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1 Introduction

Investors worldwide have delegated the investment of over $100 trillion to asset
management firms. These firms then turn the decision over how to invest the
money to portfolio managers, who have a principal-agent relationship with
investors. Portfolio managers are invariably paid based on how their fund
performs relative to a benchmark.1 The presence of benchmarks in compen-
sation contracts is important because benchmarks are a significant driver of
global capital flows and have an effect on the real economy. For example,
Calomiris, Larrain, Schmukler, and Williams (2022) document that emerging
market firms are able to cut their cost of funds by an astounding 1 percentage
point by issuing bonds eligible for inclusion in important international bench-
mark indices. We provide a tractable model of asset management in which
benchmarking arises endogenously. More importantly, we use our model to
assess the welfare implications of benchmarking and explore its unintended
consequences.

To study these issues, we embed an optimal-contracting problem in a
general-equilibrium setting. We show that when the fund managers incur
a private cost in managing portfolios, optimally designed contracts for the
managers involve benchmarking. Because of this private cost, managers un-
derinvest in the risky assets. Conditioning the managers’ compensation on the
performance of a benchmark portfolio partially protects them from risk and
thus boosts their incentives to invest. In general equilibrium, the use of such
incentive contracts creates a pecuniary externality through their effect on asset
prices. Benchmarking inflates asset prices and reduces expected returns. This
in turn reduces the marginal benefit of using incentive contracts for others.
We show that a constrained social planner, who internalizes this externality,
would opt for less incentive provision and less benchmarking.

Here is how our model works. Some agents in the economy—direct investors—
manage their own money and others—fund investors—delegate their invest-

1For example, Ma, Tang, and Gómez (2019) report that around 80% of U.S. mutual funds
explicitly base compensation on performance relative to a benchmark (usually a prospectus
benchmark such as the S&P 500, Russell 2000, etc.).
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ment choice to fund (or portfolio) managers. All agents are risk averse. Criti-
cally, the managers’ portfolios are unobservable to fund investors and the cost
of managing a portfolio is private. The managers are paid based on incentive
contracts designed by the fund investors.2 We focus on linear contracts, which
include a fixed salary, a fee for absolute performance, and potentially a fee for
performance relative to a benchmark.

We assume that the managers can potentially generate superior returns
(or “alpha”) relative to those of the direct investors through various sophisti-
cated strategies. These include lending securities, conserving on transactions
costs (e.g., from crossing trades in-house or by obtaining favorable quotes from
brokers) or providing liquidity (i.e., serving as a counterparty to liquidity de-
manders and earning a premium on such trades). While these activities aug-
ment returns, they are associated with a private cost for a portfolio manager.
We assume the costs are increasing in the size of the fund’s risky portfolio.
The simplest way to justify these assumptions is to appeal to the time costs
involved in the activities and to interpret the rising costs as reflecting the
additional time required for managing a larger fund/portfolio.

Fund investors design the manager’s compensation contracts to incentivize
the manager to take the risk associated with the sophisticated strategies. The
presence of the private cost calls for a contract that rewards the manager
based on fund performance and gives her a larger share of the returns than
if risk sharing were the only purpose of the contract. Because stock returns
are stochastic, rewarding performance exposes the manager to additional risk.
This risk, if unmitigated, means that the manager will underinvest. Adding a
benchmark to the contract partially protects the manager from this risk and
therefore will be used by fund investors to improve the manager’s incentives.

Our paper’s main contribution is analyzing the unintended welfare conse-
quences of benchmarking. When all fund investors use incentive contracts,
they change the total demand for assets. In particular, benchmarking leads

2We abstract from the asset management firm and assume that the firm acts in the
interest of the fund investors, so that effectively the fund investors directly control the
compensation arrangements for the portfolio managers. This is consistent with the fund
trustees having a fiduciary obligation to their investors.
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all managers to invest more in the assets that are compatible with the return-
augmenting strategies and in the assets that are included in their benchmark.
The managers’ demand boosts prices of these assets and lowers their expected
returns. In other words, benchmarking creates crowded trades.

Importantly, individual fund investors in our model take asset prices as
given and do not internalize the effects of contracts they design on equilibrium
prices. Crowded trades resulting from the contract-induced incentives are a
pecuniary externality. Because of the agency frictions, markets are incomplete,
so this pecuniary externality leads to an inefficiency. Specifically, the use of
benchmarking contracts by a group of investors reduces the effectiveness of
contracts designed by other investors through crowded trades. This happens
because rewarding performance implies that asset prices enter the fund man-
agers’ incentive constraints. Each manager still has to incur the full private
cost of managing assets but the benefits of doing so are reduced because of
the crowded trades.

In light of this, it is natural to ask how would the incentive contract cho-
sen by a social planner, who is subject to the same restrictions as individual
investors but recognizes the effect of contracts on prices, differ from the pri-
vately optimal one? We show that individual investors underestimate the cost
of incentive provision relative to the social planner, who internalizes the neg-
ative externality of incentive contracts. As a result, the planner opts for less
incentive provision. Specifically, we show that both the performance sensitiv-
ity (“skin in the game”) as well as the level of benchmarking are lower in the
socially optimal contract than in the privately optimal one. This ameliorates
the price pressure that portfolio managers exert and reduces the crowdedness
of trades.

Our model informs the debate over whether the costs of asset management
are excessive and whether returns delivered by the fund managers justify these
costs. We use the model to compare the managers’ costs and expected returns
under privately and socially optimal contracts. We find that, from the socially
optimal point of view, fund investors over-incentivize risk-taking so that man-
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agers invest too much at too high a cost.3 In the equilibrium with privately
optimal contracts, asset prices are higher and consequently expected per-share
returns are lower than those under socially optimal contracts. Key to these
implications is that, in contrast to fund investors, the planner internalizes the
pecuniary externality arising from crowded trades.

Finally, we investigate how benchmarks ought to be designed. We show
that both privately and socially optimal benchmarks put more weight on assets
for which portfolio management adds more value as well as on assets for which
incentive misalignment is most severe. The relative tilt in the weights, however,
is different in the privately and socially optimal benchmarks. For example, the
planner puts relatively less weight on assets with large costs compared to fund
investors. This is because the planner understands that contracts are less
effective at providing incentives than fund investors perceive, and is therefore
less willing to use benchmark weights for incentive provision.

The remainder of the paper is organized as follows. In the next section,
we review the related literature. Section 3 presents a simple version of the
model with a single risky asset. Section 4 considers a more general multi-asset
model. Section 5 considers the extensions to multiple types of funds and an
exogenously given benchmark. Section 6 concludes and outlines directions for
future research. Omitted proofs, derivations, and other extensions are in the
appendices.

2 Related Literature

Our work builds on the vast literature on optimal contracts with moral hazard.
In a seminal contribution, Holmstrom (1979) argues that including a signal
that is correlated with the output of the manager—in our case, the bench-
mark’s performance—in a contract is beneficial to the principal. Importantly,
in our paper the benefit of including the signal is endogenous through the
general-equilibrium effect on prices. To our knowledge, ours is the first paper

3While the cost is borne by the manager, it ultimately gets passed on to the fund
investor, who needs to compensate the manager enough to ensure her participation.
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that endogenizes the effectiveness of including the extra signal in the contract.
Holmstrom and Milgrom (1991) introduce a tractable contracting setting with
moral hazard, with which our model shares many similarities, and show that
increasing the agent’s share in the project’s output helps provide incentives. In
the context of delegated asset management though, giving the agent a larger
share of portfolio return encourages her to scale down the risk of the (un-
observable) portfolio by reducing risky asset holdings. Stoughton (1993) and
Admati and Pfleiderer (1997) show that the manager is able to completely
“undo” her steeper incentives to collect information on asset payoffs by such
scaling. We design a contract that overcomes this challenge and show that it
involves benchmarking. Another notable difference from the aforementioned
literature is that we embed optimal (linear) contracts in a general-equilibrium
setting and study interactions between contracts and equilibrium prices, and
the implications of these interactions on welfare.

Our work is also related to the literature in asset pricing and corporate
finance theory that explores the general-equilibrium implications of bench-
marking. Brennan (1993) shows that benchmarking leads to lower expected
returns on stocks included in the benchmark. In dynamic models, Cuoco and
Kaniel (2011) and Basak and Pavlova (2013) show that benchmarking pushes
up prices and lowers Sharpe ratios of stocks inside the benchmark. Basak
and Pavlova also show that benchmarking leads to excess volatility and ex-
cess co-movement of returns on these stocks. Kashyap, Kovrijnykh, Li, and
Pavlova (2021) focus on implications of benchmarking portfolio managers for
firms’ corporate decisions and demonstrate that firms in the benchmark have
a higher valuation for investment projects or merger targets. These papers
take the benchmarking contract of managers to be exogenous.

There are very few papers that study the asset pricing implications of
relative performance evaluation in asset management with optimal contracts.
Kapur and Timmermann (2005) analyze the effects of relative performance
evaluation on the equity premium. In their paper, managers have exogenously
superior information about assets compared to investors, and investors use
contracts purely for risk-sharing purposes. In Buffa, Vayanos, and Woolley
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(2014)4 and Cvitanic and Xing (2018), benchmarking helps reduce diversion
of cash flows by fund managers. Our rationale for benchmarking is to reward
activities that generate superior returns. Sockin and Xiaolan (2020) study
costly information acquisition by managers,5 and, like us, highlight the pecu-
niary externality that emerges because of the effect of contracts on equilibrium
prices. In contrast to us, they show that a constrained social planner opts for
more incentive provision and more benchmarking.

Our paper also relates to the literature on pecuniary externalities in com-
petitive equilibrium settings with incomplete markets.6 Lorenzoni (2008) stud-
ies a model of credit booms in which a pecuniary externality arises from the
combination of limited commitment and asset prices being determined in spot
markets. Decentralized equilibria feature over-borrowing relative to the con-
strained optimum. Both our setting and mechanism are very different, but
we share a similar prediction that asset prices in the decentralized equilib-
rium fall between those in the constrained and unconstrained optima. He and
Kondor (2016) study a model in which individual firms’ liquidity management
decisions generate investment waves. These investment waves are constrained
inefficient when future investment opportunities are noncontractible, and the

4In the published version, Buffa, Vayanos, and Woolley (forthcoming), constraints limit-
ing deviations from benchmarks guard against the possibility that unskilled managers choose
overly risky portfolios.

5See also Ozdenoren and Yuan (2017) who conduct a related analysis in the context
of an industry equilibrium, in a classical moral-hazard setting with many principal-agent
pairs. They show that benchmarking is privately optimal but it creates overinvestment and
excessive risk-taking at the industry level. Albuquerque, Cabral, and Guedes (2019) present
a related model of industry equilibrium, enriched further with strategic interactions among
firms in the industry, and show that benchmarking against peer performance induces agents
to take correlated actions. Huang, Qiu, and Yang (2020) analyze a model of delegated asset
management with asymmetric information and endogenous contracts (but without relative
performance) to study the effect of institutional investors on price informativeness. Un-
like us, they limit their analysis to privately optimal contracts and do not study welfare
implications. Donaldson and Piacentino (2018) propose a model in which a rationale for
benchmarking in managers’ contracts is to attract fund inflows. Dybvig, Farnsworth, and
Carpenter (2010) show that benchmarking emerges as optimal compensation in an environ-
ment where portfolio managers exert effort to improve the quality of a private signal about
future prices.

6This literature goes back to Hart (1975), Greenwald and Stiglitz (1986), and Geanako-
plos and Polemarchakis (1996).
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social and private value of liquidity differs. In their model, overinvestment
occurs during booms and underinvestment during recessions.

Gromb and Vayanos (2002) analyze a model in which competitive finan-
cially constrained arbitrageurs supply liquidity to the market, and fail to in-
ternalize the fact that their trading, in aggregate, affects prices. A social plan-
ner can achieve a Pareto improvement by either reducing or increasing the
arbitrageurs’ liquidity supply. Davila and Korinek (2018) highlight a distinc-
tion between “distributive externalities” that arise from incomplete insurance
markets and “collateral externalities” that arise from price-dependent finan-
cial constraints. The externality in our paper falls into the second category,
broadly defined, although in our case the inefficiency arises from the incen-
tive problem rather than financial constraints. Di Tella (2019) studies optimal
long-term contracts in a general-equilibrium model where financial interme-
diaries manage capital on behalf of households and can divert capital to sell
for private gains. He shows that, due to a pecuniary externality, competitive
equilibrium is not constrained efficient and the socially optimal allocation can
be implemented with a tax on asset holdings.7

Biais, Heider, and Hoerova (2021) analyze a model in which protection
buyers trade derivatives with protection sellers and there is moral hazard on
the side of protection sellers. In their model, although prices enter incentive
constraints, a pecuniary externality does not lead to constrained inefficiency, as
it does in our model, because investors can trade insurance against the risk of
fire sales. We would have a similar result if we allowed for fully state-contingent
contracts in our environment—see our discussion at the end of subsection 3.3.
In Acemoglu and Simsek (2012), firms trade off providing insurance to workers
and incentivizing them to exert effort. The authors show that, under certain
conditions, equilibrium prices can tighten incentive constraints. They mainly
focus on inefficient sharing of idiosyncratic risk. Instead, our focus is on the
inefficient use of an additional signal—return of the benchmark portfolio—in
the incentive contract.

7In a separate paper, Di Tella (2017) shows that there is another source of inefficiency
if only short-term contracts are allowed.

7



There is some empirical evidence that benchmarking creates crowded trades.
Lines (2016) observes that in times of high market volatility, portfolio tracking
error rises. This leads portfolio managers to rebalance their portfolios towards
benchmark stocks. He finds that this trading behavior leads to lower returns
for the rebalanced portfolios.

3 One-Asset Case

To illustrate our mechanism and main results in the simplest way, we first
present a simple version of our model with one risky asset. In the next section,
we analyze the more general, multi-asset model.

3.1 Investment Opportunities and Agents

Except for portfolio managers and their clients, our environment is standard.
There are two periods, t = 0, 1. Investment opportunities consist of a single
risky asset (a stock or the stock market) and one risk-free bond. The stock is
a claim to a cash flow D̃, realized at t = 1, where D̃ ∼ N(µ, σ2). The risk-free
bond pays an interest rate that is normalized to zero. There are x̄ > 0 shares
of the risky asset and the bond is in infinite net supply. The stock price is
denoted by p.

There is a continuum of agents of three types: direct investors, fund in-
vestors and fund managers. Direct investors manage their own portfolios.
Fund investors can only buy bonds themselves and hire the managers to trade
for them (by buying either stocks or bonds). Each manager works for one
fund investor, and is restricted to invest her personal wealth in the bond. The
fractions of direct investors and managers in the population are λD and λM , re-
spectively, and the total population is normalized to one so that λD+2λM = 1.

Each agent has a constant absolute risk aversion (CARA) utility function
over final wealth (or compensation in the case of the manager) W , U(W ) =
−e−γW , where γ > 0 is the coefficient of absolute risk aversion. Direct investors
and fund investors are endowed with xD−1 and xF−1 shares of the risky asset,
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respectively, where λDxD−1 + λMx
F
−1 = x̄.8

We do not model an agent’s choice to become a direct investor or a fund
investor—the fractions of different investors in the population are exogenous.
One could endogenize this choice, for example, by assuming heterogeneous
costs of participating in the asset market. In Remark 4 at the end of Section 4
we describe the additional considerations that arise in this kind of extension,
but we do not consider it here to maintain our focus on the central message
of the paper.

3.2 Value Added and Costs of Asset Management

For fund investors, delegating investment to a portfolio manager has costs and
benefits. The benefits are that managers can potentially outperform direct in-
vestors. This advantage arises from having set up return-augmenting activities
such as securities lending, providing liquidity by market making, or minimiz-
ing trade costs. In Appendix D.1, we analyze an alternative model in which
the managers have stock-picking ability that comes from an informational ad-
vantage. That model is more complicated, but we show that the mechanism
is the same as in the main model and the key results carry over.

In terms of the costs, delegation comes with an agency problem: the man-
ager’s portfolio choice is not contractible meaning that fund investors cannot
write contracts that condition the manager’s compensation directly on their
portfolio choice. Non-contractibility can occur, for example, if the fund in-
vestors do not observe the manager’s portfolio choice. This is a realistic as-
sumption because even when managers are required to disclose their portfolios
at particular points in time, their actual portfolios between the disclosure dates
typically differ from their reported portfolios (Kacperczyk, Sialm, and Zheng,
2008), and a fund investor cannot obtain detailed information on the man-
ager’s trades. Furthermore, the managers incur a private cost in managing a
portfolio. For example, managers must monitor market conditions to success-
fully lend shares. In Appendix D.2, we also investigate an extension where the

8Without loss of generality, we assume that the managers are not endowed with the
risky asset.
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private cost is related to effort that cannot be observed. We elaborate on the
interpretation of these benefits and costs in Appendix B.

We model the costs and benefits as follows. Throughout, we will work with
per-share rather than per-dollar returns. The return for a direct investor’s
portfolio x is given by x(D̃ − p). The fund manager’s return is

rx = x(∆ + D̃ − p) + ε, (1)

where ∆ ≥ 0 is the (exogenous) expected abnormal return and ε ∼ N(0, σε)
is a noise term. We will refer to the excess returns of x∆ + ε as “alpha.” The
manager incurs a private portfolio-management cost xψ, where ψ > 0 is the
exogenous cost per share.

There are several key ingredients that are crucial for our results. It is
essential for our mechanism that the manager’s portfolio is not contractible (or
unobservable), and the manager incurs a private cost of managing it (meaning
that this cost is borne by the manager and cannot be directly shared with the
fund investor through the contract). This cost will lead to a misalignment of
the fund investor’s and management’s preferences for the risky asset. If there
were no costs (or if they could be passed on to the fund investor), there would
be no incentive problem, and the results would be trivial.

The other key ingredient is the noise ε in the return-augmenting activities.9

It exposes the managers to additional risk in their compensation.10 While
the fund investor can partly shield the manager from the dividend risk by
benchmarking, this additional risk cannot be eliminated. As a result, contracts
will fail to achieve first best.11

Unlike ψ and ε, the variable ∆ is not essential for our results, and we
include it only for realism. If the managers could not outperform the direct

9One might wonder what happens of the noise is proportional to x (that is, the noise
term is εx instead of ε). This is a special case of the extension that we analyze in Appendix
D.2. The algebra is more involved in this case, but the main mechanism is the same.

10In this example, ε also ensures that the investors cannot infer the exact portfolio choice
of the manager from the observed return (as in Holmstrom and Milgrom, 1991). In the
multi-asset case, it is not possible to infer the portfolio even without the ε.

11We come back to the issue of why ε is needed in subsestion 3.6 following Lemma 2.
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investors, there would be no justification to hire them. Nonetheless, if we
ignore all the empirical evidence that suggests that asset manager can add
value and set ∆ = 0, the incentive problem and risk-sharing problems would
still be present, and all of our results would go through.

Finally, for simplicity, we assume that the fund’s abnormal return ∆ is
exogenous, which means we are ignoring market participants who would be on
the other side of the transaction. Presumably the other party would have an
abnormal return of −∆ per share. In addition, one might argue that we are
ignoring the effects of crowded trades on ∆. To formalize these considerations,
one needs to be more precise about the activity that generates ∆. Since we
attempt to capture several of them, in the body of the paper we abstract from
fully modeling any particular market. In Appendix D.3, we endogenize ∆ and
assume that it comes from securities lending. In this case, we show that when
we account for the short sellers and endogenize ∆, all our major insights carry
through.

3.3 Contracts

To provide incentives for the managers to invest in the risky asset and to gen-
erate alpha, the fund investors design compensation contracts. The managers
receive compensation w from fund investors. We assume that this compensa-
tion has three parts: the first is a linear payout based on absolute performance
of the manager’s portfolio x, a second part that depends on the performance
relative to a benchmark portfolio, and a third that is independent of perfor-
mance.12 The benchmark portfolio is one share of the risky asset. That is, the
manager’s compensation is given by

w = ârx + b(rx − rb) + c = arx − brb + c, (2)

12The third part captures features such as a fee linked to initial assets under management
or a fixed salary or any fixed costs.
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where rx is the performance of the manager’s portfolio defined in (1) and
rb = D̃− p is the performance of the benchmark portfolio.13 The contract for
a manager depends on three numbers (â, b, c)—or, equivalently, (a, b, c). We
refer to â as the sensitivity to absolute performance and b as the sensitivity to
relative performance. Our main analysis and the intuitions that follow will be
in terms of a rather than â. We refer to the variable a as the manager’s “skin
in the game.”14 The contract for a particular manager is optimally chosen by
the fund investor who employs her. As we mentioned earlier, the manager
is restricted to investing her personal wealth in the bond and so she cannot
“undo” her contract via trading in her personal account.15

We think of a manager’s contract as a compensation contract between a
portfolio manager and her investment-advisor firm (e.g., BlackRock, who we
assume is acting in the interests of the fund investors). The structure of the
contract in (2) is consistent with empirical evidence. For example, Ma, Tang,
and Gómez (2019) analyze mandatory disclosures by U.S. mutual funds and
find that around 80% of the funds explicitly base managers’ compensation on
performance relative to a benchmark (usually the prospectus benchmark, e.g.,
S&P 500, Russell 2000, etc.). Managers also have a fixed salary component,
but the fraction of fund managers whose entire compensation consists of only
fixed salary is very small.16

13In this one-asset case, we effectively normalize the benchmark portfolio to one share of
the risky asset. In the general model with multiple assets that we analyze in Section 4, the
benchmark portfolio will be a vector.

14We assume here that returns from dividends and return-augmenting activities are not
observed separately. In some cases, e.g., in the case of securities lending, it might be possible
to observe them separately. We illustrate in Appendix D.4 that our mechanism still applies
in that case.

15In practice, portfolio managers have a fiduciary duty to their investors. This precludes
them from taking actions that harm the investors, or engaging in any activity that creates
a conflict of interest between the manager and the fund investors. Compliance departments
at asset management firms attempt to deal with these problems by requiring pre-approval
of many types of trades by the manager or banning them altogether, and restricting when
trading can occur. A trade such as shorting a manager’s benchmark would be blocked by
these policies. (See U.S. Securities and Exchange Commission, 2004 for details.)

16The performance-based bonus exceeds the fixed salary for 68% of the funds in the Ma,
Tang, and Gómez (2019) sample, constituting more than 200% of fixed salary for 35% of
funds. In contrast, Ibert, Kaniel, Van Nieuwerburgh, and Vestman (2017) find surprisingly
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The important feature of the contract driving our results is that the con-
tract for the manager depends on the (per share) return, and hence the price
of the risky asset. In richer environments such as the model in Appendix D.1,
asset prices vary across states (or time), and it would be optimal to make the
contract depend on prices. Loosely speaking, if the fund investors were choos-
ing for themselves, they would opt to buy less of the stock when its price is
high. In delegating to the managers, the investors still want this consideration
to be there. So, this feature of our contract is very realistic.

The restriction to linear contracts warrants some discussion. First, linear
contracts make our model tractable and allow us to find optimal contracts
in closed form. The closed-form solutions show the reader exactly where the
various effects are coming from, and allow us to build intuition. However, our
mechanism extends beyond the linear contracts considered here. The central
results arise because the contracts raise the managers’ demand, so that they
will also drive up equilibrium stock prices. Individual investors do not account
for these price effects but a social planner would recognize them. Consequently,
a planner realizes that the price effects work against the incentive provision (as
long as the manager’s demand function is downward sloping) and will alter the
contracts accordingly. This mechanism does not depend on contract linearity,
and, intuitively, should be also present with other forms of contracts.

There is a subtle caveat, however, about the generality of the mechanism.
The mechanism requires contracts not being fully state contingent/flexible.
With fully state-contingent optimal contracts, the fund investors can effec-
tively eliminate the dependence of the manager’s incentive constraint on prices,
which would yield to a constrained efficient outcome.17 Nonetheless, our gen-

weak sensitivity of manager pay to performance for Swedish mutual funds.
17As we discussed in the literature review, this result is akin to the finding in Biais, Heider,

and Hoerova (2021), who show that pecuniary externality does not lead to constrained
inefficiency in their model because investors can trade insurance against the risk of fire
sales. The result is different from that in Di Tella (2019), who finds that even with fully
optimal contracts the decentralized equilibrium is constrained inefficient. The reason is that
in his model the private benefit of diverting investment returns explicitly depends on the
price. If we assumed that the private cost in our model includes the price of the risky
asset, i.e., equal to xpψ instead of xψ, then we would have the difference between privately
and socially optimal contracts even with fully optimal contracts. The analysis with fully
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eral mechanism would extend to environments with piecewise-linear contracts
(e.g., “bonus” contracts of the form w = max{arx − brb, 0}+ c) or to cases in
which contract parameters can differ across some but not all states.18

3.4 Direct Investors’ and Managers’ Problems

We now turn to the analysis of our model. We start by presenting max-
imization problems of direct investors and fund managers, followed by the
maximization problem of fund investors in the next subsection.

At t = 0, each direct investor chooses the amount of stock, x, and risk-free
bond holdings to maximize his expected utility −Ee−γW . Since his return on
the portfolio is x(D̃−p), the resulting time-1 wealth isW = xD−1p+x(D̃−p). It
is well known that with the CARA utility function and normal returns, a direct
investor’s maximization problem is equivalent to the following mean-variance
optimization: maxx x(µ− p)− γx2σ2/2.

Next, consider the problem of a portfolio manager. Each manager chooses a
level of stock x and the risk-free bond holdings to maximize −E exp{−γ[arx−
brb + c − ψx]}, where the quantity inside the square brackets is her compen-
sation net of the private cost. This maximization problem is equivalent to the
following mean-variance optimization:

max
x

ax(∆− ψ/a+ µ− p)− b(µ− p) + c− γ

2
[
(ax− b)2σ2 + a2σ2

ε

]
.

