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Cross-sectional uncertainty and the business cycle:

evidence from 40 years of options data

Ian Dew-Becker and Stefano Giglio∗

April 16, 2021

Abstract

This paper presents a novel and unique measure of cross-sectional uncertainty con-

structed from stock options on individual firms. Cross-sectional uncertainty varied

little between 1980 and 1995, and subsequently had three distinct peaks – during the

tech boom, the financial crisis, and the coronavirus epidemic. Cross-sectional un-

certainty has had a mixed relationship with overall economic activity, and aggregate

uncertainty is much more powerful for forecasting aggregate growth. The data and

moments can be used to calibrate and test structural models of the effects of uncer-

tainty shocks. In international data, we find similar dynamics and a strong common

factor in cross-sectional uncertainty.

1 Introduction

This paper reports a novel option-implied measure of cross-sectional uncertainty. Whereas

the VIX, the most widely used option-implied uncertainty index, measures uncertainty about

the state of the aggregate stock market (and, potentially, economy), we construct an index

that tracks uncertainty about the cross-sectional distribution of firm outcomes. In many

recent models and empirical analyses, it is precisely the cross-sectional component that is

the critical driving force.1

∗Dew-Becker: Northwestern University and the NBER. Giglio: Yale School of Management, NBER, and
CEPR. This paper would not have been possible without the version of the Berkeley Options Database pre-
served and shared by Stewart Mayhew. We thank Terry Hendershott and the Berkeley library for acquiring
the data, converting it to a modern format, and making it available.

1Bewley (1986), Bloom (2009), Kaplan and Violante (2014), Christiano, Motto, and Rostagno (2014),
and Ilut, Kehrig, and Schneider (2018).
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More formally, one might decompose the shock to a firm, ηi,t, into an aggregate com-

ponent, µt, and an orthogonal component, εi,t (which may be correlated across subsets of

firms):

ηi,t = µt + εi,t (1)

The total uncertainty a firm faces is measured by the conditional (time-t) variance of ηi,t+1.

The VIX and other measures of aggregate uncertainty capture the conditional variance of

µt+1. Finally, cross-sectional uncertainty, on which this paper focuses, is measured by the

conditional variance of εi,t+1: it is the variance of the shocks faced by firms that are orthogo-

nal to aggregate shocks. We measure cross-sectional uncertainty similarly to the VIX, using

option-implied volatilities.

Our cross-sectional uncertainty measure is simple to construct: it is just average firm-level

option-implied conditional variance minus market implied conditional variance (vart (ηi,t+1)−
vart (µt+1)). Under general conditions, that gap measures the average conditional variance

of the residual from a regression of each stock’s return on the market return. Because it is

constructed from market prices, our measure is forward-looking, and is available continuously,

in real time, making it particularly useful for policymakers. In addition, the measure is

available for a long span of time (40 years), including six recessions. Past work has at most

extended to 1996, observing only two business cycles.

In this paper, we document several empirical patterns on the relationship between our

new measure of cross-sectional uncertainty and the economy. We focus on two types of

patterns: the cyclical behavior of cross-sectional uncertainty and the forecasting power of

cross-sectional uncertainty for future economic activity. We find that cross-sectional uncer-

tainty has a mixed relationship with the state of the business cycle, rising during the tech

boom of the late 1990’s, but also during the financial crisis and coronavirus epidemic. The

dark line in figure 1a plots cross-sectional uncertainty. From the start of our data, in 1980,

up to 1995, there was surprisingly little variation. After 1995, firm-level uncertainty moves

much more (though still less than market uncertainty, in proportional terms), with three

distinct increases, during the tech boom, the financial crisis, and the coronavirus epidemic.

In the three episodes where uncertainty is elevated, it rapidly declines, returning to its long-

run average by the trough of the recession. In a shorter sample, international data displays

similar behavior and also has a very strong factor structure, implying that cross-sectional

uncertainty is driven by global shocks.

Overall, the data appears to show that cross-sectional uncertainty is sometimes high in

bad times, and sometimes high in good times. Two different classes of models exist that

predict one or the other behavior for cross-sectional uncertainty, but not both. The financial

2



crisis, with low activity and high uncertainty, is consistent with the models that emphasize

countercyclical uncertainty, whether it is an endogenous response or an exogenous shock.

Interestingly, though, if output tracked cross-sectional uncertainty over time, it would have

recovered from the financial crisis by 2010 (when unemployment was still over 9 percent).

In contrast to the financial crisis, the period of the late 1990’s is consistent with models in

which growth and innovation are associated with uncertainty, e.g. due to learning, creative

destruction, or a risk/return trade-off in investment projects.2 We provide direct evidence

on this point, showing that cross-sectional uncertainty and patenting activity rose and fell

almost perfectly in sync during the 1990’s tech boom.

Next, we examine the forecasting power of idiosyncratic uncertainty for aggregate output

and employment, finding similarly mixed results. A key feature of the data is that it allows

us to test whether aggregate or cross-sectional uncertainty is more relevant for forecasting,

which represents a fruitful way to distinguish among classes of structural models and is

also relevant for policymakers. We find strong evidence that it is aggregate rather than

cross-sectional uncertainty that is most likely to be an important driver of the aggregate

economy.3

We formally examine the cyclicality of cross-sectional uncertainty and the forecasting

regressions in two theoretical models of the macroeconomic effects of cross-sectional uncer-

tainty shocks: Christiano, Motto, and Rostagno (2014) and Bloom et al. (2018). Both

models predict that cross-sectional uncertainty should be clearly countercyclical and should

be more tightly related to aggregate output than aggregate uncertainty or realized volatility.

While the empirical results are noisy, both models imply that cross-sectional uncertainty

should be dominant, which is not what we observe empirically. Fully matching the data

requires also accommodating periods in which uncertainty is high due to good news, such as

strong innovation.

In addition to evaluating correlations and forecasts, we show that the data is also useful

for giving a set of moments to aid in calibrating structural models. The data series, available

on our websites, gives a direct measure of the underlying driving uncertainty process that

needs to be parameterized, showing that many papers have used realistic amounts of variation

in firm-specific uncertainty, while others require implausibly high quantities.

A large literature has studied the relationship between uncertainty and the real economy.

However, that literature has either focused on aggregate uncertainty, or, if it has looked

2See, for example, Acemoglu (2005), Imbs (2007), Comin and Mulani (2009), and Kogan et al. (2017).
3In addition, see Berger, Dew-Becker, and Giglio (2020) for a further distinction between aggregate

uncertainty and aggregate realized volatility. This is also consistent with Agarwal and Kolev (2016), who
find evidence of strategic clustering of layoffs by public firms immediately after the release of aggregate bad
news.

3



at individual firms, it has not used forward-looking measures of uncertainty (like ours),

but backward-looking measures (realized volatility) that do not map into what uncertainty

is in our models.4 This paper shows that that distinction changes the conclusions one

draws from the data. This is the first work to deliver a long time-series of forward-looking,

cross-sectional uncertainty. Only a few papers have similar forward-looking measures of

firm-level uncertainty, primarily surveys, but in those cases it is not possible to disentangle

the cross-sectional and aggregate components, whereas in the case of stock returns it is

straightforward.5 This paper’s novelty is in developing an ex ante measure of idiosyncratic

uncertainty that more directly maps into the shock processes driving structural models and

has a long empirical sample.

2 Data

We obtain options price data from the Berkeley Options Database (BODB) for 1/1980–

6/1995, and Optionmetrics for 1/1996–12/2020. The appendix describes the details of the

construction of the implied volatilities. Whereas the VIX is measured using a so-called

model-free implied volatility, we use at-the-money Black–Scholes implied volatility. The

latter requires only observing a single option price and is 99.5 percent correlated with the

VIX.6 Since implied volatilities come from asset prices, they embed risk premia, meaning

they are not errorless measures of investor beliefs (see section 3.2.2). Nevertheless, they

represent the most common measure of uncertainty studied in the literature, and they have

the attractive feature that they give a measure of uncertainty based on actual investments

people have made.

