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that of alternative estimators proposed in the recent literature, which rely on PCA, Ridge, Lasso,
and Partial Least Squares (PLS). We find that the SPCA is superior in the presence of weak
factors, both in theory and in finite samples. We illustrate the use of SPCA by applying it to
estimate the risk premia of several tradable and nontradable factors, to evaluate asset managers’
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Estimation and testing of factor models in asset pricing requires choosing a set of test assets.
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only few assets are exposed to a factor, that factor is weak, which makes standard estimation and

inference incorrect. In other words, the strength of a factor is not an inherent property of the

factor: it is a property of the cross-section used in the analysis. We propose a novel way to select

assets from a universe of test assets and estimate the risk premium of a factor of interest, as well as

the entire stochastic discount factor, that explicitly accounts for weak factors and test assets with

highly correlated risk exposures. We refer to our methodology as supervised principal component

analysis (SPCA), because it iterates an asset selection step and a principal-component estimation

step. We provide the asymptotic properties of our estimator, and compare its limiting behavior

with that of alternative estimators proposed in the recent literature, which rely on PCA, Ridge,

Lasso, and Partial Least Squares (PLS). We find that the SPCA is superior in the presence of
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1 Introduction

Inference on factor risk premia is a central element of empirical work in asset pricing. An essential

role in this exercise is played by the set of test assets used in the estimation, yet little work has

been dedicated to investigating rigorously and systematically how they should be chosen. In this

paper, we show that there is an important connection between the selection of test assets and the

long-standing problem of weak factors in asset pricing – factors to which the test assets have little

or no exposure, resulting in a well-known failure in risk premia inference.

Central to understanding this connection is an alternative perspective on the issue of weak factors.

We argue the strength or weakness of a factor should not be viewed as a property of the factor itself,

as typical in the asset pricing literature; rather, it should be viewed as a property of the set of test

assets used in the estimation. As an example, a liquidity factor may be weak in a cross-section of

portfolios sorted by, say, size and value, but may be strong in a cross-section of assets sorted by

characteristics that capture well exposure to liquidity. By exploiting this insight, we propose a new

methodology for risk premia estimation, supervised principal component analysis (SPCA), which

tackles the issue of weak factors via supervised test asset selection.

As discussed in the literature (e.g., Jagannathan and Wang (1998) and Giglio and Xiu (2021)),

estimating and testing the risk premia of some factors requires properly controlling for all the other

factors relevant to investors (whether they are observed or latent), in order to avoid an omitted

variable bias. Importantly, the choice of test assets determines the strength not only of the factor

of interest (e.g., liquidity), but also of all the other factors that drive the stochastic discount factor.

We design the SPCA procedure using an iterative algorithm that uses the factor of interest to guide

the selection of test assets. At the same time, the algorithm uses PCA to recover the relevant latent

factors iteratively, thus controlling for potentially omitted factors. The integration of supervised

selection and PCA yields a general methodology that is robust to the omission of factors, even when

these omitted factors are weak.

In a nutshell, the procedure estimates the risk premium of a factor gt as follows. We start from

a large universe of potential test assets. In a first step of the procedure (selection step), we compute

the univariate correlation of each asset’s return with gt. We select a relatively small portion of

assets, only keeping those with sufficiently high correlation (in absolute value): these are assets that

are particularly informative about the factor of interest gt. We then compute the first principal

component of these portfolios (PCA step), which will be our first estimated latent factor. Next, we

remove via linear projection from both gt and all the returns of the test assets the part explained by

this first latent factor (projection). We then go back to the selection step, computing the univariate

correlation of the residuals of the factor and the residuals of the assets from the projection step.

Again, we select from the universe of test assets a subset for which this correlation is especially

high, and compute the principal component of these residuals. This will be our second estimated

latent factor. We then further remove (from gt and the test assets) the part explained by this second
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estimated factor as well, and iterate again on the residuals. We repeat this procedure p times,

where p can be either a prior estimate of the number of factors in the data or can be regarded as a

tuning parameter to be determined by some validation step. This procedure recovers from the data

p latent factors that are informative about the factor of interest gt. Importantly, the fact that at

each iteration only test assets that are sufficiently correlated with the factor gt are selected ensures

that not only strong, but also weak factors (relative to the entire cross-section) are captured by the

procedure – contrary to standard PCA that uses all assets at all steps to extract latent factors.

Finally, a time-series regression of gt on the p latent factors allows us to estimate the risk premium

for gt by linking it to the risk premia for these latent factors, yielding a consistent estimator of the

risk premium of gt.

The choice of test assets in the literature has mainly followed one of three approaches. The vast

majority of the literature has adopted a “standard” set of portfolios sorted by a few characteristics,

such as size and value, following the seminal work by Fama and French (1993). A second approach,

taken more recently, e.g., Kozak et al. (2020), has been to expand this cross-section to include

portfolios sorted by a much larger set of characteristics discovered in the last decades, on the order

of hundreds of portfolios. Finally, a third approach, see, e.g., Ang et al. (2006), has been more

“targeted” around the specific factor of interest: sorting assets into portfolios by their estimated

exposure to the factor, and then estimating risk premia using only these sorted portfolios, that is,

using a small cross-section expected to be particularly informative about that factor.

It is useful to contrast the asset selection procedure of SPCA with the three standard approaches

to choose test assets summarized above. Using a standard, small cross-section (like the size- and

value-sorted portfolios) to estimate risk premia has the problem that except for size and value, which

are strong factors in this cross-section, many other factors are weak: the test assets do not contain

sufficient information to identify their risk premia. Using a large cross-section of test assets (the

second approach) may appear, on the surface, to address this issue: these assets contain returns that

are exposed to a large number of underlying factors. However, and importantly, if only a few of those

many assets are exposed to some factor, whereas most others are not, that factor will, again, be weak

in this large cross-section, disrupting inference on the risk premium. Finally, the third approach –

building targeted portfolios of assets sorted by the exposure to the factor of interest – is affected by

the omitted factor problem, since it considers univariate exposures only (exposures with the factor

of interest may also capture correlated exposures to other risks in the economy); in general, it will

fail in a multi-factor context.

In the paper, we derive the asymptotic properties of SPCA, in a setting that allows for weak

factors and test assets with highly correlated risk exposures. The latter scenario potentially involves

the same (asymptotically) rank-deficiency issue as weak factors. We also analyze in this setting

alternative estimators that have been proposed in the recent literature, which rely on PCA, Ridge,

Lasso, and Partial Least Squares (PLS). We show that the PCA (and some other variations of it),

Ridge, and PLS are inconsistent in the presence of weak factors, that the Lasso approach is consistent
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for the estimation of the stochastic discount factor (SDF), and hence risk premia estimation, but is

not as efficient as SPCA in general. Additionally, we perform an extensive set of simulations to study

the performance of SPCA in different scenarios. These simulations isolate issues with the standard

two-pass regressions, so that we can easily compare SPCA with other estimators. The simulations

confirm the robustness of SPCA to both omitted factors and weak factors, as well as measurement

error, which SPCA also tackles.

Finally, we illustrate the use of SPCA for estimating risk premia of a variety of tradable and

nontradable factors proposed in the asset pricing literature. We use the large cross-section of test

portfolios produced by Chen and Zimmermann (2020) and Hou et al. (2020), covering more than 900

and 1600 portfolios, respectively, for the period 1976-2020. We apply SPCA to estimate the factor

risk premia, and study the out-of-sample performance of SPCA. We also explore the robustness of

SPCA to the weakness of factors, by artificially changing the set of test assets used in the estimation:

for example, we show that SPCA is able to recover the risk premium for momentum even when

momentum assets are removed from the original set of test assets (and therefore the momentum

factor is weak in the cross-section). In addition to estimating risk premia, we explore additional

applications of SPCA, including the performance evaluation of money managers and the removal of

measurement error (de-noising) of factors.

This paper builds on a large literature on risk premia and factor model estimation and their

limits in the presence of weak and omitted factors. The seminal contribution of Kan and Zhang

(1999) shows that the inference on risk premia estimates from Fama-MacBeth regressions becomes

invalid when a “useless” factor – a factor to which test assets have zero exposures – is included in

the model. Kleibergen (2009) further points out the failure of the standard inference if betas are

relatively small.1 This issue is quite relevant in practice because many test assets are not very sen-

sitive to macroeconomic shocks. Moreover, the same rank-deficiency problem arises when betas are

collinear, that is, some factors are redundant in terms of explaining the variation of expected returns.

This is again a relevant issue in practice due to the existence of hundreds of factors discovered in

the literature, see, e.g., Harvey et al. (2016), many of which are close cousins and do not add any

explanatory power (Feng et al. (2020)). The weak factor problem appears to be caused by having

seemingly more factors than necessary, which is why some suggest eliminating such factors (Bryz-

galova (2015)) or shrinking their risk premia estimates (Bryzgalova et al. (2019)), so as to improve

the estimates for strong factors. We instead argue that the weak factor problem is fundamentally an

issue of test asset selection. Since weaker factors may still be priced, our solution is to accommodate

them using an adapted procedure with carefully selected test assets.2

1Also related is Pesaran and Smith (2019), who investigate the impact of factor strength and pricing error on risk
premium estimation. They point out that the conventional two-pass risk premium estimator converges at a lower rate
as the factors become weaker.

2It is worth noting that whereas some theories assume that only strong factors can be priced, this is not true in
general for two reasons. First, many theoretical models – e.g., the consumption-CAPM – are silent on what assets are
traded in equilibrium, and if markets are incomplete, it may very well be that some priced factors may not be reflected
in many of the assets that are traded. Second, even if investors may have access to many assets exposed to a particular
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Several recent papers have proposed different methodologies to deal with weak factors. Lettau

and Pelger (2020) are among the first to study the issue of weak latent factors in a related problem,

that of estimation of the SDF. They propose an estimator of the SDF in the presence of weak

factors, which generalizes PCA with a penalty term that accounts for expected returns; they refer

to the estimator as risk premium PCA, or rpPCA. Their objective is different from ours, but the

SDF estimated using this procedure can still be used to estimate risk premia, since risk premia are

covariances with the SDF. Whereas this estimator features desirable properties as explored by Lettau

and Pelger (2020), we show that it is inconsistent for estimating risk premia in the weak-factor setting

we consider.3 Anatolyev and Mikusheva (2021) propose an complementary approach to dealing with

weak factors, based on sample-splitting and instrumental variables. This alternative procedure works

well to address the weak factor bias, though it does not deal with omitted priced factors or with

measurement error in the factors.

Our paper also relates to a literature that has explored different methods to form portfolios to

test asset pricing models, like Ahn et al. (2009) or Bryzgalova et al. (2020). These methods are useful

in helping to build or expand the starting cross-section for SPCA. In this paper, we use the simpler

approach of working with an existing large cross-section of portfolios sorted by firm characteristics,

as in Chen and Zimmermann (2020) and Hou et al. (2020). It also relates to a growing strand of

econometrics literature on weak factor models, like Bai and Ng (2008) and Huang et al. (2021). Our

SPCA approach shares the spirit of these approaches, but is more involved because we do not assume

all factors are of the same strength, which thereby requires multiple selection steps. Also, our focus

is on risk premia estimation instead of forecasting, for which we also provide inference. Also related

are papers that propose estimators of factor count and strength, like Freyaldenhoven (2019) and

Bailey et al. (2020).

The concept of supervised-PCA originated from a cancer diagnosis technique applied to DNA

microarray data by Bair and Tibshirani (2004), and was later formalized by Bair et al. (2006) in

a prediction framework, in which some predictors are not correlated with the latent factors that

drive the outcome of interest. Bair et al. (2006) suggest a screening step using marginal correlations

between predictors and the outcome variable to select the subset of useful predictors, before applying

the standard PCA to this subset. They prove the consistency of this so-called SPCA procedure, but

relying on a restrictive identification assumption that any important predictor must also have a

substantial marginal correlation with the outcome. We provide several examples of multivariate

factor, the econometrician may not, making the factor weak for the set of test assets available to the econometrician.
3Lettau and Pelger (2020) focus their analysis on the case where factors are extremely weak – so much so that

they are not statistically distinguishable from idiosyncratic noise. In that case, no estimator can be consistent for
either risk premia or the SDF. They show that indeed, rpPCA does not recover consistently the SDF, but it correlates
with the SDF more than the SDF estimator obtained from standard PCA. Rather than focusing on this extreme case
of weak factors, our theory covers a range of factor weaknesses, which includes the cases from strong to very weak,
and which permits consistent estimation of factors and risk premia. Formally, we study the case where the minimum
eigenvalues of the factor component in the covariance matrix of returns diverges whereas the largest eigenvalue due to
the idiosyncratic errors is bounded.
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factor models in which this assumption fails. While the screening step of our SPCA procedure shares

the spirit with theirs (in the sense that their outcome variable is our factor of interest, and their

predictors are our test assets), our projection step and the subsequent iteration procedure are new,

and are introduced precisely to eliminate the strong identification assumption used in the existing

statistics literature. Also, our focus is not on prediction per se, but instead on inference on parameters

(i.e., risk premia), which involves an additional step and more intricate analysis for the asymptotic

theory.

The paper is organized as follows. Section 2 first sets up the notation and model (Sections 2.1 and

2.2), then discusses the inconsistency of existing estimators in the presence of weak factors (Section

2.3), provides our methodology (Sections 2.4 and 2.5) and finally the inference theory (Section 2.6).

Section 3 provides simulation evidence, followed by an empirical study in Section 4. The appendix

provides technical details.

2 Methodology

2.1 Notation

Throughout the paper, we use (A,B) to denote the concatenation (by columns) of two matrices A

and B. ei is a vector with 1 in the ith entry and 0 elsewhere, whose dimension depends on the

context. ιk denotes a k-dimensional vector with all entries being 1, and Id denotes the d× d identity

matrix. For any time series of vectors {at}Tt=1, we denote ā = 1
T

∑T
t=1 at. In addition, we write

āt = at− ā. We use the capital letter A to denote the matrix (a1, a2, · · · , aT ), and write Ā = A− āιᵀT
correspondingly. We denote PA = A(AᵀA)−1Aᵀ and MA = Id − PA, for some d × T matrix A. We

use a ∨ b to denote the max of a and b, and a ∧ b as their min for any scalars a and b. We also use

the notation a . b to denote a ≤ Kb for some constant K > 0 and a .p b to denote a = Op(b). If

a . b and b . a, we write a � b for short. Similarly, we use a �p b if a .p b and b .p a.

We use λmin(A) and λmax(A) to denote the minimum and maximum eigenvalues of A, and

use λi(A) to denote the i-th largest eigenvalue of A. Similarly, we use σi(A) to denote the ith

singular value of A. We use ‖A‖1, ‖A‖∞, ‖A‖, and ‖A‖F to denote the L1 norm, the L∞ norm, the

operator norm (or L2 norm), and the Frobenius norm of a matrix A = (aij), that is, maxj
∑

i |aij |,
maxi

∑
j |aij |,

√
λmax(AᵀA), and

√
Tr(AᵀA), respectively. We also use ‖A‖MAX = maxi,j |aij | to

denote the L∞ norm of A on the vector space. When a is a vector, we use ‖a‖0 to denote
∑

i 1{ai 6=0}.

We also denote Supp(a) = {i : ai 6= 0}. Finally, we use [N ] to denote the set of integers: {1, 2, . . . , N}.
For an index set I ⊂ [N ], we use |I| to denote its cardinality. We use A[I] to denote a submatrix of

A whose rows are indexed in I.
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2.2 Model Setup

We study a standard linear factor model setup. Suppose that an N × 1 vector of test asset excess

returns, rt, follows:

rt = βγ + βvt + ut, E(vt) = E(ut) = 0 and Cov(vt, ut) = 0, (1)

where β is an N × p matrix of factor exposures, vt is a p× 1 vector of factor innovations, and ut is

an N × 1 vector of idiosyncratic errors.4 The vt vector is unobservable, even though it may include

factor innovations of observable factors, ft, i.e., vt = ft − µf , since µf is an unknown parameter.

In order to study the statistical properties of risk premia estimators in the presence of weak

factors, we first define our asymptotic scheme. We will assume that both N and T go to∞, whereas

p is fixed. The p × p factor covariance matrix Σv is asymptotically non-singular in the sense that

1 . λmin(Σv) . λmax(Σv) . 1. This assumption is rather weak as it only rules out factors whose

risks are (asymptotically) negligible or exploding. We also maintain the assumption that ‖Σu‖ . 1,

so that there exists no factor structure in the residuals ut. This condition is useful for identification

purposes, and ensures that all factors must be distinguishable from the idiosyncratic errors, regardless

of their strength, which we turn to next.

In this setting, a factor’s strength is entirely determined by test assets’ exposures to it, since

all factors have non-negligible or non-exploding risks. In light of this, the strength of a factor is

context specific — the selection of test assets dictates its strength. For instance, a momentum factor

could be a strong factor for momentum-sorted portfolios, but this factor may be weak with portfolios

sorted by size or value as test assets, because the latter portfolios may diversify the exposure to the

momentum factor.

In the econometrics literature on factor models, the most prevalent assumption adopted by, e.g.,

Bai and Ng (2002), is that all factors are strong or pervasive, that is, λi(β
ᵀβ) � N for i = 1, 2, . . . , p,

which dominates the strength of the idiosyncratic component, as measured by ‖Σu‖. Our focus is

on the regime of weak factors, which covers a wide range of factor strength. In particular, the norm

of columns of β is allowed to diverge at different and slower rates, which will be made more precise

later.

The fact that weak factors are relevant in practice can be illustrated from a scree plot of eigen-

values of returns (for example, see Figure 3 based on the large cross-section we use in our empirical

analysis). Factors with a spectrum of strength, as indicated by various magnitudes of eigenvalues,

are clearly present. Except for the first one or two eigenvalues, there is not a clear-cut gap between

the next few eigenvalues (that would correspond to weaker factors) and the remaining eigenvalues

that correspond to idiosyncratic components.

4Our model is set up for portfolios as test assets. To generalize this model for individual stocks, more structures
should be imposed to address time-varying risk exposures, see, e.g., Gagliardini et al. (2016), Kelly et al. (2019), and
Kim et al. (2020).
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We develop our discussion of weak factors in the context of two standard asset pricing exercises:

the estimation of risk premia and the recovery of the stochastic discount factor (SDF). In this model,

an SDF can be defined in terms of asset pricing factors vt as

mt = 1− γᵀΣ−1v vt, (2)

where Σv is the covariance matrix of factor innovations. It also makes sense to consider the SDF

represented in terms of the tradable test asset returns:

m̃t = 1− bᵀ(rt − E(rt)), (3)

where b is an N × 1 vector of SDF loadings which satisfies E(rt) = Σb, where Σ is the covariance

matrix of rt. The relationship between the two SDFs depends on the degree of completeness of

markets. As will be shown later, these two forms of the SDF are asymptotically equivalent in the

asymptotic scheme we consider, with the number of assets N going to infinity, so that there is no

ambiguity with respect to which estimand we consider.

In addition to the SDF, we are also interested in risk premia of some observable factors, summa-

rized in a d × 1 vector, gt. Following Giglio and Xiu (2021), we do not impose that gt is part of or

is identical to vt; instead, we assume gt and vt are (potentially) correlated:

gt = ξ + ηvt + zt, (4)

where ξ = E(gt), η is a d× p matrix, and zt is measurement error orthogonal to vt.
5 The risk premia

of the factors gt are ηγ, our parameter of interest in this paper. This model clearly nests the classic

linear asset pricing model with observable factors only, in which case we can set η = Ip and zt = 0.

Since the true factors in vt are potentially weak, the observable factors in gt may therefore also

be weak because the exposure of rt to gt is partially determined by that to vt. The risk exposure of

gt (to vt), η, and risk premia, γ, are not necessarily diminishing (asymptotically). Specifically, ηγ

could be a fixed parameter that does not vary with sample size.

2.3 Inconsistency of Existing Estimators

While the literature has proposed many different estimators of the SDF and risk premia, their

properties in the weak factor setting have not been studied. In what follows, we revisit a number of

existing procedures for estimating risk premia, and show that they are inconsistent in the presence

of weak factors using a simple model with a single weak factor.

5When gt is nontradable, measurement error could arise as the econometrician is implementing an empirical coun-
terpart of some theory-predicted factor; when gt is tradable, it captures the non-diversified errors in the portfolio.
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2.3.1 PCA

Giglio and Xiu (2021) suggest a three-pass procedure to estimate ηγ: 1) apply PCA to the sample

covariance matrix of returns to obtain estimates of the latent factors, v̂t;
6 2) use Fama-MacBeth

regressions to recover the risk premia of v̂t, γ̂; 3) use time series regressions of gt on v̂t to estimate η̂.

The product of the estimates at steps 2 and 3 yields η̂γ̂, the estimate of risk premia. We summarize

this procedure in the following algorithm:

Algorithm 1 (PCA-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R̄ and Ḡ.

S1. Apply SVD on R̄, and write the first p right singular vector as ξ. The estimated factors are

given by V̂ =
√
Tξᵀ.

S2. Estimate the risk premia of V̂ by γ̂ = (β̂ᵀβ̂)−1β̂ᵀr̄ where β̂ = R̄V̂ ᵀ(V̂ V̂ ᵀ)−1.

S3. Estimate the factor loading of gt on vt by η̂ = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1.

Outputs: V̂ , η̂, γ̂, and γ̂PCAg = η̂γ̂.

Giglio and Xiu (2021) establish the consistency of this estimator and derive its asymptotic in-

ference, in the case that all latent factors are pervasive, whereas gt can be either strong or weak

(depending on the magnitude of η). This risk-premia estimator is appealing for its simplicity, effi-

ciency, and robustness to missing factors. Unfortunately, it fails when some latent factors are weak,

which we will show next.

To explain the intuition behind the failure of PCA, it is sufficient to consider a one-factor model

with p = d = 1 and Σv = 1, in which case the covariance matrix of returns satisfies: Σ = ββᵀ + Σu.

This matrix has a noisy low rank structure in that ββᵀ has rank 1 whereas Σu is a full-rank covariance

matrix. To make it simple, we also assume that the factor of interest gt has no measurement error,

i.e., zt = 0 and gt = ηvt.

A successful recovery of β via PCA of realized returns requires a favorable signal-to-noise ratio. If

the “signal” as measured by ‖β‖, dominates “noise”, which arises from the idiosyncratic component

Σu and the estimation error in the sample covariance matrix Σ̂ − Σ, the first sample eigenvector

of Σ̂ would (approximately) span the same space spanned by the true β. Thus using β̂, effectively

the eigenvector of Σ̂, in the cross-sectional regression would yield a consistent estimator of the risk

premium of the estimated latent factor, which in turn leads to a consistent estimator of the risk

premium of gt. Otherwise, if signal ‖β‖ is so weak that the estimation error in β̂ dominates, there

would be a non-vanishing angle between the space spanned by β̂ and that by β, which eventually

results in an inconsistent estimate of the risk premium ηγ. Proposition 1 below shows that the

PCA-based risk premium estimator is consistent only if N/(‖β‖2 T )→ 0.

6Equivalently, one can directly apply the singular value decomposition (SVD) on R̄.
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Proposition 1. Suppose that test asset returns follow a single-factor model in the form of (1) with

p = 1, gt satisfies (4) with d = 1, and ut and vt i.i.d. normally distributed and independent from

each other and zt = 0. In addition, suppose that β satisfies N/(‖β‖2 T ) → B ≥ 0 and ‖β‖ → ∞.

Then we have γ̂PCAg
p−→ (1 +B)−1ηγ.

In the presence of strong factors, ‖β‖ �
√
N , which leads to B = 0 as T → ∞, so there is no

bias. In general, the consistency depends on the relative magnitude of N , T , and ‖β‖. When N are

T are of the same order, ‖β‖ → ∞ is sufficient for the consistency of risk pemia estimation. This

makes sense in that the eigenvalue of returns corresponding to this factor is proportional to ‖β‖2,
whereas the eigenvalues for the idiosyncratic errors are bounded, so that ‖β‖ → ∞ guarantees the

separation between factors and errors and hence the identification of factors.

This example also shows that the risk premium estimator could be biased even if we have consis-

tent estimator of the factors. In fact, the estimated factors in V̂ are consistent under the assumptions

of Proposition 1 in the sense that |Corr(V̂ , V )| p−→ 1.7 However, estimating a large-dimensional vec-

tor β given V̂ remains a challenging problem, which requires this additional condition, B = 0, to

achieve consistency.

2.3.2 PLS

Giglio and Xiu (2021) show that the PCA-based estimation procedure effectively constructs a mimick-

ing portfolio for gt via a principal component regression (PCR) on rt, which amounts to a projection

of gt onto the first few PCs of the sample covariance matrix of rt. This is an unsupervised approach,

in that the PCs are obtained without any information from gt. Therefore, PCA might be misled

by large idiosyncratic errors in rt when the signal is not sufficiently strong. In contrast with PCA,

partial least squares (PLS) is a supervised procedure, which has been shown to work better than

PCA in other settings, see, e.g., Kelly and Pruitt (2013). In the same spirit, we now propose a

PLS-based approach for risk premia estimation, exploiting variation of returns that is relevant to

the target factor of interest. The key difference is that PCA seeks linear combinations of rt that

maximize variation, ignoring information from the target gt, whereas PLS seeks linear combinations

that have the largest covariance with gt. We formulate a general PLS-based algorithm for a d × 1

vector of gt below:

Algorithm 2 (PLS-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R̄(1) := R̄, r̄(1) := r̄ and Ḡ, a d× T matrix.

S1. For k = 1, 2, · · · , p, repeat the following steps using R̄(k), r̄(k) and Ḡ.

a. Obtain the weight vector w from the largest left singular vector of R̄(k)Ḡ
ᵀ.

7We can further establish that a sufficient condition for consistent recovery of factors is N/(‖β‖4 T ) → 0, which
clearly holds in the setup of Proposition 1.
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b. Estimate the kth factor as V̂(k) =
√
TwᵀR̄(k)/

∥∥wᵀR̄(k)

∥∥. Here, V̂(k) is normalized to have

norm
√
T .

c. Estimate the risk premium of V̂(k) by γ̂(k) =
√
Twᵀr̄(k)/

∥∥wᵀR̄(k)

∥∥.

d. Estimate the kth factor loading of rt by β̂(k) = T−1R̄(k)V̂
ᵀ
(k).

e. Remove V̂(k) to obtain residuals for the next step: R̄(k+1) = R̄(k) − β̂(k)V̂(k) and r̄(k+1) =

r̄(k) − β̂(k)γ̂(k).

S2. Estimate the factor loading of gt on vt by η̂ = T−1ḠV̂ ᵀ, where V̂ = (V̂ ᵀ
(1), · · · , V̂

ᵀ
(p))

ᵀ, and

denote their risk premia estimated above as γ̂ = (γ̂(1), · · · , γ̂(p))ᵀ.

Output: γ̂PLSg = η̂γ̂.

The PLS estimator has a closed-form formula if Ḡ is a 1×T vector and a single-factor is extracted

(p = 1):

γ̂PLSg =
∥∥ḠR̄ᵀR̄

∥∥−2ḠR̄ᵀR̄ḠᵀḠR̄ᵀr̄.

While the PLS procedure seems appealing, the next proposition shows that this approach is asymp-

totically equivalent to the PCA-based procedure, hence it fails in exactly the same weak factor setting

as PCA.

Proposition 2. Suppose that test asset returns follow a single-factor model in the form of (1) with

p = 1, gt satisfies (4) with d = 1, ut and vt i.i.d. normally distributed and independent from each

other, and zt = 0. In addition, suppose that β satisfies N/(‖β‖2 T ) → B ≥ 0 and ‖β‖ → ∞. Then

we have γ̂PLSg
p−→ (1 +B)−1ηγ.

Intuitively, the covariance information embedded in the objective function of PLS is dominated

by its variance component, hence PLS yields the same asymptotic behavior as PCA with respect to

estimating β, and therefore risk premia.

2.3.3 Ridge

Next, we consider an alternative ridge regression approach to the construction of mimicking portfolios,

and the resulting risk premia estimator can be written as:

γ̂Ridgeg = ḠR̄ᵀ (R̄R̄ᵀ + µIN
)−1

r̄, (5)

where µ > 0 is some tuning parameter. In the case of pervasive factors, Giglio and Xiu (2021) show

that the ridge estimator yields consistent estimate of ηγ. However, the ridge estimator also fails in

the presence of weak factors:

11



Proposition 3. Suppose that test asset returns follow a single-factor model in the form of (1) with

p = 1, gt satisfies (4) with d = 1, ut and vt i.i.d. normally distributed and independent from each

other, and zt = 0. In addition, suppose that β satisfies N/(‖β‖2 T )→ B ≥ 0 and ‖β‖ → ∞, and the

tuning parameter µ satisfies µ/(‖β‖2 T )→ D for some constant D ≥ 0 such that B +D > 0. Then

we have γ̂Ridgeg
p−→ (1 +B +D)−1ηγ.

Even though the ridge-based risk premia estimator seemingly accounts for the impact of all

eigenvectors as factors instead of only the first p of them, the resulting estimator remains inadequate

for consistency. Intuitively, the tuning parameter µ in the ridge procedure serves as a threshold that

impedes the influence of eigenvectors corresponding to small eigenvalues just like in PCA and PLS,

which explains the appearance of B in the limit. The presence of µ also leads to a shrinkage bias to

the first few eigenvectors (i.e., factors), which is why an extra term D appears in the limit as well.

2.3.4 Risk Premium PCA

Finally, we consider an estimator of ηγ based on the risk premium PCA (rpPCA) estimator proposed

by Lettau and Pelger (2020) in the context of SDF estimation.

Algorithm 3 (rpPCA-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R̄ and Ḡ.

S1. Apply PCA on T−1RRᵀ+µr̄r̄ᵀ, where µ is a tuning parameter, and write the first p eigenvectors

as ς. The estimated factors are given by V̂ = ςᵀR̄.

S2. Estimate the risk premia of V̂ by γ̂ = ςᵀr̄.

S3. Estimate the factor loading of gt on vt by η̂ = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1.

Outputs: γ̂rpPCAg = η̂γ̂.

The standard PCA is applied to the covariance matrix of returns, that is T−1RRᵀ − r̄r̄ᵀ. Lettau

and Pelger (2020) show that assigning a larger weight µ > −1 to the term related to average returns

improves the Sharpe ratio of the estimated SDF.8 While this estimator was originally proposed for

estimating the SDF, it can be used to estimate risk premia as well (since risk premia are just covari-

ances with the SDF). We discuss here this risk premium estimator, in a setting where a single factor

can be weak yet its strength is of a distinct order relative to idiosyncratic components asymptoti-

cally. This setting is more informative for comparing different approaches, because in this setting a

consistent estimation procedure exists.

8They derive asymptotic properties of rpPCA in a setting where all factors are weak and N and T increase to
infinity at the same rate. The setting they analyze is one where all factors are so weak that they cannot be recovered –
specifically, the strength of weak factors remains indistinguishable from that of idiosyncratic errors as N and T increase.
Under this assumption, consistent estimation of the SDF is impossible, including rpPCA, which, despite being more
correlated with the SDF than PCA, is also inconsistent.

12



Proposition 4. Suppose that test asset returns follow a single-factor model in the form of (1) with

p = 1, gt satisfies (4) with d = 1, ut and vt i.i.d. normally distributed and independent from each

other, and zt = 0. In addition, suppose that β satisfies N/(‖β‖2 T )→ B ≥ 0 and ‖β‖ → ∞, that the

factor has a non-zero risk premia, i.e., γ 6= 0. Then for some tuning parameter µ > −1, we have

γ̂rpPCAg
p−→ w(1 +B)−1ηγ + (1− w)η(γ + γ−1B),

where

w =
2 + 2B

1 + 2B +
√

(1− a)2 + 4(1 + µ)γ + a
, a = (1 + µ)(γ2 +B)−B.