Note that the manager receives a fraction a of the per-share abnormal return
on the assets, ∆, but pays the entire cost ψ per share. (We later show that
a < 1.)

Both the direct investors and managers take asset prices as given. Lemma 1
reports the optimal portfolio choices of the direct investors and managers aris-
ing from their optimizations, and the market-clearing asset price (for a given

state-contingent contracts when the private cost does not and does depend on the price is
available from the authors upon request.

18The analysis of a discrete-state example with piecewise linear contracts, as well as the
numerical analysis with bonus contracts (where we show numerically that our results hold)
are available from the authors upon request.
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contract) arising from the market-clearing condition λMxM + λDx
D = x̄.19

Lemma 1 (Portfolio Choices and Market-Clearing Price). For a given
a contract (a, b, c), (i) the direct investors’ and managers’ optimal portfolio
choices are as follows:

xD = µ− p
γσ2 , (3)

xM = ∆− ψ/a+ µ− p
aγσ2 + b

a
= xD

aγ
+ ∆− ψ/a

aγσ2 + b

a
; (4)

(ii) the market-clearing price of the risky asset is

p = µ− γσ2Λ
(
x̄− λM

b

a

)
+ ΛλM

a

(
∆− ψ

a

)
, (5)

where Λ ≡ [λM/a+ λD]−1 modifies the market’s effective risk aversion.

A direct investor’s portfolio is the standard mean-variance portfolio, scaled
by his risk aversion γ. A manager’s portfolio choice differs from that of a di-
rect investor in three respects. First the manager holds the same scaled mean-
variance portfolio, but because she only receives a of any performance that she
generates, she adjusts her holdings by 1/a. Second, because managers have
access to return-augmenting strategies, they perceive the mean-variance trade-
off differently from the direct investors and tilt their mean-variance portfolios
to try to produce alpha. Consistent with this result, Johnson and Weitzner
(2019) report that fund managers’ portfolios in their sample overweight assets
with high securities-lending fees. Finally, because the manager’s compensation
is exposed to fluctuations in the benchmark, she holds a hedging portfolio that
is (in this case perfectly) correlated with the benchmark, i.e., the benchmark
itself.20 The split between the mean-variance portfolio and the benchmark is

19We define the equilibrium at the end of subsection 3.5 after we introduce the fund
investor’s problem.

20This implication is very general, and we share it with other models that analyzed
benchmarking, both in two-period and multi-period economies and for other investor pref-
erences specifications. This result first appeared in Brennan (1993) in a two-period model.
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governed by the strength of the relative-performance incentives, captured by
b. The higher the b, the closer the manager’s portfolio to the benchmark.

Because contracts change the managers’ demand functions, the equilibrium
asset price will depend on these contracts. Benchmarking pushes up the price,
thus lowering the expected returns. Unlike the social planner, individual fund
investors take prices as given and do not account for this pecuniary externality.
We turn to the fund investors’ problem next.

3.5 Fund Investors’ Problem

Each fund investor chooses a contract (a, b, c) and portfolio x = xM to maxi-
mize his expected utility subject to the manager’s participation and incentive
constraints. The latter is the manager’s first-order condition (4), capturing
the fact that the portfolio x is the manager’s private choice.21

To write the fund investor’s problem formally, it is convenient to express
payoffs in terms of the following variables:

y = ax− b, z = x− y.

These are the effective allocations of asset holdings to the manager and fund
investor, respectively. Then the fund investor’s and manager’s utilities (in the
mean-variance form) can be written as follows:

UF

(
a,
b

a
, c, y, p

)
= x(1− a)∆ + z(µ− p)− γ

2
[
z2σ2 + (1− a)2σ2

ε

]
− c+ xF−1p,

UM

(
a,
b

a
, c, y, p

)
= x(a∆− ψ) + y(µ− p)− γ

2
[
y2σ2 + a2σ2

ε

]
+ c,

Cuoco and Kaniel (2011) and Basak and Pavlova (2013), among others, obtain it in dynamic
models with different preferences.

21We show in the proof of Lemma 1 that the manager’s second-order condition is satisfied,
and thus the first-order approach is valid.
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where x and z are given by

x = y

a
+ b

a
,

z =
(1
a
− 1

)
y + b

a
=
(1
a
− 1

) ∆− ψ/a+ µ− p
γσ2 + b

a
. (6)

Then the fund investor’s problem can then be written as follows:22

max
a,b/a,c,y

UF

s.t. UM ≥ u0, (7)

y = ∆− ψ/a+ µ− p
γσ2 . (8)

Constraint (7) is the manager’s participation constraint, where u0 is (the mean-
variance equivalent of) the value of manager’s outside option.23 Equation (8)
is the manager’s (modified) incentive constraint.

An equilibrium with privately optimal contracts consists of the contract,
risky asset holdings by direct investors and fund managers, and the stock
price such that the agents solve their corresponding problems and the stock
market clears. Appendix A contains the formal definition. We characterize
this equilibrium in the next subsection.

3.6 Privately Optimal Contracts

As a point of reference, consider the first best where the manager’s portfolio
choice is observable and contractible. The first best involves efficient risk
sharing between the (equally risk-averse) fund investor and manager, and the

22The formulation of the fund investor’s problem in terms of the exponential utilities
(rather than in the mean-variance form) can be found in Appendix A.

23We do not model explicitly what this outside option is, as it does not matter for our
main results. It can be exogenous, or it can be endogenized. Notice also that because
of the contract’s constant component c, in the mean-variance formulation utility becomes
transferable, and the fund investor effectively maximizes the total utility of the fund investor
and the manager subject to the manager’s incentive constraint. The manager’s participation
constraint is then trivially satisfied by adjusting the constant c.
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contract that implements it is a = 1/2 and b = 0.24

However, if under efficient risk sharing the manager chose the portfolio
privately, she would underinvest in the risky asset. A higher a reduces the
manager’s effective cost ψ/a, which increases her demand for risky assets.
However, a higher a also exposes the manager to more risk, which makes
her scale down xM , as can be seen in the denominator(s) of (4). Thus the
use of performance pay creates a tension between incentive provision and risk
sharing. The use of benchmarking, alleviates this tension by mitigating the
adverse effect of a. Benchmarking shields the manager from risk by reducing
variance in her compensation for a given portfolio choice.25 As a result, (for
the same a) the manager invests more. In what follows, we will consider how
the fund investor will optimally choose the levels of a and b.

Notice that the fund investor fully internalizes the manager’s cost of man-
aging the fund.26 But since the manager bears the cost privately and only
receives fraction a of the return, for her the effective cost is higher, which is
why ψ/a appears in (8). The difference between the full social cost and the
cost perceived by the manager, ψ/a and ψ will be play an important role in
the tradeoff between risk sharing and incentive provision.

First, consider the fund investor’s optimal choice of relative performance
in the contract, b. Notice that b enters into the fund investor’s and manager’s
problems only though b/a. The first-order condition with respect to b/a is
given by27

∂(UF + UM)
∂(b/a) = ∆− ψ + µ− p− γσ2z = 0. (9)

This condition captures the fact that an increase in b/a makes the manager
invest more in the risky stock. Therefore, the optimal level of b will be the one

24See Lemma 7 in Appendix A for the formal analysis.
25By reducing the manager’s risk exposure, benchmarking makes it cheaper for the fund

investor to implement any particular portfolio choice.
26Formally, this can be seen by taking the first-order condition with respect to c, which

implies that the Lagrange multiplier on the participation constraint equals one.
27We show in Lemma 9 in Appendix A that the second-order conditions hold in both

privately and socially optimal cases.
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that balances a marginal increase in the mean of the total expected surplus,
∆− ψ + µ− p, with the marginal increase in the variance, σ2z.

Substituting out z using (6), equation (9) can be rewritten as28

γσ2b = (2a− 1) (∆− ψ + µ− p) + (1− a)
(1
a
− 1

)
ψ. (10)

The two terms on the right-hand side of equation (10) capture two consider-
ations that fund investors have in mind when designing the benchmark. Note
two extreme cases: a = 1/2 when efficient risk-sharing is achieved, and a = 1
when the private and social costs are aligned. As we will show later, in the
optimal contract a ∈ (1/2, 1), so both terms on the right-hand side of (10)
are positive. The first term, (2a− 1) (∆− ψ + µ− p), arises because the fund
investor recognizes that benchmarking increases the total expected surplus net
of cost. Since a > 1/2, the manager is exposed to more risk than is efficient,
so the fund investor uses benchmarking to make her invest more. The second
term, (1−a)(1/a−1)ψ, reflects the incentive-provision role of b. By protecting
the manager from risk, benchmarking provides her with incentives to invest
more.

Notice that (10) depends on the equilibrium price p. When choosing b,
the fund investor takes p as given. In equilibrium, however, p depends on the
contract as given by equation (5). Then, to find the equilibrium value of b (the
fixed point), we need to substitute (5) in (10) and solve it for b. This leads us
to equation (13) in Lemma 2 below, which presents b only in terms of model
parameters and a, which we will now solve for.

28See the proof of Lemma 2′ in Appendix A for the derivations.
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The first-order condition with respect to a is given by29

0 = ∂(UF + UM)
∂a

+ ∂UF

∂y

∂y

∂a

= −(2a− 1)γσ2
ε −

(
∆− ψ + µ− p− γσ2z

)
︸ ︷︷ ︸

=0 by FOC wrt b/a, (9)

y

a2 + 1− a
a

(
∆ + µ− p− γσ2z

)
︸ ︷︷ ︸

=ψ by FOC wrt b/a, (9)

∂y

∂a

= −(2a− 1)γσ2
ε + (1− a) ψ2

γσ2a3 , (11)

where the last equality uses the first-order condition with respect to b/a, (9),
and ∂y/∂a = ψ/(γσ2a2). First, notice the appearance of ∂y/∂a. It captures
how a marginal increase in a affects the manager’s incentive to invest in the
risky asset. This is the way that the contract creates incentives. Second,
several terms drop out because b/a is chosen optimally, leaving only a term
that is proportional to σ2

ε . The cancellation comes because the optimal level of
benchmarking already optimally shares the dividend risk, so all that remains
to be shared is the extra risk from return-augmenting activities.

Notice that unlike in (10), the incentive-provision term and the risk-sharing
term have different signs. This means that there is a tradeoff between incentive
provision and risk sharing. A higher a is beneficial as it provides incentives
for alpha-production, but is also costly because it exposes the manager to too
much risk.

The following lemma summarizes the closed-form expressions for the equi-
librium contract, as well as the expressions for the equilibrium price and the
fund’s risky-asset holdings:

Lemma 2. In the equilibrium with privately optimal contracts,
(i) a∗ and b∗ solve

0 = (1− a∗) ψ2

γσ2a∗3
− (2a∗ − 1)γσ2

ε , (12)

b∗ = (2a∗ − 1)
[
x̄+ λD

γσ2 (∆− ψ)
]

+ (1− a∗)
[

1
a∗
−
(
λM
a∗

+ λD

)]
ψ

γσ2 , (13)

29See the proof of Lemma 2′ in Appendix A for derivations.
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(ii) the asset price is

p∗ = µ− γσ2x̄+ λM

(
2∆− ψ − ψ

a∗

)
, (14)

and each fund’s portfolio is

xM∗ = 2x̄+ λD
γσ2

(
2∆− ψ − ψ

a∗

)
. (15)

Notice that there is a recursive structure to these conditions. The expres-
sion in (12) does not depend on b∗ and is a function of only a∗ and the model
parameters.30 Given a∗, (13), (14), and (15) deliver the expressions for b∗, p∗,
and xM∗, respectively.

As we state in part (i) of Proposition 1, the equilibrium level a∗ is strictly
between 1/2 and 1. It is worth pointing out that as σ2

ε goes to zero, a∗

approaches 1, and the allocation approaches the first-best one (see Lemma 7
in Appendix A.) Indeed, it is crucial for our results that the fund investor does
not “sell the project” to the manager, i.e., a∗ < 1. As an alternative to the
assumption of σ2

ε > 0, there are other modeling choices that would ensure that
a∗ < 1, for example, a lower-bound on c, the constant part of the contract.

Let us briefly comment on the expression for the equilibrium prices given
by (14). Absent fund managers, the equilibrium prices would be p = µ−γσ2x̄.
The last term in (14) means that prices reflect the managers’ extra demand
associated with their return-augmenting activities. Notice that the term in
parentheses is a sum of ∆ − ψ and ∆ − ψ/a, which are the (marginal) extra
expected returns net of costs as perceived by the fund investors and by the
managers, respectively. Similarly, the equilibrium asset holdings of managers
in (15) are higher when the opportunities for alpha-production are better.
Notice that managers hold exactly 2x̄ when λD = 0. We will discuss this
special case further in subsection 3.7.

30Equation (12) has two roots, one positive and one negative. The negative root can
be ruled out by the manager’s second-order condition, see the proofs of Lemma 1′ and
Proposition 1′ (i).
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As long as x̄ + λD(∆ − ψ)/(γσ2) > 0, all the terms on the right-hand
side of (13) are positive. This condition is satisfied either if ∆ − ψ > 0 (the
expected abnormal return exceeds the cost of managing the portfolio), or if
the net supply of the stock x̄ is large enough. This brings us to our first main
result.

Proposition 1 (Benchmarking is Optimal). Consider the equilibrium with
privately optimal contracts.
(i) The equilibrium value of the “skin in the game” satisfies a∗ ∈ (1/2, 1).
(ii) Suppose that x̄+ λD(∆−ψ)/(γσ2) > 0. Then there is benchmarking, that
is, b∗ > 0.

Part (ii) of Proposition 1 is essentially a version of Holmstrom’s (1979)
famous sufficient-statistic result—the use of an additional signal (in this case,
the benchmark return) helps the contract designer provide incentives to the
manager in a more effective way. While Holmstrom’s result suggests that b∗ is
different from zero in general, provided x̄+ λD(∆− ψ)/(γσ2) > 0 we can say
b∗ is strictly positive, which is the relevant case given this application.

This proposition helps us understand why benchmarking in the asset man-
agement industry is so pervasive. Benchmarking is useful to fund investors be-
cause it incentivizes the manager to engage more in risky return-augmenting
activities by partially protecting her from risk. In the language of the as-
set management industry, benchmarked managers are being protected from
“beta” (i.e., the fluctuations in the return of the benchmark portfolio) while
being rewarded for “alpha.”

We wrap up this subsection by stating some comparative-statics results:

Lemma 3 (Comparative Statics). Consider the equilibrium with privately
optimal contracts.
(i) If the cost of managing the fund portfolio, ψ, is higher, then a∗ is higher
and p∗ and xM∗ are lower.
(ii) If the expected excess return, ∆, is higher, then b∗, p∗ and xM∗ are higher.
(iii) If the extra risk associated with producing excess returns, σ2

ε is higher,
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then a∗, p∗ and xM∗ are lower.31

These results are intuitive. The higher the ψ, the more costly it is to
incentivize the manager. The fund investor will react to an increase in the
cost by giving the manager a larger share of the return. With a higher cost
(and despite a higher a, since ψ/a∗ is still increasing in ψ), the manager will
invest less in the risky asset, leading to a lower stock price. On the other
hand, the higher the extra risk associated with producing excess returns, σ2

ε ,
the more important is the risk sharing. The fund investor will choose a lower a
(closer to 1/2), giving the manager lower incentives to invest in the risky asset,
again leading to lower xM∗ and p∗. Finally, when ∆ increases, the abnormal
return is higher. As a result, the fund investors use more benchmarking to
shield the managers from risk, so that the managers invest more in the risky
asset.

3.7 Socially Optimal Contracts

Fund investors design contracts to influence the manager’s demand for risky
assets. Through the collective demand of the managers, contracts influence
equilibrium asset prices, as given by (5). Prices then affect the marginal
cost/marginal benefit tradeoff of contracts for all fund investors. Since fund
investors take prices as given, they do not internalize how their choices of
contracts (once aggregated) change the effectiveness of other fund investors’
contracts. In other words, fund investors impose an externality on each other
through their use of contracts. In this subsection, we ask what contract a plan-
ner, who is subject to the same restrictions as fund investors, would choose to
internalize this externality.

We define the problem of a constrained social planner as follows. The plan-
ner maximizes the weighted average of fund investors’ and direct investors’
utilities subject to the participation and incentive constraints of the man-
agers, as well as the constraint that direct investors choose their portfolios

31Notice that the effects of ψ and σ2
ε on b∗ are ambiguous.
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themselves.32 As before, this problem can be equivalently rewritten in terms
of mean-variance preferences.33 Define UD = xD−1p + xD(µ − p) − γxD2σ2/2.
Then the social planner’s problem is

max
a,b/a,c,y,xD

ωFU
F + ωDU

D

subject to (3), (7), and (8).
The social planner’s first-order condition with respect to b/a is

0 =
[
ωF

(
xF−1 − xM

)
+ ωD

(
xD−1 − xD

)] ∂p

∂(b/a)︸ ︷︷ ︸
distributive pecuniary externality

+ ωF

 ∂(UF + UM)
∂(b/a)︸ ︷︷ ︸

private FOC

+ ∂UF

∂y

∂y

∂p

∂p

∂(b/a)︸ ︷︷ ︸
contracting

pecuniary externality

. (16)

The terms in the first line of (16) capture what Davila and Korinek (2018)
call “distributive effects” or “distributive pecuniary externality.” Depending
on the initial endowments and the Pareto weights, the social planner has in-
centives to use benchmarking to move prices so as to benefit one or the other
party based on this distributive motive. We discuss the distributive effects in
Remark 1 at the end of the next section. Our focus is on the “contracting pecu-
niary externality” that acts through the prices entering the manager’s incentive
constraint. To isolate the planner’s motive to correct the contracting exter-
nality from the distributive motive, we want to neutralize the latter. To do
this, we set the Pareto weights equal to the population weights, ωF = λM and
ωD = λD.34 Then by market clearing, ωF

(
xF−1 − xM

)
+ ωD

(
xD−1 − xD

)
= 0,

32Equivalently, instead of imposing the manager’s participation constraint, her utility can
be included in the planner’s objective function with a Pareto weight ωM . For the transfer
c to be finite, we must have ωM = ωF . This is analogous to noticing that the Lagrange
multiplier on the participation constraint, which effectively acts as the Pareto weight on the
manager, equals ωF .

33We provide the original formulation in terms of exponential utilities in Appendix A.
34Choosing Pareto weights to cancel out the distributive effects is equivalent to allowing

the social planner to use transfers for any Pareto weights. The planner would then use
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so the term in the first line of (16) is zero. (See Davila and Korinek, 2018 for
further discussion.)

Rewriting the term in the second line of (16) yields

0 =
(
∆− ψ + µ− p− γσ2z

) ∂y

∂(b/a)︸ ︷︷ ︸
=1︸ ︷︷ ︸

private FOC

+ 1− a
a

(
∆ + µ− p− γσ2z

) ∂y
∂p

∂p

∂(b/a)︸ ︷︷ ︸
contracting pecuniary externality

.

(17)

Compare (17) with the first-order condition with respect to b/a in the private
case, (9). The first term in (17) is exactly (9). The second term in (17)
captures the contracting pecuniary externality that the planner is trying to
correct and that the private agents ignore.

Consider the term [∂y/∂p][∂p/∂(b/a)]. The term ∂y/∂p = −1/(γσ2) cap-
tures the fact that the manager’s demand function is downward sloping. The
term ∂p/∂(b/a) = γσ2ΛλM reflects the fact that the higher the value b/a collec-
tively used by all fund investors, the more crowded are trades, and the higher
is the stock price. The product of the two, [∂y/∂p][∂p/∂(b/a)] = −ΛλM =
−λM/(λM/a+λD) captures the fact that the general equilibrium effect of con-
tracts on prices reduces the effectiveness of b/a in incentivizing the manager
to hold more of the risky asset. Hence (17) becomes

(
∆ + µ− p− γσ2z

) [
1− (1− a)λM/a

λM/a+ λD

]
− ψ = 0,

or

∆− λM/a+ λD
λM + λD

ψ︸ ︷︷ ︸
cost from the

planner’s perspective

+ µ− p− γσ2z = 0. (18)

Similar to the fund investors, the planner trades off the benefits and costs
of inducing the agent to invest in the risky asset. Fund investors think of

transfers to equate the marginal utilities (weighted by Pareto weights) of different agents.
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the benefit as the usual mean-variance consideration given by (∆ + µ − p −
γσ2z), and the cost as ψ. For the planner, the benefit is smaller than for the
fund investors, because she realizes that benchmarking inflates prices and thus
reduces expected returns. Put differently, due to this crowded-trades effect, the
cost is higher for the same units of benefit: the cost is (λM/a+λD)/(λM+λD)ψ
in (18) vs. ψ in (9). (This difference in the perceived costs will show up in
our further comparisons between the socially and privately optimal contracts.)
So, from the planner’s point of view, incentive provision is less beneficial/more
expensive, which, as we will see, will make her do less of it.

Substituting for z, we obtain the planner’s counterpart to equation (10):

γσ2b = (2a− 1)
[
∆− λM/a+ λD

λM + λD
ψ + µ− p

]
+ (1− a)

[
1
a
− λM/a+ λD

λM + λD

]
ψ.

(19)

Compared to (10), the cost ψ is again replaced with (λM/a+λD)/(λM +λD)ψ.
Finally, substituting in the equilibrium price, (5), yields the fixed-point value
of b that depends only on the model parameters, as presented in equation (22)
in Lemma 4 below.

Next, consider the planner’s first-order condition with respect to a:

0 = ∂(UF + UM)
∂a

+ ∂UF

∂y

∂y
∂a

+ ∂y

∂p

∂p

∂a︸ ︷︷ ︸
contracting
externality



= − (2a− 1)γσ2
ε − (∆− ψ + µ− p− γΣz) y

a2

+ 1− a
a

(∆ + µ− p− γΣz)
[
∂y

∂a
+ ∂y

∂p

∂p

∂a

]
,

= − (2a− 1)γσ2
ε + 1− a

a

λM/a+ λD
λM + λD

ψ

[
∂y

∂a
+ ∂y

∂p

∂p

∂a
+ y

a2
∂y

∂p

∂p

∂(bθ/a)

]
,

where the last equality follows from (17). After some algebra (see the proof of
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Lemma 4′ in Appendix A) this condition can be written as follows:

−(2a− 1)γσ2
ε + (1− a) ψ2

γσ2a3
λD

λM + λD
= 0. (20)

Compare this equation to its analog in the case with privately optimal con-
tracts, (11). Notice that the benefit of incentive provision captured by the
first term in (20) is smaller than the corresponding term in (11). As a result,
the planner will choose a lower a than fund investors will. We will formalize
this result later in Proposition 2.

The following lemma presents the resulting expressions for the equilibrium
contract and prices in closed form.35

Lemma 4. In the equilibrium with socially optimal contracts,
(i) a∗∗ and b∗∗ solve36

0 = (1− a∗∗) ψ2

γσ2a∗∗3
λD

λM + λD
− (2a∗∗ − 1)γσ2

ε , (21)

b∗∗ = (2a∗∗ − 1)
[
x̄+ λD

γσ2 (∆− ψ)
]

+ (1− a∗∗)
[

1
a∗∗
− λM/a

∗∗ + λD
λM + λD

]
ψ

γσ2 ,

(22)

(ii) the asset price is

p∗∗ = µ− γσ2x̄+ λM

(
2∆− λM/a

∗∗ + λD
λM + λD

ψ − ψ

a∗∗

)
, (23)

and each fund’s portfolio is

xM∗∗ = 2x̄+ λD
γσ2

(
2∆− λM/a

∗∗ + λD
λM + λD

ψ − ψ

a∗∗

)
. (24)

Equations (21)−(24) are the analogs of (12)−(15) and have the same recur-
sive structure. As expected, the two sets of equations coincide when λM = 0,

35See Appendix A for the formal definition of the equilibrium with socially optimal con-
tracts.

36From (47), 1/2 ≤ a∗∗ < 1, where the first inequality is strict so long as λD > 0.
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and hence there is no externality. But so long as there are managers, the
socially and privately optimal contracts are different. Proposition 2 below
reveals how exactly they compare to each other.

We are now ready to present the central result of the paper.

Proposition 2 (Socially vs. Privately Optimal Contracts). Compared
to the privately optimal contract, the socially optimal contract involves
(i) less “skin in the game,” that is, a∗∗ < a∗;
(ii) less benchmarking, that is, b∗∗ < b∗, if x̄+ λD(∆− ψ)/(γσ2) > 0.37

As we have seen in our analysis, the use of contracts inflates prices and
thus reduces the marginal benefit of incentive provision for everyone else. The
social planner internalizes this effect, and opts for less incentive provision than
fund investors.

As a special case that helps make the point very clearly, suppose there
are no direct investors, λD = 0. In this case, each fund will hold exactly
2x̄ shares and the total alpha in the economy is fixed, equal to 2x̄∆. The
planner understands that incentive provision is unnecessary in this case, so
there is no tradeoff between incentive provision and risk sharing. Indeed, by
substituting λD = 0 into (21)−(22), it immediately follows that the socially
optimal contract is a = 1/2 and b = 0, which coincides with the first-best
one (see Lemma 7 in Appendix A). In contrast, the fund investors do not
appreciate the fact that, in equilibrium, their contracts will not help them
generate higher returns, and use contracts with a > 1/2 and b > 0, as can be
seen from (12)−(13).