One can always theoretically construct the linear projection of the return on stock i, ri,t,

on the market, rmkt,t, as

ri,t = αi,t + βi,trmkt,t + εi,t (2)

with εi,t orthogonal to rmkt,t by construction. (2) is just a theoretical representation – it is

not directly estimable since the parameters can change on every date, nor is it structural.

4Specifically, Campbell et al. (2001), Bloom (2009), Herskovic et al. (2016), and Bloom et al. (2018)
all examine measures of realized dispersion rather than conditional variances. Senga (2018) studies both
realized volatility and total firm implied volatility (mixing aggregate and idiosyncratic components) since
1996.

5See Guiso and Parigi (1999), Ben-David et al. (2013), Bachmann, Elstner, and Sims (2013), and Bach-
mann et al. (2018).

6The model-free implied volatility requires a continuum of strikes, which the available data for individual
stocks does not approximate well.
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We follow Campbell et al. (2001) in defining cross-sectional uncertainty simply as

σ2
ε,t =

∑
i

wi,tσ
2
i,t − σ2

mkt,t (3)

where σ2
i,t is a date-t conditional variance for ri,t+1, σ

2
mkt,t is the same for the market, and

wi,t are market capitalization weights; this equation is accurate when βi,t ≈ 1. We discuss

robustness to this choice below. σ2
ε,t is then the value-weighted average of residual variance

– the conditional variance of εi,t+1 – across firms.

Since εi,t is only orthogonal to the market return, it can in general be correlated across

firms, e.g. due to industry effects. Changes in the volatilities of cross-sectional factors will

appear in σ2
ε,t so we refer to σ2

ε,t as cross-sectional uncertainty.

We measure σ2
mkt,t with S&P 500 option-implied volatility, and all volatilities are inter-

polated to a maturity of thirty days in the main results, and 12 months in a robustness

test.7 Firm decisions naturally depend on uncertainty over more than just the next 30 days,

or even probably a year. How that affects our analysis is subtle, however. We focus on

the 30-day maturity for several reasons. First, because it is where options are most liquid,

and it makes our results consistent with those reported in the literature using the S&P 500

VIX, which is also a 30-day measure. Second, even though the options have maturities

of 30 days, the underlying stocks themselves are valued based on long-term expectations

of fundamentals; so uncertainty about next month’s price of a stock encodes information

about the distant future. Third, if uncertainty is well approximated by an AR(1) process

(e.g. Lochstoer and Muir (2021)), then short-maturity uncertainty will be a good proxy for

long-maturity uncertainty. Finally, and perhaps most importantly, it is not actually clear

whether shorter- or longer-term uncertainty shocks should have larger effects on investment.

Hassler (1996) shows that in one tractable setting with irreversible investment, short-term

uncertainty shocks have larger effects on investment than longer-term uncertainty shocks

(because of the interaction between the persistent of volatility, the change in the adjustment

points, and and probability of reaching them). In figure A.1 in the appendix we show that

for both the partial- and general-equilibrium versions of the model of Bloom et al. (2018),

shorter-duration shocks also have larger effects on investment on impact (though the subse-

quent effects are ambiguous). Theory thus does not give a consistent answer about whether

7For the period 1980–1982, S&P 500 index options are not available. We impute values for σmkt,t in
that period with the fitted value from a regression S&P 500 implied volatility on σfirm,t, S&P 500 realized
volatility, the Gilchrist–Zakrajsek excess bond premium, and the S&P 500 price/earnings ratio (estimated
on the period 1983–2020).

The imputation is only used for the figures and unconditional correlations. All forecasting results exclude
the imputation because it involves forward-looking information.
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it is short- or long-term uncertainty that should be most important.

Figure A.2 in the Appendix plots the fraction of total CRSP market capitalization and

aggregate employment for which we have implied volatilities in each month. For the period

covered by the BODB, the data covers one third of market capitalization, due to both the

fact that not all firms had traded options and that only about half of those were listed on the

CBOE. In 1996, when Optionmetrics becomes available, coverage by market capitalization

jumps to 63 percent and then rises to 98 percent by the end of the sample. For employment,

coverage rises from six-to-eight percent during the BODB sample to about 30 percent by

2020. This again reflects incomplete coverage in the early period, combined with the fact

that only a minority of employment is accounted for by publicly traded firms (see also Davis

et al. (2006)).

To keep the sample consistent over time, our main results calculate cross-sectional un-

certainty only for the 200 largest firms in the economy over the full sample; we show below

that this choice is innocuous.8 Since we weight firms by market capitalization, and in any

case only have data on public firms, our results necessarily apply to the largest firms in the

economy. These firms account for a large fraction of total economic activity, though, and to

the extent that idiosyncratic shocks affect the state of the economy, many theories imply it

will be the largest firms whose shocks pass through to the aggregate economy (e.g. Gabaix

(2011) and Acemoglu et al. (2012)).

3 Time-series behavior of cross-sectional uncertainty

This section reports the basic properties of cross-sectional uncertainty and examines its

comovement with measures of real activity and financial stress.

3.1 Univariate behavior and cyclicality

3.1.1 Variability

Panel a of figure 1 plots the time series of cross-sectional uncertainty, σε,t. In the first half

of the sample, there is remarkably little variation: its standard deviation is only 9 percent

of its mean for the period 1980–1997. But since 1997, it rose by nearly a factor of four to 36

percent of its mean.

8For BODB, tickers must be matched by hand to CRSP to obtain underlying stock prices. We did that
only for the top 200 firms by size.
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SD (σ) /E (σ):

σmkt,t σε,t

Full sample: 0.39 0.28

1980–1997 0.30 0.09

1998–2020 0.43 0.36

Figure 1a also plots the implied volatility for the overall stock market. Relative to its

mean, aggregate uncertainty is substantially more variable than cross-sectional uncertainty.

The standard deviation of σmkt is 39 percent of its mean overall, compared to only 28 percent

for cross-sectional volatility.

The variability of σmkt,t is also much less isolated in time. Whereas the variation in

cross-sectional uncertainty is driven primarily by just three episodes, there are numerous

substantial jumps in market-level uncertainty, associated with the 1987 stock market crash,

the first Gulf War, various events between 1998 and 2002, the debt ceiling, the Euro crisis,

etc.

The relative volatilities of σ2
ε,t and σ2

mkt,t can be used to construct a variance decomposi-

tion for the total variance faced by firms. Specifically,

var
(∑

iwi,tσ
2
i,t

)
= var

(
σ2
mkt,t

)
+ var

(
σ2
ε,t

)
+ 2 cov

(
σ2
i,t, σ

2
mkt,t

)
4.3× 10−3 = 1.1× 10−3

26%
+ 1.9× 10−3

44%
+ 1.3× 10−3

30%

Over the sample, the variation in the total uncertainty that firms face is relatively more

driven by variation in idiosyncratic than aggregate uncertainty. In addition, the fact that

idiosyncratic and aggregate uncertainty are correlated also matters, accounting for about

one third of the total variation in firm uncertainty.

The moments reported here on the volatilities of aggregate and cross-sectional uncertainty

are useful for calibrating structural models of uncertainty shocks. We return to this point

below.

3.1.2 Cyclicality

Figure 1b plots cross-sectional uncertainty against the linearly detrended level of the CRSP

total stock market index. The periods of high cross-sectional uncertainty are all associated

with large changes in stock prices, but in different directions. During the dot-com boom,

cross-sectional uncertainty tracks the rise of the stock market. They peak in almost exactly

the same month, and uncertainty declines with the market. It follows the opposite pattern

during the financial crisis and coronavirus episodes: it is exactly when the stock market

declines that cross-sectional uncertainty rises (though covid is a bit different in that the stock

market quickly recovered while cross-sectional uncertainty remains high). So uncertainty
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appears to be procyclical in the late 1990s and early 2000s, countercyclical in the financial

crisis and in the recent coronavirus episode, and acyclical otherwise.

Figures 1c and 1d further emphasize that point by plotting cross-sectional uncertainty

against aggregate investment and the unemployment rate. Investment and uncertainty peak

simultaneously in 2000, while uncertainty spikes and investment crashes in both 2008 and

2020. Figure 1d shows that uncertainty has a similarly mixed relationship with the unem-

ployment rate.

