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We study how information technology (IT) affects competition and sta-

bility of lenders, investment, and welfare in a spatial model. While an

IT improvement spurs entrepreneurs’ investment, other effects depend

on whether the IT weakens the influence of lender–borrower distance on

monitoring costs. If so, lending competition intensifies, which can reduce

the profitability and stability of lenders and social welfare. Otherwise,

competition intensity does not vary, bringing positive effects for lenders

and welfare. IT investments of a bank and a fintech tend to be strategic

complements. Lenders will invest excessively in IT, eliminating differen-

tiation, if it is cheap enough. If not, the different types of IT investment

co-move in response to shocks. Our results are consistent with received
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1 Introduction

The banking industry is undergoing a digital revolution. A growing number of financial

technology (FinTech) companies and BigTech platforms engage in traditional banking

businesses using their innovative information and automation technologies.1 Traditional

banks are also moving from reliance on physical branches to adopting information tech-

nology (IT) and Big Data in response to the availability of technology and to changes in

consumer expectations of service, which are two main drivers of digital disruption (FSB,

2019). Such a transformation spurs the banking sector’s increasing investment in IT,

which allows financial intermediaries to offer personalized services and to price discrim-

inate. The COVID-19 pandemic has accelerated this digitalization process and fostered

remote loan operations and the development and diffusion of IT in the credit market

(Carletti et al., 2020).

How do the development and diffusion of information technology affect lending com-

petition? How do lenders determine their IT investment? Are they more or rather less

stable as IT develops? What are the welfare implications of IT progress? To answer

those questions, we build a model of spatial competition in which lenders compete to

provide entrepreneurs with loans. Lenders in our model refer to institutions that can

provide loans in the credit market, including commercial banks, shadow banks, fintechs

or bigtech platforms. In particular, our model will help to illuminate the following em-

pirical results:

• Small business lending by banks with better IT adoption is less affected by the

distance between the banks and their borrowers (Ahnert et al., 2022).

• Borrowers with better access to bank financing request loans at lower interest rates

on a fintech platform (Butler et al., 2017). A bank will charge its borrowers higher

loan rates if the borrowers get geographically closer to the bank or/and farther away

from competing banks (Herpfer et al., 2022).

• Increased bank/branch industry specialization (e.g., in export/SME) lending cur-

tails bank competition (Paravisini et al., 2023; Duquerroy et al., 2022).

1Prominent examples can be seen in China, where Alibaba and Tencent – the two largest BigTech
companies – are active in a wide range of financial services that include payments, wealth management,
and lending. In the United States, almost one third of small and medium firms that sought financing
applied with a FinTech firm or online lender, up from 19% in 2016 (US Federal Reserve’s Small Business
Credit Survey 2019). The annual growth rate of FinTech business lending volume in the US was over
40% from 2016 to 2020 (Berg et al., 2022). See also Vives (2019).
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• Banks with superior IT adoption have higher loan growth (Dadoukis et al., 2021

and Branzoli et al., 2021). Entrepreneurship (proxied by job creation by young

enterprises) is stronger in US counties that are more exposed to IT-intensive banks

(Ahnert et al., 2022). Development of fintech lending can improve financial inclusion

by helping unbanked customers gain access to finance (Jagtiani and Lemieux, 2018).

• Banks with higher pre-crisis IT adoption had fewer non-performing loans during

the crisis (Pierri and Timmer, 2022).

The lending market is modeled as a linear city à la Hotelling (1929) where two lenders,

located at the two extremes of the city, compete for entrepreneurs who are distributed

along the segment. Entrepreneurs can undertake risky investment projects, which may

either succeed or fail, but have no initial capital; hence they require funding from lenders.

