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1 Introduction

Does Bitcoin mining contribute to climate change? Participation in the Bitcoin blockchain

validation process1 requires specialized hardware and vast amounts of electricity, translating

into a signi�cant carbon footprint. Mora et al. (2018) estimate that the 2017 carbon footprint

of Bitcoin was 69 Mt of CO2-equivalent (MtCO2e), forecasting a violation of the Paris COP21

UNFCC agreement �limiting GHG emissions to keep temperatures within 2◦C of pre-industrial

levels� by 2040 due to Bitcoin cumulative emissions alone. At the heart of the controversy

sparked, with various contributions revising downward Mora et al.'s (2018) projections (e.g.

Houy, 2019; Masanet et al., 2019 or Stoll et al., 2019), is the di�culty in measuring the power

consumption of the Bitcoin mining network (De Vries, 2018). Bitcoin miners are globally geo-

located, facing very di�erent energy costs, and employ hardware with unknown energy intensities.

To overcome the signi�cant constraints in estimating the daily power consumption associated

with Bitcoin's blockchain, here we use machine learning (ML) methods, demonstrating their

usefulness for pressing societal issues, like climate change.

A subset of ML methods, feedforward neural networks, are becoming increasingly popular due

to their unrivaled performance in prediction tasks (LeCun et al., 2015). Feedforward neural net-

works, also called multilayer perceptrons (MLPs), have been developed since the mid-twentieth

century, relying on joint advances from computer science, applied mathematics and information

and probability theory. Their recent success stems from their theoretical ability to approximate

unknown data generating processes (Universal Approximation Theorem and its variants), while

handling large and complex datasets. They approximate or learn some unknown function of

the data (or inputs) that generates an output, like the Bitcoin network energy consumption,

assuming that information 'feeds forward' from the input, through the unknown function, to

the output.2 They are called neural networks (NN) because they are composed of many func-

tions connected in a chain, where each link is called a layer, each of which consists of an array

of nodes (or units). By adding layers and nodes within each layer, feedforward NNs (or deep

neural networks, DNN) can approximate functions of increasing complexity. CO2 emissions are

complex to forecast, but having a reliable general purpose method to do so in a timely manner

can inform progress towards keeping global temperatures from rising above 2◦C, in addition to

net-zero carbon emissions. Our main contribution is to provide a robust measure of the carbon

1The revolutionary element of Bitcoin is the underlying 'blockchain' technology. Instead of a trusted third

party, incentivized network participants validate transactions and ensure the integrity of the network via the

decentralized administration of a data protocol (also called 'proof-of-work'). The distributed ledger protocol

created has since then been called the '�rst blockchain'.
2This is in contrast to recurrent neural networks, where information is allowed to feed-back from the out-

put to the model itself.
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footprint associated with producing increasingly popular cryptocurrencies, like Bitcoin (BTC),

as well as of the uncertainty associated with that measure.

To estimate a realistic level of daily electricity consumption to produce Bitcoins, we �rst

calculate a lower and an upper limit based on Hayes' (2015) economic model of rational Bitcoin

mining decisions. The lower limit corresponds to the lowest marginal cost for mining Bitcoins,

as de�ned by a scenario in which all miners use the most e�cient available hardware. The upper

limit obtains when the least e�cient technology for mining Bitcoins is employed instead. Based

on IPO �lings of major hardware manufacturers, insights on mining facility operations, and min-

ing pool compositions, our DNN adopts as target output the market share weighted average of

the daily energy e�ciency deployed by operating miners, identi�ed by their IP addresses. Our es-

timated level of electricity consumption is thus a conservative one, closely tracking Hayes'(2015)

lower limit. As inputs, our DNN admits a comprehensive range of factors previously found to

drive Bitcoin prices in di�erent currencies, like (i) fundamental factors advocated by monetary

economics (e.g. its usage in trade, money supply or price level); (ii) factors driving investors'

interest in/attention to the crypto-currency (e.g. speculation or Bitcoin's role as safe haven);

(iii) exchange rate hedging motives (see Kristoufek, 2015; Liu and Tsivinsky, 2018; McNally et

al., 2018, or Jang and Lee, 2018), together with (iv) novel supply-side factors for both Bitcoin

and ASIC mining chips producers, related to for-pro�t mining decisions, but excluding those

employed in the construction of the upper and lower limits. Aggregated at the yearly frequency,

we �nd Bitcoin mining energy consumption's ranging between 5.2384 and 43.1218 TWh in 2017,

between 25.0786 and 80.4240 TWh in 2018, and between 27.0537 and 80.3026 TWh in 2019. Ob-

taining mean point estimates of daily power consumption within those economically meaningful

limits provides substantial gains in accuracy relative to recent contributions in the literature,

while externally validating our ML approach.

The carbon intensity associated with Bitcoin mining obtains from multiplying the estimated

daily electricity consumption by the average emission factor of power generation, using the

geolocation of IP-addresses, as Stoll et al. (2019) do.3 Crucially, our novel approach also

enables the construction of con�dence intervals (CIs) around the estimated carbon footprint of

Bitcoin mining, substantially narrowing down the associated uncertainty �currently measured

by the di�erence between the carbon footprint of the upper and lower bounds, corresponding to

the expected marginal revenue and marginal cost of Bitcoin network operating miners. When

aggregated at a yearly frequency, the corresponding CO2 estimates [and associated 0.95 CIs]

3As of November 2018, and relative to Stoll et al. (2019) who �nd a Bitcoin mining annual energy con-

sumption level of 45.8 TWh and associated carbon emissions ranging between 22 and 22.9 MtCO2, we �nd

instead 48.2 TWh of electricity consumption, with annual carbon emissions ranging between 23.6 and 28.8

MtCO2.
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are, for the year 2017, 3.8038 MtCO2e [3.2151, 4.3925] MtCO2e; for 2018, 23.8313 MtCO2e

[22.1055, 25.5572] MtCO2e; and for 2019, 19.83472 MtCO2e [18.4852, 21.1842] MtCO2e. To

provide an order of magnitude, the Bitcoin mining estimated fossil fuels emissions for the year

2018 are higher than the annual levels of fossil fuel emissions of (i) the US states of Maine (15.63

MtCO2e), New Hampshire (13.55 MtCO2e), Rhode Island (10.13 MtCO2e) or South Dakota

(14.6 MtCO2e), of (ii) more than half the cumulative CO2 �ux from the Earth's 91 most actively

degassing subaerial volcanoes (a 2005-2015 yearly average of 38.7 ± 2.9 CO2e from Aiuppa et

al., 2019), or of (iii) those of smaller countries, like Bolivia, Sudan or Lebanon (Global Carbon

Atlas). A measure of the magnitude of the economic problem can be obtained from adopting the

social cost of carbon (SCC) estimate of 62 USD per metric ton of CO2 equivalent (Interagency

Working Group, IWG, 2016) in 2007 USD: yearly, the Bitcoin mining SCC reliably lies between

[$199, 336, 200; $272, 335, 000] for 2017; in [$1, 370, 541, 000; $1, 584, 546, 400] for 2018; and in

[$1, 146, 082, 400; $1, 313, 420, 400] for 2019.

Relative to the aforementioned literature, the obtained point estimates and con�dence in-

tervals also represent a downward revision of the results reported by Mora et al. (2018), and

are broadly in line with �gures from Foteinis (2018), reporting global emissions for Bitcoin and

Ethereum for 2017 of 43.9 MtCO2 or from Stoll et al. (2019), reporting annual carbon emis-

sions for Bitcoin mining in 2018 in the range 22.0 to 22.9 MtCO2. Our estimates further revise

downward the 2017 estimates provided by Houy (2019) or Dittmar and Praktiknjo (2019), who

criticized Mora et al.'s (2018) inclusion of energy ine�cient (unpro�table) mining rigs, reporting

15.5 MtCO2e for 2017, or those from Masanet et al. (2019), who report for 2017 an estimate

of 15.7 MtCO2e arguing that Mora et al.'s (2018) projected tecnology adoption rates did not

resemble the growth rates of Bitcoin usage. What makes them nevertheless extremely worry-

ing is recent evidence from integrated weather-climate models (CMIP6), feeding into the Sixth

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2021, reported

in Williams et al. (2020). According to them, global temperatures may rise as much as 5◦C,

prompting the recent global call to urgent policy measures by IMF's Chief Economist Gita

Gopinath in Davos (Switzerland, 2020).

The topic is extremely important considering the interest of national governments on cryp-

tocurrencies (e.g. China), the possibility of issuing �nancial instruments solely on blockchain

technologies (e.g. Bank of Australia and World Bank bond-i), while respecting the Paris Agree-

ment. The social cost of carbon (SCC), associated with proof-of-work protocols, and the associ-

ated carbon tax, are important aspects that policy makers should consider when implementing

blockchain technologies. Besides the gains in accuracy, we argue that ML methods present the

additional signi�cant advantages for enabling timeless public decision making regarding pressing

complex social issues, just as they do in private sector for-pro�t decisions, e.g. business analytics,
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new technology design, improvement or product adaptation and/or marketing. Being able to

process bigger and increasingly complex data in raw form, ML techniques return tailored solu-

tions in an automated manner. The signi�cant 'entry cost' in terms of conceptual di�culty and

computational time has signi�cantly decreased over the last ten years, thanks to advancements

in computational capacity, user-friendly software and increasing resources devoted to training

and technology adoption, rendering their use commonplace. Although our main goal here is on

prediction tasks, an incipient strand within the economics/econometrics literature focuses on

interpretation tasks, seeking conditions under which valid (two-step) inference can be conducted

after applying ML methods. Athey and Imbens (2019) report on progress made and challenges

remaining in interpretation tasks.

To further reduce readers' entry cost, Section 2 introduces and quickly surveys the recent

ML literature, focusing on deep learning, and describing our novel approach. The rest of the

paper proceeds as follows: Section 3 reports the methodology and the data used to estimate

Hayes' (2015) lower and upper bounds of Bitcoin mining power consumption and associated

emission bounds. Section 4 demonstrates the usefulness for predicting the carbon footprint as-

sociated with Bitcoin mining of our deep learning approach ('optimized ReLu DNN'), delivering

substantially narrower bounds that increase the reliability of the provided estimates. We also

show that our approach outperforms when benchmarked against state-of-the-art ML methods.

Finally, Section 5 concludes.

2 Literature Review

Machine learning (ML) technology is widespread nowadays: from web searches to content �l-

tering on social networks to recommendations on e-commerce websites. ML identi�es objects in

images, transcribes speech into text, matches news items, posts or products with users' interests,

and selects relevant results of search, making use of a class of techniques called deep learning.

Deep learning allows computational models that are composed of multiple processing layers

to learn representations of big complex datasets, uncovering intricate structure within them.

These methods have dramatically improved the state-of-the-art in speech recognition, visual ob-

ject recognition, object detection and many other domains such as drug discovery and genomics,

being increasingly present in consumer products such as cameras, smartphones or computerized

personal assistants. For example, Apple's Siri, Amazon's Alexa, Google Now or Microsoft's

Cortana employ deep neural networks to recognize, understand and answer human questions.

But so far, they have not been applied to solving societal pressing issues, like quantifying the

e�ects of greenhouse emissions on climate change.

This section brie�y reviews the literature on machine learning (ML), and places deep learning
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within it.4 Emphasis is put on 'shallow' versus 'deep' neural network (NN) architectures, closing

with a brief description of our novel approach to architecture optimization and construction of

con�dence intervals, applied in the following section to estimate the carbon footprint of Bitcoin

network production.

2.1 Machine Learning Basics

ML aims to develop a computational relationship (formula/algorithm) between P inputs (predic-

tors, features, explanatory or independent variables), X = {...xp...}, and K outputs (dependent

or response variables), y = {...yk...}, for determining/predicting/estimating values for y given

only the values of X, in the presence of U unobserved/uncontrolled quantities z = {...zu...} :

yk = gk(...xp...; ...zu...),∀k

To re�ect the uncertainty associated with the unobserved inputs z, the above relationship is

replaced by a statistical model:

yk = fk(...xp...) + εk : εk ∼ Fε(εk),E[εk|...xp...] = 0,∀k

where fk(...xp...) = Eε[yk|...xp...]. For simplicity, we drop the k subscript, indicating that we are

assuming that there are separate models for each output k, ignoring that they depend on the

same set of input variables5:

y = f(X) + ε : f(X) = Eε[y|X] (1)

i.e. to the extent that the error term ε is a random variable, the output variable y becomes a

random variable. Specifying a set of observed input values X, speci�es a distribution of output

y−values the mean of which is the target function f(X). Input and output variables can be real

or categorical, but categories can be always converted into 'indicators' or 'dummies' that are

real-valued. An example of an output variable y is the carbon footprint of Bitcoin mining, input

variables X of which are electricity prices, the energy e�ciency of available mining hardware,

drivers of Bitcoin prices, foreign currencies exchange rates against the USD or the country-

speci�c carbon intensities of electricity consumed, among others. Finally examples of unobserved

inputs z are the actual energy e�ciency of mining hardware or the carbon intensities of di�erent

sources of electricity e�ectively employed.

ML algorithms can be broadly categorized as unsupervised or supervised. Unsupervised

learning algorithms aim at uncovering useful properties of the structure of the input dataset,

4Friedman (1994) provides an early unifying review across the relevant disciplines (applied mathematics,

statistics, engineering, arti�cial intelligence and connectionism), LeCun et al. (2015) provide a general overview

of deep learning while Goodfellow et al. (2016) provide a thorough textbook treatment.
5In practice, strategies that treat the K outputs as a joint system often improve accuracy.
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i.e. there is no y, and given that the true data generating process (DGP) pdata(X) is unknown,

the goal is to learn pdata(X), or some useful properties of it, from a random sample of i = 1...N

realizations of input data only, {Xi}, on the basis of which the empirical distribution p̂data(X)

obtains. Letting pmodel(X;θ) be a parametric family of probability distributions indexed by θ

that estimates the unknown true pdata(X), unsupervised learning corresponds to �nding the pa-

rameter vector θ that minimizes the dissimilarity/distance between pmodel(X;θ) and p̂data(X):6

θML ∈ argmin
θ
DKL(p̂data||pmodel) = argmin

θ
EX∼p̂data [log p̂data(X)− log pmodel(X;θ)] (2)

noticing that θML is the maximum likelihood estimator7, and DKL(p̂data||pmodel) denotes the

Kullback-Leibler divergence. The cross-entropy is then simply −EX∼p̂data log pmodel(X;θ): since

log p̂data(X) does not depend on θ, minimizing DKL is equivalent to minimizing the cross-

entropy, or 'empirical risk minimization', e.g. the mean-squared error is the cross-entropy be-

tween the empirical distribution and a Gaussian model. In ML, the cross-entropy is called 'cost

function', J(θ), while in statistics it is called the 'loss function', l(θ) ≡ L[p̂data(X), pmodel(X;θ)].