To more formally quantify the cyclicality of cross-sectional uncertainty, panel a of table

1 reports the correlation of cross-sectional uncertainty with various measures of the state of

the economy, over the full sample, pre-2020, and pre- and post-1/2008. We choose the 2008

break point because it is where, from the figure, uncertainty becomes clearly countercyclical

– i.e. after the dot-com crash. The series labeled as detrended are HP-filtered with the usual

monthly parameter of 129,600 (table A.1 in the appendix examines robustness to alternative

detrending choices).

In terms of levels, cross-sectional uncertainty does not have a consistent correlation with

economic indicators. It is positively correlated with the CBO output gap, detrended em-

ployment and minus the unemployment rate, implying it is procyclical. Its correlations with

detrended industrial production and capacity utilization are close to zero, and its correlation

with credit spreads is positive, indirectly implying it is countercyclical. So relative to levels,

it appears essentially acyclical. Furthermore, most of those correlations change sign between

the first and second parts of the sample. Relative to growth rates, uncertainty appears more

consistently countercyclical, with negative correlations with all the cyclical measures, though

the coefficients are generally small. However, when 2020 is excluded, the correlations with

the growth rates become significantly stronger.

Comparing uncertainty and unemployment, there are two ways to look at the data. First,

of the three peaks in uncertainty, two are associated with high unemployment and one low.

Second, across the six peaks in unemployment, uncertainty is high in two, low in one, and

near its average in the other three.

So in terms of simple correlations, the link between cross-sectional uncertainty and the

business cycle is weak, with mainly small correlations that change sign across measures and

subsamples.

3.1.3 Uncertainty and innovation

The natural explanation for the fact that uncertainty is high sometimes in expansions and

sometimes in recessions is that in some periods uncertainty is associated with growth and
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innovation, in particular during the tech boom. That innovation might be associated with

creative destruction and reallocation across firms. In the next section we examine the extent

to which overall cross-sectional uncertainty is driven by volatility in the tech sector itself

(the answer is very little), but before doing that, here we just ask whether uncertainty is

related to overall innovation in the economy.

Figure 1e plots cross-sectional uncertainty compared to the index of the total value of

patents relative to GDP of Kogan et al. (2017). The peak in uncertainty in the late 1990’s

almost perfectly tracks, both on the way up and the way down, the peak in patents relative

to GDP. The fit here is much better than for the S&P 500 VIX, showing that it is really

cross-sectional rather than aggregate uncertainty that was tightly linked to innovation in

that period. The second major rise in uncertainty, in the financial crisis, is significantly

different, with only a small rise in patents, which came before the peak in uncertainty.

Figure 1e therefore shows clearly the difference between the two first two peaks in cross-

sectional uncertainty and why they might have been associated with different economic

outcomes. One was associated – with almost identical timing – with a huge run-up in

patenting activity and hence innovation, while the other was associated with no increase in

patenting at all (and, instead, with a financial crisis).

3.2 Robustness and further results

This section examines the sensitivity of the results above to a range of perturbations of the

analysis. We begin by using sector-level variation in uncertainty and employment to examine

the relationship at a more granular level, and then examine a number of modifications of the

measurement of uncertainty relative to the baseline case.

3.2.1 Sector analysis

Since we have uncertainty at the firm level, instead of aggregating across all firms, we can

also aggregate at the sector level. In this section, we define cross-sectional uncertainty in

sector j as

σ2
ε,j,t =

∑
i∈j

wi,tσ
2
i,t − σ2

mkt,t (4)

The advantage of sector-level uncertainty is that it allows us to examine the relationship

between uncertainty and activity after controlling for sector and time fixed effects, asking

whether sectors that have uncertainty higher than average (their own average and the average

in a given month) have lower output.
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We calculate cross-sectional uncertainty at the two-digit NAICS sector level and compare

it to employment in the same sector from the BLS. There are sufficient stocks for us to be

able to create a balanced panel for 15 two-digit sectors. We estimate simple regressions of

the form

∆ logEmplj,t = aj + bt + cσε,j,t + ηj,t (5)

where Emplj,t is employment in sector j and month t, aj and bt are sector and time fixed

effects, respectively, c is a coefficient, and ηj,t is a residual, which we allow to be clustered

by sector.9 We also normalize ∆ logEmplj,t and σε,j,t to have unit standard deviations after

controlling for time and sector fixed effects, so that the coefficient c can be interpreted as a

correlation.10

We estimate three versions of the regression, the first using ∆ logEmplj,t and σε,j,t di-

rectly, the second removing a HP-filtered trend (calculated sector-by-sector) from ∆ logEmplj,t,

and the third using the HP-filtered logEmplj,t. The coefficient c and its 90-percent confi-

dence band are reported below for the three different regressions:

Dependent variable Coefficient, 90% CI

∆ logEmplj,t −0.09
[−0.17,−0.01]

HP filtered ∆ logEmplj,t −0.08
[−0.18,0.01]

HP filtered logEmplj,t 0.05
[−0.01,0.10]

As in table 1a, the coefficients are small with mixed signs. The confidence bands are reason-

ably narrow in economic terms, but the coefficients are small enough that they are still only

barely significant at the 10-percent level. The conclusions from examining cross-sectional

variation thus reinforce those from table 1a.

3.2.2 Time-varying risk premia

So far we have ignored the presence of time-varying risk premia, assuming implicitly that σ2
ε,t

is perfectly correlated with the true conditional standard deviation of firm-specific residuals,

Et
[∑

iwi,tε
2
i,t+1

]
. That is, we do not necessarily require σ2

ε,t to be the physical (objective)

conditional standard deviation; rather, so far we have allowed a constant risk premium on

9We examined various estimation methods to account for the small number of clusters (e.g. bootstrapping
schemes) and they had little quantitative effect on the results.

10Formally, we regress ∆ logEmplj,t and σε,j,t on time and sector dummies (aj and bt), and de-

fine ̂∆ logEmplj,t and σ̂ε,j,t to be the residuals from those regressions. We then set ˜∆ logEmplj,t =̂∆ logEmplj,t/stdev
( ̂∆ logEmplj,t

)
and regress ˜∆ logEmplj,t on σ̃ε,j,t.
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cross-sectional variance, or a risk premium that is affine in Et
[∑

iwi,tε
2
i,t+1

]
. However, it is

entirely possible that the risk premium depends on other factors, such as the state of the

business cycle.

If we take the view that risk premia might depend on some set of state variables {xj,t},
such as, e.g., the unemployment rate, then it is straightforward to show that true cross-

sectional uncertainty can be recovered from a projection of
∑

iwi,tε
2
i,t+1 on the date-t state

variables. That is, we estimate the regression∑
i

wi,tε
2
i,t+1 = b0 + bσσ

2
ε,t +

∑
j

bjxj,t + ηt (6)

where the b’s are coefficients, the xj’s are state variables, and ηt is a residual. The un-

certainty measure that is robust to time-varying risk premia is then the fitted value from

that regression. For state variables, we include the date-t value and first lag of realized

cross-sectional dispersion
(∑

iwi,t−1ε
2
i,t

)
, lagged option-implied uncertainty (σ2

ε,t−1), the un-

employment rate, the Gilchrist–Zakrajsek credit spread, and the S&P 500 price/earnings

ratio.

Figure 2a plots the baseline cross-sectional uncertainty measure, σ2
ε,t, against the version

that is robust to risk premia (the fitted value from the regression (6)). They are 98 percent

correlated, and the figure shows that their behavior is economically nearly identical. That

result holds because the dominant driver of the regression (6) is in fact σ2
ε,t – it has the

largest t-statistic and hence largest marginal R2 of all the variables. While is it true that

other variables show up as statistically significant in the regression, indicating that σ2
ε,t is

not completely free of time-varying risk premia, as an economic matter it appears to be close

enough that our conclusions are unchanged once risk premia are more formally accounted

for.

3.2.3 Accounting for industry effects

We account for industry effects in the analysis in two ways. The first focuses on the tech

sector, as it may have been a particularly large contributor, at least to the late-1990’s

volatility, and possibly also later, while the second accounts for industry exposures more

generally.

