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1 Introduction

It is a widespread perception that the workhorse of financial economics – the consumption-

based capital asset pricing model (C-CAPM) of Rubinstein (1976), Lucas (1978), and Bree-

den (1979) – has fallen on hard times.1 Most prominent is the failure to account for the

equity premium for any plausible values of risk aversion, which has been referred to as the

‘equity premium puzzle’ (Mehra and Prescott, 1985). These limitations have given rise to a

vast literature of promising C-CAPM extensions to achieve a better empirical performance.

As a fly in the ointment, Lettau and Ludvigson (2009) show that leading extensions – in-

cluding models with long-run risk and recursive preferences (Bansal and Yaron, 2004), habit

formation (Campbell and Cochrane, 1999), and limiting participation (Guvenen, 2009) –

cannot explain the large and persistent pricing errors found empirically (referred to as Euler

equation (EE) errors). Even if this ‘pricing error puzzle’ has not received as much attention

as the equity premium puzzle, an open question remains why the leading asset pricing models

do fail on that particular dimension (Lettau and Ludvigson, 2009, p.255):

“Unlike the equity premium puzzle, these large Euler equation errors cannot be

resolved with high values of risk aversion. To explain why the standard model

fails, we need to develop [...] models that can rationalize its large pricing errors.”

Against this backdrop, our paper makes four key contributions. First, we show that a

C-CAPM model with rare disasters in the spirit of Rietz (1988) and Barro (2006, 2009) –

i.e. allowing for low-probability events causing infrequent but sharp contractions – not only

explains the equity premium (as shown in Barro, 2006), but also rationalizes the large pricing

errors found empirically. In fact, the puzzle is not about how to rationalize pricing errors,

but rather how to generate empirical pricing errors. Second, we shed light on the source of

pricing errors by providing analytical expressions for asset returns, the stochastic discount

factor (SDF), and EE errors, both in an endowment economy and in a production economy

with low-probability consumption/capital disasters. Our analytical results demonstrate that

the EE errors are intimately linked to the poor empirical performance of the C-CAPM found

in econometric studies. In particular, we elucidate why the parameter estimates for time

preference and risk aversion tend to be severely biased in empirical studies. Third, we run

extensive Monte Carlo simulations that demonstrate the impact of low-probability events on

the plausibility of standard C-CAPM parameter estimates in small samples when the model

is estimated, as is standard, by the generalized method of moments (GMM). We find that

1See Ludvigson (2011) for an excellent survey of the C-CAPM literature. Kroencke (2017) argues that
the deficiencies of the classical model might be attributed to a failure to measure consumption correctly.
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implausibly high estimates for the risk aversion and/or time preference parameters – exactly

as found in the empirical literature – naturally arise if market participants expect a future

catastrophic change in fundamentals, which just happen not to occur in the sample, or in

other words, if the estimation is subject to a so-called peso problem.2 Fourth, to address

this issue, we suggest two simple corrections of the moment conditions, both implying more

plausible empirical parameter estimates.

The novel result of this paper is to show that estimated EE errors may result – despite that

GMM’s objective is to minimize pricing errors – together with biased parameter estimates.

We present an analytical investigation of EE errors in models with rare events and a data

generating process which is able to generate estimated EE errors and biased parameter

estimates of similar order of magnitudes as we observe in empirical data. Similar to the

statistical approach for heavy-tailed distributions in Kocherlakota (1997), we show that by

accounting for rare disasters in the C-CAPM, the model produces reasonable parameter

estimates and pricing errors consistent with the empirical data.

We show that in small samples where consumption disasters just did not happen to occur,

or more generally, where the sample frequency of disasters is not equal to their population

frequency, the standard moment conditions are misspecified. This misspecification in turn

typically leads to substantial biases of parameter estimates because the objective of GMM

is to minimize the squared EE errors. In a simple endowment economy, this objective has

two related but unpleasant properties: (i) it essentially removes the pricing errors through

(ii) biased parameter estimates of risk aversion and time preference. Only in cases where

the minimum of the GMM objective is not sufficiently close to zero, as is often the case in

models with changing investment opportunities associated with time-varying interest rates,

estimated pricing errors may occur.

In line with the results in Lettau and Ludvigson (2009), we illustrate that a model with

long-run risk and recursive preferences is unable to generate estimated EE errors, while

generating moderately biased estimates of the risk aversion coefficient. Overall, our results

thus indicate that rare disaster risk is key for explaining the pricing error puzzle.

From a practical standpoint, we put forth several ways of how the biased estimates can be

avoided in empirical research by resolving the misspecification in samples with peso problems.

Our first proposal starts by assuming that the C-CAPM with rare events is the true data

generating process. Then, we use the implied EE errors to remove any misspecification in the

moment conditions. While elegant, this remedy is far from perfect in that is not model-free

and depends on the assets under consideration. Our second remedy builds on Parker and

2The term ‘peso problem’ is interchangeably with the small-sample inference problems arising from these
expected events. The phenomenon is named after events in the Mexican peso market (Lewis, 1992, p.142).
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Julliard (2005) and includes a set of constants in the moment conditions that are intended

to capture any disaster risk without the need of specifying a particular model.

Our work relates to the literature on the impact of peso problems on financial markets

(cf. Veronesi, 2004).3 While the role of unobserved regime shifts, fat-tailed shocks, and peso

problems has been recognized already in earlier literature as a source of misspecification

when a C-CAPM is fitted to the data (cf. Kocherlakota, 1997; Saikkonen and Ripatti, 2000),

we go beyond the past literature in various ways. First of all, we cast the problem within the

rare disaster framework of Rietz (1988) and Barro (2006). In their framework, asset prices

reflect risk premia for infrequent and severe disasters in which consumption drops sharply. If

disasters are expected by investors ex-ante (reflected in their decisions on consumption and

portfolio choice), even if they happen not to occur in sample, a sizeable equity premium can

materialize.4 Using historical estimates of consumption disasters for a broad set of countries

over a very long period, Barro (2006) shows that a calibrated version of the standard C-

CAPM with rare events is able to explain the level of the US equity premium for plausible

parameters of risk aversion. We add to this literature by showing that the rare disaster

framework helps along two other dimensions: (i) explaining the observed pricing errors that

empirical researchers typically encounter in finite sample when fitting a standard C-CAPM,

and maybe even more importantly, (ii) explaining the implausible estimates of structural

parameters often obtained in empirical work.

Our paper also relates to work on the estimation of consumption-based asset pricing mod-

els. When taking the C-CAPM to the data, the traditional approach is to estimate the model

by GMM. While the advantage of this approach is that it does not rely on a specific structural

model, it is sensitive to peso problems. For example, Saikkonen and Ripatti (2000) illustrate

the poor performance of the GMM estimator in small and even relatively large samples in

the presence of potential regime shifts. Several authors have sought to address the empirical

weaknesses of the C-CAPM through alternative estimation approaches. In settings with

rare disasters, information-theoretic and simulation-based approaches have been proposed

3It seems fair to say that the work of Barro (2006) has led to a resurgence of academic interest in the rare
disasters hypothesis. Subsequent work includes Barro and Ursúa (2008); Barro (2009); Nakamura, Steinsson,
Barro, and Ursúa (2013); Barro and Jin (2021). Recent work shows that rare event models help to explain
many phenomena in macro-finance. Examples include: (i) time-series predictability and excess volatility in
stock markets (e.g. Gabaix, 2008, 2012; Wachter, 2013), (ii) currency markets (e.g. Burnside, Eichenbaum,
Kleshchelski, and Rebelo, 2011; Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan, 2009), (iii) options
markets (e.g. Gabaix, 2008; Backus, Chernov, and Martin, 2011; Gabaix, 2012; Barro and Liao, 2019; Seo
and Wachter, 2019), and (iv) business cycle dynamics (e.g. Gourio, 2012; Gourio, Siemer, and Verdelhan,
2013). Tsai and Wachter (2015) provide a comprehensive literature survey on rare events.

4This is related to the statement in Cochrane (2005, p.30) that the US economy and other countries with
high historical equity premia may simply constitute very lucky cases of history. Brown, Goetzmann, and
Ross (1995) consider the related issue of survivorship for inference in empirical finance.
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(among others, Julliard and Ghosh, 2012; Nakamura, Steinsson, Barro, and Ursúa, 2013;

Sönksen and Grammig, 2021), although at the expense of additional complexity. Drawing

on the C-CAPM with rare events, we derive analytically the source of misspecification of

the moment conditions that plagues the GMM estimation of the C-CAPM in finite samples.

Therefore, we intentionally choose to work with the standard GMM approach, precisely to

understand better why the approach fails and generates estimated EE errors and grossly

biased parameters. This allows us to transparently show that the pricing error puzzle and

the poor performance of the C-CAPM are related (an issue that has hitherto received little

emphasis). It turns out that a more flexible version of the model which includes constants

to capture the disaster risk helps in alleviating the problems in empirical work.

The remainder of the paper is organized as follows. Section 2 provides a definition of the

EE errors and revisits the pricing puzzle. Section 3 presents the asset pricing models with

rare events, provides analytical solutions for computing the EE errors in general equilibrium,

and gives the intuition for our analytical, empirical, and simulation-based results. Section 4

shows the empirical performance of the C-CAPM with respect to EE errors and parameter

estimates. We also show how to resolve the misspecification that implies more plausible

values of risk aversion and time preference. It also contains Monte Carlo evidence showing

that rare disaster models help in explaining several dimensions of the empirical weaknesses

of the standard C-CAPM including large empirical pricing errors. Section 5 concludes.

2 Pricing errors

In this section we define Euler equation (EE) errors, and present a brief discussion of the

empirical facts and puzzles encountered in the data.

2.1 Definitions

For analytical convenience, we consider the standard first-order condition implied by the

canonical version of the C-CAPM with time-separable utility functions,

u′(Ct) = βEt [u
′(Cs)Rs] , u′ > 0, u′′ < 0, s ≥ t. (1)

The optimality condition in (1) is referred to as the Euler equation. It determines the

optimal path of consumption, Ct, given the gross return on savings (or any traded asset),

Rs, and the time-discount factor, β ≡ e−ρ(s−t) ∈ (0, 1), with ρ denoting the subjective rate

of time preference. When pricing assets, we define the stochastic discount factor (SDF) as

the process ms/mt such that for any security i with price P i
t and payoff X i

s at date s ≥ t

mtP
i
t = Et

[
msX

i
s

]
⇒ 1 = Et

[
(ms/mt)R

i
s

]
, (2)
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in which Ri
s ≡ X i

s/P
i
t denotes the security’s return. Hence, by comparing condition (1) to

the pricing equation (2), we conclude that in the C-CAPM we discount the expected payoff

of any given asset by ms/mt = βu′(Cs)/u
′(Ct) in order to find its equilibrium price.

Following Lettau and Ludvigson (2009), any deviations from (2), i.e.,

eiR ≡ Et
[
(ms/mt)R

i
s

]
− 1, eiR,s ≡ (ms/mt)R

i
s − 1, (3)

eiX ≡ Et
[
(ms/mt)(R

i
s −Rb

s)
]
, eiX,s ≡ (ms/mt)(R

i
s − Rb

s), (4)

define Euler equation (EE) errors, based on the gross return on any tradable asset, Ri
s, or as

a function of excess returns over a reference asset, Ri
s−Rb

s, for example the return on bonds.

In what follows, we refer to either eiR or eiX as pricing error, whereas to their empirical

counterparts êiR and êiX as the estimated pricing error. The latter is defined for specific

preferences. For example, for the C-CAPM with power utility and risk aversion γ > 0, the

EE errors for s = t + 1 are given by

êiR ≡ Et
[
β̂(Ct+1/Ct)

−γ̂Ri
t+1

]
− 1, êiR,t+1 ≡ β̂(Ct+1/Ct)

−γ̂Ri
t+1 − 1, (5)

êiX ≡ Et
[
β̂(Ct+1/Ct)

−γ̂(Ri
t+1 − Rb

t+1)
]
, êiX ,t+1 ≡ β̂(Ct+1/Ct)

−γ̂(Ri
t+1 − Rb

t+1). (6)

where β̂ and γ̂ denote the estimated parameters of time-preference and risk aversion. Using

data on consumption and asset returns, these estimates are traditionally obtained by the

generalized method of moments of Hansen (1982), minimizing a quadratic objective of the

pricing errors. The fit of the model is often assessed by the root mean squared error (RMSE),

which is a summary measure of the magnitude of the estimated EE errors.

2.2 Empirical puzzles

It is well established that the C-CAPM with power utility fails in several dimensions, in

particular is incapable of explaining cross-sectional variation in average asset returns. Using

US postwar data, Lettau and Ludvigson (2009, Table 1) show that the model generates

substantial pricing errors. Moreover, the parameter estimates of the standard C-CAPM

pricing kernel mt+1/mt = β(Ct+1/Ct)
−γ are flawed: β̂ = 1.41, γ̂ = 89.8 in the case of two

asset returns, and β̂ = 1.39, γ̂ = 87.2 when adding 6 size and book-to-market portfolios.

These estimates are inconsistent with standard parameterizations in macro and finance.

A time-discount factor above one implies that households value future consumption more

than current consumption, and the estimated parameter of relative risk aversion is far higher

than the microeconomic evidence on individuals’ behavior in risky gambles.

In addition, the pricing errors are economically large. The estimated EE error amounts

to 2.71% (3.05%) p.a. for the two-assets case (the larger cross-section), leaving a substantial
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fraction of the cross-sectional variation of average returns unexplained. It is puzzling to the

econometrician why individuals seem to accept surprisingly large and persistent EE errors.

Economically, this result implies that consumers seem to accept a 2.5 dollar pricing error for

each 100 dollar spent. Further, it is not possible to reduce the empirical EE error to smaller

magnitudes (or even to zero) by choosing other parameter constellations. Additionally,

Lettau and Ludvigson (2009) convincingly argue that many of the newly proposed extensions

to the C-CAPM, in particular the prominent long-run risk model (Bansal and Yaron, 2004),

are not capable of rationalizing the large pricing errors of the canonical model.

3 Asset pricing with rare events

In this section we present two asset pricing models to compute equilibrium consumption

growth and asset returns and that provide our framework to rationalize EE errors: the first

is a simple Lucas’ endowment model with constant investment opportunities; the second is

an endowment economy with changing investment opportunities that mimics the equilibrium

dynamics of a production economy. Both models shed light on different aspects of the puzzle

and provide directions for empirical research. A complete description of the models and of

their equilibrium implications can be found in Appendices A.2 and A.3.

3.1 Lucas’ endowment economy with rare events

Consider a representative-agent, fruit-tree economy of asset pricing with exogenous and

stochastic production. Similar to Barro (2006), production is subject to rare events in the

form of large negative shocks arriving at a constant rate. Gabaix (2008) and Wachter (2013)

consider the case of time-varying arrival rates and recursive preferences.5

Technology. Suppose that production of perishable output, Yt, is exogenously given (cf.

Lucas, 1978): no resources are utilized, and there is no possibility of affecting the output at

any time. The law motion of Yt follows the Markov process

dYt = µtYtdt+ σtYtdBt + (Yt − Yt−)dNt, (7)

where µt denotes the drift, σt represents the size of the shocks, Bt is a standard Brownian

motion, and Nt is a Poisson process with arrival rate λ. In the simple endowment economy,

we set µt ≡ µ̄ and σt ≡ σ̄. Moreover, the jump size is set to be proportional to the value of

output an instant before the jump, Yt − Yt− ≡ (exp(ν̄)− 1)Yt−, ν̄ < 0, where Yt− denotes

5Favero, Ortu, Tamoni, and Yang (2020) show that such rare disaster models satisfy the Hansen and
Jagannathan (1991) bounds. However, both features are not required in generating EE errors.
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the left-limit, Yt− ≡ limτ→t Yτ , for τ < t, ensuring that Yt does not jump negative. Thus,

the investment opportunity set in this endowment economy is assumed to be constant.