Lenders have no direct access to investment projects and compete in a Bertrand fashion

by simultaneously posting their discriminatory loan rate schedules. We take as given

that IT is advanced enough so that lenders can price flexibly. In addition to financing

entrepreneurs, another critical lender function is monitoring entrepreneurs in order to

increase the probability of their projects’ success (see e.g. Martinez-Miera and Repullo,

2019). Monitoring is more costly for a lender if there is more distance between the lender

and the monitored entrepreneur. This distance can be physical2 or in characteristics

space from the expertise of the lender on certain sectors or industries.3

In the model we distinguish two types of information technology: (a) information

collection/processing technology (IT-basic for short) and (b) distance friction-reducing

technology (IT-distance for short). Improvements of the two types of IT generate different

outcomes. Specifically, an improvement in IT-basic lowers evenly the costs of monitoring

entrepreneurs in different locations. Such an improvement in the lending sector does not

affect lenders’ relative cost advantage in different locations – for example, by making

improvements in the ability to collect more valuable data and process them with better

computer hardware or information management software (e.g. desktop applications). In

contrast, an improvement in IT-distance reduces the negative effect of lender–borrower

distance on monitoring costs. Such an improvement lowers more significantly the costs of

2There is evidence that firm–lender physical distance matters for lending. See Degryse and Ongena
(2005), Petersen and Rajan (2002) and Brevoort and Wolken (2009).

3Blickle et al. (2021) find that a bank “specializes” by concentrating its lending disproportionately
on one industry about which the bank has better knowledge. Paravisini et al. (2023) document that
exporters to a given country are more likely to be financed by a bank that has better expertise in the
country. Duquerroy et al. (2022) find that in local markets there exist specialized bank branches that
concentrate their SME lending on certain industries.
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monitoring entrepreneurs located farther. For example, better internet connectivity and

communication technology (e.g. video conferencing) reduce the physical distance friction.

The improvement in remote learning devices, search engines and artificial intelligence (AI)

makes it easier to extend expertise, thereby reducing the expertise distance friction. Big

Data and machine learning techniques may improve both IT-basic and IT-distance.4

We assume that lenders (say banks or fintechs) have no own capital to finance loans, so

they must attract funds (say deposits or short-term debt) from risk-neutral investors. For

simplicity, we do not model how lenders compete to develop relationships with investors

or depositors, which we admit as a limitation.5

Under the set-up just described, we study how information technology affects lender

competition and obtain results consistent with the available empirical evidence. The

equilibrium consequences of improvements in the two types of technology (IT-basic v.s.

IT-distance) are compared. We find that by adopting more advanced IT, whatever its

type, a lender can charge higher loan rates and have a lower probability of being insolvent.

This is so since a lender’s IT progress increases its competitive advantage over the rival.

When two competing lenders each makes technological progress, that progress will not

increase the overall competitive advantage of either lender. In this case, different types

of IT progress can yield different results. If IT progress involves a reduction in the costs

of monitoring an entrepreneur without altering lenders’ relative cost advantage (i.e., IT-

basic improves), then lenders’ competition intensity will not be affected. In this case, the

loan rates that lenders offer to entrepreneurs do not vary; lenders become more profitable

and have higher monitoring incentives because monitoring is now cheaper. However, if IT

progress involves a weakening in the influence of lender–borrower distance on monitoring

costs (i.e., IT-distance improves), lenders’ competition intensity will increase because it

will reduce lenders’ differentiation. Then the loan rates offered to entrepreneurs decline

for both lenders. Such a differentiation-reducing effect, when strong enough, will decrease

lenders’ profits despite the fact that IT progress makes monitoring cheaper. Moreover,

the decrease in lenders’ loan rates lowers their skin in the lending game and hence can

reduce their monitoring incentives. Both types of IT progress make entrepreneurs better

4There are many companies (e.g., Zestfinance, Scienaptic systems, Datarobot, Underwrite.ai) that
help the financial industry improve information processing via Big Data and machine learning techniques,
thus transforming soft data into hard data. See also Boot et al. (2021).

5Drechsler et al. (2021) emphasize the importance of the deposit franchise for banks to increase their
market power over retail deposits, allowing them to borrow at rates that are low and insensitive to market
interest rates. Matutes and Vives (1996) and Cordella and Yeyati (2002) study bank competition for
deposits within a similar spatial competition framework but in their models banks can directly invest in
risky assets.
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off and hence spur more entrepreneurs to undertake investment projects.