To further emphasize that benchmarking is crucial for the comparison be-
tween privately and socially optimal contracts, consider a case where bench-
marking is exogenously set to zero, b = 0. In this case, all incentive provision
and risk sharing has to be done through a. As we discussed earlier, an increase
in a has two opposing effects on the managers’ demands and hence prices. It
can be shown that with b = 0 the comparison between a∗ and a∗∗ is ambigu-
ous. Intuitively, both the marginal benefit of a (incentive provision) as well

37We also show in the proof of Proposition 2′ that b∗∗/a∗∗ < b∗/a∗.
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as its marginal cost (exposing the manager to more risk) are lower for the
social planner who internalizes the effect of a on prices. Depending on which
reduction is bigger, the planner might choose a higher or a lower a than the
fund investors do. Thus, only because of benchmarking (b 6= 0) can we be sure
of the direction of the externality and are able to say that privately optimal
contracts deliver excessive incentive provision.

We now show that excessive incentive provision and excessive benchmark-
ing in private contracts give rise to crowded trades and excessive costs.

Proposition 3 (Crowded Trades and Excessive Costs of Asset Man-
agement). Compared to the equilibrium with privately optimal contracts, in
the equilibrium with socially optimal contracts
(i) the asset price is lower, p∗∗ < p∗;
(ii) the fund’s risky asset holdings are lower, xM∗∗ < xM∗, and the managers’
costs are lower, ψxM∗∗ < ψxM∗.

As Proposition 3 shows, excessive use of incentive contracts by fund in-
vestors inflates prices and reduces returns per share. In addition, the man-
agers invest too much in the stock market and the costs of asset management
are excessively high. Our model thus contributes to the debate on whether
costs of asset management are excessive and whether returns delivered by the
managers justify these costs.

4 General Model

We now analyze a more general version of the model that allows for multiple
risky assets. In addition to showing that all results in the one-risky-asset case
extend to the case with multiple risky assets, we will also explore how the
benchmark portfolio is chosen optimally.

We begin by introducing the notation for the multi-asset version of the
model.
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4.1 Environment

We now assume that there are N risky assets, which are claims to cash flows
D̃, realized at t = 1, where D̃ ∼ N(µ,Σ). The variables D̃ and µ are N × 1
vectors and Σ is an invertible symmetric, positive-definite N ×N matrix. The
shares of each of the risky assets is in fixed supply, that we denote by x̄ > 0
shares, where x̄ is an N × 1 vector. Let p, an N × 1 vector, denote the price
of the assets. (The single bond remains in infinite net supply and the interest
rate is again normalized to be zero.) The agents have the same CARA utility
function as in the one-asset case. The direct and fund investors endowments
at time −1 are xj−1 shares, j ∈ {D,F}, where λDxD−1 + λMx

F
−1 = x̄.

The return for a direct investor’s portfolio x, an N ×1 vector, is now given
by x>(D̃− p). The manager’s returns are now rx = x>(∆ + D̃− p) + ε, where
∆ ≥ 0 is an exogenous N × 1 vector and ε ∼ N(0, σε) is a (scalar) noise term.
The manager incurs a private portfolio-management cost x>ψ, where ψ > 0 is
an exogenous N × 1 vector.

The managers compensation, w, is given by

w = ârx + b(rx − rb) + c = arx − brb + c, (25)

where rb = θ>(D̃ − p) is the performance of the benchmark portfolio θ. The
benchmark portfolio θ is an N × 1 vector, and we normalize it so that its
components (benchmark weights) sum up to one: ∑i θi = 1.38 The contract
for a manager is (â, b, c, θ)—or, equivalently, (a, b, c, θ)—where â (or a), b, and
c are scalars and they have the same interpretation as in the one-asset case.

4.2 Investors’ and Managers’ problems

The direct investor’s and the manager’s problems in the multi-asset case are
straightforward extensions of those in the one-asset case: maxx x>(µ − p) −

38All of our expressions will be in terms of bθ, and hence b and θ are not separately
identified. We use the normalization to state the results separately for b and θ, which will
be interesting in some cases.
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γx>Σx/2 and

max
x

ax>(∆− ψ/a+ µ− p)− bθ>(µ− p) + c− γ

2
[
(ax− bθ)>Σ(ax− bθ) + a2σ2

ε

]
.

Lemma 1′ is the analog of Lemma 1 in the one-asset case:

Lemma 1′ (Portfolio Choices and Market-Clearing Prices). For a given
contract (a, b, θ, c), (i) the direct investors’ and managers’ optimal portfolio
choices are as follows:

xD = Σ−1 µ− p
γ

, (26)

xM = Σ−1 ∆− ψ/a+ µ− p
aγ

+ bθ

a
; (27)

(ii) the asset prices are

p = µ− γΣΛ
(
x̄− λM

bθ

a

)
+ ΛλM

a

(
∆− ψ

a

)
. (28)

The manager’s portfolio differs from the direct investors in the same three
ways as in the one-asset case (for the same reasons). In general case, where
it is possible that the ψ’s and ∆’s can differ across assets, it is clear that the
manager is aiming to buy more of the assets where the net-of-cost returns are
higher.

In addition to a, b, and c, now each fund investor also chooses the bench-
mark portfolio θ. The fund investor’s problem is as follows:

max
a,bθ/a,c,y

UF

s.t. UM ≥ u0, (29)

y = Σ−1 ∆− ψ/a+ µ− p
γ

. (30)
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where

UF = x>(1− a)∆ + z>(µ− p)− γ

2
[
z>Σz + (1− a)2σ2

ε

]
− c+

(
xF−1

)>
p,

UM = x>(a∆− ψ) + y>(µ− p)− γ

2
[
y>Σy + a2σ2

ε

]
+ c,

and x = y/a+ bθ/a and z = (1/a− 1)y + bθ/a.

4.3 Privately Optimal Contracts

The difference with the one-asset case is that there are now N first-order
conditions, one for each bθi, i = 1, ..., N . In a vector form, they are

∂(UF + UM)
∂(bθ/a) = ∆− ψ + µ− p− γΣz = 0, (31)

which be rewritten as

γΣbθ = (2a− 1) (∆− ψ + µ− p) + (1− a)
(1
a
− 1

)
ψ. (32)

The two terms on the right-hand side of equation (32) again capture the
risk-sharing and incentive-provision considerations that motivate the choice of
the contract. When there are differences in ψ’s across assets, the incentive-
provision consideration will be more important for high-ψ assets because the
manager is more reluctant to invest in them.

Substituting out the expression for p from (28), in (32), we obtain closed-
form expressions bθ:

bθ = (2a− 1)
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a)

[
1
a
−
(
λM
a

+ λD

)]
Σ−1

γ
ψ.

(33)

Summing the components of bθ (and using ∑i θi = 1) leads to the expression
for b—see (36) in Lemma 2′ below. Then, dividing the (vector) equation bθ,
(33), by b gives us the (vector) equation for θ, (37).
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Next, consider the first-order condition with respect to a:39

0 = ∂(UF + UM)
∂a

+ ∂UF

∂y

[
∂y

∂a
+ ∂y

∂p

∂p

∂a

]

= (1− 2a)γσ2
ε − (∆− ψ + µ− p− γΣz)>︸ ︷︷ ︸

=0 by FOC wrt bθ/a, (31)

y

a2 + 1− a
a

(∆ + µ− p− γΣz)>︸ ︷︷ ︸
=ψ> by FOC wrt bθ/a, (31)

∂y

∂a

= −(2a− 1)γσ2
ε + (1− a)ψ

>Σ−1ψ

γa3 . (34)

We can see that again some terms cancel out because of the first-order condi-
tion with respect to bθ/a. The difference is that the canceled terms are zero
element by element, because we have N first-order conditions with respect
to bθi/a, i = 1, ..., N . We will come back to this point when considering an
exogenous benchmark portfolio in subsection 5.2.

Lemma 2′ is the analog of Lemma 2 in the one-asset case:

Lemma 2′. In the equilibrium with privately optimal contracts,
(i) a∗, b∗ and θ∗ solve

0 = (1− a∗)ψ
>Σ−1ψ

γa∗3
− (2a∗ − 1)γσ2

ε , (35)

b∗ = (2a∗ − 1) 1>
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a∗)

[
1
a∗
−
(
λM
a∗

+ λD

)]
1>

Σ−1

γ
ψ,

(36)

θ∗ = 2a∗ − 1
b∗

[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ 1− a∗

b∗

[
1−

(
λM
a∗

+ λD

)]
Σ−1

γ
ψ; (37)

(ii) the asset prices are

p∗ = µ− γΣx̄+ λM

(
2∆− ψ − ψ

a∗

)
, (38)

39See the proof of Lemma 2′ for derivations.
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and each fund’s portfolio is

xM∗ = 2x̄+ Σ−1

γ
λD

(
2∆− ψ − ψ

a∗

)
. (39)

For some of our results on benchmarking, we will need to impose the fol-
lowing assumptions, which is the generalization of the assumption x̄+λD(∆−
ψ)/(γσ2) > 0 in the one-asset case.

Assumption 1. (i) 1> [x̄+ λDΣ−1(∆− ψ)/γ] > 0, (ii) 1>Σ−1ψ > 0.

These assumptions are mild technical restrictions. They are trivially sat-
isfied when the variance-covariance matrix Σ is diagonal or when ∆’s and ψ’s
are the same for all assets (provided that ∆−ψ ≥ 0). When Σ is not diagonal
(which implies that cross-price elasticities of the manager’s demand function
are not zero), it is useful to interpret Assumption 1 as follows. Part (i) is a
necessary and sufficient condition for the sum of shares (over all assets) that
the manager holds in the first best to be positive (which is trivially satisfied
if, for example, there is no short-selling).40 Part (ii) means that if the private
cost ψ increases by the same percentage for all assets, then the sum of shares
(over all assets) that the manager holds in equilibrium goes down. In other
words, the manager reduces total holdings when the cost is higher.

Using Assumption 1 and the equilibrium expression for b∗ presented in
Lemma 2′, we get the same result as in the one-asset case about the optimality
of benchmarking:

Proposition 1′ (Benchmarking is Optimal). Consider the equilibrium with
privately optimal contracts.
(i) The equilibrium value of the “skin in the game” satisfies a∗ ∈ (1/2, 1).
(ii) Suppose that Assumption 1 holds. Then there is benchmarking, that is,
b∗ > 0.

We can also characterize some properties of the privately optimal bench-
mark weights. Using equation (37), the lemma below shows how these weights

40See the proof of Lemma 7 in Appendix A.
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differ across assets with different value added or cost of alpha-production,
which are ∆− ψ and ψ respectively.

Lemma 5. Consider two assets, i and j, that have the exact same character-
istics except ∆i−ψi ≥ ∆j −ψj and ψi ≥ ψj, with at least one inequality being
strict. Then in the privately optimal contract, asset i has a larger weight in
the benchmark than asset j: θ∗i > θ∗j .

This is a fairly intuitive property for the weights. Fund investors recognize
that manipulating benchmark weights allows them to provide more incentives
for investment in assets where alpha-production is the most valuable. The
effect of a larger ψ on the benchmark weight is ambiguous, as can be seen
from (37). On the one hand, the incentive problem is the most severe for
assets with a larger ψ, and thus setting higher weight is most valuable for
those assets. On the other hand, a larger ψ reduces the total expected return,
which reduces the marginal benefit of using bθ to protect the manager from
extra risk. However, for the same (or a larger) value added, higher-cost assets
would have a higher weight in the privately optimal benchmark.

4.4 Socially Optimal Contracts

We now turn to the social planner’s problem. Define UD = xD>−1 p + xD>(µ −
p)−γxD>ΣxD/2. Then the social planner’s problem is maxa,bθ/a,c,y,xD ωFU

F +
ωDU

D subject to (26), (29), and (30).
The social planner’s first-order condition with respect to bθ/a is

0 =
[
ωF

(
xF−1 − xM

)
+ ωD

(
xD−1 − xD

)]> ∂p

∂(bθ/a)

+ ωF

[
∂(UF + UM)
∂(bθ/a) + ∂UF

∂y

∂y

∂p

∂p

∂(bθ/a)

]
. (40)

The terms in the first line of (40) capture the multivariate version of the
distributive effects that we will again cancel out by setting the Pareto weights
equal to the population fractions, ωF = λM and ωD = λD. Rewriting the term
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in the second line in (40) yields

0 = (∆− ψ + µ− p− γΣz)> + 1− a
a

(∆ + µ− p− γΣz)> ∂y
∂p

∂p

∂(bθ/a) . (41)

Equation (41) can be equivalently rewritten as

(∆ + µ− p− γΣz)
[
1− (1− a)λM/a

λM/a+ λD

]
− ψ = 0, (42)

or

∆− λM/a+ λD
λM + λD

ψ + µ− p− γΣz = 0. (43)

As in the one-asset case, the benefit of investment in the risky assets is lower
because of crowded trades. Substituting out the expression for z in (43), we
obtain the multi-asset analog of (19):

γΣbθ = (2a− 1)
[
∆− λM/a+ λD

λM + λD
ψ + µ− p

]
+ (1− a)

[
1
a
− λM/a+ λD

λM + λD

]
ψ.

(44)

Finally, substituting the expression for the price from (28), we obtain the
following expression for the equilibrium value of bθ:

bθ = (2a− 1)
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a)

[
1
a
− λM/a+ λD

λM + λD

]
Σ−1

γ
ψ. (45)

This is the social planner’s counterpart of expression (33) in the privately
optimal case. The expressions for b and θ separately are given by (48) and
(49) in Lemma 4′ below.
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Next, consider the planner’s first-order condition with respect to a:

0 = ∂(UF + UM)
∂a

+ ∂UF

∂y

∂y

∂a
+ ∂y

∂p

∂p

∂a

= (1− 2a)γσ2
ε − (∆− ψ + µ− p− γΣz)> y

a2

+ 1− a
a

(∆ + µ− p− γΣz)>
[
∂y

∂a
+ ∂y

∂p

∂p

∂a

]
,

which after some algebra (see the proof of Lemma 4′ in Appendix A) can be
written as

−(2a− 1)γσ2
ε + (1− a)ψ

>Σ−1ψ

γa3
λD

λM + λD
= 0. (46)

We summarize the characterization of the equilibrium with socially optimal
contracts in the following lemma.

Lemma 4′. In the equilibrium with socially optimal contracts,
(i) a∗∗, b∗∗, and θ∗∗ solve41

0 = (1− a∗∗)ψ
>Σ−1ψ

γa∗∗3
λD

λM + λD
− (2a∗∗ − 1)γσ2

ε , (47)

b∗∗ = (2a∗∗ − 1)1>
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a∗∗)

[
1
a∗∗
− λM/a

∗∗ + λD
λM + λD

]
1>

Σ−1

γ
ψ,

(48)

θ∗∗ = 2a∗∗ − 1
b∗∗

[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ 1− a∗∗

b∗∗

[
1
a∗∗
− λM/a

∗∗ + λD
λM + λD

]
Σ−1

γ
ψ;

(49)

(ii) the asset prices are

p∗∗ = µ− γΣx̄+ λM

(
2∆− λM/a

∗∗ + λD
λM + λD

ψ − ψ

a∗∗

)
, (50)

41From (47), 1/2 ≤ a∗∗ < 1, where the first inequality is strict so long as λD > 0.
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and each fund’s portfolio is

xM∗∗ = 2x̄+ Σ−1

γ
λD

(
2∆− λM/a

∗∗ + λD
λM + λD

ψ − ψ

a∗∗

)
. (51)

With these results in hand, we can again compare the socially optimal and
privately optimal contracts.

Proposition 2′ (Socially vs. Privately Optimal Contracts). Compared
to the privately optimal contract, the socially optimal contract involves
(i) less “skin in the game,” that is, a∗∗ < a∗;
(ii) less benchmarking, that is, b∗∗ < b∗, if Assumption 1 holds.42

As in the one-asset case, the use of contracts inflates prices and thus reduces
the marginal benefit of incentive provision for everyone else. The social planner
internalizes this effect, and opts for less incentive provision than fund investors.
As in the one-asset case, this comparison also carries over to prices and costs.

Proposition 3′ (Crowded Trades and Excessive Costs of Asset Man-
agement). Compared to the equilibrium with privately optimal contracts, in
the equilibrium with the socially optimal contracts
(i) the asset prices are lower, p∗∗ < p∗;
(ii) the managers’ costs are lower, ψ>xM∗∗ < ψ>xM∗.

The more general model also allows us to discuss benchmark weights.
Lemma 5 continues to be valid with socially optimal contracts. In addition,
we can compare the tilts to high value-added and/or high-cost assets in the
privately and socially optimal contracts.

Proposition 4 (Comparison of Benchmark Weights). Suppose that As-
sumption 1 holds. Then the privately optimal benchmark underweights assets
with higher value-added and overweights assets with higher costs compared to
the socially optimal benchmark. Formally, consider two assets i and j, that

42Alternatively, our result can be stated in terms of the product bθ, that is, b∗∗θ∗∗i < b∗θ∗i
for all i. In that case, Assumption 1 needs to be stated for each asset rather than the sum
over assets: x̄+ λDΣ−1(∆− ψ)/γ > 0, Σ−1ψ > 0, which is a stronger requirement.
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have the exact same characteristics except ∆i − ψi ≥ ∆j − ψj and ψi ≤ ψj,
with at least one inequality being strict. Then θ∗∗i − θ∗∗j > θ∗i − θ∗j .

The intuition behind this result is a little tricky. Compare (37) and (49),
and recall that the role of bθ is to protect the manager from risk as well as
provide incentives. The first term in each equation captures the insurance
consideration, while the second relates to incentive provision. The planner
understands that the incentives are less powerful than the fund investors be-
lieve. The need to provide incentives is driven by ψ, and hence the planner
is more reluctant to use benchmark weights to provide incentives for high-ψ
assets. This means the role of bθ in protecting the manager from risk is rel-
atively more important than incentive provision for the planner, so she will
tilt the benchmark more towards high-value-added assets than individual fund
investors would.

We close the analysis with a few final remarks about the main model.

Remark 1 (Distributive Effects). Through our choice of weights in the
social welfare function, we have shut down the contracts’ distributive effects
and isolated the pecuniary externality that the planner desires to correct. For
certain applications, such as those related to wealth inequality, however, it
could be interesting to analyze the transfers from one set of agents to another
that benchmarking generates. Allowing for redistribution changes outcomes
depending on whether an agent is a (net) buyer of assets or a (net) seller.
As we have argued, benchmarking boosts asset prices. This benefits (net)
sellers of the assets at the expense of (net) buyers. If the social planner favors
investors who have high endowments of assets and are planning to sell (e.g.,
the older generations), she has incentives to use more benchmarking in order
to inflate prices to assist them, and vice versa if she favors net buyers (who
are typically the younger generations).

Remark 2 (Prices Relative to the First Best). According to Proposi-
tion 3′, p∗∗ < p∗. We usually think of a constrained planner as being better
at providing incentives than decentralized agents, and thus being closer to
what an unconstrained planner can achieve. Surprisingly, the asset prices in

39



the first-best case exceed equilibrium prices under both privately and socially
optimal contracts, that is, p∗∗ < p∗ < pFB.43 So, equilibrium prices in the
constrained optimum are not closer to the unconstrained-optimum prices than
the decentralized-equilibrium ones, but are instead further away.44

While this might be surprising at first glance, this result is in fact quite
intuitive. Under the first best, the portfolio is observable and it is optimal
to choose high-alpha portfolios. This, of course, will push up the asset prices
and reduce expected returns. But, crowded trades are not a problem per se,
because a pecuniary externality does not lead to an inefficiency in this case. In
contrast, when the contract needs to provide incentives because the portfolio
cannot be observed, a pecuniary externality does lead to an inefficiency, and
crowded trades pose a problem as they reduce the effectiveness of incentive
provision. While the comparison to the first best is irrelevant for practical
purposes (because the first best is unattainable), it is helpful to highlight how
exactly the mechanism that we explore works.

Remark 3 (Achieving Social Optimum with Taxes). Given that pri-
vately optimal contracts result in an externality, it is natural to ask whether
some sort of taxes could implement the constrained social optimum. We pro-
vide a detailed analysis of this question in Appendix C. We find the following.
First, the manager’s compensation needs to be (proportionally) taxed to make
it more costly for the fund investor to provide incentives to the manager.
This type of tax mimics the higher cost of incentive provision for the planner,
who internalizes the externality. Second, the fund returns net of the man-
ager’s compensation—which is the same as the fund investor’s earnings in our
model—should be (proportionally) subsidized. While this might be counter-
intuitive, the subsidy motivates the fund investor to lower a by increasing the
benefit of keeping a larger 1− a. An alternative to the subsidy is imposing a

43The expression for the first-best asset prices is given in Lemma 7 in Appendix A.
Comparing it to p∗ given in Lemma 2′ immediately yields the result.

44This result parallels that in Lorenzoni (2008), where the decentralized equilibrium falls
between the constrained and unconstrained optima in terms of amount of borrowing and
asset prices. However, in Lorenzoni’s model the inequality signs in the price comparison are
reverse—decentralized-equilibrium asset prices are lower than in the constrained optimum
(higher in our model) and higher than in the first best (lower in our model).
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cap ā on the fund manager’s “skin in the game.” Of course, the specific levels
for the tax and subsidy rates (or, alternatively, the tax rate and the cap on a)
depend on the model parameters (see Appendix C for the formulas).

Remark 4 (Endogenizing the Choice of Becoming a Fund vs. Direct
Investor). To zero in on the main mechanism we consider in the paper, we ex-
ogenously fixed the fractions of different agents in the population. One could
endogenize the choice of becoming a fund investor or a direct investor, for
example, by assuming a heterogeneous cost of participating in the asset mar-
ket. This type of extension would introduce another channel through which
crowded trades matter. The choices of individual investors of whether to be
a fund investor or a direct investor, in the aggregate, would determine the
size of the asset management sector. This in turn would affect the strength of
the externality that we identify in the paper (i.e., how much contracts affect
prices and thus effectiveness of contracts designed by others). When mak-
ing their decisions, the individual agents ignore this effect while the planner
would account for this “extensive margin” of the externality when designing
contracts.

5 Extensions

We now turn to two extensions of the model that relate to practical issues
that arise in asset management. In subsection 5.1, we consider an extension
that gives rise to multiple benchmarks. In subsection 5.2, we analyze exoge-
nous/arbitrary benchmarks rather than the endogenous benchmarks that are
optimally chosen.

5.1 Multiple Types of Funds

In reality there are many types of funds and associated benchmarks, for exam-
ple, value funds and growth funds. A natural question is whether our results
carry over to a multiple-benchmark environment. We explore this by assuming
funds differ based on the expertise of the fund manager and/or the preferences
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of the fund investor. We show that our analysis and the main results from the
main model extend to this case. We also show how the optimal benchmarks
compare for the different types of funds (in both the privately and socially
optimal contracts).

There are K types of funds. We assume that the fund manager in a fund
of type k = 1, ..., K generates ∆k.45 We also assume that the fund investors
potentially have different preferences—they care not only about returns, but
also have a preference for a certain “investment style,” as, e.g., in Barberis and
Shleifer (2003) and Fama and French (2007). Specifically, we assume that the
utility function of the investor in a fund of type k is −e−γ(W+x>κk), where κk is
an N × 1 vector of non-pecuniary benefits that the investors derive from their
stock holdings.46 To simplify the analysis, we assume that the cost ψ and extra
risk σ2

ε are the same for all funds. This will imply that the skin-in-the-game
parameter a is the same for all funds.

Funds of type k constitute a fraction λkM of the population so that 2∑K
k=1 λ

k
M+

λD = 1. Let (ak, bk, θk, ck) be the contract for the fund manager in a fund of
type k. We state our main findings in Lemma 6 and Proposition 5 below.

Lemma 6. For any k, ` ∈ {1, ...K}, the optimal (privately or socially) con-
tracts funds of types k and ` compare in the following way:

ak = a` = a,

(bθ)k
a
− (bθ)`

a
= Σ−1

γ

[
κk − κ` +

(
2− 1

a

)
(∆k −∆`)

]
. (52)

where aj = aj∗, (bθ)j = (bθ)j∗ in the privately optimal contract, and aj = aj∗∗,
(bθ)j = (bθ)j∗∗ in the socially optimal contract, j = k, ` ∈ {1, ..., K}.

Lemma 6 shows that the optimal benchmarks in any two types of funds
compare in a simple way, reflecting the differences in the κ’s and ∆’s in the

45For example, we can think of the differences as capturing, in a reduced-form way,
different skill, or information advantage of managers in different asset classes, as in the
model in Appendix D.1.

46For our results, it is enough to have only one type of heterogeneity, but we allow two
for generality.
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two funds. For the comparison of the benchmarking levels in the privately and
socially optimal contracts, we replace Assumption 1 with:

Assumption 2.
(i) 1>

[
x̄+ λDΣ−1(∆k − ψ)/γ

]
> 0 ∀k, 1>Σ−1∑K

k=1 λ
k
Mκ

k ≥ 0,
(ii) 1>Σ−1ψ > 0.

Part (i) is a straightforward modification of part (i) of Assumption 1, ac-
counting for the extra demand coming from investors’ preferences, while part
(ii) is exactly the same as before. This leads us to the following result:

Proposition 5. Compared to the equilibrium with privately optimal contracts,
the equilibrium with socially optimal contracts involves
(i) less “skin in the game” (for each fund), that is, a∗∗ < a∗,
(ii) less benchmarking on average, that is, ∑K

k=1 λ
k
Mb

k∗∗ <
∑K
k=1 λ

k
Mb

k∗, if As-
sumption 2 holds;
(iii) lower prices, p∗∗ < p∗, and lower asset management costs for each fund,
ψ>xMk∗∗ < ψ>xMk∗, k = 1, ..., K.

Thus, our results from the main model extend to the case with multiple
types of funds, with the modification that privately optimal contracts lead to
too much benchmarking on average.

