
DISCUSSION PAPER SERIES

 

DP16308
 

Optimal Feedback in Contests

Jeffrey Ely, George Georgiadis, Sina Khorasani and
Luis Rayo

ORGANIZATIONAL ECONOMICS



ISSN 0265-8003

Optimal Feedback in Contests
Jeffrey Ely, George Georgiadis, Sina Khorasani and Luis Rayo

Discussion Paper DP16308
  Published 29 June 2021
  Submitted 25 June 2021

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Organizational Economics

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Jeffrey Ely, George Georgiadis, Sina Khorasani and Luis Rayo



Optimal Feedback in Contests
 

Abstract

We derive an optimal dynamic contest for environments where the principal monitors effort through
a coarse, binary performance measure and chooses prize-allocation and termination rules together
with a real-time feedback policy. The optimal contest takes a stark cyclical form: contestants are
kept fully apprised of their own successes, and at the end of each fixed-length cycle, if at least one
agent has succeeded, the contest ends and the prize is shared equally among all successful
agents regardless of when they succeeded; otherwise, the designer informs all contestants that
nobody has yet succeeded and the contest resets.

JEL Classification: N/A

Keywords: N/A

Jeffrey Ely - jeff@jeffely.com
Northwestern University

George Georgiadis - g-georgiadis@kellogg.northwestern.edu
Northwestern University

Sina Khorasani - skhorasani@UCSD.EDU
University of California San Diego

Luis Rayo - luis.rayo@kellogg.northwestern.edu
Northwestern University and CEPR

Powered by TCPDF (www.tcpdf.org)



Optimal Feedback in Contests∗

Jeffrey Ely, George Georgiadis, Sina Khorasani, and Luis Rayo†

June 25, 2021

Abstract

We derive an optimal dynamic contest for environments where the princi-

pal monitors effort through a coarse, binary performance measure and chooses

prize-allocation and termination rules together with a real-time feedback pol-

icy. The optimal contest takes a stark cyclical form: contestants are kept fully

apprised of their own successes, and at the end of each fixed-length cycle, if at

least one agent has succeeded, the contest ends and the prize is shared equally

among all successful agents regardless of when they succeeded; otherwise, the

designer informs all contestants that nobody has yet succeeded and the contest

resets.

1 Introduction

Contests—situations where multiple agents compete for a prize—are a common way

of organizing economic activity: innovation races, promotions and other labor-market

tournaments, all-pay auctions, athletic events, and legal battles all have this property

in common. Ever since the seminal work of Lazear and Rosen (1981), Green and

Stokey (1983), and Nalebuff and Stiglitz (1983), researchers in economics, marketing

and operations management have sought to understand how to best allocate a prize

among participants, and more recently, starting with the work of Yildirim (2005),

∗We are grateful to Daniel Barron, Piotr Dworczak, Marina Halac, Navin Kartik, Igor Letina,
Michael Powell, Agustiń Rayo, and participants at various seminars and conferences for helpful
comments. Author Jeff Ely acknowledges the support of NSF grant SES-1851883.
†J. Ely: Northwestern University, jeff@jeffely.com; G. Georgiadis: Northwestern University,

g-georgiadis@kellogg.northwestern.edu; S. Khorasani: University of California–San Diego, skho-
rasani@ucsd.edu; L. Rayo: Northwestern University, luis.rayo@kellogg.northwestern.edu.
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Ederer (2010), and Halac, Kartik and Liu (2017), how best to disclose real-time in-

formation regarding the contestants’ progress. This literature has offered key general

insights together with design ideas for specific environments of interest.

Here we are interested in scenarios where a designer (principal) has a fixed prize

to motivate a group of agents and has an informational advantage in terms of how

well the agents are doing mid-contest. Our goal is to find an optimal contest inclusive

of when it ends, how the prize is allocated, and what information the designer shares

with the agents throughout the event.

In our model, agents choose at each instant whether or not to exert costly effort.

The principal monitors them only imperfectly through a binary measure of “success”

that arrives stochastically for each agent at a time-invariant rate provided the agent

is working. Agents do not observe the successes of their rivals and may or may

not observe their own successes, or do so probabilistically. The principal seeks to

maximize total effort, or equivalently as it turns out, the total number of successes.

To this end, the principal designs prize-allocation and termination rules together with

a real-time feedback policy contingent on past successes and past messages.1

This framework can be applied, for instance, to a professional partnership seeking

to promote one of their associates to partner. Here a “success” represents an associate

exceeding an exogenous threshold for promotion, and an associate’s effort is arguably

valuable even after they, or any of their peers, have cleared the bar for promotion. One

may also consider innovation tournaments such as the Netflix Prize, where success

corresponds to a pre-specified objective and the more appropriate goal for the designer

is maximizing the total number of successes, rather than total effort.2

The key challenge when searching for the optimal contest is the vast range of

potential designs from which to choose. We attack this problem by first providing

a sufficient condition for a contest to be optimal—namely, that it maximizes the

probability that the prize is awarded while giving zero rents to the contestants—and

then displaying a contest that meets these demanding criteria. That contest, which

we term cyclical-egalitarian, has the following features regardless of the degree to

1Unless the available prize is large relative to the number of agents, a contest strictly outperforms
individual contracting because it pools the agents’ incentive constraints: by forcing agents to share
the prize in expectation with their rivals, no prize money is wasted. This pooling, as we shall see, is
aided by the principal’s strategic sharing of information mid-contest.

2The principal would care about more than a single success if each additional success generated
new, distinct technology. For instance, to save on engineering effort, Netflix did not implement the
prize-winning algorithm and instead opted for a combination of two lesser-performing ones. [Link.]
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which agents directly observe their own successes:

• An “egalitarian” prize structure that splits the prize evenly—or, equiva-

lently, allocates it with equal probability—among all agents who have succeeded

by the time the contest ends, regardless of when they happened to succeed.

• A “cyclical” termination rule whereby the principal sets a provisional dead-

line, T ∗, such that if one or more agents have succeeded by then, the contest

ends; otherwise, the contest resets and the deadline is extended until 2T ∗, and

so forth.

• A feedback policy that immediately informs agents of their own successes,

but provides them only periodic feedback (at the end of each cycle) regarding

the success of their rivals.

Keeping agents fully apprised of their own successes is needed for the principal to

pocket all rents, as otherwise agents would be able to extract rents by strategically

timing their effort.3 The egalitarian prize smooths the agents’ incentives by ensuring

that their marginal return to effort remains constant over time, which is needed as

well to keep them indifferent between working and not. The periodic resetting of the

deadline, together with the revelation that no one has yet succeeded, replenishes the

agents’ incentives after they have become sufficiently worried that their peers have

succeeded and diluted the prize: the length of each cycle, T ∗, maximally stretches

out the period over which agents are willing to work without knowing whether their

peers are already ahead.4

The cyclical-egalitarian contest strictly outperforms the popular winner-takes-all

design for a wide range of parameter values. This is because it has an additional

degree of freedom relative to that contest: the designer gets to control the cycle

length and, with it, the level of rents that the contestants take home. Winner-takes-

all is in fact a special case of our contest with a cycle length equal to zero, and is

artificially constrained by that feature.

We also consider some extensions that suggest a degree of robustness to our recom-

mended contest design. First, if players discount time, a version of our contest with

3While this policy leads each agent to halt effort as soon as they succeed, it is optimal even when
the principal values effort beyond that success.

4Because each agent exerts effort until they succeed, this contest maximizes both total expected
effort and the expected number of successes.
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shorter cycle length is approximately optimal when the number of agents is large, the

marginal cost of effort is large, or the discount rate is small; examples suggest that

this contest also performs well away from those limits. Second, if the principal lacks

the credibility to provide truthful feedback, an optimal contest features no feedback

and a fixed terminal date, at which time the prize is shared equally among all suc-

cessful agents. Finally, when the agents’ hazard rate of success is increasing in past

efforts, a cyclical contest with a similar structure as before proves optimal, with the

novelty that the cycles end stochastically ahead of the deadline, as this differentially

rewards agents who succeed early on, before their hazard rate has grown.