The two types of IT have different effects on lender stability, which in our paper is

measured by a lender’s probability of being solvent. The progress of IT-basic increases

lender stability because it makes monitoring cheaper without reducing lenders’ differen-

tiation and monitoring incentives. In contrast, the progress of IT-distance will decrease

lender stability when the differentiation-reducing effect is strong enough because of three

reasons. First, the differentiation-reducing effect decreases lenders’ loan rates, so an en-

trepreneur repays less to its lender in the event of project success. Second, lenders’ lower

monitoring effort (induced by the decrease in their skin in the game) makes entrepreneurs

more likely to fail. Finally, the funding providers of lenders, knowing that entrepreneurs’

expected repayment becomes lower, will require lenders to promise a higher nominal

return, which further increases the difficulty for lenders to stay solvent.

When lenders endogenously determine their levels of IT, the equilibrium results de-

pend on the cost of acquiring IT. If IT is cheap enough, then both lenders will acquire

the best possible IT (i.e., improve both IT-basic and IT-distance to the highest level) in

their quest to compete for the market, which eliminates lender differentiation and hence

induces extremely intense lender competition. If IT is not so cheap, then the two types

of IT co-move in an interior symmetric equilibrium in response to IT cost shocks; that

is, a decrease in the cost of acquiring one type of IT will increase lenders’ investment

in both types of IT. Furthermore, we find that a fintech’s IT investment tends to be a

strategic complement of the IT investment of a bank with superior IT-basic (e.g., with

better access to firm data).

Finally, we analyze the welfare effects of information technology progress. We find that

more intense competition is not always welcome from the perspective of social welfare.

When competition in the lending market is at a low level, increasing competition intensity

improves welfare because more competition greatly increases entrepreneurs’ utility and

hence spurs their investment. Yet “too much” competition can reduce social welfare be-

cause high competition intensity will decrease lenders’ incentive to monitor entrepreneurs,

which in turn will render those projects less likely to succeed. So an improvement in

lenders’ IT-distance may or may not benefit social welfare owing to the consequent in-

creased lender competition (caused by the decrease in lender differentiation). In fact, if

information technology is cheap, lenders are trapped in a prisoner’s dilemma and choose

a very low level of differentiation, excessive from the social point of view. In contrast,

an improvement in lenders’ IT-basic brings no differentiation effect and hence improves

welfare. The welfare-improving outcome arises also if, in equilibrium, lenders do not com-
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pete with each other; in that case the only effect of IT progress (whatever its type) is to

make monitoring cheaper, which allows lenders to extend the market and hence improves

financial inclusion.

Our baseline model assumes that funding providers of a lender can observe the lender’s

monitoring effort (which determines its risk position). Our results hold also if those

funding providers (e.g., depositors) are protected by a fairly priced insurance scheme

(e.g., deposit insurance) and do not observe the lender’s monitoring levels. The reason

is that lender risk is priced fairly in both cases and so lenders’ payoff functions are the

same.

Related literature. Our work builds on the spatial competition models of Hotelling

(1929) and Thisse and Vives (1988), but focuses on lenders’ competition to finance en-

trepreneurs’ projects. Villas-Boas and Schmidt-Mohr (1999) build a spatial lending com-

petition model in which banks offer menus of contracts with different collateral levels

to sort borrowers of different qualities. Their focus is on how competition affects the

collateral requirements of contracts, while ours is on how IT affects lender competition.

Almazan (2002) studies how lender capitalization, interest rates, and regulatory shocks

can affect lender competition and monitoring efficiency in a spatial competition model

where a lender’s monitoring expertise decreases with lender–borrower distance. In Al-

mazan’s model, the only difference between lenders is the levels of their capital; lenders

cannot strategically choose loan rates because loan contracts are offered by entrepreneurs,

who have all bargaining power vis-a-vis lenders. In our work, lenders differ in their IT,

and the strategic pricing of lenders is based on their competitive advantage – which is

affected by information technology. Several papers have emphasized the importance of

monitoring in lending.6 Martinez-Miera and Repullo (2019) examine the effectiveness

of monetary and macroprudential policies in addressing a financial system’s risks within

a framework where lender monitoring can increase the probability that investing in an

entrepreneur yields a positive return; this is similar to our set-up. However, our focus

is on how information technology affects lender monitoring, which in turn affects lender

competition, stability, and social welfare. Our work is also related to the extensive liter-

ature that explores the connection between lender competition and lender stability (for

a survey, see Vives, 2016).