5.2 Exogenous Benchmark

In this subsection, we analyze the case where, instead of the benchmark port-
folio being chosen endogenously, it is exogenously given. Analyzing what hap-
pens when the benchmark is an arbitrary combination of stocks is more com-
plicated. In order to compare socially and privately optimal contracts, as in
the main model, additional restrictions are needed. However, the main mech-
anism remains the same, and the result of crowded trades (excessively high
prices) holds for the weighted average of the asset prices, rather than asset by
asset.

The fund investor now only chooses a and b (and the constant c). Instead
of N first-order conditions with respect to bθi/a, i = 1, ..., N , we now have one
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first-order condition with respect to b/a. It can be written as

θ> (∆− ψ + µ− p− γΣz) = 0.

Substituting z = (1/a − 1)Σ−1(∆ − ψ/a + µ − p)/γ + bθ/a and rearranging
terms, we have

b

a
γθ>Σθ = θ>

[(
2− 1

a

)
(∆− ψ + µ− p) +

(1
a
− 1

)(
ψ

a
− ψ

)]
. (53)

The corresponding conditions for the planner are

θ>
[
∆− λM/a+ λD

λM + λD
ψ + µ− p− γΣz

]
= 0 (54)

and

b

a
γθ>Σθ = θ>

{[
2− 1

a

] [
∆− λM/a+ λD

λM + λD
ψ + µ− p

]
+
[1
a
− 1

] [
ψ

a
− λM/a+ λD

λM + λD
ψ

]}
.

Substituting (53) into a weighted average of the market-clearing conditions,

θ>
[
λM

(
Σ−1 ∆− ψ/a+ µ− p

aγ
+ bθ

a

)
+ λDΣ−1µ− p

γ

]
= θ>x̄,

rearranging terms, and using 2λM + λD = 1, yields the following expression
for the weighted average of the equilibrium asset prices (where the subscript θ
is a reminder that the equilibrium values depend on the exogenous benchmark
portfolio):

θ>p∗θ = θ>
[
µ− γΣx̄+ λM

(
2∆− ψ − ψ

a∗θ

)]
, (55)

where a∗θ is the privately optimal value for a given the exogenous benchmark.
The corresponding expression for the weighted average price in the socially
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optimal case is

θ>p∗∗θ = θ>
[
µ− γΣx̄+ λM

(
2∆− λM/a

∗∗
θ + λD

λM + λD
ψ − ψ

a∗∗θ

)]
. (56)

Expressions (55) and (56) are the analogs of (38) and (50) in the model with
the optimally chosen benchmarks. If a∗∗θ < a∗θ, then the weighted average of the
prices under the socially optimal contracts is lower than under the privately
optimal contracts: θ>p∗∗θ < θ>p∗θ.

Notice, however, that proving that a∗∗θ < a∗θ is no longer as straightforward
as in the main model. The reason is that we have only one first-order condi-
tions with respect to b as opposed to N first-order conditions with respect to
bθi, i = 1, ...N . As a result, we can no longer simplify the first-order condition
with respect to a and derive a in closed form, and show that a∗∗θ < a∗θ directly.
However, it is still the case that additional terms in the first-order conditions
with respect to a and b/a in the social relative to the private case are negative.
Suppose we impose a sufficient condition that the planner’s first-order condi-
tion with respect to b/a is increasing in a, i.e., a and b/a are complements.
Then it still follows that a∗∗θ < a∗θ and b∗∗θ < b∗θ, and thus θ>p∗∗θ < θ>p∗θ. This
sufficient condition rules out certain types of benchmarks. For example, sup-
pose that a benchmark puts extremely different weights on different stocks. It
then becomes possible that investing in that kind of benchmark raises risk for
the manager instead of shielding her from it. The mechanism in our model
requires the benchmark to be an effective hedge against the dividend risk that
the manager faces. Assumption 3 states this sufficient condition:

Assumption 3. (i) θ> [Σx̄+ λD(∆− ψ)/γ] ≥ 0, (ii) θ>ψ ≥ 0, (iii) λ2
M ≥ λD.

Parts (i) and (ii) parallel Assumption 1 from the main model.47 One in-
terpretation of part (i) of Assumption 3 is that the return of the benchmark
portfolio is positively correlated with the return on the fund’s first-best port-
folio.48 If θ>(∆ − ψ) ≥ 0, then this condition is satisfied if the return on

47Notice that Assumption 1 transforms to Assumption 3 if we replace 1 with Σθ.
48The fund’s first-best portfolio is xMFB = 2

[
x̄+ Σ−1λD(∆− ψ)/γ

]
(see Lemma 7) and

thus θ> [Σx̄+ λD(∆− ψ)/γ] = θ>ΣxMFB ∝ Cov(θ>D̃, xM>FB D̃).
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the benchmark portfolio is positively correlated with the return on the “market
portfolio” x̄: θ>Σx̄ ≥ 0 iff Cov

(
θ>D̃, x̄>D̃

)
≥ 0. Part (ii) of Assumption 3

holds automatically if θ ≥ 0. Thus, parts (i) and (ii) of Assumption 3 are
reasonable. Finally, part (iii) guarantees that parts (i) and (ii) are sufficient
regardless of the value of a∗∗.49 It is a technical sufficient condition for a and
b/a to be complements.

Proposition 6 states the main results for the exogenous-benchmark case.

Proposition 6. Suppose that the benchmark portfolio θ is exogenous and As-
sumption 3 holds. Then contracts and asset prices in the equilibria with pri-
vately and socially optimal contracts given θ compare in the following way:50

a∗∗θ < a∗θ, b
∗∗
θ < b∗θ, θ

>p∗∗θ < θ>p∗θ.

As in the main model, the socially optimal contracts involve less skin in the
game and less benchmarking. In addition, we have a modified comparison of
equilibrium asset prices: with socially optimal contracts the weighted average
of the asset prices is lower than with privately optimal contracts.

6 Conclusions

We consider the problem of optimal incentive provision for portfolio managers
in a general-equilibrium asset-pricing model. The optimal contacts involve
benchmarking. We show that by ignoring the effects of contracts on equilib-
rium prices, fund investors impose an externality on each other—the effective-
ness of their incentive contracts is lower than they perceive them to be. The
reason is that contracts incentivize the managers to invest more in stocks with
higher alpha as well as stocks in the benchmark. This boosts prices and lowers
returns, making the marginal benefit of alpha-production lower for everyone.
The social planner, who internalizes the effects of contracts on equilibrium

49With exogenous θ, it is not always true that the optimal choice of a exceeds 1/2. We
derive sufficient conditions for a∗∗ ≥ 1/2 at the end of the proof of Proposition 6. Part (iii)
of Assumption 3 can be alternatively replaced by these sufficient conditions.

50In the proof we also show that b∗∗θ /a∗∗θ < b∗θ/a
∗
θ.
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prices, opts for less incentive provision, less benchmarking, and lower asset
management costs.

In future work, it would be interesting to incorporate passive asset man-
agers into the model. This extension is, however, not straightforward. The
existing evidence on the compensation contracts in the asset management in-
dustry covers only active funds. Very little is known about contracts of man-
agers in passive funds. Before engaging in modeling of passive managers, it
would be important to collect such evidence. A natural starting point would be
to analyze the Statements of Additional Information filed by the U.S. mutual
funds with the Securities and Exchange Commission, which contain informa-
tion on managers’ compensation structure. If contracts of passive managers
turn out to be incentive contracts, it would be interesting to understand the
incentive problem they solve. It is not obvious what kind of incentive problem
would result in optimal contracts that make the managers closely follow the
benchmark. We leave this problem for future work.

Finally, environmental, social and governance (ESG) investing is one of the
fastest growing segments in asset management. Another interesting extension
would be to use this framework to study the optimal design of ESG bench-
marks. We explore this problem in Kashyap, Kovrijnykh, Li, and Pavlova
(2022).
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Appendices

A Proofs

Definition 1. An equilibrium with privately optimal contracts is a contract (a, b, c, θ), the
direct investor’s portfolio xD, the manager’s portfolio xM(a, b, θ), and a price (vector) p
such that

(i) given p, xD solves the direct investor’s problem maxx x>(µ− p)− γx>Σx/2;

(ii) given p, for any (a, b, θ) xM(a, b, θ) solves the fund manager’s problem

max
x

ax>(∆− ψ/a+ µ− p)− bθ>(µ− p)− γ

2
[
(ax− bθ)>Σ(ax− bθ) + a2σ2

ε

]
;

(iii) given p and xM(a, b, θ), the contract (a, b, c, θ) solves the fund investor’s problem

max
a,b,c,θ

x>(1− a)∆ + z>(µ− p)− γ

2
[
z>Σz + (1− a)2σ2

ε

]
− c

s.t. x>(a∆− ψ) + y>(µ− p)− γ

2
[
y>Σy + a2σ2

ε

]
+ c ≥ u0,

x = xM(a, b, θ),

where y = ax− bθ and z = (1− a)x+ bθ;

(iv) the stock market clears: λDxD + λMx
M(a, b, θ) = x̄.

Throughout the paper, we use the following notation: xM∗ ≡ xM(a∗, b∗, θ∗).

Definition 2. An equilibrium with socially optimal contracts is a contract (a, b, c, θ), the
direct investor’s demand function xD(p), the manager’s demand function xM(p, a, b, θ), and
a price function p = p̂(a, b, θ) such that

(i) for any p, xD(p) solves the direct investor’s problem maxx x>(µ− p)− γx>Σx/2;
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(ii) for any p and (a, b, θ), xM(p, a, b, θ) solves the fund manager’s problem

max
x

ax>(∆− ψ/a+ µ− p)− bθ>(µ− p) + c− γ

2
[
(ax− bθ)>Σ(ax− bθ) + a2σ2

ε

]
;

(iii) given p̂(a, b, θ), xD(p), and xM(p, a, b, θ), the contract (a, b, c, θ) solves the social plan-
ner’s problem

max
a,b,c,θ

λM

{(
xF−1

)>
p+ x>(1− a)∆ + z>(µ− p)− γ

2
[
z>Σz + (1− a)2σ2

ε

]
− c

}
+ λD

{(
xD−1

)>
p+ xD(p)>(µ− p)− γ

2x
D(p)>ΣxD(p)

}
s.t. x>(a∆− ψ) + y>(µ− p)− γ

2
[
y>Σy + a2σ2

ε

]
+ c ≥ u0,

x = xM(p, a, b, θ),

p = p̂(a, b, θ),

where y ≡ ax− bθ and z ≡ (1− a)x+ bθ;

(iv) the stock market clears: λDxD(p̂(a, b, θ)) + λMx
M(p̂(a, b, θ), a, b, θ) = x̄.

Throughout the paper, we use the following notation: p∗∗ ≡ p̂(a∗∗, b∗∗, θ∗∗), xM∗∗ ≡
xM(p∗∗, a∗∗, b∗∗, θ∗∗).

Proof of Lemma 1. The proof is a special case of the proof of Lemma 1′. �

Proof of Lemma 1′. (i) Equation (26) immediately follows from taking the first-order
condition of the direct investor’s problem with respect to x. Similarly, (27) follows from
taking the first-order condition of the manager’s problem with respect to x: a(∆− ψ/a+
µ−p)−γΣ(ax−b) = 0. The second derivative with respect to x is −γaΣ, which is negative
definite so long as a > 0. So the second-order condition is globally satisfied.

(ii) Substituting (26) and (27) in the market-clearing condition for the risky asset,
λMx

M + λDx
D = x̄, we find the expression for the equilibrium asset price (28). �

Lemma 7 (First Best). If x is observable or if ψ = 0, then the optimal contract is
a = 1/2 and b = 0, and the asset prices are given by pFB = µ− γΣx̄+ 2λM (∆− ψ) .
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Proof. When x is observable, the fund investor’s problem is to maximize UF + UM :

max
a,b,θ,x

x>(∆− ψ + µ− p)

− γ

2
{

(ax− bθ)>Σ(ax− bθ) + [(1− a)x+ bθ]>Σ[(1− a)x+ bθ] +
[
a2 + (1− a)2

]
σ2
ε

}
.

The first-order condition with respect to x is

xM = Σ−1 ∆− ψ + µ− p
γ[a2 + (1− a)2] + (2a− 1) bθ

a2 + (1− a)2 .

The first-order condition with respect to bθ is γΣ(y − z) = 0, where y = ax − bθ and
z = (1− a)x+ bθ. The first-order condition with respect to a is −γ [Σ(y − z)]> x+ γ(1−
2a)σ2

ε = 0, which, using the first-order condition with respect to bθ, implies a = 1/2. Then
setting b = 0 satisfies the first-order condition with respect to bθ.

The portfolio choice evaluated at the optimal contract is xM = 2Σ−1(∆−ψ+µ− p)/γ.
Using this, the first-best equilibrium asset prices are pFB = µ − γΣx̄ + 2λM (∆− ψ) .
Comparing with (38), pFB > p∗.

Finally, substituting the equilibrium prices into the demand function, the equilibrium
asset holdings of the manager are xMFB = 2 [x̄+ Σ−1λD(∆− ψ)/γ] . Notice that if the
manager holds a positive amount of each asset in the first best, then part (i) of Assumption
1 must hold. Therefore part (i) of Assumption 1 is a necessary condition for no short-selling
to occur in the first best.

Lastly, notice that if σ2
ε = 0, then the first-order condition with respect to bθ implies

that the first-order condition with respect to a holds automatically. Thus, a and bθ are
not separately pinned down. In particular, both (a, bθ) = (1/2, 0) and (a, bθ) = (1, x̄ +
Σ−1λD(∆− ψ)/γ) are optimal. �

The Fund Investor’s Problem in Terms of Exponential Utilities:

max
a,b,θ,c,x=xM

− E exp
{
−γ

[(
xF−1

)>
p+ rx − (arx − brb)− c

]}
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subject to the manager’s incentive constraint (27) and her participation constraint

−E exp {−γ [arx − brb + c]} ≥ û0, (57)

where û0 is the exponential-utility version of u0.51 It is well known that CARA utility
with normally-distributed returns can be rewritten in a mean-variance form, leading to the
problem described in Section 4.2.

Proof of Lemma 2. The proof is a special case of the proof of Lemma 2′. �

Proof of Lemma 2′. (i) Using (6) and (30), (31) can be rewritten as

0 = ∆− ψ + µ− p− γΣ
[
Σ−1 ∆− ψ/a+ µ− p

γ

(1
a
− 1

)
+ bθ

a

]
,

γΣbθ
a

=
(

2− 1
a

)
(∆− ψ + µ− p) +

(
1− 1

a

)(
1− 1

a

)
ψ.

Using the expression for prices given in (28), this implies

γΣbθ
a

=
(

2− 1
a

) [
∆− ψ + γΣΛ

(
x̄− λM

bθ

a

)
− λMΛ

a

(
∆− ψ

a

)]
+
(

1− 1
a

)(
ψ − ψ

a

)
.

Rearranging terms and using the expression for Λ gives

γΣ
[
1 +

(
2− 1

a

)
λMΛ

]
bθ

a

= γΣΛ
(

2− 1
a

)
x̄+

(
2− 1

a

)
λDΛ(∆− ψ) +

[
1− 1

a
−
(

2− 1
a

)
λMΛ
a

](
ψ − ψ

a

)
,

γΣΛbθ
a

= Λ
(

2− 1
a

)
[γΣx̄+ λD(∆− ψ)] +

[
λM
a

+ λD −
1
a

]
Λ
(
ψ − ψ

a

)
, (58)

bθ = (2a− 1)
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a)

[
1
a
− λM

a
− λD

]
Σ−1

γ
ψ.

The expressions for b and θ separately are then given by (36) and (37), respectively.

51In particular, if the manager’s outside option is risk-free, then û0 = − exp(−γu0).
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The first-order condition with respect to a is given by52

0 = ∂(UF + UM)
∂a

+ ∂UF

∂y

∂y

∂a

= −(2a− 1)γσ2
ε − (∆− ψ + µ− p− γΣz)> y

a2 + 1− a
a

(∆ + µ− p− γΣz)> ∂y
∂a

= −(2a− 1)γσ2
ε + 1− a

a
ψ>

∂y

∂a
, (59)

where the last equality follows from (31). Using ∂y/∂a = Σ−1ψ/(γa2) (obtained by differ-
entiating (30) with respect to a), we arrive at (35).

(ii) Substituting (32) in the market-clearing condition and rearranging terms yields
(38). Substituting (32) in (27) and rearranging terms, implies γΣxM∗ = (∆−ψ+µ−p∗)+
(∆− ψ/a∗ + µ− p∗) . Substituting (38) and rearranging terms yields (39). �

Proof of Proposition 1. The proof is a special case of the proof of Proposition 1′. �

Proof of Proposition 1′. (i) Equation (35) has a negative and a positive root. We
rule out the negative root because with a < 0 the manager’s second-order condition is not
satisfied (and hence the first-order approach of writing the fund investor’s problem is not
valid)—see the proof of Lemma 1′. The right-hand side of (35) is strictly decreasing in a.
It is strictly positive at a = 1/2 and strictly negative at a = 1. Thus a∗ ∈ (1/2, 1).

(ii) b∗ > 0 follows from (36), Assumption 1, and part (i) of this proposition. �

Proof of Lemma 3. Rewrite (12) as

2a∗ − 1
1− a∗ a

∗3γ2σ2 = ψ2

σ2
ε

.

The left-hand side is increasing in a∗, while the right-hand side is increasing in ψ and
decreasing in σ2

ε . Thus a∗ is increasing in ψ and decreasing in σ2
ε . Moreover, rewriting the

above equation as
2a∗ − 1
1− a∗ a

∗γ2σ2σ2
ε =

[
ψ

a∗

]2

52Since the manager’s utility is maximized with respect to y, (∂UM/∂y)(∂y/∂a) does not appear in
(59).
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we can see that the left-hand side is still increasing in a∗. Since a∗ is increasing in ψ, it
follows that ψ/a∗ is increasing in ψ. The dependence of p∗ and xM∗ on ψ and σ2

ε then
follows from (14) and (15). Moreover, a∗ does not depend on ∆. Then the dependence of
b∗, p∗, and xM∗ on ∆ follows from (13), (14), and (15). �

Proof of Lemma 5. Denote the (k, `)-th element of matrix Σ−1 by ek,`, where ek,` = e`,k

by symmetry. Since assets i and j are assumed to be identical (except for ∆’s and ψ’s),
we have ei,i = ej,j and ei,k = ej,k for all k 6= i, j (i.e., assets i and j have the same variance
and covariance with other assets). As a result,

θi − θj = [ei,i − ei,j]
{

2a− 1
bγ

λD[∆i − ψi −∆j + ψj] + 1− a
bγ

[
1
a
− λM

a
− λD

]
[ψi − ψj]

}
.

Because Σ−1 is positive definite, we have ei,i > 0, ei,iej,j− e2
i,j > 0, ei,i > |ei,j|. As a result,

ei,i − ei,j > 0, and thus θi > θj whenever ∆i − ψi ≥ ∆j − ψj, ψi ≥ ψj, and at least one of
the inequalities is strict. With a slight modification, this proof also applies to the socially
optimal contract. �

The Social Planner’s Problem in Terms of Exponential Utilities:

max
a,b,θ,c,x=xM ,xD

− ω̃FE exp
{
−γ

[(
xF−1

)>
p+ rx − (arx − brb)− c

]}
− ω̃DE exp

{
−γ

[(
xD−1

)>
p+

(
xD
)>

(D − p)
]}

subject to (26), (27), and (57), where ω̃i, i = F, F , are the modified Pareto weights.
From the first-order condition with respect to c it follows that the Lagrange multiplier

on the participation constraint equals ω̃FMUF/MUM , where MUi denotes the expected
marginal utility of agent i. This value is the effective Pareto weight on the manager’s utility
given that the contract allows transfer between the fund investor and manager (through c).
Similarly, if transfers between fund and direct investors were allowed, then ω̃FMUF/λM =
ω̃DMUD/λD, and the distribution effects is zero. Without transfers, the Pareto weights
that cancel out the distribution effects (in the formulation with exponential utilities) are
equal to inverse marginal utilities times the population weights, ω̃F = λM/MUF and
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ω̃D = λD/MUD.
Rewriting the objective function and the participation constraint in the mean-variance

form gives the problems described in Sections 3.7 and 4.4.

Proof of Lemma 4. The proof is a special case of the proof of Lemma 4′. �

Proof of Lemma 4′. (i) The planner’s first-order condition with respect to bθ/a is53

[
ωF

(
xF−1 − xM

)>
+ ωD

(
xD−1 − xD

)>] ∂p

∂(bθ/a)

+ ωF

[
(∆− ψ + µ− p− γΣz)> + (∆ + µ− p− γΣz)>

(1
a
− 1

)
∂y

∂p

∂p

∂(bθ/a)

]
= 0.

Canceling out the distributive effects and using ∂y/∂p = −Σ−1/γ and ∂p/∂(bθ/a) =
γΣΛλM , the above equation (or (41)) becomes

0 = ∆− ψ + µ− p− γΣz − (∆ + µ− p− γΣz) 1− a
a

ΛλM , (60)

which is the same as (42). Rearranging terms and substituting the expression for z,

0 = ∆− ψ + µ− p− γΣ
[
Σ−1 ∆− ψ/a+ µ− p

γ

(1
a
− 1

)
+ bθ

a

]
− ψ (1/a− 1)ΛλM

1− (1/a− 1)ΛλM
.

Rearranging terms,

γΣbθ
a

= ∆− ψ + µ− p+
(

1− 1
a

)(
∆− ψ

a
+ µ− p

)
− ψ (1− a)/aΛλM

1− (1/a− 1)ΛλM
,

γΣbθ = (2a− 1) (∆− ψ + µ− p) + (1− a)
[

1− a
a
− ΛλM

1− (1/a− 1)ΛλM

]
ψ,

γΣbθ = (2a− 1) (∆− ψ + µ− p) + (1− a)
(1
a
− 1
λM + λD

)
ψ. (61)

53Because the manager’s and direct investor’s utilities are maximized with respect to y and xD, respec-
tively, by the Envelope theorem the only terms from their payoffs that enter the first-order conditions are
those entering the distribution term.
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Alternatively, from (43),

γΣbθ
a

= ∆− λM/a+ λD
λM + λD

ψ + µ− p+
(

1− 1
a

)(
∆− ψ

a
+ µ− p

)
,

γΣbθ = (2a− 1)
[
∆− λM/a+ λD

λM + λD
ψ + µ− p

]
+ (1− a)

[
1
a
− λM/a+ λD

λM + λD

]
ψ.

Substituting the expression for prices into (61) and rearranging terms,

bθ = (2a− 1)
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ (1− a)

[
1
a
− λM/a+ λD

λM + λD

]
Σ−1

γ
ψ.

The expressions for b and θ separately are then given by (48) and (49).
The planner’s first-order condition with respect to a is

0 = ∂(UF + UM)
∂a

+ ∂UF

∂y

[
∂y

∂a
+ ∂y

∂p

∂p

∂a

]

= (1− 2a)γσ2
ε − (∆− ψ + µ− p− γΣz)> y

a2

+ 1− a
a

(∆ + µ− p− γΣz)>
[
∂y

∂a
+ ∂y

∂p

∂p

∂a

]
.

Use (41) to rewrite the above equation as follows:

0 = −(2a− 1)γσ2
ε + 1− a

a

λM/a+ λD
λM + λD

ψ>
[
∂y

∂a
+ ∂y

∂p

∂p

∂a
+ y

a2
∂y

∂p

∂p

∂(bθ/a)

]
. (62)

To express the term in parentheses, differentiate the market-clearing condition λM(y/a +
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bθ/a) + λDx
D = 0 with respect to bθ/a and a and use ∂xD/∂p = ∂y/∂p to get

(
λM
a

+ λD

)
∂y

∂p

∂p

∂(bθ/a) + λM = 0,(
λM
a

+ λD

)
∂y

∂p

∂p

∂a
− λM

y

a2 + λM
a

∂y

∂a
= 0, (63)(

λM
a

+ λD

)[
∂y

∂p

∂p

∂a
+ y

a2
∂y

∂p

∂p

∂(bθ/a)

]
+ λM

a

∂y

∂a
= 0. (64)

Then (62) becomes

0 = −(2a− 1)γσ2
ε + 1− a

a

λM/a+ λD
λM + λD

ψ>
[
∂y

∂a
− ∂y

∂a

λM/a

λM/a+ λD

]
.

We can see that the effectiveness of incentive provision for the planner, captured by
the term proportional to ∂y/∂a, is smaller than for private fund investors in equation (34).
Finally, using ∂y/∂a = Σ−1ψ/(γa2), we obtain (47).

(ii) Substituting (44) in the market-clearing condition and rearranging terms yields
(50). Substituting (44) in (27) and rearranging terms yields

γΣxM∗∗ =
[
∆− λM/a

∗∗ + λD
λM + λD

ψ + µ− p∗∗
]

+
[
∆− ψ

a∗∗
+ µ− p∗∗

]
.

Using (50) and rearranging terms yields (51). �

Lemma 8. Denote a1 = a∗, a2 = a∗∗, b1 = b∗, b2 = b∗∗. Then

1− a1

a1

[
1
a1
−
(
λM
a1

+ λD

)]
>

1− a2

a2

[
1
a2
− λM/a2 + λD

λM + λD

]
.