Preferences. Consider an economy with a single consumer, interpreted as a representative

of a large number of identical consumers. The representative consumer maximizes expected

lifetime utility (cf. Svensson, 1989; Duffie and Epstein, 1992b),

U0 ≡ E0

∫ ∞

0

f(Ct, Ut)dt (8)

where f(Ct, Ut) is a normalized aggregator given by

f(Ct, Ut) =
1− γ

1− 1/ψ
Ut

(
C

1−1/ψ
t − ρ((1− γ)Ut)

1−1/ψ
1−γ

)
((1− γ)Ut)

−
1−1/ψ
1−γ (9)

with ρ > 0 the subjective rate of time preference, γ > 0 the coefficient of relative risk

aversion, and ψ > 0 the elasticity of intertemporal substitution.6

The general utility function (8) is introduced here to compare our rare events models

with the main competitor, the long-run risk model of Bansal and Yaron (2004). To obtain

analytical results in the rare event models we set 1/ψ = γ, but our insights for the pricing

errors do not depend on the parametric restriction, which can be relaxed at the cost of

analytical tractability. Setting 1/ψ = γ makes the recursion in (9) linear, and the preferences

in (8) collapse to the standard time-additive model with

f(Ct, Ut) =
C1−γ
t

1− γ
− ρUt ⇒ U0 ≡ E0

∫ ∞

0

e−ρt
C1−γ
t

1− γ
dt. (10)

Equilibrium. In this economy, it is straightforward to determine equilibrium quantities

and the equilibrium asset holdings. The economy is closed and all output will be consumed,

Ct = Yt, and all shares held by capital owners are in zero net supply.

3.2 A mimicking endowment economy with rare events

Consider an endowment economy mimicking the equilibrium dynamics of a production econ-

omy that is subject to rare disasters in the accumulation of the capital stock as in Gourio

(2012), and rare technological improvements (cf. Wälde, 2005).7 The production economy

underlying this mimicking endowment economy is described in Appendix A.3. Below we use

6In contrast to Duffie and Epstein (1992a) and Wachter (2013), here ρ multiplies with the second part.
Both formulations generate ordinal-equivalent utility functions, and hence the same equilibrium dynamics,
though the value function may differ by a scale factor (cf. Appendix A.2.2).

7Embedding disasters in a general equilibrium production economy with heterogeneous firms induces
strong nonlinearity, which helps replicating the failure of the C-CAPM in explaining the value premium in
samples in which disasters are not materialized (cf. Bai, Hou, Kung, Li, and Zhang, 2019).
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the terms mimicking endowment economy and production economy interchangeably, but the

equilibrium dynamics coincide only for a particular ρ (as shown in Proposition A.9).

Technology. Suppose that production of perishable output, Yt, is exogenously given:

there is no possibility of affecting the output at any time. Let Yt = (1 − s)AtK
α
t , where

Kt is the aggregate capital stock, At is the stochastic technology, s ∈ (0, 1) is the constant

propensity to consume, and α ∈ (0, 1) is the capital share in aggregate output.8

The law of motion of At will be taken to follow a Markov process, driven by a standard

Brownian motion Bt, and a Poisson process N̄t with arrival rate λ̄,

dAt = µ̄Atdt+ σ̄AtdB̄t + (exp(ν̄)− 1)At−dN̄t. (11)

We introduce jumps in technology as there is empirical evidence of Poisson jumps in output

growth. However, these may not necessarily reflect consumption disasters (Posch, 2009).

The aggregate capital stock is subject to stochastic depreciation,

dKt = (sAtK
α
t − δKt)dt+ σKtdZt + (exp(ν)− 1)Kt−dNt, (12)

where δ > 0 is the depreciation rate of physical capital, Zt is a standard Brownian motion,

and Nt is a Poisson process (both uncorrelated with B̄t and N̄t) with constant arrival rate λ

and ν < 0. The jump size in capital is assumed to be proportional to the value of the capital

stock an instant before a disaster, and it has a degenerated distribution. For σ = ν = 0, the

capital stock (physical asset) would be instantaneously riskless (cf. Merton, 1975).

Hence, output in this mimicking endowment economy follows

dYt = µtYtdt+ σtYtdBt + (Yt − Yt−)(dN̄t + dNt) (13)

with µt = µ̄+ srt − αδ + 1
2
α(α− 1)σ2, σt ≡ σ̄, Bt = B̄t + σα/σ̄Zt, and where rt = αAtK

α−1
t

evolves according to

drt = c1
(
c2 − rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdB̄t

+(exp((α− 1)ν)− 1)rt−dNt + (exp(ν̄)− 1)rt−dN̄t (14)

with c1 ≡ 1−α
αγ

and c2 ≡ αγδ − 1
2
αγ(α − 2)σ2 − αγ

α−1
µ̄. Note that the mimicking endowment

economy introduces a stochastically changing investment opportunity set through µt.

Preferences. The representative consumer maximizes expected discounted lifetime utility

given in (8) and (9). Further assume that 1/ψ = γ such that the problem is reduced to the

standard power utility case in (10).

8For convenience, we set Yt = Ct in the mimicking endowment economy, though ‘output’ in the production
economy is higher by a factor 1/(1−s). In the Online Appendix we present an alternative mimicking economy
where the endowment is a linear function of the aggregate capital stock, Yt = kKt with k > 0.
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Equilibrium. In this economy, it is straightforward to determine equilibrium quantities

and the equilibrium asset holdings. The economy is closed and all output will be consumed,

Ct = Yt, and households own the physical capital. All other assets are zero in net supply.

4 Results

In what follows, the equilibrium consumption growth rates and asset returns are used to

compute EE errors in both the endowment and production economy. Moreover, we provide

directions for empirical research for using GMM, and report empirical estimates.

Let φ denote the parameter vector and ht = ht(φ) a vector of martingale increments

(moment conditions) in terms of data and parameters generated by the model. Further, let

HT (φ) =

T∑

t=1

ht(φ),

so that HT (φ)/T is the sample average of {ht(φ)}. We define the GMM estimator as the

minimizer of the squared norm HT (φ)
⊤WHT (φ), where W is a weight matrix, using the

identity matrix Idim(h) for W in a first-step minimization, and the estimates, say φ̂0, to

calculate an estimate of V ar(HT (φ̂0))
−1, which then defines W = (

∑
t ht(φ̂0)ht(φ̂0)

⊤)−1 in

the next-step minimization (cf. Hansen, 1982; Christensen, Posch, and van der Wel, 2016).

Without loss of generality, we consider annual returns, such that s = t+ 1. For the case

of two assets, e.g., a bond with return Rb
t+1, and an asset with return Rc

t+1. Then, for a given

sample of data ht+1(φ) can be constructed for the canonical C-CAPM model using (3):

ht+1(φ) =

(
ebR,t+1

ecR,t+1

)
=

(
β(Ct+1/Ct)

−γRb
t+1 − 1

β(Ct+1/Ct)
−γRc

t+1 − 1

)
, (15)

or, alternatively using (4):

ht+1(φ) =

(
ecX,t+1

eiR,t+1

)
=

(
β(Ct+1/Ct)

−γ(Rc
t+1 −Rb

t+1)
β(Ct+1/Ct)

−γRi
t+1 − 1

)
,

based on excess returns and one additional asset i, where φ = (β, γ)⊤.

Although previous work has emphasized that GMM is not the optimal choice for the

econometric estimation in the presence of unobserved regime shifts and peso problems

(Kocherlakota, 1997; Saikkonen and Ripatti, 2000), we estimate the unknown parameters

φ = (β, γ)⊤ of the canonical C-CAPM using the standard GMM approach. The main reason

is that we are not primarily interested in estimating the rare disaster model. Instead, we

ask whether we can replicate the empirical patterns by using the GMM approach (cf. Lettau

and Ludvigson, 2009) and the potentially misspecified moment conditions (15).
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4.1 Euler equation errors in finite samples

In this section, we show that pricing errors can be substantial in finite samples. We also

illustrate how pricing errors may emerge as a result of various types of rare events, such as

default risk, and/or rare improvements in the technology frontier.

Proposition 4.1 (Endowment economy) Consider the model outlined in Section 3.1 with

preferences in (10) such that the utility function exhibits constant relative risk aversion γ.

Then, the Euler equation error (3), when conditioning on samples without disasters, on

1. the asset with payoff Xc
t+1 = Yt+1 and return Rc

t+1 = Xc
t+1/P

c
t is

ecR|Nt+1−Nt=0 = exp
(
(1− e(1−γ)ν̄)λ

)
− 1; (16)

2. the bond with payoff Xb
t+1 = e

∫ t+1
t

ln(1+Ds)dNs subject to default risk Ds = eκ − 1 where

κ < 0 with probability q in case of a disaster and return Rb
t+1 = 1/P b

t is

ebR|Nt+1−Nt=0 = exp
(
(1− e−ν̄γ)λ+ e−γν̄(1− eκ)qλ

)
− 1, (17)

where κ is the size of the default, and q ∈ [0, 1] is the probability of default;

3. the risk-free asset with payoff Xf
t+1 = 1 and return Rf

t+1 = 1/P f
t is

efR|Nt+1−Nt=0 = exp
(
(1− e−ν̄γ)λ

)
− 1. (18)

Proof. See Appendix A.2.4.

For λ = 0.017 and ν̄ = −0.4 (cf. Barro, 2006), the absolute EE error on a risky claim is

about 3.9% for γ = 4 and would further increases with risk aversion. We argue that the EE

errors can be large in finite samples and that empirical pricing errors measure disaster risk.

Our results in Proposition 4.1 show that individuals would accept persistent pricing errors for

the events that happen not to occur in normal times.9 In fact, the probability of no disaster

occurring in a randomly selected sample of 50 years is p(Nt+T −Nt = 0) = e−λT = 43%.

Based on the excess return of a risky asset over a bond, we obtain (4) as

ecX|Nt+1−Nt=0 = ecR|Nt+1−Nt=0 − ebR|Nt+1−Nt=0 = e(1−e
(1−γ)ν̄ )λ − e(1−e

−ν̄γ)λ+e−γν̄ (1−eκ)qλ.

Hence, any default risk would also rationalize the occurrence of EE error in quiet times.

However, the default risk per se only generates pricing errors for the bond.10 These results

9 This result relates to Hansen and Jagannathan (1991, p.250), who note that the sample volatility may
be substantially different than the population volatility if consumers anticipate that extremely bad events
can occur with small probability, even when such events do not occur in the sample.

10For the extreme case κ→ −∞ (complete default) and default with probability q = 1 in case of a disaster,
the rational pricing error is approximately λ, i.e., the arrival rate of disasters/defaults.
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point to an interesting direction for empirical research because, by having more assets in

the sample, we may identify additional parameters including the default risk q. Below we

estimate the disaster risk along with the standard parameters (cf. Table A.2).

One alternative interpretation of the pricing errors is through the implicit risk premium,

i.e., the difference between the expected value of an uncertain rate of return and the certainty

equivalent rate of return which makes an individual indifferent between both assets,

RP = γσ̄2 + e−γν̄(1− eν̄)λ = γσ̄2 + log
(
(1 + ecR)/(1 + efR)

)
. (19)

Hence, in the endowment economy, the ratio of pricing errors in (19) measures the implicit

risk premium RP related to the disaster risk (cf. Posch, 2011).

Proposition 4.2 (Production economy) Consider the model outlined in Section 3.2 with

preferences in (10) such that the utility function exhibits constant relative risk aversion γ.

Then, the Euler equation error (3), when conditioning on samples without disasters, on

1. the asset with payoff Xc
t = Kαγ

t+1 and return Rc
t+1 = Kαγ

t+1/P
c
t is

ecR|Nt+1−Nt=0 = 0; (20)

2. the bond with payoff Xb
t+1 = e

∫ t+1
t rsds and return Rb

t+1 = Xb
t+1/P

b
t is

ebR|Nt+1−Nt=0 = exp
(
(1− e−αγν)λ

)
− 1. (21)

Proof. See Appendix A.3.4

The results in Proposition 4.2 indicate that the risky bond carries pricing errors while

the risky claim does not generate persistent pricing errors. The intuition behind this result

is that in case of disasters, the SDF rises (consumption drops sharply, marginal utility rises),

while the return on the claim falls sharply and would exactly offset the previous effect, hence

the net effect on the EE error is zero. In contrast, the return on the bonds would not be

affected instantaneously, so in periods without disasters, the average EE errors are negative

(empirical estimates are shown in Table A.1, column EE errors).

Three remarks are noteworthy. First, EE error in (20) shows that rare events may not be

relevant for moment conditions of particular assets, and will not generate persistent pricing

errors. Here, the assets were chosen to obtain analytical expressions for EE errors. Second,

based on excess returns we may still rationalize finite sample EE errors for excess returns,

ecX|Nt+1−Nt=0 = −ebR|Nt+1−Nt=0.

11



Third, low-probability events such as bonanzas are also candidates for generating EE errors

if the sample average is not the population mean, but less likely to drive our results.11

Given the EE errors, the root mean square error (RMSE) is calculated and interpreted

as a measure of the magnitude of mispricing across assets.12 The (true) RMSE is defined as

the square root of the average squared (mean) EE errors across assets,

RMSE =
(
(1/N)HT (φ)

⊤HT (φ)
) 1

2 /T. (22)

4.2 Identifying the source of the bias

In what follows, we illustrate the implications for the estimated pricing errors for endowment

and production economies. As we show below, the misspecified moment condition leads to

incorrect (biased) parameter estimates. While for the simple endowment economy with

constant risk-free rates the GMM objective forces estimated EE errors to zero, we show why

such errors may arise in an endowment economy with time-varying interest rates.

For illustration purposes, let us consider a claim on a risky asset and bond with default

risk in the endowment economy. Use the definition of the estimated EE errors in (5), together

with equilibrium process for consumption growth, ln (Ct+1/Ct), and the one period gross

returns on these assets, Rc
t+1 and Rb

t+1, respectively (see Appendix A.2). Then, conditional

on no disasters, we obtain the following estimated EE errors

êcR|Nt+1−Nt=0 = (β̂/β) exp
(
(γ − γ̂)(µ̄− 1

2
σ̄2)− 1

2
((1− γ)2 − (1− γ̂)2)σ̄2

)

× exp
(
(1− e(1−γ)ν̄)λ

)
− 1,

êbR|Nt+1−Nt=0 = (β̂/β) exp
(
(γ − γ̂)(µ̄− 1

2
σ̄2)− (γ2 − γ̂2)1

2
σ̄2
)

× exp
(
(1− (1− (1− eκ)q) e−γν̄)λ

)
− 1.

The result shows that by minimizing the empirical EE errors, the parameter estimates are

typically biased for (1− e(1−γ)ν̄)λ 6= 0 and (1− (1− (1− eκ)q) e−γν̄)λ 6= 0, respectively.

Now the GMM objective is to choose parameters φ̂ such as to minimize the RMSE in

(22). In particular, we encounter the square root of the average squared (mean) EE error

R̂MSE =
(
(1/N)HT (φ̂)

⊤HT (φ̂)
) 1

2/T.

11Pricing errors may result from rare improvements in technology (e.g., cyclical growth as in Wälde, 2005).
Hence, ec

R|N̄t+1−N̄t=0
= exp

(
(1− e−γν̄)λ̄

)
−1, can be either positive or negative in times without innovations.