Instead, supervised learning algorithms aim to obtain a useful approximation f̂(X) to the

true (unknown) 'target' function f(X) in (1), by modifying (under constraints) the input/output

relationship f̂(X) that it produces, in response to di�erences {yi − ŷi} (errors) between the

predicted ŷi = f̂(Xi) and real yi system outputs8:

f̂(X) ∈ argmin
g(X)

1

N

∑N
i=1 L[yi, g(Xi)] (3)

where L(., .) is the 'loss function', or a measure of distance (error) between yi and ŷi =

f̂(Xi). Common examples are L[yi, ŷi] = |yi − ŷi| which plugged into (3) corresponds to se-

lecting the f̂(X) = Medy,X∼p̂data [y|X] that minimizes the Mean Absolute Error (MAE), or

L[yi, ŷi] = [yi − ŷi]2 which selects the f̂(X) = Ey,X∼p̂data [y|X] that minimizes the Mean Squared

Error (MSE) in (3). Alternatively stated, consider a random sample of i = 1...N realizations,

{yi,Xi}, constituting the empirical distribution p̂data(y,X), the goal of supervised learning is

6Other popular unsupervised deep learning models, not necessarily parametric, are k-means clustering,

auto-encoders and generative adversarial networks (GANs).
7Since θML = argmax

θ
pmodel(X;θ) and pmodel(X;θ) =

∏N
i=1 pmodel(Xi;θ) which, after taking logs and

dividing by N , is equivalent to

θML = argmax
θ

1

N

∑N
i=1 log pmodel(Xi;θ) = argmax

θ
EX∼p̂data [log pmodel(X;θ)],

by the analogy principle. Maximum likelihood is the preferred estimator for machine learning (ML) because of

its theoretical properties of consistency and e�ciency. In cases where these cannot be guaranteed, a di�erent

estimator is adopted instead.
8Formally, this is a variational problem in that the argument of the optimization is a function of func-

tions, and requires calculus of variations to solve it. See Goodfellow et al. (2016) for a textbook treatment,

and Cover and Thomas (2006) for a more advanced treatment.
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to learn to predict y from X, estimating p(y|X). Letting pmodel(y|X;θ) be a parametric family

of probability distributions indexed by θ that estimates the unknown true p(y|X), supervised

learning corresponds to �nding the parameter vector θ that minimizes the dissimilarity/distance

between pmodel(y|X;θ) and p̂data(y|X):9

θML ∈ argmin
θ
DKL(p̂data||pmodel) = argmin

θ
Ey,X∼p̂data [log p̂data(y|X)− log pmodel(y|X;θ)] (4)

and again, solving (4) is equivalent to cross-entropy minimization,min
θ
−Ey,X∼p̂data log pmodel(y|X;θ).

As an example, notice that if we set pmodel(y|X;θ) = N(g(X;θ), σ2) in (4) we obtain:

min
θ
− Ey,X∼p̂data log pmodel(y|X;θ) = min

θ
− 1

N

∑N
i=1 log pmodel(yi|Xi;θ)

= min
θ

log(σ[2π])1/2 +
[
2σ2
]−1 1

N

∑N

i=1
[yi − g(Xi;θ)]2︸ ︷︷ ︸
≡MSE(θ)


and therefore, cross-entropy minimization corresponds to mean squared error (MSE) minimiza-

tion when the model is hypothesized to be Gaussian with mean g(X;θ). In addition, this example

shows that optimally choosing the parameter vector θ̂ = θML, characterizing f̂(X) = g(X; θ̂),

is equivalent to solving (3) when L[yi, ŷi] = [yi − ŷi]2:

f̂(X) ∈ argmin
g(X)

Ey,X∼p̂data [y − g(X)]2 = argmin
g(X)

1

N

∑N
i=1[yi − g(Xi)]

2

Therefore, approximating/learning the unknown function f(X) corresponds to estimating the

unknown true conditional probability p(y|X), once we conjecture a parameterization pmodel(y|X;θ)

for it.

Notice that (3) is the available sample {yi,Xi} analog to solving for the global prediction

error in (1):

f̂ ∈ argmin
g(X)

∫
{EεL[f(X) + ε, g(X)]} pdata(X)dX (5)

where pdata(X) is the unknown true data generating process. Problem (5) de�nes the target per-

formance measure for prediction in supervised learning/function approximation10: as future new

9Popular supervised deep learning models, not necessarily parametric, are support vector machines (SVMs)

based on kernel methods, k-nearest neighbor regression or decision trees. See more below.
10As an example, replace L[yi, ŷi] = [yi − ŷi]2 in (5) to obtain the standard expressions for the bias-variance

trade-o� in the Mean Squared Error (MSE):

f̂ ∈ argmin
g(X)

∫ {
Eε[f(X) + ε− g(X)]2

}
pdata(X)dX

= arg ming(X)

∫
[f(X)− g(X)]2pdata(X)dX︸ ︷︷ ︸

MSE(f̂)

+

∫ {
Eε[ε2|X]

}
pdata(X)dX︸ ︷︷ ︸

Variance of the noise ε
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input only observations become available, collected in a prediction or test sample '>', {yi,Xi}N
>

i=1,

we want to predict (estimate) a likely output value using f̂(Xi), ŷi = f̂(Xi), where f̂(X) was ob-

tained from (3) exploiting the available sample, {yi,Xi}Ni=1. Computing then 1
N>

∑N>

i=1 L[yi, ŷi]

allows the researcher to evaluate the out-of-sample performance of the algorithm/function ap-

proximation f̂(X), showing that accurate approximation and future prediction are one and the

same objective11. As future data is unavailable, the standard practice is to divide the available

sample {yi,Xi}Ni=1 into two disjoint parts: a training/learning sample 'x' {yi,Xi}N
x

i=1 in (3) where

f̂(X) obtains, and a prediction/test sample {yi,Xi}N
>

i=1 where the out-of-sample predictive per-

formance of f̂(X) is evaluated, so that N = Nx + N>. More complex forms of the unknown

target function f(X) naturally call for bigger training samples Nx to obtain better representa-

tions/approximations f̂(X). However, this comes at the expense of increasing the chances of

f̂(X) 'over�tting'. Over�tting happens when a model that represents the training data very

well, represents very poorly unseen data N> in the 'prediction/test phase'.12 The reason lies

on the 'curse-of-dimensionality' that the complexity of the unknown target function creates: as

the number of input variables P upon which f(X) depends increases, the necessary sample size

to accurately approximate f(X) grows exponentially, i.e. at a rate N1/P , rendering all training

where the MSE(f̂) denotes the MSEf̂(X) averaged over all training samples of size N that could be realized

from the system with probabilities governed by pdata(X) and Fε(ε). It can be further decomposed as:

MSE(f̂) ≡
∫
MSE[f̂(X)]pdata(X)dX =

∫
V ar[f̂(X)]pdata(X)dX+

∫
Bias2[f̂(X)]pdata(X)dX

where Bias2[f̂(X)] = {f(X) − Eε[f̂(X)]}2 measures the square of the di�erence between the target function

f(X) and the average approximation value at a particular sample X, Eε[f̂(X)].
11Yet another goal of supervised learning is interpretation, as opposed to prediction: there, interest lies in

the structural form of the approximating function obtained from (3) to understand the mechanism that pro-

duced the data. Identi�cation of the input variables that are most relevant to explain the variation in output,

or the nature of that dependence and how it changes with changes in other inputs are instead the primary ob-

jectives, and the aim is to understand how does the system work.
12An intuitive way to understand why is as follows. Suppose that we have a sample of size N with which

we are trying to approximate a function of N variables f(x1, ..., xN ). If Kolmogorov's conjecture was right, we

could instead approximate a degree N polynomial function of just one variable, say x1, f(x1, ..., xN ) = g(x1) =∑N
i=1 aix

i
1 and problem (3) would reduce to a parametric least squares (OLS) solution:

f̂(X) = f(X;â) ∈ argmin
{ai}

1

N

∑N
i=1[yi −

∑N
i=1 aix

i
1]2

Since there are N normal equations (one for each ) in N unknowns (sample observations), we would obtain a

unique solution â, corresponding to a 'perfect �t' of the sample/training data. If then one more sample obser-

vation was collected, N> = {yN+1, xN+1
1 }, and we wanted to test the predictive ability of f̂(X) =

∑N
i=1 âix

i
1,

almost with probability one yN+1 6= ŷN+1 =
∑N
i=1 âi(x

N+1
1 )i, i.e. the prediction error [yN+1 − ŷN+1]2 will be

very big, indicating 'over�tting'. In big data problems, where P > N (or is close to N), over�tting means that

the approximation obtained from (3) will almost surely perform poorly in unseen data, i.e. in (5).

9



samples very sparsely populated.13

Because Nx is �nite, problem (3) does not have a unique solution14. One must therefore

restrict the set of admissible functions to a smaller set G than the set of all possible func-

tions g(X). To see the e�ect of restricting the class of admissible functions in (3), denote by

f∗(X) ∈ argmin
g(X)

1
N>

∑N>

i=1 L[yi, g(Xi)] and by f∗G(X) ∈ arg min
g(X)∈G

1
N>

∑N>

i=1 L[yi, g(Xi)] the best

approximation in the unrestricted and restricted classes of functions respectively, both in terms

of out-of-sample performance, N>. The di�erence in out-of-sample performance between the

solution from (3) and f∗(X) ('excess test error' E) can then be decomposed as follows:

E ≡ 1

N>
∑N>

i=1 L[yi, f̂(Xi)]− 1
N>

∑N>

i=1 L[yi, f
∗(Xi)]

=
1

N>
∑N>

i=1 {L[yi, f̂(Xi)]−L[yi, f
∗
G(Xi)]}︸ ︷︷ ︸

Estimation error

+ {L[yi, f
∗
G(Xi)]−L[yi, f

∗(Xi)]}︸ ︷︷ ︸
Approximation error

.

The approximation error increases the more restrictive the class of functions G is, unless the

true unknown target function f(X) happens to belong to G, in which case f∗G(X) = f∗(X). The

estimation error depends on how good the algorithm/approximation f̂(X) is (1st term) as well

as on how well the selected class of functions G can best represent the complexity of the unknown

target function f(X) (2nd term). 'Universal approximators' for the class of all continuous target

functions f(X) are classes of functions G = {g(X) : g(X) =
∑Z

z=1 azb(X|γz),γz ∈ Rq} that

could exactly represent f(X) if the sample size was not �nite, i.e. f(X) =
∑∞

z=1 a
∗
zb(X|γz) for

some set of expansion coe�cient values {a∗z}∞z=1. Therefore, universal approximators minimize

the approximation error and the estimation error, minimizing the out-of-sample performance

di�erence E between the solution from (3) and f∗(X), i.e. if the training sample size was

in�nite, lim
Nx→∞

f̂(X) = f(X; θ̂) =
∑∞

z=1 âzb(X|γ̂z) =
∑∞

z=1 a
∗
zb(X|γz) = f(X) with θ̂ = θ̂ML =

{âz, γ̂z}∞z=1, and therefore lim
N>→∞

1
N>

∑N>

i=1 L[yi, f̂(Xi)] = 0 ('Oracle property'). But because the

training sample size is �nite, Z < ∞ and 1
N>

∑N>

i=1 L[yi, f̂(Xi)] > 0. Choosing Z corresponds

then to 'model selection': as entries {az}Zz=1 are added, the approximation is able to better

�t the training data, increasing the variance component of (5) but decreasing the bias. The

bias decreases because adding entries enlarges the function space spanned by the approximation

f̂(X). With a �nite sample size, the goal is to choose a small Z that keeps the variance and the

bias small, so that (5) can be expected to remain small.

In general, the choice of the set of admissible functions G is based on considerations outside

13Note that this is the case even if we set ε = 0 in (1), converting (3) into an interpolation problem, i.e. re-

ducing the MSPE to an MSE-only problem still requires a large enough training sample for the approximation

to be accurate.
14If Nx = +∞ (and with an in�nitely fast computer) we would directly compute f(X) from (1) predicting

the mean of y for each value of X.
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the data and is usually done by the choice of a learning method.15 Choosing a learning method

can be modeled as adding a penalty term λΩ[g(X)] to restrict solutions to (3):

f̂(X;λ) ∈ argmin
g(X)

1

Nx

∑Nx

i=1 L[yi, g(Xi)]+λΩ[g(X)] (6)

where λ ('regularization parameter') modulates the strength of the penalty functional Ω[.] over

all possible functions g(X).16 For example, restricting g(X) ∈ G as above can be achieved by

setting Ω[g(X)] = H{bias2[g(X)]} with H{h} = 0 · 1{h=0} +∞ · 1{h6=0} (with the convention

that ∞ · 0 = 0), since when h = 0 = bias2[g(X)] ⇔ g(X; θ̂) =
∑Z

z=1 âzb(X|γ̂z), i.e. learning

f̂(X;λ) in (3) reduces to parameter learning, f̂(X;λ) = g(X; θ̂, λ) where θ = {az,γz}Zz=1.