Proof. Given that both sides of the inequality are positive, it is equivalent to

(1− a1)/a2
1

(1− a2)/a2
2

λM + a1λD + (1− 2a1)λD
(λM + a2λD)λD/(λM + λD) + (1− 2a2)λD

> 1. (65)
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From (35) and (47) we have

1− a1

a3
1(2a1 − 1) = 1− a2

a3
2(2a2 − 1)

λD
λM + λD

. (66)

Substituting this in (65), obtain

a1(2a1 − 1)
a2(2a2 − 1)

λD
λM + λD

λM + a1λD + (1− 2a1)λD
(λM + a2λD)λD/(λM + λD) + (1− 2a2)λD

> 1.

Since a1 > a2, it suffices to show that

λM + a1λD + (1− 2a1)λD
(λM + a2λD)λD/(λM + λD) + (1− 2a2)λD

>
λD + λM

λD
,

which is equivalent to

λM(2a2 − 1)
λD(a1 − a2) > 1. (67)

To show (67), we will use equation (66). Rearranging (66) yields

1− a1

a3
1(2a1 − 1)

λM
λD

= 1− a2

a3
2(2a2 − 1) −

1− a1

a3
1(2a1 − 1) ,

or, equivalently,

λM(2a2 − 1)
λD

= a3
1

1− a1

[
(1− a2)(2a1 − 1)

a3
2

− (1− a1)(2a2 − 1)
a3

1

]
.

The right-hand side of the above equation equals

−a3
1 + 2a4

1 − 2a4
1a2 + a2a

3
1 − (−a3

2 + 2a4
2 − 2a4

2a1 + a1a
3
2)

(1− a1)a3
2

= (a1 − a2)
(1− a1)a3

2

[
−(1 + 2a1a2)(a2

1 + a1a2 + a2
2) + 2(a1 + a2)(a2

1 + a2
2) + a1a2(a1 + a2)

]
.
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Rearranging terms and doing some more algebra, yields

λM(2a2 − 1)
λD(a1 − a2) = (2a1 − 1)a2

1(1− a2) + (2a2 − 1)a2
2(1− a1) + (2a1 − 1)a1a2 + 2a1a

2
2(1− a1)

a3
2(1− a1) .

Since 1/2 < a2 < a1 < 1,

λM(2a2 − 1)
λD(a1 − a2) >

(2a1 − 1)a2
1(1− a2) + (2a2 − 1)a2

2(1− a1) + (2a1 − 1)a1a2 + a3
2(1− a1)

a3
2(1− a1) > 1,

and thus (67) holds. �

Proof of Proposition 2. The proof is a special case of the proof of Proposition 2′. �

Proof of Proposition 2′. (i) Comparison a∗∗ < a∗ follows from comparing (35) and (47)
and selecting the positive roots of the two equations, see the proof of Proposition 1′(i).

(ii) Denote a1 = a∗, a2 = a∗∗, b1 = b∗, b2 = b∗∗. From (36) and (48),

b1

a1
=
(

2− 1
a1

)
1>

[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+
( 1
a1
− 1

) [ 1
a1
−
(
λM
a1

+ λD

)]
1>

Σ−1

γ
ψ,

b2

a2
=
(

2− 1
a2

)
1>

[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+
( 1
a2
− 1

) [ 1
a2
− λM/a2 + λD

λM + λD

]
1>

Σ−1

γ
ψ.

Under Assumption 1 and the fact that a1 > a2, Lemma 8 implies b1/a1 > b2/a2. Then
using a1 > a2(> 1/2), it follows that b1 > b2. �

Proof of Proposition 3′. (i) Using (38) and (50),

p∗ − p∗∗ = λM

( 1
a∗∗
− 1
a∗

)
ψ +

( 1
a∗∗
− 1

)
λ2
M

λM + λD
ψ.

Since both terms on the right-hand side are strictly positive and a∗∗ < a∗ by part (i) of
Proposition 2′, it follows that p∗ > p∗∗.
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(ii) Using (39) and (51),

ψ>
(
xM∗∗ − xM∗

)
= λDψ

>Σ−1

γ
ψ

[
1− λM/a

∗∗ + λD
λM + λD

+ 1
a∗
− 1
a∗∗

]
.

Since Σ−1 is positive definite and the expression in square brackets is negative (because
a∗∗ < a∗ < 1), we have ψ>

(
xM∗∗ − xM∗

)
< 0. �

Proof of Proposition 4. Denote a1 = a∗ and a2 = a∗∗, and let ei,j be the (i, j)-th element
of matrix Σ−1 as defined in the proof of Lemma 5. Then

θ∗i − θ∗j = 2a1 − 1
b1γ

λD(ei,i − ei,j)[∆i −∆j − (ψi − ψj)]

+ 1− a1

b1γ

[
1
a1
−
(
λM
a1

+ λD

)]
(ei,i − ei,j)(ψi − ψj), (68)

θ∗∗i − θ∗∗j = 2a2 − 1
b2γ

λD(ei,i − ei,j)[∆i −∆j − (ψi − ψj)]

+ 1− a2

b2γ

[
1
a2
− λM/a2 + λD

λM + λD

]
(ei,i − ei,j)(ψi − ψj). (69)

From part (ii) of Proposition 2′ we know that b1 > b2 as well as b1/a1 > b2/a2 (shown in
the proof of Proposition 2′ (ii)). Thus

2a1 − 1
b1

<
2a2 − 1
b2

.

Rewrite equations (36) and (48) as follows:

1 = 2a1 − 1
b1

1>
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ 1− a1

b1

[
1
a1
−
(
λM
a1

+ λD

)]
1>

Σ−1

γ
ψ,

1 = 2a2 − 1
b2

1>
[
x̄+ Σ−1

γ
λD(∆− ψ)

]
+ 1− a2

b2

[
1
a2
− λM/a2 + λD

λM + λD

]
1>

Σ−1

γ
ψ.
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Together with Assumption 1 these equations imply

1− a1

b1

[
1
a1
−
(
λM
a1

+ λD

)]
>

1− a2

b2

[
1
a2
− λM/a2 + λD

λM + λD

]
.

Then if ∆i − ψi ≥ ∆j − ψj and ψi ≤ ψj, and at least one inequality is strict, from (68)
and (69) we have θ∗∗i − θ∗∗j > θ∗i − θ∗j . And conversely, if ∆i − ψi ≤ ∆j − ψj and ψi ≥ ψj,
and at least one inequality is strict, then we have θ∗∗i − θ∗∗j < θ∗i − θ∗j . That is, the
socially optimal contract puts relatively less weight on incentive provision (compared to
the privately optimal contract) and thus relatively more weight on protecting the manager
from risk. �

Lemma 9. The fund investor’s and social planner’s second-order conditions are satisfied
in the equilibria with privately and socially optimal contracts, respectively.

Proof of Lemma 9. Denote by Fbθ/a (which is a 1×N vector) and Fa the left-hand sides
of the first-order conditions with respect to bθ/a and a, respectively. From the proofs of
Lemmas 2′ and 4′, once we plug in the first-order condition with respect to bθ/a in the
first-order condition with respect to a, the remaining terms only depend a. Thus we can
write Fa in the following form: Fa = g(a) + Fbθ/ah(a, bθ/a). The function g(a) is given
by (the right-hand sides of) equations (35) and (47) with privately and socially optimal
contracts, respectively, and h is an N × 1 vector.

Differentiating Fa with respect to a and bθ/a,

Faa = ∂Fa
∂a

= g′(a) + Fbθ/a︸ ︷︷ ︸
=0

∂h(a, bθ/a)
∂a︸ ︷︷ ︸
N×1

+Fbθ/a,a︸ ︷︷ ︸
1×N

h(a, bθ/a)︸ ︷︷ ︸
N×1

,

Fa,bθ/a︸ ︷︷ ︸
1×N

= ∂Fa
∂(bθ/a) = Fbθ/a︸ ︷︷ ︸

=0

∂h(a, bθ/a)
∂(bθ/a)︸ ︷︷ ︸
N×N

+h(a, bθ/a)>︸ ︷︷ ︸
1×N

Fbθ/a,bθ/a︸ ︷︷ ︸
N×N

.

Notice that g′(a) < 0 (this follows from (35) with privately optimal contracts and from
(47) with socially optimal contracts). Suppose we knew that Fbθ/a,bθ/a is negative definite.
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Then we can show that the following determinant has opposite sign of det(Fbθ/a,bθ/a):

det
 Fbθ/a,bθ/a h>Fbθ/a,bθ/a

Fbθ/a,bθ/ah g′(a) + h>Fbθ/a,bθ/ah


︸ ︷︷ ︸

(N+1)×(N+1)

= det(Fbθ/a,bθ/a) det
[
h>Fbθ/a,bθ/ah+ g′(a)− h>Fbθ/a,bθ/a(Fbθ/a,bθ/a)−1Fbθ/a,bθ/ah

]
= g′(a) det(Fbθ/a,bθ/a) = − det(Fbθ/a,bθ/a),

where the first equality follows from det
A B

C D

 = det(A) det(D − CA−1B).

It remains to prove that Fbθ/a,bθ/a is negative definite. In the privately optimal case,
Fbθ/a,bθ/a = −γΣ/a. Since Σ is positive definite, Fbθ/a,bθ/a is negative definite. Similarly, in
the socially optimal case, Fbθ/a,bθ/a = −γΛλMΣ− γΣ/a, also negative definite. �

Proof of Lemma 6 and Proposition 5. The analysis is very similar as in the main
model, and we only outline the key differences. As before, the manager’s demand is given
by (27). The market-clearing condition is

K∑
k=1

λkM

[
Σ−1 ∆k − ψ/ak + µ− p

akγ
+ (bθ)k

ak

]
+ λDΣ−1 µ− p

γ
= x̄. (70)

Denote Λ̃ =
[∑K

k=1 λ
k
M/a

k + λD
]−1

. Then the stock prices are given by

p = µ− γΣΛ̃
[
x̄−

K∑
k=1

λkM
(bθ)k
ak

]
+ Λ̃

K∑
k=1

λkM
ak

(
∆k − ψ

ak

)
. (71)

Consider privately optimal contacts. It is easy to check that the first-order condition
with respect to a is the same as before, and is given by

(1− a)ψ
>Σ−1ψ

γa3 − (2a− 1)γσ2
ε = 0, (72)

for all funds, which immediately implies that ak = a for all k.
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The first-order condition with respect to bθ/a is similar to before, only κ is added:

0 = κk + ∆k − ψ + µ− p− γΣzk,
(bθ)k
a

= Σ−1

γ

[
κk +

(
2− 1

a

)
(∆k − ψ + µ− p) +

(
1− 1

a

)(
ψ − ψ

a

)]
, (73)

where k = 1, ..., K. Taking the difference between two funds, (52) for privately optimal
contracts follows.

Substituting (73) in (70), obtain

p∗ = µ− γΣx̄+
K∑
k=1

λkM

(
κk + 2∆k − ψ − ψ

a∗

)
. (74)

This expression for price is a direct analog of equation (38) in the main text.
Next, we consider the socially optimal contracts. Canceling the distributive effect, the

planner’s first-order condition with respect to bθ/a is

0 =
[
κk + ∆k − ψ + µ− p− γΣzk

]>
+
∑
j

1− aj
aj

[
κj + ∆j + µ− p− γΣzj

]> ∂yj
∂p

∂p

∂(bθ/a)k ,

or

κk + ∆k − ψ + µ− p− γΣzk − λkM Λ̃
∑
j

1− aj
aj

[
κj + ∆j + µ− p− γΣzj

]
= 0. (75)

Equation (75) implies that for any j and k,

κk + ∆k − ψ + µ− p− γΣzk
λkM

= κj + ∆j − ψ + µ− p− γΣzj

λjM
.
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Then (75) can be rewritten as

κk + ∆k − ψ + µ− p− γΣzk −
(
κk + ∆k − ψ + µ− p− γΣzk

)∑
j

1− aj
aj

λjM Λ̃

− λkM Λ̃
∑
j

1− aj
aj

ψ = 0,

or, equivalently,

κk + ∆k − ψ
∑
j λ

j
M/a

j + λD∑
j λ

j
M + λD

+ µ− p− γΣzk = 0. (76)

The planner’s first-order condition with respect to a is

0 = ∂(UFk + UMk)
∂ak

+ ∂UFk

∂yk
∂yk

∂ak
+
∑
j

∂UFj

∂yj
∂yj

∂p

∂p

∂ak

= (1− 2ak)γσ2
ε −

(
κk + ∆k − ψ + µ− p− γΣzk

)> yk

ak2 (77)

+ 1− ak
ak

(
κk + ∆k + µ− p− γΣzk

)> ∂yk
∂ak

+
∑
j

1− aj
aj

(
κj + ∆j + µ− p− γΣzj

)> ∂y
∂p

∂p

∂ak
,

where we used ∂yj/∂p = ∂y/∂p(= −Σ−1/γ) for all j to write the last term.
Differentiating the market-clearing condition with respect to ak and (bθ/a)k and sum-

ming up (see (64)),

Λ̃−1
[
∂y

∂p

∂p

∂ak
+ y

ak2
∂y

∂p

∂p

∂(bθ/a)k

]
+ λkM

ak
∂yk

∂ak
= 0.

Using this, multiplying (75) by yk/ak2 and adding to (77), obtain

0 = (1− 2ak)γσ2
ε + 1− ak

ak

(
κk + ∆k + µ− p− γΣzk

)> ∂yk
∂ak

(78)

−
∑
j

1− aj
aj

(
κj + ∆j + µ− p− γΣzj

)> λkM Λ̃
ak

∂yk

∂ak
.
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Substituting (75), we have

0 = (1− 2ak)γσ2
ε −

(
κk + ∆k + µ− p− γΣzk

)> ∂yk
∂ak

+
( 1
ak
− 1

)
ψ.

Finally, using (76) and ∂y/∂a = Σ−1ψ/(γak2), the above equation becomes

(1− ak)ψ
>Σ−1ψ

γak3
λD∑

j λ
j
M + λD

− (2ak − 1)γσ2
ε = 0, (79)

which is the analog of what (47) the original model. Clearly, ak∗∗ = a∗∗ for all k.
To find the equilibrium prices under the socially optimal contract, substitute (76) in

the market-clearing condition (70) to obtain

p∗∗ = µ− γΣx̄+
∑
k

λkM

(
κk + 2∆k −

∑
j λ

j
M/a+ λD∑

j λ
j
M + λD

ψ − ψ

a

)
. (80)

Again, this expression for price is a direct analog of (50).
Comparing (72) and (79), we conclude that a∗∗ < a∗. Comparing (74) and (80) and

using (A), we have the crowded-trades result: p∗∗ < p∗.

To get the comparison for the “average” b between the privately and socially optimal
contracts, sum up (73) over k:

γΣ
∑
k

λkM
(bθ)k
a

=
∑
k

λkM

[
κk +

(
2− 1

a

)
(∆k − ψ + µ− p) +

(
1− 1

a

)(
ψ − ψ

a

)]
.

Substituting (71), multiplying by a, and rearranging terms, we get

∑
k

λkM(bθ)k∗ =
(∑

k

λkM + a∗λD

)
Σ−1

γ

∑
k

λkMκ
k

+ (2a∗ − 1)
∑
k

λkM

[
x̄+ λD

Σ−1

γ
(∆k − ψ)

]

+ (a∗ − 1)
∑
k

λkM

[
1
a∗
−
(∑

k λ
k
M

a∗
+ λD

)]
Σ−1

γ
ψ. (81)

69



The analogous expression in the socially optimal case is

∑
k

λkM(bθ)k∗∗ =
(∑

k

λkM + a∗∗λD

)
Σ−1

γ

∑
k

λkMκ
k

+ (2a∗∗ − 1)
∑
k

λkM

[
x̄+ λD

Σ−1

γ
(∆k − ψ)

]

+ (a∗∗ − 1)
∑
k

λkM

[
1
a∗∗
−
∑
k λ

k
M/a

∗∗ + λD∑
k λ

k
M + λD

]
Σ−1

γ
ψ. (82)

Summing (81) and (82) over assets, following the same method as in the proof of Propo-
sition 2′, using a∗∗ < a∗ and Assumption 2, yields ∑k λ

k
Mb

k∗ >
∑
k λ

k
Mb

k∗∗.

Finally, similar to the expression in the proof of Proposition 3′,

ψ>
(
xMk∗∗ − xMk∗

)
= λDψ

>Σ−1

γ
ψ

[
1−

∑
j λ

j
M/a

∗∗ + λD∑
j λ

j
M + λD

+ 1
a∗
− 1
a∗∗

]
for all k.

Since Σ−1 is positive definite and the expression in square brackets is negative (because
a∗∗ < a∗ < 1), we have ψ>

(
xMk∗∗ − xMk∗

)
< 0 for all k. �

Proof of Proposition 6. Denote the left-hand side of (54) by Fb/a. Contract parameters
a and b/a are complements iff Fb/a,a ≥ 0. Differentiating Fb/a with respect to a, we have

Fb/a,a ∝ θ>
(

λM
λM + λD

ψ

a2 −
∂p

∂a
− γΣ

[
− y

a2 +
(1
a
− 1

)(
∂y

∂a
+ ∂y

∂p

∂p

∂a

)])
.

Using ∂y/∂p = −Σ−1/γ, we have

Fb/a,a ∝ θ>
[

λM
λM + λD

ψ

a2 +
(1
a
− 2

)
∂p

∂a
+ γ

a2 Σy −
(1
a
− 1

)
γΣ∂y

∂a

]

= θ>
[

λM
λM + λD

ψ

a2 − γΣ
{(1

a
− 2

)
∂y

∂p

∂p

∂a
− y

a2 +
(1
a
− 1

)
∂y

∂a

}]
.

70



Using (63), obtain

Fb/a,a ∝ θ>
[

λM
λM + λD

ψ

a2 − γΣ
{
λM/a(1/a− 2)
λM/a+ λD

(
y

a
− ∂y

∂a

)
− 1
a

y

a
+
(1
a
− 1

)
∂y

∂a

}]

= θ>
[

λM
λM + λD

ψ

a2 + 1
a2

γΣy
λM/a+ λD

+
[
1− 1/a

λM/a+ λD

]
γΣ∂y

∂a

]
.

Using ∂y/∂a = Σ−1ψ/(γa2), rearranging terms, and multiplying by a2, we have

Fb/a,a ∝ θ>
[(

1
λM + λD

− 1/a
λM/a+ λD

)
ψ + γΣy

λM/a+ λD

]

∝ θ>
[

λD
λM + λD

(
1− 1

a

)
ψ + γΣy

]

= θ>
[

λD
λM + λD

(
1− 1

a

)
ψ + ∆− ψ/a+ µ− p

]
, (83)

where the last equality follows from the manager’s first-order condition, ∆ +µ−p−ψ/a−
γΣy = 0. Rewrite the expression for the equilibrium average price, (56), as

θ>
[
∆ + µ− p− ψ

a

]
= θ>

[
γΣx̄+ λD∆ +

(
λM
a

+ λD

)
λM

λM + λD
ψ

]
.

Substituting this in (83), we have

Fb/a,a ∝ θ>
[
λD(1− 1/a) + λM(λM/a+ λD)

λM + λD
ψ + γΣx̄+ λD∆

]
. (84)

Notice that

λD(1− 1/a) + λM(λM/a+ λD)
λM + λD

≥ −λD

⇔ λD(1− 1/a) + λM(λM/a+ λD) ≥ −λD(1− λM)

⇔ (2a− 1)λD + λ2
M ≥ 0.

The above condition is satisfied if either a ≥ 1/2 or λ2
M ≥ λD (a > 0 is still implied by
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the manager’s second-order condition). A set of sufficient conditions that guarantee that
a ≥ 1/2 (even if λ2

M < λD) can be found at the end of the proof.
Then if θ>ψ ≥ 0, the right-hand side of (84)

θ>
[
λD(1− 1/a) + λM(λM/a+ λD)

λM + λD
ψ + γΣx̄+ λD∆

]
≥ θ> [γΣx̄+ λD(∆− ψ)] .

Thus a sufficient condition for Fa,b/a ≥ 0 is θ>ψ ≥ 0, θ> [Σx̄+ λD(∆− ψ)/γ] ≥ 0 and
λ2
M ≥ λD.
The remainder of this proof derives a set of sufficient conditions to guarantee that

a ≥ 1/2 in the socially optimal contract.
The social planner’s first-order condition with respect to a is

g(a) ≡ (1− 2a)γσ2
ε − (∆− ψ + µ− p− γΣz)> y

a2

+ 1− a
a

(∆ + µ− p− γΣz)>
[
∂y

∂a
+ ∂y

∂p

∂p

∂a

]
. (85)

Moreover, we have

y = Σ−1

γ

(
∆− ψ

a
+ µ− p

)
,

θ>
(

∆ + µ− p− γΣz − λM/a+ λD
λM + λD

)
= 0,

µ− p = γΣΛ
(
x̄− λM

bθ

a

)
− ΛλM

a

(
∆− ψ

a

)
,

∂y

∂a
= Σ−1

γ

ψ

a2 ,
∂y

∂p
= −Σ−1

γ
,

− ∂p

∂a
= ΛλM

a2

(
∆− 2ψ

a

)
+ λM

a2 Λ2
[
γΣ

(
x̄− λM

bθ

a

)
− λM

a

(
∆− ψ

a

)]
,

∂y

∂a
+ ∂y

∂p

∂p

∂a
= Σ−1

γ

[
ψ

a2 −
∂p

∂a

]
= Λ2λD

a2 (λM∆ + λDψ) + Λ2λM
a2 γΣ

(
x̄− λM

bθ

a

)
.
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Plugging the above expressions in (85), yields

g(a) = (1− 2a)γσ2
ε − (∆− ψ + µ− p− γΣz)> Λ

a2

[
x̄− λM

bθ

a
+ λDΣ−1

γ

(
∆− ψ

a

)]

+ Λ2

a2
1− a
a

(∆ + µ− p− γΣz)>Σ−1

γ

[
λD(λM∆ + λDψ) + λMγΣ

(
x̄− λM

bθ

a

)]

= (1− 2a)γσ2
ε + ψ>

Λ
a2

[
x̄− λM

bθ

a
+ λDΣ−1

γ

(
∆− ψ

a

)]

+ Λ
a2 (∆ + µ− p− γΣz)>

{
−Λ(λM + λD)

[
x̄− λM

bθ

a
+ Σ−1

γ
λD∆

]
+
[1− a

a
λDΛ + 1

a

]
λDψ

}

= (1− 2a)γσ2
ε + ψ>

Λ
a2

[
x̄+ λDΣ−1

γ

(
∆− ψ

a

)]

+ Λ
a2 (∆ + µ− p− γΣz)>

{
−Λ(λM + λD)

[
x̄+ Σ−1

γ
λD∆

]
+
[1− a

a
λDΛ + 1

a

]
λD

Σ−1

γ
ψ

}
,

where the last equality uses the first-order condition for b/a. Moreover,

∆ + µ− p− γΣz = ∆ + µ− p− γΣ
[(1
a
− 1

) Σ−1

γ

(
∆− ψ

a
+ µ− p

)
+ bθ

a

]

=
(

2− 1
a

)
(∆ + µ− p) + 1

a

(1
a
− 1

)
ψ − γΣbθ

a
.

Plugging this in the expression for g(a), obtain

g(a) = (1− 2a)γσ2
ε + ψ>

Λ
a2

[
x̄+ λDΣ−1

γ

(
∆− ψ

a

)]

+ Λ
a2

[(
2− 1

a

)
(∆ + µ− p) + 1

a

(1
a
− 1

)
ψ − γΣbθ

a

]>
×

×
[
−Λ(λM + λD)

(
x̄+ Σ−1

γ
λD∆

)
+
(1− a

a
λDΛ + 1

a

)
λD

Σ−1

γ
ψ

]
.

Assuming that the second-order condition for a holds, the optimal a ≥ 1/2 if g(1/2) ≥ 0.
To show the latter, substitute a = 1/2 in the selected terms in the above expression g(a)
(while leaving a in other terms so that we can simplify them further later). Then some
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terms cancel out or simplify, and we have

g(a)
∣∣∣∣
a= 1

2

∝ ψ>
[
x̄+ λDΣ−1

γ

(
∆− ψ

a

)]
+
[

1
a

(1
a
− 1

)
ψ − γΣbθ

a

]>
×

×
[
−Λ (λM + λD)

(
x̄+ Σ−1

γ
λD

(
∆− ψ

a

))
+ 1− a

a
λD

Σ−1

γ
ψ

]

= 1− a
a

λD

[
1
a

(1
a
− 1

)
ψ − γΣbθ

a

]> Σ−1

γ
ψ

+
[
γΣbθ

a
Λ(λM + λD) + ψ

(
1− 1

a

(1
a
− 1

)
Λ (λM + λD)

)]> [
x̄+ λDΣ−1

γ

(
∆− ψ

a

)]

= λD

[
2ψ − γΣbθ

a

]> Σ−1

γ
ψ +

[
γΣbθ

a
(λM + λD)− λDψ

]> [
x̄+ λDΣ−1

γ
(∆− 2ψ)

]
.

Using the expression for bθ/a, we have

2ψ − γΣbθ
a

= 2ψ − 2θ>ψ − ψ>θ/(λM + λD)
θ>Σθ Σθ = 2ψ − λD

λM + λD

θ>ψ

θ>ΣθΣθ,

γΣbθ
a

(λM + λD)− λDψ = λD

(
θ>ψ

θ>ΣθΣθ − ψ
)
.

Then a set of sufficient condition for g(1/2) ≥ 0 and hence a ≥ 1/2 is

(
θ>ψ

θ>ΣθΣθ − ψ
)> [

x̄+ λDΣ−1

γ
(∆− 2ψ)

]
≥ 0,

[
2ψ − λD

λM + λD

θ>ψ

θ>ΣθΣθ
]>

Σ−1ψ ≥ 0.