The method we use to account for volatility in the tech sector is general and could

be applied to any potential cross-sectional factor. Suppose stock returns have the factor

structure,

ri,t = βirmkt,t + γir̂tech,t + εi,t (7)
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where rmkt,t is again the return on the overall market, and r̂tech,t is the value-weighted return

on the tech sector (which we take as stocks in the GICS 45 sector) orthogonalized with

respect to rmkt,t, which just has the effect of normalizing the loadings such that βi has a

value-weighted mean of 1 and γi has a value-weighted mean of 0 (across the full universe of

stocks).

If we have an uncertainty measure σ2
tech,t = Et

[
r̂2tech,t+1

]
, then, based on the orthogonality

discussed above, we have:

σ2
ε,t =

(∑
i

wi,tσ
2
i,t

)
−

(∑
i

wi,tβ
2
i

)
σ2
mkt,t −

(∑
i

wi,tγ
2
i

)
σ2
tech,t (8)

We calculate r̂tech,t by taking the value-weighted return on stocks in the GICS 45 sector,

orthogonalized with respect to the market return. The coefficients βi and γi can then be

estimated from firm-level regressions. Options on the tech sector are not available until

relatively late in the sample, so for this exercise we calculate σ2
tech,t by forecasting r̂2tech,t using

its own lagged values, as in a GARCH model (formally, we use a so-called heterogeneous

autoregressive specification, including squared returns over the previous week, month, and

quarter).

Figure 2b plots σ2
ε,t under the baseline case and after accounting for exposure to a tech

sector factor. The time series are again highly similar. The quantitatively small effects are

due to two factors. First, σ2
tech,t is generally relatively small – its volatility is only 29 percent

of the volatility of σ2
mkt,t. Second, since γi has a cross-sectional mean of zero,

∑
i ωi,tγ

2
i

represents its variance. That variance is also in general small, averaging only 0.33, which

causes the tech factor to ultimately have quantitatively small effects.

The second way that we account for industry effects is to control for the industry that

each firm is in. In particular, if we assume for simplicity that each firm’s exposure to its own

industry factor is 1 (in the same way that the baseline results assume that exposures to the

market return are 1), then an industry-robust estimate of cross-sectional uncertainty is

σ2
ε,i,t = σ2

i,t − σ2
ind(i),t (9)

In this case, we calculate σ2
ind(i),t as the implied variance for the SPDR exchange traded fund

covering stock i’s sector. Figure 2b also plots that series relative to the baseline. The main

differences are again that cross-sectional uncertainty are somewhat dampened in both the

tech boom and financial crisis, consistent with the idea that those two episodes were driven

primarily by sector shocks (to tech and finance, respectively).
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3.2.4 Additional robustness tests

Panels c–f of figure 2 plot five variations on the benchmark uncertainty series:

1. Using the median of implied volatility across firms (after taking out firm fixed effects),

instead of weighting by market capitalization (panel (c)).

2. Using the full sample of options from Optionmetrics instead of just the largest 200

firms (also in panel(c)).

3. Correcting for each firm’s loading on the market, by estimating βi for each firm and

setting σ2
ε,i,t = σ2

i,t − β2
i σ

2
mkt,t (panel (d)).

4. Weighting by employment instead of market capitalization (panel (e)).

5. 12-month uncertainty (panel (f)).

The first test shows that the results are not driven just by the weighting by market

capitalization – cross-sectional median uncertainty displays similar behavior. The main

difference is a smaller increase in the late 1990’s.

Second, if we use the full Optionmetrics sample instead of just the 200 largest firms,

the results are essentially unchanged, with just a level shift. That result is consistent with

the largest firms having relatively lower uncertainty overall, and it suggests that if we could

measure uncertainty for all firms in the economy, it would be higher. However, the dynamics

of uncertainty when including smaller public firms are nearly identical to those of just the

largest firms, implying the presence of a strong common factor affecting all firms, big and

small.

The third test shows that the approximation where we treat the loadings on the market

as all equal to 1, as in Campbell et al. (2001), has very little impact.

The fourth test – weighting by Compustat employment – is novel to this paper. Past work,

in focusing on the S&P 500 index, puts weight on firms and their volatility based on their

equity valuation. Differences in leverage and investor beliefs will then affect how uncertainty

is aggregated, whereas employment weighting gives a more stable and fundamental measure.

The results turn out to be highly similar. The largest effect is during the tech bubble, when

tech stocks had high market capitalization relative to their share of the real economy and

also relatively high implied volatilities.

Finally, we also plot cross-sectional uncertainty measured from 12-month instead of 1-

month options (using only the Optionmetrics sample, which has better coverage of long

maturities). The level of the time series is shifted up slightly (consistent with the presence
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of a small risk premium), but it otherwise nearly identical to the benchmark case, with a

correlation of 97 percent in levels and 85 percent in quarterly changes. The high correlation

is consistent with the results from Lochstoer and Muir (2021), discussed above, that an

AR(1) process is a good approximation for uncertainty empirically.

To get an additional comparison for option-implied uncertainty, we examined the Federal

Reserve Bank of Atlanta’s Survey of Business Uncertainty (SBU), which is available since

2016. Figure A.3 plots sales and employment uncertainty from that survey compared to

our option-implied measure. All three series have little variation between 2016 and the end

of 2019, then rise by about 50 percent on average in 2020. The relative magnitude of the

increase across the three series is very similar, and they all remained high through 2020. So

while the comparison only covers a single event, the option-implied measure is validated by

the SBU measure.

Appendix A.2 discusses the commonality in variation in uncertainty across firms. Consis-

tent with Herskovic et al. (2017), 40–50 percent of cross-sectional variation in firm-specific

uncertainty is captures by the common component.

Finally, in results available on request, we have also constructed firm-specific uncertainty

using the so-called model-free implied volatility and obtain nearly identical results.

3.3 Uncertainty versus realized dispersion

Past studies looking at cross-sectional uncertainty have used realized dispersion – the cross-

sectional standard deviation of the realizations of εi,t – to proxy for σ2
ε,t and extend the

sample to earlier periods (e.g. Davis et al (2006) and Bloom (2009)). The difference between

the two is not innocuous.

Figure 1f plots σ2
ε,t against the realized cross-sectional standard deviation of the firm-

specific residuals, εi,t. The realized standard deviation behaves substantially differently

from the conditional standard deviation, σε,t. It appears to have substantial high-frequency

“noise”.

Recall that σ2
ε,t−1 is the conditional expectation of the realized dispersion in returns,

defined as

RDret
t =

∑
i

wi,t var (ri,t)− var (rmkt,t) (10)

where var (ri,t) and var (rmkt,t) are calculated from realized returns within each month. There-

fore,

RDret
t = σε,t−1 + ηt (11)

where ηt is a mean-zero shock uncorrelated with σε,t−1.
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Equation (11) means that if one’s goal is to understand the behavior of uncertainty (the

forward-looking σε,t−1) – its variability, correlation with other variables, or its coefficient in

forecasting regressions – then proxying for it with RDret
t will cause biases. The volatility of

RDret
t is substantially higher than that of σε,t−1, its correlation with other variables is lower,

and in regressions there will be an attenuation bias even if ηt is exogenous. If ηt is correlated

with outcomes of interest, that will further bias any regressions. Berger, Dew-Becker, and

Giglio (2020), for example, show that when structural productivity shocks are skewed left

(consistent with observed asymmetry in the business cycle), then realized volatility, ηt, will

be negatively correlated with output, even if there is no structural effect of uncertainty on

activity.

Furthermore, for a policymaker working in real time, the relative precision of σε,t is an

added advantage. If one’s goal is to measure uncertainty in real time, the added noise in

realized dispersion makes it less useful than the true uncertainty σε,t. To see the difference

between the two series, the table below reports the pairwise correlation between σε,t and

RDret
t for levels, monthly changes, and quarterly changes.

Correlations between σε,t and RDret
t :

Levels 0.93

Monthly changes 0.66

Quarterly changes 0.80

In terms of levels, they are 93 percent correlated, meaning that it will be difficult to

disentangle them in many cases. In differences, though, the correlations are far smaller –

0.66 and 0.80 for monthly and quarterly changes, respectively. A way to quantify the noise

in σε,t and RDret
t is to calculate the autocorrelation of their first differences. That is -0.01 for

σε,t, but -0.31 for RDret
t , indicating that the latter has significant transitory variation. We

show below that this translates into σε,t being relatively more useful for forecasting future

dispersion.