Additional parametric or non-parametric penalty terms can be added to (6), with the result of

further restricting the solutions in the approximation subspace of G that respect that particular

penalty. By the addition of a penalty term (or 'regularization') the aim is to improve the out-

of-sample performance of the approximation f̂(X;λ), reducing its chances to 'over�t', without

a�ecting its training error. Non-parametric penalties can be of the form Ω[g(X)] =
∫
|Dg(X)|2dX

where, for example, |Dg(X)|2=
∑n

j=1( ∂g∂xj )2 is the norm of the gradient of the functions in the

class, with larger values of λ penalizing functions that oscillate more (i.e. that are 'less smooth').

15The class of functions g(X) =
∑M
m=1 amb(X|γm),γm ∈ Rq are commonly known as 'dictionaries'. The

choice of a learning method selects a particular dictionary. Examples of dictionaries that are universal approxi-

mators are feed-forward neural networks, radial basis functions, recursive partitioning tree-structured methods

and tensor product methods. See Friedman (1994) for additional details.
16The choice of a penalty functional is made on the basis of 'outside the data information' about the un-

known target f(X), e.g. on the basis of a prior over the class of models g(X), Pr[g(X)]. A natural choice for

f̂(X) would then be the function that is most probable given the data:

f̂(X) ∈ argmax
g(X)

Pr[g(X)|{yi,Xi}] (7)

which is known as maximum a posteriori probability (MAP) estimate. According to Bayes' theorem, the prob-

ability of a model given the training data is proportional to the likelihood that the training data has been gen-

erated by the model (and is therefore a model Fε(ε) for the error ε) times the probability of the model:

Pr[g(X)|{yi,Xi}] ∼Pr[{yi,Xi}|g(X)] Pr[g(X)], (8)

If Fε(ε) = N(0, σ2) then (1) implies that

Pr[{yi,Xi}|g(X)] = Pr[{Xi}]
∏Nx

i=1(2πσ)−1 exp{−ε2i /2σ2}

with εi = yi − g(Xi). Substituting the above expression into (8), taking logs and discarding terms not involving

g(X) yields an equivalent expression to (7):

f̂(X) ∈ argmin
g(X)

1

σ2

∑Nx

i=1[yi − g(Xi)]
2−2 log Pr[g(X)]

which coincides with (6) if L(., .) is the quadratic loss function and λΩ[g(X)] = −2σ2 log Pr[g(X)]. λΩ[g(X)]

naturally captures that reductions in the noise variance σ2 lead to increasing weight on the training data part

Pr[{yi,Xi}|g(X)] in determining the approximation f̂(X), relative to the prior Pr[g(X)].
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Parametric penalties would instead penalize functions g(X) not in a particular parametric

family k(X|θ) : g(X) /∈ {k(X|θ),θ ∈ Rq} =⇒ Ω[g(X)] =∞, transforming (3) into an equivalent

parameter estimation problem:

θ̂λ ∈ argmin
θ

1

Nx

∑Nx

i=1 L[yi, k(Xi|θ)] + λ$[θ] (9)

where di�erent forms form $[θ] admit commonly studied cases, like (i) 'ridge' (L2 regular-

ization): $[θ] =
∑q

j=1 θ
2
j , penalizing approximations with large parameter values17; (ii) 'sub-

set selection': $[θ] =
∑q

j=1 1{θj 6=0}, which penalizes approximations with a large number of

parameters (requiring combinatorial optimization); (iii) 'bridge': $v[θ] =
∑q

j=1|θj |v, which

coincides with 'ridge' when v = 2 and is a continuous approximation of the subset selec-

tion penalty as v → 0. When v = 1, L1 regularization obtains, akin to the 'least absolute

shrinkage and selection operator', LASSO18; (iv) 'weight decay': $w[θ] =
∑q

j=1
(θj/w)2

1+(θj/w)2
ap-

proaches 'ridge' as w → ∞ and subset selection as w → 0. Smaller values of v and w privi-

lege approximations with a small number of parameters. (v) '(Stochastic) Gradient descent':

$[θ] = 1
Nx

∑Nx

i=1 L[yi, k(Xi|θ)], which penalizes 'paths' that do not follow the 'steepest descent',

Oθ$[θ] = 1
Nx

∑Nx

i=1 OθL[yi, k(Xi|θ)], when searching for the value θ̂λ that minimizes (9) with

f̂(X;λ) = k(X|θ̂), i.e. a high value of λ privileges 'τ−paths' θτ+1 = θτ−εOθ$[θτ ] that reach θ̂λ

taking the least possible number of steps τ , each of which depends on ε or 'learning rate'. Since

ε governs the strength of the gradient Oθ$[θτ ] in the updating of θτ , choosing λ is equivalent

to the choice of ε, a free hyperparameter to be '�ne tuned' or optimized during training. When

instead of using all available Nx observations in the training sample, we subsample randomly

from {yi,Xi} and form a 'minibatch' with B < Nx observations, $[θ] = 1
B

∑B
i=1 L[yi, k(Xi|θ)] is

called a 'stochastic gradient descent (SGD) penalty'. SGD can be combined with 'momentum',

where the size of the updating step depends on how large an exponentially decaying moving

average sequence of past gradients is, α : θτ+1 = θτ − ε
1−αOθ$[θτ ]. Momentum adds then

another hyperparameter α, with larger values of α ∈ (0, 1) corresponding to a higher reliance on

previous gradients, leading to a larger step size when updating. Current optimization methods

like AdaGrad, RMSProp or Adam, supplement SGD (with or without 'momentum') to allow the

learning rate ε to 'adapt', shrinking or expanding according to the entire history (e.g. Adam19)

17'Early stopping' the number of training iterations ('epochs') over the learning sample once the out-of-

sample performance of the approximation starts to increase, can be shown to be equivalent to L2 regularization

(Goodfellow et al., 2016). Similarly, 'dropout' when applied to neural network (NN) methods, has been shown

to be equivalent to L2 regularization with a penalty strength parameter λ inversely proportional to the preci-

sion of the prior of a deep Gaussian process characterizing the NN parameters (Gal and Ghahramani, 2016).
18Just as we saw in the previous F.N. that L2 regularization is equivalent to MAP Bayesian inference with

a Gaussian prior over θ, L1 regularization is equivalent to MAP Bayesian inference with an isotropic Laplace

distribution prior p(θ) over θ, log p(θ) =
∑
j logLaplace(θj ;0,

1
λ

) = −λ
∑q
j=1|θj |+n log λ− n log 2.

19Adam combines RSMProp and momentum, which is directly incorporated with exponential decay rates,
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or to an exponentially decaying average (e.g. RMSProp20) of the squared gradient, so that the

updating can converge even faster. Back-propagation is the method to compute the gradient

of the cost function in (9), OθJ(θ) = 1
Nx

∑Nx

i=1 OθL[yi, k(Xi|θ)] + λOθ$[θ], which itself is a

function of the gradients of the loss function and penalty terms. Those gradients are computed

'backwards' as dictated by the 'chain rule of calculus', since they are compositions of functions

of the parameters θ. Once those gradients are computed, SGD or other optimization algorithms

are used to perform the learning/approximation exploiting them.

Finally 'bagging' ('bootstrap aggregating') is also a powerful regularization method that can

combine parametric and non-parametric penalties. It involves creating k di�erent datasets from

the training sample Nx by sampling with replacement Nk = Nx observations, and solving (6)

on each of the k di�erent training datasets, f̂k(X;λ). The out-of-sample performance of the k-

ensemble predictor is then 1
N>

∑N>

i=1
1
kL[yi, f̂k(Xi;λ)]. Since sampling is done with replacement,

each dataset k is missing some of the observations from the original dataset Nx with high

probability, resulting in di�erent approximations f̂k(X;λ) which make di�erent errors in the

test sample N>. Those errors will tend to cancel out if sampling is random, improving the

out-of-sample performance of the k-ensemble model relative to its members.

How is λ determined? Since choosing the strength of the penalty λ determines the solution

approximation f̂(X;λ) to (6) �and hence (9)�, this is referred to as 'model selection'. Ideally

one would like to choose the λ that maximizes the out-of-sample performance of f̂(X;λ):

λ̂ ∈ argmin
λ

1

N>
∑N>

i=1 L[yi, f̂(Xi;λ)]. (10)

But di�erent 'splittings' of the available sample into complementary learning and test subsam-

ples, N = Nx + N>, are going to provide di�erent values of λ̂. To avoid the computational

burden associated with computing λ̂ for all possible assignments
(
N
Nx

)
and then minimizing the

average over these replications, this process is instead approximated by dividing the learning

sample into K disjoint subsamples of approximately equal size, NK : Nx = KNK , each of which

is used as 'test sample', N> = NK , in (10). The complement sample, N−NK = NxK , is used as

training sample in (6) to obtain K di�erent approximations f̂K(X;λ) each of which is evaluated

once on the test sample NK . Averaging the results over K in (10), 1
K {

1
NK

∑NK

i=1 L[yi, f̂K(Xi;λ)]

and solving for λ̂ returns λ̂K as determined by 'K-fold' cross validation.

ρ1, ρ2 ∈ [0, 1), for the �rst two moment estimates, s1 and s2, of the gradient Oθ$[θτ ], initialized at the origin,

s1 = s2 = 0. Then, the bias-corrected updates of the �rst and second moments, ŝ1 = ρ1s1+(1−ρ1)Oθ$[θτ ]
1−ρτ1

and

ŝ2 = ρ2s2+(1−ρ2)[Oθ$[θτ ]]
′Oθ$[θτ ]

1−ρτ2
, are used to update the parameters: θτ+1 − θτ= −ε ŝ1√

ŝ2+δ
.

20RSMProp uses an exponentially decaying average with decay rate ρ ∈ [0, 1) that discards history from

the extreme past and employs the squared gradient, initializing at the origin, s = 0. Then, the update of s,

ŝ = ρs+ (1− ρ) [Oθ$[θτ ]]′ Oθ$[θτ ], is used to update the parameters: θτ+1 − θτ= − ε√
ŝ+δ

Oθ$[θτ ].
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2.2 Deep Learning Basics

To build a ML algorithm one thus needs a dataset, a cost or loss function, an optimization

procedure and a model/approximation method. Deep learning builds on feed-forward neural

networks (NN) or multi-layer perceptrons (MLPs) to learn unknown target functions of increas-

ing complexity. MLPs are then compositions of single-layer/shallow NNs, each hidden unit of

which (or 'neuron') is fully connected to the hidden units of the subsequent layer, to capture

the fact that information �ows forward from the inputs X to the output y. Arti�cial neural

networks, or MLPs, are thus similar to biological neural networks: they are collections of con-

nected units called neurons. An arti�cial neuron receives inputs from other neurons, computes

the weighted sum of the inputs, and maps the sum via an activation function to the neurons in

the next layer, and so on until it reaches the last layer or output. Accordingly, the network is

free of cycles or feedback connections that pass information backwards.21

Single-layer/shallow NNs are universal approximators (Hornik et al., 1989; Cybenko, 1989)

and have dictionaries of functions of the form {b(X|γ1) = s(W′
1X+b1) : γ1 = (b1,W1),W′

1X =

[...
∑P

p=1wzpxp...]
′ ∈ RZ1} where s(.) : RZ1 → RZ1 is a vector-valued 'activation function' (i.e.

applied unit-wise), mapping the output from the single hidden layer h1 = W′
1X + b1 ∈ RZ1

and the bias of each hidden unit z ∈ RZ1 in the single hidden layer, b1 ∈ RZ1 , into the output,

ŷ =
∑Z1

z=1w2zsz(W
′
1X + b1) + b2z ≡ f̂(X;θ1), with the weights w2 ∈ RZ1 and bias b2 ∈ R

being the parameters {az}Z1
z=1 of the function class G de�ned above, i.e. θ1 = (w2, b2; b1,W1) ≡

(a;γ1). Popular choices for the activation function include: (i) Recti�ed linear units (ReLu),

s(h) = max{0, h}; (ii) Softplus, s(h) = log(1 + eh); (iii) Hard tanh, s(h) = max{−1,min{1, h}};

(iv) Sigmoid or 'logistic', s(h) = (1+e−h)−1; or (v) Maxout, s(h) = max
j∈Gi

hj where the number of

hidden units z in layer l, Zl, is divided into groups of k values, {(z1, ..., zk), ..., (zZl−k+1, ..., zZl)},

and Gi = {(i − 1)k + 1, ..., ik} is the set of indices into the inputs for group i. All activation

functions s(.) have in common that a certain threshold must be overcome for information to be

passed forward, much alike neurons in the human brain, that need to receive a certain amount

of stimuli in order to be activated. The threshold hurdle creates a non-linearity that allows

arti�cial NNs to learn non-linear and non-convex unknown target functions f(X).