Notice that they are satisfied, e.g., if ψ ∝ Σθ (given Assumption 1 in the main text). �
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B Discussion on Value Added and Costs of Asset Man-
agement (for Online Publication)

This appendix elaborates on the assumptions we make regarding the costs and benefits of
asset management.

As mentioned in the body of the paper, there are a variety of interpretations for alpha.
In our baseline formulation, alpha has nothing to do with superior information, which could
be associated with stock-selection and market-timing abilities.54 Under this interpretation,
direct investors who happen to buy the same assets or traded at the same time still do not
earn the same returns as the managers. This interpretation has the advantage of being
consistent with the vast literature (e.g., Fama and French, 2010) that casts doubt on the
ability to generate abnormal returns by stock picking or market timing.

It is also consistent with a great deal of empirical evidence suggesting that savvy in-
vestors can augment their returns by lending securities, by conserving on transactions costs
(e.g., from crossing trades in-house or by obtaining favorable quotes from brokers) or by
providing liquidity (i.e., serving as a counterparty to liquidity demanders and earning a
premium on such trades). For example, securities lending contributed 5% of total revenue
of both BlackRock and State Street in 2017. While it has recently become possible for
some retail investors to participate in securities lending, they earn lower returns for this
activity and do not have the same opportunities as a large asset management firm. It is also
well established that portfolio managers can profit from providing immediacy in trades,
by either buying assets which are out of favor or selling ones that are in high demand.55

It would be prohibitively expensive for retail investors to try to do this. Finally, Eisele,
Nefedova, Parise, and Peijnenburg (2020) present evidence that trades crossed internally
within a fund complex are executed more cheaply than comparable external trades.

The noise term ε in (1) captures the fact that the return-augmenting activities do
not produce a certain return each period. For example, the demand for liquidity, the

54See Appendix D.1 for a model in which abnormal returns are associated with stock picking ability.
55In a classic paper, Keim (1999) estimates an annual alpha of 2.2% earned by liquidity provision

activities of a fund. Rinne and Suominen (2016) document that the top decile of liquidity providing
mutual funds outperform the bottom decile by about 60 basis points per year. Anand, Jotikasthira, and
Venkataraman (2018) find similar estimates using a different sample of funds over a different time period.

75



opportunities to lend shares and the possibility of crossing trades all fluctuate, so even a
very alert and skilled manager will have some randomness in her returns. Also for securities
that are lent, there is a risk that they will not be returned in a timely manner or potentially
at all.

There is also considerable evidence to support our assumption that the manager must
incur a private cost in order to deliver the abnormal returns. For instance, to successfully
buy and sell at the appropriate times to provide liquidity, the manager has to be actively
monitoring market conditions while markets are open. For securities lending, the manager
would also have to decide whether to accommodate requests to borrow shares. In some
cases, these demands arise because the entity borrowing the shares wants to vote them and
the manager must decide whether to pass up that choice.56

We could instead assume that the private cost arises because the manager needs to exert
costly effort to generate the excess returns, as is often done in the contracting literature
(e.g., Holmstrom and Milgrom, 1987, 1991). Incorporating effort makes the algebra much
more involved.57 However, under certain assumptions our main insights extend to this case.
Importantly, it is the unobservability of the portfolio holdings and not the unobservability
of effort that is central to our mechanism. To make this clear and to focus on the key
friction, in our main model we do not include an effort choice. We analyze an extension
that incorporates effort in Appendix D.2 and show that our main insights carry over.

It is also plausible that the benefits and costs associated with the return-augmenting
activities are increasing in the size of the holdings.58 For example, in terms of the liquidity

56Most managers also incur some costs that are observable and can be passed on directly to fund
investors. Examples would include custody, audit, shareholder reports, proxies and some external legal
fees. Our main results continue to hold in a model in which some costs are observable.

57Our results trivially extend if effort is bounded from above (e.g., if there is a time constraint), and
the optimal solution is at the upper bound.

58Implicit in our expressions for the returns on the fund in (1) and the portfolio-management cost is
that they scale linearly with the size of the portfolio. This is seemingly inconsistent with Berk and Green
(2004) who assume that there are decreasing returns to scale in asset management, but it is not. Berk and
Green explicitly attribute decreasing returns to scale to the price impact of fund managers. The bigger
the portfolio invested in an alpha-opportunity, the smaller the return on a marginal dollar invested. Berk
and Green’s model is in partial equilibrium and their price impact is simply an exogenous function of fund
size. Ours is a general-equilibrium model, in which the price impact endogenously arises from a higher
aggregate demand of portfolio managers for high-∆ assets. Linearity allows us to solve the model in closed
form, but what is important conceptually is that the cost is increasing in x. We show in Appendix C
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provision and trade-crossing, the wider the range of securities in the portfolio and/or the
more a fund holds on any particular security, the easier it would be to provide liquidity or
more likely it would be that a trade can be offset. For securities lending, a larger portfolio
opens up additional lending opportunities. As mentioned earlier, it is simplest to think of
the costs as being tied to the time it takes to undertake the various activities. Thought of
this way, if the opportunities to augment returns increase as the portfolio expands, then
the costs of realizing them would naturally grow too.

C Achieving the Social Optimum with Taxes
(for Online Publication)

This appendix analyzes how imposing taxes can implement the constrained socially optimal
allocation and prices in the equilibrium in which contracts are chosen by fund investors.
There are multiple ways of doing that, and we consider two alternatives here—one with
proportional income taxes (or subsidies) on the managers and fund investors, the other
with an income tax on the managers and a cap on a.59

First, suppose there are proportional tax rates on the fund investors’ and managers’
incomes, denoted by t and t′, respectively. The tax revenue—which is uncertain, given that
the incomes are uncertain—is distributed to the fund investors as a lump-sum transfer
T . Denote the constant and stochastic part of the transfer by τ0 and τ so that T =
τ0 + τ>(D̃ − p). How τ0 and τ are determined is discussed later.

Since we want to implement the constrained optimal allocation, the taxes and the lump-
sum transfer will be such that y = (1− t′)[ax− bθ] and z = (1− t)[(1− a)x+ bθ] + τ are
the same as in the constrained social optimum.

that while the algebra is messier, under some assumptions our main analysis extends to the case of more
general specifications of the return and cost.

59As will become clear from the analysis, we need two tax rates to eliminate the differences in the two
first-order conditions (with respect to bθ/a and a) in the private and social cases, and one tax rate is not
enough.
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The utilities of the fund investor and manager with taxes can be written as

UF = (1− t)(1− a)x>∆ + z>(µ− p)− c(1− t) + τ0 −
γ

2
[
z>Σz + (1− t)2(1− a)2σ2

ε

]
+ xF>−1 p,

UM = (1− t′)ax>∆− x>ψ + y>(µ− p) + c(1− t′)− γ

2
[
y>Σy + (1− t′)2a2σ2

ε

]
.

The manager’s demand function is

xM = Σ−1 ∆− ψ/[a(1− t′)] + µ− p
γa(1− t′) + bθ(1− t′)

a(1− t′) . (86)

To implement the social optimum, we need a(1− t′) = a∗∗ and bθ(1− t′) = (bθ)∗∗.
From the first-order condition with respect to c, the Lagrange multiplier on the man-

ager’s participation constraint is ξ = (1− t)/(1− t′). The fund investor maximizes

UF + ξUM = [(1− t)x+ τ ]> (∆ + µ− p) + τ0 −
1− t
1− t′x

>ψ

− γ

2

{
z>Σz + 1− t

1− t′y
>Σy + (1− t)

[
(1− t)(1− a)2 + (1− t′)a2

]
σ2
ε

}

subject to the manager’s incentive constraint (86), y = (1− t′)[ax− bθ], and

z = (1− t)
[

1
1− t′

1− a
a

y + bθ

a

]
+ τ.

The first-order condition with respect to bθ/a is

(1− t)(∆ + µ− p− γΣz)− 1− t
1− t′ψ = 0,

∆ + µ− p− γΣz − 1
1− t′ψ = 0. (87)

Recall that the planner’s first-order condition with respect to bθ/a is

∆ + µ− p− γΣz − ψλM/a
∗∗ + λD

λM + λD
= 0.
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To equate the two, we need 1− t′ = (λM + λD)(λM/a∗∗ + λD), or

t′ = λM
λM/a∗∗ + λD

1− a∗∗
a∗∗

. (88)

Intuitively, the positive tax on the manager’s income inflates his costs relative to returns,
which discourages him from investing in risky assets.

Notice, quite interestingly, that one tax rate, t′ equates N first-order conditions (pro-
vided that a(1− t′) = a∗∗), since θ is an N × 1 vector.

The first-order condition with respect to a is

(1− t) [(1− t)(1− a)− (1− t′)a] γσ2
ε + (∆ + µ− p+ γΣz) 1− t

1− t′
1− a
a

∂y

∂a
= 0.

Dividing by 1 − t and using (87), ∂y/∂a = Σ−1ψ/(γa2(1 − t′)), and a(1 − t′) = a∗∗, the
above condition can be rewritten as

[(1− t)(1− a)− (1− t′)a] γσ2
ε + 1− a

a∗∗3
ψ>Σ−1ψ

γ
= 0.

Recall that the planner’s first-order condition with respect to a is

(1− 2a∗∗)γσ2
ε + 1− a∗∗

a∗∗3
ψ>Σ−1ψ

γ

λD
λM + λD

= 0.

To equate the two, we need

1− a
(1− t)(1− a)− (1− t′)a = λD

λM + λD

1− a∗∗
1− 2a∗∗ , (89)

From a = a∗∗/(1 − t′) = a∗∗(λM/a∗∗ + λD)/(λM + λD), 1 − a = (1 − a∗∗)λD/(λM + λD),
and (89) simplifies to (1− t)(1− a)− (1− t′)a = 1− 2a∗∗, or

t(1− a) + t′a = 0. (90)
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Using the expression for t′ given in (88) and a = a∗∗/(1− t′), we have

t = −λM/λD.

That is, in order to implement the constrained social optimum, the fund manager’s income
tax rate should be negative. Intuitively, in order to discourage the fund investor from
setting a too high, the subsidy should be used so that the fund investor effectively retains a
larger share of the return for himself. His after-tax share of the return equals (1−t)(1−a) =
1− (1− t′)a. That is, it is as if he only has to give (1− t′)a instead of a to the manager.
Thus the income tax rates t and t′ considered here effectively translate into the tax rates
of t′ imposed directly on a and bθ such that (1− t′)a = a∗∗ and (1− t′)bθ = (bθ)∗∗.

Finally, the transfer to the fund investor that balances the budget is

T = [t(1− a) + t′a]x>(∆ + D̃ − p) + (t− t′)[bθ>(D̃ − p)− c]

= (t− t′)[bθ>(D̃ − p)− c],

where the last equality follows from (90), and so τ0 = (t− t′)c and τ = (t− t′)bθ. Note that
while t− t′ < 0, the expected lump-sum transfer (t− t)′

[
bθ>(µ− p)− c

]
can be negative

or positive depending on the value of the manager’s outside option, which pins down c.
An alternative scheme that achieves the social optimum is a combination of the income

tax rate t′ given by (88) imposed on the manager together with a cap (an upper bound)
on the sensitivity of the manager’s compensation with respect to the fund performance, a,
at ā = a∗∗/(1− t′), so that a ≤ ā = (λM + a∗∗λD)/(λM + λD). As before, the total amount
of tax revenue should be paid to the fund investor as a lump-sum transfer.
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D Alternative Model Specifications and Extensions
(for Online Publication)

D.1 Alternative Model with Managerial Ability

In this Appendix, we consider an alternative model in which asset managers possess private
information (or stock-picking skill). The model here is more conventional than in the
main text: it mimics Grossman and Stiglitz (1980), replacing their noise traders with
liquidity traders so that it is possible to conduct welfare analysis. In this model, the
rationale for delegation of portfolio selection to a fund manager is the manager’s edge in
ability/information (as in Garleanu and Pedersen, 2018 and many others). For tractability,
we assume the measure of uninformed direct investors is 0.

We will demonstrate that our main results go through with a slight modification. Under
additional assumptions, there is too much benchmarking (b is higher) and too much incen-
tive provision (a is higher) in the privately versus socially optimal contracts. Furthermore,
the model also generates crowded trades, in that the expected total market capitalization
is lower under the social contract. Finally, the expected asset management cost is lower in
the social case.

D.1.1 Model

There are three periods, t = 0, 1, 2. Investment opportunities consist of N risky stocks and
a risk-free bond. The stocks are claims to a cash flow D ∼ N(µ,Σ), realized at t = 2.
The variables D and µ are N × 1 vectors and Σ is a N × N symmetric positive-definite
matrix. We normalize the interest rate on the risk-free bond to zero. There are x̄ shares of
the risky stocks and the bond is in infinite net supply. The N × 1 vector p denotes stock
prices.

There are two types of investors participating in the market: informed portfolio man-
agers and uninformed investors with liquidity needs. In period 1, the fund managers
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observe a signal s about the cash flow,

s = D + η, η ∼ N(0,Ση),

where η is independent of D and Ση is a N × N symmetric positive-definite matrix. We
therefore have s ∼ N(µ,Σs), with Σs = Σ + Ση. As in the main text, the manager incurs a
private portfolio-management cost x>ψ, where ψ > 0 is an exogenous N × 1 vector and x
is a fund portfolio. The uninformed liquidity traders take the place of the Grossman and
Stiglitz (1980) noise traders. They receive a liquidity shock ex̄>(D−µ) in period 2, where
e ∼ N(0, σ2

e), and e is independent of both D and η. Liquidity traders learn the value
of e in period 1. The values of e and s become publicly observable in period 2. In order
to focus on the role of the contracts in providing incentives and sharing dividend risk, we
assume there is a complete insurance market with respect to both the liquidity shock e

and the interim signal s. Agents trade insurance contracts in period 0. The stock and the
bond markets open in period 1.

The population fractions of fund managers and liquidity traders are λM and λL, re-
spectively. Each fund manager is associated with one fund investor who employs her, and
we normalize the total population to one, 2λM +λL = 1. The agents have the same CARA
utility function (defined over the period-2 wealth or compensation) as in the main text,
and a manager’s compensation is the same as in equation (25). The liquidity traders and
fund investors initial endowments are xj−1 shares, j ∈ {L, F}, with λLxL−1 + λMx

F
−1 = x̄.

A key technical complication relative to the model considered in the main text is that
fund investors contract with fund managers in period 0, when period-1 stock prices and
portfolios are uncertain (as we show below, they depend on the realizations of s and e).

D.1.2 Liquidity Traders’ and Managers’ Problems

The derivations below follow the standard approach in the noisy rational expectations
equilibrium literature. In particular, we conjecture that the risky-asset price is a linear
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function of the signal s and the liquidity shock e, i.e.,

p = A+B(s− µ+ Ce), (91)

where A and C are N × 1 vectors and B is a N ×N matrix. Note that this price becomes
known in period 1, when s and e are realized, but it is unknown in period 0.

We first solve the inference problem of the agents. Agents use the price and their private
information to form a posterior distribution for the cash flow D. For fund managers, the
price conveys no additional information relative to observing the signal s. Because of the
joint normality of (D, η), D conditional on s, D|s, remains normal, with the posterior
mean and variance-covariance matrix as follows:

D|s ∼ N
(
µ+ βs(s− µ),ΣD|s

)
,

βs = Σ−
1
2

s ΣΣ−
1
2

s ,

ΣD|s =
(
Σ−1 + Σ−1

η

)−1
.

We now turn to the liquidity trader’s and the manager’s portfolio-choice problems. A
liquidity trader is maximizing an expected CARA utility of his terminal wealth, with the
latter given by W = xL>−1 p+ x>(D − p) + ex̄>(D − µ). This optimization is equivalent to

max
x

x>(E[D|p, e]− p)− γ

2 (x+ ex̄)>ΣD|p,e(x+ ex̄) + ρL(e, s)− p̃L︸ ︷︷ ︸
≡uL

,

where uL is the interim expected utility of the liquidity trader conditional on p and e,
ρL(e, s) is the payment from the insurance, and p̃L is the insurance premium. The man-
ager’s problem is

max
x

ax>(E[D|s]− ψ/a− p)− bθ>(µ− p) + c− γ

2
[
(ax− bθ)>ΣD|s(ax− bθ) + a2σ2

ε

]
+ ρM (e, s)− p̃M︸ ︷︷ ︸

≡uM

,

where uM is the interim expected utility of the manager conditional on s, ρM(e, s) is the
payment from the insurance, and p̃M is the insurance premium.
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The important difference relative to the main text is that we now have the posterior
mean and variance-covariance matrix instead of the unconditional ones. The period-1
liquidity trader’s and the manager’s demands for the risky assets, xL and xM , are given by

xL = Σ−1
D|p

E[D|p]− p
γ

− ex̄, (92)

xM = Σ−1
D|s
E[D|s]− ψ/a− p

aγ
+ bθ

a
.

where ΣD|p is the posterior variance-covariance matrix of the dividends conditional on p.
Since the liquidity traders observe prices and they know their own shock e, they can

learn s. Therefore, we can rewrite (92) as

xL = Σ−1
D|s
µ+ βs(s− µ)− p

γ
− ex̄. (93)

Analogous to the main text, define y as

y = Σ−1
D|s
µ+ βs(s− µ)− ψ/a− p

γ
, (94)

so that we can write

xM = y

a
+ bθ

a
,

z = xM − y. (95)

The auxiliary variables y and z parallel those in the main text. These variables reflect the
effective allocations of asset holdings to the manager and fund investors, respectively.

The market-clearing condition in this economy is given by λMxM + λLx
L = x̄. We can

use it to solve for the coefficients A, B, and C in the market-clearing asset prices in (91).
Substituting managers’ and liquidity traders’ portfolio demands into market clearing, we
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have

λM

[
Σ−1
D|s
µ+ βs(s− µ)− p− ψ/a

aγ
+ bθ

a

]
+ λL

[
Σ−1
D|s
µ+ βs(s− µ)− p

γ
− ex̄

]
= x̄.

Rearranging terms, defining
Λ̂ = [λM/a+ λL]−1 ,

and solving for p yields

p = µ− γΛ̂ΣD|s

(
x̄− λM

bθ

a

)
− λM Λ̂

a2 ψ + βs(s− µ)− λLΛ̂eγΣD|sx̄, (96)

so that coefficients in (91) are

A = µ− γΛ̂ΣD|s

(
x̄− λM

bθ

a

)
− λM Λ̂

a2 ψ,

B = βs, (97)

BC = −λLΛ̂γΣD|sx̄. (98)

D.1.3 Fund Investors’ Problem

Define uF as the interim expected utility of a fund investor conditional on s and p (i.e., as
of period 1):

uF =
(
xF−1

)>
p+ z> [µ+ βs(s− µ)− p]− γ

2z
>ΣD|sz −

γ

2a
2σ2

ε − c+ ρF (e, s)− p̃F ,

where ρF (e, s) is the payment from the insurance and p̃F is the premium of the insurance.
Fund investors themselves do not observe e and s in the interim period, but they hire
managers who observe s and can infer e from asset prices. Hence the expected utility
above accounts for the managers using the relevant posterior means and variance-covariance
matrix.

The fund investor’s problem is to maximize ex-ante utility (as of period 0, before
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observing s and p) subject to the participation and incentive constraint of the manager,

max
a,bθ/a,c,x

E [− exp (−γuF )] (99)

s.t. E [− exp (−γuM)] ≥ û0, (100)

x = Σ−1
D|s
µ+ βs(s− µ)− ψ/a− p

aγ
+ bθ

a
. (101)

Substituting in the expression for the risky-asset prices from equation (91) into (93)–
(95), we get

xL = Σ−1
D|s
βs −B
γ

(s− µ)−
(

Σ−1
D|s
BC

γ
+ x̄

)
e+ Σ−1

D|s
µ− A
γ

,

y = Σ−1
D|s
µ− A− ψ/a

γ
+ Σ−1

D|s
βs −B
γ

(s− µ)− Σ−1
D|s
BC

γ
e,

z =
(1
a
− 1

)
Σ−1
D|s
βs −B
γ

(s− µ)−
(1
a
− 1

)
Σ−1
D|s
BC

γ
e+

(1
a
− 1

)
Σ−1
D|s
µ− A− ψ/a

γ
+ bθ

a
.

Using (97) and (98) to simplify the above expressions, substituting them into the interim
utilities uF , uM , and uL, and using λMxF−1 + λLx

L
−1 = x̄, we arrive at

uF = Me2 +Ke+ x̄>(s− µ) + z>−1A

+
[(1
a
− 1

)
Σ−1
D|s

µ−A− ψ/a
γ

+ bθ

a

]> [
µ−A−

(1
a
− 1

)
µ−A− ψ/a

2 − γ

2 ΣD|s
bθ

a

]
− γ

2a
2σ2
ε − p̃F ,

uM = Me2 +Ke+ x̄>(s− µ) + y>−1A+
(µ−A− ψ/a)>ΣD|s(µ−A− ψ/a)

2γ − ψ> bθ
a

− γ

2 (1− a)2σ2
ε − p̃M ,

uL = Me2 +Ke+ x̄>(s− µ) + xL>−1A+
(µ−A)>Σ−1

D|s(µ−A)
2γ − p̃L,
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where

M = λM(−1/a2 + 2/a− 2)− λL
2 λ2

LΛ̂2γx̄>ΣD|sx̄,

K = γΛ̂2λL

(
−λM
a2 + λM

a
− 1

)
x̄>ΣD|sx̄+

(
2− 1

a

)
γΛ̂2λMλL(λM + λL)x̄>ΣD|s

bθ

a

− λMλLΛ̂
a

[
1 + λLΛ̂

(1
a
− 1

)(
2− 1

a

)]
x̄>ψ.

The first three terms in these interim utility functions, Me2 + Ke + x̄>(s − µ), are the
same across the agents because the agents are able to perfectly share the e- and s-related
risk through their trade in insurance contracts on e and s.

Before turning to the characterization of the equilibrium with privately optimal con-
tracts, we state the following technical lemma, which we use in our analysis below. The
equations in this lemma are based on known formulas from statistics for the chi-squared
distribution, and we therefore omit the proofs.60

Lemma 10. Suppose v is an m× 1 normal vector with mean 0 and covariance matrix Σv,
Ā is a scalar, B̄, Ē and F̄ are m × 1 vectors, C̄ is an m × m symmetric matrix, I the
m×m identity matrix, and |X| is a determinant of matrix X. Then

(i) Ev exp
{
−γ

[
Ā+ B̄>v + 1

2v
>C̄v

]}
=

exp
{
−γ

[
Ā− 1

2γB̄
>Σv(I + γC̄Σv)−1B̄

]}
√
|I + γC̄Σv|

,

(ii) Ev
[
exp

{
−γ

[
Ā+ B̄>v + 1

2v
>C̄v

]}
D̄>v

]
,

= −γ
exp

{
−γ

[
Ā− 1

2γB̄
>Σv(I + γC̄Σv)−1B̄

]}
√
|I + γC̄Σv|

B̄>Σv(I + γC̄Σv)−1D̄,

(iii) Ev
[
exp

{
−γ

[
Ā+ B̄>v + 1

2v
>C̄v

]}
(Ē>v)(F̄>v)

]
=

exp
{
−γ

[
Ā− 1

2γB̄
>Σv(I + γC̄Σv)−1B̄

]}
√
|I + γC̄Σv|

×

×
[
Ē>Σv(I + γC̄Σv)−1F̄ + γ2B̄>ĒΣv(I + γC̄Σv)−1(F̄Σv(I + γC̄))>B̄

]
.

60We used Mathematica to find these solutions.
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D.1.4 Privately Optimal Contracts

We now turn to the analysis of the fund investor’s problem (99)−(101). Denote the La-
grange multiplier on the participation constraint (100) by ξ. The first-order condition with
respect to c is

E [exp (−γuF )] = ξE [exp (−γuM)] . (102)

The first-order condition with respect to bθ/a is

E
{

exp (−γuF )
[
µ+ βs(s− µ)− p− γΣD|sz

]}
− ξE [exp (−γuM)ψ] = 0.

Together with (102), it yields

E
{

exp (−γuF )
[
µ+ βs(s− µ)− ψ − p− γΣD|sz

]}
= 0. (103)

Notice that this condition looks similar to the fund investor’s first-order condition with
respect to bθ/a in the main text, (31), but accounts for the extra uncertainty.

Substituting for the price, we have

µ+ βs(s− µ)− ψ − p− γΣD|sz

= −
[
2− 1

a

]
BCe+

[
µ− A− ψ

a

] [
1− 1

a

]
+ µ− A− γΣD|s

bθ

a
− ψ.

Applying Lemma 10 (i)−(ii) to evaluate (103) explicitly, with v = (e, s − µ)> being an

88



(N + 1)× 1 dimensional normally-distributed vector, we obtain

0 = E
{

exp (−γuF )
[
µ+ βs(s− µ)− ψ − p− γΣD|sz

]}
= 1√

1 + 2γσ2
eM

exp

− γ
z>−1A+

[(1
a
− 1

)
Σ−1
D|s
µ− A− ψ/a

γ
+ bθ

a

]>

×
[
µ− A−

(1
a
− 1

)
µ− A− ψ/a

2 − γ

2 ΣD|s
bθ

a

]
− γ

2a
2σ2

ε − p̃F − c

− γ

2

(
K2σ2

e

1 + 2γσ2
eM

+ x̄>Σsx̄

)
×
[(
µ− A− ψ

a

)(
1− 1

a

)
+ µ− A− γΣD|s

bθ

a
− ψ − γ Khσ2

e

1 + 2γσ2
eM

]

= E [exp (−γuF )]
[(
µ− A− ψ

a

)(
1− 1

a

)
+ µ− A− γΣD|s

bθ

a
− ψ − γ Khσ2

e

1 + 2γσ2
eM

]
,

(104)

where

h ≡
(

2− 1
a

)
λLΛ̂γΣD|sx̄.