4 Forecasting

This section examines the ability of cross-sectional uncertainty to forecast both future real-

ized cross-sectional dispersion and also aggregate real activity.
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4.1 Realized dispersion

The first question one must ask about the forecasting power of option-implied uncertainty

is whether it forecasts future realized dispersion, as predicted by equation (11). Does it

actually measure uncertainty?

Panel b of table 1 reports results of regressions of quarterly realized dispersion on the lag

of σε,t. We report 90-percent confidence intervals in brackets below (none of the main results

are sensitive to the choice of a 90- versus 95-percent cutoff, though some auxiliary results

are). In all cases, both the dependent and independent variables are standardized to have

unit standard deviations. The first two columns show that σε,t has substantial forecasting

power for RDret
t+1, in fact driving the lagged value of realized dispersion out of the regression.

A unit standard deviation increase in cross-sectional uncertainty is associated with future

cross-sectional uncertainty higher by 0.89 standard deviations, indicating that cross-sectional

uncertainty is close to an unbiased predictor of changes in realized dispersion over time

(the result is similar in absolute levels instead of standard deviations).11 That significant

predictive power remains even after controlling for lagged realized volatility (though the

confidence bands are wide enough that the coefficients are not statistically significantly

different from each other).12

The second and third pairs of columns of table 1b report results for two alternative

measures of cross-sectional dispersion: the cross-sectional interquartile ranges of growth in

industrial production (across sectors) and growth in sales (across Compustat firms), RDIP

and RDsales.13 In both cases, σε,t again has substantial forecasting power. A unit standard

deviation increase in uncertainty predicts about a 0.2 standard deviation increase in future

dispersion. The relatively smaller magnitude is not surprising since σε,t measures uncertainty

of stock returns, rather than IP or sales. In the case of IP, which is available at the monthly

level, the significant predictive power survives (at the 90- but not 95-percent level) even after

controlling for lagged RDIP , though the coefficient shrinks substantially.

To the extent that σε,t has predictive power, a natural question is whether it comes

through σε,t or RDret, given how strongly correlated they are. That correlation makes them

rather difficult to separately identify. The results in table 1b for forecasting RDret find

a larger coefficient on σε,t, but again the coefficients are not significantly different from

each other. Table A.2 in the appendix shows a similar result holds in forecasting realized

11The constant in the regression is not equal to zero, consistent with the presence of a risk premium.
12See Lochstoer and Muir (2021) for a more detailed analysis of the the predictive power of option prices

for aggregate as opposed to cross-sectional volatility.
13As in Bloom et al. (2018), we study the interquartile range because IP and sales growth have heavy

tails, causing the cross-sectional standard deviations to be driven by outliers. Table A.2 in the appendix
reports results for the cross-sectional standard deviations.
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dispersion in IP and sales growth.

4.2 Real activity

We study forecasts of three monthly variables: the unemployment rate, non-farm private

employment growth, and industrial production growth. All are again standardized to have

unit variance. These regressions are valuable for two reasons, both independent interest

and also as moments that can be used to test models. These regressions stop at the end of

2019 because the shifts in 2020 are so large as to be dominant in the data (the one-month

growth rates are ten times larger than anything prior). However, the results are qualitatively

consistent using the sample through 2020.

The first column in the three sections of table 1c reports a regression of activity on

lagged cross-sectional uncertainty. In all three cases, the coefficient implies that increases in

uncertainty are followed by declines in real activity. The magnitudes of the coefficients are

similar, with a unit standard deviation increase in uncertainty being associated with declines

in IP and employment of about 0.13 standard deviations and an increase in unemployment

of 0.22 standard deviations.

As in the previous section, though, these results should be interpreted with caution,

as they appear to be sensitive to the sample used. Furthermore, we note that there is no

claim of any sort of identification of shocks here. These are simple one-step-ahead forecasting

regressions. So while one interpretation is that they imply that uncertainty causes declines in

activity, another is just that there is some other factor driving both activity and uncertainty,

and that uncertainty just responds relatively quickly.

Sharper tests of theoretical models can be obtained by contrasting the forecasting power

of cross-sectional uncertainty with that of other measures, like realized cross-sectional dis-

persion and aggregate uncertainty. Empirically, these measures are correlated, which makes

identification difficult, but the existing literature has often offered sharp predictions about

which type of volatility matters for the real economy. The correlation between cross-sectional

uncertainty and realized dispersion is 0.93, while the correlation between cross-sectional and

aggregate uncertainty is 0.56, meaning that the latter pair of variables should be much easier

to distinguish.

Studying the effects of aggregate uncertainty, Berger, Dew-Becker, and Giglio (2020)

show that uncertainty is driven out by aggregate realized volatility (the aggregate analog to

realized dispersion). The second column of each section of table 1c shows that for this paper’s

analysis, when cross-sectional realized dispersion is included in the forecasting regressions,

it is associated with declines in employment and increases in unemployment, but it has no
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effect on industrial production growth. That said, the (90-percent) confidence bands in these

regressions are wide due to the high correlation between implied and realized dispersion, so

that it is difficult to draw clear conclusions, except to say that there is not strong evidence

here that uncertainty has significantly negative effects on its own.

Those results, together with those in the previous section, tell us that even though

forward-looking cross-sectional uncertainty σε,t is an important predictor for realized disper-

sion – showing up as significant even after controlling for lagged realized dispersion – it is

relatively weakly associated with real activity, whether lagged dispersion is included as a

control or not.

The last column of each section of table 1c asks whether cross-sectional or aggregate

uncertainty is more important for forecasting. In all three cases, market uncertainty drives

cross-sectional uncertainty out of the regressions. Not only is market uncertainty dominant

in relative terms, its coefficients are also large in absolute terms, -0.21 for both employment

and IP and 0.25 for unemployment, and they are highly statistically significant. The data

therefore suggests that to the extent that uncertainty is relevant for forecasting real activity,

it is aggregate rather than cross-sectional uncertainty that matters.

Overall, while cross-sectional uncertainty does have some univariate forecasting power, it

is delicate; there is evidence that realized volatility may be equally important, and market

uncertainty seems to dominate idiosyncratic uncertainty. But, again, the forecasting results

are statistically noisy, underscoring the fact that the relationship between cross-sectional

uncertainty and the business cycle is simply not very strong, regardless of what direction it

runs on average and which measure is dominant.

4.3 Summary

Section 3 showed that over the last 40 years, cross-sectional uncertainty has been relatively

stable outside of three distinct episodes. Of those three peaks, two came during recessions

and one during an expansion – and tightly associated with a huge boom in patenting activity

– showing that cross-sectional uncertainty has had a mixed relationship with the business

cycle. This section takes that result a step further, showing that cross-sectional uncertainty

overall has weak forecasting power for real activity. The results are difficult to reconcile

with the view that firm-specific uncertainty is, in and of itself, a major economic headwind.

Sometimes it may be a consequence of things actually going well.

Two alternative variables, realized dispersion and aggregate uncertainty, drive cross-

sectional uncertainty out of the forecasting regressions we run. Between aggregate and cross-

sectional uncertainty, aggregate uncertainty appears to be the relevant driver. Furthermore,
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to the extent that the cross-section matters, it is through the realization of shocks that

generate dispersion or reallocation, not the expectation that such shocks might occur (even

though realized dispersion, to the naked eye, simply appears to equal ex ante uncertainty

plus significant noise).

The next section shows how these results can be used to calibrate and test structural

models.

5 Calibrating and testing structural models

We now use σε,t to calibrate and test structural models. We first estimate the time-series

dynamics of uncertainty, a key input to calibrations. The regressions from table 1c are

a useful test of structural models. Since most models are constructed at the quarterly

frequency, the empirical results reported in this section are also estimated at the quarterly

frequency.