Single-layer NNs are also known as 'three-layer' networks, where the inputs X form the

�rst, the second or 'hidden' layer h1 is comprised of (b1,W1, s(.)) : h1 = s(W′
1X + b1), and

the third corresponds to the output layer, ŷ = w′2s(h1) + b2 ∈ R. A deep NN (DNN) is

constructed by adding hidden layers, each subsequent one taking as inputs the output of the

previous ones. For example, a 'four-layer' NN that adds one hidden layer to a 'three-layer' NN

21MLPs that allow information to �ow backwards are called recurrent neural networks and are discussed in

Goodfellow et al. (2016).
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(or shallow/single-layer NN), rather than simply taking the linear combination of the dictionary

entries of single-layered NNs, {b(X|γ1)} , would result in the collection of functions represented

by the dictionary {b(X|γ2) = s(W′
2s(W

′
1X + b1) + b2) : γ2 = (b1,b2,W1,W2),W′

1X =

[...
∑P

p=1wzpxp...]
′ ∈ RZ1 ,W2 ∈ RZ1×Z2}. Adding hidden layers results then in parameter

addition, increasing the variance and reducing the bias. The overall e�ect on performance

(i.e. on generalization/test error) will depend on how well the resulting dictionary matches

the unknown target function f(X). And although it is an open question in the deep learning

literature why do over-parameterized DNNs perform well in terms of generalization/test error,

original contributions due to Pascanu et al. (2013) and Montufar et al. (2014) show that deeper

ReLu architectures have more �exibility to express the behavior of the unknown target function,

relative to equally sized single-layer/shallow architectures.22

Generally, a DNN approximation f̂(.) : RP → R of size Z =
∑L

l=1 Zl with L ∈ N hidden

layers and Zl ∈ N nodes per layer l, is of the form:

f̂(X) ≡ f(X; ΛL) = w′L+1s(W
′
LhL−1 + bL) + bL+1

= f ◦f◦...◦
L−composition

f(X; Λ1)

where s(.) : RZL−1 → RZL is the vector-valued activation function that maps the output from

the previous hidden layer hL−1 = s(W′
L−1hL−2 + bL−1) ∈ RZL−1 and the bias of each hidden

unit z ∈ RZL in the last hidden layer L, bL ∈ RZL , into the output layer l = L+ 1, with weights

wL+1 ∈ RZL and bias unit bL+1 ∈ R. The matrices Wl = [w1...wZl ] ∈ RZl−1×Zl contain the

weights wz ∈ RZl−1 of each hidden unit z = 1...Zl for each hidden layer l = 1...L, with Z0 = P

the dimension of the input vector X ∈ RP . ΛL≡ [θL;Z,L, {Zl}Ll=1; ε, λ, α] is the collection of

parameters θL = [(wL+1, bL+1)...(W1,b1)] and hyperparameters [Z,L, {Zl}Ll=1] and [ε, λ, α] to

be learned and/or '�ned tuned' by the optimization algorithm, e.g. if the DNN is trained with

SGD combined with momentum α and a parametric penalty term λ$[θ], for a speci�c choice of

the activation function s(.). The last equality simply conveys that a DNN can be expressed as the

composition of L-single layer NNs where Λ1 ≡ [[θ1;Z, 1, {Zl}1l=1; ε, λ, α] and Z1 = Z −
∑L

l=2 Zl

denotes the hidden units remaining from the allocation of Z to the subsequent layers l = 2, ..., L.

Approximating the unknown target function f(X) with a DNN is then equivalent to param-

eter estimation:

Λ̂L ∈ argmin
ΛL

1

Nx

∑Nx

i=1 L[yi, f(Xi; ΛL)]+λ$[θ] (11)

22An incipient strand of the literature (e.g. Arora et al., 2019; Allen-Zhu et al., 2020) building instead on

the Rademacher complexity of both the function class being approximated and of the dataset, shows that the

dictionaries of deeper architectures can better capture interactions between the units of di�erent layers through

the composition of functions they can represent.
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where it is standard practice to 'cross-validate' the choice of hyperparameters [Z,L, {Zl}Ll=1]

and [ε, λ, α] before estimating the parameters that characterize the restricted class of function-

s/models represented by the dictionary {b(X|γL) : γL = (b1, ...,bL,W1, ...,WL)} augmented by

the output layer weights and bias, (wL+1, bL+1), θL = [(wL+1, bL+1)...(W1,b1)], that solve the

'empirical risk minimization' problem (11). In deep learning, standard choices are: (i) a cross-

entropy cost/loss function, L[., .]; (ii) a ReLu activation function s(.), which naturally leads to

sparse settings whereby a large portion of hidden units are not activated, thus having zero output

(LeCun et al., 2015); (iii) a SGD penalty $[θ], usually combined with momentum α, as opti-

mization method; and (iv) network architecture size, depth and nodes per layer, [Z,L, {Zl}Ll=1],

as well as learning rate, ε, that depend on the characteristics of the dataset, {yi,Xi}Ni=1. Per-

formance is then assessed on the test sample, from evaluating 1
N>

∑N>

i=1 L[yi, f(Xi; Λ̂L)].

In practice, 'tuning' or optimizing the hyperparameters is a daunting task in terms of

processing time and computational capacity, e.g. only determining the optimal depth (num-

ber of layers L) and nodes per layer ({Zl}Ll=1) for architectures of a given size Z involves

solving an NP-hard combinatorial optimization problem because L, {Zl}l ∈ N, i.e. are inte-

ger values (Judd, 1990). Yet in Calvo-Pardo et al. (2020a) we show that recent advances

in combinatorial optimization software (RStudio) can be exploited to optimally allocate hid-

den units ({Zl}Ll=1) within ('width') and across ('depth', L) layers in deep architectures of

a given size Z =
∑L

l=1 Zl. Adopting Montufar et al.'s (2014) lower bound on the maxi-

mal number of linear regions that ReLu DNNs can approximate as maximization criterion,

LB(L, {Zl}L−1
l=1 ;P ) ≡

(∏L−1
l=1

⌊
Zl
P

⌋P)∑P
r=0

(
Z−
∑L−1

l=1 Zl
r

)
,23 we e�ectively solve (11) in two-

stages:

(L̂, {Ẑl}L̂l=1) ∈ arg max
(L,{Zl}L−1

l=1 )
LB(L, {Zl}L−1

l=1 ;P ) (12)

Λ̂L(L̂, {Ẑl}L̂l=1) ∈ arg min
ΛL(L̂,{Ẑl}L̂l=1)

1

Nx

∑Nx

i=1 L[yi, f(Xi; ΛL)]+λ$[θ] (13)

The �rst stage optimization (12) solves for the optimal depth L̂ and number of hidden

23Upper bounds, or maximal number of linear regions of a function approximated by a network architecture

with recti�ed linear units of size Z, have recently been characterized by Raghu et al.'s (2017) Theorem 1 to

equal

UB(L, {Zl}Ll=1;P ) = O

([
Z

L

]ZP)
from which they conclude that the maximal number of regions approximated by a shallow ReLu NN,

UB(1, Z;P ), is always smaller than the maximal number of regions approximated by an equally-sized deep

ReLu NN, UB(L, {Zl}Ll=1;P ) :
∑L
l=1 Zl = Z:

UB(1, Z;P ) < UB(2,
Z

2
;P ) < ... < UB(L,

Z

L
;P )
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units per layer (or optimal width, layer-wise) {Ẑl}L̂l=1 given the network architecture size,

Z =
∑L

l=1 Zl.
24 The outcome of the �rst stage is an optimal deep network architecture in

the sense of maximizing the expressive power of the approximation f(X; ΛL) within the re-

stricted class of functions generated by the dictionary {b(X|γL) : γL = (b1, ...,bL,W1, ...,WL)}.

The second stage optimization (13) proceeds just as in (11) but takes as given the optimal

values of the hyperparameters (L̂, {Ẑl}Ll=1) from the �rst stage (12), i.e. ΛL(L̂, {Ẑl}L̂l=1) =

[θL;Z, (L̂, {Ẑl}L̂l=1); ε, λ, α]. Rather than engaging into time and computer intensive '�ne tuning'

of the whole set of hyperparameters [Z,L, {Zl}Ll=1; ε, λ, α] while training the deep architecture

to estimate/learn θL as in (11), proceeding in two-stages considerably saves on runtime and

memory while improving performance, as we show in the next section. Finally notice that being

the �rst stage conditional on the architecture size, bigger and more complex datasets {yi,Xi}Ni=1

will naturally summon architectures with more hidden units, Z.

Deep neural networks have become so powerful because of (i) the availability of large datasets,

necessary to 'train' them25, and because of the rapid improvements in (ii) computational power26

and in (iii) optimization algorithms and software. The backpropagation optimization algorithm

informs the machine how it should change the internal parameters used to compute the rep-

resentation in each layer from the representation in the previous layer. Software optimization

methods (e.g, Adam, Adagrad, RMSprop) that implement SGD or any of its variants, allow

substantial gains in the necessary time and computational power when training models with

millions of parameters, and is nowadays often paired with step size 'adaptive regularization'.

It is also now standard practice to do regularization while optimizing (e.g. via 'weight decay',

'dropout' or 'batch normalization') to prevent over�tting and improve the performance of DNNs

'out-of-sample'.

'Batch normalization' (Io�e & Szegedy, 2015; not to be mistaken with 'minibatch regular-

24The �rst stage optimization (12) is a constrained combinatorial optimization problem:

(L̂, {Ẑl}L̂l=1, {µl}L̂l=1) ∈ arg max
(L,{Zl}

L−1
l=1

,{µl}Ll=1
)

LB(L, {Zl}L−1
l=1 ;P ) +

∑L−1
l=1 µl(P − Zl) + µL(−L)

where {µl}L̂l=1 ∈ RL is the collection of L Lagrange multipliers associated with the L − 1 constraints,

Zl ≥ P, l = 1...L − 1, and with the constraint L > 0, because the constraint on the architecture size

Z =
∑L
l=1 Zl is incorporated into the maximand. Since L, {Zl}Ll=1 ∈ N, we also solve in two stages to re-

duce the computational burden. In the �rst stage of (12), the number of hidden units are optimally allocated

for a given depth,
{
L, {Ẑl}Ll=1

}
, while in the second stage of (12), the optimal depth is sought after for a given

allocation of hidden units,
{
L̂, {Zl}L̂l=1

}
.

25Deep neural networks are characterized by a large number of parameters that need to be 'optimized' dur-

ing 'training'. This is called '�ne-tuning' or 'optimally �tting a neural network' to the 'training sample'.
26Particularly, of graphics processing units (GPUs), suited to perform the linear algebra operations at the

root of '�tting' neural networks, e.g. Google DeepMind optimized a deep neural network using 176 GPUs for

40 days to beat the best human players in the game Go.
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ization') is a method of adaptive reparameterization best suited for training very deep models

that involve the composition of several functions or layers. By normalizing the output of each

layer before forwarding it as input to the next layer27, the unexpected e�ect of many functions

being composed together changing simultaneously is removed, allowing the gradient to update

the parameters under the assumption that the other layers do not change. As a result, it allows

the use of higher learning rates, ε, which are less sensible to the initialization of parameters.

'Dropout' discards a small but random portion of the neurons during each iteration of training

to prevent neurons from co-adapting to the same features (or predictors, P ), providing a powerful

regularization method (Srivastava et al., 2014). The intuition is that since several neurons are

likely to model the same non-linear relationship simultaneously, discarding a random fraction of

them forces them to perform well regardless of which other hidden units are in the model. With

dropout, each input and hidden unit z in layer l = 1...L, hzl, is pre-multiplied by a random

variable rzl ∼ F (rzl), hzl = rzl · hzl, ∀(z, l), prior to being fed forward to the activation function

of the next layer, hzl+1 = sz(
∑Zl

z=1wzl+1hzl + bzl+1),∀z = 1...Zl+1. For any layer l, rl is then

a vector of independent random variables, rl = [r1l, ..., rZll] ∈ RZl . Standard choices for the

probability distribution F (rl) are (i) the Normal, i.e. F (rl) = N(1, I), or (ii) the Bernoulli, in

which case each rzl has probability p of being 1 (and 1 − p of being 0). The vector rl is then

sampled and multiplied element-wise with the outputs of that layer, hzl, to create the thinned

outputs, hzl, which are then used as input to the next layer, hzl+1. When this process is applied

at each layer l = 1...L, this amounts to sampling a sub-network from a larger network. In the ML

literature, common choices for p are 0.8 for the input layer, l = 1, and 0.5 for the units in hidden

layers, in l = 2...L. During learning, the derivatives of the loss function are backpropagated

through the sub-network. At test time, the weights are scaled down as Wl = pWl, l = 1...L,

resulting in a DNN (without dropout) that allows the conduct of approximate inference28. This

e�cient test time procedure is an approximate model combination that (i) scales down the

weights of the trained neural network, (ii) works well with other distributed representation

models, e.g. restricted Boltzmann machines, and (iii) acts as a regularizer. Beyond the MLPs

discussed, an array of alternative architectures have been proposed, including convolutional and

recurrent NNs, that target speci�c data structures, like vision tasks and sequential data handling

27Concretely, the normalization involves computing:

hzl =
1

σ
(hzl − µ), z ∈ B : µ =

1

|B|
∑
z∈B hzl, σ =

√
δ + 1

|B|
∑
z∈B(hzl − µ)2

with δ ≈ 10−8 set to prevent the unde�ned value
√

0, and B denoting a minibatch of output units hzl in layer

l = 1...L.
28It is actually exact for many classes of models that do not have nonlinear hidden units, like the softmax

regression classi�er, regression networks with conditionally normal outputs or deep networks with hidden layers

without nonlinearities.
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respectively. See Goodfellow et al. (2016) for a detailed textbook treatment.

2.3 Uncertainty and Deep Learning

Despite their unrivaled success in prediction and forecasting tasks, deep learning models struggle

in conveying the uncertainty or degree of statistical con�dence/reliability associated with those

forecasts. Some recent contributions in the ML literature have made progress in the provision

of con�dence intervals for the point forecasts provided by deep learning models trained with

dropout. For example, Gal and Ghahramani (2016) show that a NN with arbitrary depth and

non-linearities, with dropout applied before every weight layer and a parametric L2 penalty

$[θ] =
∑L

l=1

{
‖Wl‖22 + ‖bl‖22

}
, minimises the Kullback�Leibler divergence between an approx-

imate (variational) distribution, q(θ) �over matrices θ = (W1, ...,WL) with columns randomly

set to zero, Wl = Mldiag[rzl]
Zl
z=1, rzl ∼ Bernoulli(pl), l = 1, ..., L, z = 1, ..., Zl � and the poste-

rior of a deep Gaussian process, p(θ|y,X), which is intractable:

−
∑N

i=1

∫
q(θ) log p(yi|Xi,θ)dθ +DKL(q(θ)||p(θ))

∝ −
∑N

i=1
log p(yi|Xi,θ̂)

τN +
∑L

l=1

{
pll

2

2τN ‖Ml‖22 + l2

2τN ‖bl‖
2
2

}
where the �rst and second terms in the sum are approximated. In the �rst term, each term in the

sum over N is approximated by Monte Carlo integration with a single sample θ̂t ∼ q(θ) to get

an unbiased estimate of log p(yi|Xi, θ̂). In the second, l denotes prior length-scale, and τ model

precision, i.e. p(y|X,θ) = N(ŷ(X,θ), 1
τ I) : ŷ(X,θ) = −2

√
ZLWLs(...