Our study also belongs to the literature that studies information technology and lend-

ing competition. Hauswald and Marquez (2003) in an adverse selection model find that

6See, e.g., Diamond (1984) and Holmstrom and Tirole (1997) for pioneering work.
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improving an informed lender’s ability to process information strengthens the “winner’s

curse” faced by an uninformed lender, decreases the intensity of lender competition, and

increases the loan rate that borrowers are expected to pay. Hauswald and Marquez (2006)

extend that model by allowing (a) endogenous investment by lenders in information pro-

cessing technology and (b) lender–borrower distance to have a negative effect on the

precision of lenders’ information. Similarly to our work, these authors find that the equi-

librium loan rates received by borrowers are decreasing in lender-borrower distance and

in the intensity of lender competition (measured by the number of lenders). However,

the mechanism behind our results differs since there is no scope for a winners’ curse in

our model.

Our results differ from the models of Hauswald and Marquez where an improvement

in the entire lending sector’s IT will soften lender competition; lenders’ IT investment is

decreasing in the intensity of lender competition; and social welfare is increasing in the

intensity of lender competition if competition is already very intense. In contrast, we

find that lender competition is either intensified or unaffected by the lending sector’s IT

improvement, depending on the type of the improved IT; lenders may have extremely

strong incentive to invest in IT even if lender competition is highly intense, in which

case lenders are trapped in a prisoner’s dilemma; and social welfare is decreasing in the

intensity of lender competition if competition is very intense. In addition, our work

analyzes the interplay of different types of IT and the strategic relation between different

lenders’ IT investment.

In a model where a traditional bank and a fintech lender compete to extend loans, He

et al. (2023) analyze the effects of “open banking” – an information sharing mechanism

that enables borrowers to share their customer data stored in a bank with a fintech that

has advanced information processing technology but less access to customer data. They

find that open banking increases the fintech’s screening ability and competitiveness, but

that it can soften lending competition and hurt borrowers if the fintech is “overempow-

ered” by the data sharing mechanism. Our work has a different focus: we distinguish two

types of information technology and compare their different equilibrium consequences.

Moreover, in He et al. (2023) the improvement of the fintech’s screening efficiency –

which potentially brings adverse welfare effects – is driven by the presence of an exoge-

nous open banking policy, while in our model socially undesirable IT improvement can

arise from lenders’ endogenous technology investment.

Finally, we propose a theoretical framework relevant to the empirical literature on

information technology adoption in the lending market, which has thrived owing to the
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rise of FinTech in recent years.7 To start with, there is considerable evidence showing that

IT makes non-traditional data – such as soft information (Iyer et al., 2016), friendships

and social networks (Lin et al., 2013), applicants’ description text (Dorfleitner et al.,

2016; Gao et al., 2023; Netzer et al., 2019), contract terms (Kawai et al., 2022; Hertzberg

et al., 2018), mobile phone call records (Björkegren and Grissen, 2020), digital footprints

(Agarwal et al., 2021; Berg et al., 2020), and cashless payment information (Ghosh et al.,

2022; Ouyang, 2022) – useful for assessing the quality of borrowers. Moreover, there

is a wide stream of research that documents the increases in lending efficiency brought

about by information technology. Frost et al. (2019) report that, in Argentina, credit

assessment based on Big Data (e.g., platform transactions and the reputation of sellers)

and processed with machine learning techniques has outperformed credit bureau ratings

in terms of predicting the loss rates of small businesses.8

Several papers provide evidence consistent with our results. Branzoli et al. (2021) and

Dadoukis et al. (2021) find that banks with higher IT adoption have larger loan growth;

this is consistent with our finding that an improvement of a lender’s IT increases the loan

volume the lender can extend. Jagtiani and Lemieux (2018) find that fintech lenders,

with better IT and no reliance on branches, can extend loans to remote unbanked areas,

thereby improving financial inclusion. Ahnert et al. (2022) document that small business

lending by banks with higher IT adoption is less affected by the distance between the bank

headquarters and their borrowers. Our model is in line with the findings since we show

that a lender’s geographic reach will be extended if the lender adopts better information

technology. Ahnert et al. (2022) also find that job creation by young enterprises, a proxy

for entrepreneurship, is stronger in US counties that are more exposed to IT-intensive

banks; consistent with this finding, our model shows that an improvement in the lending

sector’s IT will encourage more entrepreneurs to undertake investment projects. Pierri

and Timmer (2022) study the implications of IT in banking for financial stability; these

authors find that pre-crisis IT adoption that was higher by one standard deviation led

to 10% fewer non-performing loans during the 2007–2008 financial crisis; we provide a

consistent result that a lender will become more stable as its IT progresses.