Proposition 4 suggests that this rpPCA estimator is inconsistent in the presence of a weak factor,

with a more involved bias term compared to the above estimators. Like PCA and PLS, this estimator

is consistent when all factors are strong (B = 0). When B > 0, we may design a different asymptotic

setting, in which the tuning parameter µ → ∞, under which the rpPCA estimator converges to

η(γ + γ−1B). If we further assume γ → ∞ (while keeping ηγ constant), this estimator can be

consistent as long as ηγ−1B
p→ 0. This suggests that rpPCA can be robust to weak factors if the

information about β from the expected return dominates the information from return covariances

(in which case factors have a diverging Sharpe ratio.)

An alternative approach to Algorithm 3, based on rpPCA, is to adapt Algorithm 1 by replacing its

step S1 by S1 of Algorithm 3. It turns out that this approach yields the same asymptotic behavior as

the PCA estimator of Algorithm 3, which is characterized by Proposition 1.9 Because its performance

is essentially identical with that of PCA, we omit the discussion of this version of rpPCA from the

rest of the paper.

2.4 Our Solution: Test Asset Selection

The results in the previous section shed light on the limitation of dimension reduction or shrinkage

estimators, when factors are not pervasive.10 One potential solution is to screen test assets and only

keep those that have nontrivial exposure to the factor of interest. Then, if the factor is strong within

this smaller set of test assets, it is possible to apply PCA or any of the above procedures to recover

its risk premium, as long as there remains a sufficient number of test assets.

This strategy echoes some of the practice in the empirical asset pricing literature. Very often,

9As shown by Giglio and Xiu (2021), using either left or right singular vectors of R̄ as factors yields asymptotically
equivalent PCA-based estimators of risk premia. This is, however, not true for rpPCA, because its estimated “eigenvec-
tors” do not correspond to any singular vectors of R̄. This is the reason why using a rpPCA adapted Algorithm 1 would
lead to a different asymptotic result (equivalent to Proposition 1), as opposed to Proposition 4 based on Algorithm 3.

10These results should not be regarded as evidence against the use of above estimators in all scenarios. Rather, we
only establish that for data generating processes in the regime of weak factors we define, none of these estimators are
consistent. It is however possible that, for some alternative sequences of data generating processes, or for purposes
other than risk premia estimation, these estimators may perform well.
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test assets are formulated using the exact characteristics-sorted portfolios that the factor of interest

is generated from. For instance, Fama and French (1993) use size and value double-sorted portfolios

as test assets when estimating a factor model that includes size and value as factors. In other cases,

for nontradable factors, portfolios are sorted based on individual stock betas with respect to the

factor of interest. These choices of test assets indeed help address the weak factor problem, though,

as discussed in the introduction, they do not address the other issue that is relevant in practical

applications – omitted factors. Our methodology formalizes the insight behind these traditional

procedures and combines it with the use of PCA to address the omitted factor bias.

We start with a simple one factor setting as discussed in the previous propositions, which helps

illustrate the intuition behind our proposal and facilitates the comparison with existing estimators

(the next section is devoted to the general case). To ensure sufficient test assets after screening,

we assume that there exists a subset I0 ⊂ [N ] such that
∥∥β[I0]∥∥ � √N0, where N0 = |I0| → ∞.

Consequently, as long as we locate this subset of assets, within which there exists a strong factor

structure, we can recover risk pemia consistently. In practice, it is the researcher who decides which

test assets to employ in an empirical study. Assuming that a strong factor structure exists at least

within a subset of test assets seems practical and plausible.

We next formally present our SPCA procedure for test assets selection and risk premia estimation.

Algorithm 4 (SPCA-based Estimator of Risk Premia for a Single Factor Model (p = 1)). The

procedure is as follows:

Inputs: R̄ and Ḡ, a 1× T vector.11

S1. Select a subset Î ⊂ [N ]: Î =
{
i
∣∣∣T−1|R̄[i]Ḡ

ᵀ| ≥ cq
}

, where cq is the (1 − q)-quantile of{
T−1|R̄[i]Ḡ

ᵀ|
}
i∈[N ]

.

S2. Repeat S1. – S3. of Algorithm 1 with selected return matrix R̄
[Î]

and Ḡ, and p = 1.

Outputs: γ̂SPCAg := η̂γ̂, V̂ , η̂, and γ̂.

We establish the consistency of the SPCA estimator in the following proposition:

Proposition 5. Suppose that logN/T → 0 and test asset returns follow a single-factor model in the

form of (1) and that gt satisfies (4), with ut, vt, and zt i.i.d. normally distributed and independent

from each other. The loading matrix β satisfies ‖β‖MAX . 1 and there exists a subset I0 ⊂ [N ]

such that
∥∥β[I0]∥∥ � √N0 where N0 = |I0| → ∞. Then, for any choice of q in Algorithm 4 such

that qN/N0 → 0 and qN → ∞, and that |β|{qN+1} ≤ (1 + δ)−1|β|{qN} for some δ > 0, where |β|{k}
denotes the kth largest value in

{
|β[i]|

}
i∈[N ]

, we have γ̂SPCAg
p−→ ηγ.

Algorithm 4 involves a single tuning parameter q that determines how many assets we use to

extract the factor. We select the first qN assets sorted by their covariances with the target variable

11We discuss the case of a multivariate (d× T ) Ḡ in Section 2.6.
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Ḡ. The fact that Î incorporates information from the target reflects the distinctive nature of a

supervised procedure. The technical condition on |β|{qN+1} simply states that these test assets

should have (asymptotically) distinct risk exposure, which is a rather mild assumption used in the

proof.

Propositions 2 - 4 show that in the single factor case, the consistency of PCA, PLS, and rpPCA

requires B = 0. Suppose ‖β‖2 = Nv, for some v > 0, then B = 0 is equivalent to N1−v/T → 0.

The consistency of SPCA, as shown by Proposition 5, nonetheless, only requires logN/T → 0.12

That said, the condition ‖β‖2 & N0 → ∞ rules out the case that the factor strength is of the same

magnitude as that of idiosyncratic errors.13

2.5 The General Case: Selection and Projection

Propositions 1 - 5 focus on a perhaps unrealistic single-factor model since they are meant to illustrate

the intuition behind our procedure as well as the failure of existing approaches due to the presence

of a weak factor. In general, the DGP of returns is likely driven by more than one factors, some of

which may be weak. In the same spirit of Proposition 1, we can show that a more general necessary

condition for the consistency of PCA in a multi-factor model is that

N/(λmin(βᵀβ)T )→ 0. (6)

Intuitively, this condition requires that the weakest one among all p factors in (1) is sufficiently strong

that it can be recovered by PCA. Once again, we consider below more challenging regimes in which

the condition (6) fails.

In a multi-factor model, even if all factors are strong by themselves, a related problem arises

when some of the factors’ exposures are highly correlated. Consider, for example, a two-factor model

where the beta matrix has the following form:

β =


β11 β12

β21 β22

 , (7)

12Another idea that shares this spirit is the scaled-PCA proposed by Huang et al. (2021), which uses regression
coefficients of Ḡ on R̄ to weight R̄ before feeding it into the PCA procedure. An advantage of the scaled PCA approach
is that it does not involve any tuning parameter. Nonetheless, the scaled PCA still assigns weights of 1/

√
T magnitude

to assets that have zero-correlations with the target variable, whereas our approach assigns zero weights to such assets.
As a result, our procedure only requires logN to be small relative to T , whereas both the scaled PCA and PCA require
N to grow no faster than a certain polynomial rate relative to T .

13Throughout this paper, an extremely weak factor is referred to as a factor whose strength is of the same order of
magnitude as that of idiosyncratic errors. We preclude this extreme case from our discussion because no estimators
under consideration could achieve consistency and a harmless modeling choice would be to treat these extremely weak
factors as noise: their risk premia effectively become alpha. The weak-factor setting we investigate permits consistency,
and allows for asymptotic comparison of different estimators.
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where β11 and β12 are N0× 1 vectors, β21 and β22 are (N −N0)× 1 vectors, and N0 is small relative

to N . Suppose that β21 = β22. Then we can show that λmin(βᵀβ) ≤ ‖β11 − β12‖2 /2 . N0. As a

result, N/(λmin(βᵀβ)T ) & N/(N0T ), which does not necessarily converge to 0 if N0 and T are small,

so that the condition (6) could fail. In this example, while either factor could be strong, the same

“rank deficiency” issue may arise, since these factors could have highly correlated exposures.

Another important consideration is that applying the screening approach only once would in

general not work in a multi-factor model. Take (7) again as an example. Suppose that β21 6= β22 = 0,

then it is easy to show that λmin(βᵀβ) ≤ ‖β12‖2 . N0, thus in light of the above discussion, the

weak factor problem could occur in this example. In this case, it is the second factor that is weak

since most of test assets’ exposure to it is zero. Now suppose that η = (1, 1): the observed factor g

is correlated with both factors and hence with all test assets. But in that case, the screening would

not eliminate any test asset – and yet PCA with all test assets would not recover the weak factor,

should N/(N0T ) not vanish. This example demonstrates that even though screening assets ensures

that the first principal component after screening is strong, there is no guarantee that this procedure

can solve the weak factor issue in one step if additional factors are weak.

It is worth pointing out that the two aforementioned cases are in fact equivalent, because we can

rotate the beta matrix in the second case into the form of the first case. Thanks to the rotation

invariance property illustrated in Giglio and Xiu (2021), both the risk premia and the SDF estimands

remain unchanged after rotation, and hence the equivalence.

In the examples above, the problem was that the first screening step did not eliminate any assets,

and therefore could not solve the weak factor issue. We provide next another example, that shows

that in some situations screening can sometimes eliminate too many assets, making a strong factor

model become weak or even rank-deficient. Suppose β has the following form:

β =


β11 β11

0 β22

 , (8)

where β11 and β22 are N/2 × 1 non-zero vectors satisfying ‖β11‖ � ‖β22‖ �
√
N . Clearly, β is

full-rank and both factors are strong. Therefore, a standard PCA procedure should work smoothly.

Suppose in addition that η = (1, 0) (i.e., gt = v1t) and that v1t and v2t are uncorrelated. Then it

implies that gt is uncorrelated with the second half of test assets in rt, so only the first half would

remain, should screening be applied with gt before extracting the principal components. In this

example, however, the remaining test assets have perfectly correlated exposures to both factors, so

that only one factor, v1t + v2t, is left. This example shows that the one-step supervised procedure

(screening plus PCA) proposed by Bair et al. (2006), may be counterproductive for factor extraction

in a multi-factor setting.
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To resolve the issue of weak factors and avoid these screening traps, we propose a multi-step

procedure that iteratively conducts selection and projection. The projection step eliminates the

influence of the estimated factor, which ensures the success of the screening steps that occur over

the following iterations. More specifically, Step S1 of Algorithm 4 can help identify one strong factor

from a selected subset of test assets. Once we have estimated this factor, we project the returns

of all test assets rt (not just those selected at the first step) and gt onto this factor, so that their

residuals will not be correlated with this factor. Then we can repeat the same selection procedure

with these residuals. This approach enables a continued discovery of factors, and guarantees that

each new factor is orthogonal to the estimated factors in the previous steps, similar to the factors

extracted by standard PCA. It is easy to check that this iterative screening and projection approach

successfully addresses the problems of all three examples above. Formally, the algorithm is given by:

Algorithm 5 (Selection and Projection). The selection and projection based procedure for risk pre-

mium estimation is as follows:

Inputs: R̄(1) := R̄, r̄(1) := r̄, and Ḡ(1) := Ḡ, a d× T vector.

S1. For k = 1, 2, . . . iterate the following steps using R̄(k), r̄(k), and Ḡ(k):

a. Select an appropriate subset Îk ⊂ [N ].

b. Repeat S1. – S3. of Algorithm 1 with selected return matrix
(
R̄(k)

)
[Îk]

and Ḡ(k). Denote

the estimates as λ̂(k), V̂(k), η̂(k), γ̂(k).

c. Estimate the exposure of R̄(k) on V̂(k) by β̂(k) = T−1R̄(k)V̂
ᵀ
(k).

d. Obtain R̄(k+1) = R̄(k) − β̂(k)V̂(k), r̄(k+1) = r̄(k) − β̂(k)γ̂(k), and Ḡ(k+1) = Ḡ(k) − η̂(k)V̂(k).

Stop at k = p̂, where p̂ is chosen based on some proper stopping rule.

S2. Estimate the risk premium by γ̂SPCAg =
∑p̂

k=1 η̂(k)γ̂(k).

Outputs: γ̂SPCAg , η̂ = (η̂ᵀ(1), · · · , η̂
ᵀ
(p̂))

ᵀ, γ̂ = (γ̂(1), · · · , γ̂(p̂))ᵀ, V̂ = (V̂ ᵀ
(1), · · · , V̂

ᵀ
(p̂))

ᵀ and β̂ =

(β̂(1), · · · , β̂(p̂)).

In Algorithm 5, we recover one latent factor and obtain its risk premium at each stage of S1.

Both the factor and its risk premium are estimated using a subset of rows in the stage-k return

residual matrix R̄(k), within which this factor is strong. We then project all observables onto this

factor and proceed again with residuals. Because each row of R̄(k+1) is orthogonal to V̂(j) for j ≤ k

the factors we obtain are orthogonal with each other, as is the case with PCA.

Algorithm 5 yields a consistent estimator of γg as long as an appropriate choice of Îk and a
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stopping rule are adopted. One possible choice for Îk is:14

Îk =
{
i
∣∣∣T−1 ∥∥∥(R̄(k))[i]Ḡ

ᵀ
(k)

∥∥∥
MAX

≥ c(k)q
}
,

where c
(k)
q is the (1− q)th-quantile of

{
T−1

∥∥∥(R̄(k))[i]Ḡ
ᵀ
(k)

∥∥∥
MAX

}
i∈[N ]

. (9)

Correspondingly, we set the stopping criterion as:

c(k)q < c, for some threshold c. (10)

In other words, we select test assets that have predictive power for at least one variable in gt and

stop when most test assets are uncorrelated with all variables in gt. With a good choice of tuning

parameters, q and c, the iteration stops as soon as most of the rows of the projected residuals of

returns appear uncorrelated with the projected residuals of gt, which implies that all factors that are

correlated with gt are successfully recovered.

To establish the consistency of this estimator, we need a subset of assets, indexed by I0, such

that within this subset all factors are strong, that is, λmin(βᵀ[I0]β[I0]) � N0, where N0 = |I0| → ∞.

Because the number of factors, p, is finite, such a subset I0 always exists as long as for each factor

we can locate a sufficiently large subset, respectively, within which this factor is strong.15 With

this identification assumption, along with moment conditions given in the appendix, the following

theorem establishes the consistency of the SPCA estimator:

Theorem 1. Suppose that test asset returns in rt follow (1), the factor proxies in gt satisfy (4), and

that Assumptions A.1-A.8 hold. If log(NT )(N−10 + T−1)→ 0 then for any tuning parameters c and

q that satisfy

c→ 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2)→ 0, qN/N0 → 0,

we have γ̂SPCAg
p−→ ηγ.

The consistency result in Theorem 1 does not require a full recovery of all factors that drive the

SDF. In fact, only factors correlated with gt will be recovered. Missing any uncorrelated factors in

the SDF does not affect the consistency of the risk premium of gt because such factors do not help

price gt.

Moreover, this result does not rely on Gaussian error assumptions nor on an assumption that all

factors have the same strength with respect to all test assets. The assumption on the relative size of

14Using covariance for screening allows us to replace all Ḡ(k) in the definition of Îk and Algorithm 5 by Ḡ, that is,
only the projections of R̄(k) and r̄(k) are needed, because this replacement would not affect the covariance between
Ḡ(k) and R̄(k), and in turn, the test assets after screening and the estimates of η̂(k). We use this fact in the proofs,

which simplifies the notation. We can also use correlation instead of covariance in constructing Îk. Despite this does
not affect the asymptotic analysis, we find correlation screening performs slightly better in finite samples.

15This assumption is weak in that it does not imply all factors should have identifical strength with respect to the
entire cross-section of assets in rt. A detailed discussion on this point follows Assumption A.3 in the appendix.
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N and T is also quite flexible, in contrast with existing results in the literature in which N cannot

grow faster than a certain polynomial rate of T .

2.6 Asymptotic Inference on Risk Premia

In this section we develop the asymptotic distribution of the risk premium estimator from Algorithm

5. Not surprisingly, the conditions in Theorem 1 do not guarantee that γ̂SPCAg converges to ηγ at

the desirable rate T−1/2. The major obstacle lies in the recovery of factors, which we can explain

with the previous single-factor example.

Recall that we use the sample correlation/covariance between rt and gt to screen test assets. Even

if gt is independent with respect to the test assets, their sample correlation can be as large as T−1/2.

Therefore, the threshold needs no smaller than T−1/2. However, for any given threshold, say, T−1/4,

if it happens that η � T−1/3 < T−1/4, then it suggests that gt is not too different from random

noise, so that screening based on its correlation with rt will likely not select any assets, which in turn

leads to no discovery of factors. Our procedure thereby gives a risk premium estimate of 0, which

is certainly consistent, but the estimation error is of an order T−1/3, so that the usual central limit

theorem (CLT) fails.

Generally speaking, this issue arises because of the potential failure to identify all factors in the

DGP. Once all factors are identified, the central limit theorem holds regardless of the magnitude

of η. So to make inference we need a stronger assumption that rules out cases like this, in order

to insure against a higher order omitted factor bias that impedes the CLT even though it does not

affect consistency. It turns out that so long as η ∈ Rd×p satisfies λmin(ηᵀη) & 1, we can rule out the

possibility of missing factors. On the other hand, our algorithm will not select more factors than

needed, if we stop the iteration as soon as c
(k)
q is sufficiently small. Of course, in a finite sample, a

perfect recovery of the factor space is a stretch, but the assumptions here are substantially weaker

than the pervasive factor assumption adopted in the literature, e.g., Bai (2003). The inference theory

on factor models also relies on a perfect recovery of the count of (strong) factors, e.g., Bai and Ng

(2002). We provide below the consistency result on the number of factors and the CLT result on risk

premium, and investigate the finite sample behavior of SPCA in Section 3.

Theorem 2. Under the same assumptions as Theorem 1, if we further have T−1/2N0 → ∞, As-

sumption A.9 and λmin(ηᵀη) & 1, then for any tuning parameters c and q in (9) and (10) satisfying

c→ 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2)→ 0, qN/N0 → 0, q−1N−1T 1/2 → 0,

we have that p̂ defined in Algorithm 5 satisfies: p̂
p→ p, and that the estimator constructed via

Algorithm 5 satisfies

√
T
(
γ̂SPCAg − ηγ

) d→ N (0,Φ) ,
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where Φ is given by

Φ =
(
γᵀΣ−1v ⊗ Id

)
Π11

(
γᵀΣ−1v ⊗ Id

)
+
(
γᵀΣ−1v ⊗ Id

)
Π12η

ᵀ + ηΠᵀ
12

(
γᵀΣ−1v ⊗ Id

)
+ ηΠ22η

ᵀ,

and Π11, Π12, and Π22 are specified by Assumption A.9.

We can adopt the same Newey-West-type estimator for Φ as in Section 4.5 of Giglio and Xiu

(2021), since each component of Φ can be estimated from the outputs of the SPCA algorithm.

These estimates are consistent up to some rotation matrices which will cancel each other and yield

a consistent estimate of Φ.

The condition λmin(ηᵀη) & 1 implies d ≥ p, that is, we need gt to have at least equal number of

variables as the true number of factors. Moreover, the condition also implies that for each factor in

vt, there is at least one variable in gt with a non-vanishing exposure to it.

2.7 The Case of Observable Factors

The previous discussion does not assume any knowledge of the identities of the factors vt in (1). If vt

corresponds to innovations of observable factors, denoted by ft, which were known (by assumption),

say, the Fama-French five factors, our procedure can be greatly simplified. It is meaningful to study

this case, because it is most common in the empirical literature, albeit this is a (rather) strong

assumption.

Suppose factors in ft are tradable. If gt is part of them, then we can estimate the risk premium

of gt by simply taking its time-series average. If gt is either spanned by ft or not tradable, then a

simple time series regression of gt onto the factors ft can recover its loading, η, which along with

the risk premia estimates of ft by their averages, give rise to the risk premium estimate of g. These

scenarios are simple, and do not require cross-sectional regressions.

If some of the observed factors in ft are not tradable, say, GDP growth, then a cross-sectional

regression is necessary, which effectively constructs their mimicking portfolios. In this setting, a weak

factor problem potentially arises as documented in the literature, see, e.g., Kan and Zhang (1999),

Kleibergen (2009). To tackle this issue, one could adopt a simplified version of Algorithm 5, to

supervise the construction of mimicking portfolios for each of the observed non-tradable factors (in

this case GDP growth), while using residuals from the projection of test asset returns onto tradable

factors as new test assets.

2.8 Asymptotic Inference on Alpha

As a by-product, we can also make inference on the pricing error, αg, defined as E(gt)− γg, when gt

is tradable. In practice, this exercise is most relevant for inferring the “skill” of a fund manager; we

explore this application in section 4.2.1. Using the SPCA estimator γ̂SPCAg , we can directly construct

α̂g = ḡ − γ̂SPCAg . We now provide its corresponding CLT result.
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Theorem 3. Suppose the same assumptions as those in Theorem 2 hold. If we further have As-

sumption A.10, then the estimator α̂g satisfies

√
T (α̂g − αg)

d−→ N (0, Φ̃),

where Φ̃ is given by

Φ̃ =
(
γᵀΣ−1v ⊗ Id

)
Π11

(
Σ−1v γ ⊗ Id

)
−
(
γᵀΣ−1v ⊗ Id

)
Π13 −Πᵀ

13

(
Σ−1v γ ⊗ Id

)
+ Π33.

It is straightforward to construct a Newey-West-type estimator of the asymptotic variance Φ̃ via

its sample analog.

2.9 Recovery of the Stochastic Discount Factor

The main focus of the previous sections is on risk premia, whose consistency does not require a

consistent recovery of the SDF, since some of these factors driving SDF might be uncorrelated

with the factors of interest, and will therefore not play any role in the consistency of risk premia.

Nonetheless, we have pointed out that constructing valid asymptotic inference requires the recovery

of all factors that drive the SDF. In this case, we can also reconstruct the SDF. More specifically,

from the outputs of Algorithm 5, we can estimate the SDF by:

m̂SPCA
t = 1− γ̂ᵀv̂t, where v̂1, · · · , v̂T are the columns of V̂ . (11)

Theorem 4. Suppose the same assumptions as in Theorem 2 hold. In addition, we have Assumption

A.11. Then the estimator (11) satisfies

1

T

T∑
t=1

|m̂SPCA
t −mt|2 .p

1

T
+

logN0

N0
. (12)

There are a number of alternative approaches for SDF estimation proposed in the literature,

e.g., the selection/shrinkage approach by Kozak et al. (2020) and the risk premia PCA by Lettau

and Pelger (2020). In what follows, we provide a theoretical comparison of Lasso and Ridge based

estimators in our general framework where factors can potentially be weak. The ridge estimator

shares the same spirit of PCA-based estimators as shown by Giglio and Xiu (2021) and propositions

in previous sections. Examining the asymptotic behavior of these two approaches will provide useful

insights that may guide their applications in practice.

Kozak et al. (2020) consider an SDF in the form of (3), whereas we represent it as in (2). Prior

to the asymptotic analysis of their estimators, we first establish the asymptotic equivalence of these

two definitions in our large-N setting:
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Proposition 6. Suppose that test asset returns in rt follow (1), and Assumption A.11 holds. Then

as N →∞, we have

1

T

T∑
t=1

|mt − m̃t|2 .p
1

λmin(βᵀβ)
.

Effectively, Proposition 6 proves that there is no ambiguity with respect to the definition of the

estimand, since the two estimands are asymptotically equivalent as long as λmin(βᵀβ) → ∞. Given

that this exact assumption is necessary for Theorem 4, and that λmin(βᵀβ) & N0, we can replace mt

in the left-hand side of (12) by m̃t.

Kozak et al. (2020) suggest estimating the SDF by solving an optimization problem:

b̂ = arg min
b

{
(r̄ − Σ̂b)ᵀΣ̂−1(r̄ − Σ̂b) + pµ(b)

}
, (13)

with which the estimated pricing kernel is given by

m̂t = 1− b̂ᵀ(rt − r̄). (14)

In the above, Σ̂ is the sample covariance matrix of rt and pµ(b) is a penalty term through which

economic priors are imposed. Depending on the penalty function, we will denote the resulting

estimator of m by m̂Ridge
t or m̂Lasso

t .

The objective function in (13) appears to require the inverse of the sample covariance matrix Σ̂−1,

which is not well-defined when N > T . Instead, we suggest optimizing an equivalent but different

form of (13):

b̂ = arg min
b

{
bᵀΣ̂b− 2bᵀr̄ + bᵀΣ̂b+ pµ(b)

}
, (15)

which avoids the calculation of Σ̂−1.

The following result sheds light on the asymptotic properties of this estimator in the cases of

pµ(b) = µ ‖b‖1 and pµ(b) = µ ‖b‖2, respectively.

Theorem 5. We investigate two distinct scenarios.

(a) Suppose that rt is driven by p latent factors as in (1). With pµ(b) = µ ‖b‖2, if (N+T )/(λpT )→
0 and Assumptions A.4-A.7, A.11-A.13 hold, we have

1

T

T∑
t=1

|m̂Ridge
t −mt|2 .p

1

T
+
N + T

λpT
,

where λp is the p-th largest eigenvalue of βΣvβ
ᵀ. Since λp � λmin(βᵀβ), we can replace mt in

the above equation by m̃t.
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(b) Suppose that the true SDF satisfies E(m̃2
t ) . 1. With pµ(b) = µ ‖b‖1, if Assumptions A.11,

A.12 hold, we have

1

T

T∑
t=1

|m̂Lasso
t − m̃t|2 .p ‖b‖1

√
logN

T
. (16)

If, in addition, we assume that λmin(Σ) & 1, and ‖b‖20 logN/T → 0, then we have a stronger

result

1

T

T∑
t=1

|m̂Lasso
t − m̃t|2 .p ‖b‖0

logN

T
. (17)

Interestingly, both the Ridge and Lasso approaches deliver consistent estimates of the SDF,

though under rather different sets of assumptions. First of all, the convergence rate of the Ridge

approach depends critically on the strength of the weakest factor. If condition (6) fails, then the

SDF is not consistent. The failure of this condition is precisely a symptom of weak factors which our

SPCA estimator is designed for.

Second, with respect to the estimator using the Lasso penalty, the explicit factor model assump-

tion on rt is replaced by the sparsity assumption on b. The latter assumption requires that the SDF

is spanned by a sparse linear combination of test assets, but place no explicit assumptions on the

DGP of these test assets. This suggests that the Lasso estimator remains consistent regardless of

the factor strength, but converges at a rather slow rate, ‖b‖1
√

logN/T as shown in (16), so it is

not as efficient as our SPCA estimator that exploits the factor structure. Nonetheless, under a much

stronger sparsity assumption that ‖b‖20 logN/T → 0, the Lasso estimator can achieve a comparable

rate to that of the SPCA. This stronger notion of sparsity effectively says that the set of true factors

must be part of the test assets. In contrast, our SPCA estimator allows for idiosyncratic components

in any of the test assets, which is a more acceptable assumption in practice.

Just like for the risk premia estimator based on rpPCA, we can adapt any SDF estimator to

obtain an estimator of risk premia, because −Cov(mt, gt) = ηγ. Naturally we have a Lasso-based

risk premia estimator:16

γ̂Lassog = − 1

T

T∑
t=1

m̂Lasso
t × (gt − ḡ).

Furthermore, the consistency of the SDF estimator translates to the consistency of the resulting

risk premia estimator.17 Deriving a valid inference procedure is possible for Lasso, if we employ an

16The SDF-induced Ridge estimator is numerically equivalent to (5), so we do not mention it again.
17By Assumption A.12(1), Cauchy-Schwartz and triangle inequalities, we have

∥∥∥γ̂Lasso
g − γg

∥∥∥
MAX

.p

√√√√ 1

T

T∑
t=1

|m̂Lasso
t − m̃t|2 +

√
logN

T
.
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additional de-biasing step, see, Feng et al. (2020), which is beyond the scope of the current paper.

As a side note, the SPCA estimator given by equation (11) can also be rewritten in the form of

(14), so that it can yield an estimate of b in the definition of SDF given by equation (3). The reason is

that v̂t is in fact a linear combination of rt. Given that b is invariant to rotations of factors, we can use

any rotation of v̂t to reconstruct an estimate of b. We can exploit this invariance property to construct

a convenient estimator b̂. In fact, in S1.b of Algorithm 5, we can construct an N × p matrix B such

that the kth column of B is defined as: B[Ik],k = ς(k) and B[Ick],k
= 0, where ς(k) is the left singular

vector of
(
R̄(k)

)
[Ik]

. It turns out the SPCA estimates of V̂ can be written as a rotation of BᵀR̄, so to

estimate b̂ we can use BᵀR̄ as factors, denoted by, Ṽ , whose risk premia and covariance are denoted

by γ̃ and Σ̃. Indeed, since the SDF is mt = 1−γ̂ᵀ(Σ̂v)
−1v̂t = 1−γ̃ᵀ(Σ̃v)

−1ṽt = 1−γ̃ᵀ(Σ̃v)
−1Bᵀ(rt−r̄),

it follows that the SPCA-based estimate of b is given by

b̂ = B(Σ̃v)
−1γ̃ = TB

(
BᵀR̄R̄ᵀBᵀ)−1Bᵀr̄.

Similarly, we can construct estimates of b using PCA, PLS, and rpPCA. With b̂ it is convenient to

build out-of-sample SDF (optimal portfolios).

3 Simulations

In this section, we study the finite sample performance of our SPCA procedure using Monte Carlo

simulations. We also implement a number of alternative estimators for comparison, some of which

are robust to omitted or weak factors, including PCA and its related estimators (Ridge, PLS, and

rpPCA), Lasso, as well as the four-split estimator by Anatolyev and Mikusheva (2021).18 Both

the standard two-pass and four-split methods directly use gt as if they were the true factors in

their regressions. The PCA, rpPCA, Ridge, and Lasso effectively construct the SDF first without

knowledge of gt, then estimate the risk premia of gt factor by factor, using the covariance between

each factor and the resulting SDF. PLS and SPCA use all variables in gt to supervise the estimation

procedure.

To implement the SPCA estimator, we select the tuning parameters p and qN (or equivalently

q) by cross-validation using the time series R2 of the hedging portfolio for gt built by SPCA as the

criterion.19 Recall that any estimator of risk premia for a nontradable factor explicitly or implicitly

builds a hedging portfolio exposed to gt and not exposed to the other factors. We therefore use

as a criterion for the choice of the tuning parameters the ability of this portfolio to hedge gt in

the validation sample. In order to produce a conservative comparison, except for SPCA, all the

18The four-split estimator, which does not rely on dimension reduction, selection, or shrinkage techniques, is valid
in the presence of weak observable factors and strong omitted factors that are not priced. However, it does not have
asymptotic guarantees against omitted and priced strong/weak factors, or measurement error in the observed factors.

19In finite samples, we find it more effective and more convenient to tune p and q than q and c. This is because the
former are direct input to SPCA, which only take values from integers, so that multiple choices of the latter lead to
the same integer values of the former.
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remaining methods use optimal (even if infeasible) tuning parameters. Specifically, for PCA, PLS

and rpPCA, we make use of the true number of factors, p = 4, even though it is difficult to obtain a

consistent estimator of p in the regime of weak factors. The tuning parameter µ of Ridge estimator is

determined via maximum likelihood estimation, with perfect knowledge of Σr and E(r). The second

tuning parameter of rpPCA is selected by maximizing the theoretical Sharpe ratio of the estimated

SDF, using, again, perfect knowledge of Σr and E(r). Due to limited sample size, estimating the

sample mean and sample covariances in a separate validation sample is rather challenging, which

would further deteriorate their performance.

To demonstrate and compare the performance of different estimators, we consider various DGP

of returns and/or the observed variables in gt.