Due to its simplicity, this cyclical-egalitarian contest should not be difficult to

implement in practice, as the only parameter that the designer needs to calibrate is the

cycle length T ∗, with a longer deadline possible the lower the cost of effort, the larger

the probability of success, or the greater the prize. While there is limited empirical

evidence so far on the effectiveness of different contest designs, the field experiment

conducted by Lim, Ahearne and Ham (2009) lends support to the effectiveness of an

egalitarian prize, and the findings of Fershtman and Gneezy (2011) and Gross (2017)

suggest that real-time feedback, with a flavor similar to that suggested by our model,

can be effective at encouraging effort.5

Related Literature. Early work by Lazear and Rosen (1981), Green and Stokey

(1983), and Nalebuff and Stiglitz (1983) provides conditions under which it is optimal

to condition each agent’s pay on the ordinal rank of their output, as opposed to its

absolute value. Moldovanu and Sela (2001) show that, given a fixed prize, it is

optimal to award it entirely to the best performer when the agents’ cost functions

are weakly concave; otherwise, some prize-sharing may be optimal. Extensions to

stochastic output, arbitrary risk-preferences and heterogeneous agents are considered

by Drugov and Ryvkin (2019, 2020) and Olszewski and Siegel (2020), among others.6

Fang, Noe and Strack (2018) find that aggregate effort in all-pay contests decreases

in their competitiveness, as measured by the dispersion of prizes, contest crowding,

and the number of contestants. Letina, Liu and Netzer (2020) consider a generalized

version of that framework. They find that for n contestants, a nested Tullock contest

featuring n − 1 equal prizes is optimal. While our work differs in that these papers

5See also Lemus and Marshall (2021) for a comparison of feedback policies in prediction contests.
6Siegel (2009, 2010) and Olszewski and Siegel (2016) provide a comprehensive equilibrium analysis

of general all-pay contests with heterogeneous players.
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study static environments with no scope for feedback design, the idea that “turning

down the heat” motivates more effort echoes the optimality of an egalitarian contest

in our dynamic framework.

Taylor (1995) considers a dynamic contest where players invest in an innovation

of stochastic quality. In the optimal contest, players invest in a given period as long

as their highest-quality innovation to date is below a threshold. Benkert and Letina

(2020) extend this framework by incorporating interim transfers and an endogenous

termination date. The optimal contest ends as soon as the highest-quality innovation

exceeds a threshold, and agents invest until the end of the contest. In these models,

the entire prize is allocated to the agent with the highest-quality innovation, and the

principal extracts rents by charging agents an entry fee. In our setting, in contrast,

the prize allocation rule is a choice variable, and because agents are cash-constrained,

the principal requires the cyclical-egalitarian design to extract rents.

Lizzeri, Meyer and Persico (2005) and Yildirim (2005) are among the first to study

endogenous feedback in contests using a two-period, two-agent framework. For this

setting, Aoyagi (2010), Ederer (2010), and Goltsman and Mukherjee (2011) character-

ize conditions under which a principal benefits from (publicly) revealing the outcome

of the contestants’ first-period efforts. Mihm and Schlapp (2019) extend this frame-

work by considering private feedback and by allowing agents to voluntarily disclose

their own progress. Khorasani (2020) considers two-stage winner-takes-all contests,

and shows that the optimal design features an initial period with no disclosure and

a gradually increasing prize, followed by a period of probabilistic disclosure to the

laggard about the intermediate progress of the leader.

Our paper also relates to a growing literature on contests involving experimen-

tation, where the feasibility of success is initially unknown. Halac, Kartik and Liu

(2017) consider an experimentation framework such as the one in Bonatti and Horner

(2011), but with a designer who chooses a prize-sharing scheme and a feedback pol-

icy to maximize the probability of a success. Within the class of rank-monotonic

prize schemes and deterministic and symmetric disclosure policies, the optimal con-

test provides no interim feedback and ends as soon as a critical number of agents have

succeeded, each winning the prize with equal probability. What distinguishes our set-

ting from this work is that the principal maximizes total effort (or total number of

successes), successes arrive with a constant or increasing hazard rate, and the princi-

pal is fully unconstrained in her choice of contest. In Bimpikis, Ehsani and Mostagir
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(2019), an agent must succeed twice to win, with the feasibility of the first success

unknown. The authors obtain conditions under which a contest comprising a “silent

period” followed by a period where successes are immediately disclosed dominates all

contests with a constant, probabilistic disclosure (including those with full disclosure

or no disclosure at all).

2 Model

A principal (she) designs a contest to motivate n ≥ 2 agents (he) to spend effort. The

contest consists of a termination rule specifying when the contest will end, a rule for

allocating a prize, whose value we normalize to $1, and a feedback policy stipulating

the information transmitted to each agent at every moment in time. We formalize

these objects below.

At each instant t of continuous time, each player observes any message sent ac-

cording to the feedback policy and decides whether to spend effort. Effort is costly

and can only be monitored by the principal via a binary noisy signal, which we call

“success.” In an innovation-contest application, this signal may represent achieving

a pre-specified target; in a promotion application, it may represent exceeding an ex-

ogenous bar for promotion. If player i spends effort ai,t ∈ {0, 1}, he incurs cost at

rate cai,t, where c represents the (constant) marginal cost of effort. While the agent

spends effort, success arrives stochastically with constant instantaneous rate λ > c.

That is, a player can achieve success at most once, and conditional on not having

succeeded by t, effort for an additional duration dt produces a success during the

interval (t, t+ dt) with probability λdt.7

The principal observes successes but not efforts. Each player observes his own

effort, but not others’ efforts or successes. Whether agents observe their own success

or not, or do so probabilistically, is immaterial for our results. For concreteness, and

to give the principal maximal flexibility, we assume that they do not observe them.

The principal’s feedback policy specifies a message that she transmits to each

agent at every moment as a function of her past observations and past messages. An

example of a feedback policy that will be important for our results, and which we

denoteMpronto, is the one where the principal informs each player immediately if and

7A constant hazard rate means there is no notion of progress or knowledge accumulation over
time. In Section 5.3, we extend our model to allow for an increasing hazard rate.
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when he succeeds, but otherwise keeps silent. Alternative policies might publicly or

privately inform agents about their or their rivals’ successes, perhaps probabilistically,

or inform them about the feedback conveyed to rivals, and so forth.

The principal’s termination rule, τ , ends the contest possibly randomly and pos-

sibly as a function of the principal’s past observations. The prize is then awarded

according to the allocation rule, which specifies a share of the prize (or, equivalently,

a probability of winning the prize) qi for each player i, with
∑

i qi ≤ 1, as a function

of the history of successes. For example, a winner-takes-all contest awards the entire

prize (qi = 1) to the first player i to have succeeded, whereas an egalitarian contest

divides the prize equally among all players who have succeeded. Note that both these

types of contest are efficient in the sense that the entire prize is awarded if and only

if at least one player has succeeded.

When the contest ends, player i’s ex-post payoff is

ui = qi − c
∫ τ

0

ai,tdt.

There is no discounting and players maximize their expected payoff.

The principal designs the termination rule, prize allocation rule, and feedback

policy with the goal that the expected total effort in a Bayesian Nash equilibrium

(hereafter equilibrium) of the resulting contest is maximal among Bayesian Nash

equilibria of a given set of contests. In this formulation of the objective, the principal

cares only about effort, not successes, and cares about players’ effort even after they

have succeeded. Our results would be unchanged, though, if the principal instead

sought to maximize the total number of successes.8

3 A Sufficiency Result

Finding a fully optimal contest, inclusive of feedback policy, is in principle a daunting

task. All of the choice variables are high-dimensional objects, as they can condition

on the path of past successes and prior feedback. Thus, it is not even clear how to

formulate the appropriate optimization problem.

