is interim Pareto-optimal in F (sk).

(Indeed, there would be a contradiction if we had h2k ≥ 0.) Similarly, we

have h1` < 0 since û(s`) is interim Pareto-optimal in F (s`). Using these

results, the above system of two strict inequalities can be rewritten,

εk >
p1(s`)

p1(sk)

(−h1`)

h1k
ε`,

ε` >
p2(sk)

p2(s`)

(−h2k)

h2`
εk.

The set of solutions (εk, ε`) ∈ (0, 1)2 is nonempty if we have the key inequal-

ity (KI),

1 >
p1(s`)

p2(s`)

p2(sk)

p1(sk)

|h2k|
h1k

|h1`|
h2`

. (KI)

Remark : This is equivalent to saying that the determinant of the associated

homogeneous linear system of equations in (εk, ε`) is positive, namely,∣∣∣∣p1(sk)h1k p1(s`)h1`

p2(sk)h2k p2(s`)h2`

∣∣∣∣ > 0.

Case 1. In this case, there exists a pair of signals (s′, s′′) ∈ S2 such that

m̂1(s′) < 1/2 < m̂1(s′′). We can take sk = s′ and s` = s′′ and assume k < `.
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If k > `, we exchange the names of the experts. The above inequalities are

equivalent to,

m̂1(sk) <
1

2
, and m̂2(s`) <

1

2
.

It follows from Lemma A.6 again that we can find a feasible ũ1(sk) such

that(
r1(sk)

2
+
r2(sk)

2

)
·(ũ1(sk)−û(sk)) > 0, and r1(sk)·(ũ1(sk)−û(sk)) > 0,

(and of course we choose r̃1(sk) = 1
2(r1(sk)+r2(sk))). Similarly, we can find

a feasible ũ2(s`) such that(
r1(s`)

2
+
r2(s`)

2

)
· (ũ2(s`)− û(s`)) > 0, and r2(s`) · (ũ2(s`)− û(s`)) > 0,

(and of course we choose r̃2(s`) = 1
2(r1(s`) + r2(s`))).

With these specific values (i.e., αii = 1/2), it is easy to check that,

|h2k|
h1k

< 1 and
|h1`|
h2`

< 1.

Since k < `, we have in addition,

p1(s`)

p2(s`)

p2(sk)

p1(sk)
≤ 1.

The key inequality (KI) is therefore satisfied.

We conclude that there exist values εh ∈ (0, 1) for h = k, `, such that∑
s pi(s)ri(s) · (u′(s)− û(s)) > 0 for i = 1, 2, showing that û is dominated in

the sense of Pareto, in the ex ante problem. We can obtain this result even

if ρ = 0. This proves the result in Case 1.

Case 2. Assume now that for all s ∈ S, we have m̂1(s) ≥ 1/2. Note that if

ρ > 0, then
p1(sL)

p2(sL)

p2(s1)

p1(s1)
=

1

1 + ρ
< 1.

We pick the two extreme signals, sk = s1 and s` = sL. Case 2 can be divided

in two complementary subcases.

Case 2a. In this subcase, we assume that m̂1(s1) ≥ 1/2 and m̂1(sL) > 1/2.
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At signal sL, we take a ũ2(sL) (as in the definition of a standard problem,

since our problem is standard under Assumptions (iii) and (iv)) and r̃2(sL) =
1
2(r1 + r2). This is a feasible choice since m̂2(sL) = 1− m̂1(sL) < 1/2. Next,

we choose ũ1(s1) as in the definition of a standard problem, along with

r̃1(s1) = (m̂1(s1) + η)r1(s1) + (1− m̂1(s1)− η)r2(s1),

and a small η > 0. From this definition of r̃1(s1), we easily derive the

inequality,
|h21|
h11

≤ m̂1(s1) + η

1− m̂1(s1)− η
.

Since −h1L/h2L < 1, it is always possible to choose η > 0 small enough so

that,
|h1L|
h2L

(m̂1(s1) + η)

(1− m̂1(s1)− η)
≤ m̂1(s1)

(1− m̂1(s1))
.

It follows that the product of ratios appearing in (KI) satisfies,

p1(sL)

p2(sL)

p2(s1)

p1(s1)

|h1L|
h2L

|h21|
h11

≤
(

1

1 + ρ

)
m̂1(s1)

(1− m̂1(s1))
.