−2
√
Z1W2s(W1X + b1)...)

and variance-covariance matrix 1
τ I. The sampled θ̂t result in realizations from the Bernoulli

distribution [rtl ] equivalent to the binary variables in the dropout case, i.e. sampling T sets

of vectors of realizations from the Bernoulli distribution {[rtl ]}Tt=1 with [rtl ] = [rtzl]
Zl
z=1, giving

{Wt
1, ...,W

t
L}Tt=1, with which the �rst two moments of the predictive distribution p(yi|Xi, θ̂)

are estimated (by moment-matching). The �rst moment, 1
T

∑T
t=1 ŷ(X,Wt

1, ...,W
t
L), is known

as Monte Carlo (MC) dropout, and in practice it corresponds to performing T stochastic forward

passes through the NN and averaging the results (model averaging). The second moment,

1
τ I + 1

T

∑T
t=1 ŷ(X,Wt

1, ...,W
t
L)′ŷ(X,Wt

1, ...,W
t
L), equals the sample variance of T stochastic

forward passes through the NN plus the inverse model precision, providing a measure of the

uncertainty attached to the deep NN point forecast.

In Calvo-Pardo et al.(2020b) we build upon the previous Bayesian interpretation of dropout

in deep NNs to advance a di�erent measure of model uncertainty, and compare it to MC dropout.

There we perform inverted dropout (using Keras from RStudio), where during training we instead

scale-up weights as Wl = (1/p)Wl, l = 1...L, and then perform T stochastic forward passes

through the DNN with weights Wl, l = 1...L, producing a sample {ŷ(X,W
t
1, ...,W

t
L)}Tt=1 from

sampling T sets of vectors of realizations from the Bernoulli distribution {[rtl ]}Tt=1. Con�dence
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intervals can thus be provided for a deep NN point estimate, as we illustrate in the application

below, representing a substantial narrowing down of those provided in the literature based on

Hayes' (2015) model of rational Bitcoin mining.

Finally, attention within the deep learning literature has more recently focused on their

interpretability. The goal of interpretation tasks is to use the structural form of the approxi-

mating function f̂(X) to try to understand the mechanism that produced the data {yi,Xi}Ni=1.

Interest lies then in identi�cation of those input variables that are most relevant to the vari-

ation in the output, the nature of the dependence of the output on the most relevant inputs

or how that dependence changes with changes in the values of other inputs. Conducting valid

inference rests on the amount of correct information learned about the system (i.e. minimizing

the bias at the expense of increasing the variance), rather than just prediction accuracy (where

some bias is optimally traded-o� against the resulting reduction in the variance). Although

both are often in con�ict, limiting the inferential abilities of ML methods, it is not always the

case. Athey and Imbens (2019) note that one way to perform valid (causal) inference would

be to adapt the 'out-of-sample' performance objective in ML cost/loss functions to control for

confounders or for discovering treatment e�ect heterogeneity, as standard in the model-based

statistics and econometrics literatures. Allen-Zhu et al. (2018) within the ML literature, and

Farrell et al. (2018) within the econometrics literature, obtain nonasymptotic bounds. Based

on Farrell (2015), the latter obtain conditions for valid two-step causal inference after �rst-step

deep learning estimation.29

We do not detail the conditions for valid causal inference in deep learning as here we are

concerned with showcasing how ML methods broadly, and deep learning in particular, can also be

applied to broader societal issues of rising global concern like the pollution content of economic

activity and its implications for global warming. The next section uncovers a novel application

of deep learning where interest lies in measuring/predicting the carbon footprint associated with

Bitcoin network mining and the uncertainty surrounding those estimates.

3 CO2 Emissions from Bitcoin Mining

There are three primary ways one can obtain Bitcoins (BTC), the most popular and widely

accepted of the so-called cryptocurrencies: buy them outright, accept them in exchange, or

produce them by 'mining'. 'Mining' for Bitcoins requires computer hardware and software

speci�cally designed to solve the cryptographic algorithm underlying the bitcoin protocol, and

29A survey about the di�erences between the two literatures, promises and recent progresses made along

integrating both are provided in Athey and Imbens (2019).
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such computational e�ort mainly consumes electricity.30 Since at any point in time di�erent

miners operate hardware and software with varying levels of energy e�ciency, measuring the

overall network power consumption involved in Bitcoin production remains a challenge to date.31

To overcome it, we propose a novel ML approach.

To estimate a realistic level of daily electricity consumption to produce Bitcoins based on

a feed forward neural network, we �rst calculate a lower and an upper limit �based on Hayes

(2015)� within which our mean predicted electricity consumption must 'travel' between the

01/01/2017 and the 01/01/ 2020, the considered period. The lower limit corresponds to the

lowest marginal cost for mining Bitcoins, and is de�ned by a scenario in which all miners use

the most e�cient available hardware. The upper limit obtains when instead the least e�cient

technology for mining Bitcoins is employed, i.e. the break-even point of mining revenues and

electricity costs. Obtaining mean point estimates of daily power consumption within those

economically meaningful limits provides substantial gains in accuracy relative to recent contri-

butions in the literature, while externally validating our ML approach.

Our feed forward deep neural network (DNN) is a supervised ML algorithm that adopts as

target output the market share weighted average32 of the daily energy e�ciency deployed by

operating miners33. Our target level of electricity consumption is a conservative one in that it

follows the approach of the lower limit, and is based on the anticipated energy e�ciency of the

network and on hardware sales, but ignores auxiliary losses34. As inputs, our DNN admits a

comprehensive range of factors previously found to drive Bitcoin prices in di�erent currencies, like

(i) standard fundamental factors advocated by monetary economics and the quantity theory of

money (e.g. its usage in trade, money supply or price level); (ii) factors driving investors' interest

in/attention to the crypto-currency, like speculation or the role of Bitcoin as a safe haven; (iii)

exchange rate hedging motives, like the tight connection between the USD and the CNY markets

30Each unit of mining e�ort has a �xed sunk cost involved in the purchase, transportation and installation

of the mining hardware. De Vries (2018) reports di�erent prices of available models of mining hardware, such

as the Antminer S9. Mining e�ort also has a variable cost which is the direct expense of electricity consump-

tion. See Hayes (2015) for further details.
31As an example, De Vries (2018) notes that 'A hashrate of 14 terahashes per second (TH/s) can either

come from a single Antminer S9 running on just 1,372 W, or more than half a million PlayStation-3 devices

running on 40 MW (as a single PlayStation-3 device has a hashrate of 21 megahashesper second and a power

use of 60 W).'
32The market shares are computed in terms of either computational power or revenues, and are available

from IPO �lings disclosed in 2018 by Bitmain, and in 2019 by Canaan, retrieved from Bloomberg terminals.
33We obtain the computational power (usually provided in terahashes per second, TH/s) and the electricity

consumed (in Watts per second, W/s) by ASIC chips used for Bitcoin mining from AsicIndex. Only mining

chips that perform the SHA-256 algorithm are considered.
34These are energy losses associated with cooling and investment in new IT equipment, which are instead

included by Stoll et al. (2019).
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(see Kristoufek, 2015; Liu and Tsivinsky, 2018; McNally et al., 2018, or Jang and Lee, 2018)35,

together with (iv) novel supply-side factors for both Bitcoin and ASIC mining chips producers,

related to for-pro�t mining decisions, but excluding those employed in the construction of the

upper and lower limits.36 The carbon intensity associated with Bitcoin mining obtains then

from multiplying the estimated electricity consumption by the average emission factor of power

generation. Crucially, our novel approach also enables the construction of con�dence intervals

around the estimated carbon footprint of Bitcoin mining, substantially narrowing down the

associated uncertainty, as currently measured in the literature by the di�erence between the

carbon footprint of the upper and lower bounds. The latter broadly represent, respectively, the

expected marginal revenue and marginal cost of Bitcoin network operating miners (Hayes, 2015;

Stoll et al., 2019).

3.1 Power Bounds in Bitcoin Production

Hayes (2015) argues that Bitcoin production resembles a competitive market, where risk-neutral

rational miners will produce until their marginal costs equal the value of their expected marginal

products. To produce bitcoins, a miner directs computational e�ort at solving a di�cult cryp-

tologic 'puzzle' in competition with other miners in the network, to con�rm and validate trans-

actions. And computational e�ort mainly consumes electrical power, measured in Watts, W.37

The marginal cost (MC) of producing Bitcoins per day (in USD/day) depends on the cost of

electricity (price pe in USD per kWh, or 10−3× pe in USD per Wh) and the energy e�ciency of

mining (denoted by e and measured in W per unit of 'mining e�ort', or 'hashing power' ρ)38:

MC
[USD/day per ρ=1,000GH/s]

= (10−3 × pe · 24 · e) ·
(

1000GH

1000

)
(14)

In return for their work of validating the blockchain, miners are rewarded with a block of

'coins', or 'block reward' (measured in BTC per block, β)39. Per day, miners can then expect

35These are collected at/or converted into daily frequencies from Bloomberg, from the Federal Reserve Bank

of St. Luis, from Blockchain.com, from asic-dex.com, and from the IPO �lings of Canaan and Bitmain.
36The Bitcoin exchange rates with other cryptocurrencies such as Ethereum, Ripple, and Litecoin are not

studied as these 'altcoins' were issued from 2018 onward.
37Recall that one Watt equals one Joule per second, i.e. 1 W=1 J/s.
38Mining e�ort or 'hashing power' or 'hashrate' is measured in gigahashes per second (GH/s), and refers to

the computational e�ort applied by miners to obtain bitcoins over a given time interval, typically one day. The

hashrate, or number of hashes per second can be thought of as somewhat analogous to the cycles per second

(hertz) of computer processors: the higher the hashrate, the more likely it is to successfully mine bitcoins per

day. See Hayes (2015).
39When analyzing the reward obtained from mining, it is important to consider the phenomenon of halven-

ing (Bitcoin halving) where the reward from mining Bitcoins is halved. Halvening occurs every 210, 000 blocks

(every four years). The last halvening happened in 09/07/2016 with the mining revenue halved from 2, 396, 656
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to earn an amount of Bitcoins (BTC/day), or expected marginal product (EMP), the value

of which depends on the market price of bitcoin (pb in USD per BTC), the block reward β,

the hashing power ρ employed by a miner (that is normalized at ρ =1,000 GH/s =1 TH/s for

conformity with the MC units), and the 'di�culty' of mining (denoted by δ) which captures how

much aggregate e�ort other operating miners are putting40:

pb
[USD/BTC]

· EMP
[BTC/day per ρ=1TH/s]︸ ︷︷ ︸

[Value of Expected MP]

= pb·

 (
1

δ·232

)
[Reward probability]

(β·ρ) (24·3,600)︸ ︷︷ ︸
[Daily reward per unit of e�ort ρ]


(15)

where s = 3, 600 is the number of seconds in one hour, h = 24 is the number of hours in a day,

and 2−32 is the normalized probability of a single hash solving a block, given that the mining

algorithm is the SHA-256 algorithm.

Given the market price of Bitcoin pb, a rational miner would produce Bitcoins until when

MC = pb ·EMP if mining for Bitcoins is competitive. Since the actual energy e�ciency e of the

Bitcoin network miners is unknown, the theoretical relationship pb = MC/EMP can be used

to obtain the break-even level of energy e�ciency e below which the marginal cost of mining

is above the market value of the marginal product, e ≤ e =⇒ MC(e) ≥ MC(e) = pb · EMP,

driving rational miners out of business. Hence:

e
[J/GH per ρ=1,000GH/s]

= pb ·
(
β · ρ
δ · 232

)
(24 · 3, 600)

[
(10−3 × pe · 24)

]−1
(16)

denotes the break-even daily energy e�ciency production of Bitcoins, which characterizes the

upper limit of daily electricity consumption E of the Bitcoin network when multiplied by the

overall network hash rate H (measured in hashes per second, H/s, corresponding to 10−9 GH/s

or 10−12 per 1TH/s):

USD to 1, 208, 034 USD. The halvening is an important event not only for determining the Bitcoin price (re-

duction of Bitcoin supply, with unchanged demand) and the break-even energy e�ciency level of mining pro-

duction, but also because it produces a jump or discontinuity in the historical observations at hand. The time

interval considered 2017 - 2019 ensures that there are no observed halvenings. Starting from 09/07/2016, the

block reward is 12.5 Bitcoin per block.
40The 'di�culty' of mining refers to the di�culty level of the algorithm when mining is undertaken. It spec-

i�es how hard in terms of computational e�ort it is to �nd a bitcoin during a given time interval, and is there-

fore measured in gigahashes per 'block' of bitcoins, GH/block. The bitcoin network automatically adjusts the

di�culty variable so that one block of bitcoins is found, on average, every ten minutes. As more aggregate

computational e�ort is added to mining bitcoins, the time between blocks will tend to decrease below ten min-

utes, and the network will automatically adjust the di�culty upwards to maintain the ten minute interval.

And conversely, is less aggregate computational e�ort is added, adjusting the di�culty downwards.
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E
[W per day, per TH/s]

= e ·H × 10−12 (17)

Daily data for the Bitcoin network di�culty δ and network hash rate H are retrieved using

the public available API from blockchain.com,41 and reported together with their distributions,

in Figure 1, as well as for the daily Bitcoin price pb and the daily value in USD of the number of

Bitcoins obtained by the overall network from mining (BTC/USD), as de�ned in equation (15).42

Notice that although the network hash rate and the network di�culty are strongly positively

correlated, they nevertheless correspond to two di�erent variables relevant for Bitcoin mining.

Similarly, it is possible to de�ne the lower limit of daily electricity consumption E of the

Bitcoin network, assuming that all miners operate instead with the most energy e�cient e

hardware:

E
[W per day, per TH/s]

= e ·H × 10−12 · 24 (18)

To date, the most energy e�cient dedicated computer hardware embeds application speci�c

integrated circuit (ASIC) chips43. Monthly data about the mining chips' e�ciency, measured (in

J/GH) as the ratio between the energy used by the ASIC chip (in Joules, J) and the number of

iterations performed by the SHA-256 algorithm (in gigahashes per second, GH/s), for di�erent

mining rigs is displayed in Figure 2, between 01/01/2017 and 01/01/2020.44 e then corresponds

to the lowest monthly energy e�ciency of ASIC chips (in red), which as time passes tends to

decrease �except for a few outliers� due to an increase in the network hash rate and thus in the

di�culty in producing new Bitcoins.