12To give a sense of how large pricing errors are, the RMSE is often reported relative to the returns of the
assets. We define the square root of the average squared (mean) returns (RMSR) as

RMSR =
(
(1/N)R⊤

TRT

) 1
2 /T

where RT /T is the sample average of the N -vector of asset returns {Rt}.
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Therefore, the EE puzzle is not really about how to generate pricing errors, but rather how

to generate estimated EE errors in finite samples. Consider the case ν̄ < 0 (and κ < 0).

The EE error for the risky asset (conditional on no disasters) in (16) is positive for γ < 1,

whereas negative for γ > 1. For the riskless asset in (17), this EE error on average is negative

in quiet times for reasonable parameterizations. The bias in the parameter estimates should

eliminate such pricing errors. In fact, the estimated EE error is eliminated for

γ̂ = γ − (e(1−γ)ν̄ − e−γν̄ + (1− eκ)qe−γν̄)λ/σ̄2,

β̂ = β exp
(
(γ − γ̂)(µ̄− 1

2
σ̄2)− (γ2 − γ̂2)1

2
σ̄2 − ((1− (1− eκ)q) e−γν̄ − 1)λ

)
.

The reason for this result is that the risk premium (19) generated by disaster risk is captured

by the degree of Gaussian uncertainty determined by σ̄2, and an estimate of risk aversion γ̂.

In this example, the (asymptotic) bias of the parameter estimate for γ amounts to

γ − γ̂ = −(e−γν̄(1− eν̄)− (1− eκ)qe−γν̄)λ/σ̄2, (23)

which for q = 0 is unambiguously negative (γ̂ > γ), while it increases in λ and decreases in

σ̄. Our results show that the larger the disaster risk premium, the larger the absolute bias

in the estimate of γ. Moreover, the bias will be larger for σ̄2 being close to zero.

Our analytical result in (23) not only explains the bias in the parameter estimates, it also

shows how the estimated EE error in models with rare events and with constant investment

opportunities µ̄ can be eliminated (up to numerical accuracy). Intuitively, the risk premium

from Gaussian uncertainty needs to account for the disaster risk premium in the data, which

works through a large estimate of risk aversion γ̂ for given σ̄.

For changing investment opportunities µt, however, the GMM objective might fail to

eliminate estimated EE errors. As we show below in simulations, the endowment economy

mimicking a production economy with time-varying interest rate dynamics as in (14) can

generate estimated EE errors, because the bias in the parameter estimates often cannot

eliminate the average pricing errors for given σ̄2 in the GMM objective.

4.3 Resolving the misspecification

In this section, we discuss three potential solutions to the pricing error puzzle, when the risk

of rare disasters is present. First, we may go for longer samples in which rare disasters are

included.13 Second, we may use samples without disasters and modify the moment condition.

Third, we may allow for a constant term which accounts for unexplained risk premia.

13Note that a cross-sectional approach would not be able to match the population conditions, unless we
can infer the jump probabilities (and jump sizes) from the data and correctly specify the moment conditions.
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4.3.1 Long samples

Because the property we are describing is a short-sample phenomenon, it is tempting to go for

longer samples. It is worth making two points about this approach. First, in cases where the

longer sample does not include sufficiently large consumption disasters, this approach would

not help. For example, the US did not experience consumption disasters of the magnitude

used in the illustration above over the period 1900-2008 (including the Great Depression).

Second, even if rare disasters were included in the sample, it would be rather a coincidence

if their sample frequency matched the population frequency for the given parameterization.

To illustrate this point, with λ = 0.017 (cf. Barro, 2006), we expect 1.7 disasters in 100

years of data. Therefore, we would need exactly one disaster for a sample of 60 years, or 2

disasters for a sample of 120 years of data. Taking this point seriously, longer samples may

help to reduce the bias (and pricing errors) but given data availability will eventually fail.

Because the data generating process gives rise to peso problems, the moment conditions for

the estimation of the C-CAPM are likely to be incorrectly specified.

4.3.2 Resuscitating the moment conditions

Recall that the problem with the C-CAPM estimation is that in samples with no disasters,

the estimates for the parameter vector φ = (β, γ)⊤ are biased because the moment conditions

are not correctly specified. In such samples, we need to correct for the conditional pricing

errors in (16) and (17) for the endowment economy, or in (20) and (21) for the production

economy, such that the correct moment condition for the two assets reads

h̃t+1 =

(
ebR,t+1 − ebR|Nt+1−Nt=0

ecR,t+1 − ecR|Nt+1−Nt=0

)
=

(
β(Ct+1/Ct)

−γRb
t+1 − 1− ebR|Nt+1−Nt=0

β(Ct+1/Ct)
−γRc

t+1 − 1− ecR|Nt+1−Nt=0

)
, (24)

and thus, any remaining EE pricing error (corrected for the disaster risk) should be zero.

Generally, the correction will depend on the parameter vector φ, which makes the adjustment

dependent on the particular model (and assets) at hand. Below we report the empirical

results for the endowment economy and the production economy.

This approach becomes relevant when the researcher can safely assume that consumption

disasters have not occurred in the sample (henceforth ‘conditional GMM’), which essentially

can be interpreted as a bias correction. Restricting the attention to quiet times is not a

panacea, though, as it requires a judgement based on data prior to estimation. Moreover, in

long samples which include rare disasters, the moment conditions would then not be correctly

specified and conditional GMM does not help to get unbiased estimates. Further challenges

are that the correction depends on (1) the underlying model (endowment vs. production), (2)

the particular asset class (bonds vs. claims), and (3) the particular calibration of parameters
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(arrival rate and size of disasters). To get an idea on how sensitive the results are with

respect to the underlying model, we compare the results of two different models in order to

get an idea on the consequences of a specific moment condition.

From the moment conditions (24), we see that this approach requires fixing some of the

structural model parameters. These moment conditions depend on the particular asset under

consideration. If the asset is subject to default risk, we need to account for this risk in the

moment condition. One direction for research would be to use different assets that carry

different risk premia to identify and estimate such parameters, including those determining

the risk of disasters (the distribution, size and/or the frequency of disasters).

4.3.3 Include constants

One issue with resolving the misspecification by subtracting the known EE errors is that they

are model-specific and depend on the particular asset. Alternatively, would it be possible to

capture the unobserved disaster risk by adding constants? Parker and Julliard (2005) suggest

including a constant (for the excess returns) in order to give the model the ability to explain

the equity premium. This procedure should capture consumption risk, which underpredicts

the excess returns of all assets by the same amount (Parker and Julliard, 2005, p.192).

Following Parker and Julliard (2005, eq. 6) for the contemporaneous effect, with just two

moment conditions (neglecting default risk), we may fix µ0 and estimate γ and α0 using

h̄t+1 =

(
Rf
t+1(Ct+1/Ct)

−γ(Rc
t+1 − Rf

t+1)/µ0 − α0

Rf
t+1(Ct+1/Ct)

−γ − µ0

)

Only if theoretical and sample moments were the same, the constant α0 would be zero.

Hence, the constant α0 measures the ex-post mispricing for the excess return.

Following this idea, we may fix γ and estimate separately the disaster risk adjustments

α1 and α2.
14 The correct moment condition accounts for the EE errors,

h̄t+1 =

(
ebR,t+1 − α1

ecR,t+1 − α2

)
=

(
β(Ct+1/Ct)

−γRb
t+1 − 1− α1

β(Ct+1/Ct)
−γRc

t+1 − 1− α2

)
(25)

or

h̄t+1 =

(
(Ct+1/Ct)

−γRb
t+1 − (1 + α1)/β

β/(1 + α1)(Ct+1/Ct)
−γRc

t+1 − 1− α0

)
(26)

where we fix β/(1+α1) instead and estimate γ together with α0 = (1+α2)/(1+α1)−1. The

estimates give an empirical measure of the mispricing for the two assets under consideration

for a given parameterization for β and γ. This provides some indication on whether the

disaster risk underpredicts excess return by the same amount or not.

14Restricting the yet unknown parameters is only necessary in the two-asset case. In a larger cross-section,
we estimate the disaster risk adjustments α1 and α2 together with β and γ (see Table A.2).
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For the endowment economy, we may infer λ and ν̄ (suppose the default risk q is zero),

conditional on a sample without consumption disasters,

efR|Nt+1−Nt=0 − α1 = exp
(
(1− e−ν̄γ)λ

)
− 1− α1 = 0

⇔ exp
(
(1− e−ν̄γ)λ

)
= 1 + α1

⇔ (1− e−ν̄γ)λ = log(1 + α1) (27)

and

ecR,t+1 − α2 = exp
(
(1− e(1−γ)ν̄)λ

)
− 1− α2 = 0

⇔ exp
(
(1− e(1−γ)ν̄)λ

)
= 1 + α2

⇔ (1− e(1−γ)ν̄)λ = log(1 + α2) (28)

such that

(1− e(1−γ)ν̄)− (1− e−ν̄γ) = log ((1 + α2)/(1 + α1)) ≈ α0 (29)

gives an empirical measure of the disaster risk premium in (19). Below we provide estimates

of the disaster risk along with the standard parameters (cf. Table A.2). If we obtained

a measure of that premium from other sources (e.g., inferred from derivatives), we may

subtract the sample mean of the moments in a two-step procedure.15

4.4 Data

In what follows we present the data for our empirical estimates of the C-CAPM parameters

and show how the results are affected by peso problems in the estimation.

For financial data, we use US postwar quarterly returns (1951:Q4-2016:Q4) on a broad

stock market index return (CRSP value-weighted price index return, Rm
t ), and the short-

term bond return from US Treasury-Bills (three-month rate, Rb
t , henceforth T-Bill).16 We

also show results when including 6 size and book-to-market Fama-French portfolios, RFF
t .

For a longer (and international) sample, we use the annual returns from Global Financial

Data (1900-2008) for a selected set of 6 countries including the United States (US), Canada

(CAN), Germany (GER), Italy (ITA), Japan (JAP), and United Kingdom (UK).17

For consumption, we use the real (chain-weighted) personal consumption expenditures on

nondurable goods and services per capita at a quarterly frequency (1951:Q4-2016:Q4).18 We

15Sönksen and Grammig (2021) propose a similar two-step simulation-based strategy to estimate rare
disaster risk models.

16Board of Governors of the Federal Reserve System, 3-Month Treasury Bill [TB3MS], retrieved from
FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/TB3MS.

17Global Financial Data: https://www.globalfinancialdata.com
18US Bureau of Economic Analysis, Real personal consumption expenditures per capita: Nondurable goods

[A796RX0Q048SBEA], retrieved from FRED; https://fred.stlouisfed.org/series/A796RX0Q048SBEA.
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use the (standard) timing convention that consumption takes place at the end of a period.

For the longer (international) sample, we use consumption data from the Barro and Ursúa

(2008) macroeconomic data set.19

4.5 Empirical results

In this section, we provide some empirical estimates of pricing errors. For conditional GMM

(where we condition on a sample without disasters), we show the results for both the simple

endowment and time-varying endowment economy (mimicking a production economy).

First, we confirm economically large unconditional estimated EE errors of 4.5% p.a.,

similar to Lettau and Ludvigson (2009), for the postwar US data (annual) from 1951-2008

(cf. Table A.1, column GMM). For the international (longer) sample we find large RMSE

for CAN, GER, ITA, and JAP ranging from 4.8% to 9.3% p.a. Our empirical results also

show that the model does not necessarily produce large estimated EE errors for all samples,

i.e., across different time spans and/or countries. A generally more robust result is that

the parameter estimates seem to be severely biased for different sample periods and across

countries (consistent with the findings in the literature). The bias tends to be larger for the

shorter (postwar) data relative to the longer sample.

The next 6 columns (columns conditional GMM) report the GMM estimates and es-

timated EE errors with the respective theoretical (model-specific) correction for the two

models. Here, we resolve the empirical problems for the postwar samples, i.e., the estimated

EE errors are eliminated, and the parameter estimates for both time preference and risk

aversion of the canonical model are much more plausible for both the simple endowment

and the time-varying endowment economy (column production). For the longer sample, two

observations are remarkable. We did not expect the correction to work properly for a sample

that includes disasters (the condition requires to exclude disasters), as is the case at least for

GER and JAP between 1900 and 1950. For the suggested bias correction we should pick a

sample without disasters to correctly adjust the sample mean. In fact, the conditional GMM

estimates for GER still produce economically large EE errors of nearly 4.0% p.a.

In the next 3 columns (columns EE errors), we report the GMM estimates for the disaster

risk adjustments, α0 and α1 and the estimated EE errors, for given parameter values for time

preference and risk aversion. For the case of GER, the estimated disaster risks adjustments

are orders of magnitudes higher than other estimates. This may indicate that the sample

frequency of disasters was even higher than the population frequency in the longer sample

1900-2008. Recall that the sample includes two severe World War episodes, hyperinflation

and the Great Depression with large capital stock destruction and/or consumption disasters.

19Barro-Ursúa Macroeconomic Data: https://scholar.harvard.edu/barro/data sets
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In the postwar period (1951-2008) where we can safely ignore severe disasters, the estimated

disaster risk adjustments are more plausible, but largest for GER and JAP.

The last 3 columns (columns Parker/Julliard) report the GMM estimates for the con-

stant α0 and estimated EE errors assuming a production economy (fixing the rate of time

preference). Based on the postwar sample, the average disaster risk premium for the T-Bill

is about the order of magnitude of Barro’s parameterization, ranging from 5.1% (CAN) to

11.7% (GER). For the US we get similar estimates about 6.6% for the postwar annual data.

For the larger cross-section, when we add 6 Fama-French (FF) portfolios sorted by size

and book-to-market, a similar picture emerges (cf. Table A.2). Again, the standard GMM

approach gives biased estimates: β̂ = 0.84, γ̂ = 147.1 with EE errors of about 1.7%. The

estimated EE errors for plausible parameters of time preference and risk aversion are econom-

ically important, but differ substantially across assets. Being consistent with our theoretical

result that EE depend on the specific asset at hand, it challenges the assumption that port-

folio returns are underpredicted by the same amount (cf. Parker and Julliard, 2005, p.193).

Given that for three FF portfolios (i.e., Big Value, Big Neutral, and Small Value) the EE

errors are estimated at similar orders of magnitude, we also estimate EE errors by imposing

the restriction α3 = α4 = α6. This restriction enables us to estimate the parameters β and

γ along with the risk adjustments for the bond, the risky asset and of 4 FF portfolios. Once

we account for the EE errors, we get more plausible parameter estimates: β̂ = 0.99, γ̂ = 4.6

with EE errors of 0.3%. For the endowment economy, the implied average size of disasters

from (27) and (28) then is ν̄ = −0.53 and arrival rate λ = 0.015. These estimates are in line

with the empirical measures of disasters in Barro (2006).

4.6 Simulation results

In this section we investigate whether it is possible to reproduce the empirical failure of

the C-CAPM by using simulated data in models with either rare events or long-run risk.

After simulating the data, we estimate the parameters of a power utility C-CAPM pricing

kernel whose parameters an econometrician would estimate when she is confronted with the

data similar to Lettau and Ludvigson (2009). We are mainly interested in investigating

whether the models generate estimated pricing errors using the data where we condition

on no disasters. Does a misspecified pricing kernel – despite the biased estimates for time

preference and risk aversion parameters – generate EE errors? Hence, we shed light on

the performance of C-CAPM estimation regarding the bias and plausibility of estimated

structural parameters in the presence of a ‘peso problem’.