Our first lemma offers an opportunity to overcome this challenge by means of a

8Our contest would also be optimal if the principal cared about the first success alone, although
simpler designs, such as winner-takes-all, would be optimal in this case too.
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simple sufficient condition for optimality.

Lemma 1. A contest is guaranteed to be optimal if, in equilibrium:

(i) the prize is awarded with probability one, and

(ii) each agent earns zero rents.

Intuitively, a contest that awards the prize with the maximum possible probability

also maximizes the players’ combined surplus; if the agents keep none of this surplus,

it must all go to the principal.

To formally establish this result, note that for any contest and equilibrium effort

profile, we can rewrite the principal’s payoff as

E
n∑
i=1

∫ τ

0

ai,tdt =

∑n
i=1 E[qi]−

∑n
i=1 E[ui]

c
.

The first term in the numerator represents the total prize awarded; the second term

represents the agents’ rents. The total prize awarded is bounded from above by one,

whereas the agents’ rents are bounded from below by zero. Therefore, if there exists

a contest that attains these bounds (and so the principal’s payoff is 1/c), it must be

optimal. Q.E.D.

While the condition in Lemma 1 is a stringent one, we shall see that there indeed

exists a contest that satisfies it.

4 Optimal Contest

Here we establish our main result. Our goal is to characterize a contest that satisfies

both criteria in Lemma 1 under the assumption that the parameters of the model

satisfy n > λ/c. This assumption means that there are enough competitors for a

contest to be desirable in the first place. When the assumption fails, the principal

could do as well by reserving 1/n-th of the prize for each agent and contracting with

each one individually.

Because agents are risk neutral, without loss of generality, we can (and henceforth

will) restrict attention to contests where an agent wins a positive share of the prize

only if he succeeds. Fixing an equilibrium of a given contest, define for each agent i

the reward function

Ri,t = E [qi | agent i succeeds at t] , (1)

8



which represents agent i’s expected share of the prize conditional on succeeding at

time t.9 These functions will allow us to analyze the incentives faced by each agent

separately.

Our proposed contest, which we call cyclical-egalitarian, has three properties.

First, its prize allocation is egalitarian; that is, it divides the prize equally among

all players who have succeeded regardless of when they happened to do so. Second,

agents are fully apprised of their own successes via theMpronto feedback policy. Lastly,

it has a cyclical termination rule as follows: the principal sets a provisional deadline

T ∗; if at least one agent has succeeded by that time, the contest ends; otherwise, the

principal informs all agents that no one has yet succeeded and restarts the contest,

again with a provisional deadline T ∗. The contest continues in this manner until at

least one agent has succeeded by the time the next provisional deadline is reached.

In order to extract all rents from the agents, the provisional deadline is set just

long enough that the agents are indifferent between working and not during the entire

length of the cycle (unless they have already succeeded). Formally, the termination

rule is described by the stopping time

τ ∗ = inf{t : t = kT ∗, k ∈ N, and at least one agent has succeeded},

where T ∗ is the unique solution to
(
1− e−nλT ∗)

/
(
n(1− e−λT ∗

)
)

= c/λ.

Proposition 1. Assume n > λ/c. The contest with an egalitarian prize, the cyclical

termination rule τ ∗, and the feedback policy Mpronto is optimal. In this contest, at

least one agent succeeds and hence the prize is awarded with probability one. Moreover,

each agent obtains 0 expected utility and the principal’s profit is 1/c.

This cyclical-egalitarian contest is optimal because it meets both requirements of

Lemma 1: since the provisional deadline keeps extending if no agent has succeeded,

the contest awards the prize with probability 1; moreover, theMpronto feedback policy,

egalitarian allocation rule, and provisional deadline T ∗ act together to grant the agents

no rents.10

9If the prize is indivisible, Ri,t can equivalently be interpreted as the probability that agent i
wins the prize conditional on succeeding at t.

10Because agents are indifferent between working and shirking before they succeed, the contest
admits another equilibrium in which one of the agents never works. This equilibrium can be elimi-
nated by shrinking the cycle length by an infinitesimal amount. This modified contest admits only
the equilibrium in which all agents work until they succeed, while giving up only arbitrarily small
rents.
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To formally establish this proposition, we show that the cyclical-egalitarian contest

has an equilibrium where all agents work until either they succeed or the contest ends

(and hence the prize is awarded with probability 1) and where all their continuation

payoffs are zero. Let pi,t denote agent i’s belief at time t that he has succeeded, and

observe that his flow payoff is (1− pi,t)λRi,t − c if he works, and zero otherwise.

Now suppose that all of agent i’s rivals work until they succeed. Because the

allocation rule is egalitarian and the contest ends at the next provisional deadline if

any agent has succeeded, agent i’s expected reward conditional on success is

Ri,t = E
[

1

1 +M

]
=

1− e−λnT ∗

n(1− e−λT ∗)
=
c

λ
, (2)

where M ∼ Binom(n− 1, 1− e−λT ∗
) is the number of rivals who succeed by the next

provisional deadline, the second equality follows from writing the binomial sum and

rearranging terms, and the third equality follows from the definition of T ∗.11

The feedback policy Mpronto ensures that pi,t = 0 until this agent succeeds, at

which moment his belief jumps to one. This implies that each agent’s flow payoff,

and hence his continuation payoff, is always held at zero irrespective of his effort, and

so working until he succeeds is incentive compatible. Because agents are symmetric,

there is indeed an equilibrium with the desired properties. Q.E.D.

As it turns out, there are other optimal contests as well. However, all these other

contests have in common with the cyclical-egalitarian contest that: (i) they keep

agents fully apprised of their own successes, and so each agent quits as soon as he

succeeds; (ii) they have an egalitarian prize structure; that is, they prescribe reward

functions Ri,t that are time-invariant and symmetric across players; and (iii) they do

not end until at least one agent has succeeded. As a result, they differ only in the

details of the termination rule.12

11To be specific, letting p = 1− e−λT∗
, we have

E
[

1

1 +M

]
=

1

np

n−1∑
k=0

(
n

k + 1

)
pk+1(1− p)n−1−k =

1

np

n∑
j=1

(
n

j

)
pj(1− p)n−j =

1− (1− p)n

np
,

where the first equality follows from expanding the binomial coefficient and manipulating the ex-
pression, the second one results from the change of variables j = k+ 1, and the last one follows from
collecting terms.

12One example is a modified version of the contest given in Proposition 1 with an arbitrary
provisional deadline T > T ∗ and where agents are asked to work only a fraction T ∗/T of each cycle.
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The reason it is necessary to immediately inform agents of their own successes—

despite the principal preferring that they keep working—is that they would otherwise

be able to obtain rents from the principal by strategically withdrawing effort. Intu-

itively, a hard-working agent who is not fully informed will gradually come to believe

that he has already succeeded, and hence will only continue working if his expected

reward increases. But this would allow him to secure rents by initially withdrawing

effort and working only once the expected reward has grown.13 The egalitarian rule is

necessary, in turn, because given theMpronto feedback policy, for a contest to extract

all rents, each agent’s expected reward conditional on succeeding must be c/λ regard-

less of when he happens to succeed. Non-egalitarian contests are unable to offer such

time-invariant rewards.

Because in our model agents are risk neutral and there are no aggregate produc-

tivity shocks, one may wonder why a contest—rather than contracting individually

with each agent—is necessary in the first place. The advantage of the contest is

that it allows the principal to pool the agents’ incentive constraints in the face of a

fixed prize budget; that is, prize money not awarded to one agent can be awarded

to another. In pooling these constraints, the principal benefits from strategically

controlling what each agent learns about his peers: by (temporarily) keeping agents

in the dark, she can motivate them to continue working even after their peers have

already succeeded. The benefit of the contest can be seen from the fact that the sum

of the agents’ marginal benefits of effort,
∑

iRi,t = nc/λ where Ri,t is defined in (2),

exceeds the $1 prize money (since nc > λ), whereas if the principal contracted with

each agent individually, the marginal benefit of effort for any given agent would be

equal to the prize money reserved for him.14

We conclude this section with some remarks:

i. Because the cyclical-egalitarian contest keeps agents fully apprised of their own

13To see this more formally, consider a contest that is intended to grant zero rents and suppose
that there are times where an agent is expected to exert effort and yet pi,t > 0. Then there must
be a time interval in which the agent is supposed to work and yet his belief pi,t strictly increases.
So that he is willing to work meanwhile earning 0 rents, (1 − pi,t)λRi,t must equal c. But then he
can pause effort during the first half of this interval so that his private belief diverges from, and is
strictly smaller than, the equilibrium belief (as he knows that he cannot have possibly succeeded
while shirking), which in turn allows him to extract rents during the second half.