We start with the benchmark case (a), in which all factors are strong and observed. Specifically,

we consider a 4-factor DGP as given by equation (1), where the first three factors are calibrated

to match the three Fama-French factors (RmRf, SMB, HML) as in Giglio and Xiu (2021), and the

last one is a potentially weak factor, denoted by V . We calibrate the parameters such that the

monthly Sharpe ratio for the optimal portfolio out of these factors is about 0.25. The realizations

of ut are generated independently from a Gaussian distribution with mean 0 and standard deviation

σu calibrated such that the time-series R2 ranges from 50-90%. The loadings of RmRf are generated

independently from N (1, 1) and the loadings of SMB and HML are generated independently from

N (0, 1). We generate the exposure to the fourth factor V , βi,V , independently from a Gaussian

mixture distribution, with probability a from N (0, 1) and 1 − a from N (0, 0.12). Based on our

calibration, we choose a = 0.5, so that the factor V is sufficiently strong with respect to the cross-

section of assets in simulations. gt includes exactly these four factors in the DGP (RmRF, SMB,

HML, and V ), so that η = I4, and measurement error is absent.

In scenario b), we choose a = 0.05 so that V is weak in that for almost all test assets their factor

loadings to V are tiny. In scenario c), the DGP is the same as that of the benchmark case, except

that we add Gaussian measurement error, zt, to each of the factors in gt. In scenario d), we simulate

β for V according to βi,V = −βi,HML + ei instead, where eis are generated independently from the

same mixture Gaussian distribution as above with a = 0.05. In this case, the loading matrices of

V and HML are very similar, which (almost) leads to a rank deficient factor loading matrix due to

highly correlated exposures. The variable gt contains all four factors with no measurement error.

In scenario e), we consider the same DGP of returns as in scenario d), but in gt we omit the HML

factor. Finally, in scenario f), we further add measurement error to scenario d).

For each of these six scenarios (including the benchmark), we plot in Figure 1 the histograms of

the estimated risk premium of V (one entry in gt) for all estimators. If an estimator is consistent,

then the histogram is expected to be centered around the true risk premium of V , whose value is

represented by a vertical dashed line. This is indeed the case for SPCA in all scenarios. It is also

the case for almost all estimators in the benchmark scenario, a), when factors are strong (except for

Lasso and Ridge, which have a large shrinkage bias). This suggests that the latter two estimators
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are not suitable for inference on risk premia. Furthermore, in scenario b), when weak factors are

present, only SPCA and four-split are consistent. The same is true for scenario d) in which a

similar rank-deficiency issue arises. In scenario c) the four-split estimator becomes inconsistent due

to measurement error, and it is also ill-behaved in scenario e) because the omitted variable, HML, is

priced. The PCA and PLS estimators are consistent in scenario c) but also fail in e), because they

are robust to measurement error but not to omitted weak factors. The standard two-pass estimator

is only consistent in the benchmark scenario.20 Overall, the simulation evidence is in agreement with

our theoretical predictions.

Next, we focus on the last scenario f), which includes the case of weak and omitted factors as well

as measurement error. For this case, we report in Table 1 the bias and the RMSE (root-mean-square

error) of all estimators for various sample size T . The four rows in each panel provide the results

of risk premia estimation for RmRf, SMB, HML, and the weak factor V , respectively. We find that

our SPCA approach has smaller biases for the weak factors, whereas the remaining estimators have

larger biases and RMSEs, which agrees with our theoretical analysis and Figure 1.

We then investigate the finite sample performance of the inference result developed in Theorem 2.

Figure 2 plots histograms of the standardized risk premia estimators using the estimated asymptotic

standard errors for SPCA and PCA, respectively, using the DGP in scenario f) as an example. The

histograms of PCA deviate from the standard normal distribution for the two highly correlated

factors, V and HML. In contrast, the histograms corresponding to the SPCA match the normal

distribution well, which verifies our central limit results.

Finally, we study the finite sample behavior of the SDF estimators. We compare the performance

of SPCA, PCA, rpPCA, Lasso and Ridge estimators in scenario f). We report in Table 2 the MSE of

the SDF estimators where the true SDF is defined by equation (3). The estimated number of factors

from our SPCA approach is also reported. We also report in Table 3 the out-of-sample Sharpe ratios

of different methods, given by b̂ᵀE(r)/
√
b̂ᵀΣb̂, where E(r) and Σ are the true mean and covariance

of all test assets and b̂ is the estimated SDF loading using each method. We find that in terms of

the RMSE, SPCA outperforms all other methods, and that rpPCA performs the worst. That said,

rpPCA performs the best in terms of the out-of-sample Sharpe ratio, followed by the SPCA. Last

but not least, SPCA produces a decent estimator of p when T is large.

4 Empirical Analysis

In this section we perform different empirical exercises to illustrate the use of SPCA. First, we apply

it to estimate the risk premia of a number of tradable and nontradable factors proposed in the

literature, and we evaluate its out-of-sample performance. Second, we evaluate the robustness of

SPCA as we change the universe of test assets to make the factors stronger or weaker. Third, we

20The standard two-pass estimator appears to have a small bias in scenario f), but this happens to be true only for
V since all sources of bias happen to balance out, as we show in Table 1.
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(a) Benchmark (b) Weak factor

(c) Measurement error (d) Correlated exposures

(e) Weak + omitted factor (f) Correlated exposures + measurement error

Figure 1: Histogram of Risk Premium Estimates of V

Note: The figure provides histograms of the risk premium estimates in six scenarios for eight estimators we compare,

including SPCA, PCA, PLS, rpPCA, Lasso, Ridge, four-split, and the standard two-pass estimator. We simulate

the models with N = 2, 000 and T = 120. The number of Monte Carlo repetitions is 1,000.
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SPCA PCA rpPCA PLS
T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

RmRf 53.7 0.9 39.2 1.0 38.9 0.8 42.4 1.0 39.1
120 SMB 21.7 0.2 29.0 0.3 28.5 -0.1 32.7 0.4 28.7

HML 25.4 -4.8 26.6 -15.3 28.1 76.4 93.5 -10.9 26.8
V 40.0 -5.5 20.9 -15.7 23.1 74.5 89.7 -11.3 21.4

RmRf 53.7 0.8 33.9 0.8 33.8 0.8 34.9 0.9 33.8
180 SMB 21.7 0.4 23.1 0.4 22.7 0.6 24.9 0.3 22.9

HML 25.4 -3.7 21.5 -11.9 22.9 49.0 62.4 -7.4 21.7
V 40.0 -3.6 17.0 -11.7 18.6 48.6 60.5 -7.1 17.1

RmRf 53.7 0.7 29.6 0.8 29.5 0.7 30.0 0.8 29.6
240 SMB 21.7 0.5 20.2 0.5 20.0 0.3 21.4 0.5 20.1

HML 25.4 -2.8 18.3 -9.4 19.3 35.5 45.7 -5.0 18.4
V 40.0 -3.6 14.3 -10.1 16.0 33.9 42.7 -5.8 14.5

Lasso Ridge Four-split Two-pass
T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

RmRf 53.7 -16.3 28.8 -2.9 35.2 16.0 53.8 14.7 51.2
120 SMB 21.7 -8.1 15.3 -3.1 20.4 7.1 48.1 7.1 44.7

HML 25.4 -28.8 31.2 -31.1 35.9 19.2 50.2 -12.1 39.4
V 40.0 -32.8 34.5 -32.7 34.8 36.3 57.8 -1.3 29.4

RmRf 53.7 -11.7 26.9 -1.5 31.3 16.9 46.7 15.0 44.9
180 SMB 21.7 -6.4 14.2 -2.1 17.8 6.4 37.7 6.9 35.9

HML 25.4 -29.7 31.6 -28.3 32.6 20.1 42.5 -6.0 31.8
V 40.0 -31.6 33.0 -28.8 30.9 39.1 53.2 7.6 26.4

RmRf 53.7 -6.7 24.7 -0.6 28.1 16.4 41.7 14.9 39.9
240 SMB 21.7 -3.7 14.8 -1.1 16.9 7.3 33.6 7.3 31.9

HML 25.4 -24.9 28.0 -25.3 29.3 21.4 38.4 -0.8 27.0
V 40.0 -26.5 28.6 -26.2 28.1 38.8 49.1 12.4 25.6

Table 1: Simulation Results for Risk Premia Estimators

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the

risk premia estimates using SPCA, PCA, rpPCA, Lasso, PLS, Ridge, four-split, and the standard two-pass regression

approaches, respectively. The true data-generating process, given by scenario f), has four factors, driven by RmRf,

SMB, HML, and V , whereas we estimate the risk premia for noisy versions of these four factors. Their true risk

premia are provided in Column “True.” We fix N = 2, 000 while varying T = 120, 180, and 240 in this experiment.

All values are in basis points.

SPCA PCA rpPCA PLS Lasso Ridge
T p̂ MSE MSE MSE MSE MSE MSE
120 4.080 0.036 0.037 0.387 0.040 0.044 0.050

(0.339) (0.026) (0.025) (0.505) (0.025) (0.012) (0.018)

180 4.000 0.024 0.025 0.163 0.027 0.041 0.041
(0.000) (0.017) (0.017) (0.209) (0.017) (0.011) (0.015)

240 4.000 0.018 0.019 0.085 0.020 0.035 0.035
(0.000) (0.013) (0.013) (0.088) (0.013) (0.011) (0.013)

Table 2: Simulation Results for SDF estimators

Note: In this table, we report the mean-squared errors (Column “MSE”) defined by 1
T

∑T
t=1 |m̂t − m̃t|2 for various

SDF estimates using SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches, respectively. The reported MSEs are

the sample average over 1,000 Monte Carlo repetitions and their standard errors are reported in the brackets. We

also report the mean and standard deviation of the estimated number of factors p̂ using the SPCA approach. The

true data-generating process, given by scenario f), has four factors, driven by RmRf, SMB, HML, and a weak factor

V , whereas we estimate the SDF using a vector of factor proxies, gt, that includes noisy versions of the four factors.

We compare three scenarios with T = 120, 180, and 240, where N = 2, 000 is fixed.
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Figure 2: Histogram of the Standardized Estimates in Simulations

Note: The left panels provide the histograms of the standardized SPCA estimates as in Algorithm 5 with asymptotic

standard errors given by Theorem 2, whereas the right panels provide those of the standardized PCA-based risk

premia estimates as in Algorithm 1. We simulate the model in scenario f) with N = 2, 000 and T = 240. The

number of Monte Carlo repetitions is 1,000.

T SPCA PCA rpPCA PLS Lasso Ridge Theoretical Value
120 0.186 0.159 0.214 0.155 0.133 0.126 0.245

(0.042) (0.045) (0.025) (0.045) (0.035) (0.044)

180 0.204 0.186 0.224 0.183 0.144 0.148 0.245
(0.032) (0.037) (0.017) (0.037) (0.035) (0.041)

240 0.214 0.202 0.229 0.201 0.160 0.164 0.245
(0.025) (0.029) (0.014) (0.029) (0.033) (0.035)

Table 3: Simulation Results for Out-of-Sample Sharpe Ratios of Optimal Portfolios

Note: In this table, we report the mean and standard deviation of the out-of-sample Sharpe ratios for various

optimal portfolios constructed by SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches, respectively. The true

data-generating process, given by scenario f), has four factors, driven by RmRf, SMB, HML, and a weak factor

V , whereas we estimate the SDF using a vector of factor proxies, gt, that includes noisy versions of the four

factors. The reported Sharpe ratios are the sample average over 1,000 Monte Carlo repetitions and their standard

errors are reported in the brackets. Column “‘Theoretical Value” provides the benchmark Sharpe ratio calculated

by bᵀE(r)/
√
b′Σb using true parameter values. We compare three scenarios with T = 120, 180, and 240, where

N = 2, 000 is fixed.
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propose two additional examples of applications of the SPCA methodology: the estimation of fund

alpha, and the de-noising of observable factors (similar in spirit to Daniel et al. (2020)).

4.1 Estimation of Risk Premia using SPCA

4.1.1 Data

Our main dataset is the Chen and Zimmermann (2020) data, which includes a large number of

equity portfolios sorted by characteristics. Specifically, we employ the April 2021 release of the data.

For each characteristic considered, Chen and Zimmermann (2020) construct a variable number of

portfolios (as many as are used in the original papers that introduced the anomaly in the literature:

typically 2, 5, or 10). Not all test assets are available for the entire time period; for our analysis,

we study the time period 1976m3 to 2020m12, for which 901 test portfolios are available without

missing values. To these sorted portfolios, we add 49 industry portfolios from Ken French’s website.

All of our results are at the monthly frequency.

We also consider an alternative dataset, proposed by Hou et al. (2020), that includes for the same

period 1672 portfolios sorted by characteristics without missing values. Hou et al. (2020) classify

their portfolios in six groups: momentum, value, investment, profitability, intangibles, frictions. The

two datasets of Hou et al. (2020) and Chen and Zimmermann (2020) are similar and yield comparable

results. Rather than producing two versions of each result using the two datasets, we choose Chen

and Zimmermann (2020) to be our main dataset and report the robustness of the main results using

the Hou et al. (2020) data (e.g., see section 4.1.6).

We study the risk premium of both tradable and nontradable factors, focusing on the best-known

ones from the literature. The tradable factors are: the market (in excess of the risk-free rate); size

(SMB); value (HML); profitability (RMW); investment (CMA); momentum (MOM); betting-against-

beta (BAB, from Frazzini and Pedersen (2014)); and quality-minus-junk (QMJ, from Asness et al.

(2013)). The nontradable factors are: the liquidity factor from Pástor and Stambaugh (2003); the

intermediary capital factor from He et al. (2017); AR(1) innovations in industrial production growth

(IP); VAR(1) innovations in the first three principal components of 279 macro-finance variables

from Ludvigson and Ng (2010); AR(1) innovations in the three uncertainty indexes of Jurado et al.

(2015), representing financial uncertainty, macroeconomic uncertainty, and real uncertainty; AR(1)

innovations in the term spread, the credit spread, and the unemployment rate; AR(1) innovations

in two sentiment indexes, one from Huang et al. (2015) and one from Baker and Wurgler (2006); oil

price growth AR(1) innovations; and consumption growth AR(1) innovations.21

21The market factor, SMB, HML, RMW, CMA and MOM are from Ken French’s website. BAB and QMJ are from
AQR’s website. The liquidity factor is from Lubos Pastor’s website. The intermediary capital factor is from Asaf
Manela’s website. The macro principal components and the uncertainty indexes are from Sydney Ludvigson’s website.
Industrial production, the credit spread, unemployment rate, the term spread, and oil price are from Fred-MD. The
Huang et al. (2015) sentiment index is from Huang’s webpage. The Baker and Wurgler (2006) sentiment index is from
Wurgler’s website. The consumption factor was built from NIPA data using the methodology of Schorfheide et al.
(2018).
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4.1.2 Choice of Tuning Parameters and Implementation Details

To apply SPCA to the estimation of the risk premia and to evaluate its out-of-sample performance,

we split the sample period into two equal-sized subsamples. The first half of the sample (training

period) is used to choose the tuning parameters and produce the risk premium estimate. The second

half of the sample (evaluation period) is used to evaluate the out-of-sample performance of the

estimator.

For ease of presentation, we choose to select only one tuning parameter, q, for each plausible

choice of p in our analysis. This approach reduces the number of tuning parameters to only one, and

also conveniently serves as a robustness check.

To determine reasonable candidates of p, we examine the factor structure of the panel of test

asset returns. Figure 3 provides the scree plot of the log of the first 25 eigenvalues. There appear

to be at least three strong factors. In addition, it appears that factors 4-11 might also be relevant,

though weaker. Motivated by the scree plot, in the empirical study below we highlight results for

p equal to 3, 5, 7, and 11, therefore showing the robustness of our results to a wide range of model

dimensions.

1 3 5 7 11 25
-6

-5

-4

-3

-2

-1

0

1

2

Figure 3: Logarithm of the First 25 Eigenvalues in the Chen-Zimmerman data

Note: The figure plots the logarithm of the first 25 eigenvalues of the data, obtained from Chen and Zimmermann

(2020) plus 49 industry portfolios, covering the period 1976-2020.

To choose the tuning parameter q, we adopt the same criterion as in simulations to evaluate the

estimator’s out-of-sample performance, namely, the hedging ability of the portfolio built by SPCA

for gt. More concretely, recall that all estimators of risk premia (e.g., the standard Fama-MacBeth

estimator, the PCA-based estimator of Giglio and Xiu (2021), and SPCA) recover the risk premium

of a factor gt by, implicitly or explicitly, building a tradable portfolio that isolates exposure to gt. We
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therefore compute the weights of the hedging portfolio built by SPCA using the training data only,

and calculate the mean-squared-error of hedging gt over the validation period using that portfolio

(effectively, the out-of-sample R2). We apply this criterion to pick q using cross-validation (CV)

within the training sample.

Our empirical analysis proceeds as follows. We first choose the number of factors p in the model,

based on the scree plot. Then, working exclusively in the training sample, we run 3-fold cross-

validation 100 times. In each cross-validation run, the tuning parameter q is chosen to maximize

the R2 of the hedging portfolio described above (requiring a minimum of 100 assets selected). Our

choice for q is the median across the 100 cross-validation runs, and the risk-premium estimate is

the one obtained under that choice of q; we also compute the weights of the hedging portfolio for

the factor. All the analysis described so far uses only data from the training period. Next, we

evaluate the out-of-sample performance of the estimator. Using the test asset returns from the

evaluation period, together with the portfolio weights estimated previously, we compute the return

of the hedging portfolio in the evaluation sample, and we calculate the fraction of the variance of gt

hedged by that portfolio, i.e., R2. This calculation does not re-estimate any parameter or coefficient

in the evaluation data, and is thus a fully out-of-sample R2.

4.1.3 Results: Estimation of Risk Premia and Out-of-sample Evaluation

We report the main empirical results in Table 4 and Figures 4 and 5. Each row of Table 4 corresponds

to one factor; the first 8 are tradable, the rest are nontradable. For tradable factors, the first two

columns show the average excess return of the factor, in the training sample and in the evaluation

samples, respectively; these numbers correspond to model-free estimates of the risk premia of tradable

factors, and can be directly compared with the model-based estimate obtained from SPCA.

The next columns of the table show the SPCA results in 4 groups of columns, corresponding to

the number of latent factors p = 3, 5, 7, and 11, respectively. For each choice of p, we report the

risk-premium estimate (obtained in the training sample, in bp per month), the number of assets

selected by SPCA (determined by q), and the out-of-sample R2 obtained in the evaluation period.

These estimates are obtained factor by factor: that is, in each case, gt contains one factor, and the

asset selection is driven by that factor only. In the last two columns of the table, we repeat the

exercise (with p = 11) but estimate all risk premia simultaneously: gt contains all the factors and

the selection of the assets is based on all of them simultaneously (so that d ≥ p as opposed to d = 1).

As discussed above, in this case, assets are sorted by the maximum of the correlation with any of

the factors in gt for the purpose of the selection step. In theory, both approaches are consistent.

In practice, estimating risk premia factor by factor has the advantage that the latent factors zoom

in immediately on the assets relevant for each factor. On the other hand, the joint estimation is

required to satisfy the more stringent assumptions for the CLT of Section 2.6 (because for the CLT

to work, we need to assume that gt has exposure to the entire SDF, while this is not required for the
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consistency of the estimates for an individual factor).

Consider first the market portfolio (first row of the table), a strong factor in this dataset. The

average return of the market in the training sample is 74bp per month, and 62bp in the evaluation

period. The SPCA estimates of the market risk premium, for the four chosen values of p, are 68,

70, 72, and 74bp per month, respectively, all close to the average excess return. To obtain these

estimates, SPCA estimates the latent factors picking, in each iteration, 100 assets out of the total of

950. Finally, the portfolio that SPCA builds to hedge the market achieves, not surprisingly, a very

high out-of-sample R2, above 0.98 for all p.

To better understand the out-of-sample performance of the estimator, we can examine the

heatmap in Figure 4, panel (a), which focuses on the market factor. In the heatmap, the x axis

reports the number of factors p; the y axis reports the number of test assets selected by SPCA (in

turn determined by q); for each combination of p and q, the heatmap reports the out-of-sample R2 of

SPCA, that is, the ability of the SPCA hedging portfolio to hedge gt in the evaluation sample. The

heatmap gives a complete description of the out-of-sample properties of SPCA as a function of the

two parameters p and q. Panel (a) shows that for all combinations of p and q (that is, throughout

the heatmap), out-of-sample R2s are overall very high for the market portfolio, above 85%. How-

ever, there appears to be a subset of the parameter space where performance is especially good:

combinations with high p and low q.

The red marks in the heatmap correspond to the values of q chosen by cross-validation (CV) in

the training sample (one for each value of p considered in the table: 3, 5, 7, 11). Ideally, the values

of q chosen by CV in the training sample would perform well out of sample: that is, the marks

should lie in areas in the heatmap with high out-of-sample R2s. This is indeed the case, as the

figure shows, indicating good out-of-sample performance of the SPCA estimator and of the tuning

parameter selection procedure.

Consider now another tradable factor, CMA, in the 5th row of Table 4. Like for the market, the

estimated risk premium for CMA is not statistically significantly different from the average excess

return of the factor. The number of assets selected by SPCA ranges between 100 and 350, and

the out-of-sample R2 is above 50%, indicating that our latent factor model is able to capture the

majority of the variation on CMA out of sample.22

The heatmap of the out-of-sample R2 for this factor is panel (e) of Figure 4. The figure shows

that for the case of CMA, different combinations of p and q yield very different hedging performance

out-of-sample, with R2s ranging from above 50% to below 0. It is especially important then that our

tuning parameter selection procedure yields good results out-of-sample. The red marks in the figure

22Given that the universe of test assets includes portfolios sorted by the same characteristics used to construct the
tradable factors like CMA, one may wonder why an out-of-sample R2 of 100% is not always obtained for tradable
factors. The reason is that SPCA is trying to build a hedging portfolio for the target gt with factors that must also
explain covariation among the universe of test assets. An advantage of our approach is that the hedging portfolio
is able to avoid fitting the “measurement error” component in gt, which, as discussed above, can be thought of as
non-diversified idiosyncratic error for tradable factors, or more literally measurement error for nontradables. We come
back to this point in section 4.2.2.
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(d) RMW
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(f) Momentum
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(h) QMJ

Figure 4: Out-of-sample R2 Heatmaps, Tradable Factors

Note: Each panel reports the out-of-sample R2 heatmap for a different factor. X-axis reports p. Y-axis reports

the number of assets selected, governed by q. The colors in the heatmap correspond to the out-of-sample R2 of the

SPCA-implied hedging portfolio for the factor gt; this R2 is computed entirely in the evaluation period. The red

marks are the points chosen by CV within the training sample.
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(b) Intermediary Capital
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Figure 5: Out-of-sample R2 Heatmaps, Nontradable Factors

Note: Same as figure 4, but for a subset of nontradable factors.
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show that this is indeed the case, especially for p = 5 and above.

In addition to showing the performance of SPCA, these heatmaps also allow us to compare the

results with the PCA-based estimator of Giglio and Xiu (2021). This is because the last row of the

heatmap corresponds to the case q = 1, that is, all assets are used to estimate the factors; but in

that case, SPCA coincides with PCA. Looking across the various panels of Figure 4, it is clear that

while for some factors (like the market) similar R2 can be obtained (for appropriate choices of p) by

PCA and SPCA, for other factors (like CMA and RMW) the out-of-sample R2s obtained by SPCA

are substantially higher than those obtainable by PCA, for any choice of p (graphically: the area

with the highest R2s is concentrated in the upper part of the heatmap, where q < 1). This shows

that the case of weak factors studied in this paper is relevant in empirical applications.

One additional advantage of SPCA that is clearly visible in the heatmaps is that SPCA often

manages to achieve the same (or better) R2 than PCA, while estimating a much smaller number of

factors. For example, consider the momentum factor in panel (f). The last row of the heatmap shows

that extracting factors via PCA achieves an R2 above 70% only once at least 6 factors are included;

SPCA gets there even with 3 factors. The reason is intuitive: SPCA focuses on the test assets that

are most informative about gt, and therefore can zoom in quickly on the most relevant latent factors.

This robustness to the number of factors is another advantage of SPCA that is relevant in practical

applications.

For nontradable factors, we cannot compare the risk premium estimate from SPCA with the

average excess return; the out-of-sample R2 therefore plays an even more important role in evaluating

the performance of the estimator. Note that it is well known in the literature that it is difficult to

hedge nontradable factors, like consumption or IP growth, in equity markets. We will however show

that SPCA gives a hedging portfolio that successfully hedges at least a part of the variation in many

nontradable factors.

Consider first the liquidity factor of Pástor and Stambaugh (2003), in row 9 of Table 4 and panel

(a) of Figure 5. The out-of-sample R2 achieved by SPCA is above 0 (up to 4%), and the estimated

risk premium appears to be high (between 70 and 95bp per month). Panel (a) of Figure 5 shows

how strongly this R2 depends on p and q. Among all combinations of parameters, a large fraction

actually delivers a negative out-of-sample R2. This simply stresses how difficult it is to hedge this

factor (like most macro factors) using equity markets, and emphasizes again the good performance

of SPCA.

The remainder of the table and of the two figures shows the results for all the other factors (for

reasons of space, the heatmaps only report a subset of the factors, while the table reports them all).

A few interesting patterns emerge. First, for tradable factors, SPCA gives risk premia estimates

that are always close to the model-free estimates obtained from average excess returns: the two are

never statistically different at the 5% level (with the only exception of QMJ with p = 3). Second,

confirming previous literature, nontradable factors are much harder to hedge than tradable factors;

in fact, for several factors – like the first two JLN macro factors – we do not get positive R2 at
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all. For those factors, there is so little exposure in equity returns that SPCA cannot build a proper

hedging portfolio. However, SPCA is able to hedge out of sample at least a part of the variation

of many factors, like the third LN factor, the three uncertainty measures, the liquidity factor and

the intermediary capital factor (for which it achieves an R2 above 50%). Third, the risk premia

estimated by SPCA – for those factors where SPCA can actually hedge some of the variation – make

economic sense: for example, the liquidity and intermediary factors command significantly positive

risk premia, whereas the three uncertainty measures command negative risk premia.

4.1.4 Asset Selection

To better understand how SPCA estimates the risk premium, we can study which assets are selected

when extracting the latent factors. Table 5 shows, for four representative factors (two tradables,

Momentum and RMW, and two nontradables, liquidity and intermediary capital), the top 10 test

assets (by absolute value of correlation) selected at each step. The names of the portfolios follow Chen

and Zimmermann (2020), with the numbers indicating the quintile or decile of the characteristic.

Consider Momentum, in the first set of rows of the table. To extract the first latent factor, SPCA

selects the assets with the highest correlation with the momentum factor. As the table shows, the

highest correlation is achieved by IntMom09 (an intermediate momentum portfolio). The correlation

is 0.44. The other assets with high correlation are all momentum-related, not surprisingly. In the next

columns, the table shows the assets selected at the second iteration of SPCA, after orthogonalizing

gt and the test assets to the first factor. Interestingly, the correlations among these residuals are

even higher, up to 0.79 for a different momentum sort (Mom12mOffSeason, momentum without the

seasonal component). This suggests that the first factor captures some of the asset variation that is

not exclusively specific to momentum (for example, part of the market factor), which the projection

step of SPCA removes. The residuals of the factor and the portfolio are then more correlated than

the original factors and portfolios after the influence of the first factor is eliminated. In any case,

momentum portfolios appear again at the second iteration, and, in part, at the third iteration.

The remainder of the table shows which assets are selected at the different iterations for RMW,

Liquidity, and Intermediary Capital. For RMW (a profitability factor), the assets selected are often

based on accounting measures, like asset growth, accruals, leverage, and operating profits. For

liquidity, portfolios sorted by payout yield and beta seem to play an important role in hedging

the risk. Finally, for intermediary capital, the portfolios selected by SPCA relate to idiosyncratic

volatility, liquidity, as well as two industry portfolios (not surprisingly, banking and financials).

The selection of particularly informative assets is the central mechanism through which SPCA

addresses the issue of weak factors. It is also responsible for the robustness of SPCA to the number

of factors used, as we noted above: given that SPCA zooms in on the most informative assets, it

can build a good hedging portfolio (and therefore a good estimate of the risk premium) even with a

small number of factors.
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Table 5: Assets Selected by SPCA

Factor #1 Factor #2 Factor #3

Asset | Corr | Asset | Corr | Asset | Corr |

Mom

IntMom09 0.44 Mom12mOffSeason02 0.79 Mom12m08 0.64
IntMom10 0.4 Mom12mOffSeason03 0.76 BMdec05 0.63
MomVol10 0.37 Size01 0.74 IntMom03 0.63
MomVol09 0.36 ResidualMomentum01 0.73 SP05 0.62
IntMom08 0.36 ResidualMomentum02 0.73 ShareIss5Y05 0.62
Mom12m10 0.36 NumEarnIncrease01 0.72 BookLeverage02 0.62
FirmAgeMom05 0.35 ShareIss5Y01 0.7 cfp05 0.61
Mom12mOffSeason10 0.34 MomVol03 0.69 BMdec04 0.61
Mom12mOffSeason09 0.33 CompEquIss01 0.68 ShareIss1Y05 0.6
Mom12m09 0.33 Mom12m03 0.68 LRreversal04 0.6

RMW

Industry:Gold 0.27 OperProf05 0.54 OperProfRD01 0.53
MomOffSeason10 0.27 OperProfRD09 0.53 RoE01 0.47
AccrualsBM02 0.27 CBOperProf09 0.5 GP01 0.45
DelEqu05 0.27 RoE05 0.49 CBOperProf02 0.45
LRreversal05 0.27 CBOperProf10 0.49 DolVol01 0.44
roaq01 0.26 Leverage02 0.49 OperProfRD02 0.44
AssetGrowth10 0.26 OperProfRD08 0.49 CBOperProf01 0.43
DolVol05 0.25 realestate03 0.49 OperProf01 0.41
ChEQ05 0.25 GP05 0.49 RoE02 0.4
Price05 0.25 GP04 0.48 VolMkt02 0.4

Liq.

InvGrowth06 0.47 InvGrowth06 0.28 InvGrowth06 0.3
NetPayoutYield07 0.47 BetaFP09 0.26 DolVol01 0.27
PayoutYield05 0.46 EntMult06 0.25 XFIN08 0.26
PayoutYield07 0.46 NetPayoutYield07 0.24 MeanRankRevGrowth01 0.26
BetaFP03 0.46 PayoutYield07 0.24 BetaFP03 0.25
DelLTI02 0.46 PayoutYield05 0.24 ShortInterest01 0.25
IntanBM03 0.46 cfp04 0.23 BetaFP09 0.24
EntMult06 0.46 BetaFP10 0.23 EntMult06 0.24
VolMkt04 0.46 XFIN08 0.23 PayoutYield07 0.24
PayoutYield06 0.46 ShortInterest01 0.22 ChEQ04 0.23

Interm.

Industry:Banks 0.9 Industry:banks 0.76 Industry:banks 0.7
Industry:Fin 0.84 Industry:Fin 0.56 Industry:Fin 0.47
IntMom05 0.8 DelEqu02 0.46 DebtIssuance02 0.38
EquityDuration04 0.8 grcapx3y02 0.44 NOA10 0.36
IdioVolAHT05 0.8 OScore02 0.43 ChAssetTurnover04 0.35
IdioVol3F05 0.79 GrLTNOA10 0.43 HerfAsset05 0.35
MaxRet08 0.79 ChAssetTurnover04 0.43 ShareRepurchase01 0.35
Illiquidity01 0.79 IntMom05 0.43 HerfBE05 0.35
IdioRisk05 0.79 IdioVolAHT05 0.42 DelEqu05 0.32
CBOperProf03 0.78 Tax01 0.42 Beta05 0.32

Note: For each factor (one per panel) the table shows the top-10 assets selected by SPCA in extracting the latent

factors. Assets are sorted by absolute value of the correlation. For each factor from 1 to 3, the table reports the names

of the portfolios selected, and the absolute value of the correlation with gt. Naming convention for the portfolios

follows Chen and Zimmermann (2020).
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4.1.5 SPCA and the Universe of Test Assets

The fact that SPCA estimates the latent factors using the most informative assets also makes it

particularly robust to the universe of test assets used in the estimation. We explore this here in

detail by considering three factors, value, momentum, and profitability, for which we can easily

identify test assets that are informative about them. Specifically, we consider (for this section only)

the dataset from Hou et al. (2020), which, as discussed in section 4.1.1, collects test portfolios by

characteristics in six groups, among which one is labeled “value vs. growth”, one “momentum”,

and one “profitability”. We can then ask: how does SPCA perform in estimating the value risk

premium if we exclude the value and growth sorts from the universe? Similarly, how does it perform

in estimating the momentum and profitability risk premium if momentum and profitability test

assets, respectively, are removed? When the corresponding sorted portfolios are removed, the factors

naturally become weaker. However, we should expect SPCA to still perform well, at least as long as

sufficient exposure to the factor is present in the remaining test assets. On the contrary, we expect

PCA’s performance to deteriorate more sharply.