Define

H(s) =

 max
u∈F(s)

(r2(s) · δ)

min
u∈F(s)

(r1(s) · δ)

 .

Now, we have, by definition of m̂i(s), and with δ = u− u(a◦),

m̂1(s1)

(1− m̂1(s1))
=
r2(s1) · δ̂(s1)

r1(s1) · δ̂(s1)
≤ H(s1).

It follows that if we set 1 + ρ > H(s1), the key inequality (KI) holds true

again, showing that there exists (ε1, εL) ∈ (0, 1)2 such that u′ dominates û.

As a consequence, in this case too, û is dominated by u′ in the sense of ex

ante Pareto-optimality.

Case 2b. Finally, we treat the only remaining case in which m̂1(s1) ≥
m̂1(sL) = 1/2.

In this latter subcase, we can take ũ1(s1) with η1 > 0 small, such that

r̃1(s1) = (m̂1(s1) + η1)r1(s1) + (1− m̂1(s1)− η1)r2(s1).
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This yields,
−h21

h11
<

(m̂1(s1) + η1)

(1− m̂1(s1)− η1)
.

We take ũ2(sL) under signal sL, and choose

r̃2(sL) = (m̂1(sL)− η2)r1(sL) + (1− m̂1(sL) + η2)r2(sL),

with a small η2 > 0. Since m̂1(sL) = 1/2, this yields,

−h1L

h2L
<

(1− m̂1(sL) + η2)

(m̂1(sL)− η2)
=

(1 + 2η2)

(1− 2η2)
,

the right-hand side being as close to 1 as desired for sufficiently small η2 > 0.

It follows that the key product in (KI) can be written(
1

1 + ρ

)
(1 + 2η2)

(1− 2η2)

(m̂1(s1) + η1)

(1− m̂1(s1)− η1)
.

But we have,
m̂1(s1)

(1− m̂1(s1))
=
r2(sL) · δ̂(sL)

r1(sL) · δ̂(sL)
≤ H(sL).

We conclude that with η1 and η2 sufficiently small and 1 + ρ > H(sL), the

key product is smaller than 1 and (KI) holds true. Again, this implies that

û is Pareto-dominated by u′ in the ex ante bargaining problem.
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B Online Appendix (Not for Publication)

B.1 A Simple Illustrative Example: Robust Randomizations

Proposition 3 makes it possible to think about Nash bargaining as a mech-

anism to mediate differences in opinion. Figure 1 illustrates this in a two-

state, two-expert example. The horizontal axis measures the utility of a

treatment in state θ1, while the vertical axis measures utility in state θ2.

Treatments are identified with the corresponding vectors of state-utilities.

For the status quo, u(a◦) defines the point where the individual rationality

constraints are binding for both experts. The set of individually rational

state-utility vectors IR is the cone with vertex u(a◦), and boundaries or-

thogonal to the experts’ beliefs, p1 and p2.

The curves in the figure represent level sets of the Nash product. It is

evident that the Nash planner is not a Bayesian decision maker, since this

would have required these level sets to be linear and IR to be a half space.

Clearly, this is not true here, unless the experts’ beliefs agree. The figure

also shows the normalized gradient of the Nash product at u(t), denoted

π(t). In light of Proposition 3, π(t) may be interpreted as the planner’s

belief at t.

Compare the two treatments t1 and t2 in the figure. Expert 2 holds the

most pessimistic belief about t1, with an expected surplus Ep2δ(t1) close to

zero. From Proposition 3, expert 2’s belief is weighted more heavily when

evaluating t1 relative to expert 1. In fact, the planner’s belief π(t1) nearly

coincides with that of expert 2. The converse holds for t2. This illustrates

an important implication of Nash bargaining in our context, namely that,

in comparing alternative treatments, the opinions of the most pessimistic

experts are given greater weight. This may be interpreted as displaying

caution when a treatment is chosen under disagreement.

A related consequence of the Nash bargaining solution is robust random-

izations. Suppose that A = co {a◦, t1, t2} is the feasible set. Since the Nash

bargaining solution is Pareto optimal, it must select a treatment t? that

lies on the Pareto frontier of this set, shown as the dotted line connecting

u(t1) and u(t2). It is clear that neither treatment t1 nor t2 can be the Nash

bargaining solution for this problem. Rather, t? is a convex combination

of the two. How should this be interpreted? One possibility is that either
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π(t2)

u(t2)

π(t1)

u(t1)

p2

p1

u(t)(θ1)

u(t)(θ2)

u(a◦)

π⋆

u(t⋆)

Figure 1: Planner’s “Indifference Curves”
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t1 or t2 is chosen based on a coin flip (with the appropriate probability).