7Philippon (2016) claims that the existing financial system’s inefficiency can explain the emergence
of new entrants that bring novel technology to the sector. Gopal and Schnabl (2022) show that most of
the increase in fintech lending to SMEs after 2008 financial crisis substituted for a reduction in lending
by banks.

8Furthermore, Fuster et al. (2019) estimate that technology-based lenders process mortgage appli-
cations 20% faster than do traditional banks yet without incurring greater default risk. Buchak et al.
(2018) find that lenders with advanced technology can offer more convenient services to borrowers and
hence charge higher loan rates in the US mortgage market than do traditional banks.
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The Paycheck Protection Program (PPP) launched by the US Small Business Admin-

istration (SBA) also highlights the importance of technology. Erel and Liebersohn (2021)

find that fintech lenders extend PPP loans to small businesses that are poorly served by

the banking system (e.g., ZIP codes with fewer bank branches and lower incomes or in-

dustries with little ex ante small business lending).9 Kwan et al. (2022) show that banks

with better IT originate more PPP loans – especially in areas with more severe COVID-

19 outbreaks, higher levels of Internet use, and more intense bank competition. Griffin

et al. (2023) find that PPP loans distributed by fintechs have a substantially higher in-

cidence of suspicious features than loans from traditional banks, suggesting that fintechs

facilitate fraudulent credit. However, we will refrain from explaining those results within

our framework, because PPP loans - when properly used by borrowers - are forgivable

and carry a uniform loan rate of 1%, which diminishes drastically the space for lenders’

monitoring and strategic pricing.10

The rest of our paper proceeds as follows. Section 2 presents the model set-up. In

Section 3, we examine the lending market equilibrium with given information technology.

Section 4 studies how lenders endogenously determine their IT investment. In Section 5,

we analyze how information technology affects lender stability, and Section 6 provides

a welfare analysis of information technology progress. We conclude in Section 7 with a

summary of our findings. Appendix A presents all the proofs, and other appendices deal

with extensions and robustness checks.

2 The model

The economy and players. The economy is represented by a linear “city”, of length

1, that is inhabited by entrepreneurs and lenders. A point on the city represents the

characteristics of an entrepreneur (type of project, technology, geographical position,

industry, . . .) at this location, and two close points mean that the entrepreneurs in those

locations are similar.

There are two lenders, labeled by 𝑖 = {1, 2}, located at the two extremes of the city.

9Similarly, Howell et al. (2021), Atkins et al. (2022) and Fei (2022) document that fintech lenders
were more likely to provide PPP loans to black-owned (or minority-owned) businesses, which are poorly
served by traditional banks.

10The aim of PPP loans is to help small businesses pay their employees and additional fixed expenses
during the COVID-19 pandemic. Under SBA’s interpretation of the initial bill, PPP loans can be
forgiven if two conditions are satisfied: (a) loans are used to cover payroll costs, mortgage interest, rent
and utility costs; (b) employee counts and compensation levels are maintained. See Granja et al. (2022)
for a detailed introduction and an evaluation of the program.
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Hence a lender is closer to some entrepreneurs than to others. This means, for example,

that lenders are specialized in different sectors of the economy (see Paravisini et al., 2023

for export-related lending, Duquerroy et al., 2022 for SME lending and Giometti and

Pietrosanti, 2022 for syndicated corporate loans). If the distance between an entrepreneur

and lender 1 is 𝑧, we say that the entrepreneur is located at (location) 𝑧. As a result,

the distance between an entrepreneur at 𝑧 and lender 2 is 1 − 𝑧. At each location (e.g.

location 𝑧) there is a potential mass 𝑀 of entrepreneurs. Figure 1 gives an illustration

of the economy.