Figure 6 reports the out-of-sample time-series R2 heatmap for the three factors: value, momentum

and profitability. On the left of each row we can see the R2 obtained using all assets from the Hou

et al. (2020) dataset; on the right we can see the results excluding the test assets corresponding to

each factor. By looking at the last row of each heatmap, which corresponds to the PCA estimate

with no selection, it is clear that the performance of PCA deteriorates significantly when the most

informative assets are removed. Consider for example the case p = 9. For value, the PCA estimator’s

out-of-sample R2 decreases from 64% to 47%, as value and growth assets are removed; SPCA’s R2

decreases by substantially less, from 74% to 62%. In the case of momentum, the R2 decreases from

76% to 48% for PCA, but only from 86% to 77% for SPCA. Finally, for profitability, the R2 decreases

from 41% to 14% for PCA, but only from 71% to 60% for SPCA. In all cases, the SPCA estimator

deteriorates little when the relative sorts are removed and the factor is made weaker, whereas the

deterioration in performance is much larger for PCA.

To conclude, these empirical results mirror the simulations in section 3, that show SPCA per-

forming well even when the factor of interest is weak in the universe of test assets considered. This

is important in practical applications: given a certain factor gt, we do not know ex ante if many or

just a few assets are exposed to that factor. SPCA builds a good hedging portfolio and provides a

consistent estimate of the risk premium in either case.

4.1.6 Robustness

We conclude by reporting in Table 6 a version of Table 4 obtained using the Hou et al. (2020) dataset

instead of the Chen and Zimmermann (2020) data. The results are qualitatively similar to the ones

obtained using the Chen and Zimmermann (2020) data, and, with a few exceptions, not statistically

different. This confirms that, broadly, the results do not depend on using one particular universe of
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(b) Value w/o value vs. growth test assets
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(c) Momentum
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(d) Momentum w/o momentum test assets
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(e) Profitability
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Figure 6: Varying the universe of test assets

Note: For value, momentum and RMW (profitability), the figure shows the out-of-sample R2 heatmaps when all the

test assets from Hou et al. (2020) are used in the estimation (left), and when value portfolios, momentum portfolios,

or profitability portfolios, respectively, are excluded (right).

test assets.

4.2 Other Applications

In this section we study two additional applications of SPCA: the estimation of the alpha of a fund

using latent factors to capture risk exposures, and using it to de-noise factor returns.
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4.2.1 Estimating Buffett’s alpha using Latent Factors

When evaluating the performance of money managers, a crucial step is the choice of the benchmark

against which the alpha of the fund is calculated. The benchmark model is often a standard tradable

factor model like the Fama-French 3 or 5 factor model. How this benchmark should be selected is not

entirely clear a priori; different benchmarks lead to different conclusions about the ability of managers

to generate alpha. The asset pricing literature has proposed two approaches to address this issue that

do not require arbitrarily choosing a benchmark: one approach is to use machine learning methods

to select an optimal, parsimonious benchmark, chosen from a large set of candidate benchmarks in

the “factor zoo” (Feng et al. (2020)). Another approach, proposed by Connor and Korajczyk (1986),

uses latent factors to extract the relevant benchmarks, thus avoiding taking a stand on the identity

of the factors (see also Giglio et al. (2020)).

SPCA offers a natural way to expand the second approach: by using a fund return as gt, SPCA

allows us to extract from the panel of returns all and only those factors that are informative about

the fund’s risk exposures (and therefore compute the alpha after accounting for all risk exposures,

including those to weak factors). In this section, we illustrate this possibility by applying SPCA to

understand the alpha of Berkshire Hathaway, similar to Frazzini et al. (2013).

One of the headline results in Frazzini et al. (2013) is that Berhshire Hathaway’s returns display

large alpha (13.4% annualized, statistically significant) when the fund’s return is benchmarked to the

market factor alone. However, the alpha becomes much smaller (5.7%) and statistically insignificant

when the benchmark model also includes SMB, HML, Momentum, BAB, and QMJ. Note that all

the factor exposures together capture 29% of the time-series variation of the fund return.

We apply SPCA using the same data as in our main analysis (Chen-Zimmerman data plus 49

industry portfolios). The first factor in gt will be Buffett’s return; we add to the vector of factors

gt all the other factors in our dataset, in order to get correct asymptotic standard errors. All the

result here are in-sample, and we select the tuning parameter q by 3-fold cross-validation in the full

sample.

The results are remarkably similar to those of Frazzini et al. (2013), with the main difference

that we do not need to specify the identity of the factors. Specifically, when only one latent factor

is extracted (p = 1), we obtain an alpha of 13%, with a t-stat of 4. The one-factor benchmark only

explains 19% of the variation in the fund’s return. As more latent factors are included by SPCA,

the R2 increases and the alpha decreases. Once p = 6, the results effectively coincide with the ones

of Frazzini et al. (2013): the time-series R2 reaches 30% and the alpha drops to 6.1%, statistically

insignificant (t-stat of 1.82).

The assets selected by SPCA give us some insights on what are the main risk exposures that

determine Berkshire Hathaway’s risk premium. Specifically, among the portfolios most correlated

with it, a large role is played by idiosyncratic volatility sorts, followed by a variety of portfolios

related to profitability and leverage.
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The results confirm the main insight of Frazzini et al. (2013): that Berkshire Hathaway’s return

can be attributed in large part to exposure to priced factors; we however obtain this result without

having to take a stand on the entire benchmark model, and relying only on SPCA to extract the

latent factors. We can however gain some insights on the drivers of the risk premium by studying

the assets selected by SPCA to build the hedging portfolio.

4.2.2 De-noising Factor Models

In a recent paper, Daniel et al. (2020) argue that the way standard factors are constructed based on

characteristics sorts could be suboptimal as the portfolios used as factors may be contaminated by

exposure to unpriced factors. They propose a procedure to remove the unpriced risk from observed

factors, and produce a version of the Fama-French 5-factor model that achieves a higher Sharpe ratio

and has better pricing ability for a cross-section of specifically-sorted test portfolios.

As discussed in the previous sections, SPCA constructs a hedging portfolio for any (tradable or

nontradable) factor gt that is built to capture the fundamental factors in the panel of test assets.

By eliminating “measurement error” from gt, SPCA effectively helps de-noise the factor from id-

iosyncratic (and therefore plausibly unpriced) risk. Similar in spirit to Daniel et al. (2020), we can

use SPCA to strip out measurement error and build a de-noised version of the 5 factors in the FF5

model.

A natural exercise is then to compare the pricing ability for the panel of test assets of the original

Fama-French 5-factor model, the de-noised model of Daniel et al. (2020), and the Fama-French 5

factors de-noised via SPCA. Table 7 reports the average absolute alphas of these models (for SPCA,

we consider different values of p to de-noise FF5 factors). The left set of columns reports the results

using the Chen and Zimmermann (2020) data (CZ), the right column using the Hou et al. (2020)

data (HXZ). For each set of results, we consider two versions of each model, restricting the zero-beta

rate to be equal to the Tbill rate (left column), or with a free zero-beta rate (right column).

The table shows that for both the version with and without the zero-beta rate, SPCA produces

an improvement over both the Fama-French 5-factor model and the Daniel et al. (2020) model,

suggesting that removing the measurement error from the factor helps isolate the priced component

of the factors.23 The magnitude of the improvement of SPCA is as large as that by the Daniel et al.

(2020) model.

5 Conclusions

The choice of test assets plays a fundamental role in empirical asset pricing tests. The recent explosion

of anomaly discoveries and related characteristics in the empirical literature has provided researchers

with a large universe of potential test assets to choose from. On the one hand, the availability of so

23The assumptions on the zero-beta rate have a first-order effect only on the Daniel et al. (2020) results.
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Table 7: Average absolute alphas across models

CZ HXZ

no zero-beta w/ zero-beta no zero-beta w/ zero-beta

FF5 19 19 12 12
Daniel et al. (2020) 39 17 35 13
SPCA (5 factors) 20 20 10 10
SPCA (7 factors) 17 17 11 11
SPCA (11 factors) 17 17 11 11

Note: The table reports the average absolute alpha, in basis points per month, among the Chen and Zimmermann

(2020) test assets (left) and the Hou et al. (2020) test assets (right), for different models: the Fama-French 5-factor

model, the model of Daniel et al. (2020), and different versions of SPCA with different p. We consider two versions

of each model, restricting the zero-beta rate to be equal to the Tbill rate (left), or with a free zero-beta rate (right).

many different characteristics gives us hope that the returns of these portfolios can help us uncover

and identify the pricing of various dimensions of risk, including those that are not well captured by

standard cross-sections. On the other hand, the large dimensionality goes hand in hand with the

weak factor issue: a factor may well be captured by some assets within the large cross-section, but

if most assets do not have exposure to that factor, it will be weak and inference will be incorrect.

Traditional methodologies to estimate risk premia take the cross-section of assets as given. In

this paper, we present a new methodology, SPCA, that instead actively selects assets in order to

estimate risk premia of factors of interest, whether they are strong or weak, and at the same time

addresses the issue of potentially omitted factors, again regardless of whether they are strong or

weak.

The paper confirms the performance of SPCA in a variety of simulations, and explores different

empirical applications of SPCA to risk premia estimation, fund performance evaluation, and factor

de-noising. Overall, the simulations and empirical analysis highlight a few important features of

SPCA, that are particularly relevant for empirical applications: its robustness to the number of

factors used, to the universe of test assets employed in the estimation, and, most importantly, to the

strength of the factors in the data.

While the road to a full understanding of risk and risk premia in financial markets is still long,

we believe that addressing systematically the issue of weak factors in empirical asset pricing is an

important step forward, that opens the door to the study of factors that, while important to investors,

may be not pervasive in the standard cross-sections.
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A Model Assumptions

To derive the asymptotic properties of the SPCA and alternative estimators, we need the following

high-level assumptions, which can be easily verified by standard and more primitive assumptions.

We start with assumptions that characterize the DGP of returns and factor proxies.

Assumption A.1. The factor innovation V satisfies:

‖v̄‖ .p T
−1/2,

∥∥T−1V V ᵀ − Σv

∥∥ .p T
−1/2, ‖V ‖MAX .p

√
log T ,

where Σv ∈ Rp×p is a positive-definite matrix with λp (Σv) & 1 and λ1 (Σv) . 1.

Assumption A.2. The residual innovation Z satisfies:

‖z̄‖ .p T
−1/2,

∥∥T−1ZZᵀ − Σz

∥∥ .p T
−1/2, ‖Z‖MAX .p

√
log T .

where Σz ∈ Rd×d is a positive-definite matrix with λd (Σz) & 1 and λ1 (Σz) . 1. In addition,

‖ZV ᵀ‖ .p T
1/2.

Assumptions A.1 and A.2 impose rather weak conditions on the time series behavior of the factors

and measurement error. Since vt and zt have a finite cross-sectional dimension, both assumptions

hold if these processes are stationary, strong mixing, and satisfy some moment conditions.

Assumption A.3. The factor loading matrix β satisfies

‖β‖MAX . 1, λp(β
ᵀ
[I0]β[I0]) & N0,

for some index set I0, where N0 = |I0|.

Assumption A.3 implies that there exists a subset of test assets, within which all latent factors

are strong. Because the number of factors is finite, requiring all factors to be strong within a common

index set I0 is equivalent to requiring each factor to be strong in its own index set. One direction of

the equivalence is trivial. To prove the other direction, suppose that for factor i, there exists an index

set, Ii, in which this factor is strong, that is, λ1(βᵀ[Ii]β[Ii]) & |Ii|. Then we can find k? := mink |Ik|,
and build up I0 from Ik∗ (so that |I0| ≥ |Ik? |) by adding randomly selected |Ik? | number of assets

from each Ij , j = 1, 2, . . . , p, j 6= k?. The resulting index set I0 contains at most p× |Ik? | number of

test assets, barring from repeated counts. We thereby construct a common index set such that all

factors are strong within this set.

Next, we need the following moment conditions.

Assumption A.4. The idiosyncratic component U satisfies:

‖U‖MAX .p (log T )1/2 + (logN)1/2, ‖ū‖MAX .p T
−1/2(logN)1/2.
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In addition, for any non-random subset I ⊂ [N ],

∥∥U[I]

∥∥ .p |I|1/2 + T 1/2,
∥∥ū[I]

∥∥ .p |I|1/2T−1/2.

Assumption A.4 imposes restrictions on the time-series dependence and heteroskedasticity of ut.

The first two inequalities are results of some large deviation theorem, see, e.g., Fan et al. (2011).

The last inequality can be shown by random matrix theory, see Bai and Silverstein (2009), if ut is

i.i.d. both in time and in the cross-section.

Assumption A.5. For any non-random subset I ⊂ [N ], the factor loading β[I] and the idiosyncratic

error U[I] satisfy the following conditions:

(i)
∥∥∥(βᵀ[I]β[I])

−1/2βᵀ[I]U[I]

∥∥∥ .p T
1/2.

(ii)
∥∥∥(βᵀ[I]β[I])

−1/2βᵀ[I]U[I]ιT

∥∥∥ .p T
1/2.

If βᵀ[I]β[I] is singular, we need replace the matrix inverse above by the Moore-Penrose inverse.

Assumption A.6. The following conditions hold for U , V , β, and any non-random subset I ⊂ [N ]:

(i)
∥∥U[I]V

ᵀ
∥∥ .p |I|1/2T 1/2,

∥∥U[I]V
ᵀ
∥∥

MAX
.p (logN)1/2T 1/2.

(ii)
∥∥∥(βᵀ[I]β[I])

−1/2βᵀ[I]U[I]V
ᵀ
∥∥∥ .p T

1/2.

Assumption A.7. The following conditions hold for U , Z, β, and any non-random subset I ⊂ [N ]:

(i)
∥∥U[I]Z

ᵀ
∥∥ .p |I|1/2T 1/2,

∥∥U[I]Z
ᵀ
∥∥

MAX
.p (logN)1/2T 1/2.

(ii)
∥∥∥(βᵀ[I]β[I])

−1/2βᵀ[I]U[I]Z
ᵀ
∥∥∥ .p T

1/2.

Assumptions A.5 - A.7 resemble Assumptions A.7, A.9, and A.10 of Giglio and Xiu (2021), except

that here we impose their stronger versions which hold for any non-random subset I ⊂ [N ]. Of course,

these two sets of assumptions are equivalent if ut is identically distributed along the cross-sectional

dimension.

In the main text, we denote the selected subsets in the SPCA procedure as Îk, k = 1, 2, . . .. We

now define their population counterparts. For simplicity, we consider the case Σv = Ip here. In

general case, replace β and η by β
′

= βΣ
1/2
v and η

′
= ηΣ

1/2
v in the following definiiton. In detail, we

start with a
(1)
i :=

∥∥β[i]η
ᵀ
∥∥

MAX
and define I1 := {a(1)

i ≥ c
(1)
qN}, where c

(1)
qN is the (qN)th largest value in{

a
(1)
i

}
i=1,...,N

. Then, we denote the largest right singular vector of β(1) := β[I1] by b1. For k > 1, we

obtain a
(k)
i :=

∥∥∥β[i]

∏
j<kMbjη

ᵀ
∥∥∥

MAX
, Ik := {a(k)

i ≥ c
(k)
qN} and bk is the largest right singular vector

of β(k) := β[Ik]

∏
j<kMbj . This procedure is stopped at step p̃ (for some p̃ not necessarily equal to

p) if c
(p̃+1)
qN < c. In a nutshell, Ik’s are what we will select if we do SPCA directly on β ∈ RN×p and
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η ∈ Rd×p, while Îk’s are obtained by SPCA on R̄ ∈ RN×T and Ḡ ∈ Rd×T . We need the following

assumption to guarantee the selection consistency, that is, P(Îk = Ik)→ 1 for any 1 ≤ k ≤ p̃.

Assumption A.8. We assume that β(k), a
(k)
i and c in the above procedure satisfy:

(i) σ1(β(k)) and σ2(β(k)) are distinct in the sense that there exists a constant δ > 0 such that

σ2(β(k)) ≤ (1 + δ)−1σ1(β(k)).

(ii) c
(k)
qN and c

(k)
qN+1 are distinct in the sense that there exists a constant δ > 0 such that

c
(k)
qN+1 ≤ (1 + δ)−1c

(k)
qN ,

where c
(k)
qN and c

(k)
qN+1 are the (qN)th and (qN+1)th largest value in

{
a

(k)
i

}
i=1,...,N

, respectively.

(iii) c
(p̃+1)
qN and c are distinct in the sense that there exists a constant δ > 0 such that

c
(p̃+1)
qN ≤ (1 + δ)−1c.

Assumption A.8 requires that these singular values are distinguishable, so that their (relative)

differences will not vanish asymptotically. This assumption is rather mild, despite not being very

explicit.

Assumption A.9. As T →∞, the following joint central limit theorem holds:

T 1/2

(
T−1vec(ZV ᵀ)

v̄

)
d−→ N

((
0

0

)
,

(
Π11 Π12

Πᵀ
12 Π22

))
,

where Π11, Π12, Π22 are dp× dp, dp× p, and p× p matrices, respectively, defined as:

Π11 = lim
T→∞

1

T
E (vec(ZV ᵀ)vec(ZV ᵀ)ᵀ) ,

Π12 = lim
T→∞

1

T
E
(
vec(ZV ᵀ)ιᵀTV

ᵀ) ,
Π22 = lim

T→∞

1

T
E
(
V ιT ι

ᵀ
TV

ᵀ) .
Assumption A.9 characterizes the joint asymptotic distribution of ZV ᵀ and V ιT . Since the

dimensions of these random processes are finite, this CLT is a fairly standard result of a central limit

theory for mixing processes.

In the same vein, we make an assumption on the central limit result between ZV ᵀ and ZιT ,

which we use for inference on αg.
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Assumption A.10. As T →∞, the following joint central limit theorem holds:

T 1/2

(
T−1vec(ZV ᵀ)

z̄

)
d−→ N

((
0

0

)
,

(
Π11 Π13

Πᵀ
13 Π33

))
,

where Π13 and Π33 are dp× d, and d× d matrices, respectively, defined as:

Π13 = lim
T→∞

1

T
E
(
vec(ZV ᵀ)ιᵀTZ

ᵀ) ,
Π33 = lim

T→∞

1

T
E
(
ZιT ι

ᵀ
TZ

ᵀ) .
Blow we introduce assumptions needed for the SDF estimation. Assumption A.11 ensures that

the SDF concept is well defined. Assumption A.12 again can be shown by some large deviation result

and certain central limit theorem.

Assumption A.11. Suppose that vt and ut are stationary time series independent of β, and that

Σv = Cov(vt) and Σu = Cov(ut) satisfy λmin(Σv) & 1 and λmax(Σu) . 1. Consequently, Σ =

Cov(rt) = βΣvβ
ᵀ + Σu.

Assumption A.12. The time series rt and the SDF defined by mt = 1 − bᵀ(rt − E(r)) with b =

Σ−1E(rt) satisfy:

(1)

∥∥∥∥∥T−1
T∑
t=1

(rt − r̄t)(mt − m̄t)− Cov(rt,mt)

∥∥∥∥∥
MAX

.p (logN)1/2T−1/2.

(2)

∥∥∥∥∥T−1
T∑
t=1

(rt − r̄t)(rt − r̄t)ᵀ − Cov(rt)

∥∥∥∥∥
MAX

.p (logN)1/2T−1/2.

(3)

∣∣∣∣∣T−1
T∑
t=1

mt − E(mt)

∣∣∣∣∣ .p T
−1/2.

(4)

∥∥∥∥∥T−1
T∑
t=1

rt − E(rt)

∥∥∥∥∥
MAX

.p (logN)1/2T−1/2.

Finally, we need the following assumption for establishing the convergence of the ridge-based

SDF estimator. It ensures that all eigenvalues of βΣvβ
ᵀ are well separated. This assumption shares

the spirit with Assumption A.8. A similar assumption has been adopted by, e.g., Wang and Fan

(2017).

Assumption A.13. The eigenvalues of βΣvβ
ᵀ are separated in the sense that

(λj − λj+1)/λj ≥ δ

for some constant δ > 0, where λj := λj(βΣvβ
ᵀ) is the jth eigenvalue of βΣvβ

ᵀ.
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B Mathematical Proofs

B.1 Proof of Proposition 1

Proof. Note that for any orthogonal matrix Γ ∈ RN×N , the estimators based on PCA, PLS and

Ridge on R′ = ΓR are the same as those based on R. Thus, without loss of generality, we can

assume β = (λ1/2, 0, · · · , 0)ᵀ, where λ = ‖β‖2. The same simplifying assumption is adopted in the

proofs of Propositions 1, 2, and 3. Also, since zt = 0, Ḡ = ηV̄ .

We start with γ̂PCAg . We write R̄ in the following form:

R̄ = βV̄ + Ū =

(√
λV̄ + Ū1

Ū2

)
, (B.1)

where Ū1 is the first row of Ū and Ū2 contains the remaining rows. Correspondingly, we write the

largest left singular vector of R̄ as ς = (ς1, ς
ᵀ
2 )ᵀ, where ς1 is the first element of ς and ς2 is a vector of

the remaining N − 1 entries of ς. Recall that in Algorithm 1, we denote ξ and ς as the largest right

and left singular vectors of R̄ with the singular value
√
T λ̂, so that by simple algebra we have

ς1 =
(
√
λV̄ + Ū1)ξ√

T λ̂
, ς2 =

Ū2ξ√
T λ̂

. (B.2)

Since the entries of U and V are i.i.d N (0, 1), we have

|T−1V̄ V̄ ᵀ − 1| = |T−1V (IT − T−1ιT ι
ᵀ
T )V ᵀ − 1| ≤ |T−1V V ᵀ − 1|+ |v̄|2 .p T

−1/2,

where we use large deviation results |T−1V V ᵀ − 1| .p T
−1/2 and |v̄| .P T

−1/2 in the last equation.

This equation also implies that
∥∥V̄ ∥∥−√T .p 1.

Similarly, we can get |T−1Ū1Ū
ᵀ
1 − 1| .p T

−1/2 and
∥∥Ū1

∥∥−√T .p 1.

In addition, by Lemma A.1 in Wang and Fan (2017), we have
∥∥N−1UᵀU − IT

∥∥ .p

√
T/N , which

leads to

∥∥N−1ŪᵀŪ − (IT − T−1ιT ι
ᵀ
T )
∥∥ =

∥∥(IT − T−1ιT ι
ᵀ
T )(N−1UᵀU − IT )(IT − T−1ιT ι

ᵀ
T )
∥∥ .p

√
T/N.

Next, by direct calculation using the above inequalities we obtain∥∥∥∥ V̄ ᵀŪ1 + Ūᵀ
1 V̄

T
√
λ

+
ŪᵀŪ −N(IT − T−1ιT ι

ᵀ
T )

Tλ

∥∥∥∥ .p
1√
λ

+

√
NT

Tλ
.p

1√
λ
.

Together with (B.1), we have∥∥∥∥R̄ᵀR̄

Tλ
− V̄ ᵀV̄

T
−
N(IT − T−1ιT ι

ᵀ
T )

Tλ

∥∥∥∥ .p
1√
λ
. (B.3)
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Because of this result, to study the eigenstructure of R̄ᵀR̄/(Tλ), we need analyze the eigenstructure

of

M :=
V̄ ᵀV̄

T
+
N(IT − T−1ιT ι

ᵀ
T )

Tλ
=
V̄ ᵀV̄

T
+ B̃(IT − T−1ιT ι

ᵀ
T ),

where B̃ = N/(Tλ) and the assumption of the proposition implies that B̃ → B for a constant B.

Note that V̄ ιT = 0, the eigenvalues of M can be explicitly given by:

λi =


T−1V̄ V̄ ᵀ + B̃ i = 1;

B̃ 2 ≤ i ≤ T − 1;

0 i = T.

, (B.4)

and the first eigenvector is V̄ ᵀ/
∥∥V̄ ᵀ

∥∥. Since the largest eigenvalue of R̄ᵀR̄/(Tλ) is λ̂/λ with its

corresponding eigenvector ξ, Weyl’s theorem yields that

λ̂

λ
=
V̄ V̄ ᵀ

T
+ B̃ +Op

(
1√
λ

)
= 1 + B̃ +Op

(
1√
λ

+
1√
T

)
, (B.5)

and the sin-theta theorem in Davis and Kahan (1970) implies that

‖PV̄ ᵀ − Pξ‖ =
∥∥V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ − ξξᵀ

∥∥ .p
1√
λ
, (B.6)

which implies that (V̄ V̄ )−1(V̄ ξ)2 = ξᵀV̄ ᵀ(V̄ V̄ )−1V̄ ξ = 1 + Op(λ
−1/2 + T−1/2). Together with

|T−1V̄ V̄ ᵀ − 1| . T−1/2, we have

|V̄ ξ|√
T

= 1 +Op

(
1√
λ

+
1√
T

)
. (B.7)

It is easy to observe that the sign of ξ plays no role in the estimator γ̂PCAg , we can choose ξ such

that

V̄ ξ√
T

= 1 +Op

(
1√
λ

+
1√
T

)
. (B.8)

Recall that the risk premium estimator is γ̂PCAg = η̂γ̂, where

η̂ =
Ḡξ√
T

and γ̂ =
ςᵀr̄√
λ̂
. (B.9)

Using Ḡ = ηV̄ and (B.8), we have

η̂ = η +Op

(
1√
λ

+
1√
T

)
. (B.10)
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Write

γ̂ =
ςᵀr̄√
λ̂

=
ςᵀβ(γ + v̄)√

λ̂
+
ςᵀū√
λ̂

=

√
λς1√
λ̂

(γ + v̄) +
ςᵀū√
λ̂
, (B.11)

where we use β = (
√
λ, 0, . . . , 0)ᵀ in the last step. Now we analyze the two terms on the right hand

side of (B.11) one by one. For the first term, using (B.2), we have

√
λς1√
λ̂

=
λ

λ̂

(V̄ + λ−1/2Ū1)ξ√
T

=
λ

λ̂

(
V̄ ξ√
T

+
Ū1ξ√
Tλ

)
.

Using (B.5) and (B.8) and
∥∥Ū1

∥∥ .p

√
T , it follows that

√
λς1√
λ̂

=
1

1 + B̃
+Op

(
1√
λ

+
1√
T

)
. (B.12)

For the second term in (B.11), using (B.2) again, we can write

ςᵀū√
λ̂

=
ς1U1ιT

T
√
λ̂

+
ςᵀ2U2ιT

T
√
λ̂

=
ς1U1ιT

T
√
λ̂

+
ξᵀ(IT − T−1ιT ι

ᵀ
T )Uᵀ

2U2ιT

T 3/2λ̂
. (B.13)

The condition that entries of U are independent N (0, 1) implies that ‖U1ιT ‖ .p

√
T , with λ̂/λ

p−→
1 +B as shown in (B.5), the first term in (B.13) is of order Op(T

−1/2λ−1/2). For the second term in

(B.13), using
∥∥(N − 1)−1Uᵀ

2U2 − IT
∥∥ .p

√
T/N , we have

|
ξᵀ(IT − T−1ιT ι

ᵀ
T )Uᵀ

2U2ιT

T 3/2λ̂
| ≤|

(N − 1)ξᵀ(IT − T−1ιT ι
ᵀ
T )ιT

T 3/2λ̂
|+ N − 1

T λ̂

∥∥(N − 1)−1Uᵀ
2U2 − IT

∥∥
=
N − 1

T λ̂

∥∥(N − 1)−1Uᵀ
2U2 − IT

∥∥ .p
1√
λ
,

which leads to |λ̂−1/2ςᵀū| .p λ
−1/2. Plugging this and (B.12) into (B.11), we obtain

γ̂ =
ςᵀr̄√
λ̂

=
γ

1 + B̃
+Op

(
1√
λ

+
1√
T

)
, (B.14)

and thus γ̂PCAg
p−→ (1 +B)−1ηγ by (B.10), (B.14) and B̃ → B.

B.2 Proof of Proposition 2

Proof. Recall that in Section 2.3.2, we have

γ̂PLSg =
∥∥ḠR̄ᵀR̄

∥∥−2
ḠR̄ᵀR̄ḠᵀḠR̄ᵀr̄. (B.15)
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We analyze
∥∥ḠR̄ᵀR̄

∥∥, ḠR̄ᵀR̄Ḡᵀ and ḠR̄ᵀr̄ separately. Recall that from (B.3), we have∥∥∥∥R̄ᵀR̄

Tλ
− V̄ ᵀV̄

T
− B̃(IT − T−1ιT ι

ᵀ
T )

∥∥∥∥ .p
1√
λ
,

where B̃ = N/(Tλ) satisfies B̃ → B. Together with Ḡ = ηV̄ and
∥∥Ḡ∥∥ .p

√
T , we have

1

Tλ
√
T

∥∥ḠR̄ᵀR̄
∥∥ =

1√
T

∥∥∥∥Ḡ( V̄ ᵀV̄

T
+ B̃(IT − T−1ιT ι

ᵀ
T )

)∥∥∥∥+Op

(
1√
λ

)
=

η√
T

∥∥∥∥ V̄ V̄ ᵀV̄

T
+ B̃V̄

∥∥∥∥+Op

(
1√
λ

)
p−→ η(1 +B), (B.16)

where we use |T−1V̄ V̄ ᵀ−1| .p T
−1/2 and

∥∥V̄ ∥∥−√T .p 1 in the last equation. For the same reason,

by direct calculation we have

1

T 2λ
ḠR̄ᵀR̄Ḡᵀ =

1

T
Ḡ

(
V̄ ᵀV̄

T
+ B̃(IT − T−1ιT ι

ᵀ
T )

)
Ḡᵀ +Op

(
1√
λ

)
= η2 V̄ V̄

ᵀV̄ V̄ ᵀ

T 2
+ η2B̃

V̄ V̄ ᵀ

T
+Op

(
1√
λ

)
p−→ η2(1 +B). (B.17)

Next, we write

1

Tλ
ḠR̄ᵀr̄ =

1

Tλ
ḠR̄ᵀβ(γ + v̄) +

1

Tλ
ḠR̄ᵀū. (B.18)

We analyze these two terms in (B.18) separately. For the first term, we can write R̄ in the form of

(B.1) as in the proof of Proposition 1. Then, using
∥∥Ū1

∥∥ .p

√
T we have

1

Tλ
ḠR̄ᵀβ = η

V̄ V̄ ᵀ

T
+ η

V̄ Ūᵀ
1

T
√
λ

= η
V̄ V̄ ᵀ

T
+Op

(
1√
λ

)
. (B.19)

For the second term in (B.18), we have

1

Tλ
ḠR̄ᵀū = η

1

T 2
√
λ
V̄ V̄ ᵀŪ1ιT + η

1

T 2λ
V̄ ŪᵀUιT = η

1√
λ

V̄ V̄ ᵀ

T

Ū1ιT
T

+ η
1

T 2λ
V̄ UᵀUιT

= Op

(
1√
Tλ

)
+ η

N

T 2λ
V̄
(
N−1UᵀU − IT

)
ιT + η

N

T 2λ
V̄ ιT = Op

(
1√
Tλ

)
+Op

(
1√
λ

)
,

(B.20)

where we use
∥∥N−1UᵀU − IT

∥∥ .p

√
T/N and V̄ ιT = 0 in the last equation. Plugging (B.19) and

(B.20) into (B.18), we have

1

Tλ
ḠR̄ᵀr̄ = η

V̄ V̄ ᵀ

T
(γ + v̄) +Op

(
1√
λ

)
p−→ ηγ. (B.21)

9



Plug (B.16), (B.17), (B.21) into (B.15), we have

γ̂PLSg
p−→ 1

η2(1 +B)2
η2(1 +B)ηγ =

1

1 +B
ηγ.