Justifications for such randomization appear in Manski (2004), based on

a non-Bayesian decision criterion. Alternatively, convex combinations may

correspond to proportions of the population assigned to a particular treat-

ment. Informally, we assume an underlying continuum of individuals, and

interpret a convex combination λt1 + (1−λ)t2 as applying treatment t1 to a

fraction λ and treatment t2 to the rest. No randomization is invoked under

this interpretation.

Convex combinations in a bargaining model are robust. In the example,

if we interpret t? as a coin flip between t1 or t2, then the randomization

remains (possibly with different weights) for small changes in utility, beliefs,

or the feasible set. For a Bayesian planner, by contrast, a randomized deci-

sion arises only in knife-edge cases of indifference and would disappear with

minute changes in the parameters of the problem.

B.2 Expanding State Space

If experts i have different likelihood functions qi, we can reformulate the

problem, by adding states, in such a way that a likelihood function q becomes

common to all experts. For each θ, consider all experts i with pi(θ) > 0. For

any such expert, define θi such that: (1) pi(θi) = pi(θ); and (2) t(θi, s) =

t(θ, s) for all t and s. Define q(s | θi) = pi(s | θ). Replace θ by the θi’s

constructed above.

B.3 Extension to Different Utility Functions

We have assumed that experts share the same utility function in order to

focus on the role of bargaining in mediating differences in beliefs. This

is appropriate in collective decision problems where experts agree on the

objectives but have different opinions on how to achieve them.

A bargaining framework can still be used when experts have different

utilities as well as different beliefs. The bargaining solution t? continues to

be well-defined but the analysis becomes less transparent: since utilities now

depend on i, the log Nash product is a function of n×K terms of the form

δi(t)(θk), so we cannot characterize t? in terms of a planner’s belief. While we

suspect that our results on commitment, inadmissibility, and inertia would

continue to hold when experts have different utilities, new proofs are needed
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since the present proofs rely on the characterization of the planner’s belief

derived in Proposition 3 in a fundamental way.

In summary, the broader point of this paper is the use of Nash bargaining

to study collective decisions under disagreement. This requires neither a

common utility nor concordant beliefs. The narrower path we pursue in this

paper, on the other hand, makes it possible to obtain sharper results about

bargaining under disagreement.

B.4 Asymptotic Behavior of Hard Choices Example

We provide here additional details relative to the example presented in sub-

section 4.2.

In Figure 2, the set of feasible treatments is the triangle representing the

convex hull of the state-utilities of the feasible treatments, co{u(a◦), u(a1),

u(a2)}. The set of individually rational state-utilities, IR, is shown as the

shaded cone with vertex u(a◦). The status quo is the only point that is

both feasible and individually rational at the interim stage, and is therefore

(trivially) the interim Nash bargaining solution for this problem. We have

shown how the bargaining deadlock can be broken by conditioning on the

outcome of a statistical experiment.

Data takes the form of observations s = (s1, . . . , sm) that are condition-

ally i.i.d. given the state. The experts agree on the econometric model q

generating the data but disagree on the probabilities of states θ. We inter-

pret m as sample size. For m = 1, the set of signals is S = {s0, s1} and

q(s1 | θ1) = q > 1/2, q(s1 | θ2) = 1− q as presented in the main body of the

paper. For m > 1, define Sm = {s0, s1}m and let qm(· | θ) be the product

of the q(sh | θ), h = 1, . . . ,m. Now we show that, as the number of observa-

tions m→∞, the ex ante expected utility for both experts approaches the

maximum payoff u(tmax), corresponding to perfect information.

Define k(s) = |{j|sj = s1}| the number of times s1 has been drawn in s.

For any m, consider a simple treatment rule tm(k(s)) that depends on s only

through k(s). For any such treatment rule t in the hard choices problem,
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u(a2)
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p2

p1

u(t)(θ1)

u(t)(θ2)

rs
u(a◦)

Figure 2: Hard Choices

and for any m, the expected utility of expert i is:

Epiu(t) = pi(θ1)
∑
s∈Sm

qk(s)(1− q)(m−k(s))u(t(s))

+ pi(θ2)
∑
s∈Sm

(1− q)k(s)q(m−k(s))u(t(s)).