Figure 1: The Economy.

Entrepreneurs and monitoring intensity. Each entrepreneur has no initial capital

but is endowed with a risky investment project that requires a unit of funding; hence

entrepreneurs require funding from lenders to undertake projects. The investment project

of an entrepreneur at 𝑧 yields the following risky return:

̃︀𝑅(𝑧) =

⎧⎨⎩𝑅 with probability 𝑚(𝑧),

0 with probability 1−𝑚(𝑧).

In case of success (resp. failure), the entrepreneur’s investment yields 𝑅 (resp. 0). The

probability of success is 𝑚(𝑧) ∈ [0, 1], which represents how intensely the entrepreneur is

monitored by a lender. More specifically, the project of an entrepreneur (monitored with

intensity 𝑚(𝑧)) succeeds if and only if

𝜃 ≥ 1−𝑚(𝑧),

where 𝜃 is a random variable (or say, risk factor) that is uniformly distributed over the

interval [0, 1]; hence the event 𝜃 ≥ 1−𝑚(𝑧) happens exactly with probability 𝑚(𝑧). The

random variable 𝜃 is the same across all entrepreneurs; in other words, it is a common

risk factor that can be viewed as a measure of economic conditions. An entrepreneur at 𝑧

who borrows from lender 𝑖 with loan rate 𝑟𝑖(𝑧) will receive a residual payoff of 𝑅− 𝑟𝑖(𝑧)
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(resp. 0) from the investment when her project succeeds (resp. fails).

Funding source. We assume that lenders have no capital to finance their loans, so

they must attract deposits or short-term debt from competitive risk-neutral investors.

Investors’ funding supply to lender 𝑖 is perfectly elastic when the expected return to

investors is no less than their break-even return 𝑓 . The promised nominal return of

lender 𝑖 to its investors is denoted by 𝑑𝑖, which must be set so as to make investors break

even. We assume that, before 𝑑𝑖 is determined, lender 𝑖’s monitoring intensities have

already been observed by investors. Hence 𝑑𝑖 can be adjusted to reflect the lender’s risk,

which ensures that the lender’s expected payment to a unit of investors’ funding is no

less than 𝑓 regardless of how intensely the lender chooses to monitor.11

Remark (funding by insured depositors): The results of our model hold if lenders

are funded by insured depositors who cannot observe lenders’ monitoring but are pro-

tected by a fairly priced deposit insurance scheme; the deposit insurance fund (DIF) can

observe lender monitoring and make a zero expected profit by offering a fair risk-adjusted

insurance premium rate.12 Online Appendix F shows that all results in the paper hold

under this alternative assumption.

Entrepreneurs’ utility and investment decisions. An entrepreneur can borrow

and invest at most 1 unit of funding. If an entrepreneur at 𝑧 borrows at loan rate 𝑟(𝑧)

and is monitored with intensity 𝑚(𝑧), her expected monetary return from the project’s

payoff is (𝑅 − 𝑟(𝑧))𝑚(𝑧). The entrepreneur incurs a private disutility cost, 𝜀𝑚(𝑧) (with

𝑅 > 𝜀), when monitored with intensity 𝑚(𝑧).13 Therefore, the entrepreneur’s expected

gross utility from the investment is:

𝜋𝑒(𝑧) ≡ (𝑅− 𝑟(𝑧))𝑚(𝑧)− 𝜀𝑚(𝑧) = (𝑅− 𝜀− 𝑟(𝑧))𝑚(𝑧).

11There is empirical evidence that investors do care about and have access to information on lenders’
risk. Iyer et al. (2013) find that uninsured depositors do monitor lenders’ financial health, because they
are more likely to run than insured depositors, and such runs can be driven by their private information.
Chen et al. (2022a) find that uninsured deposit interest rates are sensitive to lender performance, and
the sensitivity is higher for lenders with better transparency.

12Risk-adjusted deposit insurance is adopted in a growing number of countries. In the US, the Federal
Deposit Insurance Corporation (FDIC) implemented variable risk-based premiums in 1994 for banks and
in 1998 for savings institutions. Garnett et al. (2020) provide the history and rules of risk-based premiums
in the US. This practice was soon followed by many other countries. Demirgüç-Kunt et al. (2015) list
the countries that adopt risk-based deposit insurance premium (as of 2013); among the countries that
have deposit insurance schemes, 31% adopt risk-adjusted insurance. China switched to it in 2016 and
then increased its flexibility in the following years.