Figure 2 reports the number of Bitcoins mined per day by the network (i.e. the average

EMP in equation (15), excluding the Bitcoin price pb)
45, and the associated upper E and lower

41Since for the time interval 18/07/2018 - 03/08/2018 those network statistics are missing, they are imputed

using the MissForest algorithm (Stekhoven, 2013), with a maximum number of trees to be grown in each forest

equal to 500, a maximum number of nodes per tree equal to 100, and a maximum number of iterations of 50.

The MissForest algorithm is agnostic about the distribution of the variables, estimating the missing values by

�tting a random forest trained on the observed values. The Out-Of-Bag (OOB) estimates of the imputation

error in terms of Normalized Root Mean Squared Error (NRMSE) is 0.04831 and convergence is achieved after

4 iterations.
42For example by the end of 2019, the lower left panel of Figure 1 reports the USD value of the number of

bitcoins one can expect per day (in BTC/USD) to be approximately 0.0003. We can obtain the actual number

from equation (15), when employing ρ =1,000 GH/s of mining e�ort with a di�culty δ = 4 × 1012 (lower right

panel of Figure 1) at a price pb = 4, 890 (upper left panel of Figure 1): 4890 · ( 12.5·1000
232·4×1012

) · 24 · 3600 = 0.0003074

BTC/USD.per day.
43Murray (2018) argues that the higher computational power associated to ASIC chips and the increase in

the mining di�culty of Bitcoins led to the disappearance of CPU and GPU mining chips.
44The data can be retrieved online from https://asic-dex.com.
45Notice that the reported average number of Bitcoins mined per day over the period is similar to the one
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Figure 1: The Figure reports the di�culty in terms of hashing power employed by the network min-

ers, the hash rate in terms of estimated number of tera hashes per second the Bitcoin network is per-

forming, the average USD market price across major bitcoin exchanges, and the mining reward in

terms of Bitcoin
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E limits of daily electricity consumption obtained from equations (17) and (18) after multiplying

them by 10−6 (to convert them into mega Watts, MW), respectively. Although the upper limit

of daily power consumption is more volatile as it follows the market price of Bitcoin, the lower

limit is more stable, being de�ned by hardware e�ciency and network hash rate. The di�erence

between the upper and lower limits measures the uncertainty associated with the actual daily

hardware e�ciency in electricity consumption deployed by the Bitcoin production network of

miners. The annual electricity consumption corresponding to the lower and upper bounds E

and E is obtained by summing the daily electricity consumption over the year of interest: for

2017, it ranges between 5.2384 and 43.1218 TWh, for 2018 between 25.0786 and 80.4240 TWh,

and for 2019, between 27.0537 and 80.3026 TWh.

Notice from Figure 2 the decreasing gap between E and E, converging to a point of almost

equality in 2019: miners with less e�cient ASIC chips were then mining at a loss as a result of

the signi�cant decrease in Bitcoin prices that can be observed in the upper left panel of Figure

1. One would expect the same narrowing in the di�erence between the two daily limits as we

get closer to 05/2020, when the halvening of the 'block reward' is expected to happen. By then,

miners will have to run twice the number of computations to mine the same amount of Bitcoins,

doubling their electricity usage. This will reduce the break-even level of energy e�ciency e,

reducing E, until when new and more e�cient ASIC chips are introduced.

Relative to Stoll et al. (2019), our upper limit behaves similarly to theirs but is lower: the

di�erence stems from the di�erent calculation of the break-even level of energy e�ciency e,

equation (16), from which we exclude the transaction fees accrued to successful miners from the

EMP component, as well as from using di�erent electricity prices pe. We compute electricity

prices, pe, as a weighted average of the annual electricity prices in the countries were Bitcoin

miners are located, using as weights the share of miners located in each country. We exploit

the Internet of Things (IoT)-search engine Shodan to locate the geographic area of the Bitcoin

miners IP addresses over the period examined46:

Figure 3 reports the countries with the highest number of miners: Venezuela (91), China

(162), Russia (158), Iran (122), USA (75). Venezuela, Iran, Russia and (some regions of) China

are the countries with the lowest electricity prices in the World (in USD per kWh). We collect

historical data on electricity prices for the USA, China, and Russia from Bloomberg Terminal

up to 2018, and the electricity prices for 2019 from GlobalPetrolPrices.com. Figure 4 reports the

evolution of the yearly electricity prices for di�erent usages (residential, industrial and other) in

that obtains instead from the supply side: dividing equation (14) by the Bitcoin price pb, we get
MC
pb
' 1,800

BTC/day.
46Being antminer the primary tool for Bitcoin mining, by mapping the instances Digest real=�antMiner

Con�guration� we were able to map the IP addresses of the Bitcoin miners.
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Figure 2: The Figure reports the number of Bitcoin mined per day, the upper and lower bounds of

the energy consumption associated to Bitcoin mining, and the energy e�ciency in terms of J/Gh of

the ASIC mining chips that use the SHA-256 Algorithm

27



1 162

Mining Locations

Figure 3: Location Bitcoin Miners 31/01/2020

China, the United States, and Russia47.

For Venezuela and Iran, it was not possible to collect historical prices: since electricity prices

(approximated to two digits) are generally constant over a three year horizon, we apply the 2019

electricity price over the three-year time window examined. The household electricity price in

Iran is 0.008 USD/kWh; for Venezuela, the Business electricity price is 0.1284 USD/kWh (1.283

VEF/kWh ). Figure 4 reports the employed electricity price pe, computed as a weighted average

of the electricity prices in the United States, China, Russia, Venezuela, and Iran, where the

weights are determined by the proportion of Antminer IP addresses of Bitcoin miners located in

those countries.48

47When available and clearly indicated, we only consider the residential electricity price. When unavailable,

or unclear (e.g. China), we compute the average of the electricity prices corresponding to the di�erent levels of

usage.
4839% of the IP addresses operating in the Bitcoin network are attributed to the remaining 44 countries.
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Figure 4: The Figure reports the energy prices (USD/kWh) for the countries United States, China,

and Russia, and the weighted average of the energy prices (USD/kWh) across the countries United

States, China, Russia, Venezuela, and Iran.

3.2 The Carbon Footprint of Power Bounds in Bitcoin Production

We compute the CO2 upper (CO2) and lower (CO2) limits of the Bitcoin network daily emissions

(measured in ktCO2e), associated with the daily electricity consumption upper and lower limits,

E and E, from equations (17) and (18) respectively, as follows:

CO2 = E × 10−3 · I × 24× 10−6 (19)

CO2 = E × 10−3 · I × 24× 10−6 (20)

where I is the average emission factor, or carbon intensity, of power generation (measured in

kgCO2 per kWh)49, which obtains from weighting the C country-speci�c emission factors, Ic,

by the computing power share, sc, of Bitcoin miners' IP addresses located in each country c,

I =
∑C

c=1 scIc.
50 A weighted average carbon intensity of I = 0.6183 is returned, from country-

49Notice that the expressions in (19) and (20) are in ktCO2 units per day, while E and E are in Watts per

per day (per unit of mining e�ort, 1GH/s) and I is in kgCO2 per kWh. To conform, we need to multiply E

and E by 10−3 (KWh per Watts) per day, and I by 24 (hours per day), resulting in a product that will then

be in units of kgCO2 per day. Multiplying then by 10−6 we obtain ktCO2 per day. After simplifying, expres-

sions (19) and (20) obtain as reported.
50We follow as much as we possibly can the methodology reported in Volume 2 of the 2006 IPCC Guidelines

for National Greenhouse Gas Inventories, which states that the emission of greenhouse gas (CO2) from station-
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Figure 5: The Figure reports the lower and upper bound for the daily CO2 estimates.
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level electricity emission factors of 0.97463 for China, 0.63111 for Iran, 0.5132 for Russia, 0.5471

for the United States, and of 0.2081 for Venezuela (Brander et al., 2011). Figure 5 displays the

evolution of the upper and lower limits of the Bitcoin network daily carbon footprint (measured

in ktCO2) over the 2017-2019 period.

The annual Bitcoin network carbon footprint lower CO2 and upper CO2 limits obtain from

adding the corresponding daily CO2 emissions over the year, for each year considered, reported

in million tons of CO2, MtCO2: between 3.2390 and 26.6627 MtCO2 for 2017, between 15.5064

and 49.7271 MtCO2 for 2018, and between 16.7276 and 49.6521 MtCO2 for 2019.

These CO2 emissions are consistent with the estimates provided by (i) Foteins (2018) who

�nds that the annual carbon emissions for Bitcoin and Ethereum for the year 2017 are 43.9

MtCO2, and by (ii) Stoll et al. (2019), ranging between 22.0 (device IP method) and 22.9

MtCO2 (pool IP method) for 2018. From the Global Carbon Atlas, the estimated fossil fuels

emissions as of 2018 are 44 MtCO2 for Norway, 41 MtCO2 Sweden, 47 MtCO2 for Finland,

and 35 MtCO2 for New Zeland, showing that the maximum level of CO2 that can be produced

by Bitcoin mining is higher than (i) the emissions of these countries, than (ii) those of US

states like Connecticut, Maryland, Nebraska, New Mexico or Oregon, and than (iii) those of all

Earth's 91 subaerial volcanoes (i.e. not under water), with average yearly emissions of 38.7±

2.9 MtCO2 between 2005 and 2015 (Aiuppa et al., 2019). Focusing on the lower bound, for

example, minimum total Bitcoin CO2 emissions for the year 2018 are higher than the levels of

annual fossil fuel emissions from smaller countries, like Bolivia, Sudan or Lebanon.51

4 ML-based Carbon Footprint in Bitcoin Production

The most salient fact about Figure 5, displaying the upper and lower limits for the carbon

footprint associated with Bitcoin network mining based on Hayes (2015) and Stoll et al. (2019),

is the uncertainty surrounding the actual CO2 emissions generated by Bitcoin production. This

uncertainty stems from the di�culty in estimating the actual power consumption involved in

ary sources (Electricity and Power consumption) should be calculated by multiplying the source consumption

by the corresponding emission factor (IPCC, 2006). Since we are interested in the carbon footprint of the Bit-

coin network mining electricity consumption, which spans many di�erent countries, we would need to construct

for each country the upper and lower limits of electricity consumption, which would require us to know what is

the contribution of the miners located in each country to the overall network hash rate, something that to the

best of our knowledge cannot be done. In view of that, the best we can do is to compute the average carbon

intensity of power production as a weighted average of the country-speci�c carbon intensities, weighted by each

country's share of miners' Antminer IP addresses, just as Stoll et al. (2019) do.
51The 34GtCO2 estimated minimum increase in global emissions between 1900 and 2020 appears to corre-

spond to a global average temperature increase of 1.2◦C, although the underlying relation is non-linear and the

models are not able to di�erentiate between natural and anthropogenic e�ects.
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Bitcoin mining. In this section we exploit supervised machine learning (ML) methods to narrow

down that uncertainty and provide a more accurate quantitative prediction.

Concretely, we deploy a deep neural network with a recti�ed linear unit activation function,

or ReLu DNN, which will have as target output y, the 'realistic' CO2 emissions, COr2, from the

Bitcoin network daily electricity consumption Er associated with a 'realistic' energy e�ciency

use of hardware, er.52 It is therefore a conservative approach, which will closely 'track' the lower

CO2 emission limit, CO2 in (20):

COr2
[ktCO

2
per day, per TH/s]

= Er · I = er ·H · I × 10−9 (21)

where I is the average carbon intensity and H is the daily Bitcoin network hash rate. The

'realistic' energy e�ciency er =
∑M

m=1 s
ASIC
m · erm obtains as a weighted mean of the average

energy e�ciency of all the reported ASIC mining chips at a given date, erm, as displayed in Figure

2. In particular, considering M rational miners operating in the network, it is assumed that

when a new mining chip is available, miner m will invest in updating the hardware. Therefore,

the computational power of a particular mining chip at a given date is considered indicative

of the energy e�ciency of the ASIC producer m, until the release of a new chip. The weights

associated with each ASIC mining chip producer, sASICm , are identi�ed by the market share in

terms of either computing power or revenue, and are obtained from the IPO �lings disclosed

in 2018 by Bitmain, and in 2019 by Canaan. For 2017, Frost & Sullivan report that Bitmain

accounted for 74.5% of the revenue of the global ASIC mining hardware, Company E for 6.2%,

and Company F for 4.5% (E and F's companies names were undisclosed). As of November 2018,

Stoll et al. (2019) report that Bitmain accounts for 76% of the network computing power, and

Canaan and Ebang account for 12%. Finally, looking at the IPO �lings disclosed in November

2019 by Canaan, Frost & Sullivan report that as of July 2019, Bitmain accounts for 65.2%

of the computing power of the market, Canaan for 21.9%, and Ebang 7.9%. Based on these

estimates, Figure 6 reports the actual weights, sASICm , between 2017 and 2020, assuming that

they are constant during a given calendar year. Based on equation (21), Figure 7 displays the

daily evolution of the 'realistic' level of CO2 emissions, COr2, from Bitcoin miners operating in

the network over the period. It constitutes the target output y to be learned by our supervised

ML ReLu DNN, on the basis of the collected input data X.

Because Bitcoin is a cryptocurrency based on a fundamentally new technology not fully

understood �'blockchain'� while performing similar functions as other, more traditional assets,

one key advantage of our ML-based approach is that it can handle big and complex input

data in raw form, X = {...xp...}. Our ReLu DNN will admit a very comprehensive set of

52This is similar to Stoll et al.'s (2019) 'best guess' power consumption, although we ignore losses from cool-

ing and IT equipment (or 'power usage e�ectiveness').
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energy e�ciency of the di�erent ASIC mining hardware.
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Figure 7: The Figure reports the realistic daily CO2 emission in ktCO2.
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p = 1...P factors, excluding those necessary to compute the carbon footprint lower CO2 and

upper CO2 limits, derived in the previous section. The rationale behind this exclusion is to

test whether our ML-based CO2 emission mean predictions lie within the bounds that obtain

from basic economic principles, externally validating our ML approach. In addition we provide

(95%) con�dence intervals around our ML-CO2 predictions which are substantially narrower

than the economics-based bounds, contributing methodologically to the ML and climate change

literatures.