We begin in section 5.1 by showing how moments from our dataset can be used to calibrate

models. Sections 5.2 and 5.3 then focus on testing two specific models: the “really uncertain

business cycles” (RUBC) model of Bloom et al. (2018), which is centered around a real

options framework, and the model of financial frictions of Christiano, Motto, and Rostagno

(CMR; 2016).

5.1 Calibration moments

In the vast majority of models with time-varying uncertainty, uncertainty follows an AR(1)

type process, which can be characterized by its standard deviation (which we scale relative

to its mean) and autocorrelation. Panel a of table 2 reports those moments in the data,

along with bootstrapped 95-percent confidence bands. These numbers are useful both as

a guide for future calibrations and also for evaluating calibrations used in past work. As

discussed above, the standard deviation of cross-sectional uncertainty relative to its mean is

30 percent over the full sample. Its quarterly autocorrelation is 0.88.

The next five columns of the table report analogous population moments in the calibra-

tions of recent structural models. In all five cases, the idiosyncratic uncertainty represents

the volatility of firm-specific shocks to fundamentals (typically productivity). For the scaled

standard deviation, the calibrations range from 0.09 to 0.71, lying inside the empirical con-

fidence band in only a single case. For the autocorrelation, the results are similar. The

calibrations range from 0.71 to 0.98 and are inside the empirical confidence bands in three

of five cases. The table shows that there is little agreement in the literature on either the
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volatility or persistence of idiosyncratic risk. The data presented here can help resolve that

disagreement.

5.2 Correlations

Table 2b reports raw correlations between major economic aggregates and uncertainty at

the quarterly frequency. As in table 1, the correlations in the data are weak and have

mixed signs. The second and third columns report population correlations in the RUBC and

CMR models. In both cases, with the exception of consumption growth, the correlations are

substantially negative and well outside the empirical confidence bands. Both models focus

on contractionary effects of uncertainty shocks. While the data presented here is consistent

with the existence of such mechanisms during some episodes, in that uncertainty was high

during the 2009 and 2020 recessions, the large increase in cross-sectional uncertainty during

the boom of the late 1990’s renders the overall correlation close to zero.

5.3 Forecasting regressions

A third way that the data can be used to evaluate models is to ask whether they can match

the forecasting results obtained in table 1c. Recall that in addition to finding that cross-

sectional uncertainty alone had some forecasting power, we also found that it was driven out

by both realized cross-sectional dispersion and aggregate uncertainty.

To help focus in particular on the effects of uncertainty shocks, in both the model and

data here we regress changes in macro aggregates on changes in uncertainty and realized

dispersion. For CMR, then, the regression we estimate in the data and model is

∆yt = b0 + b1∆yt−1 + b2∆σε,t−1 + b3∆RD
ret
t−1 + ηt (12)

where ηt is a residual and y represents the log of GDP, consumption, investment, or hours

worked. As in the analysis above, all variables are standardized to have unit standard

deviation.

The first column in table 2c reports the estimates from the data, while the second col-

umn reports the (population) coefficients in CMR. In all four cases, there is again only a

weak relationship in the data between economic activity and shocks to uncertainty – for

investment, the relationship is actually positive – while realized dispersion has a statistically

significantly negative relationship with real activity. In simulations of the CMR model, on

the other hand, in all four cases it is uncertainty that is most important for forecasting real

activity, rather than realized dispersion. As discussed above, realized dispersion is equal
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to uncertainty plus noise (the unexpected component of realized dispersion). In the CMR

model, that noise does not have structural effects, so uncertainty dominates the forecasting

regressions.

In the data, though, that “noise” – the gap between realized dispersion and its expectation

– actually contains information. Models featuring concave responses to shocks, such as Ilut,

Kehrig, and Schneider (2018) and Dew-Becker, Tahbaz-Salehi, and Vedolin (2020), are able

to generate that effect. That is, in those models, realized dispersion does have effects on

output, above and beyond the expected component encoded in uncertainty.

As discussed above, given that with our data we can construct a pair of matching measures

of both aggregate and cross-sectional uncertainty, we can address the question of which of

the two is more important for driving fluctuations. While CMR only has time-varying

cross-sectional uncertainty, RUBC has fluctuations in both cross-sectional and aggregate

uncertaint, so we want to test, both in the data and the model, which is more important.

To do so, the second pair of columns in table 2c reports estimates from a version of (12)

where we replace RDret
t−1 with σmkt,t−t,

∆yt = b0 + b1∆yt−1 + b2∆σε,t−1 + b3∆σmkt,t−t + ηt (13)

That regression then allows us to measure the relative importance of cross-sectional and

aggregate uncertainty.

As in table 1c, table 2c shows that aggregate uncertainty drives cross-sectional uncertainty

out of the empirical forecasting regressions. GDP, investment, and hours are all substantially

more strongly driven by shocks to aggregate than cross-sectional uncertainty.

Table 2c shows that the coefficients on aggregate uncertainty in the forecasting regression

run on simulations of the RUBC model are, instead of being dominant, in all cases much

smaller than the coefficients on cross-sectional uncertainty, by factors of three to four.14 In

the RUBC model, it is primarily variation in cross-sectional rather than aggregate uncer-

tainty that matters. That fact makes sense given that in the model, the vast majority of the

variation in the total uncertainty faced by firms is from the cross-sectional component, but

it is the opposite of what is observed empirically.

14In the benchmark model in the RUBC paper, cross-sectional and aggregate uncertainty are perfectly
correlated. We run the simulation code three different times with calibrations where cross-sectional and
aggregate uncertainty vary by different amounts, so that when the three calibrations are combined, the
perfect correlation is broken. In the baseline RUBC calibration, aggregate and cross-sectional uncertainty
rise by a factors of 1.61 and 4.14, respectively, in the high-uncertainty state. We construct two additional
simulations in which they rise by the factors {2.42, 2.76} and {1.07, 6.21} and append them to the baseline
simulation.
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5.4 Implications

Table 2 makes two basic contributions. The top panel gives specific moments – volatility

and autocorrelation – for calibrating structural models. The second contribution is to show

how the raw correlations and forecasting regressions provide insights into aspects of the data

that models can and cannot match. The data implies that realized dispersion is at least as

important for forecasting as ex-ante uncertainty, if not more important. Similarly, it strongly

implies that aggregate uncertainty is more important than cross-sectional uncertainty. Both

of those features of the data are difficult for two leading models to match, so future work

could use them as areas for improvement.

As discussed above, the targets in panels b and c of table 2 are difficult to match within

a single model – they require being able to match the fact that uncertainty is sometimes

good and sometimes bad, and also being able to explain why realized dispersion would have

independent effects (which may require a nonlinear model). It is no criticism of RUBC and

CMR that their benchmark calibrations do not match these new results. Rather, table 2

simply yields new empirical facts that structural models can be built or enriched to match.

6 International evidence

To explore the behavior of cross-sectional uncertainty internationally, we obtain data from

Optionmetrics Europe for 1/2002 to 12/2018 and from Bloomberg for 1/2019 to 12/2020.

We have acceptable data for Switzerland, Germany, France, Great Britain, the Netherlands,

and the constituents of the Euro Stoxx 50 index. While all of the countries are from western

Europe, the list includes countries with varying degrees of connection to the EU and countries

on different currencies and with very different government fiscal states.

Figure 3 plots cross-sectional uncertainty for each country against the US. In each case,

cross-sectional uncertainty is clearly strongly correlated with that in the US, elevated in

2002, declining until the financial crisis, and then low and stable from 2010 until coronavirus

in 2020 (the correlations are reported in the figure). That is true even though the path of

aggregate output in Europe over this period was very different from the US – a number of

these countries went into recessions around 2012.

The table below summarizes the time-series behavior of market and cross-sectional un-

certainty in the international data. The average time series standard deviation of market

uncertainty is nearly twice that of cross-sectional uncertainty. Furthermore, it confirms the

results on the fraction of the variation in uncertainty explained by a common factor – this

time using the cross-sectional mean of uncertainty, rather than the US value. Finally, it
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reports the simple average of all the pairwise correlations across countries and shows the

high degree of similarity for both types of uncertainty.

Statistics for cross-sectional and market uncertainty across countries

Cross-sectional unc. Market unc.