13Lender monitoring eliminates private benefits of control and forces borrowers to give up shirking.
The relation 𝑅 > 𝜀 means that monitoring is value-enhancing considering the private cost.
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We assume that the entrepreneur derives net utility 𝜋𝑒(𝑧)− 𝑢
¯
by implementing the risky

project, so she seeks funding if and only if 𝜋𝑒(𝑧) ≥ 𝑢
¯
. Here 𝑢

¯
is the reservation utility

(i.e., opportunity cost) of the entrepreneur’s alternative activities. For each entrepreneur,

𝑢
¯
is independently and uniformly distributed on [0,𝑀 ]. The funding demand (which is

also the mass of entrepreneurs undertaking investment projects) at location 𝑧 is therefore

𝐷(𝑧) = 𝑀

∫︁ 𝑀

0

1

𝑀
1{𝜋𝑒(𝑧)≥𝑢

¯
} 𝑑𝑢

¯
= 𝜋𝑒(𝑧),

where 1{·} is an indicator function that equals 1 if the condition in {·} holds and equals

0 otherwise. Total entrepreneurial utility at location 𝑧 can be written as

𝑀

∫︁ 𝑀

0

1

𝑀
(𝜋𝑒(𝑧)− 𝑢

¯
)1{𝜋𝑒(𝑧)≥𝑢

¯
} 𝑑𝑢

¯
=

(𝜋𝑒(𝑧))2

2
.

Note that the effect of the entrepreneurial private cost 𝜀𝑚(𝑧) is simply reducing the

expected project return from 𝑅𝑚(𝑧) to (𝑅 − 𝜀)𝑚(𝑧). Without loss of generality, in the

rest of the paper we let 𝜀 = 0.

Monitoring and information technology. The two lenders can use monitoring to

increase entrepreneurs’ probability of success. If an entrepreneur at 𝑧 borrows from

lender 𝑖 and is monitored with intensity 𝑚𝑖(𝑧), then the lender incurs the non-pecuniary

monitoring cost

𝐶𝑖(𝑚𝑖(𝑧), 𝑧) =
𝑐𝑖

2(1− 𝑞𝑖𝑠𝑖)
(𝑚𝑖(𝑧))

2. (1)

Here 𝑐𝑖 ≥ 𝑐
¯
> 𝑅, 𝑅 ≥

√
2𝑐𝑖𝑓 , 𝑞𝑖 ∈ [0, 1), and 𝑠𝑖 is the distance between lender 𝑖 and

location 𝑧; we have 𝑠𝑖 = 𝑧 (resp. 𝑠𝑖 = 1−𝑧) if 𝑖 = 1 (resp. 𝑖 = 2). The parameters 𝑐𝑖 and 𝑞𝑖

are inverse measures of the efficiency of lender 𝑖’s information technology. Parameter 𝑐𝑖 is

the slope of marginal monitoring costs when lender-borrower distance is zero, and hence

represents lender 𝑖’s basic monitoring efficiency (IT-basic). Parameter 𝑞𝑖 (IT-distance

of lender 𝑖) measures the negative effect of lender-borrower “distance friction” on the

lender’s information collection and data analysis.14 The cost function (1) captures the

idea that a lender has a greater capacity to discipline nearby borrowers and must expend

more effort to monitor entrepreneurs who are more distant from the lender’s expertise or

geographic location.15

14A similar classification of technology can be found in Boot et al. (2021).
15This is consistent with Giometti and Pietrosanti (2022) who document that lenders specialize in

lending to specific industries because of their information advantages in monitoring those industries.
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The constraint 𝑅 ≥
√
2𝑐𝑖𝑓 must hold to guarantee that lender 𝑖 is willing to provide

loans to at least some entrepreneur(s) in the market. The lower bound 𝑐
¯
of 𝑐𝑖 is assumed

to be higher than 𝑅 to ensure that lender 𝑖’s monitoring intensity - which is equal to the

success probability of monitored entrepreneurs - is always smaller than 1.