14Another way to reap the benefits of pooling would be for the principal to meet her prize budget
constraint only in ex-ante terms (i.e., spend $1 only in expectation). If she were able to do so,
individual contracting would suffice.
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successes, that contest would remain optimal if agents were able to observe

these successes directly, or observe them probabilistically.15

ii. While designed to maximize total effort, the cyclical contest also maximizes

the expected total number of successes, as it transforms 100% of the prize into

effort (rather than rents) and never motivates already successful agents to keep

working.

iii. To implement the optimal contest, the principal needs to commit to only one

cycle at a time: if no agent has succeeded by the end of a cycle, it is in her

interest to commit to another identical one.

iv. The principal would be no better off with a more precise monitoring technology

as, despite her imperfect (binary) signal, she is able to convert the entire prize

into effort.

v. If agents were uncertain about the number of rivals they face, the cyclical-

egalitarian contest would remain optimal provided agents shared a common

prior over that number, with support on (λ/c,∞). The provisional deadline T ∗

would now satisfy E[(1− e−nλT ∗
)/(n(1− e−λT ∗

))] = c/λ.16

4.1 A family of cyclical-egalitarian contests

The contest in Proposition 1 is a member of a larger family of cyclical-egalitarian

contests that differ only in the length of their cycle. Such contests transform 100%

of the prize into any desired combination of effort and agent rents, and hence are on

the Pareto frontier.

Corollary 1. For any T ≤ T ∗, the cyclical-egalitarian contest with Mpronto feedback

policy and cycle length T induces all agents to work until either they succeed or the

contest ends. Such contest delivers total expected effort

E
n∑
i=1

∫ τ

0

ai,tdt =
n

λ
× 1− e−λT

1− e−λnT
,

which is increasing in T , and delivers rents
∑

i ui = 1 – cE
∑

i

∫ τ
0
ai,tdt.

15What is important is that agents do not observe the successes of their rivals. Note that although
each agent has an incentive to tell his rivals that he has succeeded to discourage them, they have no
reason to believe him.

16Every time the deadline is extended, seeing that nobody has yet succeeded, agents will update
their beliefs about n, and so each subsequent deadline must account for those updated beliefs.
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The commonly used winner-takes-all contest—which ends as soon as the first

agent succeeds and awards the entire prize to that agent—is a special case of this

family with cycle length equal to 0.17 The cyclical-egalitarian design thus adds a

degree of flexibility—cycle length—to the winner-takes-all design. By controlling

that parameter, the principal is able to extract as much rent as she desires while

transforming it into effort at rate 1/c; the winner-takes-all contest instead selects a

particular point along the Pareto frontier (see Figure 1).

0 0.01 0.02 0.03 0.04

1

1.2

1.4

1.6

Figure 1: The payoff frontier of the cyclical-egalitarian contest as the cycle-length
varies from zero to T ∗.

5 Extensions

Here we discuss three extensions that suggest a degree of robustness to our findings.

5.1 Discounting

Assume players are impatient and discount the future at a common rate r > 0. Thus,

if the contest ends at τ , agent i’s payoff ui is his expected discounted prize e−rτqi

minus his discounted cost of effort c
∫ τ

0
e−rtai,tdt, and the principal’s payoff is the

17Because agents learn about their peers’ successes at the end of each cycle, a zero cycle length
means that agents are always fully informed, and barring zero-measure events, are guaranteed to
win 100% of the prize as soon as they succeed.
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total discounted effort

n∑
i=1

∫ τ

0

e−rtai,tdt =
e−rτ

∑n
i=1 qi −

∑
i ui

c
.

A contest is guaranteed to be optimal if it simultaneously maximizes the first

term in the numerator and minimizes the second. This would require awarding the

prize as soon as the first agent succeeds (so as to minimize discounting) while also

surrendering zero rents to the agents.18 Were it possible to achieve both goals at

once, the principal’s payoff would be

Π :=
λn

c(r + λn)
.

Unfortunately, meeting both goals simultaneously is impossible: granting the prize

immediately would allow the agents to earn rents; conversely, extracting all rents

would require delaying the prize.

Because of that impossibility, it is challenging to find a fully optimal contest. We

can show nonetheless that a cyclical contest akin to that in Proposition 1, but with

a shorter provisional deadline, is approximately optimal in the sense of delivering a

payoff close to Π, provided r is close to 0, n is large, or λ/c is close to 1.

Proposition 2. Consider the contest with an egalitarian prize, the Mpronto feed-

back policy, and a cyclical termination rule with provisional deadline T ∗∗ chosen such

that the agents’ incentive constraints bind at the start of each cycle. This contest is

approximately optimal when r is close to 0, n is large, or λ/c is close to 1.

The reason the cycle length must be shortened is that, due to discounting, if

agents were to be indifferent between working and not at a given time in the cycle,

they would strictly prefer not to work before then. To minimize rents, the contest in

Proposition 2 uses a cycle length just long enough that agents are barely willing to

work at the start of each cycle, and earn rents after that.19

That this contest is approximately optimal when r converges to zero can be seen

from the fact that the deadline converges to the original one, T ∗. This means agents

18In this case, E[e−rτ
∑n
i=1 qi] =

∫∞
0
e−rtλne−λntdt = λn/(r + λn).

19Another possibility is to use a stochastic-length cycle, as a random early termination is a way
to counteract the agents’ preference to delay effort. This more complex design allows the principal
to extract all rents, but performs very similarly to the simpler deterministic design.
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Figure 2: Principal’s payoff as a fraction of the (unattainable) upper bound Π for the
cyclical-egalitarian and the winner-takes-all contest.

earn close-to-zero rents, and, moreover, there is minimal loss in overall surplus due

to the prize being delayed. When the number of contestants grows to infinity or the

ratio of effort productivity λ/c falls to one, the deadline must converge to zero so that

agents are willing to work. This means that regardless of r they earn minimal rents,

and because there is also minimal delay in awarding the prize once the first success

has arrived, the principal’s payoff must be close to Π.

Figure 2 illustrates the contest’s performance relative to the upper bound Π when

the parameters are away from these limits. The lower dashed curve in each panel

depicts, for comparison, the outcome of the commonly used winner-takes-all contest,

which gives the principal a payoff of n/(r + λn).

5.2 Limited Commitment

Crucial for our results is the assumption that the principal is able to commit to a

real-time feedback policy and a history-dependent termination rule—on top of a prize-

allocation rule. If the principal was instead unable to credibly communicate with the

agents mid-contest—e.g., due to her interest in having agents work for as long as
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possible—and could only commit to ending the contest at a pre-specified deadline,

it would no longer be possible to meet the sufficiency conditions of Lemma 1. An

optimal (no-feedback, fixed-deadline) contest can be obtained nonetheless.

To begin, restrict attention to contests where each agent works continuously over

some interval [0, Ti].
20 Now express agent i’s utility from working as prescribed as∫ Ti

0
λe−λtRi,tdt− cTi, where the reward function Ri,t is as defined in (1).

The following lemma provides a necessary condition for incentive compatibility.

Lemma 2. Consider a no-feedback contest that gives agent i the reward function Ri,t.