4.1 Input Data

The factors considered as input data range from (i) standard fundamental factors advocated

by monetary economics and the quantity theory of money, like predictors of the Bitcoin price

level; (ii) factors driving investors' interest in/attention to the crypto-currency, like speculation

or the role of Bitcoin as a safe haven; (iii) exchange rates with other currencies, to capture

investors' hedging motives, e.g. the tight connection between the USD and the CNY markets;

or (iv) supply-side factors for the costs incurred by Bitcoin and ASIC mining chips producers,

related to rational for-pro�t mining decisions. Factors associated with the Blockchain network

operation, like the network hash rate, di�culty or block reward, are excluded as they enter

the de�nition of either the Bitcoin carbon footprint upper and lower bounds, or of our ReLu

DNN target output. The resulting novel input dataset for the period 01/01/2017 - 31/12/2019

covers a comprehensive set of factors as reported in Kristoufek (2015), Liu and Tsivinsky (2018),

McNally et al. (2018) and Jang and Lee (2018), adding some novel ones. Data are collected at

di�erent frequencies, and converted into daily ones using either simple imputations or Random

Forest algorithms.

Because Bitcoin prices determine the upper limit of CO2 emissions generated by the break-

even electricity consumption of rational Bitcoin network miners, we start with the predictors of

Bitcoin prices identi�ed in the literature:

1. Commodity prices of Gold, platinum and crude oil are included because of the common

traits shared with cryptocurrencies such as limited supply and high price volatility, but

also because it is believed that Bitcoin could serve as an alternative to these commodities

either as a store of value or as a hedging instrument (Dyhrberg, 2016). The daily future

price of crude oil, and the spot prices of platinum (USD/ounce) and gold (USD/ounce)

are obtained from Bloomberg;

2. Macroeconomic factors in di�erent markets, such as consumption, production, and per-

sonal income growth (in USD), measure the extent to which Bitcoin is perceived as a

traditional �nancial asset, like the stock market. The CAIPMOM , UKIPIMOM ,
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IPCHNG, JNIPMOM , and SIIPMOM indices, measuring the volume of output in

the industries of mining and quarrying, manufacturing and public utilities (electricity, gas,

and water supply) for the USA, the UK, China, Japan and Singapore, as well as the in-

dices PITL and PITLCHNG, measuring the income received by households including

wages and salaries, investment income, rental income, and transfer payments in the USA

and China, are included. Finally, the PCEMOM index quantifying the price changes for

goods and services purchased by consumers in the USA is also considered;

3. Relative asset market performance measures capture the extent to which Bitcoin is sim-

ilarly exposed to factors driving the returns of traditional assets. Based on Figure 3, we

include the major stock market indices of the countries most relevant for Bitcoin mining:

the USA, China, Venezuela, and Europe. For this reason, the indices S&P 500, Dow Jones,

Nasdaq, Euro Stoxx 50, Shanghai Stock Exchange (SSE), Nikkei 225, FTSE 100, Caracas

Stock Exchange (IBVC), and SHASHR will be considered as predictors;

4. Investor attention, measured by �Bitcoin� word Google searches. Liu and Tsyvinki (2018),

Garcia et al. (2014) or Bouoiyour et al. (2014) empirically show that only cryptocurrency

market speci�c factors �momentum and the proxies for investor attention� consistently

explain the variations of cryptocurrency returns, suggesting that investors do not perceive

them as traditional assets. Figure 8 reports the geographic location of daily data returned

from Google Trends search queries for the word �Bitcoin�, which quanti�es the interest in

the form of an index between 0 and 100. A value of 100 corresponds to peak popularity,

and of 0 to insu�cient data for Google to quantify any interest in the term "Bitcoin". With

the exception of Nigeria, the country that receives the highest interest index, one could

notice the similarity with Figure 3, where the geographical location of Bitcoin miners' IP

addresses from the IoT search engine Shodan can be visualized, suggesting that a high

value of the interest index is associated with Bitcoin mining activities.

5. Exchange Rates are included because of the popular belief that Bitcoin, if su�ciently

adopted, may replace existing �at currencies as a medium of exchange. Exposure of

the cryptocurrency returns to major currencies is captured by the inclusion of the spot

exchange rates between the USD and units of foreign currency, for the Australian Dollar,

the Euro, the British Pound, the Canadian Dollar, the Singapore Dollar, the Swiss Franc,

the Japanese Yen, the Chinese Yuan Renminbi (CNH), and the Chinese Yuan (CNY), all

collected from Bloomberg. Being the Bitcoin price denominated in USD, Ciaian et al.

(2015) notice that an appreciation of the USD against the above currencies could result

in an appreciation against the Bitcoin and thereby, a�ect mining decisions through the

35



11 100

Google Search 'Bitcoin'

Figure 8: The Figure reports the Google search �Bitcoin� using 100 as reference for the maximum

interest.

reduction in the price of the cryptocurrency.53

6. The FED �nancial stress index (FSI) is a popular measure of �nancial uncertainty. Its

inclusion is intended to capture the possibility that Bitcoin is perceived as a safe haven,

following Kristoufek (2015). The weekly series is provided by the Federal Reserve Bank of

St. Luis (2016), and it is built from 18 di�erent series of data at a weekly frequency: seven

interest rate series, six yield spreads and �ve other indicators, each of which capturing

a di�erent aspect of '�nancial stress'. The FSI is centered around 0 ('normal �nancial

stress'), with negative values indicating unusual calmness and positive ones 'abnormally

high' levels of �nancial uncertainty.

Finally, supply factors that proxy for the costs of Bitcoin mining and ASIC mining chips

producers are also included:

7. ASIC mining chips producers o�er mining hardwares (e.g. Antminers) the pro�tability of

which is directly related to the marginal costs that can be expected from Bitcoin mining.

Being electricity the most important input in mining for Bitcoins, we follow Liu and

53We exclude the exchange rates of Bitcoin against other cryptocurrencies, like Ethereum or Ripple, because

they are less popular, were introduced later and there is little evidence of signi�cant arbitrage activity with

respect to Bitcoin.
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Tsyvinski (2018) and include the weighted average of the daily stock returns of 25 electricity

companies in the USA and of 65 electricity companies in China, and the daily stock returns

of Sinopec (SNP).54

8. To proxy for the cost of inputs relevant for manufacturing Antminers, we include the

aluminum ($/25 Mt) and copper ($/25 Mt) prices �from Bloomberg� and predictors of

the supply of coltan by its largest producers: the CDMNCLT index measuring the value

(USD) of the mining and oil production in the Democratic Republic of Congo; and the

RWEXCLVA and RWEXCLVO indices measuring the value and the volume (USD) of trade

of coltan from Rwanda.55

After computing the log returns for the exchange rates, market indices, commodities prices,

Sinopec prices and weighted averages of the electricity prices in the USA and China, a 'feature-

wise normalization' or standardization �i.e features are centered around zero with unit standard

deviation� is performed considering only the training dataset.56

4.2 ReLu DNN-CO2 Estimation

We estimate the carbon footprint associated with Bitcoin network mining by a ReLu feedfor-

ward deep NN, proceeding in two steps. First, we obtain the optimal structure (L̂, {Ẑl}Ll=1)

of the ReLu DNN from (12) for a given architecture size Z and set of hyperparameters, H =

{ε, λ, α, p,B, (s, ρ), (s1, s2, ρ1, ρ2)}. Second, we optimize/�ne-tune the DNN hyperparameters

(Z,H) to solve (13) and determine ΛL(L̂, {Ẑl}L̂l=1;Z,H) = [θL; (L̂, {Ẑl}L̂l=1), Z,H],

where θL = {(b1, ...,bL, bL+1; W1, ...,WL,wL+1)} contains the biases and weights of all hidden

units optimally allocated across layers. To validate the optimal structure obtained, we bench-

mark it against (cv) a DNN cross-validated architecture57, and against (rf) a Random Forest,

54The Sinopec has 4.02% missing at random values at a daily frequency, which are inputted using the Miss-

Forest algorithm (Stekhoven, 2013). The maximum number of trees to be grown in each forest is set equal to

500, the maximum number of nodes for each tree is equal to 500, and the maximum number of iterations is 20.

The Out-Of-Bag (OOB) estimates of the imputation error in terms of Normalized Root Mean Squared Error

(NRMSE) is: 2.160× 10−9. Eighty percent of the observations are used to train the network, while the remain-

ing twenty percent are exploited to evaluate the out-of-sample accuracy.
55Copper is largely used for the production of electrical wires due to its high conductivity, heat resistance,

and low cost. Aluminum wires are used for power transmission and distributions (generally not used in house-

holds). Coltan is employed in the production of tantalum capacitors, which are essential to manufacture min-

ing hardware and computers.
56Being the levels and variances of the 42 input daily series considered signi�cantly di�erent, 'feature-wise

normalization' is done to guarantee a proper training of the ReLu DNN.
57We perform cross-validation only on the optimal node allocation, for given DNN depth and size. Cross-

validating both depth and hidden unit allocation across layers in network architectures of di�erent sizes, is

extremely computational and time consuming, and is therefore left for future work.
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both state-of-the-art in the deep learning literature. Regression trees and their extension, Ran-

dom Forests, are 'tree-structured' methods commonly used for �exibly estimating regression

functions where out-of-sample performance is important.58

The number of input variables is P = 42, and we allow for a maximum depth of L =

15.59 Due to the high dimensionality of the combinatorial problem, it is not feasible in (cv)

to cross-validate all combinations and a 4-fold cross-validation over a randomized gridsearch is

implemented instead. For each case, we report the out-of-sample mean-absolute error (MAE),

mean-squared error (MSE) and square root of the MSE (RMSE), with and without dropout.

Di�erent architecture sizes Z, optimization algorithms (Adam, RMSProp), weight initialization

values (s, s1, s2), learning rates ε, dropout rates p, and training epochs are considered during

training.60 The default 'minibatch' size of B = 32 is adopted and not tuned. The Random

Forest hyperspace in (rf) is de�ned by the following parameters: (a) the number of variables to

be randomly sampled at each sample split is de�ned in the interval [20, 40], by intervals of 2;

(b) the minimum size of the terminal nodes in [2, 20], by intervals of 2; and (c) the number of

58'Tree-structured' methods have dictionaries of the form {1{X∈R}}R where 1{.} is an indicator function,

and R represents subregions of the space of all possible values of X ∈ RP , R ⊆ RP . The most common ex-

ample is 1{X∈R} =
∏P
p=1 1{up≤xp≤vp} with the 2P coe�cients {up, vp}Pp=1 representing the respective lower

and upper limits of the region (hyper-rectangle) on each input xp axis. Usually only Z disjoint regions are

chosen, {Rz}Zz=1, so that X ∈ Rz =⇒ f̂(X) = az, meaning that X in the same region have the same

'approximation' value az (with an obvious abuse of notation, but with a similar interpretation). Recursive

partitioning tree-structured methods are also universal approximators, in the sense de�ned previously, i.e.

f̂(X) =
∑∞
z=1 a

∗
z1{X∈Rz} = f(X). Choosing the optimal number of regions Z is a formidable combinatorial

optimization problem, but recursive partitioning is an approximate solution when employing greedy optimiza-

tion strategies. This e�ectively results in sequentially splitting the initial sample {yi,Xi}Ni=1 starting with the

single covariate xp that minimizes the mean-squared error of the resulting subsamples (or leaves). Considering

one di�erent covariate at a time, the mean-squared error is therefore sequentially reduced. But too many sub-

samples (a very deep tree) would correspond to a very large Z, which risks over�tting. Therefore, in practice,

a very deep tree is estimated and then pruned (or regularized) to a more sparse tree, using cross-validation to

select the optimal depth. See Athey and Imbens (2019) for further details.
59As robustness check the optimization is performed considering Z + 1 and Z − 1 hidden nodes, producing

the same results and thus showing convergence of the optimization algorithm.
60In particular, the di�erent architecture sizes considered are Z = {200, 500, 800, 1674, 1800},.the learning

rates ε = {0.0001, 0.001, 0.01} for the Adam optimiser (ρ1 = 0.9, ρ2 = 0.999), for the Stochastic Gradient

descent (SGD) with Nesterov momentum of α = 0.9, and for the RMSProp optimiser with ρ = 0.9 are tuned.

When the Adam optimizer is considered the He normal initializer that draws samples from a truncated nor-

mal distribution with µ = 0 and σ =
√

2/Indim where �Indim� is the number of input units in the weight

tensor (Keras documentation, 2020); when instead the SGD is tuned, a truncated normal distribution with

µ = [0.5, 0.1] and σ = [0.02, 0.01] is considered. The maximum number of training epochs analyzed are: 500,

1000, 2000, 5000 and 8000, and early stopping is applied. Di�erent dropout rates, p = {0.05, 0.1, 0.2, 0.3} are

tuned for all hidden layers, allowing also di�erent dropout rates in di�erent layers.