We simulate equilibrium paths for asset returns for a risky claim, Rc
t+1, and risky bond,

Rb
t+1, as well as for consumption growth, log(Ct+1/Ct), from the parameterized consumption-
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based models with rare events. We consider both the simple endowment economy and

the mimicking production economy presented in Section 3, for which we provide analytical

expressions for asset prices (see Appendices A.2 and A.3). Consistent with the sample size

in empirical studies of the C-CAPM, the simulated sample path of each of the 5,000 Monte

Carlo draws has a length of 50 years. The parameterization of the models is summarized in

Tables A.3 and A.4. They follow the literature on rare events in endowment and production

economies, respectively (see e.g., Barro, 2009, Posch, 2009, and Wachter, 2013).20

In Tables A.6 to A.9 we report the results from the Monte Carlo simulations. Our main

quantities of interest are the average pricing error (RMSE), i.e., the EE errors, the estimated

EE errors (R̂MSE), i.e., a measure of estimated pricing errors, and the parameter estimates

β̂ and γ̂ obtained by fitting a power utility C-CAPM to the simulated data. In addition,

we report the distributional properties of asset returns, equity premium, and consumption

growth (in annualized percentage terms). For ease of readability, we report results conditional

on the case of no disasters, i.e., only for those cases in which no disaster happened to

occur over the 50 years period even though such diasters were expected by the market

participants ex-ante (peso problem).21 Conditioning on no disasters is interpreted as studying

a sample such as the postwar period without major consumption disasters (Barro, 2006).

The simulations also include more frequent low-probability events, i.e., ‘smaller’ jumps in

productivity, without changing our main results (cf. Tables A.8 and A.9). Hence, only rare

disasters with major economic consequences rationalize large empirical EE errors.

Our results support our claim that peso problems can have a strong impact on the esti-

mates of structural parameters and pricing errors. For example, relative to the endowment

economy with zero probability of rare disasters (cf. Table A.7), the endowment economy with

low probability consumption disasters in Table A.6 on average generates severely biased pa-

rameter estimates of β̂ = 1.17 and γ̂ = 804.6. While we do not find (estimated) pricing

errors of the C-CAPM in the endowment economy, we find substantial pricing errors in the

endowment economy mimicking a production economy. Our results in Tables A.8 and A.9

show that the C-CAPM (with power utility) generates large pricing errors on average be-

tween 2% and 2.4% (indicated by R̂MSE in the tables), of similar size as the 2.5% observed

in the data. Thus, departures from log-normality in the cases where we conditioned on no

disasters, e.g., through to changing investment opportunities in the production economy,

seem to be important to generate estimated EE errors.

20Julliard and Ghosh (2012) criticize the calibration of one-year contractions as being equal to the cumu-
lated multi-year contractions recorded in the data. As illustrated in Tsai and Wachter (2015), with clustering
of shocks and Epstein-Zin preferences, a rare events model still produces a sizeable equity risk premium.

21For illustration, the unconditional results, and simulation results for different parameterizations, and/or
scenarios can be found in the Online Appendix (see Section B.3).
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Our economies with rare events are parameterized to γ = 4 for the coefficient of relative

risk-aversion and β = 0.97 for the subjective time discount factor. Yet, if anticipated con-

sumption disasters do not occur in sample, we obtain the biased and implausible parameter

estimates that are well-known from empirical results in the literature. Our simulation results

suggest that such biased and implausible parameter estimates are not surprising in a world

where agents are concerned about rare negative consumption shocks.

Finally, we repeat our experiment by simulating equilibrium paths for asset prices and

consumption from the long-run risk (LRR) model with recursive preferences and estimate the

standard C-CAPM (a description of the model can be found in Appendix A.4). Tables A.10

and A.11 summarize our findings when the model is parameterized as in Bansal and Yaron

(2004) and Bansal, Kiku, and Yaron (2012), respectively.22 Similar to the findings reported

in Lettau and Ludvigson (2009), the estimated value for β is close to its true value, while

the estimate for γ is moderately biased. Moreover, the estimated EE errors are numerically

zero, implying that the LRR model is unable to rationalize large pricing errors despite the

model’s stochastically changing investment opportunity set.

To summarize, unlike models of habit formation and/or long-run risk we refer to in the

introduction, models incorporating rare events are able to solve the pricing error puzzle.

Although the rare events and long-run risks (LRR) models are considered as complementary

approaches (see Barro and Jin, 2021), the ability of the rare event model to additionally solve

the pricing error puzzle can be used to further discriminate between the two leading theories

of asset pricing. Our result thus complements the literature by adding a solution to another

dimension of the puzzles. At the same time, we find a severe bias in parameter estimates

of the subjective time discount factor and the coefficient of relative risk aversion for cases

in which consumption disasters do not occur in the sample. Our results suggest that the

Barro-Rietz rare events hypothesis together with a changing investment opportunity set is

able to account for the poor performance of the C-CAPM.

5 Conclusion

In this paper we study the impact of rare events (such as wars or natural catastrophes) on

Euler equation (EE) errors and the empirical performance of the consumption-based asset

pricing model in general. For this purpose, we derive analytical asset pricing implications

and EE errors both in an endowment as well as a production economy with stochastically

occurring disasters. In extensive simulations we also investigate the impact of rare events

22Because the true EE error is not available analytically in the LRR model, we report pricing errors as
Ri

t+1−E(Ri
t+1) for asset i, respectively, and replace simulated martingale increments ht by the asset returns

in deviation from the unconditional mean values, reported as RMSE∗ in Tables A.10 and A.11.
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on estimates of structural parameters of the consumption-based CAPM and the empirical

performance of the model. Thus, we seek to provide a better understanding of why the

standard model fails so dramatically when fitted to the data.

Allowing for low-probability events in an otherwise standard C-CAPM helps explaining

why the canonical model generates large and persistent EE errors when confronted by the

data. Hence, the consumption-based CAPM with rare events qualifies as a class of models

which rationalize pricing errors. Similar to Kocherlakota (1997), we argue that accounting

for rare disasters in the C-CAPM produces reasonable parameter estimates and explains the

pricing errors in the empirical data, which complements the statistical approach for heavy-

tailed distributions with analytical results. We show analytically and through simulations,

based on standard calibrations, that the poor empirical performance and implausible es-

timates of risk aversion and time preference are not puzzling in a world with Barro-Rietz

disaster risk. We discuss different approaches of how the biased estimates can be avoided

in empirical research and suggest a simple fix to the moment conditions by resolving the

misspecification in samples without disasters.
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A Appendix

A.1 Computing moments

Lemma A.1 The conditional mean of ckNs conditioned on the information set at time t is

Et
[
ckNs

]
= ckNte(c

k−1)λ(s−t), s > t, c, k ∈ R,

which for integer k denote the raw moments of cNs .

Proof. We can trivially rewrite ckNs = ckNtc(Ns−Nt)k.Thus, Et
[
ckNs

]
= ckNtEt

[
c(Ns−Nt)k

]
.

Computing this expectation requires the probability that a Poisson process jumps n times

between t and s. Formally,

Et
[
c(Ns−Nt)k

]
=

∞∑

n=0

ckn
e−λ(s−t)[(s− t)λ]n

n!
=

∞∑

n=0

e−(s−t)λ[(s− t)ckλ]n

n!

= e(s−t)(c
k−1)λ

∞∑

n=0

e−(s−t)λ−(s−t)(ck−1)λ[(s− t)ckλ]n

n!

= e(s−t)(c
k−1)λ

∞∑

n=0

e−(s−t)ckλ[(s− t)ckλ]n

n!
= e(s−t)(c

k−1)λ,

where e−λs[λs]n

n!
is the probability ofNs = n, and

∑∞
n=0

e−(s−t)ckλ[(s−t)ckλ]n

n!
= 1 is the probability

function over the whole support of the Poisson distribution used in the last step.

Corollary A.2 The unconditional mean of ckNs is

E
[
c(Ns−Nt)k

]
= e(c

k−1)λ(s−t), s > t, c, k ∈ R.

A.2 Lucas’ endowment economy with rare events

A.2.1 The model

Suppose that the ownership of the exogenously given output Yt is determined at each instant

in a competitive stock market. The production unit has outstanding one perfectly divisible

equity share that entitles its owner to all of the unit’s instantaneous output in t. Shares are

traded at a competitively determined price, P i
t , evolving according to

dP i
t = µP i

t dt+ σP i
t dBt + P i

t−JtdNt, (30)

where P i
t− is the price of the asset an instant before a jump.
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Following Barro (2006), we also consider a bond with default risk whose price P b
t evolves

according to

dP b
t = P b

t rdt+ P b
t−DtdNt, where Dt =

{
0 with 1− q

exp(κ)− 1 with q
(31)

is the default risk in case of a disaster, κ < 0 is the (degenerated) size of the default and q is

the probability of default in case of a disaster. This asset can be thought of as a government

treasury bill. Finally, there is a (shadow) risk-free asset with price dynamics

dP f
t = P f

t r
fdt, (32)

in which rf is the continuously compounded risk-free rate. Because prices fully reflect all

available information, µ, σ, Jt, r, and r
f will be determined in general equilibrium.

Preferences. The economy is inhabited by a single consumer, interpreted as represen-

tative of a large number of identical consumers. Preferences are defined recursively by

(8). For simplicity, we assume γ = 1/ψ, so the normalized aggregator (9) reads f(Ct, Ut) =

C1−γ
t ((1− γ))−1−ρUt, and we obtain the same value function as in the case of time-separable

utility. In this case, the consumer maximizes

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0 (33)

subject to the budget constraint

dWt = ((µ− r)θtWt + rWt − Ct) dt+θtσWtdBt+((Jt−Dt)θt−+Dt)Wt−dNt, W0 ∈ R, (34)

where Wt is real financial wealth, and θt denotes the consumer’s share in the risky asset.

Without loss of generality, we have assumed that there is no immediate access to the risk-free

alternative and there are no dividend payments.

The consumer’s problem can be alternatively formulated in terms of the market portfolio,

with price PM,t evolving over time according to

dPM,t = µMPM,tdt+ σMPM,tdBt − ζM(t−)PM,t−dNt, (35)

where µM ≡ (µ− r)θt + r, σM ≡ θtσ, and ζM(t) ≡ (Dt − Jt)θt −Dt. The budget constraint

then reads

dWt = (µMWt − Ct) dt+ σMWtdBt − ζM(t−)Wt−dNt, W0 ∈ R. (36)

One can think of the original problem with budget constraint (34) as having been reduced

to a simple Ramsey problem, in which we seek an optimal consumption rule given that income

is generated by the uncertain yield of a (composite) asset (cf. Merton, 1973)23.

23We may alternatively consider the portfolio problem and solve for the optimal portfolio weights. The
derivations are available upon request from the corresponding author.
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A.2.2 The Bellman equation and the Euler equation

Define the value function as

V (W0) ≡ max
{Ct}∞t=0

U0, s.t. (36), W0 > 0. (37)

Choosing the control Cs ∈ R+ at time s, the Bellman equation reads

ρV (Ws) = max
Cs

{
u(Cs) + (µMWs − Cs) VW + 1

2
σ2
MW

2
s VWW

+
(
Eζ [V ((1− ζM(s))Ws)]− V (Ws)

)
λ
}
.

Hence, we obtain the first-order condition as

u′(Ct) = VW (Wt), (38)

for any t ∈ [0,∞), making consumption a function of the state variable Ct = C(Wt).

It can be shown that the Euler equation is given by (cf. Posch, 2011)

du′(Ct) =
(
(ρ− µM + λ)u′(Ct)− σ2

MWtu
′′(Ct)CW

−Eζ [u′(C((1− ζM(t))Wt))(1− ζM(t))λ]
)
dt

−πtu′(Ct)dBt +
(
u′(C((1− ζM(t−))Wt−))− u′(C(Wt−))

)
dNt, (39)

where πt ≡ −σMWtu
′′(Ct)CW/u

′(Ct) is the market price of risk, and CW is the marginal

propensity to consume out of wealth, i.e., the slope of the consumption function.

Proposition A.3 (Optimal consumption-wealth ratio) If utility exhibits constant rel-

ative risk aversion, i.e., −u′′(Ct)Ct/u′(Ct) = γ, then the optimal consumption-wealth ratio

is constant, Ct/Wt = b, where b ≡
(
ρ+ λ− (1− γ)µM − (1− ζM)1−γλ+ (1− γ)γ 1

2
σ2
M

)
/γ.

Proof. The proof closely follows Merton (1971) and Posch (2011).

Equilibrium properties. The economy is closed and all output will be consumed, Ct = Yt.

Market clearing implies that consumption growth rates are exogenous. Further, the risk-free

asset is in zero net supply, and all financial wealth is invested in the risky asset, θ = 1. In the

Online Appendix B.1 we use these equilibrium properties to compute the general equilibrium

prices µM , σM , and ζM .

A.2.3 General equilibrium consumption growth rates and asset returns

Consumption. From the dividend process (7), consumption growth rates are

Ys = Yte
(µ̄− 1

2
σ̄2)(s−t)+σ̄(Bs−Bt)+ν̄(Ns−Nt) (40)

⇔ ln(Cs/Ct) = ln(Ys/Yt) = (µ̄− 1
2
σ̄2)(s− t) + σ̄(Bs −Bt) + ν̄(Ns −Nt). (41)
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Proposition A.4 (Stochastic discount factor) If utility exhibits constant relative risk

aversion, i.e., −u′′(Ct)Ct/u′(Ct) = γ, then the stochastic discount factor (SDF) is

ms/mt = e−(r−e
−γν̄(1−eκ)qλ+ 1

2
(γσ̄)2+(e−ν̄γ−1)λ)(s−t)−γσ̄(Bs−Bt)−γν̄(Ns−Nt), (42)

where r = ρ+ γµ̄− 1
2
γ(1 + γ)σ̄2 + λ− (1− (1− eκ)q) e−γν̄λ is the continuously compounded

equilibrium rate of return of the riskless security that is subject to default risk.

Proof. In general equilibrium, the Euler equation (39) reduces to

du′(Ct) = (ρ− r)u′(Ct)dt+ (1− eκ)u′(eν̄Ct)qλdt− (u′(eν̄Ct)− u′(Ct))λdt

−πtu′(Ct)dBt + (u′(eν̄Ct−)− u′(Ct−))dNt,

where the deterministic term consists firstly of the difference between the subjective rate

of time preference and the riskless rate, secondly a term which transforms this rate into

the certainty equivalent rate of return (shadow risk-free rate), and thirdly the compensation

which transforms the Poisson process to a martingale.

For s ≥ t, the stochastic discount factor is defined by

ms/mt ≡ exp

(
−
∫ s

t

(
ρ− u′′(Cv)Cv

u′(Cv)
µ̄− 1

2

u′′′(Cv)C
2
v

u′(Cv)
σ̄2 + 1

2
π2

)
dv

)

× exp

(
−
∫ s

t

πtdBv +

∫ s

t

(ln u′(eν̄Ct−)− ln u′(Ct−)) dNv

)
. (43)

For the case −u′′(Ct)Ct/u′(Ct) = γ we get u′′′(Ct)C
2
t /u

′(Ct) = γ(1 + γ). Furthermore,

in general equilibrium the market price of risk is given by πt = −γσ̄. Substitution into the

expression for the SDF yields the desired result.