More specifically, for tm(k), we have,

Epiu(tm) = pi(θ1)

m∑
k=0

(
m

k

)
qk(1− q)(m−k)u(tm(k))

+ pi(θ2)

m∑
k=0

(
m

k

)
(1− q)kq(m−k)u(tm(k)).
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Let [m/2] be equal to m/2 if m is even, and equal to (m− 1)/2 if m is odd.

Consider next the particular treatment rule:

tm(k) =

{
a1 if k ≥ [m/2]

a2 if k < [m/2];

Then expected utility can be rewritten as:

Epiu(tm) =pi(θ1)
[
αPr

(
k ≥ 1 +

[m
2

] ∣∣∣ θ1

)
− β Pr

(
k ≤

[m
2

] ∣∣∣ θ1

)]
+ pi(θ2)

[
αPr

(
k ≤

[m
2

] ∣∣∣ θ2

)
− β Pr

(
k ≥ 1 +

[m
2

] ∣∣∣ θ2

)]
.

Now consider a sequence of even values of m, that is, m = 2r, r increasing

without bound. Since q > 1/2, by the Law of Large Numbers, when m →
+∞ we have,

Pr
[
k ≤ m

2

∣∣∣ θ1

]
= Pr

[
k

m
≤ 1

2

∣∣∣ θ1

]
→ 0,

Pr
[
k ≥ 1 +

m

2

∣∣∣ θ1

]
= Pr

[
k

m
≥ 1

2
+

1

m

∣∣∣ θ1

]
→ 1.

We find similar results for m odd and when the conditioning state is θ2.

We then easily find that for any belief p, the expected payoffs converge,

that is, Epu(tm) → α. We conclude that the Nash planner cannot achieve

a smaller expected utility with the optimal ex ante solution, as m grows

without bound. The expert’s payoffs must be approaching α too.

B.5 Pareto Optimality and Admissibility

In assessing the optimality of a treatment rule, it is natural to consider the

Pareto criterion:

Definition 2. Given a profile of beliefs {p1, . . . , pn}, a treatment rule t

Pareto dominates another treatment rule t′ if Epiu(t) ≥ Epiu(t′) for each

expert i, with at least one strict inequality.

Treatment rule t is Pareto optimal relative to a feasible set T if it is not

Pareto dominated by any other treatment rule t′ ∈ T .

A number of authors questioned the appropriateness of the Pareto cri-

terion when agents have different beliefs. See, for example, Mongin (2016),

Brunnermeier, Simsek, and Xiong (2012), and Gilboa, Samuelson, and Schmei-

dler (2014). This suggests admissibility as an attractive alternative:
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Definition 3. A treatment rule t′ dominates another treatment rule t if

u(t′)(θ) ≥ u(t)(θ) for each state θ, with at least one strict inequality.

Treatment rule t is admissible relative to a feasible set T if it is not

dominated by any other treatment rule t′ ∈ T .

Admissibility is an appealing criterion, commonly used in statistical de-

cision theory and in the treatment choice literature (see, for example, Berger

(1985).19 We first observe the following:

Fact: A treatment rule t that is Pareto optimal relative to a

feasible set T is admissible.20

A key advantage of admissibility is that it is belief-free—in contrast to Pareto

optimality which depends on the experts’ profile of beliefs. To say that

a treatment rule is inadmissible is an unambiguous judgement about its

inefficiency since that rule can be improved on in every state and, therefore,

in expectation for any belief.

We conclude by recalling a well-known result, the Complete Class The-

orem (cf. Ferguson (1967)), which we use extensively in this paper, and

which characterizes admissible rules as those that are Bayesian:

Definition 4. A treatment rule t is Bayesian if it maximizes expected utility

with respect to some prior p on Ω.

Proposition 5. A Bayesian treatment rule with respect to a full-support

prior p is admissible. Conversely, an admissible treatment rule must be

Bayesian.

B.6 Proof of Lemma A.1

Proof:

ρ′(∆) =

∑
i
−p2i

(pi∆+1)2∑
i

1−pi
pi∆+1

+

∑
i

pi
pi∆+1(∑

i
1−pi
pi∆+1

)2

(∑
i

(1− pi)pi
(pi∆ + 1)2

)

= B ×A
19The definition of admissibility in our bargaining context coincides with that in the

statistics literature under the assumptions of common values and when the experts share
the likelihood function q(s|θ).