Working continuously throughout [0, Ti] is incentive compatible for this agent only if

λe−λtRi,t −
∫ Ti

t

λ2e−λsRi,sds ≥ c for all t ∈ [0, Ti]. (IC)

This incentive constraint states that the marginal benefit of effort at time t, which

is captured by the left-hand side, should be no smaller than the marginal cost. To

understand the expression for the marginal benefit, note that the first term is the in-

stantaneous marginal benefit of effort at time t. The second term captures a forward-

looking incentive effect: success today precludes success in the future. In particular,

λ2e−λs is the amount by which the success probability at some future date s is re-

duced when the agent spends effort at date t. The second term thus aggregates the

reduction in future instantaneous benefits that results from spending effort in the

current date.

To find an optimal contest, we can solve

max
T,{Ti},{qi}

n∑
i=1

Ti subject to (IC) and Ti ≤ T for all i, (3)

and then verify that the contest indeed has an equilibrium in which each agent i works

continuously until Ti. To this end, define TEGA to uniquely solve (1− e−λnT )/(n(1−
e−λT )) = ceλT/λ.

Proposition 3. The egalitarian contest with deadline TEGA is optimal among no-

feedback, fixed-deadline contests. This contest admits an equilibrium where each agent

works continuously until the deadline.

20This restriction is without loss of generality because neither the principal nor any agent gains
from delays in effort.
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The simple intuition for this result is that non-egalitarian contests, unlike the

egalitarian one, create unequal effort incentives over time, leading to potential gaming

by the agents in how they time their effort. The only way to prevent this gaming is

to spend additional money on the prize, which the principal does not have.

Here is a more detailed heuristic argument that highlights the role of Lemma 2.

For brevity, let λ = 1 and restrict attention to symmetric contests with symmetric

equilibria. The constant reward function Ri,t = eT
EGA

c, which corresponds to the

egalitarian contest, satisfies constraint (IC) with equality at all t ≤ TEGA. Figure 3

plots the corresponding instantaneous marginal benefit schedule eT
EGA−tc, together

with the agent’s marginal cost. Notice that at every t′ ≤ TEGA, the instantaneous

marginal benefit exceeds c by exactly area 1 , which corresponds to the integral on

the left-hand side of (IC).

Figure 3: Meeting the incentive constraint.

Consider now a non-egalitarian contest (i.e., one with a non-constant reward

schedule) that attempts to implement the same total effort as the egalitarian one.

As illustrated in the figure, (IC) implies that if there is a time interval [t′, t′′] ≤ TEGA

where this alternative schedule exceeds the egalitarian one, it must also exceed the

egalitarian schedule at all times prior to t′, since the integral in (IC) grows from area

1 to area 1 + 2 . In other words, a higher reward at any future date forces a

higher reward today, as otherwise the agent would prefer to pause his effort today and

gain access to this higher future gain. Thus, in order to implement the same effort
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as the egalitarian contest, the reward schedule would need to be uniformly higher,

which is only possible with a prize greater than $1.

5.3 Increasing hazard rate

In some settings, the agents’ instantaneous probability of success might grow as they

work and make progress on the problem and accumulate knowledge.21 To capture

this possibility, let F (t) denote the probability that an agent succeeds at or before

date t if he works continuously until that time, and suppose the hazard rate λt =

F ′(t)/[1 − F (t)] exists and is weakly increasing. This implies that if an agent has

spent s units of effort by some date t, his hazard rate is λs.

Under the assumption that λt ∈ (c, nc) for all t, and is differentiable almost

everywhere, the optimal contest is similar to the cyclical-egalitarian contest with

constant hazard rate characterized in Proposition 1, except that the length of each

provisional deadline is stochastic. The termination rule now operates as follows: At

date 0, the principal privately draws T1 ∼ H0(·), where the distribution function

H t(T ) := 1− e−
∫ T
t γtsds and

γts :=
cλ̇s
λ2

s

[
1− e−n

∫ s
t λvdv

n
(
1− e−

∫ s
t λvdv

) − c

λs

]−1

. (4)

If at least one agent has succeeded by T1, the contest ends and the prize is awarded

according to the egalitarian rule. Otherwise, a new cycle begins, and ends at the

random date T2 ∼ HT1(·), and so forth.22 Let τ ∗∗∗ denote the termination rule thus

defined.

Proposition 4. Assume λt ∈ (c, nc) for all t, is weakly increasing, and its derivative

exists almost everywhere. The contest with egalitarian prize, the cyclical termination

rule τ ∗∗∗, and the feedback policy Mpronto is optimal.

To explain the logic of this design, notice first that Lemma 1 remains valid: a

contest which awards the entire prize and concedes zero rents to the agents gives

the principal profit 1/c, and is guaranteed to be optimal. Given that the feedback

21For instance, contestants might be sampling among a finite set of possible solutions, or they
might need to accumulate a number of intermediate Poisson successes before they solve the problem.

22It is shown that γts is non-negative and Ht(·) has finite support; that is, for every t, there is a
finite cutoff date such that, as it is approached, γts →∞ and the cycle ends arbitrarily quickly.

18



policy is Mpronto, it suffices to show that each agent’s expected reward conditional

on success, Ri,t, is equal to c/λt until he succeeds. Then, by the same argument as in

Section 4, there exists an equilibrium in which agents work continuously until they

succeed and earn zero rents.23

What differs from the baseline model is that an earlier success must be rewarded

more dearly than a later one, once the hazard rate has had a chance to grow. Propo-

sition 4 shows that this can be achieved using an egalitarian prize with a stochastic

cyclical termination rule: since an agent who succeeds early on will expect to share

the prize with fewer of his rivals, he secures a greater reward. By choosing the distri-

bution of each cycle’s length, it is possible to fine-tune Ri,t so that it exactly equals

c/λt.

6 Conclusion

We have proposed a contest with an egalitarian prize, a cyclical structure involving a

periodic resetting of the contest, and a partial type of feedback: contestants are kept

fully apprised of their own successes, but are only periodically informed about their

rivals’ successes so as to not discourage further effort. In our setting, this contest

manages to convert 100% of the prize money into effort (i.e., is maximally efficient)

as it manages to extract all rents from the contestants. For this reason, it is able to

deliver large gains relative to commonly-used contests, including the winner-takes-all

design. Because of its relative simplicity, it may also be attractive from an applied

point of view.

The proposed contest is a member of a larger family of “cyclical-egalitarian con-

tests” that manage to transform 100% of the prize money into any desired combination

of effort and total rents for the agents, with an efficient transformation rate between

the two equal to the inverse marginal cost of effort. The winner-takes-all contest is

one member of this family.

Our model has abstracted from features that may be relevant for specific appli-

cations, including technological asymmetries across players and a decreasing hazard

rate of success. When these features are present, the optimal control of information

23A crucial observation for this argument is that if an agent ever shirked prior to date t, then his
hazard rate at t would be strictly smaller than λt, and so he would strictly prefer to shirk at every
subsequent date. Therefore, agents cannot extract positive rents by strategically withdrawing effort.
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is likely to be more complex. We leave these possibilities for future work.
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A Omitted Proofs

A.1 Proof of Corollary 1

Consider the cyclical-egalitarian contest with the Mpronto feedback policy and cycle-

length T , where T ≤ T ∗. Let ui,t denote agent i’s continuation payoff at time t

conditional on not having yet succeeded. By the derivation in (2), this agent’s reward

function Ri,t = (1−e−λnT )/[n(1−e−λT )], and note that it is time-invariant, it decreases

in T , and equals c/λ if T = T ∗.

An agent finds it optimal to work at t if and only if λ(Ri,t − ui,t) ≥ c. That is

because if he works at t, he succeeds with rate λ, in which case he earns reward Ri,t

meanwhile forgoing his continuation payoff ui,t. Naturally, for working to be incentive

compatible, this must exceed the marginal cost of effort, c.