Proposition A.5 (Risk-free rate) The instantaneous risk-free rate or the continuously

compounded return to the risk-free asset is

rf = ρ+ γµ̄− 1
2
γ(1 + γ)σ̄2 + λ

(
1− e−γν̄

)
. (44)

Proof. Consider an asset with unit payoff Xf
t+1 = 1 for all t, such that the one period gross

return is Rf
t+1 = 1/P f

t . From (2), the equilibrium price of such an asset at time t is

P f
t = Et

[
ms

mt

]
= e−(ρ+γµ̄− 1

2
γσ̄2)(s−t)Et

[
e−γσ̄(Bs−Bt)

]
Et

[
e−γν̄(Ns−Nt)

]

= e−(ρ+γµ̄− 1
2
(1+γ)σ̄2+λ−e−γν̄λ)(s−t),

where we have used the definition of the SDF (42) and Lemma A.1. For any s > t

Rf
s = 1/P f

t = e(ρ+γµ̄−
1
2
(1+γ)σ̄2+λ−e−γν̄λ)(s−t). (45)

denotes the one-period holding gross return to the risk-free asset. The desired result follows

by computing rf = log(Rf
s ).
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Proposition A.6 (Riskless asset with default risk) The one-period holding gross re-

turn of a riskless asset with payoff Xb
t+1 = e

∫ t+1
t

ln(1+Ds)dNs for all t, where Ds captures

default risk in case of disasters as defined in (31) is

Rb
t+1 = er

f+(1−eκ)qe−γν̄λ+
∫ t+1
t

ln(1+Dv)dNv . (46)

Proof. Substitute the random payoff Xb,t+1 together with the definition of the SDF (42)

into (2), and make use of Lemma A.1, to compute the equilibrium price of the riskless asset

subject to default risk at time t as

P b
t = Et

[
mt+1

mt
e
∫ t+1
t ln(1+Ds)dNs

]

= Et

[
e−(ρ+γµ̄− 1

2
γσ̄2)−γσ̄(Bt+1−Bt)−γν̄(Nt+1−Nt)er+

∫ t+1
t ln(1+Ds)dNs

]

= e−(ρ+γµ̄− 1
2
γσ̄2)Et

[
e−γσ̄(Bt+1−Bt)

]
Et

[
e(e

ln(1+Dt)−γν̄−1)λ
]

= e−r,

where r = rf +λq(1− eκ)e−γν̄ is the face value of the riskless security, i.e., the instantaneous

return received by investors if no default occurs. For any s > t, Rb
s = Xb,s/P

b
t denotes the

gross return to the riskless asset that is subject to default risk. The desired result follows by

setting s = t + 1.

Proposition A.7 (Risky asset) The one-period holding gross return on a claim to a one

period ahead output, Xc,t+1 = Yt+1, is

Rc
t+1 = eρ+γµ̄−

1
2
γσ̄2− 1

2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+σ̄(Bt+1−Bt)+ν̄(Nt+1−Nt). (47)

Proof. Substitute the random payoff Xc,t+1 together with the definition of the SDF (42)

into (2), and make use of Lemma A.1, to compute the equilibrium price of the risky claim

at time t as

P c
t = Et

[
ms

mt
Ys

]

= e−(ρ+(γ−1)µ̄+ 1
2
(1−γ)σ̄2)(s−t)Et

[
e(1−γ)σ̄(Bs−Bt)

]
Et

[
e(1−γ)ν̄(Ns−Nt)

]
Yt

= e−(ρ−(1−γ)µ̄+ 1
2
(1−γ)σ̄2− 1

2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ)(s−t)Yt.

Then, the gross return for any s > t is given by

Rc
s =

Ys
P c
t

= e(ρ+γµ̄−
1
2
γσ̄2− 1

2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ)(s−t)+σ̄(Bs−Bt)+ν̄(Ns−Nt).

where we inserted (40). The desired result follows by setting s = t+ 1.
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Proposition A.8 (Future dividends) Consider a claim on the tree (ownership) which

continuously pays Xt = Ct. Then, the one-period holding return on this asset is given by

Rd
t+1 = eρ+γµ̄−

1
2
γσ̄2− 1

2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+σ̄(Bt+1−Bt)+ν̄(Nt+1−Nt). (48)

Proof. From (2), the price of this claim is given as

P d
t = Et

[∫ ∞

t

ms

mt
Csds

]

=

∫ ∞

t

e−(ρ−(1−γ)(µ̄− 1
2
σ̄2)− 1

2
((1−γ)σ̄)2−(1−e(1−γ)ν̄ )λ)(s−t)dsCt

= Ct/(ρ− (1− γ)(µ̄− 1
2
σ̄2)− 1

2
((1− γ)σ̄)2 − (1− e(1−γ)ν̄)λ) (49)

where we assumed ρ− (1− γ)(µ̄− 1
2
σ̄2)− 1

2
((1− γ)σ̄)2 − (1− e(1−γ)ν̄)λ > 0.

Now consider an asset which pays Xt+1 = P d
t+1 = (At+1/At)P

d
t , which can be interpreted

as a future on the ownership in t+1 (on the tree). From (2) we obtain the price of this asset

in terms of the consumption good with s = t+ 1 as

PD
t = Et

[
ms

mt
(As/At)P

d
t

]

= e−(ρ+(γ−1)µ̄+ 1
2
(1−γ)σ̄2)(s−t)Et

[
e(1−γ)σ̄(Bs−Bt)

]
Et

[
e(1−γ)ν̄(Ns−Nt)

]
P d
t

= e−(ρ−(1−γ)µ̄+ 1
2
(1−γ)σ̄2− 1

2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ)(s−t)P d

t .

Holding the claim on future dividends (ex dividends) we earn the price changes when

selling the asset in period s, that is the (log-)difference of the price for the future dividends

P d
s and P d

t , and the dividend payments, which is the difference of the current claim on future

dividends P d
t and the price of the next periods future dividends PD

t (a future on the tree).24

lnRd
s =

∫ s

t

d lnP d
v + lnP d

t − lnPD
t

= lnP d
s − lnPD

t

= lnAs − lnAt + (ρ− (1− γ)µ̄+ 1
2
(1− γ)σ̄2 − 1

2
(1− γ)2σ̄2 − (e(1−γ)ν̄ − 1)λ)(s− t)

where again ρ− (1− γ)(µ̄− 1
2
σ̄2)− 1

2
((1− γ)σ̄)2 − (1− e(1−γ)ν̄)λ > 0.

A.2.4 Proof of Proposition 4.1

Substituting the SDF (42) together with the one-period holding return (47) into (3) yields

the ex-post pricing error for the risky claim

ecR,t+1 ≡ e−(1−γ)2 1
2
σ̄2−(e(1−γ)ν̄−1)λ+(1−γ)σ̄(Bt+1−Bt)+(1−γ)ν̄(Nt+1−Nt) − 1,

24Note that ln(P d
t /P

D
t ) = ln(Ct/P

c
t ) = Ct/P

d
t = ρ− (1− γ)(µ̄− 1

2 σ̄
2)− 1

2 ((1− γ)σ̄)2 − (1− e(1−γ)ν̄)λ can
be interpreted as the expected return of dividends from t to t+ 1.
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such that

ecR = Et(e
c
R,t+1) = Et

[
e−

1
2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+(1−γ)σ̄(Bt+1−Bt)+(1−γ)ν̄(Nt+1−Nt)

]
− 1

denotes the EE error. Conditional on no disasters, we can rationalize pricing errors for the

risky claim

ecR|Nt+1−Nt=0 ≡ Et(e
c
R,t+1|Nt+1 −Nt = 0)

= Et

[
e−

1
2
(1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+(1−γ)σ̄(Bt+1−Bt)

]
− 1

= exp
(
(1− e(1−γ)ν̄)λ

)
− 1.

Similarly, inserting the SDF together with the one-period equilibrium returns on the

government bill in (46) and the risk-free asset (45), we obtain EE errors

ebR = Et

[
ee

−γν̄(1−eκ)qλ−(e−ν̄γ−1)λ− 1
2
(γσ̄)2−γσ̄(Bt+1−Bt)−γν̄(Nt+1−Nt)+

∫ t+1
t ln(1+Ds)dNs

]
− 1,

efR = Et

[
e−( 1

2
(γσ̄)2+(e−ν̄γ−1)λ)−γσ̄(Bt+1−Bt)−γν̄(Nt+1−Nt)

]
− 1.

Conditional on no disasters, we can rationalize pricing errors

ebR|Nt+1−Nt=0 = exp
(
(1− e−ν̄γ)λ+ e−γν̄(1− eκ)qλ

)
− 1,

efR|Nt+1−Nt=0 = exp
(
(1− e−ν̄γ)λ

)
− 1. �

A.3 A production economy with rare events

A.3.1 The model

Consider a neoclassical production economy subject to rare events both in the accumulation

of capital and the total factor productivity (cf. Posch, 2011).

Technology. At any time, the economy employs capital, labor, and knowledge, and these

are combined to produce output. The production function exhibits constant return to scales

Yt = AtF (Kt, L), where Kt is the aggregate capital stock, L is the constant population size,

and At is the stock of knowledge or total factor productivity (TFP), which is driven by a

standard Brownian motion B̄t and a Poisson process N̄t with arrival rate λ̄,

dAt = µ̄Atdt+ σ̄AtdB̄t + (exp(ν̄)− 1)At−dN̄t, A0 ∈ R+. (50)

The capital stock increases if gross investment, It exceeds stochastic capital depreciation,

dKt = (It − δKt)dt+ σKtdZt + (exp(ν)− 1)Kt−dNt, K0 ∈ R+, (51)
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where δ > 0 is the depreciation rate of capital, Zt is a standard Brownian motion (uncorre-

lated with B̄t), and Nt is a Poisson process with constant arrival rate λ. The jump size in

the capital stock is proportional and has a degenerated distribution.25

Preferences. The economy is inhabited by a single consumer, interpreted as represen-

tative of a large number of identical consumers. Preferences are defined recursively by

(8). For simplicity, we assume γ = 1/ψ, so the normalized aggregator (9) reads f(Ct, Ut) =

C1−γ
t ((1− γ))−1−ρUt, and we obtain the same value function as in the case of time-separable

utility. In this case, the consumer maximizes

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0 (52)

subject to the budget constraint

dWt = ((rt − δ)Wt + wt − Ct)dt+ σWtdZt + JtWt−dNt, W0 ∈ R. (53)

Wt ≡ Kt/L denotes individual wealth, rt is the rental rate of capital, and wt is labor income.

The paths of factor rewards are taken as given by the representative consumer.

A.3.2 The Bellman equation and the Euler equation

Define the value function as

V (W0, A0) = max
{Ct}∞t=0

U0 s.t. (50) and (53), (54)

denoting the present value of expected utility along the optimal program. Hence, a necessary

condition for optimality is provided by the Bellman’s principle at time s

ρV (Ws, As) = max
Cs

{
u(Cs) +

1

dt
EsdV (Ws, As)

}
.

Using Itô’s formula yields

dV (Ws, As) = ((rs − δ)Ws + ws − Cs)VWdt + VWσWsdZs + VAµ̄Asdt+ VAσ̄AsdB̄s

+1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
dt+ [V (eνWs−, As−)− V (Ws−, As−)]dNt

+[V (Ws−, e
ν̄As−)− V (Ws−, As−)]dN̄t.

Using the property of stochastic integrals, we may write

ρV (Ws, As) = max
Cs

{
u(cs) + ((rs − δ)Ws + ws − Cs)VW + 1

2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)

+VAµ̄As + [V (eνWs, As)− V (Ws, As)]λ+ [V (Ws, e
ν̄As)− V (Ws, As)]λ̄

}

25As in Cox, Ingersoll, and Ross (1985, p.366), individuals can invest in physical production indirectly
through firms or directly, in effect creating their own firms. There is a market for instantaneous borrowing
and lending at the interest rate rt = YK , which is determined as part of the competitive equilibrium of the
economy. There are markets for contingent claims which are all zero-supply assets in equilibrium.
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for any s ∈ [0,∞). Hence, we obtain the first-order condition

u′(Ct) = VW (Wt, At), (55)

for any t ∈ [0,∞), making consumption a function of the state variables Ct = C(Wt, At).

For the evolution of the costate we use the maximized Bellman equation

ρV (Wt, At) = u(C(Wt, At)) + ((rt − δ)Wt + wt − C(Wt, At))VW + VAµ̄At

+1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ [V (eνWt, At)− V (Wt, At)]λ

+[V (Wt, e
ν̄At)− V (Wt, At)]λ̄, (56)

where rt = r(Wt, At) and wt = w(Wt, At) follow from the firm’s optimization problem, and

the envelope theorem (also for the factor rewards) to compute the costate,

ρVW = µ̄AtVAW + ((rt − δ)Wt + wt − Ct)VWW + (rt − δ)VW + 1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)

+VWWσ
2Wt + [VW (eνWt, At)e

ν − VW (Wt, At)]λ+ [VW (Wt, e
ν̄At)− VW (Wt, At)]λ̄.

Collecting terms we obtain

(ρ− (rt − δ) + λ+ λ̄)VW = VAW µ̄At + ((rt − δ)Wt + wt − Ct)VWW

+1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)

+σ2VWWWt + VW (eνWt, At)e
νλ+ VW (Wt, e

ν̄At)λ̄.

Using Itô’s formula, the costate obeys

dVW = VAW µ̄Atdt+ VAW σ̄AtdB̄t +
1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)
dt+ VWWσWtdZt

+((rt − δ)Wt + wt − Ct)VWWdt+ [VW (Wt, At)− VW (Wt−, At−)](dN̄t + dNt)

where inserting yields

dVW = (ρ− (rt − δ) + λ+ λ̄)VWdt− VW (eνWt, At)e
νλ− VW (Wt, e

ν̄At)λ̄

−σ2VWWWtdt+ VAWAtσ̄dB̄t + VWWWtσdZt

+[VW (eνWt−, At−)− VW (Wt−, At−)]dNt + [VW (Wt−, e
ν̄At−)− VW (Wt−, At−)]dN̄t,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (55) to obtain the Euler equation

du′(Ct) = (ρ− (rt − δ) + λ+ λ̄)u′(Ct)dt− u′(C(eνWt, At))e
νλdt− u′(C(Wt, e

ν̄At))λ̄

−σ2u′′(Ct)CWWtdt+ u′′(Ct)(CAAtσ̄dB̄t + CWWtσdZt)

+[u′(C(Wt−, e
ν̄At−))− u′(C(Wt−, At−))]dN̄t

+[u′(C(eνWt−, At−))− u′(C(Wt−, At−))]dNt, (57)
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which implicitly determines the optimal consumption path.

We obtain analytical solutions for optimal consumption and asset returns only for specific

parameter restrictions and particular assets. In what follows we obtain conditions under

which the policy function Ct = C(At,Wt), also referred to as the consumption function, is

available analytically, and our variables of interest can be solved in closed form.26

Proposition A.9 (Optimal consumption) Suppose the production function F (Kt, L) is

Yt = AtK
α
t L

1−α, utility has constant relative risk aversion, i.e., −u′′(Ct)Ct/u′(Ct) = γ, and

the subjective discount rate ρ = ρ̄ . Then optimal consumption is proportional to income.

ρ = ρ̄ ⇒ Ct = C(Wt, At) = (1− s)AtW
α
t , γ > 1 (58)

ρ̄ ≡ (e−γν̄ − 1)λ̄+ (e(1−αγ)ν − 1)λ− γµ̄+ 1
2

(
γ(1 + γ)σ̄2 − αγ(1− αγ)σ2

)
− (1− αγ)δ,

where 1− s ≡ (γ − 1)/γ is the marginal propensity to consume.

Proof. The idea of this proof is to show that using an educated guess of the value function,

the maximized Bellman equation (56) and the first-order condition (55) are both fulfilled.

We guess that the value function reads

V (Wt, At) =
C1W

1−αγ
t

1− αγ
A−γ
t . (59)

From (55), optimal consumption is a constant fraction of income, C−γ
t = C1W

−αγ
t A−γ

t or

equivalently Ct = C
−1/γ
1 W α

t At. Now use the maximized Bellman equation (56), the property

of the Cobb-Douglas technology, FK = αAtK
α−1
t L1−α and FL = (1 − α)AtK

α
t L

−α, together

with the transformation Kt ≡ LWt, and insert the solution candidate,

ρV (Wt, At) =
C

− 1−γ
γ

1 W α−αγ
t A1−γ

t

1− γ
+ ((rt − δ)Wt + wt − C(Wt, At))VW + VAµ̄At

+1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ [V (eνWt, At)− V (Wt, At)]λ

+[V (Wt, e
ν̄At)− V (Wt, At)]λ̄.