Avg. time-series s.d. 0.0474 0.0803

Avg. cross-sectional s.d. 0.0342 0.0322

Frac. of var. explained

by cross-sectional mean 0.60 0.86

Avg. pairwise corr. 0.82 0.92

The results here show that the finding of stability is not unique to the US: cross-sectional

uncertainty has been similarly stable in other major developed economies. Second, there

appears to be a strong international factor in cross-sectional uncertainty: uncertainty shocks

have been global in nature over the last 18 years.

7 Conclusion

This paper reports a novel real-time index of cross-sectional implied volatility. A large litera-

ture studies the effects – both good and bad – of variation in the cross-sectional distribution

of shocks that firms face. There is theoretical ambiguity about the effects of changes in

cross-sectional uncertainty, but many policymakers take the view that uncertainty repre-

sents a hindrance to economic growth. It is thus an important empirical question not just

what the time series of firm-level of uncertainty has looked like, but also whether shocks to

cross-sectional uncertainty are in fact contractionary.

We develop a novel index of cross-sectional uncertainty with data extending back to 1980.

The length of the sample is important – it is the data in the 1980’s and early 1990’s that em-

phasizes the extent to which the last two recessions have been anomalous. Prior to the late

1990’s, there was little variation in cross-sectional uncertainty. Since then, there have been

three episodes where it substantially grew, one a major economic expansion, with significant

innovation, and the other two contractions. Studying raw correlations and forecasting re-

gressions, we find that cross-sectional uncertainty is approximately acyclical overall and has

little unconditional ability to forecast changes in future real activity. Overall, sometimes the

data is consistent with models in which uncertainty shocks have causal negative effects on

the economy, while in other periods it is consistent with models in which cross-sectional un-

certainty is high following good shocks, for example due to a rise in innovation and creative

destruction.
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Figure 1: Time series of cross-sectional uncertainty
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Note: Each panel plots cross-sectional uncertainty (darker line) together with another time series: aggre-
gate uncertainty (panel (a)), stock market value (panel (b)), investment (panel (c)), unemployment (panel
(d)), KPSS patent value/GDP (panel (e)), and realized dispersion (panel (f)). Options data before 1996
is from the Berkeley Options Dataset, for the period 1996/01-2020/12 is from Optionmetrics. The VIX
(market uncertainty) is obtained from CME options. Shaded areas are NBER recessions.
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Figure 2: Robustness
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Note: The figure plots our baseline measure of cross-sectional uncertainty together with alternative
measures built in different ways. Specifically: in panel (a), the alternative measure accounts for time-
varying risk premia; in panel (b), it adjusts for industry and tech industry shocks; in panel (c), it uses the
median of implied volatility across firms, instead of the weighted average by market cap; panel (c) also
plots the measure obtained using all options in Optionmetrics instead of the largest 200; in panel (d), the
alternative adjusts for betas; in panel (e), it uses employment weights instead of market cap; in panel (f),
it uses 12-month instead of 30-day uncertainty.

27



Figure 3: Cross-sectional uncertainty across countries
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Note: Cross-sectional uncertainty from option data in European markets (solid line) against the one for
the US (dotted line). Data is from Optionmetrics until 2018, and from Bloomberg since 2019.
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Table 1: Cyclicality of cross-sectional uncertainty

(a) Correlations

Detr
ended

IP

Detr
ended

em
pl.

Unem
ploy

ment rate

CBO
output gap

NBER
rec

ess
ion

Capacit
y utili

tza
tio

n

GZ bond sprea
d

IP
grow

th

Employ
ment grow

th

Change in
unem

pl. rate

Change in
output gap

Full sample -0.04 0.06 -0.09 0.08 0.32 -0.01 0.43 -0.13 -0.08 0.08 -0.10

Pre-2020 -0.02 0.13 -0.13 0.11 0.31 0.02 0.43 -0.17 -0.25 0.22 -0.16

Pre-1/2008 0.09 0.16 -0.24 0.15 0.12 -0.11 0.53 -0.09 -0.11 0.09 -0.09

Post-1/2008 -0.36 -0.11 0.21 -0.29 0.86 -0.47 0.81 -0.27 -0.17 0.14 -0.15

(b) Forecasting realized dispersion

RDx
t = b0 + b1RD

x
t−1 + b2σε,t−1 + ηt

x: Stock returns IP growth IQR Sales growth IQR

σε,t−1 0.89 0.52 0.21 0.10 0.24 0.17

[0.81,0.97] [0.32,0.72] [0.01,0.42] [0.01,0.19] [-0.05,0.53] [-0.06,0.41]

RDx
t−1 0.37 0.61 0.25

[0.19,0.56] [0.54,0.68] [0.11,0.38]

#obs. 449 449 449 449 149 149

(c) Uncertainty forecasting real activity, 1983–2019

yt = b0 + b1yt−1 + b2σε,t−1 + b3RD
ret
t−1 + b4σmkt,t−1 + ηt

∆Unemployment ∆log(Empl.) ∆log(IP )

σε,t−1 0.22 0.02 0.10 -0.12 0.05 -0.03 -0.14 -0.15 -0.04

[0.06,0.38] [-0.21,0.26] [-0.01,0.21] [-0.22,-0.02] [-0.10,0.21] [-0.10,0.05] [-0.28,-0.01] [-0.34,0.05] [-0.13,0.06]

RDret
t−1 0.21 -0.18 0.00

[-0.05,0.46] [-0.37,0.01] [-0.19,0.20]

σmkt,t−1 0.25 -0.21 -0.21

[0.07,0.43] [-0.36,-0.05] [-0.37,-0.04]

#obs. 437 437 437 437 437 437 437 437 437

Note: Panel (a) reports correlations between cross-sectional uncertainty and various macroeconomic vari-
ables. Panel (b) reports the results of a regression of three different measures of realized cross-sectional
dispersion on lagged cross-sectional uncertainty and lagged realized dispersion. The three measures are:
realized cross-sectional dispersion of stock returns, the cross-sectional interquartile ranges of growth in
industrial production (across sectors), and growth in sales (across Compustat firms). Panel (c) reports
forecasting regressions of real activity, in the three sections, respectively: unemployment, change in em-
ployment, and change in industrial production. In each section, the first column uses lagged cross-sectional
uncertainty as predictor, the second column adds lagged realized cross-sectional dispersion, and the last
column adds instead market-wide uncertainty. 90% confidence intervals calculated using Newey–West with
12 lags are reported in brackets.
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Table 2: Comparing models to data moments

(a): Calibration moments

Data RUBC CMR Schaal Di Tella Gilchrist et al.
SD[σε,t]/E[σε,t] 0.30 0.71 0.58 0.14 0.20 0.09

[0.17,0.38]

Corr[σε,t, σε,t−1] 0.88 0.91 0.98 0.94 0.71 0.90
[0.70,0.95]

(b) Correlations of growth rates with ∆σε,t
Data RUBC CMR

GDP 0.04 -0.53 -0.39
[-0.07,0.15]

Consumption 0.03 0.37 -0.05
[-0.08,0.14]

Investment 0.08 -0.59 -0.43
[-0.02,0.18]

Hours worked 0.11 -0.76 -0.21
[-0.03,0.24]

(c) Forecasting regressions

CMR : ∆yt = b0 + b1∆yt−1 + b2∆σε,t−1 + b3∆RDret
t−1 + ηt

RUBC : ∆yt = b0 + b1∆yt−1 + b2∆σε,t−1 + b3∆σmkt,t−1 + ηt

y Data CMR Data RUBC
log GDP: ∆σε,t−1 0.003 -0.24 ∆σε,t−1 -0.001 -0.049

[-0.004, 0.010] [-0.007, 0.004]

∆RDret
t−1 -0.011 0.05 ∆σmkt,t−1 -0.008 -0.027

[-0.018,-0.003] [-0.016,-0.000]

log Consumption: ∆σε,t−1 -0.001 -0.04 ∆σε,t−1 -0.002 -0.033
[-0.006, 0.004] [-0.007, 0.003]

∆RDret
t−1 -0.004 0.03 ∆σmkt,t−1 -0.004 -0.020

[-0.011, 0.003] [-0.012, 0.004]

log Investment: ∆σε,t−1 0.013 -0.23 ∆σε,t−1 -0.001 -0.039
[-0.013, 0.038] [-0.018, 0.015]

∆RDret
t−1 -0.034 0.09 ∆σmkt,t−1 -0.027 -0.016

[-0.056,-0.012] [-0.043,-0.011]

log Hours: ∆σε,t−1 0.019 -0.04 ∆σε,t−1 0.006 -0.023
[-0.002, 0.041] [-0.011, 0.023]

∆RDret
t−1 -0.037 0.00 ∆σmkt,t−1 -0.033 -0.012

[-0.070,-0.005] [-0.065,-0.001]

Note: Panel (a) reports moments of the time-series of σε,t in the data and in various papers. Panel (b)
reports correlations of σε,t with macroeconomic variables in the data and in the models. Panel (c) reports
the results of forecasting regressions in the data and in the models. RUBC is Bloom et al. (2018); CMR
is Christiano, Motto, and Rostagno (2016). All variables are at the quarterly frequency.
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A.1 Data calculations

A.1.1 Constructing implied volatility

For the Optionmetrics sample, we obtain at-the-money implied volatilities as the delta=50

IVs with maturity of 30 days from the Optionmetrics surface file.