20It is easy to see that the converse is not true in general.
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where

B =

(∑
i

1− pi
pi∆ + 1

)−2

> 0 (15)

and

A =

[(∑
i

pi
pi∆ + 1

)(∑
i

(1− pi)pi
(pi∆ + 1)2

)
−

(∑
i

p2
i

(pi∆ + 1)2

)(∑
i

1− pi
pi∆ + 1

)]
.

(16)

We show that A < 0:

A =
∑
i

∑
j

pipj(1− pj)
(pi∆ + 1)(pj∆ + 1)2

−
∑
i

∑
j

p2
i (1− pj)

(pi∆ + 1)2(pj∆ + 1)

=
∑
i

∑
j

pipj − pip2
j

(pi∆ + 1)(pj∆ + 1)2
−
∑
j

∑
i

p2
j (1− pi)

(pj∆ + 1)2(pi∆ + 1)

=
∑
i

∑
j

pipj − p2
j

(pi∆ + 1)(pj∆ + 1)2

=
∑
i

∑
j
j 6=i

pj(pi − pj)(pi∆ + 1)

(pi∆ + 1)2(pj∆ + 1)2

=
∑
i

∑
j
j<i

pj(pi − pj)(pi∆ + 1) + pi(pj − pi)(pj∆ + 1)

(pi∆ + 1)2(pj∆ + 1)2
(17)

= −
∑
i

∑
j
j<i

(pi − pj)2

(pi∆ + 1)2(pj∆ + 1)2
,

where the last equality follows from cancellation of the numerator in (17) :

pj(pi − pj)(pi∆ + 1) + pi(pj − pi)(pj∆ + 1) = pjp
2
i∆ + pjpi − p2

jpi∆

− p2
j + pip

2
j∆ + pipj

− p2
i pj∆− p2

i

= −(pi − pj)2.
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B.7 Proof of Lemma A.4

Proof: From Lemma A.1, the function ρ is strictly decreasing in ∆:

ρ′(∆) = BA < 0,

where the terms A,B are defined in (16) and (15). Next, using (7), we write

ρ as:

ρ(∆) = BC,

where

C =

(∑
i

pi
pi∆ + 1

) (∑
i

1− pi
pi∆ + 1

)
.

Thus, the derivative of ζ with respect to ∆ at a fixed (δ0, δ1) may be

written as:

ζ ′ =
δ0

δ1
[ρ′(∆)(1 + ∆) + ρ(∆)]

=
δ0

δ1
B[A(1 + ∆) + C].

Since both B and δ0/δ1 are positive, the sign of ζ ′ is the same as that of

A(1 + ∆) + C.

Recall from Lemma A.1 that

A = −
∑
i

∑
j
j<i

(pi − pj)2

(pi∆ + 1)2(pj∆ + 1)2
.

Furthermore,

C =
∑
i

∑
j

pi(1− pj)
(pi∆ + 1)(pj∆ + 1)

=
∑
i

∑
j
j 6=i

(pi − pipj)(pi∆ + 1)(pj∆ + 1)

(pi∆ + 1)2(pj∆ + 1)2
+
∑
k

pk(1− pk)
(pk∆ + 1)2

=
∑
i

∑
j
j<i

(pi − 2pipj + pj)(pi∆ + 1)(pj∆ + 1)

(pi∆ + 1)2(pj∆ + 1)2
+
∑
k

pk(1− pk)
(pk∆ + 1)2

.
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Since the second term in the last equality is obviously positive, the desired

conclusion obtains if: Ãij(∆ + 1) + C̃ij > 0 for every i and j, where

Ãij = −(pi − pj)2,

and

C̃ij = (pi − 2pipj + pj)(pi∆ + 1)(pj∆ + 1).

We find that: test

Ãij(∆ + 1) + C̃ij = 4pipj∆ + pi(1− pj) + pj(1− pi)
+ pipj∆[pi∆− 2pipj∆ + pj∆− 2pi − 2pj ]

= 4pipj∆ + pi(1− pj) + pj(1− pi)
+ pipj∆

2[pi − 2pipj + pj ]− 2pipj∆[pi + pj ]

= pi(1− pi) + pj(1− pj)

+ pipj∆
2
[
pi(1− pj) + pj(1− pi)

]
+ 4pipj∆

[
1− pi + pj

2

]
.

Clearly, each of the four terms in the last expression is positive, proving that

ζ ′ > 0.
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