Inserting the guess and collecting terms which is equivalent to

(ρ− (e(1−αγ)ν − 1)λ− (e−γν̄ − 1)λ̄)
C1W

1−αγ
t

1− αγ
A−γ
t =

C
− 1−γ

γ

1 W α−αγ
t A1−γ

t

1− γ

− γ
C1W

1−αγ
t

1− αγ
µ̄A−γ

t +
(
αAtW

α
t − δWt + (1− α)AtW

α
t − C

−1/γ
1 W α

t At

)
C1W

−αγ
t A−γ

t

+ 1
2

(
γ(1 + γ)σ̄2 − αγ(1− αγ)σ2

) C1W
1−αγ
t

1− αγ
A−γ
t .

26Similar to the endowment economy we get analytical expressions for the SDF, equilibrium consumption
and asset returns for parametric restrictions α = γ with a constant consumption-wealth ratio.
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Collecting terms gives

ρ+ γµ̄− 1
2

(
γ(1 + γ)σ̄2 − αγ(1− αγ)σ2

)
+ (1− αγ)δ

− (e(1−αγ)ν − 1)λ− (e−γν̄ − 1)λ̄ =

(
γ

1− γ
C

−1/γ
1 + 1

)
(1− αγ)AtW

α−1
t ,

which has a solution for C
−1/γ
1 = (γ − 1)/γ and

ρ = (e−γν̄ − 1)λ̄+ (e(1−αγ)ν − 1)λ− γµ̄+ 1
2

(
γ(1 + γ)σ̄2 − αγ(1− αγ)σ2

)
− (1− αγ)δ.

This proves that the guess (59) indeed is a solution, and by inserting the guess together with

the constant, we obtain the optimal policy function for consumption.

Compared to the simple endowment economy, the production economy introduces richer

dynamics, which imply that consumption growth rates are endogenous and will depend on

the specific solution. The dynamics will follow mainly from the marginal product of physical

capital, which for parametric restrictions are given in the following result.

Proposition A.10 (Rental rate of capital) Suppose the production function F (Kt, L) is

Yt = AtK
α
t L

1−α. The rental rate of capital is the marginal product of capital, rt = αAtK
α−1
t ,

and follows the reducible stochastic differential equation,

drt = c1
(
c2 − rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdB̄t + (exp((α− 1)ν)− 1)rt−dNt

+(exp(ν̄)− 1)rt−dN̄t (60)

in which the constants c1 and c2 for the parametric restriction ρ = ρ̄ are given by

c1 ≡ 1−α
αγ
, c2 ≡ αγδ − 1

2
αγ(α− 2)σ2 − αγ

α−1
µ̄.

Proof. An application of Itô’s lemma to the rental rate of capital, rt = αAtK
α−1
t , yields

drt = (α− 1)AtK
α−2
t (Yt − Ct − δKt)dt+ (α− 1)σAtKtK

α−2
t dZt

+(AtK
α−1
t − At−K

α−1
t− )(dNt + dN̄t) +

1
2
(α− 1)(α− 2)Kα−3

t σ2K2
tAtdt

+Kα−1
t (dAt − (exp(ν̄)− 1)At−dN̄t)

= (α− 1)(Yt/Kt − Ct/Kt − δ)AtK
α−1
t dt+ (α− 1)σAtK

α−1
t dZt

+(exp((α− 1)ν)− 1)At−K
α−1
t− dNt +

1
2
(α− 1)(α− 2)AtK

α−1
t σ2dt

+µ̄AtK
α−1
t dt+ σ̄AtK

α−1
t dB̄t + (exp(ν̄)− 1)At−K

α−1
t− dN̄t

= 1−α
α

(
αCt/Kt + αδ − 1

2
α(α− 2)σ2 − α

α−1
µ̄− rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdB̄t

+(exp((α− 1)ν)− 1)rt−dNt + (exp(ν̄)− 1)rt−dN̄t,
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For ρ = ρ̄ we obtain

drt = 1−α
α

(
αδ − 1

2
α(α− 2)σ2 − α

α−1
µ̄− srt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdB̄t

+(exp((α− 1)ν)− 1)rt−dNt + (exp(ν̄)− 1)rt−dN̄t

≡ c1
(
c2 − rt

)
rtdt+ (α− 1)σrtdZt + σ̄rtdB̄t + (exp((α− 1)ν)− 1)rt−dNt

+(exp(ν̄)− 1)rt−dN̄t,

which is a reducible stochastic differential equation, in which we defined c1 ≡ 1−α
αγ

and

c2 ≡ αγδ − 1
2
αγ(α− 2)σ2 − αγ

α−1
µ̄.

Because the SDE for rt is reducible, it has the solution

rs = Θs,t

(
r−1
t + c1

∫ s

t

Θv,tdv

)−1

, (61)

where Θs,t ≡ e(c1c2−
1
2
((α−1)σ)2− 1

2
σ̄2)(s−t)+(Zs−Zt)(α−1)σ+(B̄s−B̄t)σ̄+(α−1)ν(Ns−Nt)+ν̄(N̄s−N̄t). Observe

that the closed-form solution enormously simplifies the problem of simulating EE errors.

A.3.3 General equilibrium consumption growth rates and asset returns

Consumption. Observe that the solution to (50) is for s ≥ t

As = Ate
(µ̄− 1

2
σ̄2)(s−t)+σ̄(B̄s−B̄t)+ν̄(N̄s−N̄t)

⇔ ln(As/At) = (µ̄− 1
2
σ̄2)(s− t) + σ̄(B̄s − B̄t) + ν̄(N̄s − N̄t). (62)

Similarly, we obtain growth rates of the capital stock from (51)

ln(Ks/Kt) =

∫ s

t

(
rv/α− Cv/Kv − δ − 1

2
σ2
)
dv + σ(Zs − Zt) + ν(Ns −Nt). (63)

For the case of ρ = ρ̄, as from Proposition A.9, consumption is a constant fraction of

output, Ct = (1 − s)Yt, and thus we obtain the consumption growth rate as ln(Cs/Ct) =

ln(Ys/Yt) = ln(As/At) + α ln(Ks/Kt), which finally gives

ln(Cs/Ct) = 1/γ

∫ s

t

rvdv + (µ̄− 1
2
σ̄2 − αδ − 1

2
ασ2)(s− t) + σ̄(B̄s − B̄t)

+ασ(Zs − Zt) + αν(Ns −Nt) + ν̄(N̄s − N̄t), (64)

which is endogenously determined in the production economy.

Proposition A.11 (Stochastic discount factor) Following the assumptions in Proposi-

tion A.9, the stochastic discount factor (SDF) is given by

ms/mt = e−
∫ s
t (rv−δ)dv+[(1−e(1−αγ)ν )λ+(1−e−γν̄ )λ̄+γασ2− 1

2
(γσ̄)2− 1

2
(αγσ)2 ](s−t)

×e−γσ̄(B̄s−B̄t)−αγσ(Zs−Zt)−αγν(Ns−Nt)−γν̄(N̄s−N̄t). (65)
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Proof. From the Euler equation (57), we obtain for s ≥ t,

ms/mt = exp

(
−

∫ s

t

(
rl − δ − λ− λ̄+

u′(C(eνWl, Al))

u′(C(Wl, Al))
eνλ+

u′(C(Wl, e
ν̄Al))

u′(C(Wl, Al))
λ̄

)
dl

+
u′′(Cl)CWWl

u′(Cl)
σ2dl − 1

2

∫ s

t

(u′′(Cl))
2

(u′(Cl))2
((CAAlσ̄)

2 + (CWWlσ)
2)dl

+

∫ s

t

u′′(Cl)

u′(Cl)
(CAAlσ̄dB̄l + CWWlσdZl)

+

∫ s

t

ln

(
u′(C(eνWl−, Al−))

u′(C(Wl−, Al−))

)
dNl +

∫ s

t

ln

(
u′(C(Wl−, e

ν̄Al−))

u′(C(Wl−, Al−))

)
dN̄l

)

which after inserting the policy function Ct = C(Wt, At) gives the desired results.

Proposition A.12 (Risky bond) Consider a risky asset that pays at the rate rt in t+ 1.

The one-period holding gross return of an asset with the random payoff Xb,t+1 = e
∫ t+1
t rsds is

Rb
t+1 = exp

(∫ s

t

(rv − δ − γασ2 − e−αγν(1− eν)λ)dv

)
. (66)

Proof. Substitute the random payoff Xb
t+1 in (2) to obtain the equilibrium price of this risky

bond at time t as

P b
t = Et

[
mt+1

mt

e
∫ t+1
t rsds

]
.

Using the definition of the SDF (65) and making use of Lemma (A.1) yields

P b
t = eδ+γασ

2+e−αγνλ−e(1−αγ)νλ.

For any s > t, Rb
s = Xb

s/P
b
t denotes the gross return on the risky bond. The desired result

follows by setting s = t+ 1.

Proposition A.13 (Risky asset) The one-period holding return on an asset that pays one

unit of next period’s capital, Xc
t+1 = Kαγ

t+1, is

Rc
t+1 = exp

(∫ t+1

t

(rv − δ − λ+ e(1−αγ)νλ− γασ2 + 1
2
(αγσ)2)dv

)

× exp (αγσ(Zt+1 − Zt) + αγν(Nt+1 −Nt)) . (67)

Proof. Note that for any s > t it follows from (63) that

Kαγ
s = Kαγ

t e
∫ s
t
(γrv−αγCv/Kv−αγδ−

1
2
αγσ2)dv+αγσ(Zs−Zt)+αγν(Ns−Nt).
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Set s = t+1 and substitute the random payoff Xc
t+1 together with the definition of the SDF

(65) into (2). Making use of Lemma (A.1) compute the equilibrium price of this risky asset

at time t as

P c
t = Et

[
mt+1

mt
Kαγ
t+1

]

⇒ P c
t = Kαγ

t e−(αγδ+ 1
2
αγσ2−δ−(1−e(1−αγ)ν )λ−(1−e−γν̄ )λ̄−γασ2+ 1

2
(γσ̄)2+ 1

2
(αγσ)2)

×Et
[
e−γσ̄(B̄t+1−B̄t)−γν̄(N̄t+1−N̄t)

]

= Kαγ
t e−(αγδ+ 1

2
αγσ2−δ−(1−e(1−αγ)ν )λ−γασ2+ 1

2
(αγσ)2).

For any s > t, Rc
s = Xc

s/P
c
t denotes the gross return on the risky asset. The desired result

follows by setting s = t+ 1.

Note that the risky asset considered does not represent a market portfolio, but is simply

used to illustrate the possibility of generating Euler equation (EE) errors for particular assets.

A.3.4 Proof of Proposition 4.2

Substituting the SDF (65) together with the one-period holding return (66) into (3) yields

the unconditional pricing error for the risky bond

ebR = Et
(
ebR,t+1

)

= Et

[
e(1−e

−αγν )λ+(1−e−γν̄ )λ̄− 1
2
(γσ̄)2− 1

2
(αγσ)2

×e−γσ̄(B̄t+1−B̄t)−αγσ(Zt+1−Zt)−αγν(Nt+1−Nt)−γν̄(N̄t+1−N̄t)
]
− 1.

Conditional on no disasters, we can rationalize Euler equation errors for the risky bond

ebR|Nt+1−Nt=0 ≡ Et
(
ebR,t+1|Nt+1 −Nt = 0

)

= exp
(
(1− e−αγν)λ

)
− 1.

Similarly, inserting the SDF together with one-period holding return of the risky asset

(67) we obtain the EE error

ecR = Et

[
e−

1
2
(γσ̄)2−(e−γν̄−1)λ̄−γσ̄(B̄t+1−B̄t)−γν̄(N̄t+1−N̄t)

]
− 1 �.

A.4 The long-run risk model

A.4.1 The model

Consider an endowment economy where production, Yt, is exogenous as in Lucas (1978). No

resources are utilized, and there is no possibility of affecting the perishable output.
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Technology. Following Bansal and Yaron (2004), the law of motion of Yt is given by

dYt = µtYtdt+
√
ϑtYtdBt, (68)

where µt is the long-run risk in the endowment, assumed to follow the square-root process

dµt = κµ(µ̄− µt)dt+ νµ
√
ϑtdBµ,t, (69)

with persistence κµ, and volatility νµ
√
ϑt. The parameter νµ is the volatility leverage ratio

for long-run risks. Moreover, the variance ϑt is assumed to follow the square-root process

dϑt = κϑ(ϑ̄− ϑt)dt+ νϑ
√
ϑtdBϑ,t, (70)

with persistence κϑ (see Heston, 1993). The processes Bt, Bµ,t and Bϑ denote standard and

independent Brownian motions. In what follows we define dBt ≡ [dBt , dBµ,t , dBϑ,t]
⊤.

Ownership of any produced output is determined at each instant of time in a competitive

stock market where equity shares entitle their owners to all of the future dividends. Shares

are traded at a price P d
t , and their total return evolves according to

dRd
t = µR,tdt+ σR,tdBt, (71)

with Rd
t = (dP d

t +Ct)/P
d
t the return cum-dividend. The capital market also trades a risk-free

asset (in zero net supply) with return rft . The price of the riskless asset evolves according to

dP f
t = P f

t r
f
t dt, P0 = 1. (72)

Preferences. Consider an economy with a single consumer, interpreted as representative

of a large number of identical consumers. The consumer maximizes expected lifetime utility

given by (8) and (9) subject to

dWt =
[
(µR,t − rft )θtWt + rftWt − Ct

]
dt+ θtσR,tWtdBt, W0 ∈ R (73)

where rft is the risk-free rate, µR,t the expected return on the risky asset, σR,t ≡ [σ
(Y )
R,t , σ

(µ)
R,t, σ

(ϑ)
R,t]

its volatility, and θt denotes the fraction of financial wealth, Wt, invested by the consumer

in the risky asset.

A.4.2 The Bellman equation

Define the value function as

V (W0, µ0, ϑ0) ≡ max
{Ct,θt}∞t=0

U0, s.t. (73), W0 > 0, µ0 ∈ R, , ϑ0 ∈ R, (74)
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denoting the present value of expected utility along the optimal program. Hence, a necessary

condition for optimality is provided by the Bellman’s principle at time s

0 = max
Cs,θs

{
f(Cs, V (Ws, µs, ϑs)) +

1

dt
EsdV (Ws, µs, ϑs)

}
. (75)

Using Itô’s formula yields

dV (Wt, µt, ϑt) =
((

(µR,t − rft )θtWt + rftWt − Ct
)
VW + κµ(µ̄− µt)Vµ + κϑ(ϑ̄− ϑt)Vϑ

+1
2
θ2tσR,tσ

⊤
R,tW

2
t VWW + 1

2
ν2µϑtVµµ +

1
2
ν2ϑϑtVϑϑ

+θtσ
(µ)
R,tWtνµ

√
ϑtVWµ + θtσ

(ϑ)
R,tWtνϑ

√
ϑtVWϑ

)
dt

+θtσR,tWtVWdBt + νµ
√
ϑtVµdBµ,t + νϑ

√
ϑtVϑdBϑ,t.