B.3 Proof of Proposition 3

Proof. Since Rank(R̄) ≤ min{N,T − 1}, and the assumptions of the proposition imply that N/T →
∞, we thereby have a condensed SVD of R̄ as

R̄ =
√
T (ς, ς∗)Λ̂

1/2(ξ, ξ∗)
ᵀ =
√
Tςλ̂1/2ξᵀ +

√
Tς∗Λ̂

1/2
∗ ξᵀ∗ ,

where Λ̂1/2 is the diagonal matrix of T − 1 singular values, ς, ξ are the left and right singular

vectors corresponding to the largest singular value of T−1/2R̄, which is denoted by λ̂1/2. In addition,

ς∗ ∈ RN×(T−2) and ξ∗ ∈ RT×(T−2) are the singular vectors corresponding to the rest T − 2 nonzero

singular values, Λ̂
1/2
∗ ∈ R(T−2)×(T−2). By direct calculation, we have

√
TR̄ᵀ (R̄R̄ᵀ + µI

)−1
= (ξ, ξ∗)Λ̂

1/2(Λ̂ + T−1µI)−1(ς, ς∗)
ᵀ =

λ̂1/2

λ̂+ T−1µ
ξςᵀ + ξ∗Λ̂

1/2
∗

(
Λ̂∗ + T−1µI

)−1
ςᵀ∗ ,

and thus, with Ḡ = ηV̄ , the Ridge estimator can be written as

γ̂Ridgeg = ḠR̄ᵀ (R̄R̄ᵀ + µI
)−1

r̄ =
λ̂

λ̂+ T−1µ

ηV̄ ξ√
T

ςᵀr̄√
λ̂

+
ηV̄ ξ∗√
T

Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
ςᵀ∗ r̄

=
λ̂

λ̂+ T−1µ
γ̂PCAg +

ηV̄ ξ∗√
T

Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
ςᵀ∗ r̄. (B.22)

Using (B.5) and the fact that T−1λ−1µ→ D and Proposition 1, we can show that the first term in

(B.22) converges to (1 +B +D)−1ηγ. With respect to the second term, as shown in (B.3), we have∥∥∥∥R̄ᵀR̄

Tλ
− V̄ ᵀV̄

T
−
N(IT − T−1ιT ι

ᵀ
T )

Tλ

∥∥∥∥ .p
1√
λ
,

and the eigenvalues of

M =
V̄ ᵀV̄

T
+
N(IT − T−1ιT ι

ᵀ
T )

Tλ

are given by (B.4), it then follows from Weyl’s theorem that λi(T
−1λ−1R̄ᵀR̄) = B̃ + Op(λ

−1/2) for

2 ≤ i ≤ T − 1. Note that Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
is a (T − 2) × (T − 2) diagonal matrix and the ith
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element on the diagonal is

λi+1(T−1R̄ᵀR̄)1/2

λi+1(T−1R̄ᵀR̄) + T−1µ
=

1√
λ

λi+1(T−1λ−1R̄ᵀR̄)1/2

λi+1(T−1λ−1R̄ᵀR̄) + T−1λ−1µ
.

Together with T−1λ−1µ→ D, we have∥∥∥∥Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
∥∥∥∥ = max

1≤i≤T−2

λi+1(T−1R̄ᵀR̄)1/2

λi+1(T−1R̄ᵀR̄) + T−1µ
.p

1√
λ
. (B.23)

Also, with ‖ū‖ .p

√
N/T , we have

‖ςᵀ∗ r̄‖ ≤ ‖ςᵀ∗β(γ + v̄)‖+ ‖ςᵀ∗ ū‖ ≤ ‖β(γ + v̄)‖+ ‖ū‖ .p

√
λ+

√
N/T .p

√
λ (B.24)

and∥∥∥∥ V̄ ξ∗√T
∥∥∥∥2

=

∥∥∥∥ V̄ (ξ, ξ∗)√
T

∥∥∥∥2

−
∥∥∥∥ V̄ ξ√T

∥∥∥∥2

≤
∥∥∥∥ V̄√

T

∥∥∥∥2

−
∥∥∥∥ V̄ ξ√T

∥∥∥∥2

= 1 +Op

(
1√
T

)
−
∥∥∥∥ V̄ ξ√T

∥∥∥∥2

.p
1√
λ

+
1√
T
,

(B.25)

where we use (B.8) in the last inequality. Consequently, using (B.23), (B.24) and (B.25), we have

|ηV̄ ξ∗√
T

Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
ςᵀ∗ r̄| ≤

∥∥∥∥ηV̄ ξ∗√
T

∥∥∥∥∥∥∥∥Λ̂
1/2
∗

(
Λ̂∗ + T−1µ

)−1
∥∥∥∥ ‖ςᵀ∗ r̄‖ . T−1/4 + λ−1/4.

By comparing this with the limit of the first term in (B.22), we obtain

γ̂Ridgeg
p−→ 1

1 +B +D
ηγ.

B.4 Proof of Proposition 4

Proof. By direct calculation, we can write

RRᵀ + Tµr̄r̄ᵀ = R
(
IT +

µ

T
ιT ι

ᵀ
T

)
Rᵀ = R

(
IT +

µ̃

T
ιT ι

ᵀ
T

)2

Rᵀ, (B.26)

where µ̃ =
√
µ+ 1 − 1. Hence, the eigenvectors of RRᵀ + Tµr̄r̄ᵀ are equivalent to the left singular

vectors of R
(
IT + T−1µ̃ιT ι

ᵀ
T

)
. Let ς and ξ denote the largest left and right singular vector of

R
(
IT + T−1µ̃ιT ι

ᵀ
T

)
. Note that ξ can be viewed as the largest eigenvector of

(IT + T−1µ̃ιT ι
ᵀ
T )RᵀR(IT + T−1µ̃ιT ι

ᵀ
T ),

11



we analyze the eigenspace of this matrix first. Similar to (B.3) in the PCA case, we have the following

approximation of RᵀR∥∥∥∥RᵀR

Tλ
− V̄ ᵀV̄

T
− γ

ιT V̄ + V̄ ᵀιᵀT
T

− γ2 ιT ι
ᵀ
T

T
− N

Tλ
IT
∥∥∥∥ .p

1√
T

+
1√
λ
, (B.27)

by |T−1V̄ V̄ ᵀ − 1| .p T
−1/2,

∥∥Ū1

∥∥ .p T
1/2 and

∥∥N−1ŪᵀŪ − (IT − T−1ιT ι
ᵀ
T )
∥∥ .p

√
T/N .

Then, with (B.27) and N/(Tλ)→ B, we have

∥∥T−1λ−1(IT + T−1µ̃ιT ι
ᵀ
T )RᵀR(IT + T−1µ̃ιT ι

ᵀ
T )−M∗

∥∥ = op(1) (B.28)

where the matrix M∗ here is defined by

M∗ := BIT + T−1V̄ ᵀV̄ + T−1(1 + µ̃)γ(ιT V̄ + V̄ ᵀιᵀT ) + T−1
(

(1 + µ̃)2γ2 + µ̃2B + 2µ̃B
)
ιT ι

ᵀ
T .

Recall that ξ is the eigenvector of T−1λ−1(IT + T−1µ̃ιT ι
ᵀ
T )RᵀR(IT + T−1µ̃ιT ι

ᵀ
T ), we can analyze the

eigenspace of M∗ first and then use sin-theta theorem to characterize ξ.

Firstly, the rank of M∗ − BIT is at most 2. Using the fact that V̄ ιT = 0, by direct calculation,

we have the two nozero eigenvalues of M∗ −BIT are the solutions of the equation

(x− a1)(x− a3)− a2
2 = 0, (B.29)

where a1 = T−1
∥∥V̄ ∥∥2

, a2 = T−1/2(1 + µ̃)γ
∥∥V̄ ∥∥ and a3 = (1 + µ̃)2γ2 + µ̃2B + 2µ̃B. Since the larger

solution of (B.29) is

a1 + a3 +
√

(a1 − a3)2 + 4a2
2

2
≥ a1 > 0 (B.30)

with probability 1, it is also the largest eigenvalue of M∗ − BIT . In addition, the second largest

eigenvalue of M∗ −BIT should be distinct with λ1(M∗ −BIT ). To see this, if the second eigenvalue

is the other solution of (B.29), we have λ1(M∗ − BIT ) − λ2(M∗ − BIT ) =
√

(a1 − a3)2 + 4a2
2 ≥

max{2a2, |a1 − a3|} > 0. If the second eigenvalue is 0 (in which case the second solution of the

above equation must be negative), we have shown in (B.30) that λ1(M∗ −BIT )− λ2(M∗ −BIT ) =

λ1(M∗ − BIT ) ≥ a1 > 0. In both cases, we have λ1(M∗ − BIT ) − λ2(M∗ − BIT ) ≥ δ > 0 for some

constant δ > 0. Consequently,

λ1(M∗)− λ2(M∗) = λ1(M∗ −BIT )− λ2(M∗ −BIT ) ≥ δ, (B.31)

for some constant δ > 0. Now we calculate the first eigenvector of M∗, which should also be the

first eigenvector of M∗ −BIT . We use ξ̃ to denote this eigenvector. Since we already know that the

largest eigenvalue of λ1(M∗−BIT ) is a solution of (B.29), which means that ξ̃ should be in the space

12



spanned by V̄ ᵀ and ιT . Writing ξ̃ = K1

∥∥V̄ ∥∥−1
V̄ ᵀ +K2T

−1/2ιT and plugging the largest eigenvalue

of λ1(M∗ −BIT ) of (B.30) into λ1(M −BIT )ξ̃ = (M −BIT )ξ̃, we directly get

K2

K1
=

√
(a1 − a3)2 + 4a2

2 + a3 − a1

2a2
, (B.32)

which will pin down K1 and K2 because we also have
∥∥∥ξ̃∥∥∥ = 1.

Using
∥∥T−1λ−1(IT + T−1µ̃ιT ι

ᵀ
T )RᵀR(IT + T−1µ̃ιT ι

ᵀ
T )−M

∥∥ = op(1), (B.31) and sin-theta theo-

rem, we have ∥∥∥Pξ − Pξ̃
∥∥∥ ≤ op(1)

δ − op(1)
= op(1),

which implies that |ξ̃ᵀξ| p−→ 1 and consequently,∥∥∥ξ −K1

∥∥V̄ ∥∥−1
V̄ ᵀ −K2T

−1/2ιT

∥∥∥ = op(1) or
∥∥∥ξ +K1

∥∥V̄ ∥∥−1
V̄ ᵀ +K2T

−1/2ιT

∥∥∥ = op(1).

Since the sign of ξ plays no role in the estimator γ̂rpPCAg , we can simply assume the former one.

Also, the relationship between singular vectors implies that

F̂ = ςᵀR =
∥∥R(IT + T−1µ̃ιT ι

ᵀ
T )
∥∥−1

ξᵀ(IT + T−1µ̃ιT ι
ᵀ
T )RᵀR. (B.33)

With the approximation of RᵀR in (B.27), V̄ ιT = 0, T−1V̄ V̄ ᵀ = 1+Op(T
−1/2) and N/(Tλ)→ B,

by direct calculation, we have∥∥∥∥∥V̄ ∥∥−1
V̄ (IT + T−1µ̃ιT ι

ᵀ
T )RᵀR− λT 1/2

(
(1 +B)V̄ + γιᵀT

)∥∥∥ = op(λT ), (B.34)

and ∥∥∥T−1/2ιᵀT (IT + T−1µ̃ιT ι
ᵀ
T )RᵀR− λT 1/2(1 + µ̃)

(
γV̄ + (γ2 +B)ιᵀT

)∥∥∥ = op(λT ). (B.35)

Plugging (B.34), (B.35) and
∥∥∥ξ −K1

∥∥V̄ ∥∥−1
V̄ ᵀ +K2T

−1/2ιT

∥∥∥ = op(1) into (B.33) we have

∥∥∥∥∥R(IT + T−1µ̃ιT ι
ᵀ
T )
∥∥ F̂ − λT 1/2(L1V̄ + L2ι

ᵀ
T )
∥∥∥ = op(λT ), (B.36)

where

L1 = K1(1 +B) +K2(1 + µ̃)γ, L2 = K1γ +K2(1 + µ̃)(γ2 +B). (B.37)
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It is easy to observe that scalar plays no role in the estimator γ̂rpPCAg , we can redefine

F̂ ∗ = λ−1T−1/2L−1
1

∥∥R(IT + T−1µ̃ιT ι
ᵀ
T )
∥∥ F̂

and use F̂ ∗ to create γ̂rpPCAg . Then, (B.36) becomes
∥∥∥F̂ ∗ − V̄ − L−1

1 L2ι
ᵀ
T

∥∥∥ = op
(
T 1/2

)
. Conse-

quently,
∥∥∥V̂ − V̄ ∥∥∥ =

∥∥∥F̂ ∗(IT − T−1ιT ι
ᵀ
T )− V̄

∥∥∥ = op
(
T 1/2

)
, γ̂ = T−1F̂ ∗ιT = L−1

1 L2 + op(1), and

η̂ = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1 = ηV̄ V̂ ᵀ(V̂ V̂ ᵀ)−1 = η
(
V̄ V̄ ᵀ + op(T )

)(
V̄ V̄ ᵀ + op(T )

)−1
= η + op(1),

and the estimator γ̂rpPCAg = η̂γ̂
p−→ ηL−1

1 L2, where L1 and L2 are defined in (B.37).

In light of that a1
p−→ 1, a2

p−→ (1 + µ̃)γ, µ̃ =
√

1 + µ− 1, γ̂rpPCAg
p−→ ηL2/L1, (B.32) and the

definitions of L1 and L2 in (B.37), we have

γ̂rpPCAg
p−→ w(1 +B)−1ηγ + (1− w)η(γ + γ−1B),

where

w =
2 + 2B

1 + 2B +
√

(1− a)2 + 4(1 + µ)γ + a
, a = (1 + µ)(γ2 +B)−B.

B.5 Proof of Proposition 5

Proof. Consider the set I = {|β[i]| ≥ β{qN}}, where |β|{qN} is the (qN)th largest value in
{
|β[i]|

}
i∈[N ]

.

Since

T−1R̄Ḡᵀ − βηᵀ = β
(
T−1V̄ V̄ ᵀ − 1

)
ηᵀ + T−1Ū V̄ ᵀηᵀ + T−1βV̄ Z̄ᵀ + T−1Ū Z̄ᵀ,

we have

∥∥T−1R̄Ḡᵀ − βηᵀ
∥∥

MAX
. ‖β‖MAX |T

−1V̄ V̄ ᵀ − 1| ‖η‖+ T−1
∥∥Ū V̄ ᵀ

∥∥
MAX

‖η‖

+ T−1 ‖β‖MAX

∥∥V̄ Z̄ᵀ
∥∥+ T−1

∥∥Ū Z̄ᵀ
∥∥

MAX
.p (logN)1/2T−1/2.

In other words, the difference between T−1R̄Ḡᵀ and βηᵀ for all test assets is bounded by

Op
(
(logN)1/2T−1/2

)
, which is o(1) under our assumption.

On the other hand, with the assumption that ‖β‖MAX . 1 and the definition of |β|{qN}, we

have
∥∥β[I0]

∥∥2
. qN + (N0 − qN)|β|2{qN}. Together with the assumption that qN/N0 → 0 and∥∥β[I0]

∥∥ � √N0, it leads to |β|2{qN} & ‖βI0‖
2 /N0 � 1. Then, with the assumption that |β|{qN+1} ≤

(1 + δ)−1|β|{qN}, we have that the difference between |β|{qN+1} and |β|{qN} should be at the same

rate as |β|{qN} & 1, which is larger than the difference between T−1R̄Ḡᵀ and βηᵀ. Therefore, with
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probability approaching one, we have Î = I. In what follows, we only need consider the case of

Î = I.

Since qN/N0 → 0, by the definition of I, we have
∥∥β[I]

∥∥ /√|I| ≥ ∥∥β[I0]

∥∥ /√|I0|. Together with

the assumption that
∥∥β[I0]

∥∥ � √N0,
∥∥β[I0]

∥∥ → ∞ and |I| = qN → ∞, we have |I|/(T
∥∥β[I]

∥∥2
) → 0

and
∥∥β[I]

∥∥ → ∞. Now compared to the case with PCA, the expansion on γ̂SPCAg resembles that of

(B.11), except for an extra term that depends on Z̄ and the restriction of r̄ on I:

γ̂SPCAg =
ηV̄ ξ√
T

ςᵀr̄[I]√
λ̂

+
Z̄ξ√
T

ςᵀr̄[I]√
λ̂
. (B.38)

In restriction to the smaller set I, the first term matches exactly the case of |I|/(T
∥∥β[I]

∥∥2
)→ 0 = B

in Proposition 1, which yields
ηV̄ ξ√
T

ςᵀr̄[I]√
λ̂

= ηγ + op(1).

We now analyze the second term in (B.38). As shown in (B.14), we have∥∥∥∥∥ ςᵀr̄[I]√
λ̂

∥∥∥∥∥ .p 1,

so to prove that SPCA is consistent in this case, it is sufficient to show that T−1/2
∥∥Z̄ξ∥∥ p−→ 0,

where ξ is the largest right singular vector of R̄[I]. Similar to the proof of (B.6) in Proposition 1, we

can show that the difference between projection matrices, Pξ and PV̄ ᵀ is small by sin-theta theorem.

That is to say, we have
∥∥ξξᵀ − V̄ ᵀ(V̄ V̄ ᵀ)−1V̄

∥∥ p−→ 0. Then, with the fact that

∥∥Z̄V̄ ᵀ(V̄ V̄ ᵀ)−1V̄
∥∥ ≤ ∥∥Z̄V̄ ᵀ

∥∥∥∥(V̄ V̄ ᵀ)−1
∥∥∥∥V̄ ∥∥ .p T

1/2 × T−1 × T 1/2 .p 1,

we have T−1/2
∥∥Z̄ξξᵀ∥∥ p−→ 0. Consequently,

T−1/2
∥∥Z̄ξ∥∥ = T−1/2

∥∥Z̄ξξᵀξ∥∥ ≤ T−1/2
∥∥Z̄ξξᵀ∥∥ ‖ξ‖ p−→ 0.

Hence, zt does not affect the consistency of the SPCA estimator. This completes the proof.

B.6 Proof of Theorem 1

Proof. It is sufficient to consider the case Σv = Ip. Otherwise, we can do transformation V ′ = Σ
− 1

2
v V ,

β′[I] = β[I]Σ
1
2
v , η′ = ηΣ

1
2
v and γ′ = Σ

− 1
2

v γ. All the Assumptions A.1-A.8 still hold for the new V ′, β′[I].

Therefore, we only need analyze the case of Σv = Ip.
For notation simplicity, throughout the proofs of Theorems 1-4, we use R̃(k) :=

(
R̄(k)

)
[Îk]

to denote

the matrix on which we perform SVD in each step of Algorithm 5. Similarly, we use r̃(k) :=
(
r̄(k)

)
[Îk]

.

The first left and right singular vectors of R̃(k) are denoted by ς(k) and ξ(k), while the largest singular
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value of R̃(k) is denoted by
√
T λ̂(k). As a result, λ̂(k) = T−1

∥∥∥R̃(k)

∥∥∥2
.

Using the above notation, our estimated factor at k-th step is V̂(k) =
√
Tξᵀ(k) ∈ R1×T , the risk

premium of this factor is given by γ̂(k) = λ̂
−1/2
(k) ςᵀ(k)r̃(k), the loading matrix of R on this factor is

β̂(k) = T−1/2R̄ξ(k), and the loading of G on this factor is η̂(k) = T−1/2Ḡξ(k). By footnote 14, we can

use Ḡ instead of Ḡ(k) in Algorithm 5 and throughout the proof. We denote η̂ = (η̂(1), . . . , η̂(p̃)) and

γ̂ = (γ̂(1), . . . , γ̂(p̃))
ᵀ, so the risk premium estimator is γ̂SPCAg = η̂γ̂.

By Lemma 2, we have ξᵀ(i)ξ(j) = 0 for i 6= j ≤ p̃. This suggests that V̂(k) at each step k are

pairwise orthogonal. Using this property and the definition of R̃(k), we have

R̃(k) :=
(
R̄(k)

)
[Îk]

= R̄
[Îk]

k−1∏
i=1

M
V̂ ᵀ
(i)

= R̄
[Îk]

(
IT −

k−1∑
i=1

ξ(i)ξ
ᵀ
(i)

)
, (B.39)

for k > 1 and when k = 1,

R̃(1) = R̄
[Î1]

= β
[Î1]
V̄ + Ū

[Î1]
.

If we define β̃(1) = β
[Î1]

and Ũ(1) = Ū
[Î1]

, then R̃(1) can be written in the form R̃(1) = β̃(1)V̄ + Ũ(1).

We can iteratively define

Ũ(k) := Ū
[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

√
T

ςᵀ(i)Ũ(i)√
λ̃(i)

and β̃(k) := β
[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

√
T

ςᵀ(i)β̃(i)√
λ̃(i)

. (B.40)

Recall that ξ(k) and ς(k) are singular vectors of R̃(k), we have

ς(k) =
R̃(k)ξ(k)√
T λ̂(k)

, ξ(k) =
R̃ᵀ

(k)ς(k)√
T λ̂(k)

. (B.41)

Using (B.41), if R̃(i) = β̃(i)V̄ + Ũ(i) for i < k, we can write (B.39) as

R̃(k) = R̄
[Îk]

(
IT −

k−1∑
i=1

ξ(i)ξ
ᵀ
(i)

)
=R̄

[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

ςᵀ(i)R̃(i)√
T λ̂(i)

=β̃
[Îk]
V̄ + Ũ

[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

ςᵀ(i)β̃(i)V̄√
T λ̂(i)

−
k−1∑
i=1

R̄
[Îk]
ξ(i)

ςᵀ(i)Ũ(i)√
T λ̂(i)

=β̃(k)V̄ + Ũ(k).

Consequently, by induction, R̃(k) = β̃(k)V̄ + Ũ(k) for k ≤ p̃+ 1. Similarly, we can write

r̃(k) = β̃(k)(γ + v̄) + ũ(k), (B.42)
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where ũ(k) is defined by

ũ(k) := ū
[Îk]
−
k−1∑
i=1

R̄
[Îk]
ξ(i)

√
T

ςᵀ(i)ũ(i)√
λ̂(i)

, (B.43)

and ũ(1) = ū
[Î1]

.

Similar representations can be created for G̃(k) := Ḡ
∏k−1
i=1 M

V̂ ᵀ
(i)

. Specifically, we have

G̃(k) := Ḡ

(
IT −

k−1∑
i=1

ξ(i)ξ
ᵀ
(i)

)
=Ḡ−

k−1∑
i=1

Ḡξ(i)

ςᵀ(i)R̃(i)√
T λ̂(i)

= ηV̄ + Z̄ −
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)V̄√
T λ̂(i)

−
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)√
T λ̂(i)

=

η − k−1∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

 V̄ +

Z̄ − k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)√
T λ̂(i)

 .

Using the following notation

η̃(k) := η −
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

, and Z̃(k) := Z̄ −
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)√
T λ̂(i)

, (B.44)

G̃(k) can be written as G̃(k) = η̃(k)V̄ + Z̃(k).

To sum up, we have defined R̃(k), r̃(k), β̃(k), Ũ(k), ũ(k), η̃(k) and Z̃(k) at the kth step of the algorithm.

Note that β̃(k) ∈ R|Ik|×p and η̃(k) ∈ Rd×p can be viewed as the loading of R̃(k) and G̃(k) on V̄ , but

they are not the same as the estimators defined in Algorithm 5, β̂(k) ∈ RN×1 and η̂(k) ∈ Rd×1, which

are the estimated loadings of R and G on the kth factor.

By Lemma 4, we have P(Îk = Ik) → 1 for k ≤ p̃ and P(p̂ = p̃) → 1. Thus, we can impose that

Îk = Ik for any k and p̂ = p̃ in what follows. In addition, Lemma 3(ii) and Lemma 4(iii) imply that

λ̂(k) � qN and that |Ik| = qN . Therefore, the assumptions of Lemmas 6-9 hold.

Since our algorithm stops at p̃, it implies that at most qN − 1 test assets satisfy

T−1
∥∥∥(R̄(p̃+1)

)
[i]
Ḡᵀ
∥∥∥

MAX
≥ c. Consider the test assets in I0, we have

T−1
∥∥∥G̃(p̃+1)R̄

ᵀ
[I0]

∥∥∥ = T−1
∥∥∥(R̄(p̃+1)

)
[I0]

Ḡᵀ
∥∥∥ .p q

1/2N1/2 + cN
1/2
0 = o

(
N

1/2
0

)
, (B.45)

where we use the the assumptions c→ 0 and qN/N0 → 0 in the last equation.

Write the left hand side of (B.45) as

G̃(p̃+1)R̄
ᵀ
[I0] = η̃(p̃+1)V̄ V̄

ᵀβ[I0] + η̃(p̃+1)V̄ Ū
ᵀ
[I0] + Z̄(p̃+1)V̄

ᵀβ[I0] + Z̄(p̃+1)Ū
ᵀ
[I0]. (B.46)
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Using (B.45), (B.46) and Lemma 8(i)(ii), we have∥∥∥η̃(p̃+1)

(
V̄ V̄ ᵀβ[I0] + V̄ Ūᵀ

[I0]

)∥∥∥ = op

(
N

1/2
0 T

)
. (B.47)

Also, using Assumption A.6, Lemma 1(i) and Weyl’s theorem, we have

|σp(V̄ V̄ ᵀβ[I0] + V̄ Ūᵀ
[I0])− σp(Tβ[I0])| ≤

∥∥∥V̄ Ūᵀ
[I0]

∥∥∥+
∥∥T−1V̄ V̄ ᵀ − Ip

∥∥∥∥Tβ[I0]

∥∥ .p N
1/2
0 T 1/2. (B.48)

Since Assumption A.3 implies that σp(β[I0]) � N
1/2
0 , we have σp(V̄ V̄

ᵀβ[I0] + V̄ Ū
ᵀ
[I0]) �p N

1/2
0 T . Using

this result, (B.47) and the inequality
∥∥∥η̃(p̃+1)

(
V̄ V̄ ᵀβ[I0] + V̄ Ūᵀ

[I0]

)∥∥∥ ≥ σp(V̄ V̄ ᵀβ[I0] + V̄ Ūᵀ
[I0])

∥∥η̃(p̃+1)

∥∥,

we have
∥∥η̃(p̃+1)

∥∥ p−→ 0. That is, by definition of η̃(p̃+1) in (B.44),∥∥∥∥∥∥η −
p̃∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

∥∥∥∥∥∥ = op(1). (B.49)

Multiplying (B.49) by γ from the right-hand side, we have∥∥∥∥∥∥ηγ −
p̃∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

γ

∥∥∥∥∥∥ = op(1). (B.50)

Recall that our final estimator of γg is

γ̂SPCAg = η̂γ̂ =

p̃∑
i=1

η̂(i)γ̂(i) =

p̃∑
i=1

Ḡξ(i)

ςᵀ(i)r̃(i)√
T λ̂(i)

=

p̃∑
i=1

Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

(γ + v̄) +

p̃∑
i=1

Ḡξ(i)

ςᵀ(i)ũ(i)√
T λ̂(i)

.

(B.51)

Combining (B.50) and (B.51), we have

‖ηγ − η̂γ̂‖ ≤
p̃∑
i=1

∥∥∥∥∥∥Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

v̄

∥∥∥∥∥∥+

p̃∑
i=1

∥∥∥∥∥∥Ḡξ(i)

ςᵀ(i)ũ(i)√
T λ̂(i)

∥∥∥∥∥∥+ op(1). (B.52)

Using
∥∥Ḡ∥∥ .p T

1/2, Lemma 7(ii), Lemma 9(i) and the assumptions that qN →∞, we have∥∥∥∥∥∥Ḡξ(i)

ςᵀ(i)β̃(i)√
T λ̂(i)

v̄

∥∥∥∥∥∥ ≤ ∥∥Ḡξ(i)

∥∥∥∥∥∥∥∥
ςᵀ(i)β̃(i)√
T λ̂(i)

∥∥∥∥∥∥ ‖v̄‖ = op(1),
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and ∥∥∥∥∥∥Ḡξ(i)

ςᵀ(i)ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ ≤ ∥∥Ḡξ(i)

∥∥∥∥∥∥∥∥
ςᵀ(i)ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ = op(1).

Plugging them into (B.52) completes the proof.

B.7 Proof of Theorem 2

To derive the asymptotic distribution, we need a more intricate analysis. As in the proof of Theorem

1, we impose that p̂ = p̃ and Îk = Ik, since Lemma 4 shows that both events occur with probability

approaching 1.

Recall that in Algorithm 5 the SPCA estimator is written as γ̂SPCAg = η̂γ̂ =
∑p̂

k=1 η̂(k)γ̂(k), where

p̂ is the number of factors selected and, with the notation defined in the proof of Theorem 1,

η̂(k) =
Ḡξ(k)√
T

=
ηV̄ ξ(k)√

T
+
Z̄ξ(k)√
T
, γ̂(k) =

ςᵀ(k)r̃(k)√
λ̂(k)

=
ςᵀ(k)β̃(k)(γ + v̄)√

λ̂(k)

+
ςᵀ(k)ũ(k)√
λ̂(k)

. (B.53)

Denote H1 = (h11, . . . , hp̂1), H2 = (h12, . . . , hp̂2), where

hk1 = T−1/2V̄ ξ(k), hk2 = λ̂
−1/2
(k) β̃ᵀ(k)ς(k). (B.54)

Therefore, we can write (B.53) as

η̂(k) − ηhk1 =
Z̄ξ(k)√
T
, γ̂(k) − h

ᵀ
k2(γ + v̄) =

ςᵀ(k)ũ(k)√
λ̂(k)

. (B.55)

Since ξ(k) and ς(k) are the largest singular vectors of R̃(k) with the singular value
√
T λ̂(k), we have

ς(k) =
R̃(k)ξ(k)√
T λ̂(k)

, ξ(k) =
R̃ᵀ

(k)ς(k)√
T λ̂(k)

. (B.56)

From (B.56), we have

Z̄ξ(k)√
T

=
Z̄√
T

R̃ᵀ
(k)ς(k)√
T λ̂(k)

=
Z̄V̄ ᵀ

T

β̃ᵀ(k)ς(k)√
λ̂(k)

+
Z̄Ũᵀ

(k)ς(k)

T
√
λ̂(k)

=
Z̄V̄ ᵀ

T
hk2 +

Z̄Ũᵀ
(k)ς(k)

T
√
λ̂(k)

.
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Using Lemma 7(ii) and the assumptions on q, we have∥∥∥∥∥∥
Z̄Ũᵀ

(k)ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥ = op(T
−1/2),

∥∥∥∥∥∥
ςᵀ(k)ũ(k)√
λ̂(k)

∥∥∥∥∥∥ = op(T
−1/2).