Next, we compute ui,t. We guess and verify later that this agent finds it optimal

to work until he succeeds or the contest ends. Notice that because the contest resets

at the beginning of each cycle, ui,t = ui,t+kT for all t and k ∈ N, and so it suffices to

focus on t ∈ [0, T ]. We have

ui,t = [1− e−λ(T−t)](Ri,t − c/λ) + e−λnT+λtui,0,

where the first term captures this agent’s rents during the current cycle, and the

second term represents the probability that the contest continues for another cycle

conditional on him not having succeeded by t times his continuation payoff. Using

that ui,0 = (1− e−λT )(Ri,t − c/λ)/(1− e−λnT ), we can compute

ui,t = (Ri,t − c/λ)

[
1− eλ(t−T )

(
1− eλT − 1

eλnT − 1

)]
,

and it is straightforward to verify that it decreases in t. This observation implies

that if effort is incentive compatible at the beginning of a cycle, it is also incentive

compatible at every moment thereafter. Therefore, agent i finds it optimal to work

at every moment until he succeeds or the contest ends if and only if Ri,t− c/λ ≥ ui,0,

which is satisfied for any T ≤ T ∗.
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Using the expression for ui,0, the principal’s objective

E
n∑
i=1

∫ τ

0

ai,tdt =
1−

∑n
i=1 ui,0
c

=
n

λ
× 1− e−λT

1− e−λnT
,

while the agents’ rents can be written as
∑

i ui,0 = 1− cE
∑

i

∫ τ
0
ai,tdt.

A.2 Proof of Proposition 2

To prove the proposition, we proceed in two steps. First, we consider a contest with

a cyclical termination rule, where each cycle has length T , the egalitarian prize allo-

cation rule, and theMpronto feedback policy. We derive each agent’s payoff function,

and we show that there exists a T such that, anticipating all other contestants to

work until they succeed, each agent’s incentive compatibility constraint binds at the

beginning of each cycle and is slack thereafter. This implies that there exists an equi-

librium in which all agents work continuously until they succeed or the contest ends.

In the second step, we compute the principal’s payoff, and show that it converges to

the upper bound, Π, as r → 0, λ/c→ 1, or n→∞.

Step 1. Because the contest resets every cycle, without loss of generality, we can

focus on the cycle that starts at time zero. Recall that each agent’s expected (undis-

counted) reward conditional on succeeding at t ∈ [0, T ] when he anticipates all of his

rivals to work until they succeed is equal to Ri,t = (1− e−nλT )/[n(1− e−λT )].

Letting ui,t denote agent i’s continuation payoff at t, this agent finds it optimal to

work at t if and only if λ(Ri,t−ui,t) ≥ c. Intuitively, if an agent works at t, he succeeds

with rate λ, in which case he earns reward Ri,t but forgoes his continuation payoff

ui,t. Naturally, for working to be incentive compatible, this net marginal benefit must

exceed the marginal cost c. Next, we derive an explicit expression for ui,t. Suppose

that effort is indeed incentive compatible for each agent until he succeeds. Then

ui,t =

∫ T

t

e−(r+λ)(s−t) [λe−r(T−s)Ri,s − c
]
ds+ e−(r+λ)(T−t)−(n−1)λTui,0, (5)

where the expression in the integrand represents the agent’s flow payoff within the

current cycle, while the second term is the probability that no one succeeds during

the current cycle times the agent’s continuation payoff, exploiting the fact that the
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contest resets at the end of each cycle.

Using the last observation and the expression for Ri,t, each agent’s payoff at the

beginning of each cycle

ui,0 =

e−rT [1−e−nλT ]
n

− c

r + λ

[
1− e−(r+λ)T

]
1− e−(r+nλ)T

. (6)

Substituting (5) into the incentive compatibility condition, Ri,t ≥ c/λ + ui,t if and

only if
1− e−nλT

n (1− e−λT )
≥ rc

λ(r + λ)

[
e(r+λ)(T−t) − 1

]
+
c

λ
+ e−(n−1)λTui,0. (7)

Define T ∗∗ to be the largest T such that the above inequality binds at t = 0. To see

why such a T ∗∗ exists, first, note that the left-hand side is strictly decreasing in T , it

converges to 1 as T → 0, and to c/λ as T → T ∗, where T ∗ is the provisional deadline

in Proposition 1. On the other hand, using the expression for ui,0, one can (tediously)

show that as T → 0, the right-hand side converges to

c

λ
+

λ− c
r + nλ

∈
( c
λ
, 1
)
,

and it is strictly greater than c/λ for any T > 0. Since both sides are continuous

in T , by the intermediate value theorem, there exists a T ∗∗ ∈ (0, T ∗) such that (7)

binds at t = 0. Finally, observe that the right-hand side of (7) is strictly decreasing

in t, whereas the left-hand side is constant. Together with the fact that (7) binds at

t = 0, this implies that it is satisfied for every t ∈ (0, T ∗∗].

Since T ∗∗ is chosen such that it is optimal for agent i to work continuously through-

out the cycle until he succeeds, by symmetry, there exists an equilibrium in which all

agents work continuously until they succeed or the contest ends.

Step 2. We now compute the principal’s profit when she implements the cyclical

contest with the egalitarian prize allocation rule and the Mpronto feedback policy,

where each cycle has length T ∗∗. The principal’s payoff

Π = E

[
n∑
i=1

∫ τ

0

e−rtai,tdt

]
=

E[e−rτ
∑n

i=1 qi]− E[
∑n

i=1 ui,0]

c
=

n

r + λ
× 1− e−(r+λ)T ∗∗

1− e−(r+nλ)T ∗∗ ,
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where we have used (6) and the fact that the total surplus forms a geometric sequence

and can thus be computed as

E

[
e−rτ

n∑
i=1

qi

]
=
(
1− e−nλT ∗∗)

e−rT
∗∗

+ e−nλT
∗∗ (

1− e−nλT ∗∗)
e−2rT ∗∗

+ ...

=

(
1− e−nλT ∗∗)

e−rT
∗∗

1− e−(r+nλ)T ∗∗ .

Define the ratio

ρ(T ∗∗) :=
Π

Π
=
c(r + nλ)

λ(r + λ)
× 1− e−(r+λ)T ∗∗

1− e−(r+nλ)T ∗∗ ,

which is bounded from above by one. A contest is guaranteed to be optimal if

ρ(T ∗∗) = 1.

As the discount rate r → 0, one can verify from (7) that T ∗∗ → T ∗, and using the

definition of T ∗, it follows that ρ→ 1. By continuity, whenever r is close to zero, the

contest is approximately optimal.

Next, fix a λ and consider the limit as c→ λ. It is easy to verify that limc→λ T
∗ =

0, and since T ∗∗ ∈ (0, T ∗), it follows that T ∗∗ → 0 in this limit as well. Therefore, by

L’Hôpital’s rule we have

lim
c→λ

ρ = lim
c→λ

c(r + nλ)

λ(r + λ)
× 1− e−(r+λ)T ∗∗

1− e−(r+nλ)T ∗∗ = 1.

Hence by continuity, our proposed design is approximately optimal as λ/c→ 1.