Using the properties of stochastic integrals it follows that

1

dt
EtdV (Wt, µt, ϑt) =

(
(µR,t − rft )θtWt + rftWt − Ct

)
VW + κµ(µ̄− µt)Vµ

+ κϑ(ϑ̄− ϑt)Vϑ +
1
2
θ2tσR,tσ

⊤
R,tW

2
t VWW + 1

2
ν2µϑtVµµ +

1
2
ν2ϑϑtVϑϑ

+ θtσ
(µ)
R,tWtνµ

√
ϑtVWµ + θtσ

(ϑ)
R,tWtνϑ

√
ϑtVWϑ,

which substituted into (75) yields for any t ≥ 0

0 = max
Ct,θt

{
f(Ct, V (Wt, µt, ϑt)) +

(
(µR,t − rft )θtWt + rftWt − Ct

)
VW + κµ(µ̄− µt)Vµ

+ κϑ(ϑ̄− ϑt)Vϑ +
1
2
θ2tσR,tσ

⊤
R,tW

2
t VWW + 1

2
ν2µϑtVµµ +

1
2
ν2ϑϑtVϑϑ

+ θtσ
(µ)
R,tWtνµ

√
ϑtVWµ + θtσ

(ϑ)
R,tWtνϑ

√
ϑtVWϑ

}
. (76)

Hence, the first-order conditions for any interior solution are

fC(Ct, V ) = VW (77)

θt = −µR,t − rft
σR,tσ

⊤
R,t

VW
WtVWW

−
σ
(µ)
R,tνµ

√
ϑt

σR,tσ
⊤
R,t

VWµ

WtVWW
−
σ
(ϑ)
R,tνϑ

√
ϑt

σR,tσ
⊤
R,t

VWϑ

WtVWW
. (78)

Equilibrium properties. The economy is closed and all output will be consumed, Ct = Yt.

Market clearing implies that the consumption growth rates are exogenous. The risk-free

asset is in zero net supply and all financial wealth is invested in the risky asset, θt = 1.

A.4.3 General equilibrium consumption growth rates and asset returns

Consumption. From the dividend process (68), consumption growth rates are given by

ln(Cs/Ct) = ln(Ys/Yt) =

∫ s

t

(µv − 1
2
ϑv)dv +

∫ s

t

ϑvdBv, (79)

where µt and ϑt are the solutions to the stochastic differential equations in (69) and (70).
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Proposition A.14 (Equilibrium value function) If the preferences of the consumer are

defined recursively by (8) and (9), then for ψ 6= 1 the equilibrium value function is

V (Wt, µt, ϑt) =
W 1−γ
t

1− γ
H(µt, ϑt), (80)

where the function H(µt, ϑt) satisfies the partial differential equation

0 =
1− γ

1− 1/ψ

(
H(µt, ϑt)

1−ψ
1−γ − ρ

)
+ (1− γ)µt − 1

2
γ(1− γ)ϑt

− 1
2
ψ(1− ψ)ν2µϑt

(
Hµ (µt, ϑt)

H (µt, ϑt)

)2

+ ψκµ(µ̄− µt)
Hµ (µt, ϑt)

H (µt, ϑt)

+ 1
2
ψν2µϑt

Hµµ (µt, ϑt)

H (µt, ϑt)
− 1

2
ψ(1− ψ)ν2ϑϑt

(
Hϑ (µt, ϑt)

H (µt, ϑt)

)2

+ ψκϑ(ϑ̄− ϑt)
Hϑ (µt, ϑt)

H (µt, ϑt)
+ 1

2
ψν2ϑϑt

Hϑϑ (µt, ϑt)

H (µt, ϑt)
. (81)

Proof. Conjecture that the value function takes the form in (80). Then, the normalized

aggregator in (9) can be written as

f(Ct, V ) =
1

1− 1/ψ
W 1−γ
t H (µt, ϑt)

(
(Wt/Ct)

−(1−1/ψ)H (µt, ϑt)
1−ψ

(1−γ)ψ − ρ
)
.

Dividing throughout by V and substituting (90) yields

f(Ct, V )

V
=

1− γ

1− 1/ψ

(
H(µt, ϑt)

1−ψ
1−γ − ρ

)
. (82)

Using the equilibrium properties Ct = Yt and θt = 1, equation (76) reduces to

0 = f(Ct, V ) + (µR,tWt − Ct)VW + κµ(µ̄− µt)Vµ + κϑ(ϑ̄− ϑt)Vϑ

+ 1
2
σR,tσ

⊤
R,tW

2
t VWW + 1

2
ν2µϑtVµµ +

1
2
ν2ϑϑtVϑϑ

+ σ
(µ)
R,tWtνµ

√
ϑtVWµ + σ

(ϑ)
R,tWtνϑ

√
ϑtVWϑ. (83)

Substituting (80), dividing throughout by V , and using (82) we obtain

0 =
1− γ

1− 1/ψ

(
H(µt, ϑt)

1−ψ
1−γ − ρ

)
+ (1− γ) (µR,t − Ct/Wt)− 1

2
γ(1− γ)σR,tσ

⊤
R,t

+(1− γ)σ
(µ)
R,tνµ

√
ϑt
Hµ (µt, ϑt)

H (µt, ϑt)
+ κµ(µ̄− µt)

Hµ (µt, ϑt)

H (µt, ϑt)
+ 1

2
ν2µϑt

Hµµ (µt, ϑt)

H (µt, ϑt)

+(1− γ)σ
(ϑ)
R,tνϑ

√
ϑt
Hϑ (µt, ϑt)

H (µt, ϑt)
+ κϑ(ϑ̄− ϑt)

Hϑ (µt, ϑt)

H (µt, ϑt)
+ 1

2
ν2ϑϑt

Hϑϑ (µt, ϑt)

H (µt, ϑt)
. (84)

Market clearing implies that P d
t = Wt (see Proposition A.16). Hence, the price of a claim

to consumption is given by

P d
t = CtH(µt, ϑt)

− 1−ψ
1−γ . (85)
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with dynamics

dP d
t

P d
t

= µP,tdt+ σP,tdBt, (86)

where

µP,t = µt −
1− ψ

1− γ

Hµ (µt, ϑt)

H (µt, ϑt)
κµ(µ̄− µt)−

1− ψ

1 − γ

Hϑ (µt, ϑt)

H (µt, ϑt)
κϑ(ϑ̄− ϑt)

− 1
2

1− ψ

1 − γ

[(
−1− ψ

1 − γ
− 1

)(
Hµ (µt, ϑt)

H (µt, ϑt)

)2

+
Hµµ (µt, ϑt)

H (µt, ϑt)

]
ν2µϑt

− 1
2

1− ψ

1− γ

[(
−1 − ψ

1 − γ
− 1

)(
Hϑ (µt, ϑt)

H (µt, ϑt)

)2

+
Hϑϑ (µt, ϑt)

H (µt, ϑt)

]
ν2ϑϑt, (87)

and

σP,t =

[√
ϑt ,−

1− ψ

1 − γ

Hµ (µt, ϑt)

H (µt, ϑt)
νµ
√
ϑt ,−

1− ψ

1 − γ

Hϑ (µt, ϑt)

H (µt, ϑt)
νϑ
√
ϑt

]
. (88)

By combining the consumption to price ratio from (85) and the price process in (86), the

equilibrium dynamic of the return for the risky asset in (71) becomes

dRd
t ≡

dP d
t

P d
t

+
Ct
P d
t

dt = (µP,t + Ct/Wt)︸ ︷︷ ︸
=µR,t

dt+ σP,t︸︷︷︸
=σR,t

dBt. (89)

Substituting µR,t and σR,t into (84) yields (81) and verifies the form (80).

Proposition A.15 (Optimal wealth-consumption ratio) Given the value function (80),

the optimal wealth-consumption ratio is given by

Wt

Ct
= H(µt, ϑt)

− 1−ψ
1−γ . (90)

Proof. Take the partial derivatives of the normalized aggregator in (9) and of the value

function in (80). Substitute into the first order condition (77) to obtain (90).

Proposition A.16 (Risky asset) Consider a claim on dividends, which continuously pays

Xd,t = Ct. In general equilibrium, the price of this claim is

P d
t = CtH(µt, ϑt)

− 1−ψ
1−γ . (91)

Proof. In equilibrium, the consumer’s wealth is defined by the present value of all future

consumption which, in the absence of arbitrage, defines the price of an asset that pays

consumption as its dividend, P d
t . Hence, (90) implies that

P d
t = CtH(µt, ϑt)

− 1−ψ
1−γ . (92)
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On the other hand, to obtain (92) note that market clearing implies that financial wealth in

(73) evolves over time according to

dWt = (µR,tWt − Ct) dt+ σR,tWtdBt

⇔ dWt + Ctdt

Wt
= µR,tdt+ σR,tdBt. (93)

By comparing (71) and (93) it follows that P d
t = Wt, and using (90) the result obtains.

Proposition A.17 (Risk-free rate) The instantaneous return on the risk-free asset is

rft = µR,t − γσR,tσ
⊤
R,t +

Hµ (µt, ϑt)

H (µt, ϑt)
σ
(µ)
R,tνµ

√
ϑt +

Hϑ (µt, ϑt)

H (µt, ϑt)
σ
(ϑ)
R,tνϑ

√
ϑt. (94)

Proof. Using the condition for the portfolio share (78) together with the market clearing

condition θt = 1, and the derivatives of the value function (80) the desired result follows.

The function H(µt, ϑt) in (80) only admits a closed form solution for the case of unitary

elasticity of intertemporal substitution, ψ = 1, or the limiting case of CRRA, ψ = 1/γ. For

any other values of ψ we use a log-linear approximation of the unknown function around the

unconditional mean of the state variables (a similar approach is taken by Campbell, Chacko,

Rodriguez, and Viceira, 2004; Chacko and Viceira, 2005).

Proposition A.18 (Log-linear approximation) For ψ 6= 1, the equilibrium value func-

tion in (80) can be approximated by

V (Wt, µt, ϑt) =
W 1−γ
t

1− γ
exp (aH + bHµt + cHϑt) , (95)

where the approximation constants solve the system of equations

aH =
1

ψh1

(
1− γ

1− 1/ψ
h0 − ρ

1− γ

1− 1/ψ
+ ψκµµ̄bH + ψκϑϑ̄cH

)

bH =
1− γ

ψ

1

κµ + h1

cH =
ψ (h1 + κϑ)

ν2ϑψ
2

±

√(
ψ (h1 + κϑ)

ν2ϑψ
2

)2

−
ν2µψ

2b2H − γ (1− γ)

ν2ϑψ
2

.

The linearization constants h0 and h1 are given by

h1 = exp

(
1− ψ

1 − γ

(
aH + bH µ̄+ cH ϑ̄

))
, and h0 = h1(1− ln h1),

where µ̄ = E (µt) and ϑ̄ = E (ϑt).
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Proof. Defining ct ≡ lnCt and wt ≡ lnWt, the consumption-wealth ratio Ct/Wt =

exp (ct − wt) is approximated by a log-linear approximation around the mean consumption-

wealth ratio

exp (ct − wt) ≈ h1 + h1 (ct − wt − ln h1) = h0 + h1 (ct − wt) .

where h1 = exp (c− w), c− w is the log consumption-wealth ratio and h0 = h1(1− ln h1).

Taking logs in (90) we obtain

ct − wt =
1− ψ

1− γ
lnH (µt, ϑt) ,

and substituting it out into the approximation yields

Ct/Wt ≈ h0 + h1
1− ψ

1− γ
lnH (µt, ϑt) = h0 + h1

1− ψ

1 − γ
lnH (µt, ϑt) .

Solving H(µt, ϑt). Consider now the approximation of the function H(µt, ϑt) that solves

the maximized Bellman equation in (81), that is,

0 =
1− γ

1− 1/ψ

=Ct/Wt︷ ︸︸ ︷
H(µt, ϑt)

1−ψ
1−γ − ρ

1− γ

1− 1/ψ
+ (1− γ)µt − 1

2
γ(1− γ)ϑt

+ψκµ(µ̄− µt)
Hµ(µt, ϑt)

H(µt, ϑt)
+ ψκϑ(ϑ̄− ϑt)

Hϑ(µt, ϑt)

H(µt, ϑt)
− 1

2
ψ(1− ψ)ν2µϑt

(
Hµ(µt, ϑt)

H(µt, ϑt)

)2

−1
2
ψ(1− ψ)ν2ϑϑt

(
Hϑ(µt, ϑt)

H(µt, ϑt)

)2

+ 1
2
ψν2µϑt

Hµµ(µt, ϑt)

H(µt, ϑt)
+ 1

2
ψν2ϑϑt

Hϑϑ(µt, ϑt)

H(µt, ϑt)
.

Substitute the log-linear approximation to the consumption-wealth ratio to arrive at

0 =
1− γ

1− 1/ψ
h0 − ψh1 lnH (µt, ϑt)− ρ

1− γ

1 − 1/ψ
+ (1− γ)µt

−1
2
γ(1− γ)ϑt + ψκµ(µ̄− µt)

Hµ(µt, ϑt)

H(µt, ϑt)
+ ψκϑ(ϑ̄− ϑt)

Hϑ(µt, ϑt)

H(µt, ϑt)

−1
2
ψ(1− ψ)ν2µϑt

(
Hµ(µt, ϑt)

H(µt, ϑt)

)2

− 1
2
ψ(1− ψ)ν2ϑϑt

(
Hϑ(µt, ϑt)

H(µt, ϑt)

)2

+1
2
ψν2µϑt

Hµµ(µt, ϑt)

H(µt, ϑt)
+ 1

2
ψν2ϑϑt

Hϑϑ(µt, ϑt)

H(µt, ϑt)
. (96)

We now conjecture that the function H(µt, ϑt) that solves (96) takes the form

H(µt, ϑt) = exp (aH + bHµt + cHϑt) , (97)

implying that after we collected terms

0 =
1− γ

1− 1/ψ
h0 − ψh1aH − ρ

1− γ

1 − 1/ψ
+ ψκµµ̄bH + ψκϑϑ̄cH

+
(
(1− γ)− ψ (κµ + h1) bH

)
µt

+
(
1
2
ν2ϑψ

2c2H − ψ (h1 + κϑ) cH + 1
2
ν2µψ

2b2H − 1
2
γ (1− γ)

)
ϑt.
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Using the method of undetermined coefficients, the solution for bH (making the coefficient

on µt zero) is given by

bH =
1− γ

ψ

1

κµ + h1
. (98)

Given bH , the solution for cH (making the coefficient on ϑt zero) is given by

cH =
ψ (h1 + κϑ)

ν2ϑψ
2

±

√(
ψ (h1 + κϑ)

ν2ϑψ
2

)2

−
ν2µψ

2b2H − γ (1− γ)

ν2ϑψ
2

, (99)

and that for aH (making the constant term zero) is

aH =
1

ψh1

(
1− γ

1− 1/ψ
h0 − ρ

1− γ

1− 1/ψ
+ ψκµµ̄bH + ψκϑϑ̄cH

)
. (100)

The values of aH , bH and cH that solve the PDE in (96) depend on the optimal expected

log consumption-wealth ratio lnh1, which is endogenous to the model. Given the conjecture

for H (µt, ϑt), we have that for ψ 6= 1

h1 = exp (E (ct − wt))

= exp

(
E

(
1− ψ

1 − γ
(aH + bHµt + cHϑt)

))

= exp

(
1− ψ

1 − γ

(
aH + bH µ̄+ cH ϑ̄

))
,

where µ̄ = E (µt) and ϑ̄ = E (ϑt).

A.5 Tables and Figures
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Table A.1: C-CAPM Estimates (Two-assets case, Rb
t , R

c
t)

The table reports efficient GMM estimates and the Euler equation errors (RMSE, annualized). For the conditional moments and restrictions we use
q = 0, λ̄ = 0, ν̄ = −0.4, α = 0.33, ν = −0.75 and λ = 0.017. For the conditional GMM (Production) the free parameter δ is used to satisfy the
theoretical restriction ρ = ρ̄. For the Euler equation (EE) errors, we fix ρ = 0.03 and γ = 4. For the Parker-Julliard approach we fix ρ = 0.03 and
α1 = −0.01 (α1 = −0.05 annual data). Asymptotic t-values are below the estimates (RMSE/RMSR in brackets). GMM iterates until convergence.