Then, along with (B.55) and Lemma 1(vi), the above equations lead to∥∥∥∥η̂ − ηH1 −
ZV

T
H2

∥∥∥∥ = op(T
−1/2), (B.57)

and

‖γ̂ −Hᵀ
2γ −H

ᵀ
2 v̄‖ = op(T

−1/2). (B.58)

Combining (B.57) and (B.58), with ‖H1‖ .p 1, ‖H2‖ .p 1 from Lemma 9 and Assumptions A.1,

A.2, we have ∥∥∥∥η̂γ̂ − ηH1H
ᵀ
2 (γ + v̄)− ZV ᵀ

T
H2H

ᵀ
2γ

∥∥∥∥ = op(T
−1/2). (B.59)

As shown in Lemma 3(iv), under the assumption that λp(η
ᵀη) & 1, we have p̃ = p. Together

with P(p̂ = p̃)→ 1, we can impose that p̂ = p for derivations below. To analyze H1H
ᵀ
2 and H2H

ᵀ
2 in

(B.59), using Lemma 9 and the assumptions on q, we have

‖Hᵀ
2H2 − Ip‖ ≤ ‖Hᵀ

1H2 − Ip‖+ ‖H1 −H2‖ ‖H2‖ .p T
−1/2. (B.60)

Then, for the term H2H
ᵀ
2 , we have

‖H2H
ᵀ
2 − Ip‖ = max

1≤i≤p
|λi(H2H

ᵀ
2 )− 1| = max

1≤i≤p
|λi(Hᵀ

2H2)− 1| = ‖Hᵀ
2H2 − Ip‖ .p T

−1/2 (B.61)

since H2 is a p× p matrix.

For the term H1H
ᵀ
2 , by Lemma 9 and the assumptions on q, we have

‖Hᵀ
1H2 − Ip‖ = op(T

−1/2). (B.62)

In addition, we have

σp(H2) ‖H2H
ᵀ
1 − Ip‖ ≤ ‖(H2H

ᵀ
1 − Ip)H2‖ = ‖H2(Hᵀ

1H2 − Ip)‖ ≤ ‖H2‖ ‖Hᵀ
1H2 − Ip‖ . (B.63)

Since (B.60) implies that σ1(H2)/σp(H2) = λ1(H2H
ᵀ
2 )1/2/λp(H2H

ᵀ
2 )1/2 .p 1, (B.62) and (B.63) give

‖H1H
ᵀ
2 − Ip‖ = ‖H2H

ᵀ
1 − Ip‖ ≤

σ1(H2)

σp(H2)
‖Hᵀ

1H2 − Ip‖ = op(T
−1/2). (B.64)
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Combining (B.59), (B.61), and (B.64), we obtain
∥∥η̂γ̂ − η(γ + v̄)− T−1ZV ᵀγ

∥∥ = op(T
−1/2). Using

Delta method and Assumption A.9, it is straightforward to obtain:
√
T (η̂γ̂ − ηγ)

d−→ N (0,Φ) ,

where Φ is as defined in Theorem 2.

B.8 Proof of Theorem 3

Proof. As in the proof of Theorem 2, we have

∥∥η̂γ̂ − η(γ + v̄)− T−1ZV ᵀγ
∥∥ = op(T

−1/2)

from (B.59), (B.61), and (B.64). Together with α̂g = ḡ − η̂γ̂ = αg + ηγ + ηv̄ + z̄ − η̂γ̂, we have

∥∥α̂g − αg − z̄ + T−1ZV ᵀγ
∥∥ =

∥∥η̂γ̂ − η(γ + v̄)− T−1ZV ᵀγ
∥∥ = op(T

−1/2)

Using Delta method and the CLT Assumption in Theorem 3 , we have
√
T (α̂g − αg)

d−→ N (0, Φ̃)

where Φ̃ is as defined in Theorem 3.

B.9 Proof of Theorem 4

Proof. As shown in the proof of Theorem 2, we have P(p̂ = p) → 1 and P(Îk = Ik) → 1 for k ≤ p.

Thus, we impose p̂ = p̃ = p and Îk = Ik below. Using the same notation as in the proof of Theorem

2 and (B.58), we have

1

T

T∑
t=1

|mt − m̂t|2 =
1

T

∥∥∥V̂ ᵀγ̂ − V ᵀγ
∥∥∥2

=
1

T

∥∥∥√Tξ(Hᵀ
2γ +Op(T

−1/2))− V ᵀγ
∥∥∥2

=
1

T

∥∥∥√TξHᵀ
2γ − V̄

ᵀγ
∥∥∥2

+Op
(
T−1

)
, (B.65)

where ξ = (ξ(1), . . . , ξ(p)).

Using (B.56), we can write

√
Tξ(k)h

ᵀ
k2 =

R̃ᵀ
(k)ς(k)√
λ̂(k)

hᵀk2 =
V̄ ᵀβ̃ᵀ(k)ς(k)√

λ̂(k)

hᵀk2 +
Ũᵀ

(k)ς(k)√
λ̂(k)

hᵀk2. (B.66)

Using Lemma 7(i), Lemma 9(i) and λ̂(k) �p |Ik|, |Ik| = qN , we can derive from (B.66) that

√
Tξ(k)h

ᵀ
k2 = V̄ ᵀhk2h

ᵀ
k2 +Op

(
q−1/2N−1/2T 1/2 + T−1/2

)
.

That is,

√
TξHᵀ

2 = V̄ ᵀH2H
ᵀ
2 +Op

(
q−1/2N−1/2T 1/2 + T−1/2

)
. (B.67)
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Therefore, using (B.67), (B.61) and the assumptions on q, we have

T−1/2
∥∥∥√TξHᵀ

2γ − V̄
ᵀγ
∥∥∥ .p T

−1/2
∥∥V̄ ᵀH2H

ᵀ
2 − V̄

ᵀ
∥∥ ‖γ‖+ q−1/2N−1/2 + T−1

.p T
−1/2

∥∥V̄ ∥∥ ‖H2H
ᵀ
2 − Ip‖+ q−1/2N−1/2 + T−1

.p q
−1/2N−1/2 + T−1/2.

Therefore, it follows from (B.65) that

1

T

T∑
t=1

|mt − m̂t|2 =
1

T

∥∥∥V̂ ᵀγ̂ − V ᵀγ
∥∥∥2

.p
1

T
+

1

qN
.

In light of the assumptions on q, we can choose q such that qN & N0/ logN0, which leads to

1

T

T∑
t=1

|mt − m̂t|2 .p
1

T
+

logN0

N0
.

B.10 Proof of Proposition 6

Proof. Write β̃ = Σ
−1/2
u βΣ

1/2
v , then by definition m̃t can be written as

m̃t = 1− γᵀβᵀΣ−1
r (βvt + ut) = 1− γᵀΣ−1/2

v β̃ᵀ
(
β̃β̃ᵀ + IN

)−1
(β̃Σ−1/2

v vt + Σ−1/2
u ut), (B.68)

or in matrix form

M̃ = 1− γᵀβᵀΣ−1
r (βV + U) = 1− γᵀΣ−1/2

v β̃ᵀ
(
β̃β̃ᵀ + IN

)−1
(β̃Σ−1/2

v V + Σ−1/2
u U), (B.69)

where M̃ = (m̃1, . . . , m̃T ), V = (v1, . . . , vT ) and U = (u1, . . . , ut). Suppose that the SVD of β̃ can

be written as β̃ = BΛ1/2Γ, where B ∈ RN×p and Γ ∈ Rp×p are matrices of left and right singular

vectors, Λ1/2 = diag(λ̃
1/2
1 , · · · , λ̃1/2

p ) is a diagonal matrix and λ̃i is the ith eigenvalue of β̃ᵀβ̃. Write

B = (b1, · · · , bp), then bᵀi bj = 0 for i 6= j. Using the SVD of β̃, we have

β̃ᵀ
(
β̃β̃ᵀ + IN

)−1
= ΓᵀΛ1/2(Λ + Ip)−1Bᵀ.

Hence, we have∥∥∥∥β̃ᵀ (β̃β̃ᵀ + IN
)−1

β̃ − Ip
∥∥∥∥ =

∥∥∥ΓᵀΛ1/2(Λ + Ip)−1Λ1/2Γ− Ip
∥∥∥ =

∥∥∥Λ1/2(Λ + Ip)−1Λ1/2 − Ip
∥∥∥ .p λ̃

−1
p ,

(B.70)
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and∥∥∥∥β̃ᵀ (β̃β̃ᵀ + IN
)−1

Σ−1/2
u U

∥∥∥∥ =
∥∥∥ΓᵀΛ1/2(Λ + Ip)−1BᵀΣ−1/2

u U
∥∥∥ .p

(
λ̃−1/2
p

)∥∥∥BᵀΣ−1/2
u U

∥∥∥ . (B.71)

Since Cov(BᵀΣ
−1/2
u ut) = Ip, we have E

(∥∥∥BᵀΣ
−1/2
u U

∥∥∥2

F

)
= pT , which leads to

∥∥∥BᵀΣ−1/2
u U

∥∥∥ ≤ ∥∥∥BᵀΣ−1/2
u U

∥∥∥
F
.p T

1/2. (B.72)

For the same reason, we have
∥∥∥Σ
−1/2
v V

∥∥∥ .p T
1/2. Then, with Assumption A.11, (B.69), (B.70),

(B.71), and (B.72), we have√√√√ T∑
t=1

|mt − m̃t|2 ≤
∥∥∥∥γᵀΣ−1/2

v

(
β̃ᵀ
(
β̃β̃ᵀ + IN

)−1
β̃ − Ip

)
Σ−1/2
v V

∥∥∥∥+

∥∥∥∥γᵀΣ−1
v β̃ᵀ

(
β̃β̃ᵀ + IN

)−1
Σ−1/2
u U

∥∥∥∥
.

∥∥∥∥β̃ᵀ (β̃β̃ᵀ + IN
)−1

β̃ − Ip
∥∥∥∥∥∥∥Σ−1/2

v V
∥∥∥+

∥∥∥∥β̃ᵀ (β̃β̃ᵀ + IN
)−1

Σ−1/2
u U

∥∥∥∥
.p T

1/2λ̃−1/2
p ,

which in turn leads to

1

T

T∑
t=1

|mt − m̃t|2 .p λ̃
−1
p ,

where

λ̃p = λp

(
Σ1/2
v βᵀΣ−1

u βΣ1/2
v

)
≥ λp(βΣvβ

ᵀ)λmin(Σ−1
u ) �p λp(βᵀβ)λ−1

max(Σu) & λp(β
ᵀβ),

which concludes the proof.

B.11 Proof of Theorem 5(a)

Proof. For Ridge SDF estimator m̂t, we have

1

T

T∑
t=1

|mt − m̂t|2 =
1

T

∥∥∥R̄ᵀ(Σ̂ + µIN )−1r̄ − V ᵀγ
∥∥∥2
. (B.73)

Recall that in the proof of Proposition 3, we have a condensed form of SVD on R̄:

R̄ =
√
TςΛ̂1/2ξᵀ +

√
Tς∗Λ̂

1/2
∗ ξᵀ∗ ,
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where Λ̂1/2 is the diagonal matrix of the first p singular values of T−1/2R̄ and Λ̂ = diag{λ̂1, . . . , λ̂p},
ς, ξ are the corresponding left and right singular vectors, and ς∗ ∈ RN×K , ξ∗ ∈ RT×K are the

singular vectors corresponding to the remaining K nonzero singular values in Λ̂
1/2
∗ ∈ RK×K , where

K = min{N,T − 1} − p. Using this representation, (B.73) becomes√√√√ T∑
t=1

|mt − m̂t|2 =
∥∥∥(V̄ ᵀβᵀ + Ūᵀ)ς(Λ̂ + µI)−1ςᵀr̄ − V ᵀγ + (V̄ ᵀβᵀ + Ūᵀ)ς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄

∥∥∥
≤
∥∥∥V̄ ᵀβᵀς(Λ̂ + µI)−1ςᵀβγ − V̄ ᵀγ

∥∥∥+
∥∥∥V̄ ᵀβᵀς(Λ̂ + µI)−1ςᵀ(βv̄ + ū)

∥∥∥
+
∥∥∥Ūᵀς(Λ̂ + µI)−1ςᵀr̄

∥∥∥+
∥∥∥V̄ ᵀβᵀς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄

∥∥∥
+
∥∥∥Ūᵀς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄

∥∥∥+
∥∥V ᵀγ − V̄ ᵀγ

∥∥ (B.74)

We analyze these terms one-by-one. Firstly, we consider the properties of ς and ξ. Let ςk and ξk

denote the kth columns of ς and ξ, respectively. Note that ςk and ξk can be regarded as the ς(k)

and ξ(k) in our SPCA procedure with Ik = [N ], where ςk and ξk are the singular vectors at the kth

stage. This means we can reuse some of the proofs without repeating essentially the same arguments

therein.

Similar to (B.54), we define

h̃k1 = T−1/2V̄ ξk, h̃k2 = λ̂
−1/2
k βᵀςk, (B.75)

and H̃1 = (h̃11, . . . , h̃p1), H̃2 = (h12, . . . , h̃p2). Using Lemma 14, we can obtain∥∥∥H̃1H̃
ᵀ
2 − Ip

∥∥∥ .p T
−1 + λ−1

p (T−1N + 1),
∥∥∥H̃1 − H̃2

∥∥∥ .p T
−1/2 + λ−1

p (T−1N + 1). (B.76)

Using (B.76) and Lemma 14(i), we have
∥∥∥H̃2H̃

ᵀ
2 − Ip

∥∥∥ ≤ ∥∥∥H̃1H̃
ᵀ
2 − Ip

∥∥∥+
∥∥∥H̃1 − H̃2

∥∥∥∥∥∥H̃2

∥∥∥ .p T
−1/2+

λ−1
p (T−1N + 1), which, by (B.75), is equivalent to

∥∥∥βᵀςΛ̂−1ςᵀβ − Ip
∥∥∥ .p

1√
T

+
N + T

Tλp
. (B.77)

Consequently, with Lemma 11 and
∥∥∥βᵀςΛ̂−1/2

∥∥∥ =
∥∥∥H̃2

∥∥∥ .p 1, we have

∥∥∥∥βᵀς (Λ̂ + µI
)−1

ςᵀβ − Ip
∥∥∥∥ ≤ ∥∥∥∥βᵀςΛ̂−1/2

(
Λ̂1/2

(
Λ̂ + µI

)−1
Λ̂1/2 − Ip

)
Λ̂−1/2ςᵀβ

∥∥∥∥+
∥∥∥βᵀςΛ̂−1ςᵀβ − Ip

∥∥∥
≤
∥∥∥βᵀςΛ̂−1/2

∥∥∥2
∥∥∥∥Λ̂1/2

(
Λ̂ + µI

)−1
Λ̂1/2 − Ip

∥∥∥∥+
∥∥∥βᵀςΛ̂−1ςᵀβ − Ip

∥∥∥
.p

1√
T

+
N + T

Tλp
+

µ

λp
, (B.78)
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where we use

∥∥∥∥Λ̂1/2
(

Λ̂ + µI
)−1

Λ̂1/2 − Ip
∥∥∥∥ = maxj≤p(λ̂j + µ)−1µ .p λ

−1
p µ in the last step.

With
∥∥V̄ ∥∥ .p T

1/2 from Lemma 1, it implies from (B.78) that the first term in (B.74) can be

bounded: ∥∥∥V̄ ᵀβᵀς(Λ̂ + µI)−1ςᵀβγ − V̄ ᵀγ
∥∥∥ .p 1 +

N + T√
Tλp

+
µ
√
T

λp
.

For the second term in (B.74), using Lemma 11, we have

∥∥∥V̄ ᵀβᵀς(Λ̂ + µI)−1ςᵀ(βv̄ + ū)
∥∥∥ ≤ ∥∥V̄ ∥∥∥∥∥βᵀςΛ̂−1/2

∥∥∥∥∥∥Λ̂1/2(Λ̂ + µI)−1
∥∥∥ ‖βv̄ + ū‖ .p

√
N

λp
. (B.79)

Next, recall that ς∗ and ξ∗ are singular vectors of R̄, we have

V̄ ᵀβᵀς∗ + Ūᵀς∗ = R̄ᵀς∗ =
√
Tξ∗Λ̂

1/2
∗ . (B.80)

By Weyl’s theorem and Assumption A.4, we have

|σj(T−1/2R̄)− σj(T−1/2βV̄ )| ≤ T−1/2
∥∥R̄− βV̄ ∥∥ = T−1/2

∥∥Ū∥∥ .p

√
N

T
+ 1, (B.81)

for j ≤ min{N,T}. Since Rank(T−1/2βV̄ ) ≤ p, we have σj(T
−1/2βV̄ ) = 0 for j > p and thus

∥∥∥Λ̂
1/2
∗

∥∥∥ = σp+1(T−1/2R̄) .p

√
N

T
+ 1. (B.82)

Left multiplying (B.80) by V̄ , we obtain

V̄ V̄ ᵀβᵀς∗ =
√
T V̄ ξ∗Λ̂

1/2
∗ − V̄ Ūᵀς∗. (B.83)

Together with (B.82) and Assumption A.6, we have

‖βᵀς∗‖ ≤
∥∥∥(V̄ V̄ ᵀ)−1

∥∥∥(√T ∥∥V̄ ∥∥∥∥∥Λ̂
1/2
∗

∥∥∥+
∥∥V̄ Ūᵀ

∥∥) .p

√
N

T
+ 1, (B.84)

and consequently,

‖ςᵀ∗ r̄‖ ≤ ‖ςᵀ∗β‖ ‖γ + v̄‖+ ‖ςᵀ∗ ū‖ .p

√
N

T
+ 1. (B.85)

Using (B.84), (B.85), Lemma 13(iv) and
∥∥Ū∥∥ .p N

1/2 + T 1/2, we have

∥∥∥βᵀς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄
∥∥∥ ≤ ‖βᵀς∗‖ ∥∥∥(Λ̂∗ + µI)−1

∥∥∥ ‖ςᵀ∗ r̄‖ .p
N + T

µT
, (B.86)

25



and ∥∥∥Ūᵀς∗(Λ̂∗ + µI)−1ςᵀ∗ r̄
∥∥∥ ≤ ∥∥Ū∥∥∥∥∥(Λ̂∗ + µI)−1

∥∥∥ ‖ςᵀ∗ r̄‖ .p
N + T

µ
√
T
. (B.87)

Using Lemma 13(iii), we have∥∥∥Λ̂−1/2ςᵀr̄
∥∥∥ .p

∥∥∥Λ̂−1/2ςᵀβ
∥∥∥+

∥∥∥Λ̂−1/2ςᵀū
∥∥∥ .p 1 +

N + T

Tλp
.p 1,

where we use
∥∥∥Λ̂−1/2ςᵀβ

∥∥∥ =
∥∥∥H̃2

∥∥∥ .p 1. Then, with Lemma 13(iv), we have

∥∥∥Ūᵀς(Λ̂ + µI)−1ςᵀr̄
∥∥∥ ≤ ∥∥Ūᵀς

∥∥∥∥∥(Λ̂ + µI)−1Λ̂1/2
∥∥∥∥∥∥Λ̂−1/2ςᵀr̄

∥∥∥ .p

√
T

λp
+
N + T√
Tλp

. (B.88)

Plugging (B.78), (B.79), (B.86), (B.87) and (B.88) into (B.74) and using
∥∥V̄ − V ∥∥ .p 1, we obtain

1

T

T∑
t=1

|mt − m̂t|2 .p
µ2

λ2
p

+
1

T
+
N + T

Tλp
+
N2 + T 2

µ2T 2
.

With µ2 � T−1λp(N + T ), we achieve the best rate from the above bound:

1

T

T∑
t=1

|mt − m̂t|2 .p
1

T
+
N + T

Tλp
.

B.12 Proof of Theorem 5(b)

Proof. i. (Slow rate) Note that (13) is equivalent to a constrained optimization problem:

b̂ = arg min
b

∥∥∥Σ̂−1/2r̄ − Σ̂1/2b
∥∥∥2
, subject to ‖b‖1 ≤ µ,

for some tuning parameter µ. This implies that the vector of the true SDF loadings, b, satisfies that∥∥∥Σ̂−1/2r̄ − Σ̂1/2b̂
∥∥∥2
≤
∥∥∥Σ̂−1/2r̄ − Σ̂1/2b

∥∥∥2
and

∥∥∥b̂∥∥∥
1
≤ µ, for someµ ≥ s.

Equivalently, expanding the left- and right-hand sides of the above we have

b̂ᵀΣ̂b̂− bᵀΣ̂b ≤ 2(̂b− b)ᵀr̄,
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which leads to

(̂b− b)ᵀΣ̂(̂b− b) ≤ 2(̂b− b)ᵀ(r̄ − Σ̂b) ≤ 2
∥∥∥b̂− b∥∥∥

1

∥∥∥r̄ − Σ̂b
∥∥∥
∞
.

With a tuning parameter µ � s, we have

(̂b− b)ᵀΣ̂(̂b− b) . s
∥∥∥r̄ − Σ̂b

∥∥∥
∞
. (B.89)

With Lemma 15, we have

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2

.p s

√
logN

T
. (B.90)

Therefore, we have

1

T

T∑
t=1

‖m̂t − m̃t‖2 =
1

T

T∑
t=1

∥∥∥b̂ᵀ(rt − r̄)− bᵀ(rt − E(rt))
∥∥∥2

≤ 2

T

T∑
t=1

∥∥∥(̂b− b)ᵀ(rt − r̄)
∥∥∥2

+
2

T

T∑
t=1

‖bᵀ(r̄ − E(rt))‖2

≤2
∥∥∥Σ̂1/2(̂b− b)

∥∥∥2
+ 2 ‖b‖21 ‖r̄ − E(rt)‖2∞

.ps

√
logN

T
+ s2 logN

T
.

Since s � µ & ‖b‖1, plugging in the optimal rate choice s � ‖b‖1, we complete the proof.

ii. (Fast rate) Since b̂ is the optimal solution of the minimization problem, it implies that

bᵀΣ̂b− 2bᵀr̄ + bᵀΣ̂b+ µ ‖b‖1 ≥ b̂
ᵀΣ̂b̂− 2b̂ᵀr̄ + b̂ᵀΣ̂b̂+ µ‖b̂‖1. (B.91)

Rewrite (B.91) as

(̂b− b)ᵀΣ̂(̂b− b) ≤ 2(̂b− b)ᵀ(r̄ − Σ̂b) + µ(‖b‖1 − ‖b̂‖1). (B.92)

If µ ≥ 4
∥∥∥r̄ − Σ̂b

∥∥∥
∞

, (B.92) becomes

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2
≤2
∥∥∥b̂− b∥∥∥

1

∥∥∥r̄ − Σ̂b
∥∥∥
∞

+ µ(‖b‖1 − ‖b̂‖1)

≤1

2
µ
∥∥∥b̂− b∥∥∥

1
+ µ(‖b‖1 − ‖b̂‖1). (B.93)

Let J denote the support of b̂, then (B.93) can be written as∥∥∥Σ̂1/2(̂b− b)
∥∥∥2
≤1

2
µ
∥∥∥b̂J − bJ∥∥∥

1
+

1

2
µ
∥∥∥b̂Jc

∥∥∥
1

+ µ
∥∥∥b̂J − bJ∥∥∥

1
− µ

∥∥∥b̂Jc

∥∥∥
1
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=
3

2
µ
∥∥∥b̂J − bJ∥∥∥

1
− 1

2
µ
∥∥∥b̂Jc

∥∥∥
1
. (B.94)

Define b∗ = b̂− b, then (B.94) implies that 3 ‖b∗J‖1 ≥ ‖b
∗
Jc‖1, and we have

b∗ᵀ(Σ− Σ̂)b∗

‖b∗‖2
≤
∥∥∥Σ− Σ̂

∥∥∥
MAX

‖b∗‖21
‖b∗‖2

.p

√
logN

T

(
4 ‖b∗J‖1∥∥b∗J∥∥

)2

.p |J |
√

logN

T
.

Consequently, with the assumption |J |
√

logN/T → 0 and λmin(Σ) & 1, we have

b∗ᵀΣ̂b∗

‖b∗‖2
=
b∗ᵀΣb∗

‖b∗‖2
+
b∗ᵀ(Σ− Σ̂)b∗

‖b∗‖2
&p 1.

Therefore, we have∥∥∥Σ̂1/2(̂b− b)
∥∥∥2

= b∗ᵀΣ̂b∗ &p ‖b∗‖2 ≥ ‖b∗J‖
2 ≥ |J |−1 ‖b∗J‖

2
1 = |J |−1

∥∥∥b̂J − bJ∥∥∥2

1
. (B.95)

Plugging (B.95) into (B.94), we have∥∥∥Σ̂1/2(̂b− b)
∥∥∥2
≤ 3

2
µ
∥∥∥b̂J − bJ∥∥∥

1
.p µ|J |1/2

∥∥∥Σ̂1/2(̂b− b)
∥∥∥ .

Thus, ∥∥∥Σ̂1/2(̂b− b)
∥∥∥2

.p µ
2|J |. (B.96)

Choosing µ = 4
∥∥∥r̄ − Σ̂b

∥∥∥
∞

and by Lemma 15, we obtain

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2

.p |J |
logN

T
. (B.97)

Similar to the slow rate case, we have

1

T

T∑
t=1

‖m̂t − m̃t‖2 =
1

T

T∑
t=1

∥∥∥b̂ᵀ(rt − r̄)− bᵀ(rt − E(rt))
∥∥∥2

≤ 2

T

T∑
t=1

∥∥∥(̂b− b)ᵀ(rt − r̄)
∥∥∥2

+
2

T

T∑
t=1

‖bᵀ(r̄ − E(rt))‖2

≤2
∥∥∥Σ̂1/2(̂b− b)

∥∥∥2
+ 2 ‖bᵀ(r̄ − E(rt))‖2

.p ‖b‖0
logN

T
.
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B.13 Technical Lemmas and Their Proofs

Without loss of generality, we assume that Σv = Ip in the following lemmas. Also, except for Lemma

4, we assume that p̂ = p̃ and Îk = Ik for k = 1, . . . , p̃, which hold with probability approaching one

as we will show in Lemma 4.

Lemma 1. Under Assumptions A.1-A.7, for any I ⊂ [N ], we have the following results:

(i)
∥∥T−1V̄ V̄ ᵀ − Ip

∥∥ .p T
−1/2.

(ii)

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]

∥∥∥∥ .p T
1/2.

(iii)

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]V̄

ᵀ

∥∥∥∥ .p T
1/2,

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]Z̄

ᵀ

∥∥∥∥ .p T
1/2.

(iv)
∥∥Ū∥∥

MAX
.p (logNT )1/2,

∥∥Ū V̄ ᵀ
∥∥

MAX
.p (logN)1/2T 1/2,

∥∥Ū Z̄ᵀ
∥∥

MAX
.p

(logN)1/2T 1/2.

(v)
∥∥Ū[I]

∥∥ .p |I|1/2 + T 1/2,
∥∥Ū[I]V̄

ᵀ
∥∥ .p |I|1/2T 1/2,

∥∥Ū[I]Z̄
ᵀ
∥∥ .p |I|1/2T 1/2.

(vi)
∥∥V̄ ∥∥ .p T

1/2,
∥∥Z̄∥∥ .p T

1/2,
∥∥V̄ Z̄ᵀ

∥∥ .p T
1/2,

∥∥V̄ Z̄ᵀ − V Zᵀ
∥∥ .p 1

Proof. (i) Using Assumption A.1, we have∥∥∥∥ V̄ V̄ ᵀ

T
− Ip

∥∥∥∥ ≤ ∥∥∥∥V V ᵀ

T
− Ip

∥∥∥∥+

∥∥∥∥V ιT ιᵀTV ᵀ

T 2

∥∥∥∥ =

∥∥∥∥V V ᵀ

T
− Ip

∥∥∥∥+ ‖v̄‖2 .p T
−1/2.

(ii) Using Assumption A.5, we have∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]

∥∥∥∥ ≤ ∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]

∥∥∥∥+ T−1

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]ιT ι

ᵀ
T

∥∥∥∥ .p T
1/2.

(iii) By Assumptions A.1, A.5 and A.6, we have∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]V̄

ᵀ

∥∥∥∥ ≤∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]V

ᵀ

∥∥∥∥+ T−1

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]ιT ι

ᵀ
TV

∥∥∥∥
≤
∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]V

ᵀ

∥∥∥∥+

∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]U[I]ιT

∥∥∥∥ ‖v̄‖ .p T
1/2.

Replacing V̄ by Z̄ in the above proof, with Assumptions A.2, A.5 and A.7, we also have∥∥∥∥(βᵀ[I]β[I]

)− 1
2
βᵀ[I]Ū[I]Z̄

ᵀ

∥∥∥∥ .p T
1/2.

(iv) Using Assumption A.4, we have

∥∥Ū∥∥
MAX

≤ ‖U‖MAX + T−1
∥∥UιT ιᵀT∥∥MAX

≤ ‖U‖MAX + ‖ū‖MAX ‖ιT ‖ .p (logN)1/2 + (log T )1/2.
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Using Assumptions A.1, A.4, A.6, we have

∥∥Ū V̄ ᵀ
∥∥

MAX
≤ ‖UV ᵀ‖MAX + T−1

∥∥UιT ιᵀTV ᵀ
∥∥

MAX
≤ ‖UV ᵀ‖MAX + T ‖ū‖MAX ‖v̄‖ .p (logN)1/2T 1/2.

Replacing V̄ by Z̄ in the above proof, with Assumptions A.2, A.4 and A.7, we also have

∥∥Ū Z̄ᵀ
∥∥

MAX
.p (logN)1/2T 1/2.

(v) Using Assumption A.4 , we have

∥∥Ū[I]

∥∥ ≤ ∥∥U[I]

∥∥+ T−1
∥∥U[I]ιT ι

ᵀ
T

∥∥ ≤ ∥∥U[I]

∥∥+
∥∥ū[I]

∥∥ ‖ιT ‖ .p |I|1/2 + T 1/2.

Using Assumptions A.1, A.4, A.6, we have

∥∥Ū[I]V̄
ᵀ
∥∥ ≤ ∥∥U[I]V

ᵀ
∥∥+ T−1

∥∥U[I]ιT ι
ᵀ
TV

ᵀ
∥∥ ≤ ∥∥U[I]V

ᵀ
∥∥+ T

∥∥ū[I]

∥∥ ‖v̄‖ .p |I|1/2T 1/2.

Replacing V̄ by Z̄ in the above proof, with Assumptions A.2, A.4 and A.7, we also have

∥∥Ū[I]Z̄
ᵀ
∥∥ .p |I|1/2T 1/2.

(vi) Using Assumption A.1, we have

∥∥V̄ ∥∥ ≤ ‖V ‖+ T−1
∥∥V ιT ιᵀT∥∥ ≤ ‖V ‖+ ‖v̄‖ ‖ιT ‖ .p T

1/2.

Using Assumption A.2, we have

∥∥Z̄∥∥ ≤ ‖Z‖+ T−1
∥∥ZιT ιᵀT∥∥ ≤ ‖Z‖+ ‖z̄‖ ‖ιT ‖ .p T

1/2.

Using Assumptions A.1 and A.2, we have

∥∥V̄ Z̄ᵀ
∥∥ ≤ ‖V Z‖+ T−1

∥∥V ιT ιᵀTZ∥∥ ≤ ‖V ‖+ T ‖v̄‖ ‖z̄‖ .p T
1/2,

and

∥∥V̄ Z̄ᵀ − V Zᵀ
∥∥ =

∥∥T−1V ιT ι
ᵀ
TZ
∥∥ = T ‖v̄‖ ‖z̄‖ .p 1.

Lemma 2. The singular vectors ξ(k)s we obtain from Algorithm 5 satisfy ξᵀ(j)ξ(k) = δjk for j, k ≤ p̂.

Proof. If j = k, this result holds from the definition of ξ(k). If j < k, recall that R̃(k) is defined in
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(B.39) and ξ(k) is the first right singular vector of R̃(k), we have

R̃(k) = R̄[Ik]

∏
i<k

(
IT − ξ(i)ξ

ᵀ
(i)

)
and ξ(k) = arg max

α

∥∥∥R̃(k)α
∥∥∥

‖α‖
.

If ξᵀ(k)ξ(j) = c0 6= 0 for some j < k, then

∥∥∥R̃(k)(ξ(k) − c0ξ(j))
∥∥∥ =

∥∥∥R̃(k)ξ(k) − c0R̃(k)ξ(j)

∥∥∥ =
∥∥∥R̃(k)ξ(k)

∥∥∥ , (B.98)

since the definition of R̃(k) implies that R̃(k)ξ(j) = 0 for j < k.