Define

q ≡
(
µ− A− ψ

a

)(
1− 1

a

)
+ µ− A− γΣD|s

bθ

a
− ψ, (105)

=
(

2− 1
a

)
γΛ̂ΣD|sx̄− Λ̂γΣD|s

bθ

a
+
1
a
− 1 + λLΛ̂

a

(1
a
− 2

)ψ.
Then (104) can be written as follows:

(1 + 2γσ2
eM)q − γσ2

eKh = 0. (106)

Substituting M and K in (106), we have the following expression for the first-order condi-
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tion with respect to bθ/a:

(1 + 2γσ2
eM)

[(
2− 1

a

)
γΛ̂ΣD|sx̄+

[
1
a − 1 + λLΛ̂

a

( 1
a − 2

)]
ψ − γΛ̂ΣD|s

bθ

a

]
(107)

− γ2σ2
e

(
2− 1

a

)
λLΛ̂

[
γΛ̂2λL

(
−λM

a2 + λM

a − 1
)
x̄>ΣD|sx̄+

(
2− 1

a

)
γΛ̂2λMλL(λM + λL)x̄>ΣD|s bθa

− λMλLΛ̂
a

(
1 + λLΛ̂

( 1
a − 1

) (
2− 1

a

))
x̄>ψ

]
ΣD|sx̄ = 0.

For convenience, we normalize benchmark weights θ such that61

x̄>ΣD|sθ = 1. (108)

We adopt the same normalization with socially optimal contracts.
Turning to the first-order condition with respect to a, it can be written as

0 = E [exp (−γuF )] γ(−a)σ2
ε + E

[
exp (−γuF ) γ(1− a)σ2

ε

]
(109)

+ E

exp (−γuF )
[
µ+ βs(s− µ)− p− γzσ2

D|s

] 1− a
a3

Σ−1
D|s

γ
ψ


− E

{(
exp (−γuF )

[
µ+ βs(s− µ)− p− γzσ2

D|s

]
− ξ exp (−γuM)ψ

)> y

a2

}
.

Using y = Σ−1
D|s

µ−A−ψ/a
γ

− Σ−1
D|s

BC
γ
e and (103), the term in the last line is

E

{[
exp (−γuF )

(
µ+ βs(s− µ)− p− γzσ2

D|s

)
− ξ exp (−γuM )ψ

]> y

a2

}
= 1
γa2E

{[
exp(−γuF )

(
µ+ βs(s− µ)− p− γzσ2

D|s

)
− ξ exp (−γuM )ψ

]> (
−Σ−1

D|sBC
)
e

}
.

61We will use this normalization to prove Lemma 11.
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Applying Lemma 10,

E

{
exp (−γuF )

[
µ+ βs(s− µ)− p− γzσ2

D|s

]> (
−Σ−1

D|sBC
)
e

}
= E [exp (−γuF )] (q + ψ)>

(
−Σ−1

D|sBC
)(
−γ Kσ2

e

1 + 2γσ2
eM

)

+ E [exp (−γuF )]

σ2
eh
>
(
−Σ−1

D|sBC
)

1 + 2γσ2
eM

+ γ2
σ4
eh
>
(
−Σ−1

D|sBC
)
K2

(1 + 2γσ2
eM)2


and

E
[
exp (−γuM )ψ>

(
−Σ−1

D|sBC
)
e
]

= E exp (−γuM )ψ>
(
−Σ−1

D|sBC
)(
−γ Kσ2

e

1 + 2γσ2
eM

)
.

Using (102), we have

E

{(
exp(−γuF )(µ+ βs(s− µ)− p− γzσ2

D|s)− ξ exp(−γuM )ψ
)>

e

}

= E [exp(−γuF )]
σ2
eh
>
(
−Σ−1

D|sBC
)

1 + 2γσ2
eM

.

Plugging this into (109), the first-order condition with respect to a becomes

0 = −(2a− 1)γσ2
ε + (1− a)

ψ>Σ−1
D|sψ

γa3 − λLΛ̂h>x̄σ2
e

a2(1 + 2γσ2
eM) . (110)

Notice that this condition is similar to the fund investor’s first-order condition with respect to a
in the main text, (34), except the last term is new, and it accounts for uncertainty in e.

Evaluated at a = 1
2 , for small enough σ2

e , the right-hand side of (110) is equal to
ψ>Σ−1

D|sψ

2γa3 ,
which is positive. We therefore conclude that a > 1

2 .
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D.1.5 Socially Optimal Contracts

The social planner’s problem is to maximize a weighted sum of ex-ante utilities of fund investors
and liquidity traders, with weights ωF and ωL, respectively:

max
bθ/a,a,c,xL

ωFE [− exp (−γuF )] + ωLE [− exp (−γuL)]

subject to (93), (100), and (101).
As in the main text, we choose the Pareto weights (ωF , ωL) so as to cancel the distributive

effect. Also as in the main text, the additional terms in the social planner’s first-order condition
as compared to that of fund investors account for how contracts affects prices and manager’s
demand. Specifically, the social planner recognizes that

∂y

∂p
= −

Σ−1
D|s
γ

, (111)

∂p

∂(bθ/a) = λM Λ̂γΣD|s, (112)

which are analogs of the same expressions as in the main text, except that the posterior variance-
covariance matrix appears in place of the unconditional one.

The planner’s first-order condition with respect to c is the same as for the fund investor, and is
given by (102). The fist-order condition with respect to bθ/a (after canceling out the distributive
effect) is

E

{
exp (−γuF )

[
µ+ βs(s− µ)− p− γΣD|sz

] [
1 + 1− a

a

∂y

∂p

∂p

∂(bθ/a)

]}
− ξE [exp (−γuM )ψ] = 0.

Using (102), (111), and (112), and rearranging terms, the above condition becomes

E

{
exp (−γuF )

[
µ+ βs(s− µ)− p− λM/a+ λL

λM + λL
ψ − γΣD|sz

]}
= 0. (113)

Again, this condition looks similar to the planner’s first-order condition with respect to
bθ/a in the main text, (43), but accounts for the extra uncertainty.

Applying Lemma 10 and using similar steps as in the case with the privately optimal
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contracts, we can further rewrite (113) as

(
1 + 2γσ2

eM
)
q̃ − γσ2

eKh = 0, (114)

where

q̃ ≡
(
µ− A− ψ

a

)(
1− 1

a

)
+ µ− A− γΣD|s

bθ

a
− λM/a+ λL

λM + λL
ψ. (115)

Compared to q defined in (105), we have that q̃ < q. That is, the social planner’s effective
cost is λM/a+λL

λM +λL
ψ as opposed to the fund investor’s ψ. This comparison parallels the com-

parison of costs in the main text (see subsection 3.7), but with λL instead of λD. Finally,
following the same steps as in the previous subsection, we can write

γΛ̂x̄>ΣD|s
bθ

a
=
(

2− 1
a

)
γΛ̂x̄>ΣD|sx̄+

1
a

+ λLΛ̂
a

(1
a
− 2

)
− λM/a+ λL

λM + λL

ψ +O(σ2
e).

(116)

The planner’s first-order condition with respect to a (after canceling out the distributive
effect) is

0 = E [exp (−γuF )]
[
γ(−a)σ2

ε

]
+ ξE

{
exp (−γuM)

[
γ(1− a)σ2

ε + ψ>
y

a2

]}
+ E

{[
exp (−γuF )

(
µ+ βs(s− µ)− p− γzσ2

D|s

)]> (
− y

a2 + 1− a
a

Σ−1
D|s

ψ

a2γ
+ 1− a

a

∂y

∂p

∂p

∂a

)}
.

Using (102) this becomes

0 = E [exp (−uF )] γ(1− 2a)σ2
ε + ξE

[
exp (−γuM)ψ> y

a2

]
(117)

+ E

{[
exp (−γuF )

(
µ+ βs(s− µ)− p− γzσ2

D|s

)]> (
− y

a2 + 1− a
a

Σ−1
D|s

ψ

a2γ
+ 1− a

a

∂y

∂p

∂p

∂a

)}
.

Differentiating the market-clearing condition λM
(
y
a

+ bθ
a

)
+λLx

L = x̄ with respect to bθ/a
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and a, we have

∂p

∂a
= λM Λ̂

a3 ψ − λM Λ̂γΣD|s
y

a2 .

Plugging this in (117), we obtain

0 = E[exp(−γuF )]γ(1− 2a)σ2
ε + ξE

[
exp(−γuM )ψ> y

a2

]

+ E

{(
exp (−γuF )

[
µ+ βs(s− µ)− p− γzσ2

D|s

])>
×

×

− y

a2 + 1− a
a

Σ−1
D|s

ψ

a2γ
−

Σ−1
D|s
γ

1− a
a

λM Λ̂
a2

(
ψ

a
− γΣD|sy

)}

= E [exp (−γuF )] γ(1− 2a)σ2
ε + ξE

[
exp(−γuM )ψ> y

a2

]
+ E

[
exp (−γuF )

(
µ+ βs(s− µ)− p− γzσ2

D|s

)> (
λLΛ̂1− a

a
Σ−1
D|s

ψ

a2γ
− (λM + λL)Λ̂ y

a2

)]
.

Using (102) and (113), this becomes

0 = E[exp(−γuF )]
(
γ(1− 2a)σ2

ε + λL
λM + λL

1− a
a3γ

ψ>Σ−1
D|sψ

)
− E

{(
exp(−γuF )

[
µ+ βs(s− µ)− p− λM/a+ λL

λM + λL
ψ − γzσ2

D|s

])>
y

}
(λM + λL)Λ̂

a2 .

Again, using Lemma 10 (ii)−(iii) together with (113), the above equation simplifies to

0 = −(2a− 1)γσ2
ε + (1− a)

ψ>Σ−1
D|sψ

γa3
λL

λL + λM
− λLΛ̂h>x̄σ2

e

a2(1 + 2γσ2
eM)

λM + λL
λM/a+ λL

. (118)

Again, this condition is similar to the planner’s first-order condition with respect to a in
the main text, (46), except the last term is new, accounting for uncertainty in e.

Let us now compare the social and private first-order conditions with respect to a, (118)
and (110), respectively. If σ2

e is sufficiently small, then 1 + 2γσ2
eM > 0. Since h>x̄ > 0, we

have a∗∗ > 1/2. Thus the additional terms in the planner’s first-order condition are also
negative. As a result, the socially optimal a∗∗ is smaller than the privately optimal a∗.
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Furthermore, as we showed above, the additional terms in the social planner’s first-
order condition with respect to bθ/a are negative. In order to show that b∗∗/a∗∗ < b∗/a∗,
we will impose a sufficient condition that guarantees that in response to an increase in
a, the privately optimal level of b/a increases—see Assumption (4) and Lemma 11 below.
That is, a and b/a are complements. Using a∗∗ < a∗, it will then follow that b∗∗/a∗∗ < b∗/a∗

and b∗∗ < b∗. Assumption 4 states this sufficient condition.

Assumption 4. (i) σ2
e is small enough; (ii) γx̄>ΣD|sx̄ ≥ 3(λM + λL)x̄>ψ.

Part (i) is a common simplifying assumption used in macroeconomic models with port-
folio choices (see, e.g., Devereux and Sutherland 2011). Regarding part (ii), a and b/a

are complements with respect to risk sharing, and substitutes with respect to incentive
provision. Part (ii) makes sure that the risk-sharing motive is stronger than the incentive-
provision motive. Loosely speaking, the left-hand side of (ii) reflects how much risk is to
be shared, and the right-hand side relates to the cost of providing incentives.

Lemma 11. Suppose Assumption 4 holds. Then the fund investor’s optimally chosen level
of b/a (for a given a) increases as a increases.

Proof. See the end of Appendix D.1. �

Then analysis we have done so far together with Lemma 11 imply the following result:

Proposition 7 (Socially vs. Privately Optimal Contracts). Compared to the pri-
vately optimal contract, the socially optimal contract involves
(i) less “skin in the game,” that is, a∗∗ < a∗ if Assumption 4 (i) holds;
(ii) less benchmarking, that is, b∗∗ < b∗, if Assumption 4 holds.

Proposition 7 is the analog of Proposition 2′ in the main text.
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D.1.6 Stock Prices and Asset Management Costs

The expression for the equilibrium prices are given by equation (96). Since prices are
uncertain as of period 0, it will be convenient to take expectations:

E[p] = µ− γΛ̂ΣD|s

(
x̄− λM

bθ

a

)
− λM Λ̂

a2 ψ.

Let us now evaluate E[x̄>p], which is the equilibrium stock market capitalization. Substi-
tuting equation (116) into E[x̄>p], for the socially optimal contracts we have

E
[
x̄>p∗∗

]
= x̄>µ− γΛ̂x̄>ΣD|sx̄+ γΛ̂λM x̄>ΣD|s

bθ

a
− λM Λ̂

a2 x̄>ψ +O
(
σ2
e

)
= x̄>µ+ λM

 1
a∗∗

+ λLΛ̂
a∗∗

( 1
a∗∗
− 2

)
− 1

1− 1−a∗∗
a∗∗

λM Λ̂
− Λ̂
a∗∗2

 x̄>ψ +O
(
σ2
e

)
.

For privately optimal contracts,

E
[
x̄>p∗

]
= x̄>µ+ λM

 1
a∗

+ λLΛ̂
a∗

( 1
a∗
− 2

)
− 1− Λ̂

(a∗)2

 x̄> +O(σ2
e)

> x̄>µ+ λM

 1
a∗

+ λLΛ̂
a∗

( 1
a∗
− 2

)
− 1

1− 1−a∗
a∗

λM Λ̂
− Λ̂
a∗2

 x̄>ψ +O(σ2
e).

The expression 1
a

+ λLΛ̂
a

(
1
a
− 2

)
− 1

1− 1−a
a
λM Λ̂ −

Λ̂
a2 is increasing in a, and a∗∗ < a∗, so when

σ2
e is small enough, E

[
x̄>p∗∗

]
< E

[
x̄>p∗

]
. We conclude that when σ2

e is small enough, the
expected total stock market capitalization is smaller with the socially vs. privately optimal
contract.

As in the main paper, the asset management cost is xM>ψ. Since this cost is uncertain
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as of period 0, we focus on the expected asset management cost, E[xM>ψ].

E
[
xM>ψ

]
= E

[
ψ>

(
Σ−1
D|s
µ− A− ψ/a

aγ
+ bθ

a

)]

= E

Λ̂
a
x̄>ψ + λLΛ̂bθ

>

a
ψ − λLΛ̂

a2γ
ψ>Σ−1

D|sψ

 .
With the privately optimal contracts,

bθ

a
=
(

2− 1
a

)
x̄+

[(1
a
− 1

)(
λM
a

+ λL

)
+ λL

a

(1
a
− 2

)] Σ−1
D|s

γ
ψ +O(σ2

e),

and hence

E
[
xM∗>ψ

]
= 2x̄>ψ + λL

 1
a∗
− 1 + λLΛ̂

a∗

( 1
a∗
− 2

)
− Λ̂
a∗2

 Σ−1
D|s

γ
ψ +O(σ2

e).

With the socially optimal contracts,

bθ

a
=
(

2− 1
a

)
x̄+

1
a
− 1

1− 1−a
a
λM Λ̂

(λM
a

+ λL

)
+ λL

a

(1
a
− 2

) Σ−1
D|s

γ
ψ +O(σ2

e),

and hence

E[xM∗∗>ψ] = 2x̄>ψ + λL

 1
a∗∗
− 1

1− 1−a∗∗
a∗∗

λM Λ̂
+ λLΛ̂

a∗∗

( 1
a∗∗
− 2

)
− Λ̂
a∗∗2

 Σ−1
D|s

γ
ψ +O(σ2

e).

The expression 1
a
− 1

1− 1−a
a
λM Λ̂ + λLΛ̂

a

(
1
a
− 2

)
− Λ̂

a2 is increasing in a,

1
a
− 1

1− 1−a
a
λM Λ̂

+ λLΛ̂
a

(1
a
− 2

)
− Λ̂
a2 <

1
a
− 1 + λLΛ̂

a

(1
a
− 2

)
− Λ̂
a2 ,

and a∗∗ < a∗. Hence when σ2
e is small enough, E

[
xM∗∗

>
ψ
]
< E

[
xM∗

>
ψ
]
, i.e., the expected

asset management costs under the socially optimal contract are smaller.
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We summarize our results in the proposition below.

Proposition 8 (Crowded Trades and Excessive Costs of Asset Management).
Suppose that Assumption 4 (i) holds. Then compared to the equilibrium with privately
optimal contracts, in the equilibrium with the socially optimal contracts
(i) the expected total stock market capitalization is lower, E

[
x̄>p∗∗

]
< E

[
x̄>p∗

]
;

(ii) the expected asset management costs are lower, E
[
xM∗∗

>
ψ
]
< E

[
xM∗

>
ψ
]
.

Proposition 8 is the analog of Proposition 3′ in the main text.
We conclude this appendix with the proof of Lemma 11.

Proof of Lemma 11. Denote the left-hand side of (107) by Fbθ/a. Premultiplying (107)
by x̄>, obtain

x̄>Fbθ/a =
(
1 + 2γσ2

eM
) [(

2− 1
a

)
γΛ̂x̄>ΣD|sx̄+

[
1
a − 1 + λLΛ̂

a

( 1
a − 2

)]
x̄>ψ − γΛ̂x̄>ΣD|s bθa

]
− γ2σ2

e

(
2− 1

a

)
λLΛ̂

[
γΛ̂2λL

(
−λM

a2 + λM

a − 1
)
x̄>ΣD|sx̄+

(
2− 1

a

)
γΛ̂2λMλL (λM + λL) x̄>ΣD|s bθa

− λMλLΛ̂
a

(
1 + λLΛ̂

( 1
a − 1

) (
2− 1

a

))
x̄>ψ

]
x̄>ΣD|sx̄ = 0.

Rearranging terms,

γΛ̂x̄>ΣD|s
bθ

a
=
(

1 + 2γσ2
eM + γ2σ2

e

(
2− 1

a

)2
λ2
LλM (λM + λL)Λ̂2x̄>ΣD|sx̄

)−1

×
{

(1 + 2γσ2
eM)

[(
2− 1

a

)
γΛ̂x̄>ΣD|sx̄+

[
1
a − 1 + λLΛ̂

a

( 1
a − 2

)]
x̄>ψ

]
− γ2σ2

e

(
2− 1

a

)
λLΛ̂

[
γΛ̂2λL

(
−λM

a2 + λM

a − 1
)
x̄>ΣD|sx̄− λMλLΛ̂

a

(
1 + λLΛ̂

( 1
a − 1

) (
2− 1

a

))
x̄>ψ

]
x̄>ΣD|sx̄

}
.

This is equivalent to

γx̄>ΣD|s
bθ

a
=
(

1 + 2γσ2
eM + γ2σ2

e

(
2− 1

a

)2
λ2
LλM (λM + λL)Λ̂2x̄>ΣD|sx̄

)−1

×
{

(1 + 2γσ2
eM)

[(
2− 1

a

)
γx̄>ΣD|sx̄+

[( 1
a − 1

) (
λM

a + λL
)

+ λL

a

( 1
a − 2

)]
x̄>ψ

]
− γ2σ2

e

(
2− 1

a

)
λL

[
γΛ̂2λL

(
−λM

a2 + λM

a − 1
)
x̄>ΣD|sx̄− λMλLΛ̂

a

(
1 + λLΛ̂

( 1
a − 1

) (
2− 1

a

))
x̄>ψ

]
x̄>ΣD|sx̄

}
.

Using our normalization of benchmark weights, (108), we can simplify the left-hand side
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of the above equation and express b/a as a function of a:

γ
b

a
=
(

1 + 2γσ2
eM + γ2σ2

e

(
2− 1

a

)2
λ2
LλM (λM + λL)Λ̂2x̄>ΣD|sx̄

)−1

×
{

(1 + 2γσ2
eM)

[(
2− 1

a

)
γx̄>ΣD|sx̄+

[( 1
a − 1

) (
λM

a + λL
)

+ λL

a

( 1
a − 2

)]
x̄>ψ

]
− γ2σ2

e

(
2− 1

a

)
λL

[
γΛ̂2λL

(
−λM

a2 + λM

a − 1
)
x̄>ΣD|sx̄− λMλLΛ̂

a

(
1 + λLΛ̂

( 1
a − 1

) (
2− 1

a

))
x̄>ψ

]
x̄>ΣD|sx̄

}
.

Using the definition of M and collecting common terms, we arrive at

γ
b

a
=
(

1 + x̄>ΣD|sx̄γ2σ2
eλ

2
LΛ̂2 [(2− 1

a )λM + λM (λL + λM )(2− 1
a )2 − 1

])−1

×
{

(2− 1
a )γx̄>ΣD|sx̄+

[( 1
a − 1

) (
λM

a + λL
)

+ λL

a

( 1
a − 2

)]
x̄>ψ + (x̄>ΣD|sx̄)2γ3σ2

eλ
2
LΛ̂2(2− 1

a )λM

a

+
(
x̄>ΣD|sx̄

) (
x̄>ψ

)
γ2σ2

eλ
2
LΛ̂
[
λM

a

(
2− 1

a

) ( 1
a − λLΛ̂(2− 1

a )2
)
−
(

1
a − 1− λLΛ̂

a

(
2− 1

a

))]}
,

which can be further simplified to be

γ
b

a
=
(
2− 1

a

)
γx̄>ΣD|sx̄+

(
x̄>ΣD|sx̄

)2
γ3σ2

eλ
2
LΛ̂2 (2− 1

a

) [
2
( 1
a − 1

)
λM − λM (λL + λM )

(
2− 1

a

)2 + 1
]

1 + x̄>ΣD|sx̄γ2σ2
eλ

2
LΛ̂2

[(
2− 1

a

)
λM + λM (λL + λM )

(
2− 1

a

)2 − 1
]

+
[( 1
a − 1

) (
λM

a + λL
)

+ λL

a

( 1
a − 2

)]
x̄>ψ +

(
x̄>ΣD|sx̄

) (
x̄>ψ

)
γ2σ2

eλ
2
LΛ̂

×
λM

a

(
2− 1

a

)(
1
a−λLΛ̂

(
2− 1

a

)2)
−
(

1
a−1−λLΛ̂

a

(
2− 1

a

))
−
(

1
a−1+λLΛ̂

a

(
1
a−2
))[(

2− 1
a

)
λM +λM (λL+λM )

(
2− 1

a

)2
−1
]

1+x̄>ΣD|sx̄γ2σ2
eλ

2
L

Λ̂2
[(

2− 1
a

)
λM +λM (λL+λM )

(
2− 1

a

)2
−1
]

=
(
2− 1

a

)
γx̄>ΣD|sx̄+

(
x̄>ΣD|sx̄

)2
γ3σ2

eλ
2
LΛ̂2 (2− 1

a

) [
2
( 1
a − 1

)
λM − λM

(
λL + λM )(2− 1

a

)2 + 1
]

1 + x̄>ΣD|sx̄γ2σ2
eλ

2
LΛ̂2

[(
2− 1

a

)
λM + λM (λL + λM )

(
2− 1

a

)2 − 1
]

+
[( 1
a − 1

) (
λM

a + λL
)

+ λL

a

( 1
a − 2

)]
x̄>ψ +

(
x̄>ΣD|sx̄

) (
x̄>ψ

)
γ2σ2

eλ
2
LΛ̂2 (2− 1

a

)
× λM

Λ̂

1
a

(
1
a − λ

2
LΛ̂
(
2− 1

a

)2)− ( 1
a − 1 + λLΛ̂

a

( 1
a − 2

))
−
( 1
a − 1

)
(λL + λM )

(
2− 1

a

)
1 + x̄>ΣD|sx̄γ2σ2

eλ
2
LΛ̂2

[(
2− 1

a

)
λM + λM (λL + λM )

(
2− 1

a

)2 − 1
] .
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Finally, we rearrange terms to separate those that do and do not depend on σ2
e , so that

γ
b

a
=
(
2− 1

a

)
γx̄>ΣD|sx̄+

[(
1
a − 1

) (
λM
a + λL

)
+ λL

a

(
1
a − 2

)]
x̄>ψ (119)

+
x̄>ΣD|sx̄γ

2σ2
eλ

2
LΛ̂2

(
2− 1

a

)
1 + x̄>ΣD|sx̄γ2σ2

eλ
2
LΛ̂2

[(
2− 1

a

)
λM + λM (λL + λM )

(
2− 1

a

)2
− 1

]
×
[ (

2
aλM + λL − λM (λL + λM )

(
2− 1

a

)2
)
γx̄>ΣD|sx̄

− λM

Λ̂

[
1
a

(
1
a − λ

2
LΛ̂
(
2− 1

a

)2
)
−
(

1
a − 1 + λLΛ̂

a

(
1
a − 2

))
−
(

1
a − 1

)
(λL + λM )

(
2− 1

a

)]
x̄>ψ

]
.

We want to show that the right-hand side of (119) is increasing in a. We are able to
do so under the assumption that σ2

e is sufficiently small. Denote the first line of (119) as

f1(a) ≡
(

2− 1
a

)
γx̄>ΣD|sx̄+

[(1
a
− 1

)(
λM
a

+ λL

)
+ λL

a

(1
a
− 2

)]
x̄>ψ.

Differentiating f1, we have

f ′1(a) = γx̄>ΣD|sx̄

a2 − x̄>ψλM + λL
a2

(2
a
− 1

)
.