Parameter Estimates from Empirical Data
GMM conditional GMM EE errors Parker/Julliard

Model-free Endowment Production Model-free Model-free
Data β γ RMSE β γ RMSE β γ RMSE α1 α2 RMSE α0 γ RMSE

US 1951:Q4-2016:Q4 1.093
2.0

61.7
0.1

0.0
[0.00]

0.985
6.7

4.1
0.1

0.0
[0.00]

0.995
29.8

4.0
0.1

0.0
[0.00]

−0.009
−0.3

−0.002
−0.0

0.0
[0.00]

0.007
0.1

4.2
0.4

0.0
[0.00]

US 1951:Q4-2002:Q4 1.094
0.9

47.2
0.0

0.0
[0.00]

0.988
14.4

2.6
0.1

0.0
[0.00]

0.992
16.2

2.7
0.1

0.0
[0.00]

−0.008
−0.3

−0.004
−0.1

0.0
[0.00]

0.004
0.0

4.5
0.4

0.0
[0.00]

US 1951:Q4-2000:Q4 1.069
0.0

91.1
0.0

1.1
[0.16]

0.986
8.0

3.7
0.1

0.0
[0.00]

0.993
23.2

3.6
0.1

0.0
[0.00]

−0.008
−0.3

−0.002
−0.0

0.0
[0.00]

0.006
0.1

4.5
0.4

0.0
[0.00]

US (a) 1900-2008 0.800
0.3

34.1
0.3

0.0
[0.00]

0.890
2.0

5.9
0.7

0.0
[0.00]

0.991
4.7

6.1
0.6

0.0
[0.00]

−0.053
−0.4

0.007
0.0

0.0
[0.00]

0.064
0.3

3.8
0.4

0.0
[0.00]

CAN (a) 1934-2008 1.387
0.0

49.6
0.0

4.8
[0.53]
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2.7

6.0
1.0

0.0
[0.00]

1.027
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0.065
0.4

3.0
0.7

0.0
[0.00]

GER (a) 1900-2008 0.652
0.0

6.6
0.0

6.7
[0.28]

0.702
0.0

3.7
0.0

4.3
[0.18]

0.728
0.0

3.4
0.0

3.8
[0.16]

0.408
0.1

0.367
0.1

0.0
[0.00]

−0.152
−0.0

−2.1
−0.0

26.7
[1.09]

ITA (a) 1900-2008 1.002
0.0

3.9
0.0

8.3
[0.57]

0.753
0.5

7.5
0.5

0.0
[0.00]

0.934
1.4

8.3
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−0.032
−0.2
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0.116
0.2

5.5
0.3
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JAP (a) 1900-2008 1.011
0.0

3.4
0.0

9.3
[0.75]

0.576
0.2

7.8
0.8

0.0
[0.00]

0.613
0.1

9.0
0.5

0.0
[0.00]

−0.019
−0.0

0.090
0.1

0.0
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0.108
0.0

3.1
0.0

3.1
[0.25]

UK (a) 1900-2008 0.579
0.0

37.5
0.1

0.0
[0.00]

0.926
1.7

4.4
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0.0
[0.00]

0.972
7.2

4.3
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−0.030
−0.2

0.002
0.0

0.0
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0.031
0.1

6.1
0.3

0.0
[0.00]

US (a) 1951-2008 1.143
0.0

8.7
0.0

4.5
[0.49]

0.910
2.5

6.1
0.9

0.0
[0.00]
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8.8
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GER (a) 1951-2008 1.867
0.3

69.8
0.2

0.0
[0.00]

0.877
1.6

7.1
1.1

0.0
[0.00]

1.067
5.1

7.7
0.8
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−0.093
−0.9

0.004
0.0
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0.4
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1.0
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ITA (a) 1951-2008 1.541
0.5

24.0
0.2
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0.948
2.7

5.2
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[0.00]

1.021
3.9
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0.3
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−0.6

−0.017
−0.1
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0.2

3.5
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0.0
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JAP (a) 1951-2008 2.552
0.4
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0.2
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2.2

6.8
1.0
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[0.00]
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−1.3
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0.4
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UK (a) 1951-2008 1.423
0.5

28.5
0.2

0.0
[0.00]

0.906
1.8

5.5
0.4

0.0
[0.00]

0.991
7.3

5.6
0.3

0.0
[0.00]

−0.040
−0.5

0.013
0.0

0.0
[0.00]

0.055
0.2

4.5
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0.0
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Table A.2: C-CAPM Estimates (Larger cross-section)

The table reports GMM estimates and the Euler equation errors (RMSE, annualized) with identity weighting
matrix. For the Euler equation (EE) errors, we use two assets and add 6 Fama-French portfolios sorted by
size and book-to-market (Big Value, Big Neutral, Big Growth, Small Value, Small Neutral, Small Growth)
to either estimate β, γ, and α1, α2, α3, α5, α7, α8 or α1, α2, α3, α4, α5, α6, α7, α8 by fixing either ρ = 0.03 and
γ = 4, or 3 out of the 6 FF portfolios (Big Value, Big Neutral, Small Value) to underpredict their returns by
the same amount α3 ≡ α4 ≡ α6. Asymptotic t-values are below the estimates (RMSE/RMSR in brackets).

Parameter Estimates from Empirical Data
US Data: 1951:Q4-2016:Q4

Model β γ α1 α2 α3 α4 α5 α6 α7 α8 RMSE

GMM 0.846 147.1 1.7
[0.13]

EE errors −0.009
−0.3

−0.002
−0.0

0.007
0.1

0.009
0.1

0.013
0.1

0.009
0.1

0.017
0.2

0.021
0.2

0.0
[0.00]

EE errors 0.989
11.7

4.6
60.6

−0.015
−0.4

−0.008
−0.1

0.002
0.0

0.007
0.1

0.011
0.1

0.015
0.1

0.3
[0.02]
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Table A.3: Simulation study (rare events model - endowment economy)

(1) (2)

ρ rate of time preference 0.03 0.03
γ coef. of relative risk aversion 4 4
µ̄ consumption growth 0.01 0.01
σ̄ consumption noise 0.005 0.005

−ν̄ size of consumption disaster 0.4 0
λ consumption disaster probability 0.017 0

−κ size of government default 0.3 0
q default probability 0.5 0

Table A.4: Simulation study (rare events model - production economy)

(1) (2)

ρ rate of time preference 0.024 0.016
γ coef. of relative risk aversion 4 4
α output elasticity of capital 0.6 0.6
δ capital depreciation 0.025 0.025
µ̄ productivity growth 0.01 0.01
σ̄ productivity noise 0.01 0.01

−ν̄ size of productivity slump 0.01 0
λ̄ productivity jump probability 0.2 0
σ capital stochastic depreciation 0.005 0.005

−ν size of capital disaster 0.55 0.55
λ capital disaster probability 0.017 0.017

Table A.5: Simulation study (long-run risk model)

(1) (2)

ρ rate of time preference 0.024 0.03
γ coef. of relative risk aversion 10 10
ψ EIS 1.5 1.5
µ̄ consumption growth 0.018 0.018
κµ LRR persistence 0.256 0.3
νµ LRR volatility multiple 0.528 0.456
ϑ̄ baseline volatility (×100) 0.0729 0.0625
κϑ persistence volatility 0.156 0.015
νϑ vol-of-vol 0.0035 0.0027
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Table A.6: C-CAPM simulation results (rare events - endowment economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM (conditional on no disasters) observed at quarterly frequency in the endowment economy with
rare events (cf. Section 3.1) for a parameterization as in column (1) in Table A.3; the bond return, the
equity return, the equity premium and consumption growth (all annualized); and the GMM estimates of
φ = (β, γ)⊤ with β = 0.97 and γ = 4 based on moments (15), and the estimated EE errors and RMSE (both
annualized). Simulated data is generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Results analytical solution conditional (no disasters)
parameterization (1) Mean Std. dev. Mode Median

ebR EE error risky bond −5.59 0.28 −5.48 −5.59
ecX EE error excess return 1.66 0.07 1.66 1.66

RMSE root mean square error 4.12 0.20 4.04 4.12

Observed random variables

Rbt+1 bill return 1.35 0.00 1.50 1.35
Rct+1 equity return 3.05 0.07 3.05 3.05

Rct+1 −Rbt+1 equity premium 1.70 0.07 1.70 1.70
ln(Ct+1/Ct) consumption growth 1.00 0.07 1.00 1.00

Parameter estimates

β̂ factor of time preference 1.17 0.17 1.21 1.19
γ̂ coef. of relative risk aversion 804.64 244.70 752.50 754.20

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table A.7: C-CAPM simulation results (rare events - endowment economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM (conditional on no disasters) observed at quarterly frequency in the endowment economy with
rare events (cf. Section 3.1) for a parameterization as in column (2) in Table A.3; the bond return, the
equity return, the equity premium and consumption growth (all annualized); and the GMM estimates of
φ = (β, γ)⊤ with β = 0.97 and γ = 4 based on moments (15), and the estimated EE errors and RMSE (both
annualized). Simulated data is generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Results analytical solution conditional (no disasters)
parameterization (2) Mean Std. dev. Mode Median

ebR EE error risky bond 0.00 0.29 0.06 0.00
ecX EE error excess return 0.00 0.07 −0.02 0.00

RMSE root mean square error 0.17 0.13 0.09 0.14

Observed random variables

Rbt+1 bill return 7.04 0.00 7.50 7.04
Rct+1 equity return 7.05 0.07 7.06 7.05

Rct+1 −Rbt+1 equity premium 0.01 0.07 0.01 0.01
ln(Ct+1/Ct) consumption growth 1.00 0.07 0.98 1.00

Parameter estimates

β̂ factor of time preference 1.00 0.07 0.98 0.99
γ̂ coef. of relative risk aversion 3.73 29.37 9.25 3.64

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table A.8: C-CAPM simulation results (rare events - production economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM (conditional on no disasters) observed at quarterly frequency in the production economy with
rare events (cf. Section 3.2) for a parameterization as in column (1) in Table A.4; the bond return, the
equity return, the equity premium and consumption growth (all annualized); and the GMM estimates of
φ = (β, γ)⊤ with β = 0.98 and γ = 4 based on moments (15), and the estimated EE errors and RMSE (both
annualized). Simulated data is generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Results constant-saving-function, conditional (no disasters)
parameterization (1) Mean Std. dev. Mode Median

ebR EE error risky bond −4.62 0.65 −4.68 −4.61
ecX EE error excess return 4.64 0.17 4.68 4.64

RMSE root mean square error 4.64 0.35 4.62 4.63

Observed random variables

Rbt+1 bill return (gross) 6.42 0.39 6.43 6.42
Rct+1 equity return (gross) 11.21 0.40 11.35 11.20

Rct+1 −Rbt+1 equity premium 4.79 0.17 4.77 4.78
ln(Ct+1/Ct) consumption growth 2.19 0.24 2.09 2.19

Parameter estimates

β̂ factor of time preference 0.80 0.64 0.00 0.86
γ̂ coef. of relative risk aversion 474.36 442.44 175.00 327.02

êbR EE error risky bond −0.03 0.02 0.00 −0.04

êcX EE excess return 3.42 1.31 0.00 3.90

R̂MSE root mean square error 2.42 0.93 0.00 2.76
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Table A.9: C-CAPM simulation results (rare events - production economy)

The table reports the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard
C-CAPM (conditional on no disasters) observed at quarterly frequency in the production economy with
rare events (cf. Section 3.2) for a parameterization as in column (2) in Table A.4; the bond return, the
equity return, the equity premium and consumption growth (all annualized); and the GMM estimates of
φ = (β, γ)⊤ with β = 0.98 and γ = 4 based on moments (15), and the estimated EE errors and RMSE (both
annualized). Simulated data is generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Results constant-saving-function, conditional (no disasters)
parameterization (2) Mean Std. dev. Mode Median

ebR EE error risky bond −4.49 0.58 −4.39 −4.49
ecX EE error excess return 4.63 0.17 4.69 4.63

RMSE root mean square error 4.57 0.32 4.47 4.56

Observed random variables

Rbt+1 bill return (gross) 6.86 0.35 6.81 6.86
Rct+1 equity return (gross) 11.63 0.37 11.88 11.63

Rct+1 −Rbt+1 equity premium 4.78 0.18 4.83 4.78
ln(Ct+1/Ct) consumption growth 2.50 0.22 2.55 2.50

Parameter estimates

β̂ factor of time preference 0.88 0.87 0.00 0.57
γ̂ coef. of relative risk aversion 806.11 661.98 325.00 590.05

êbR EE error risky bond −0.03 0.02 0.00 −0.03

êcX EE excess return 2.82 1.45 0.00 3.31

R̂MSE root mean square error 1.99 1.03 0.00 2.34
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Table A.10: C-CAPM simulation results (long-run risk model)

The table reports the simulated Euler equation (EE) errors and RMSE∗ (both annualized) for the standard
C-CAPM observed at quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4)
for a parameterization as in column (1) in Table A.5; the bond return, the equity return, the equity premium
and consumption growth (all annualized); and the GMM estimates of φ = (β, γ)⊤ with β = 0.98 and γ = 10
based on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is
generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Results approximate solution unconditional
parameterization (1) Mean Std. dev. Mode Median

Rbt+1 − E(Rbt+1) pricing error bond 0.00 0.51 0.12 0.00
Rdt+1 − E(Rdt+1) pricing error risky asset 0.00 0.84 −0.09 −0.01

RMSE∗ root mean square error 0.61 0.43 0.25 0.51

Observed random variables

Rbt+1 bill return 2.58 0.51 2.67 2.58
Rdt+1 equity return 4.17 0.84 4.40 4.16

Rdt+1 −Rbt+1 equity premium 1.59 0.48 1.50 1.59
ln(Ct+1/Ct) consumption growth 1.76 0.85 1.65 1.76

Parameter estimates

β̂ factor of time preference 1.05 0.05 1.03 1.04
γ̂ coef. of relative risk aversion 21.81 6.95 19.35 21.46

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table A.11: C-CAPM simulation results (long-run risk model)

The table reports the simulated Euler equation (EE) errors and RMSE∗ (both annualized) for the standard
C-CAPM observed at quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4)
for a parameterization as in column (2) in Table A.5; the bond return, the equity return, the equity premium
and consumption growth (all annualized); and the GMM estimates of φ = (β, γ)⊤ with β = 0.97 and γ = 10
based on moments (15), and the estimated EE errors and RMSE (both annualized). Simulated data is
generated using 5,000 Monte Carlo sample paths, each of length 50 years.

Results approximate solution unconditional
parameterization (2) Mean Std. dev. Mode Median

Rbt+1 − E(Rbt+1) pricing error bond 0.00 0.46 −0.02 0.05
Rdt+1 − E(Rdt+1) pricing error risky asset 0.00 0.64 0.12 −0.01

RMSE∗ root mean square error 0.49 0.32 0.24 0.42

Observed random variables

Rbt+1 bill return 3.33 0.46 3.53 3.37
Rdt+1 equity return 4.71 0.64 4.74 4.70

Rdt+1 −Rbt+1 equity premium 1.38 0.52 1.10 1.33
ln(Ct+1/Ct) consumption growth 1.77 0.63 2.05 1.77

Parameter estimates

β̂ factor of time preference 1.06 0.05 1.04 1.05
γ̂ coef. of relative risk aversion 22.89 7.96 21.65 22.24

êbR EE error risky bond 0.00 0.00 0.00 0.00

êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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