38



0

500

1000

1500

2000

0

10

20

30

40

0 1000 2000 3000 4000 5000

10

20

30

40

epoch
0 1000 2000 3000 4000 5000

epoch
0 1000 2000 3000 4000 5000

epoch

Lo
ss

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r

R
oo

t M
ea

n 
Sq

ua
re

d 
Er

ro
r

0

500

1000

1500

2000

0

10

20

30

40

0 1000 2000 3000 4000 5000

10

20

30

40

epoch
0 1000 2000 3000 4000 5000

epoch0 1000 2000 3000 4000 5000
epoch

a b c

d e f

R
oo

t M
ea

n 
Sq

ua
re

d 
Er

ro
r

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r

Lo
ss

Figure 9: The Figure reports the training (in red) and validation (in green) Loss, MAE, and MSE for

the neural network the structure of which is selected with the optimisation algorithm. Sub�gures a, b,

and c refers to a network trained without dropout; Sub�gures d, e, and f to the network trained with

dropout.

trees to grow in the interval [50, 500], by intervals of 50.61

The cross-validated NN architecture size that minimizes the out-of-sample MSE is found

to be Z = 1674, with an optimal depth of L = 15 and optimal allocation of hidden units

[162, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126], for cross-validated hyperparameters:

Adam optimizer, ρ1 = 0.9, ρ2 = 0.999; learning rate, ε = 0.001, dropout rate, p = 0.05 for all

hidden layers, and number of epochs, 5000. The out-of-sample performance of the optimal

ReLu DNN measured by the MAE, MSE, and RMSE are: (i) without dropout, 7.6177, 91.2926,

and 9.5527, respectively (reported in �gure 9, panels a., b. and c., green curves); and (ii) with

dropout, 6.3582, 61.3806, and 7.8264, respectively (reported in �gure 9, panels d., e. and f., green

curves). Figure 9 therefore conveys how dropout, by reducing the number of hidden units re-

tained, increases the NN architecture sparsity, reducing over�tting and increasing out-of-sample

prediction accuracy.62

When benchmarked against (cv), the equally-sized 4-fold crossvalidated network architecture

of [238, 48, 63, 162, 179, 90, 153, 78, 187, 154, 83, 118, 121] performs worse out-of-sample (with and

without dropout). The values for the MAE, MSE, and RMSE are: (i) 8.0264, 103.4196, and

61The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated

support services at the University of Southampton, in the completion of this work.
62Notice that applying dropout should increase training error (red curves, in all panels a.-f. of �gure 9) rel-

ative to not using dropout, since the same training sample variation is explained with less hidden units when

dropout is applied. That it does not is an open research question in the ML literature.
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Figure 10: The Figure reports the training (in red) and validation (in green) Loss, MAE, and MSE

for the neural network the structure of which is selected with randomized crossvalidation. Sub�gures

a, b, and c refers to a network trained without dropout; Sub�gures d, e, and f to the network trained

with dropout.

10.0585, respectively (without dropout: reported in �gure 10, panels a., b. and c., green curves);

and (ii) 7.4382, 81.5511, and 8.9936, respectively (with dropout: reported in �gure 10, panels

d., e. and f., green curves). Just as before, and for the same reason, �gure 10 conveys that

dropout leads to an increase in the out-of-sample prediction accuracy. Finally, benchmarking

against (rf), a Random Forest with node size of 20, 50 trees, and 34 variables randomly sampled

at each split, has associated out-of-sample MAE, MSE, and RMSE of 9.8830, 143.6868, and

11.9869, respectively. A pair-wise model comparison test statistic of the di�erence in out-of-

sample MSE proposed in Calvo-Pardo et al. (2020a), delivers a value of 4.6411 (with associated

p-value < 0.0001) of our optimal ReLu DNN against the (rf) random forest, and of 2.6976 (with

associated p-value of 0.0035) against the (cv) equally-sized cross-validated ReLu DNN, with

levels of statistical con�dence above 1 percent.

Overall, our optimal ReLu DNN strategy to measure the carbon footprint associated with

Bitcoin mining outperforms relative to the predictions obtained from (rv) a Random Forest and

(cv) a cross-validated ReLu DNN architecture, both state-of-the-art ML methods. To further

contribute to the literature on the carbon content of economic activity, we quantify the statistical

reliability of the ML-measured CO2 emissions associated with Bitcoin network mining.

4.2.1 Con�dence Intervals

As advanced in the previous section, we construct 0.95 con�dence intervals (CIs) around the

�rst moment of the predictive distribution of the CO2 Bitcoin network emissions (target out-
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Figure 11: The Figure reports in blue the economics bounds proposed by the literature, the 0.95 con-

�dence intervals in red, and the estimated CO2 emissions.
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put y).63 The out-of-sample MAE, MSE, and RMSE of the predicted CO2 emissions target

output are 7.1984, 78.1076, and 8.8379, respectively, with an empirical coverage over the entire

dataset of 0.22. In this case, the pair-wise model comparison test statistic in Calvo-Pardo et

al. (2020a) delivers a value of 5.2406 (with associated p-value < 0.0001) of our optimal ReLu

DNN against the (rf) random forest, and of 0.6438 (with associated p-value of 0.2599) against

the (cv) equally-sized cross-validated ReLu DNN. Figure 11 reports the estimated CO2 emission

values and associated 0.95 CIs for the overall period. When aggregated at a yearly frequency, the

corresponding CO2 estimates [and associated 0.95 CIs] are: for the year 2017, 3.8038 MtCO2e

[3.2151, 4.3925] MtCO2e; for 2018, 23.8313 MtCO2e [22.1055, 25.5572] MtCO2e; and 19.83472

MtCO2e [18.4852, 21.1842] MtCO2e for the year 2019.64

Three main aspects stand out: �rst, the ML-measured daily CO2 emissions almost always

remain within the rational Bitcoin mining upper and lower bounds de�ned in Hayes (2015),

also exploited by Stoll et al. (2019), despite of not using that information directly as inputs,

X. The exception appears to be a small window in 2018 where Bitcoin miners would appear

to be operating at a loss. Second, the 0.95 con�dence intervals provide a quantitative measure

of the uncertainty associated with the ML-based Bitcoin mining carbon footprint, which is

substantially narrower than the one captured by the di�erence between Hayes' (2015) upper and

lower bounds. That di�erence captures the distance between the levels of emissions associated

with the lowest marginal cost (or highest level of energy e�ciency) and the expected marginal

revenue evaluated at daily Bitcoin market prices, corresponding then to the expected daily

operating margin of rational Bitcoin miners' decisions. Third, the estimates (and CIs) are in

line with recent literature downward revisions of the original estimate of 69 MtCO2e provided by

Mora et al. (2018) for 2017, e.g. 15.5 MtCO2e by Houy (2019), excluding unpro�table mining

rigs; or 15.7 MtCO2e by Masanet et al.(2019); as well as for 2018, e.g. 43.9 MtCO2e (for Bitcoin

and Ethereum) estimated by Foteinis (2018), or the lower and upper bounds of 22.0 to 22.9

MtCO2e estimated by Stoll et al. (2019) for Bitcoin mining activity.

To provide an order of magnitude, the estimates for the years 2018 and 2019 are comparable

to the CO2 yearly emissions of countries such as Bolivia, the Dominican Republic, or Croatia.

Adopting the social cost of carbon (SCC) estimate of 62 USD per metric ton of CO2 equivalent

63Concretely, inverted dropout on the estimated weights obtained from (13) after (12), Ŵl = (1/p̂)Ŵl, l =

1...L, is conducted, to then run T = 1000 stochastic forward passes through the optimal ReLu DNN (without

dropout) with weights Ŵl, l = 1...L, producing a sample {ŷ(X,Ŵ
t

1, ...,Ŵ
t

L)}1000t=1 from sampling T = 1000 sets

of vectors of realizations from the Bernoulli distribution {[rtl ]}Tt=1 with cross-validated probability p̂.
64When instead the deterministic dropout introduced by Srivastava et al. (2014) is applied, we obtain very

similar CO2 emission levels, i.e. 4.0361 MtCO2 for year 2017; 24.7312 MtCO2 for 2018; and 20.9050 MtCO2

for 2019, and all fall inside the 0.95 CIs provided.
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(Interagency Working Group, IWG, 2016)65, the yearly Bitcoin mining SCC is estimated to

lie with 95 percent con�dence in between [$199, 336, 200; $272, 335, 000] for the year 2017; in

[$1, 370, 541, 000; $1, 584, 546, 400] for 2018; and in [$1, 146, 082, 400; $1, 313, 420, 400] for 2019.

Recalling that the greenhouse emissions estimates reported here are a lower bound in that they

exclude the electricity consumption associated with the transactions executed using Bitcoin,

one could conclude that the economic social cost associated to the proof-of-work algorithm is

signi�cant. This is an important aspect that must be considered by policy makers or �nancial

institutions that are adopting blockchain technologies for national cryptocurrency production

(e.g. China), or for the emission of �nancial instruments (e.g. bond-i), because of the Paris

agreement that requires to all parties to put forward policy measures intended to keep the rise

in temperature below 2◦C (e.g. zero net carbon emissions). Mora et al.'s (2018) projections,

notwithstanding the aforementioned downward revisions, were based on the Paris agreement

climate sensitivity of 2◦C.66 But the latest evidence from a global e�ort comprising dozens

of climate-change models (in an ensemble called the Coupled Model Intercomparison Project,

CMIP6)67, feeding into the Sixth Assessment Report of the Intergovernmental Panel on Climate

Change (IPCC) due next year, now indicate climate sensitivities exceeding 5◦C. Williams et

al. (2020) have just con�rmed on the basis of the CMIP6 Met O�ce Uni�ed weather-climate

65The National Academies of Science (2017) de�ne the SCC as: �The Social Cost of Carbon for a given year

is an estimate in dollars, of the present discounted value of the future damage caused by a 1 metric ton increase

in carbon dioxide (CO2) emissions into the atmosphere in that year or, equivalently, the bene�ts of reducing

CO2 emissions by the same amount in that year.� The damages include human health, �ood risk, variation

in the agricultural productivity, and the positive externalities associated to the ecosystem. Using Integrated

Assessment Models (IAM) economists and scientists have been trying to quantify the economic impact of an

increase in one tonne of CO2 (see PAGE model by Hope et al., 1993). It is widely accepted that the afore-

mentioned methodology su�ers from an intrinsic uncertainty, and relies heavily on assumptions regarding as-

pects such as the population, and the gross domestic product (GDP) growth when the socioeconomic module is

considered; assumptions regarding the conversion of CO2 emissions into temperature changes, or atmospheric

concentration and pressure when the climate module is considered; the IAM methodology relies also on the

methodology adopted to convert the increase in temperature and other changes in environmental variables aris-

ing from an increase in greenhouse emissions into social and economic damages (damage module); and �nally

(discounting module) the estimate in dollars depends on the discount rate adopted to compute the present

value of the monetized damages estimated through the years by the damage module. For all these reasons, we

report that the discount rate used for the economic damage estimates is 2.5%, but discussing the assumptions

underlying each methodology and associated estimates are beyond the scope of this paper. The IWG (2016)

monetizes the SCC as 56 in 2015 and 62 in 2020 USD per MtCO2e, in 2007 USD. See Hope et al. (1993) and

Wang et al. (2019) for similar estimates.
66Climate sensitivity refers to the global warming after climate has equilibrated to a doubling of CO2 con-

centration relative to pre-industrial levels, an equilibrium that might take a few hundred years to establish.
67See go.nature.com/3garyzc.
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model, the crucial role that cloud microphysics play in the upwards revision of the climate

sensitivity �gures: rising temperatures a�ect the size and relative concentration of water and ice

droplets in a cloud ('cloud-feedback problem'), leading to more supercooled water droplets and

less ice droplets. If con�rmed, clouds contribute less than previously thought (e.g. CMIP5) to

temperature 'cooling'. Therefore, much lower levels of Bitcoin mining greenhouse gas emissions

could con�rm Mora et al.'s (2018) alarming projections: we cannot a�ord to be complacent.

Cloud adjustment to climate change means that we need to redouble our e�orts to cut emissions.

5 Conclusions

There is growing concern with climate change. Recent evidence from integrated weather-climate

models magni�es the contribution of greenhouse emissions, making a compelling urgent call

to cut on those. By focusing on the CO2 emissions associated with Bitcoin mining, here we

show that its measurement is controversial and subject to signi�cant uncertainty. The main

reason being the complexity of the underlying object of study: how much electricity is actually

consumed by the global network employed in mining for Bitcoins. In a novel application of

deep learning to this pressing societal issue, we were able to provide a quantitative measure of

Bitcoin mining daily electricity consumption and associated CO2 emissions, as well as of their

(statistical) reliability, improving on the current methods employed in the literature. Although

our estimates are in line with recent downward revisions of those provided by Mora et al.(2018),

and provide substantially narrower bounds (e.g. than those provided by Stoll et al., 2019),

our conclusions point towards a signi�cant and substantial contribution towards rising world

temperatures in view of the recent evidence of climate sensitivities exceeding 5◦C (relative to

the Paris agreement level of 2◦C).

After reviewing the growing literature on deep learning, we demonstrate how ML methods

can be successfully exploited to contribute to the ongoing debate. Starting from a model of ra-

tional Bitcoin mining by Hayes (2015), and based on a comprehensive set of factors reported in

Kristoufek (2015), Liu and Tsivinsky (2018), McNally et al. (2018) or Jang and Lee (2018), and

some novel ones, we were able to measure the carbon footprint associated with Bitcoin mining

from �tting an optimized deep neural network architecture that improves upon state-of-the-art

DNN methods. ML methods help in establishing how the carbon footprint of the proof-of-work

algorithm is higher than those of (i) US states of Maine, New Hampshire, Rhode Island or

South Dakota, of (ii) more than half the cumulative CO2 �ux from the Earth's 91 most actively

degassing subaerial volcanoes (Aiuppa et al., 2019), or of (iii) economies of the size of Bolivia,

the Dominican Republic, or Croatia. Our results further point towards a signi�cant social cost

of carbon (SCC) from Bitcoin mining activity, concentrated in countries with lower electricity
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prices. Next to discussions about incorporating a mining tax into electricity prices, policy de-

cision makers could also consider alternative consensus methods, such as proof-of-authority, in

their e�orts to curtail greenhouse emissions associated with cryptocurrencies mining and smart

contracts implemented with blockchain. Finally, ML methods could be fruitfully exploited to

solve the 'measurement' problem that plagues for-pro�t �nancial e�orts to decarbonize the econ-

omy, enabling objective tracking of both the carbon and �nancial performance of investments68.

68See 'Cimate change and investing: The trouble with green �nance', The Economist, June 20-26th 2020.
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