If γx̄>ΣD|sx̄ ≥ 3(λM + λL)x̄>ψ, then f ′1(a) ≥ 0. (We have also used the fact that a > 1/2,
which we showed above). Hence, when σ2

e is small enough, the optimal choice of b/a
increases in response to an increase in a. This completes the proof. �

D.2 Incorporating an Effort Choice by the Manager

In this appendix we extend the model in the main text to incorporate an effort choice by the
manager. We will assume here that the effort choice is unobservable to the fund investor
(the analysis of the case with observable effort is similar). We still assume, as in the main
text, that the manager’s portfolio choice is unobservable as well. We will demonstrate
that our main insights extend in this case. In particular, the individual fund managers
overestimate the effectiveness of incentive provision relative to the planner, which results
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in crowded trades.
For simplicity, we consider the case with one risky asset (and one risk-free bond).

Consider general functional forms so that the benefit function is ∆̃(x, e), the cost function
is ψ̃(x, e), and the variance of the noise term is ε̃(x, e).

The manager’s problem is

max
x,e

a∆̃(x, e)− ψ̃(x, e) + (ax− b)(µ− p)− γ

2σ
2(ax− b)2 − γ

2a
2ε̃(x, e) + c.

The first-order conditions with respect to e is

∂∆̃
∂e
− 1
a

∂ψ̃

∂e
− γ

2a
∂ε̃

∂e
= 0. (120)

Think of the optimal effort solving (120) as e∗(x, a).
We impose the following assumptions.

Assumption 5. Suppose that for each a ∈ [1/2, 1], the function

a∆̃(x, e)− ψ̃(x, e)− γa2

2
[
x2 + ε(x, e)

]
is concave in (x, e). Moreover, denote

df(x, e∗(x, a))
dx

= ∂f

∂e

∂e∗

∂x
+ ∂f

∂x
,

where function f is either ∆̃, ψ̃, or ε̃, and e∗(x, a) is implicitly defined by (120). Suppose
that for each a ∈ [1/2, 1],

dψ

dx
>
γ

2

∣∣∣∣∣dεdx
∣∣∣∣∣ , d2ψ

dx2 ≥
γ

2

∣∣∣∣∣−d2ε

dx2

∣∣∣∣∣ .
The above inequalities require that the manager’s private cost is sufficiently increasing

and sufficiently convex in x (once the optimal effort choice is taken into account).
We now proceed with the analysis of the manager’s problem. The manager’s first-order
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condition with respect to x (taking into account the fact that x affects the optimal choice
of effort according to e∗(x, a)) is

µ− p− γσ2(ax− b) + d∆̃
dx
− 1
a

dψ̃

dx
− γ

2a
dε̃

dx
= 0. (121)

Assumption 5 implies that the second-order conditions are satisfied, in particular,

SOCx ≡ −γσ2a+ d2∆̃
dx2 −

1
a

d2ψ̃

dx2 −
γa

2
d2ε̃

dx2 < 0.

In what follows, we will use expressions for the effects of b and a on x that we derive
below. Differentiating (121) with respect to b,

γσ2 + SOCx
∂x

∂b
= 0,

∂x

∂b
= − γσ2

SOCx
= γσ2

γσ2a− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

> 0.

Denote dx
di
≡ ∂x

∂i
+ ∂x

∂p

∂p

∂i
, i ∈ {a, b}. Taking the total derivative of (121) with respect to

b,

γσ2 − ∂p

∂b
+ SOCx

dx

db
= 0. (122)

Differentiating the market-clearing condition λMx+λDxD = x̄ with respect to b (and using
the expression for xD in the main text),

λM
dx

db
+ λD

∂xD

∂p

∂p

∂b
= λM

dx

db
− λD

1
γσ2

∂p

∂b
= 0,

∂p

∂b
= γσ2λM

λD

dx

db
.
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Substituting this into (122), yields

dx

db
= γσ2

γσ2λM
λD
− SOCx

= γσ2

γσ2

(
a+ λM

λD

)
− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

.

Notice that dx
db
≤ ∂x

∂b
, with strict inequality if λM > 0.

Similarly, differentiating (121) with respect to a, gives

− γσ2x+ 1
a2
dψ̃

dx
− γ

2
dε̃

dx
+ SOCx

∂x

∂a
= 0,

∂x

∂a
= 1

γσ2a− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

[
1
a2
dψ̃

dx
− γ

2
dε̃

dx

]
− x∂x

∂b
. (123)

The last term captures the negative effect of a on x because the manager is exposed to too
much aggregate risk—the effect which b offsets. There is a new effect that we did not have
before—a larger a reduces x if ε̃ is increasing in x because it exposes the manager to more
idiosyncratic risk, and this risk cannot be offset by an increase in b. Notice that without
it (as in the main text), we would have ∂x/∂a+ x∂x/∂b > 0, which captures the fact with
b offsetting the negative effect of a on x, we are only left with the positive effect that is
coming from reducing the effective cost. We want to make sure that ∂x/∂a+ x∂x/∂b > 0.
Notice that if this was not the case, it would not be optimal for the fund investor to use a
for incentive provision purposes. Assumption 5 ensures that, and we have

∂x

∂a
+ x

∂x

∂b
=

1
a2
dψ̃

dx
− γ

2
dε̃

dx

γσ2a− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

> 0.
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Similarly, we have

dx

da
+ x

dx

db
=

1
a2
dψ̃

dx
− γ

2
dε̃

dx

γσ2

(
a+ λD

λM

)
− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

,

which is smaller than ∂x

∂a
+ x

∂x

∂b
.

We now turn to the analysis of the fund investor’s problem. Denoting y = ax− b and
z = x− y, this problem is

max
a,b,c,x

(1− a)∆̃(x, e∗(x, a)) + z(µ− p)− γσ2

2 z2 − γ(1− a)2

2 ε̃2(x, e∗(x, a))− c

subject to the manager’s participation constraint and incentive constraint (121) (in which
we substituted e∗(x, a) implicitly defined by (120)).

The fund investor’s first-order condition with respect to b is

d(UF + UM)
db

= ∂UF

∂x

∂x

∂b
+ ∂UM

∂x︸ ︷︷ ︸
=0

∂x

∂b
+ ∂(UF + UM)

∂b
= 0. (124)

The last term captures how b directly affects the social welfare by linearly transferring from
y to z. The first term captures the indirect effect of b on social welfare through its effect
on the manager’s demand x. Intuitively, notice that ∂UF/∂x should be positive, otherwise
b would not be positive. We will show that ∂UF/∂x > 0 formally below. The last term in
(124) is

∂(UF + UM)
∂b

= −γσ
2

2
∂(y2 + z2)

∂b
= γσ2(y − z) = γσ2 [(2a− 1)x− 2b] .

We will show below that this term is negative (notice that this term would be zero under
perfect risk sharing a = 1/2 and b = 0.)
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Using (121),

∂UF

∂x
= (1− a)

[
d∆̃
dx

+ µ− p− γσ2z − γ

2 (1− a)dε̃
dx

]

= (1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
.

Then the investor’s first-order condition with respect to b becomes

(1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
∂x

∂b
+ γσ2(y − z) = 0, (125)

or equivalently

(1− a)∂x
∂b

(1− a)∂x
∂b

+ 1

[
1
a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
+ γσ2(y − z) = 0. (126)

Notice that since the first term is strictly positive by Assumption 5, the second term is
strictly negative. It then also follows that the term in the square brackets in 125 must be
strictly positive, that is, ∂UF/∂x = ∂(UF + UM)/∂x > 0. Intuitively, it means that it is
optimal for the fund investor to use contracts to provide incentives. It also then follows
that b > 0. Indeed, notice that at b = 0 and a ∈ [1/2, 1], the left-hand side of (126) is
strictly positive given Assumption 5, and thus b ≤ 0 cannot be optimal.

We will now compare the social planner’s first-order condition with respect to b to that
of an individual fund investor. The planner’s first-order condition with respect to b (after
canceling out the distributive effects, as in the main text) is the same as the corresponding
first-order condition for an investor, but ∂x/∂b is being replaced with dx/db, namely

∂UF

∂x

dx

db
+ ∂(UF + UM)

∂b
= 0,
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or

(1− a)dx
db

(1− a)dx
db

+ 1

[
1
a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
+ γσ2(y − z) = 0.

Since dx/db < ∂x/∂b as long as λM > 0,

(1− a)dx
db

(1− a)dx
db

+ 1
<

(1− a)∂x
∂b

(1− a)∂x
∂b

+ 1
.

It then follows that under Assumption 5, the additional terms in the planner’s first-order
condition relative to the investor’s first-order condition are strictly negative.

Now consider the first-order condition with respect to a. In the privately optimal case,
it is

d(UF + UM)
da

= ∂UF

∂x

∂x

∂a
+ ∂UF

∂e

∂e

∂a
+ ∂(UF + UM)

∂a
= 0.

Rewrite this to get

d(UF + UM)
da

= (1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
∂x

∂a

+ (1− a)
[
∂∆̃
∂e
− γ

2 (1− a)∂ε̃
∂e

]
∂e

∂a
− γσ2(y − z)x− γε2(2a− 1).

= (1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
∂x

∂a

+ (1− a)
(

1
a

∂ψ̃

∂e
+ γ

2 (2a− 1)∂ε̃
∂e

)
∂e

∂a
− γσ2(y − z)x− γε2(2a− 1) = 0.

where the second equality uses (120). Then using (125), we can rewrite the above condition
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as follows:

(1− a)
[
γσ2(y − z) + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

](
∂x

∂a
+ x

∂x

∂b

)

+ (1− a)
(

1
a

∂ψ̃

∂e
+ γ

2 (2a− 1)∂ε̃
∂e

)
∂e

∂a
− γε2(2a− 1) = 0.

Using (126), the fund investor’s first-order condition with respect to a becomes

(1− a)
(
∂x

∂a
+ x

∂x

∂b

)

(1− a)∂x
∂b

+ 1

[
1
a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

]
+ (1− a)

(
1
a

∂ψ̃

∂e
+ γ

2 (2a− 1)∂ε̃
∂e

)
∂e

∂a

− γε2(2a− 1) = 0. (127)

Notice that we need dψ̃/dx > 0 or ∂ψ̃/∂e > 0, otherwise a = 1/2 is optimal. This is
guaranteed by Assumption 5.

The social planner’s first-order condition with respect to a is obtained from (127) by
replacing

(1− a)
(
∂x

∂a
+ x

∂x

∂b

)

(1− a)∂x
∂b

+ 1
=

(1
a
− 1

)(1
a

dψ̃

dx
− γ

2a
dε̃

dx

)

γσ2 − d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

by a strictly smaller term,

(1− a)
(
dx

da
+ x

dx

db

)

(1− a)dx
db

+ 1
=

(1
a
− 1

)(1
a

dψ̃

dx
− γ

2a
dε̃

dx

)

γσ2

(
1 + λD

λM

)
− d2∆̃
dx2 + 1

a

d2ψ̃

dx2 + γ

2a
d2ε̃

dx2

.

Recall that the term in square brackets in (127) is strictly positive (by Assumption 5).
Therefore in the socially optimal case, there are additional negative terms (or the positive
terms are smaller) in the first-order condition with respect to a relative to that in the
privately optimal case.
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As in the main model in the text, the planner recognizes that incentive provision is
weaker than individual fund investors perceive it to be. This is captured by additional
negative terms in the first-order conditions for a and b. It is no longer straightforward to
establish that the presence of these terms imply that both a and b in the socially optimal
case are smaller than those in the privately optimal case. Doing so requires us to impose
additional, hard to interpret, assumptions on the cross-derivatives and third derivatives
of the functions ∆̃, ψ̃ and ε̃. Intuitively, these assumptions are sufficient conditions to
guarantee that a and b are complements.

We can still prove the crowded trades result, namely, psocial < pprivate. Define k =
(a, b), W (k, p) = UF (k, p, x(k, p), e∗(k, x(k, p)))+UM(k, p, x(k, p), e∗(k, x(k, p))). The fund
investor’s problem is to maximize W (k, p) with respect to k taking p as given. Since
we cancel out the distributive effects in the social planner’s problem, it is equivalent to
maximizing W (k, p(k)) with respect to k.

Denote the optimal solutions in the privately and socially optimal cases by k∗ and k∗∗,
respectively. Notice that

W (k∗∗, p(k∗∗)) > W (k∗, p(k∗)) > W (k∗∗, p(k∗))

implying

W (k∗∗, p(k∗∗)) > W (k∗∗, p(k∗)). (128)

Differentiating W with respect to p (and canceling the distributive effects),

dW

dp
= ∂UF

∂x

dx

dp
= (1− a)

{
γσ2 [(2a− 1)x(p)− 2b] + 1

a

dψ̃

dx
+ γ

2 (2a− 1)dε̃
dx

}
dx

dp
< 0.
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Differentiating with respect to p one more time,

d2W

dp2 = dWs

dx

(
dx

dp

)2

+Ws
d2x

dp2︸︷︷︸
=0

=
[
γσ2(2a− 1)x+ 1

a

d2ψ̃

dx2 + γ

2 (2a− 1)d
2ε̃

dx2

](
dx

dp

)2

> 0

by Assumption 5. Since dW (k∗∗, p)/dp < 0 at p = p∗∗, this implies that W (k∗∗, p(k∗∗)) <
W (k∗∗, p) for p < p(k∗∗). Given inequality (128), it must be the case p(k∗∗) < p(k∗). It
then also follows that x(k∗∗) < x(k∗). So the crowded trade results from the main text
extends to the case with unobservable effort.

D.3 Endogenous ∆

In this appendix we consider the case in which ∆ is determined in equilibrium in the
market for securities lending. We include a new class of investors who seek to borrow
stocks from fund managers so that they could sell them short. These investors therefore
incur a borrowing cost of ∆ per share, which allows the fund managers to earn revenue of
∆ per share. Typical motives for shorting considered in the literature are (i) hedging and
(ii) speculation. We choose the first one, so that the resulting model is not too far from our
baseline setting. We believe that the insights of this appendix go through in alternative
settings, so long as one is not adding market frictions together with additional classes of
agents.

We consider a new group of agents, hedgers, H (measure λH), endowed with e>D̃ units
of consumption in period 1.62 They engage in short selling in period 0 for hedging purposes.
Their utility (converted into the mean-variance form) is

max
x

(x+ e)>µ− x>p+ x>∆1x≤0 −
γ

2 (x+ e)>Σ(x+ e),

62Without loss of generality, we assume that the hedgers are endowed with zero shares at time zero.
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where ∆ is the borrowing cost and it is incurred only when the hedgers’ demand is negative.
It is easy to show that the hedgers’ portfolio demand is given by

xH = Σ−1µ− p+ ∆
γ

− e. (129)

We focus on the case when e is large enough so that xH is negative element-by-element.
In practice, a fund manager would not be permitted to lend out the entire portfolio

and would lend out only a fraction of it. We assume that the number of stocks lent out by
the manager is `xM , where ` ∈ (0, 1] is exogenous. The fund’s augmented return is now
`∆>xM and the manager’s cost is `ψ>xM . The manager’s holdings are then

xM = Σ−1µ− p+ `∆− `ψ/a
aγ

+ bθ

a
. (130)

Substituting (129) and (130) into the securities lending market clearing condition,

`λMx
M + λHx

H = 0, (131)

leads to the following expression for p− `∆:

p− `∆ = µ− 1
λH + `λM/a

[
γΣ

(
λHe− `λM

bθ

a

)
+ `λM

`ψ

a2 − (1− `)λH∆
]
. (132)

With the new class of agents, the market clearing condition in the asset market becomes

λMx
M + λHx

H + λDx
D = x̄,

which, using (131), becomes

(1− `)λMxM + λDx
D = x̄. (133)
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Substituting (26) and (130) and solving for p− `∆ yields

p− `∆ = µ− 1
λD + (1− `)λM/a

[
γΣ

(
x̄− (1− `)λM

bθ

a

)
+ λD`∆−

(1− `)λM
a

`
ψ

a

]
.

(134)

Next, we compare the privately and socially optimal contracts. To do this, we consider
first-order conditions with respect to bθ/a and a. The first-order condition for the privately
optimal case with respect to bθ/a and a are

`∆− `ψ + µ− p− γΣz = 0 (135)

and

0 = −(2a− 1)γσ2
ε + 1− a

a
(`∆ + µ− p− γΣz)>∂y

∂a

= −(2a− 1)γσ2
ε + (1− a)`ψ

>Σ−1ψ

γa3 , (136)

respectively.
Now consider the socially optimal case. Define UH =

(
xH
)>

(∆ + µ − p) + e>µ −
γ
2

(
xH + e

)>
Σ
(
xH + e

)
. The social planner’s problem is

max
a,b,c,θ,y,xD

ωFU
F + ωDU

D + ωHU
H

subject to (26), (29), (129), and (130). Denote

y = axM − bθ = Σ−1µ− p+ `∆− `ψ/a
γ

.
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The social planner’s first-order condition with respect to bθ/a is

0 =
[
ωF

(
xF−1 − xM

)
+ ωD

(
xD−1 − xD

)
− ωHxH

]> ∂p

∂(bθ/a) +
[
ωF `x

M + ωHx
H
]> ∂∆
∂(bθ/a)

+ [`∆− `ψ + µ− p− γΣz]> + [`∆ + µ− p− γΣz]>
[1
a
− 1

]
∂y

∂(p− `∆)
∂(p− `∆)
∂(bθ/a) .

As in the main text, we choose the Pareto weights to eliminate the distributive effect.
Specifically, if ωF = λM , ωD = λD, and λH = ωH , then the terms in the first line of (137)
are zero by market clearing. Thus the planner’s first-order with respect to bθ/a becomes

[`∆− `ψ + µ− p− γΣz]> + [`∆ + µ− p− γΣz]>
[1
a
− 1

]
∂y

∂(p− `∆)
∂(p− `∆)
∂(bθ/a) = 0.

(137)

Differentiating (132) and (134) with respect to bθ/a, we can solve for ∂(p− `∆)/∂(bθ/a):

∂(p− `∆)
∂(bθ/a) = ΓγΣ,

where

Γ = [`2λD + (1− `)2λH ]λM
λDλH + [`2λD + (1− `)2λH ]λM/a

∈ (0, 1).

and using ∂y/∂(p− `∆) = −Σ−1/γ, we can rewrite the social planner’s first-order condition
with respect to bθ/a as

`∆− `ψ

1− (1/a− 1) Γ + µ− p− γΣz = 0. (138)

The planner’s first-order condition with respect to a (after canceling out the distributive
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effect) is

0 = −(2a− 1)γσ2
ε − [`∆− `ψ + µ− p− γΣz]> y

a2

+ 1− a
a

(`∆ + µ− p− γΣz)>
[
∂y

∂a
+ ∂y

∂(p− `∆)
∂(p− `∆)

∂a

]
,

which, using (137), becomes

0 = −(2a− 1)γσ2
ε

+ 1− a
a

(`∆ + µ− p− γΣz)>
[
∂y

∂a
+ ∂y

∂(p− `∆)
∂(p− `∆)

∂a
+ y

a2
∂y

∂(p− `∆)
∂(p− `∆)
∂(bθ/a)

]
.

As in the main model, differentiating (133) with respect to bθ/a and a, we can show that

∂y

∂(p− `∆)
∂(p− `∆)

∂a
+ y

a2
∂y

∂(p− `∆)
∂(p− `∆)
∂(bθ/a) = 1

a

∂y

∂a

∂y

∂(p− `∆)
∂(p− `∆)
∂(bθ/a) = −Γ

a

∂y

∂a
.

Thus the planner’s first-order condition with respect to a is

0 = −(2a− 1)γσ2
ε + 1− a

a
(`∆ + µ− p− γΣz)>

(
1− Γ

a

)
∂y

∂a

= −(2a− 1)γσ2
ε + (1− a)`ψ

>Σ−1ψ

γa3
1− Γ/a

1− Γ/a+ Γ . (139)

Comparing (138) with (135) and (139) with (136), we can see that the benefit of incentive
provision is lower for the planner than for private agents, just as in the main text. The same
proofs as in the main model go through for this case and thus our main results continue
to hold.

The intuition for why our results go through in this setting is the following. First,
all the frictions from the main model are still present. Second, the addition of hedgers
and the motive for short selling do not create any additional sources of inefficiency. In
particular, adding the hedgers does not complicate the contracting problem. Just as with
direct investors, contracts only affect hedgers through the distributive effect. The pecu-
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niary externality occurs because prices (now both p and ∆) enter the manager’s incentive
constraint. So all the forces are the same as in the main model. The mechanism for alle-
viating the friction is the same as in the main text, i.e., it involves using skin-in-the-game
and benchmarking. The comparison of the privately and socially optimal contracts is also
the same.

D.4 Contractible Revenues of Return-Augmenting Activities

In this appendix we consider what happens if the revenue from the return-augmenting
activities, x>∆ + ε, is contractible. We will show that our main results extend, namely,
benchmarking is still optimal, and socially and privately optimal contracts differ as the
planner recognizes that incentive provision is less effective than how fund investors perceive
it to be.63

Suppose the manager receives a fraction ã of it, so that her compensation is

w = (ax− bθ)>(D̃ − p) + ã(x>∆ + ε) + c.

As in the main text, denote y = ax − bθ. Then the manager’s problem can be written as
follows:

max
y

(
y

a
+ b

a

)>
(ã∆− ψ) + c+ y>(µ− p)− γ

2y
>Σy + c− γã2σ2

ε

2 .

The manager’s first-order condition with respect to y is

y = Σ−1 (ã∆− ψ)/a+ µ− p
γ

,

63Intuitively, contracting on abnormal returns gives investors have one more instrument. Adding this
instrument still does not allow them to fine-tune incentives for multiple stocks and reach the first best. If
there were only one risky stock or all stocks were identical, then this would be enough.
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and the equilibrium prices are

p = µ− γΣΛ
(
x̄− λM

b

a

)
− ΛλM

a

ã∆− ψ
a

.

Denoting z = y(1− a)/a+ θb/a, the fund investor’s problem is

max
a,ã,b,c,y

(
y

a
+ b

a

)>
(1− ã)∆ + z>(µ− p)− γ

2z
>Σz − γ(1− ã)2σ2

ε

2 − c

s.t.
(
y

a
+ b

a

)>
(ã∆− ψ) + y>(µ− p)− γ

2y
>Σy + c− γã2σ2

ε

2 + c ≥ u0,

y = Σ−1 (ã∆− ψ)/a+ µ− p
γ

.

As in the main text, the first-order condition with respect to bθ/a is

∂(UF + UM)
∂(bθ/a) + ∂UF

∂y

∂y

∂(bθ/a) = 0,

∆− ψ + µ− p− γΣz = 0.

This is a vector, which is equal to zero element by element.
The planner’s first-order condition with respect to bθ/a (after canceling out the dis-

tributive effects, as in the main text) is

∂(UF + UM)
∂(bθ/a) + ∂UF

∂y

[
∂y

∂(bθ/a) + ∂y

∂p

∂p

∂(bθ/a)

]
= 0,

(∆− ψ + µ− p− γΣz)> + [(1− ã)∆ + (1− a)(µ− p− γΣz)]> 1
a

∂y

∂p

∂p

∂(bθ/a) = 0.

The additional terms in the planner’s first-order condition with respect to bθ/a evaluated
at the privately optimal contract are

1
a

[(1− a)ψ + (a− ã)∆]> ∂y
∂p

∂p

∂(bθ/a) = 1− a
a2 ΛλM [(1− a)ψ + (a− ã)∆]> . (140)
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Notice that this is a vector; for the additional terms to be zero, this vector would have to
be zero element by element.

The first-order condition with respect to a in the privately optimal contract (after
substituting the first-order condition with respect to bθ/a) is

0 = [(1− a)ψ + (a− ã)∆]> ∂y
∂a

= [(1− a)ψ + (a− ã)∆]> 1
aγ

Σ−1
(
ã∆
a
− ψ

a

)
. (141)

The right-hand side is a number. Notice that this equality does not imply that (140) is
zero element by element unless there is only one stock, or all stocks are identical. The
first-order condition with respect to a in the socially optimal contract is

∂(UF + UM)
∂a

+ ∂UF

∂y

[
∂y

∂a
+ ∂y

∂p

∂p

∂a

]
= 0,

which can be rewritten as

0 = [(1− a)ψ + (a− ã)∆]> ∂y
∂a

= [(1− a)ψ + (a− ã)∆]> 1
aγ

Σ−1
(
ã∆
a
− ψ

a

)
λD

λM + λD
.

Compared to (141), the right-hand side is only scaled down by a constant, so for the same
ã, the planner’s choice of a coincides with the fund investor’s. However, we will see that
ã∗∗ 6= ã∗.

The first-order condition with respect to ã in the privately optimal case is

0 = [(1− a)ψ + (a− ã)∆]> ∂y
∂ã

+ (1− 2ã)γσ2
ε

= [(1− a)ψ + (a− ã)∆]> 1
aγ

Σ−1∆ + (1− 2ã)γσ2
ε .

Notice that because the vectors ∂y/∂ã and ∂y/∂a are different from each other, ã = 1/2
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generally does not solve the above equation. The corresponding first-order condition in
the socially optimal contract is

∂(UF + UM)
∂ã

+ ∂UF

∂y

[
∂y

∂ã
+ ∂y

∂p

∂p

∂ã

]
= 0.

This can be rewritten as

0 = [(1− a)ψ + (a− ã)∆]> 1
aγ

Σ−1∆ λD
λM + λD

+ (1− 2ã)γσ2
ε .

Notice that this implies that there are additional negative terms in the planner’s first-order
condition with respect to ã as compared to the privately optimal first-order condition. As
we saw above, the same is true for the fist-order condition with respect to bθ/a, while the
first-order condition with respect to a is undistorted.

Thus we conclude that, as in the main model, benchmarking is optimal and privately
and socially optimal contracts differ.
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