In the period since 2009, there has been an increase in the seasonality of implied volatility

around earnings announcement dates. For the period 2010–2020, we therefore estimate a

nonlinear regression for average firm-level implied volatility that fits a sine curve to the data

with precisely four cycles per year. That sine curve is then removed to yield the seasonally

adjusted series.

For the BODB, the steps are as follows:

1. We calculate closing bid and ask prices for each option as the average of the final value

and any other values recorded in the last 15 minutes of trading.

2. For each date/maturity/ticker combination, we take the strike immediately above and

below the underlying price, as long as it is within 20 percent of the underlying.

3. Option prices are calculated as the midpoint between the bid and ask.

4. We drop all options with maturity less than 7 days.

5. The BODB reports a spot price. We replace the spot price with the value implied by

put-call parity with a dividend of zero if the put-call parity implied price differs from the

reported spot by more than 20 percent (this is to eliminate some clear data errors).

6. Implied volatilities are constructed using the Black–Scholes formula for European op-

tions ignoring dividends. For the one-month maturity, early exercise has generally very small

effects on prices. We experimented by using the same method on data from Optionmetrics

and comparing it to the implied volatilities that they report (which use a model for dividends

and also account for early exercise) and we found the differences were quantitatively small.

7. We interpolate between maturities – and extrapolate where necessary – to get 30-day

implied volatilities. Firm-level implied volatilities are set to have a maximum of 200 percent

annualized and a minimum of zero (the interpolated values are winsorized).

8. The implied volatilities are then collapsed across firms weighting by market capital-

ization. We matched the tickers in the BODB to CRSP permco numbers to get market

capitalization. In the large majority of cases, the BODB tickers are the same as the stock

exchange tickers (they differ most for NASDAQ listings; the BODB manual, available online

or on request from us, discusses this issue). The remainder are matched by hand where

possible.
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A.2 How much of the variation is common?

For most of the analysis, we follow the literature in studying the common component in

cross-sectional uncertainty. It is worth asking, though, how much of the variation in firm-

level uncertainty is driven by that common component. To do so, we use the law of total

variance,

var (xi,t)︸ ︷︷ ︸
Total variance

= E
[
var
t

(xi,t)
]

︸ ︷︷ ︸
Average cross-sectional variance

+ var [Et (xi,t)]︸ ︷︷ ︸
Time-series variance of the average

(A.1)

where vart and Et refer to the cross-sectional variance and average on date t. The first

term represents the residual variance after accounting for the cross-sectional average in each

period, while the second term is the variance coming from that average. So the ratio of

var [Et (xi,t)] to the total variance represents the fraction of the total variance explained by

the cross-sectional mean in each period.

The variance decomposition identity (A.1) also holds with weights, so we weight by

market capitalization as above (normalizing the sum of market capitalization to 1 on each

date to give them equal weight overall). For xi,t, we use total firm implied volatility measured

here as

σ2
R,ε,i,t ≡ σ2

i,t − β2
i,R,tσ

2
mkt,t (A.2)

where σ2
R,ε,i,t is a rolling beta estimated using the previous 12 months of daily data. When

we are just calculating the average of cross-sectional uncertainty across firms, the errors from

setting βi ≈ 1 somewhat cancel out across firms. Here, though, those errors will affect the

variance decomposition, so it is important to also examine what happens when we actually

estimate βi.

Variance decomposition for uncertainty measures

Fraction from common component

Firm level Sector level

Total firm uncertainty (σ2
i,t) 0.50 0.75

Firm-specific uncertainty (σ2
R,ε,i,t) 0.40 0.70

Depending on the measure, between 40 and 50 percent of the total variation in uncer-

tainty is due to a common component (measured as the cross-sectional average), which is

quantitatively consistent with the results in Herskovic et al. (2016). The fraction explained

by a common component is greater for total firm uncertainty, which is natural since that

includes market uncertainty, which affects all firms. The second column of the table above

A.2



reports similar results for measures of uncertainty averaged within two-digit sectors (i.e.∑
i∈S wi,tσ

2
R,ε,i,t, where S represents the set of firms in some sector). These results therefore

measure the extent to which cross-sectional uncertainty is similar across different sectors. In

this case, the fraction of the variation explained by the time-series component is 1.5 times

larger than in the firm-level case.

Overall, then, a surprisingly large amount of the total variation in cross-sectional or

idiosyncratic risk is driven by a common component that hits all parts of the economy,

which motivates us (and previous authors) to study a single common factor.
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Figure A.1: IRFs in the RUBC model
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Note: The figure reports the partial-equilibrium (left side) and general equilibrium (right side) IRFs of
output, investment, and labor to uncertainty shocks of different persistence of the volatility shock, in
the RUBC model. The period length is one quarter. IRFs are calculated as the difference in the mean
conditional on a transition from low to high uncertainty in period 1. Persistence is the probability of the
Markov chain remaining in the high state.
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Figure A.2: Fraction of market capitalization covered by the options data
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Note: The figure reports the ratio of total market capitalization for the firms for which we observe
options data to the total market capitalization (dark line), and the fraction of aggregate employment
covered (lighter line). Data before 1996 is from the Berkeley Options Dataset, and data after 1996 is from
Optionmetrics. Shaded areas are NBER recessions.
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Figure A.3: SBU
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Note: The figure plots our baseline measure of cross-sectional uncertainty together with the sales and
employment uncertainty from the Federal Reserve Bank of Atlanta’s Survey of Business Uncertainty (SBU)
over the period 2016-2020.

Table A.1: Cyclicality of cross-sectional regressions and forecasting results

(a) Correlations

HP
IP, 129,600

HP
IP, 518,400

Exp MA
IP

HP
Emp., 129,600

HP
Emp, 518,400

Exp MA
Emp.

Full sample -0.05 -0.02 -0.17 0.06 0.07 -0.15

Pre-1/2008 0.09 0.13 -0.03 0.15 0.16 -0.05

Post-1/2008 -0.36 -0.39 -0.71 -0.11 -0.12 -0.54

Note: Replicates table 1a, but with alternative detrending for IP and employment. HP IP, 129,600 is
HP-filtered IP with a smoothing parameter of 129,600, and the other columns are similar. “Exp MA” is
a case where we detrend the growth rates using an exponentially weighted moving average filter, with a
decay rate of 10 percent per month, and then cumulate the detrended growth rates to recover the level.
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Table A.2: Forecasting cross-sectional standard deviations

x: IP growth SD Sales growth SD

σε,t−1 0.18 0.09 -0.24 0.21 0.14 -0.49

[-0.01,0.38] [-0.02,0.20] [-0.82,0.34] [-0.05,0.48] [-0.05,0.32] [-1.04,0.05]

RDx
t−1 0.63 0.37

[0.57,0.70] [0.27,0.48]

RDrett−1 0.44 0.71

[-0.28,1.15] [0.25,1.18]

#obs. 449 449 449 149 149 149

Note: Replicates table 1b, but replacing the interquartile ranges with cross-sectional standard deviations.
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