Finally, we consider the limit as 1/n→ 0 (which is equivalent to, but more conve-

nient as it turns out, than taking the limit as n→∞). Because lim1/n→0 T
∗ = 0 and

T ∗∗ ∈ (0, T ∗), it follows that lim1/n→0 T
∗∗ = 0. Towards showing that lim1/n→0 ρ = 1,

define K(T ) to be equal to the left-hand side minus the right-hand side of (7) af-

ter multiplying both sides by (1 − exp(−λT ∗∗)), and note that K(T ∗∗) = 0 by

the definition of T ∗∗. By the implicit function theorem, we have ∂T ∗∗/∂(1/n) =

−[∂K(T ∗∗)/∂(1/n)]/[∂K(T ∗∗)/∂T ∗∗]. Defining η := lim1/n→0 ∂T
∗∗/∂(1/n), and as-

suming that this limit exists (which we verify below), it can be shown using the
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algebraic limit theorem and L’Hôpital’s rule that

lim
1/n→0

−∂K(T ∗∗)

∂(1/n)
= −1 + e−λη + ληe−λη and lim

1/n→0

∂K(T ∗∗)

∂T ∗∗
= λe−λη − c,

which implies that

η = lim
1/n→0

∂T ∗∗

∂(1/n)
=

lim1/n→0−∂K(T ∗∗)/∂(1/n)

lim1/n→0 ∂K(T ∗∗)/∂T ∗∗
=
−1 + e−λη + ληe−λη

λe−λη − c
, (8)

or equivalently, 1 − e−λη = cη. It is straightforward to verify that for any c and λ,

there exists a unique η > 0 such that the last equality is satisfied.24 We therefore

have

lim
1/n→0

ρ = lim
1/n→0

cr

λ(r + λ)
× 1− e−(r+λ)T ∗∗

1− e−(r+nλ)T ∗∗ + lim
1/n→0

cn

r + λ
× 1− e−(r+λ)T ∗∗

1− e−(r+nλ)T ∗∗

= 0 +
c

r + λ
× lim

1/n→0

1

1− e−(r+nλ)T ∗∗ × lim
1/n→0

1− e−(r+λ)T ∗∗

1/n

=
c

r + λ
× lim

1/n→0

1

1− e−(r+nλ)T ∗∗ × lim
1/n→0

(r + λ)e−(r+λ)T ∗∗ ∂T ∗∗

∂(1/n)

= c× 1

1− e−λη
× η = 1,

where the second, third, and fourth equalities follow from the algebraic limit theorem,

L’Hôpital’s rule, and the facts that lim1/n→0 T
∗∗ = 0 and lim1/n→0 nT ∗∗ = η, while

the last equality follows from (8). Again by continuity, it follows that our design is

approximately optimal as n grows large.

A.3 Proof of Lemma 2

Faced with a reward function Ri,t defined on [0, T ], agent i chooses his effort by solving

max
ai,t

∫ T

0

(λRi,te
−λ

∫ t
0 ai,sds − cai,t) dt.

Suppose that for some Ti ≤ T , this agent finds it optimal to choose ai,t = 1 for all

t ∈ [0, Ti]. Consider a deviation in which he pauses effort between times t and t+ ∆t

24Note that η = 0 is not a feasible solution: in that case, lim1/n→0−∂K(T ∗∗)/∂(1/n) = 0− and
lim1/n→0 ∂K(T ∗∗)/∂(T ∗∗) = λ − c > 0 which together would imply that η = 0−. Then T ∗∗ would
decrease in 1/n, contradicting the facts that ∂T ∗/∂(1/n) > 0 and T ∗∗ ∈ (0, T ∗).

27



for ∆t > 0. He gains

c∆t−
∫ t+∆t

t

λRi,se
−λsds+

∫ Ti

t+∆t

λRi,s

[
e−λ(s−∆t) − e−λs

]
ds.

If working continuously throughout [0, Ti] is incentive compatible, this gain must be

non-positive. Dividing through by ∆t we have

c− 1

∆t

∫ t+∆t

t

λRi,se
−λsds+

∫ Ti

t+∆t

λRi,s
e−λ(s−∆t) − e−λs

∆t
ds ≤ 0.

In the limit as ∆t→ 0 we have

λRi,te
−λt −

∫ Ti

t

λ2Ri,se
−λs ≥ c ,

where the first term is obtained by L’Hôpital’s rule, and the second term is obtained

via bounded convergence.

A.4 Proof of Proposition 3

It will be convenient to write F (t) = 1 − e−λt to denote the probability that an

agent succeeds by date t if he works continuously until that time, and by f(t) the

corresponding probability density function.

We begin by establishing two lemmas. The first shows that the egalitarian contest

admits a simple symmetric pure-strategy equilibrium.

Lemma 3. The egalitarian contest with deadline TEGAhas a symmetric pure-strategy

equilibrium where each player works throughout the interval [0, TEGA].

Proof of Lemma 3. Consider any symmetric pure strategy profile in which all players

work for a duration T . Then player i’s expected reward conditional on succeeding is

R = E
[

1

1 +M

]
=

1− (1− F (T ))n

nF (T )
,

where M∼ Binom(n−1, F (T )) is the random variable equal to the number of players

other than i who also succeed, and the second equality is established in footnote 11.

Now, taking as given the strategy profile of the other players, the net expected

payoff of player i from spending effort for duration T is given by F (T )R− Tc. Note

28



that because F is concave, this is a concave objective and therefore, the best-response

for player i is the duration T ′ given by f(T ′)R = c; in other words

1− (1− F (T ))n

nF (T )
=

c

f(T ′)
.

Finally, in a symmetric equilibrium, all players choose best-responses. Therefore,

they work for a duration TEGA given by

1−
(
1− F (TEGA)

)n
nF (TEGA)

=
c

f(TEGA)
⇔ 1− e−λnTEGA

n(1− e−λTEGA)
=
ceλT

EGA

λ
,

after substituting the expressions for f(·) and F (·).

The second lemma shows that in any contest, the reward functions must satisfy a

certain “budget constraint,” which stems from the fact that the prize’s value is $1.

Lemma 4. In an equilibrium of a contest in which each player i spends effort contin-

uously through an interval [0, Ti], the reward functions Ri,t must satisfy the following

“budget constraint”

n∑
i=1

∫ Ti

0

f(t)Ri,tdt ≤ 1−
n∏
i=1

(1− F (Ti)). (BC)

Proof of Lemma 4. Note that ∫ Ti

0

f(t)Ri,tdt

is the expected share of the prize earned by agent i. Thus, the left-hand side of (BC)

is the total expected share of the prize promised to the agents. In a feasible contest

in which an agent can earn a share of the prize only if he succeeds, this total expected

share cannot exceed the total probability that at least one player succeeds; i.e., the

expression on the right-hand side of (BC).

Using Lemmas 2 and 4, we consider the following relaxation of (3):

max
{Ti},{Ri,t}

n∑
i=1

Ti subject to (IC) and (BC). (9)
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In this problem, the principal chooses for each agent, a time cutoff Ti and a reward

function Ri,t such that the necessary condition for incentive compatibility (IC) and

the budget constraint (BC) is satisfied.

Notice that the egalitarian contest characterized in Lemma 3 has Ti = TEGA

and Ri,t =
[
1−

(
1− F (TEGA)

)n]
/
[
nF (TEGA)

]
= c/f(TEGA) for all i and t, and it

satisfies the constraints in (9) with equality at all times.

Pick an arbitrary set of time cutoff and reward function pairs {Ti, Ri,t} (one for

each agent) that are feasible for (9). We will show that this solution achieves a

smaller objective than the egalitarian contest characterized in Lemma 3, that is,∑
i Ti < nTEGA. Because the egalitarian contest is feasible for the original problem

(3), it will immediately follow that this contest must be optimal.

Define the function Z1
i for each i as follows

Z1
i (t) =

1

f(t)

[
c−

∫ Ti

t

f ′(s)Ri,sds

]
.

Because F is concave and hence f ′(s) ≤ 0, we have

0 ≤ Z1
i (t) ≤ Ri,t

for all t ∈ [0, Ti]. The second inequality follows because Ri,t is incentive compatible.

Continuing in this manner, define for all k ≥ 2, the function Zk
i by

Zk
i (t) =

1

f(t)

[
c−

∫ Ti

t

f ′(s)Zk−1
i (s)ds

]
.

Since F is concave and Z1
i (s) ≤ Ri,s for all s, we have Z2

i (t) ≤ Z1
i (t). By induction

we have that 0 ≤ Zk
i (t) ≤ Zk−1

i (t) for all t ∈ [0, Ti]. We have thus constructed a

pointwise decreasing sequence of non-negative-valued functions on the domain [0, Ti].