On the other hand, since ξᵀ(k)ξ(j) = c0 6= 0, we have (ξ(k) − c0ξ(j))
ᵀξ(j) = 0, and consequently,

∥∥ξ(k)

∥∥2
=
∥∥ξ(k) − c0ξ(j)

∥∥2
+
∥∥c0ξ(j)

∥∥2
>
∥∥ξ(k) − c0ξ(j)

∥∥2
. (B.99)

Apparently, if
∥∥∥R̃(k)

∥∥∥ = 0, the process will stop so we have
∥∥∥R̃(k)

∥∥∥ > 0 for k ≤ p̂. Together with

(B.98) and (B.99), we have

∥∥∥R̃(k)

∥∥∥ =

∥∥∥R̃(k)ξ(k)

∥∥∥∥∥ξ(k)

∥∥ ≤

∥∥∥R̃(k)(ξ(k) − c0ξ(j))
∥∥∥∥∥ξ(k) − c0ξ(j)

∥∥ ,

which contradicts with the definition of ξ(k). Therefore, ξᵀ(k)ξ(j) = 0 for j < k. This completes the

proof.

Lemma 3. Under Assumption A.3, if c → 0, qN/N0 → 0 then bk, β(k) and p̃ defined in Section A

satisfy

(i) 〈bj , bk〉 = δjk for j ≤ k ≤ p̃.

(ii)
∥∥β(k)

∥∥ � q1/2N1/2.

(iii) p̃ ≤ p.

(iv) p̃ = p, if we further have λp(η
ᵀη) & 1.

Proof. (i) Recall that bk is the first right singular vector of β(k) and β(k) = β[Ik]

∏
j<kMbj . Using the

same arguments as in the proof of Lemma 2, we have 〈bj , bk〉 = δjk for j ≤ k ≤ p̃.
(ii) The selection rule at kth step implies that

1

|Ik|
∑
i∈Ik

∥∥∥∥∥∥β[i]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥
2

MAX

≥ 1

N0

∑
i∈I0

∥∥∥∥∥∥β[i]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥
2

MAX

. (B.100)
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For any matrix A ∈ RN×d and set I ⊂ [N ], we have∑
i∈I

∥∥A[i]

∥∥2

MAX
≤ ‖A‖2F ≤ d

∑
i∈I

∥∥A[i]

∥∥2

MAX
,

and

‖A‖2 ≤ ‖A‖2F ≤ d ‖A‖
2 ,

we thereby have

‖A‖2 �
∑
i∈I

∥∥A[i]

∥∥2

MAX
. (B.101)

Using this result, (B.100) becomes

1

|Ik|

∥∥∥∥∥∥β[Ik]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥
2

&
1

N0

∥∥∥∥∥∥β[I0]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥
2

.

Then, we have

1√
|Ik|

∥∥β(k)

∥∥∥∥∥∥∥∥
∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥ ≥ 1√
|Ik|

∥∥∥∥∥∥β[Ik]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥ &
1√
N0

∥∥∥∥∥∥β[I0]

∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥ ≥ 1√
N0

σp
(
β[I0]

) ∥∥∥∥∥∥
∏
j<k

Mbjη
ᵀ

∥∥∥∥∥∥ ,
(B.102)

where we use β[Ik]

∏
j<kMbjη

ᵀ = β[Ik](
∏
j<kMbj )

2ηᵀ = β(k)

∏
j<kMbjη

ᵀ in the first inequality. With

σp(β[I0]) &
√
N0 from Assumption A.3, (B.102) leads to

∥∥β(k)

∥∥ & |Ik|1/2. In addition, ‖β‖MAX . 1

from Assumption A.3 leads to
∥∥β(k)

∥∥ . |Ik|1/2. Therefore, we have
∥∥β(k)

∥∥ � |Ik|1/2 � q1/2N1/2.

(iii) From (i), we have shown that bk’s are pairwise orthogonal for k ≤ p̃. It is impossible to have

more than p pairwise orthogonal p dimensional vectors. Thus, p̃ ≤ p.
(iv) Recall that p̃ is defined in Section A. Since the procedure in its definition stops at p̃+ 1, we

have at most qN − 1 rows of β satisfying
∥∥∥β[i]

∏
j≤p̃Mbjη

ᵀ
∥∥∥

MAX
≥ c, which implies

∥∥∥∥∥∥β[I0]

∏
j≤p̃

Mbjη
ᵀ

∥∥∥∥∥∥
2

. qN + (N0 − qN)c2 = o(N0),

where we use (B.101) and the assumptions c → 0, qN/N0 → 0. With σp(β[I0]) &
√
N0 from
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Assumption A.3, we have∥∥∥∥∥∥η
∏
j≤p̃

Mbj

∥∥∥∥∥∥ ≤ σp(β[I0])
−1

∥∥∥∥∥∥β[I0]

∏
j≤p̃

Mbjη
ᵀ

∥∥∥∥∥∥ = o(1). (B.103)

If p̃ ≤ p− 1, using (i), we have

η
∏
j≤p̃

Mbj = η − η
∑
j≤p̃

bjb
ᵀ
j ,

which implies that

σp(η) ≤ σ1

η∏
j≤p̃

Mbj

+ σp

η∑
j≤p̃

bjb
ᵀ
j

 . (B.104)

Since

Rank

η∑
j≤p̃

bjb
ᵀ
j

 ≤ p̃ ≤ p− 1, (B.105)

we have σp

(
η
∑

j≤p̃ bjb
ᵀ
j

)
≤ 0 and thus (B.104) and (B.103) lead to σp(η) . σ1

(
η
∏
j≤p̃Mbj

)
−→0.

This contradicts with the assumption that λp(η
ᵀη) & 1. Therefore, we have p̃ ≥ p. Together with

the result in (iii), we have p̃ = p.

Lemma 4. Suppose Assumptions A.1-A.8 hold. If c−1 log(NT )1/2
(
q−1/2N−1/2 + T−1/2

)
→ 0 and

c→ 0, then for k ≤ p̃ and for Ik, p̃ and β(k) defined in Section A, we have

(i) P(Îk = Ik)→ 1.

(ii)
∥∥∥R̃(k) − β(k)V̄

∥∥∥ .p q
1/2N1/2 + T 1/2.

(iii) |λ̂1/2
(k) /

∥∥β(k)

∥∥− 1| .p q
−1/2N−1/2 + T−1/2.

(iv)

∥∥∥∥PV̂ ᵀ
(k)
− T−1V̄ ᵀPbk V̄

∥∥∥∥ .p q
−1/2N−1/2 + T−1/2.

(v) P(p̂ = p̃)→ 1.

Proof. We prove (i)-(iv) by induction. First, we show that (i)-(iv) hold when k = 1:

(i) Recall that Î1 is selected based on T−1R̄Ḡᵀ and I1 based on βηᵀ. With simple algebra, we

have

T−1R̄Ḡᵀ − βηᵀ = β
(
T−1V̄ V̄ ᵀ − Ip

)
ηᵀ + T−1Ū V̄ ᵀηᵀ + T−1βV̄ Z̄ᵀ + T−1Ū Z̄ᵀ.
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With Assumptions A.1, A.2, A.3, A.6 A.7, we have

∥∥T−1R̄Ḡᵀ − βηᵀ
∥∥

MAX
. ‖β‖MAX

∥∥T−1V̄ V̄ ᵀ − Ip
∥∥ ‖η‖+ T−1

∥∥Ū V̄ ᵀ
∥∥

MAX
‖η‖

+ T−1 ‖β‖MAX

∥∥V̄ Z̄ᵀ
∥∥+ T−1

∥∥Ū Z̄ᵀ
∥∥

MAX
.p (logN)1/2T−1/2.

From Assumption A.8, we have c
(1)
qN − c

(1)
qN+1 & c

(1)
qN and the the definition of p̃ implies that c

(k)
qN ≥ c

for k ≤ p̃. Thus, we have c
(1)
qN − c

(1)
qN+1 & c. Define the events

A1 : =
{ ∥∥T−1R̄[i]Ḡ

ᵀ
∥∥

MAX
> (c

(1)
qN + c

(1)
qN+1)/2 for all i ∈ I1

}
,

A2 : =
{ ∥∥T−1R̄[i]Ḡ

ᵀ
∥∥

MAX
< (c

(1)
qN + c

(1)
qN+1)/2 for all i ∈ Ic1

}
,

A3 : =
{ ∥∥T−1R̄[i]Ḡ

ᵀ − β[i]η
ᵀ
∥∥

MAX
≥ (c

(1)
qN − c

(1)
qN+1)/2 for some i ∈ [N ]

}
. (B.106)

It is easy to observe that {Î1 = I1} ⊃ A1 ∩ A2. In addition, from the definition of I1, we have∥∥β[i]η
ᵀ
∥∥

MAX
≥ c(1)

qN for all i ∈ I1 and
∥∥β[i]η

ᵀ
∥∥

MAX
≤ c(1)

qN+1 for all i ∈ Ic1. Therefore, if Ac1 occurs, we

have ∥∥T−1R̄[i]Ḡ
ᵀ − β[i]η

ᵀ
∥∥

MAX
≥ (c

(1)
qN − c

(1)
qN+1)/2,

for some i ∈ I1, which implies Ac1 ⊂ A3. Similarly, we have Ac2 ⊂ A3. Using {Î1 = I1} ⊃ A1 ∩ A2

and Ac1 ∪Ac2 ⊂ A3, we have

P(Î1 = I1) ≥ P(A1 ∩A2) = 1− P(Ac1 ∪Ac2) ≥ 1− P(A3). (B.107)

Using c−1(logN)1/2T−1/2 → 0 and c
(1)
qN − c

(1)
qN+1 & c, we have P(A3) → 0 and consequently, P(Î1 =

I1)→ 1.

(ii) Since Î1 = I1 with high probability, we impose Î1 = I1 below. Then, we have R̃(1) = R̄[I1]

and Assumption A.13 gives
∥∥∥R̃(1) − β(1)V̄

∥∥∥ =
∥∥Ū[I1]

∥∥ .p q
1/2N1/2 + T 1/2.

(iii) From Lemma 10, we have σj(β(1)V̄ )/σj(β1) = T 1/2 +Op(1). The result in (ii) implies that

|
∥∥∥R̃(1)

∥∥∥− ∥∥β(1)V̄
∥∥| ≤ ∥∥∥R̃(1) − β(1)V̄

∥∥∥ .p q
1/2N1/2 + T 1/2.

Together with
∥∥β(1)

∥∥ � qN from Lemma 3, we have

|
λ̂

1/2
(1)∥∥β(k)

∥∥ − 1| = |

∥∥∥R̃(1)

∥∥∥
T 1/2

∥∥β(1)

∥∥ − 1| ≤
|
∥∥∥R̃(1)

∥∥∥− ∥∥β(1)V̄
∥∥|

T 1/2
∥∥β(1)

∥∥ +
|
∥∥β(1)V̄

∥∥− T 1/2
∥∥β(1)

∥∥|
T 1/2

∥∥β(1)

∥∥ .p q
−1/2N−1/2 + T−1/2.

(iv) Let ξ̃(1) ∈ RT×1 denote the first right singular vector of β(1)V̄ . From Lemma 10, we have∥∥∥Pξ̃(1) − T−1V̄ ᵀPbk V̄
∥∥∥ .p T

−1/2 (B.108)
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and σj(β(1)V̄ )/σj(β(1)) = T 1/2 +Op(1) for j ≤ p, which leads to

σ1(β(1)V̄ )− σ2(β(1)V̄ ) = T 1/2(σ1(β(1))− σ2(β(1))) +Op(σ1(β(1))) �p T 1/2σ1(β(1)), (B.109)

where we use the assumption that σ2(β(1)) ≤ (1 + δ)−1σ1(β(1)) in the last equation.

Using
∥∥∥R̃(1) − β(1)V̄

∥∥∥ .p q1/2N1/2 + T 1/2 as proved in (ii), (B.109), Lemma 3 and Wedin’s

sin-theta theorem for singular vectors in Wedin (1972), we have∥∥∥∥PV̂ ᵀ
(k)
− Pξ̃(1)

∥∥∥∥ .p
q1/2N1/2 + T 1/2

σ1(β(1)V̄ )− σ2(β(1)V̄ )
.p q

−1/2N−1/2 + T−1/2, (B.110)

In light of (B.108) and (B.110), we have that (iv) holds for k = 1.

So far, we have proved that (i)-(iv) hold for k = 1. Now, assuming that (i)-(iv) hold for j ≤ k−1,

we will show that (i)-(iv) continue to hold for j = k.

(i) Again, we show the difference between the sample covariances and their population counter-

parts introduced in the SPCA procedure are tiny. At the kth step, the difference can be written

as ∥∥∥∥∥∥β
k−1∏
j=1

Mbjη
ᵀ − T−1(βV̄ + Ū)

k−1∏
j=1

M
V̂ ᵀ
(j)

(ηV̄ + Z̄)ᵀ

∥∥∥∥∥∥
MAX

≤

∥∥∥∥∥∥β
k−1∏
j=1

Mbjη
ᵀ − T−1βV̄

k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀηᵀ

∥∥∥∥∥∥
MAX

+ T−1

∥∥∥∥∥∥βV̄
k−1∏
j=1

M
V̂ ᵀ
(j)
Z̄ᵀ

∥∥∥∥∥∥
MAX

+ T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀηᵀ

∥∥∥∥∥∥
MAX

+ T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ᵀ
(j)
Z̄ᵀ

∥∥∥∥∥∥
MAX

(B.111)

Since (iv) holds for j ≤ k − 1, we have∥∥∥∥∥∥
k−1∑
j=1

P
V̂ ᵀ
(j)
− T−1V̄ ᵀ

k−1∑
j=1

Pbj V̄

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k−1∑
j=1

(
P
V̂ ᵀ
(j)
− T−1V̄ ᵀPbj V̄

)∥∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2. (B.112)

Using Lemma 2 and Lemma 3(i), we have

k−1∏
j=1

Mbj = Ip −
k−1∑
j=1

Pbj , and

k−1∏
j=1

M
V̂(j)

= IT −
k−1∑
j=1

P
V̂(j)

.
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Using the above equations, (B.112), and
∥∥T−1V̄ V̄ ᵀ − Ip

∥∥ .p T
−1/2, we have

T−1/2

∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥ = T−1/2

∥∥∥∥∥∥V̄
k−1∑
j=1

P
V̂ ᵀ
(j)
−
k−1∑
j=1

Pbj V̄

∥∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2.

(B.113)

Similarly, right multiplying V̄ ᵀ to the term inside the ‖·‖ of (B.113), we have∥∥∥∥∥∥T−1V̄
k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀ −

k−1∏
j=1

Mbj

∥∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2. (B.114)

Then, we analyze these four terms in (B.111) one by one. For the first term, using (B.114) and

Assumption A.3, we have∥∥∥∥∥∥β
k−1∏
j=1

Mbjη
ᵀ − T−1βV̄

k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀηᵀ

∥∥∥∥∥∥
MAX

. ‖β‖MAX

∥∥∥∥∥∥
k−1∏
j=1

Mbj − T
−1V̄

k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀ

∥∥∥∥∥∥ ‖η‖
.pq

−1/2N−1/2 + T−1/2.

For the second term, using (B.113), Lemma 1 and Assumptions A.3 and A.2, we have

T−1

∥∥∥∥∥∥βV̄
k−1∏
j=1

M
V̂ ᵀ
(j)
Z̄ᵀ

∥∥∥∥∥∥
MAX

.T−1 ‖β‖MAX

∥∥∥∥∥∥
k−1∏
j=1

Mbj

∥∥∥∥∥∥∥∥V̄ Z̄ᵀ
∥∥+ T−1 ‖β‖MAX

∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥∥∥Z̄∥∥
.pq

−1/2N−1/2 + T−1/2.

For the third term, using (B.113) and Lemma 1, we have

T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ᵀ
(j)
V̄ ᵀηᵀ

∥∥∥∥∥∥
MAX

.T−1
∥∥Ū V̄ ᵀ

∥∥
MAX

∥∥∥∥∥∥
k−1∏
j=1

Mbj

∥∥∥∥∥∥ ‖η‖
+ T−1

∥∥Ū∥∥
MAX

T 1/2

∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥ ‖η‖
.p(logNT )1/2

(
q−1/2N−1/2 + T−1/2

)
.

For the forth term, using (B.112) and Lemma 1, we have

T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ᵀ
(j)
Z̄ᵀ

∥∥∥∥∥∥
MAX

.T−1
∥∥Ū Z̄ᵀ

∥∥
MAX

+ T−2
∥∥Ū V̄ ᵀ

∥∥
MAX

∥∥∥∥∥∥
k−1∑
j=1

Pbj

∥∥∥∥∥∥∥∥V̄ Z̄ᵀ
∥∥
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+ T−1/2
∥∥Ū∥∥

MAX

∥∥∥∥∥∥T−1V̄ ᵀ
k−1∑
j=1

Pbj V̄ −
k−1∑
j=1

P
V̂ ᵀ
(j)

∥∥∥∥∥∥∥∥Z̄∥∥
.p(logNT )1/2

(
q−1/2N−1/2 + T−1/2

)
.

Hence, we have∥∥∥∥∥∥T−1R̄

k−1∏
j=1

M
V̂ ᵀ
(j)
Ḡᵀ − β

k−1∏
j=1

Mbjη
ᵀ

∥∥∥∥∥∥
MAX

.p (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
. (B.115)

As in the case of k = 1, from Assumption A.8, we have c
(k)
qN − c

(k)
qN+1 & c

(k)
qN . In addition, since the

stopping rule for the procedure in Section A is c
(p̃+1)
qN < c, we have c

(k)
qN ≥ c for k ≤ p̃. With the

assumption that

c−1(logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
→ 0,

we can reuse the arguments for (B.106) and (B.107) in the case of k = 1 and obtain P(Îk = Ik)→ 1.

(ii) We impose Îk = Ik below. Then, we have R̃(k) = R̄[Ik]

∏k−1
j=1 MV̂ ᵀ

(j)
and thus

R̃(k) − β(k)V̄ = R̄[Ik]

k−1∏
j=1

M
V̂ ᵀ
(j)
− β(k)V̄ = β̄[Ik]

V̄ k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

+ Ū[Ik]

k−1∏
j=1

M
V̂ ᵀ
(j)
.

Hence, using Assumptions A.3, Lemma 1, and (B.113), we have

∥∥∥R̃(k) − β(k)V̄
∥∥∥ ≤ ∥∥β[Ik]

∥∥∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ᵀ
(j)
−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥+
∥∥Ū[Ik]

∥∥∥∥∥∥∥∥
k−1∏
j=1

M
V̂ ᵀ
(j)

∥∥∥∥∥∥ .p q
1/2N1/2 + T 1/2.

(iii) The proof of (iii) is analogous to the case k = 1. Rewrite the proof of the case k = 1 by

replacing R̃(1) and β(1) by R̃(k) and β(k). We have |λ̂1/2
(k) /

∥∥β(k)

∥∥− 1| .p q
−1/2N−1/2 + T−1/2.

(iv) The proof of (iv) is analogous to the case k = 1. Let ξ̃(k) denote the first right singular

vector of β(k)V̄ , then we have
∥∥∥Mξ̃(k)

− T−1V̄ ᵀMbk V̄
∥∥∥ .p T

−1/2 from Lemma 10. Since we have∥∥∥R̃(k) − β(k)V̄
∥∥∥ .p q

−1/2N−1/2 + T−1/2 from (ii), using the same proof as in the case k = 1, we have

∥∥∥∥MV̂ ᵀ
(k)
−Mξ̃(k)

∥∥∥∥ .p q
−1/2N−1/2 + T−1/2,

by Wedin’s sin-theta theorem. Combining these two inequalities completes the proof.

To sum up, by induction, we have shown that (i)-(iv) hold for k ≤ p̃.
(v) Recall that p̃ is determined by β[i]

∏
j<kMbjη

ᵀ whereas p̂ is determined by

T−1R̄[i]

∏
j<kMV̂ ᵀ

(j)
Ḡᵀ. Since (iv) holds for j ≤ p̃ as shown above, using the same proof for (B.115),
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we have∥∥∥∥∥∥T−1R̄

p̃∏
j=1

M
V̂ ᵀ
(j)
Ḡᵀ − β

p̃∏
j=1

Mbjη
ᵀ

∥∥∥∥∥∥
MAX

.p (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
. (B.116)

The assumption c
(p̃+1)
qN ≤ (1 + δ)−1c in Assumption A.8 implies that c− c(p̃+1)

qN � c. Together with

c−1(logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
→ 0,

we can reuse the arguments for (B.106) and (B.107) with events

B1 : =


∥∥∥∥∥∥T−1R̄[i]

p̃∏
j=1

M
V̂ ᵀ
(j)
Ḡᵀ

∥∥∥∥∥∥
MAX

> (c+ c
(p̃+1)
qN )/2 for at most qN − 1 rows i ∈ [N ]

 ,

B2 : =


∥∥∥∥∥∥T−1R̄[i]

p̃∏
j=1

M
V̂ ᵀ
(j)
Ḡᵀ − β[i]

p̃∏
j=1

Mbjη
ᵀ

∥∥∥∥∥∥
MAX

≥ (c− c(p̃+1)
qN )/2 for some i ∈ [N ]

 , (B.117)

to obtain P(p̂ = p̃) ≥ P(B1) = 1− P(Bc
1) ≥ 1− P(B2)→ 1.

Lemma 5. Suppose that Γ(k) ∈ R|Ik|×|Ik| is an orthogonal matrix with the first p rows equals to(
βᵀ[Ik]β[Ik]

)− 1
2
βᵀ[Ik] and we define

(
s1

(k)

s2
(k)

)
:= Γ(k)ς(k) and

(
Ũ1

(k)

Ũ2
(k)

)
:= Γ(k)Ū[Ik],

where s1
(k) ∈ Rp×1 and Ũ1

(k) ∈ Rp×T are the first p rows of Γ(k)ς(k) and Γ(k)Ū[Ik], respectively. Then,

under Assumptions A.1-A.8, we have

(i)
∥∥∥s2

(k)

∥∥∥ .p T
−1/2λ̂

−1/2
(k) (|Ik|1/2 + T 1/2).

(ii)
∥∥∥Ũ1

(k)

∥∥∥ .p T
1/2,

∥∥∥Ũ1
(k)V̄

ᵀ
∥∥∥ .p T

1/2,
∥∥∥Ũ1

(k)Z̄
ᵀ
∥∥∥ .p T

1/2.

Proof. (i) The assumption Îk = Ik and the definition (B.39) of R̃(k) together lead to

R̃(k) = R̄[Ik]

∏
i<k

(
IT − ξ(i)ξ

ᵀ
(i)

)
.

Then, with (B.56) and Lemma 2, we have ς(k) = R̄[Ik]ξ(k)/
√
T λ̂(k). From the construction of Γ(k),

we have

Γ(k)R̄(k) =

(βᵀ[Ik]β[Ik]

) 1
2
V̄ + Ũ1

(k)

Ũ2
(k)

 ,
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which in turn gives

(
s1

(k)

s2
(k)

)
= Γ(k)ς(k) =

1√
T λ̂(k)

(βᵀ[Ik]β[Ik]

) 1
2
V̄ + Ũ1

(k)

Ũ2
(k)

 ξ(k).

With Lemma 1(v), we have

∥∥∥s2
(k)

∥∥∥ =

∥∥∥∥∥∥
Ũ2

(k)√
T λ̂(k)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥ Ū[Ik]√

T λ̂(k)

∥∥∥∥∥∥ .p T
−1/2λ̂

−1/2
(k) (|Ik|1/2 + T 1/2).

(ii) With Lemma 1(ii)(iii) and the definition of Γ(k), these results follow immediately.

Lemma 6. Under Assumptions A.1-A.8, if λ̂(j) �p |Ij | and |Ij | � qN for j ≤ p̃, then for k ≤ p̃, we

have

(i)

∥∥∥∥∥ Ūᵀ
[Ik]

ς(k)√
T λ̂(k)

∥∥∥∥∥ .p q
−1/2N−1/2 + T−1.

(ii)

∥∥∥∥∥ V̄ Ūᵀ
[Ik]

ς(k)

T
√
λ̂(k)

∥∥∥∥∥ .p q
−1N−1 + T−1,

∥∥∥∥∥ Z̄Ūᵀ
[Ik]

ς(k)

T
√
λ̂(k)

∥∥∥∥∥ .p q
−1N−1 + T−1, |

ςᵀ
(k)
ū[Ik]√
λ̂(k)
| .p q

−1N−1 + T−1.

Proof. (i) Using the equation ςᵀ(k)Ū[Ik] = (s1
(k))

ᵀŨ1
(k) + (s2

(k))
ᵀŨ2

(k) and Lemma 5, we have

∥∥∥ςᵀ(k)Ū[Ik]

∥∥∥ ≤ ∥∥∥s1
(k)

∥∥∥∥∥∥Ũ1
(k)

∥∥∥+
∥∥∥s2

(k)

∥∥∥∥∥∥Ũ2
(k)

∥∥∥ ≤ ∥∥∥s1
(k)

∥∥∥∥∥∥Ũ1
(k)

∥∥∥+
∥∥∥s2

(k)

∥∥∥∥∥Ū[Ik]

∥∥
.p

√
T +

|Ik|+ T√
T λ̂(k)

, (B.118)

which leads to ∥∥∥∥∥∥
Ūᵀ

[Ik]ς(k)√
T λ̂(k)

∥∥∥∥∥∥ .p
1√
λ̂(k)

+
|Ik|+ T

T λ̂(k)

.p q
−1/2N−1/2 + T−1.

(ii) From Lemmas 1 and 5, we have∥∥∥V̄ Ūᵀ
[Ik]ς

(k)
∥∥∥ ≤ ∥∥∥V̄ (Ũ1

(k)

)ᵀ
s1

(k)

∥∥∥+
∥∥∥V̄ (Ũ2

(k)

)ᵀ
s2

(k)

∥∥∥ ≤ ∥∥∥V̄ (Ũ1
(k)

)ᵀ∥∥∥+
∥∥∥V̄ Ūᵀ

[Ik]

∥∥∥∥∥∥s2
(k)

∥∥∥
.p

√
T +

|Ik|+ T√
λ̂(k)

,

which leads to ∥∥∥∥∥∥
V̄ Ūᵀ

[Ik]ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥ .p
1√
T λ̂(k)

+
|Ik|+ T

T λ̂(k)

.p q
−1N−1 + T−1.

39



Replacing V̄ by Z̄ and ιᵀT in the above proof and using Lemmas 1 and 5, we have similar results:∥∥∥∥∥∥
Z̄Ūᵀ

[Ik]ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥ .p q
−1N−1 + T−1, and |

ūᵀ[Ik]ς(k)√
λ̂(k)

| .p q
−1N−1 + T−1. (B.119)

Lemma 7. Under Assumptions A.1-A.8, if λ̂(j) �p |Ij | and |Ij | � qN for j ≤ p̃, then for k, l ≤ p̃,

we have

(i)

∥∥∥∥∥ Ũᵀ
(k)
ς(k)√

T λ̂(k)

∥∥∥∥∥ .p q
−1/2N−1/2 + T−1,

∥∥∥∥∥ Ũ(k)√
T λ̂(k)

∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2.

(ii)

∥∥∥∥∥ V̄ Ũᵀ
(k)
ς(k)

T
√
λ̂(k)

∥∥∥∥∥ .p q
−1N−1+T−1,

∥∥∥∥∥ Z̄Ũᵀ
(k)
ς(k)

T
√
λ̂(k)

∥∥∥∥∥ .p q
−1N−1+T−1, |

ςᵀ
(k)
ũ(k)√
λ̂(k)
| .p q

−1N−1+T−1.

(iii) |
ξᵀ
(l)
Ũᵀ
(k)
ς(k)√

T λ̂(k)
| .p q

−1N−1 + T−1.

Proof. (i) Recall that in the definition of U(k) in (B.40), we have

Ũ(k) = Ū[Ik] −
k−1∑
i=1

R̄[Ik]ξ(i)√
T

ςᵀ(i)Ũ(i)√
λ̂(i)

. (B.120)

Then, a direct multiplication of ςᵀ(k)/
√
T λ̂(k) from the left side of (B.120) leads to

ςᵀ(k)Ũ(k)√
T λ̂(k)

=
ςᵀ(k)Ū[Ik]√
T λ̂(k)

−
k−1∑
i=1

ςᵀ(k)R̄[Ik]ξ(i)√
T λ̂(k)

ςᵀ(i)Ũ(i)√
T λ̂(i)

.

Consequently, with Lemma 6(i) we have∥∥∥∥∥∥
ςᵀ(k)Ũ(k)√
T λ̂(k)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
ςᵀ(k)Ū[Ik]√
T λ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ R̄[Ik]√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
ςᵀ(i)Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ .p
1√
λ̂(k)

+
|Ik|+ T

T λ̂(k)

+

√
|Ik|
λ̂(k)

k−1∑
i=1

∥∥∥∥∥∥
ςᵀ(i)Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥
.p q

−1/2N−1/2 + T−1 +

k−1∑
i=1

∥∥∥∥∥∥
ςᵀ(i)Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ . (B.121)

If
∥∥∥T−1/2λ̂

−1/2
(i) ςᵀ(i)Ũ(i)

∥∥∥ .p q
−1/2N−1/2 + T−1 holds for i ≤ k − 1, then (B.121) implies that this

inequality also holds for k. In addition, when k = 1, Ũ(1) = Ū[I1] and this equation is implied from

Lemma 6(i). Therefore, we have
∥∥∥T−1/2λ̂

−1/2
(k) ςᵀ(k)Ũ(k)

∥∥∥ .p q
−1/2N−1/2 + T−1 for k ≤ p̃ by induction.
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Using (B.120) again, with Assumption A.4, we have∥∥∥∥∥∥ Ũ(k)√
T λ̂(k)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥ Ū[Ik]√

T λ̂(k)

∥∥∥∥∥∥+

k−1∑
i=1

∥∥∥∥∥∥ R̄[Ik]√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥ Ũ(i)√

T λ̂(i)

∥∥∥∥∥∥ .p q
−1/2N−1/2 + T−1/2 +

k−1∑
i=1

∥∥∥∥∥∥ Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ .
(B.122)

When k = 1, Assumption A.4 implies that
∥∥∥T−1/2λ̂

−1/2
(k) Ũ(k)

∥∥∥ .p q
−1/2N−1/2 + T−1/2. Then, using

the same induction argument with (B.122), we have this ineqaulity holds for k ≤ p̃.
(ii) Similarly, by simple multiplication of V̄ ᵀ from the right side of (B.120), we have

ςᵀ(k)Ũ(k)V̄
ᵀ

T
√
λ̂(k)

=
ςᵀ(k)Ū[Ik]V̄

ᵀ

T
√
λ̂(k)

−
k−1∑
i=1

ςᵀ(k)R̄[Ik]ξ(i)√
T λ̂(k)

ςᵀ(i)Ũ(i)V̄
ᵀ

T
√
λ̂(i)

.

Consequently, we have∥∥∥∥∥∥
ςᵀ(k)Ũ(k)V̄

ᵀ

T
√
λ̂(k)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
ςᵀ(k)Ū[Ik]V̄

ᵀ

T
√
λ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ R̄[Ik]√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
ςᵀ(i)Ũ(i)V̄

ᵀ

T
√
λ̂(i)

∥∥∥∥∥∥
.p

1√
T λ̂(k)

+
|Ik|+ T

T λ̂(k)

+

√
|Ik|
λ̂(k)

k−1∑
i=1

∥∥∥∥∥∥
ςᵀ(i)Ũ(i)V̄

ᵀ√
T λ̂(i)

∥∥∥∥∥∥
.p q

−1N−1 + T−1 +

k−1∑
i=1

∥∥∥∥∥∥
ςᵀ(i)Ũ(i)V̄

ᵀ√
T λ̂(i)

∥∥∥∥∥∥ . (B.123)

When k = 1,
∥∥∥T−1λ̂

−1/2
(k) ςᵀ(k)Ũ(k)V̄

ᵀ
∥∥∥ .p q

−1N−1 + T−1 is a result of Lemma 6(ii). Then, a direct

induction argument using (B.123) leads to this inequality for k ≤ p̃.
Replacing V̄ by Z̄ and ιᵀT in the above proof, and using Lemma 6(ii), we have the following

results: ∥∥∥∥∥∥
Z̄Ũᵀ

(k)ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥ .p q
−1N−1 + T−1 and |

ũᵀ(k)ς(k)√
λ̂(k)

| .p q
−1N−1 + T−1.