Let Zi be the pointwise limit. For each i we have

Zi(t) = lim
k→∞

Zk
i (t) = lim

k→∞

1

f(t)

[
c−

∫ Ti

t

f ′(s)Zk−1
i (s)ds

]
=

1

f(t)

[
c−

∫ Ti

t

f ′(s)Zi(s)ds

]
(10)

by dominated convergence.
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Define a new reward function R̃i,t = Zi(t). Then R̃i,t satisfies the incentive con-

straint with equality at all times:

f(t)R̃i,t +

∫ Ti

t

f ′(s)R̃i,sds− c = 0. (11)

Differentiating both sides of (11) reveals that R̃i,t is the constant function R̃i,t ≡
c/f(Ti). This reward function satisfies the budget constraint (BC) because 0 ≤
Zi(t) ≤ Ri,t for all t and Ri,t is feasible by assumption. In particular, since the

expected share of the prize earned by player i equals
∫ Ti

0
f(t)R̃i,tdt = cF (Ti)/f(Ti),

we have

c
n∑
i=1

F (Ti)

f(Ti)
−

[
1−

n∏
i=1

(1− F (Ti))

]
≤ 0. (12)

Note for further reference that if any of the Ri,t were non-constant, then the R̃i,t

satisfy the budget constraint with a strict inequality.

We will conclude the proof by showing that the expression on the left-hand side

of (12) is jointly strictly convex in (T1, . . . , Tn). For this will imply that the following

symmetric reward function profile also satisfies the budget constraint:

Ri,t? =
c

f(T̄ )
,

where T̄ is the average effort duration; i.e., T̄ =
∑

i Ti/n. Indeed the budget constraint

will be satisfied with a strict inequality as long as not all the Ti were equal.

To prove that the left-hand side of (12) is strictly convex, substitute the expressions

F (Ti) = 1− e−λTi and f(Ti) = λe−λTi , and after some simplification and eliminating

constants, the left-hand side equals

c
n∑
i=1

eλTi + λe−λ
∑n
i=1 Ti .

Its Hessian, H ∈ Rn×n, has entries

Hii = cλ2eλTi + λ3e−λ
∑n
i=1 Ti for each i, and

Hij = λ3e−λ
∑n
i=1 Ti for all i 6= j.
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For any vector z ∈ Rn
+, we have

zTHz = cλ2

n∑
i=1

eλTiz2
i + λ3e−λ

∑n
i=1 Ti

(
n∑
i=1

zi

)2

≥ 0 ,

and this inequality is strict if z has at least one strictly positive entry, implying that

the Hessian is positive semidefinite, and hence the left-hand side of (12) is strictly

convex.

We have shown that the set of time cutoff and reward function pairs {T̄ , Ri,t?} are

feasible for (9) and achieve a bigger objective than {Ti, Ri,t}; i.e., n T̄ ≥
∑

i Ti, where

the inequality is strict if not all the Ti were equal. Therefore, the relaxed problem

given in (9) can be rewritten as

max
T

{
nT s.t. cn

F (T )

f(T )
≤ 1− [1− F (T )]n

}
, (13)

where we have substituted Ri,t = c/f(T ), which satisfies (IC) with equality for all

t ∈ [0, T ]. We will show that T = TEGA solves (13).

First notice that the constraint in (13) binds when T = TEGA. Using the ex-

pressions F (T ) = 1 − e−λT and f(T ) = λe−λT , this constraint can be rewritten as

cn(eλT − 1)/λ ≤ 1 − e−nλT . We claim that this inequality is satisfied if and only if

T ≤ TEGA. To see why, define ϕ(T ) = 1− e−nλT − cn(eλT − 1)/λ and observe that

ϕ(0) = 0, ϕ′(0) = n(λ− c) > 0, and ϕ is strictly concave.

Therefore, ϕ(T ) single-crosses zero from above at T = TEGA, and so TEGA is the

largest deadline for which the constraint in (13) is satisfied. Since the objective is to

maximize T , T = TEGA solves this problem.

We have therefore shown that T = TEGA and Ri,t = c/f(TEGA) for each i solves

(9), and its objective equals nTEGA. Since this is a relaxation of the original problem,

(3), the objective of the original problem is bounded above by nTEGA. By Lemma 3,

the egalitarian contest with deadline TEGA has an equilibrium in which each agent

spends total effort TEGA, and so the principal’s objective is equal to nTEGA, that

is, it achieves the upper bound obtained from the solution of (9). Therefore, this

egalitarian contest is an optimal no-feedback contest.
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A.5 Proof of Proposition 4

The proof is organized as follows. First, we show that each agent’s expected reward

conditional on succeeding at date t, Ri,t = c/λt. Then we argue that there exists an

equilibrium in which all agents work continuously until they succeed or the contest

ends. Finally, we argue that both conditions of Lemma 1 are met, and hence this

contest is optimal.

For each t, define T t to be the smallest T which solves

1− e−n
∫ T
t λvdv

n
(

1− e−
∫ T
t λvdv

) =
c

λT
. (14)

The left-hand side is strictly decreasing in T , it converges to 1 as T → t, and to

1/n as T → ∞. Meanwhile, λT ∈ (c, nc) by assumption, and so the right-hand side

takes values strictly between 1/n and 1. Since both sides are continuous in T , by

the intermediate value theorem, there exists a smallest T such that (14) is satisfied.

Moreover, because the left-hand side of (14) is strictly larger for T ' t, this is also

true for all T < T t. Therefore, for every t, we have γts ≥ 0 for all s ∈ [0, T t), and

lims→T t γ
t
s =∞; i.e., a cycle which starts at t ends with certainty by T t.

Consider a cycle that started at t. Fix a date s > t, and suppose that agent i

has worked continuously until this date. Then his expected reward conditional on

succeeding at s is

Ri,s =

∫ T t

s

(
1− e−n

∫ z
t λvdv

)
n
(
1− e−

∫ z
t λvdv

)γtze− ∫ z
s γ

t
rdrdz +

(
1− e−n

∫ Tt
t λvdv

)
n
(

1− e−
∫ Tt
t λvdv

)e− ∫ Tt
s γtrdr.

To interpret this expression, suppose this agent succeeds at s. During every interval

(z, z + dz) ⊆ (s, T t), the current cycle ends with probability γtze
−

∫ z
s γ

t
rdrdz. In this

case, his expected share of the prize is

E
[

1

1 +Mt,z

]
=

1− e−n
∫ z
t λvdv

n
(
1− e−

∫ z
t λvdv

) ,
where Mt,z ∼ Binom(n−1, 1−e−

∫ z
t λvdv) represents the number of rivals who succeed

between the date that the current cycle started and z, and we have assumed that in
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equilibrium, they work continuously until they succeed. Integrating over the interval

(s, T t) yields the first term of Ri,s. With probability e−
∫ Tt
s γtrdr, the cycle survives

until (and ends at) T t, in which case agent i’s expected share of the prize is [1 −
e−n

∫ Tt
t λvdv]/[n(1− e−

∫ Tt
t λvdv)].

We now show that λsRi,s is constant and equal to c. By the definition of T t, we

have λT tRi,T t
= c; i.e., the desired equality is satisfied for s = T t. By differentiating

λsRi,s with respect to s, we have

d

ds
λsRi,s = λ̇sRi,s + λsγ

t
s

[
Ri,s −

(
1− e−n

∫ s
t λvdv

)
n
(
1− e−

∫ s
t λvdv

)] = 0

whenever Ri,s = c/λs. The first equality follows from the Leibniz integral rule, and the

second equality follows by substituting γts defined in (4) and Ri,s = c/λs. Therefore,

λsRi,s = c at s = T t, and moving backwards in time, d (λsRi,s) /ds = 0, implying

that λsRi,s = c for all s ∈ [t, T t].

Because the hazard rate of F is increasing, if an agent has worked continuously

until date t, then his hazard rate will be equal to λt; otherwise, it will be smaller.

So an agent who has worked continuously until t without success, taking as given

that his rivals work until they succeed, weakly prefers to work at t. By symmetry, it

follows that there exists an equilibrium in which all agents work continuously until

they succeed, meanwhile earning zero rents.

Finally, because the contest does not end until at least one agent succeeds, the

prize is awarded with probability one, which implies that this contest satisfies both

conditions of Lemma 1, and is therefore optimal.
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