(iii) Recall that R̃(k) = β̃(k)V̄ + Ũ(k) as defined in (B.39), we have

|ςᵀ(l)R̃(l)Ũ
ᵀ
(k)ς(k)| ≤ |ς

ᵀ
(l)β̃(l)V̄ Ũ

ᵀ
(k)ς(k)|+ |ς

ᵀ
(l)Ũ(l)Ũ

ᵀ
(k)ς(k)| ≤

∥∥∥ςᵀ(l)β̃(l)

∥∥∥∥∥∥V̄ Ũᵀ
(k)ς(k)

∥∥∥+
∥∥∥ςᵀ(l)Ũ(l)

∥∥∥∥∥∥Ũᵀ
(k)ς(k)

∥∥∥ .

41



Using (B.56), we have

|
ξᵀ(k)Ũ

ᵀ
(k)ς(k)√
T λ̂(k)

| = |
ςᵀ(l)R̃(l)Ũ

ᵀ
(k)ς(k)

T
√
λ̂(k)λ̂(l)

| ≤

∥∥∥∥∥∥
ςᵀ(l)β̃(l)√
λ̂(l)

∥∥∥∥∥∥
∥∥∥∥∥∥
V̄ Ũᵀ

(k)ς(k)

T
√
λ̂(k)

∥∥∥∥∥∥+

∥∥∥∥∥∥
Ũᵀ

(k)ς(k)√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
Ũᵀ

(l)ς(l)√
T λ̂(l)

∥∥∥∥∥∥ . (B.124)

With Lemma 1 and (i), we have

T 1/2
∥∥∥β̃(k)

∥∥∥ .p σp(V̄ )
∥∥∥β̃(k)

∥∥∥ ≤ ∥∥∥β̃(k)V̄
∥∥∥ ≤ ∥∥∥Ũ(k)

∥∥∥+
∥∥∥R̃(k)

∥∥∥ ≤ ∥∥∥Ũ(k)

∥∥∥+
∥∥R̄[Ik]

∥∥ .p T
1/2q1/2N1/2,

(B.125)

which leads to
∥∥∥λ̂−1/2

(k) ςᵀ(k)β̃(k)

∥∥∥ .p q
−1/2N−1/2

∥∥∥β̃(k)

∥∥∥ .p 1. Using this inequality and results of (i)

and (ii) in (B.124) completes the proof.

Lemma 8. Under Assumptions A.1-A.8, if λ̂(j) �p |Ij | and |Ij | � qN for j ≤ p̃, then for k ≤ p̃+ 1,

we have

(i)
∥∥∥Z̃(k)V̄

ᵀ
∥∥∥ .p T

1/2 + Tq−1N−1.

(ii)
∥∥∥Z̃(k)Ū

ᵀ
[I0]

∥∥∥ .p N
1/2
0 T 1/2 + Tq−1/2N−1/2.

Proof. (i) From the definition (B.44) of Z̃(k), we have

Z̃(k)V̄
ᵀ = Z̄V̄ ᵀ −

k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)V̄
ᵀ√

T λ̂(i)

.

Then, with Lemma 7(ii), we have

∥∥∥Z̃(k)V̄
ᵀ
∥∥∥ ≤ ∥∥Z̄V̄ ᵀ

∥∥+
k−1∑
i=1

∥∥Ḡξ(i)

∥∥∥∥∥∥∥∥
ςᵀ(i)Ũ(i)V̄

ᵀ√
T λ̂(i)

∥∥∥∥∥∥ .p T
1/2 + T

(
q−1N−1 + T−1

)
.p T

1/2 + Tq−1N−1.

(ii) With (B.44) again, we have

Z̃(k)Ū
ᵀ
[I0] = Z̄Ūᵀ

[I0] −
k−1∑
i=1

Ḡξ(i)

ςᵀ(i)Ũ(i)Ū
ᵀ
[I0]√

T λ̂(i)

,

which, along with Lemma 7(i) and the assumptions on q, lead to

∥∥∥Z̃(k)Ū
ᵀ
[I0]

∥∥∥ ≤ ∥∥∥Z̄Ūᵀ
[I0]

∥∥∥+

k−1∑
i=1

∥∥Ḡξ(i)

∥∥∥∥∥∥∥∥
ςᵀ(i)Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥∥∥Ū[I0]

∥∥
.p N

1/2
0 T 1/2 +

(
q−1/2N−1/2 + T−1

)(
N

1/2
0 T 1/2 + T

)
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.p N
1/2
0 T 1/2 + Tq−1/2N−1/2.

Lemma 9. Suppose that Assumptions A.1-A.8 hold. If λ̂(j) �p |Ij | and |Ij | � qN for j ≤ p̃, then

H1, H2 defined by (B.54) satisfy

(i) ‖H1‖ .p 1, ‖H2‖ .p 1.

(ii) ‖Hᵀ
1H2 − Ip̃‖ .p T

−1 + q−1N−1.

(iii) ‖H1 −H2‖ .p T
−1/2 + q−1N−1.

Proof. (i) Using the definition (B.54) of H1 and Lemma 1, we have

‖hk1‖ =

∥∥∥∥∥ V̄ ξ(k)√
T

∥∥∥∥∥ ≤ T−1/2
∥∥V̄ ∥∥ .p 1,

which leads to ‖H1‖ .p 1.

Using the definition (B.54) of H2, we have

‖hk2‖ =

∥∥∥∥∥∥
β̃ᵀ(k)ς(k)√
λ̂(k)

∥∥∥∥∥∥ ≤ q−1/2N−1/2
∥∥∥β̃(k)

∥∥∥ . (B.126)

With Lemma 1 and Lemma 7(i), we have

T 1/2
∥∥∥β̃(k)

∥∥∥ .p σp(V̄ )
∥∥∥β̃(k)

∥∥∥ ≤ ∥∥∥β̃(k)V̄
∥∥∥ ≤ ∥∥∥Ũ(k)

∥∥∥+
∥∥∥R̃(k)

∥∥∥ ≤ ∥∥∥Ũ(k)

∥∥∥+
∥∥R̄[Ik]

∥∥ .p T
1/2q1/2N1/2.

(B.127)

Combining (B.126) and (B.127), we have ‖hk2‖ .p 1 and thus ‖H2‖ .p 1.

(ii) By (B.56) and Lemma 2, we have

δlk = ξᵀ(l)ξ(k) =
ξᵀ(l)V̄

ᵀβ̃ᵀ(k)ς(k)√
T λ̂(k)

+
ξᵀ(l)Ũ

ᵀ
(k)ς(k)√
T λ̂(k)

= hᵀl1hk2 +
ξᵀ(l)Ũ

ᵀ
(k)ς(k)√
T λ̂(k)

.

By Lemma 7(iii), we have

|hᵀl1hk2 − δlk| .p q
−1N−1 + T−1,

and thus ‖Hᵀ
1H2 − Ip̃‖ .p q

−1N−1 + T−1.
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(iii) Using (B.56), we have

V̄ ξ(k) =
V̄ V̄ ᵀβ̃ᵀ(k)√
T λ̂(k)

ς(k) +
V̄ Ũᵀ

(k)ς(k)√
T λ̂(k)

.

With the definition of hk1 and hk2, it becomes

hk1 =
V̄ V̄ ᵀ

T
hk2 +

V̄ Ũᵀ
(k)ς(k)

T
√
λ̂(k)

. (B.128)

With ‖hk2‖ .p 1, Lemma 1 and Lemma 7(ii), (B.128) leads to

hk1 − hk2 .p T
−1/2 + q−1N−1.

This completes the proof.

Lemma 10. For any N × p matrix β, if
∥∥T−1V̄ V̄ ᵀ − Ip

∥∥ .p T
−1/2, we have

(i) σj(βV̄ )/σj(β) = T 1/2 +Op(1) for j ≤ p.

(ii) If σ1(β)− σ2(β) � σ1(β), then
∥∥∥Pξ̃ − T−1V̄ ᵀPbV̄

∥∥∥ .p T
−1/2, where b is the first right singular

vector of β and ξ̃ is the first right singular vector of βV̄ .

Proof. (i) For j ≤ p, σj(βV̄ )2 = λj(βV̄ V̄
ᵀβᵀ) = λj(β

ᵀβV̄ V̄ ᵀ) which implies

λj(β
ᵀβ)λp(V̄ V̄

ᵀ) ≤ σj(βV̄ )2 ≤ λj(βᵀβ)λ1(V̄ V̄ ᵀ).

With the assumption
∥∥T−1V̄ V̄ − Ip

∥∥ .p T
−1/2, we have T−1/2σj(βV̄ )/σj(β) = 1 + Op

(
T−1/2

)
by

sin-theta theorem.

(ii) Let ς and ς̃ be the first singular vectors of β and βV̄ , respectively. Equivalently, ς and ς̃ are

the eigenvectors of ββᵀ and T−1βV̄ V̄ ᵀβᵀ. Since
∥∥ββᵀ − T−1βV̄ V̄ ᵀβᵀ

∥∥ ≤ ‖β‖2 ∥∥T−1V̄ V̄ ᵀ − Ip
∥∥ .p

σ1(β)2T−1/2 and σ1(β)− σ2(β) � σ1(β), by sin-theta theorem we have

‖ςςᵀ − ς̃ ς̃ᵀ‖ .
∥∥ββᵀ − T−1βV̄ V̄ ᵀβᵀ

∥∥
σ1(β)2 − σ2(β)2 −O(

∥∥ββᵀ − T−1βV̄ V̄ ᵀβᵀ
∥∥)

.p T
−1/2.

Using the relationship between left and right singular vectors, we have

bᵀ =
ςᵀβ

σ1(β)
, ξ̃ᵀ =

ς̃ᵀβV̄∥∥βV̄ ∥∥ .
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Therefore,∥∥∥∥∥Pξ̃ − σ1(β)2∥∥βV̄ ∥∥2 V̄
ᵀPbV̄

∥∥∥∥∥ =

∥∥∥∥∥ξ̃ξ̃ᵀ − V̄ ᵀβᵀςςᵀβV̄∥∥βV̄ ∥∥2

∥∥∥∥∥ =

∥∥∥∥∥ V̄ ᵀβᵀς̃ ς̃ᵀβV̄∥∥βV̄ ∥∥2 − V̄ ᵀβᵀςςᵀβV̄∥∥βV̄ ∥∥2

∥∥∥∥∥ .p T
−1/2. (B.129)

By Weyl’s inequality, we have T−1
∥∥βV̄ ∥∥2

= λ1(T−1βV̄ V̄ ᵀβᵀ) = λ1(ββᵀ) + Op(σ1(β)2T−1/2) =

σ1(β)2 +Op(σ1(β)2T−1/2). Plugging this result into (B.129), we have
∥∥∥Pξ̃ − T−1V̄ ᵀPbV̄

∥∥∥ .p T
−1/2.

Lemmas 11-13 below are concerned with the singular values and singular vectors of T−1/2R̄. We

use ςj , ξj and λ̂
1/2
j , j ≤ p to denote them throughout Lemmas 11-13.

Lemma 11. Under the assumptions of Theorem 5(a), we have

λ̂j
λj
− 1 .p λ

−1/2
j (T−1/2N1/2 + 1) + T−1/2,

where λj = λj(β
ᵀβ) and λ̂j = λj(T

−1R̄R̄ᵀ).

Proof. Since λj
(
βV̄ V̄ ᵀβᵀ

)
= λj

(
βᵀβV̄ V̄ ᵀ

)
, we have

λj (βᵀβ)λp

(
V̄ V̄ ᵀ

T

)
≤
λj
(
βᵀβV̄ V̄ ᵀ

)
T

≤ λj (βᵀβ)λ1

(
V̄ V̄ ᵀ

T

)
. (B.130)

By Lemma 1(i) and Weyl’s inequality, we have λj
(
T−1V̄ V̄ ᵀ

)
− 1 .p T

−1/2 for j ≤ p. Then, (B.130)

becomes

λj
(
βV̄ V̄ ᵀβᵀ

)
Tλj(βᵀβ)

− 1 .p T
−1/2,

which is equivalent to

σj
(
βV̄
)

√
Tσj(β)

− 1 .p T
−1/2. (B.131)

Using Weyl’s inequality again, we have |σj
(
R̄
)
−σj

(
βV̄
)
| ≤

∥∥Ū∥∥ .p N
1/2 +T 1/2, which is equivalent

to

λ̂
1/2
j

λ
1/2
j

− σj(βV̄ )√
Tσj(β)

.p
1√
T

+

√
N +

√
T√

Tλj
. (B.132)

Combine (B.131) and (B.132), we complete the proof.
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Lemma 12. Suppose that the SVD of β is given by:

β = Γᵀ

Λ
1
2

0

H, (B.133)

where Γ ∈ RN×N , H ∈ Rp×p are orthogonal matrices, and Λ is a diagonal matrix of the eigenvalues

of βᵀβ. If we write Γςj = (sᵀj1, s
ᵀ
j2)ᵀ, where sj1 ∈ Rp, sj2 ∈ RN−p. Then under the assumptions of

Theorem 5(a), we have

(i)
∥∥∥(Λ/λj)

1/2 (sj1 − 〈sj1, ej1〉ej1)
∥∥∥ .p λ

−1/2
j (T−1/2N1/2 + 1), where ei1 is a p × 1 unit vector

with the ith entry being equal to 1.

(ii) ‖sj1 − 〈sj1, ej1〉ej1‖ .p λ
−1/2
j (T−1/2N1/2 + 1).

(iii)
∥∥∥(Λ/λj)

1/2 sj1

∥∥∥ .p 1.

(iv) ‖sj2‖ .p λ
−1/2
j (T−1/2N1/2 + 1).

Proof. With the orthogonal matrix Γ defined above, we can write

Ũ = ΓŪ =

(
Ũ1p×T

Ũ2(N−p)×T

)
, (B.134)

so that

ΓR̄ =

(
Λ

1
2

0

)
V̄ + Ũ =

(
Λ

1
2 V̄ + Ũ1

Ũ2

)
.

The relationship between singular vectors ςj and ξj can be written as

Γςj =

(
ΓR̄
)
ξj√

T λ̂j

, ξj =

(
ΓR̄
)ᵀ

(Γςj)√
T λ̂j

. (B.135)

Specifically, we have

sj1 =

(
Λ

1
2 V̄ + Ũ1

)
ξj√

T λ̂j

, sj2 =
Ũ2ξj√
T λ̂j

, ξj =

(
Λ

1
2 V̄ + Ũ1

)ᵀ
sj1 + Ũᵀ

2 sj2√
T λ̂j

. (B.136)

From (B.136), we have(
Λ

1
2 V̄ + Ũ1

)(
Λ

1
2 V̄ + Ũ1

)ᵀ
sj1 +

(
Λ

1
2 V̄ + Ũ1

)
Ũᵀ

2 sj2 = T λ̂jsj1. (B.137)
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We can rewrite (B.137) as

(
Ip −

Λ

λj

)
sj1 =

1

Tλj

(
Λ

1
2 V̄ + Ũ1

)
Ũᵀ

2 sj2 +
1

λj
Λ

1
2

(
V̄ V̄ ᵀ

T
− I
)

Λ
1
2 sj1 +

Λ
1
2 V̄ Ũᵀ

1

Tλj
sj1

+
Ũ1V̄

ᵀΛ
1
2

Tλj
sj1 +

Ũ1Ũ
ᵀ
1

Tλj
sj1 −

(
λ̂j
λj
− 1

)
sj1. (B.138)

Define L = diag(l1, . . . , lp), where li is equal to λj/(λj − λi) if i 6= j and 0 otherwise.

By left multiplying L to both sides of (B.138), we have

sj1 − 〈sj1, ej1〉ej1 =
1

Tλj
LΛ

1
2 V̄

Ũᵀ
2 Ũ2√
T λ̂j

ξj +
1

Tλj
LŨ1

Ũᵀ
2 Ũ2√
T λ̂j

ξj +
1

λj
LΛ

1
2

(
V̄ V̄ ᵀ

T
− Ip

)
Λ

1
2 sj1

+
LΛ

1
2 V̄ Ũᵀ

1

Tλj
sj1 + L

Ũ1V̄
ᵀΛ

1
2

Tλj
sj1 + L

Ũ1Ũ
ᵀ
1

Tλj
sj1 −

(
λ̂j
λj
− 1

)
Lsj1. (B.139)

Now left multiplying
(

Λ
λj

) 1
2

again, we have

(
Λ

λj

) 1
2

(sj1 − 〈sj1, ej1〉ej1) =
1

Tλ
3/2
j

Λ
1
2LΛ

1
2 V̄

Ũᵀ
2 Ũ2√
T λ̂j

ξj +
1

Tλ
3/2
j

Λ
1
2LŨ1

Ũᵀ
2 Ũ2√
T λ̂j

ξj

+
1

λj
Λ

1
2LΛ

1
2

(
V̄ V̄ ᵀ

T
− Ip

)(
Λ

λj

) 1
2

sj1 + Λ
1
2LΛ

1
2
V̄ Ũᵀ

1

Tλ
3/2
j

sj1

+ Λ
1
2L
Ũ1V̄

ᵀ

Tλj

(
Λ

λj

) 1
2

sj1 + Λ
1
2L

Ũ1Ũ
ᵀ
1

Tλ
3/2
j

sj1 −

(
λ̂j
λj
− 1

)(
Λ

λj

) 1
2

Lsj1

=K1 +K2 +K3 +K4 +K5 +K6 +K7. (B.140)

Before we analyze these seven terms in (B.140), we first analyze ‖L‖,
∥∥LΛ1/2

∥∥ and ‖LΛ‖. Since L

and Λ are diagonal matrices, by Assumption A.13 we can easily show that

‖L‖ . 1,
∥∥∥LΛ1/2

∥∥∥ . λ
1/2
j , ‖LΛ‖ . λj . (B.141)

In addition, Lemma 1(ii)(iii)(v) imply that∥∥∥Ũ1

∥∥∥ =
∥∥∥(βᵀβ)−1/2βᵀŪ

∥∥∥ .p T
1/2,

∥∥∥Ũ1V̄
ᵀ
∥∥∥ =

∥∥∥(βᵀβ)−1/2βᵀŪ V̄ ᵀ
∥∥∥ .p T

1/2,
∥∥∥Ũ2

∥∥∥ ≤ ∥∥Ū∥∥ .p N
1/2 + T 1/2.

(B.142)

Using Lemma 1(i)(vi), Lemma 11, (B.141) and (B.142), we analyze these seven terms in (B.140) one
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by one. For the first term, we have

‖K1‖ ≤T−3/2λ
−3/2
j λ̂

−1/2
j ‖LΛ‖

∥∥V̄ ∥∥∥∥∥Ũᵀ
2 Ũ2

∥∥∥ ‖ξj‖ .p λ
−1
j (T−1N + 1),

where we also use
∥∥∥Ũᵀ

2 Ũ2

∥∥∥ ≤ ∥∥ŪᵀŪ
∥∥ .p N + T in the last equation. For the second term, we have

‖K2‖ ≤ T−3/2λ
−3/2
j λ̂

−1/2
j

∥∥∥Λ1/2L
∥∥∥∥∥∥Ũ1

∥∥∥∥∥∥Ũᵀ
2 Ũ2

∥∥∥ ‖ξj‖ .p λ
−3/2
j (T−1N + 1).

For the third term, we have

‖K3‖ ≤ λ−1
j ‖LΛ‖

∥∥T−1V̄ V̄ ᵀ − Ip
∥∥∥∥∥(Λ/λj)

1/2sj1

∥∥∥ .p T
−1/2

∥∥∥(Λ/λj)
1/2sj1

∥∥∥ .
For the forth term, we have

‖K4‖ ≤ T−1λ
−3/2
j ‖LΛ‖

∥∥∥V̄ Ũᵀ
1

∥∥∥ .p λ
−1/2
j T−1/2,

where we use
∥∥∥V̄ Ũᵀ

1

∥∥∥ .p T
1/2 from Lemma 1. For the fifth term, we have

‖K5‖ ≤ T−1λ−1
j

∥∥∥LΛ1/2
∥∥∥∥∥∥Ũ1V̄

ᵀ
∥∥∥∥∥∥(Λ/λj)

1/2sj1

∥∥∥ .p λ
−1/2
j T−1/2

∥∥∥(Λ/λj)
1/2sj1

∥∥∥ .
For the sixth term, we have

‖K6‖ ≤ T−1λ
−3/2
j

∥∥∥LΛ1/2
∥∥∥∥∥∥Ũ1Ũ

ᵀ
1

∥∥∥ .p λ
−1
j ,

where we use
∥∥∥Ũ1Ũ

ᵀ
1

∥∥∥ .p T as shown in Lemma 1. For the last term, we have

‖K7‖ ≤ λ−2
j |λ̂j − λj |

∥∥∥LΛ1/2
∥∥∥ .p λ

−1/2
j (T−1/2N1/2 + 1) + T−1/2.

To sum up, (B.140) gives∥∥∥(Λ/λj)
1/2 (sj1 − 〈sj1, ej1〉ej1)

∥∥∥ .p λ
−1/2
j (T−1/2N1/2 + 1) + T−1/2 + T−1/2

∥∥∥(Λ/λj)
1/2sj1

∥∥∥ .
(B.143)

Note that ∥∥∥(Λ/λj)
1/2sj1

∥∥∥ ≤∥∥∥(Λ/λj)
1/2 (sj1 − 〈sj1, ej1〉ej1)

∥∥∥+
∥∥∥(Λ/λj)

1/2〈sj1, ej1〉ej1
∥∥∥

≤
∥∥∥(Λ/λj)

1/2 (sj1 − 〈sj1, ej1〉ej1)
∥∥∥+ |〈sj1, ej1〉|

√
λ−1
j eᵀj1Λej1

=
∥∥∥(Λ/λj)

1/2 (sj1 − 〈sj1, ej1〉ej1)
∥∥∥+Op(1).
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Plugging this into (B.143), we have∥∥∥(Λ/λj)
1/2 (sj1 − 〈sj1, ej1〉ej1)

∥∥∥ .p λ
−1/2
j (T−1/2N1/2 + 1) + T−1/2, (B.144)

which in turn leads to
∥∥(Λ/λj)

1/2sj1
∥∥ .p 1 as by assumption λ

−1/2
j (T−1/2N1/2 + 1)→ 0. Similarly,

we can analyze corresponding terms in (B.139), and obtain

‖sj1 − 〈sj1, ej1〉ej1‖ .p T
−1/2

∥∥∥(Λ/λj)
1/2sj1

∥∥∥+ λ
−1/2
j (T−1/2N1/2 + 1) .p λ

−1/2
j (T−1/2N1/2 + 1) + T−1/2.

From (B.136), we have

‖sj2‖ ≤

∥∥∥∥∥ Ũ2√
Tλj

∥∥∥∥∥
∥∥∥∥∥∥
(
λj

λ̂j

) 1
2

∥∥∥∥∥∥ ‖ξj‖ .p λ
−1/2
j (T−1/2N1/2 + 1). (B.145)

This concludes the proof.

Lemma 13. Under the assumptions of Theorem 5(a), we have

(i)

∥∥∥∥∥ ξᵀi Ūᵀςj√
T λ̂j

∥∥∥∥∥ .p
1
T + N+T

Tλi
+ N+T

Tλj
.

(ii)

∥∥∥∥ V̄ Ūᵀςi

T
√
λ̂i

∥∥∥∥ .p
1
T + N+T

Tλi
, | ς

ᵀ
i ū√
λ̂i
| .p

1
T + N+T

Tλi
.

(iv)

∥∥∥∥ ςᵀi Ū√
T λ̂i

∥∥∥∥ .p
1√
λi

+ N+T
Tλi

.

Proof. (i) From (B.135), we have

ξᵀi Ū
ᵀςj√
T λ̂j

=
ςᵀi R̄Ū

ᵀςj

T

√
λ̂iλ̂j

.

Using the orthogonal matrix Γ and the notations in Lemma 11 and Lemma 12, we have

ςᵀi R̄Ū
ᵀςj = sᵀi

(
ΓβV̄ + Ũ

)
Ũᵀsj =sᵀi1

(
Λ

1
2 V̄ + Ũ1

)
Ũᵀ

1 sj1 + sᵀi2Ũ2Ũ
ᵀ
1 sj1

+ sᵀi1

(
Λ

1
2 V̄ + Ũ1

)
Ũᵀ

2 sj2 + sᵀi2Ũ2Ũ
ᵀ
2 sj2

=K1 +K2 +K3 +K4.

Recall that from Lemma 12, we have
∥∥(Λ/λj)

1/2sj1
∥∥ .p 1. Using this result and Lemma 1, we

analyze these four terms one by one. For the first term, we have

‖K1‖ ≤
∥∥∥sᵀi1Λ

1
2

∥∥∥∥∥∥V̄ Ũᵀ
1

∥∥∥ ‖sj1‖+ ‖si1‖
∥∥∥Ũ1Ũ

ᵀ
1

∥∥∥ ‖sj1‖ .p

√
λiT + T.
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For the second term, we have

‖K2‖ ≤ ‖si2‖
∥∥∥Ũ2

∥∥∥∥∥∥Ũ1

∥∥∥ .p

√
N + T

Tλi

(√
N +

√
T
)√

T .p λ
−1/2
i (N + T ).

For the third term, we have

‖K3‖ ≤
(∥∥∥sᵀi1Λ

1
2

∥∥∥∥∥V̄ ∥∥+
∥∥∥Ũ1

∥∥∥)∥∥∥Ũ2

∥∥∥ ‖sj2‖ .p

√
λiT

(√
N +

√
T
)√N + T

Tλj
= λ

−1/2
j λ

1/2
i (N + T ).

For the last term, we have

‖K4‖ ≤
∥∥∥Ũ2Ũ

ᵀ
2

∥∥∥ ‖si2‖ ‖sj2‖ .p λ
−1/2
i λ

−1/2
j T−1(N + T )2.

Using above equations and Lemma 11, we get∥∥∥∥∥∥ξ
ᵀ
i Ū

ᵀςj√
T λ̂j

∥∥∥∥∥∥ =

∥∥∥∥∥∥ ς
ᵀ
i R̄Ū

ᵀςj

T

√
λ̂iλ̂j

∥∥∥∥∥∥ .p
1

T
+
N + T

Tλi
+
N + T

Tλj
.

(ii) Using Ūᵀςi = Ũᵀ
1 si1 + Ũᵀ

2 si2 and (B.142), we have

∥∥V̄ Ūᵀςi
∥∥ ≤ ∥∥∥V̄ Ũᵀ

1 si1

∥∥∥+
∥∥∥V̄ Ũᵀ

2 si2

∥∥∥ ≤ ∥∥∥V̄ Ũᵀ
1

∥∥∥+
∥∥V̄ ∥∥∥∥Ū∥∥ ‖si2‖ .p

√
T +

N + T√
λi

.

Then, with Lemma 11, we have
∥∥∥T−1λ̂

−1/2
i V̄ Ūᵀςi

∥∥∥ .p T
−1 + λ−1

i (T−1N + 1).

Replace V̄ in the above proof by ιᵀT , we can get
∥∥∥λ̂−1/2

i ūᵀςi

∥∥∥ .p T
−1 + λ−1

i (T−1N + 1).

(iii) Using Ūᵀςi = Ũᵀ
1 si1 + Ũᵀ

2 si2 and (B.142), we have

∥∥ςᵀi Ū∥∥ ≤ ∥∥∥sᵀi1Ũ1

∥∥∥+
∥∥∥sᵀi2Ũ2

∥∥∥ ≤ ∥∥∥Ũ1

∥∥∥+
∥∥Ū∥∥ .p

√
T +

N + T√
Tλi

.

Applying Lemma 11 again completes the proof.

Lemma 14. Under the assumptions of Theorem 5(a), H̃1, H̃2 defined by (B.75) satisfy

(i)
∥∥∥H̃1

∥∥∥ .p 1,
∥∥∥H̃2

∥∥∥ .p 1.

(ii)
∥∥∥H̃ᵀ

1 H̃2 − Ip̃
∥∥∥ .p T

−1 + λ−1
p (T−1N + 1).

(iii)
∥∥∥H̃1 − H̃2

∥∥∥ .p T
−1/2 + λ−1

p (T−1N + 1).

Proof. (i) Using the definition of H̃1 in (B.75) and Lemma 1, we have

∥∥∥h̃k1

∥∥∥ =

∥∥∥∥ V̄ ξk√T
∥∥∥∥ ≤ T−1/2

∥∥V̄ ∥∥ .p 1,
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which leads to
∥∥∥H̃1

∥∥∥ .p 1.

Using Γςk = (sᵀk1, s
ᵀ
k2)ᵀ, the SVD of β in (B.133), the definition of H̃2 in (B.75), Lemma 11 and

Lemma 12(iii), we have

∥∥∥h̃k2

∥∥∥ =

∥∥∥∥∥∥ β
ᵀςk√
λ̂k

∥∥∥∥∥∥ =

∥∥∥∥∥∥Λ1/2sk1√
λ̂k

∥∥∥∥∥∥ .p 1, (B.146)

which leads to
∥∥∥H̃2

∥∥∥ .p 1.

(ii) By (B.135) and Lemma 2, for l, k ≤ p, we have

δlk = ξᵀl ξk =
ξᵀl V̄

ᵀβᵀςk√
T λ̂k

+
ξᵀl Ū

ᵀςk√
T λ̂k

= h̃ᵀl1h̃k2 +
ξᵀl Ū

ᵀςk√
T λ̂k

.

By Lemma 13(i), we have

|h̃ᵀl1h̃k2 − δlk| .p
1

T
+

N + T

T min{λl, λk}
≤ 1

T
+
N + T

Tλp
,

and thus
∥∥∥H̃ᵀ

1 H̃2 − Ip
∥∥∥ .p T

−1 + λ−1
p (T−1N + 1).

(iii) Using (B.135), we have

V̄ ξk =
V̄ V̄ ᵀβᵀ√
T λ̂k

ςk +
V̄ Ūᵀςk√
T λ̂k

.

With the definition of hk1 and hk2, it becomes

h̃k1 =
V̄ V̄ ᵀ

T
h̃k2 +

V̄ Ūᵀςk

T

√
λ̂k

. (B.147)

With
∥∥∥h̃k2

∥∥∥ .p 1, Lemma 1 and Lemma 13(ii), (B.147) leads to

∥∥∥h̃k1 − h̃k2

∥∥∥ ≤ ∥∥T−1V̄ V̄ ᵀ − Ip
∥∥∥∥∥h̃k2

∥∥∥+

∥∥∥∥∥∥ V̄ Ū
ᵀςk

T

√
λ̂k

∥∥∥∥∥∥ .p T
−1/2 + λ−1

p (T−1N + 1),

which concludes the proof of (iii).

Lemma 15. Under Assumption A.13, we have

∥∥∥r̄ − Σ̂b
∥∥∥
∞

.p

√
logN

T
, ‖bᵀ(r̄ − E(rt))‖ .p

1√
T
.
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Proof. For the first inequality, we have

∥∥∥r̄ − Σ̂b
∥∥∥
∞
≤ ‖r̄ − E(r)‖∞ +

∥∥∥Σb− Σ̂b
∥∥∥
∞

.p

√
logN

T
,

where we use large deviation inequalities in Assumption A.12:

‖r̄ − E(rt)‖∞ .p

√
logN

T
, and

∥∥∥Σb− Σ̂b
∥∥∥
∞

=

∥∥∥∥ 1

T
R̄R̄ᵀb− Cov(rt, r

ᵀ
t b)

∥∥∥∥
∞

.p

√
logN

T
.

The second inequality follows immediately from Assumption A.12:

‖bᵀ(r̄ − E(rt))‖ = | 1
T

T∑
t=1

mt − E(mt)| .p
1√
T
.
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