Remark: The cost function (1) has two crucial properties when 𝑞1 = 𝑞2 = 𝑞 and

𝑐1 = 𝑐2 = 𝑐. First, the ratio of the two lenders’ monitoring costs at location 𝑧 (i.e.,

𝐶1(𝑚1, 𝑧)/𝐶2(𝑚2, 𝑧)) is independent of 𝑐 for any given 𝑚1 and 𝑚2:

𝐶1(𝑚1, 𝑧)

𝐶2(𝑚2, 𝑧)
=

1− 𝑞(1− 𝑧)

1− 𝑞𝑧

(︂
𝑚1

𝑚2

)︂2

.

This property implies that increasing 𝑐 does not affect a lender’s relative cost advantage,

although it makes monitoring more costly for both lenders. The second property is

𝜕2
(︀𝐶1(𝑚1,𝑧)
𝐶2(𝑚2,𝑧)

)︀
𝜕𝑧𝜕𝑞

=
2(1− 𝑞(1− 𝑧))

(1− 𝑞𝑧)3

(︂
𝑚1

𝑚2

)︂2

> 0, (2)

which means that the sensitivity of the relative cost advantage to 𝑧 is increasing in 𝑞.

Note that 𝐶1(𝑚1, 𝑧)/𝐶2(𝑚2, 𝑧) is increasing in 𝑧. Therefore, a higher 𝑞 not only makes

monitoring more costly but also magnifies the importance of lender specialization by

increasing the importance of distance in determining the relative cost advantage of a

lender’s monitoring.

Interpretation of monitoring. Lenders typically monitor their borrowers through

information collection and covenant restrictions (Wang and Xia, 2014; Minnis and Suther-

land, 2017; Gustafson et al., 2021). Specifically, lenders can collect entrepreneurs’ data

(e.g., by onsite visit or frequently requesting information) and assess how the business

is doing and whether there is a diversion of funds towards private benefits. If borrowers

are not acting appropriately, lenders can provide warnings and advice, which discipline

borrowers and potentially improve their behavior. If the collected information shows the

breach of covenants, lenders can obtain control rights and directly intervene to fix bor-

rowers’ behavior. Such intervention is easier for BigTech lenders since they can threaten

to exclude misbehaving borrowers from future use of their platforms (Frost et al., 2019).

With advanced information technology (such as the abundance of comprehensive trans-

actional and locational data on borrowers’ online activities and machine learning tech-

niques), this kind of monitoring process can be conducted almost in real time (Chen

et al., 2022b).
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Monitoring creates value for both lenders and entrepreneurs; we can view it as lenders’

expertise-based advising, mentoring or/and information production that is helpful for en-

trepreneurs. There is evidence that borrowers do value the expertise of lenders. Paravisini

et al. (2023) find that an exporter prefers borrowing from a bank with better expertise

in the target market. Duquerroy et al. (2022) document that an SME borrows less if its

account is reallocated from a branch with expertise in the SME’s industry to one without

such expertise. There is also direct evidence showing that monitoring improves borrow-

ers’ firm values. Lee and Sharpe (2009) find that more intense lender monitoring leads

to higher stock returns of borrowers; similarly, Dass and Massa (2011) show that lender

monitoring can improve corporate governance of borrowers, thereby increasing their firm

values.

To give a more specific interpretation to parameters 𝑞𝑖 and 𝑐𝑖 of the monitoring cost

function (1), we assume that lender 𝑖’s monitoring intensity at 𝑧 (denoted by 𝑚𝑖 (𝑧)) is

determined by two factors: data analysis and distance friction, that is

𝑚𝑖 (𝑧) ≡ 𝛼𝑖𝐼𝑖(𝑧)⏟  ⏞  
data analysis

distance friction⏞  ⏟  √︀
1− 𝑞𝑖𝑠𝑖 ,

where 𝛼𝑖 measures lender 𝑖’s efficiency of information processing and 𝐼𝑖(𝑧) is the amount

of information (data) acquired by the lender about the monitored entrepreneur at 𝑧.

The data analysis factor, 𝛼𝑖𝐼𝑖(𝑧), reflects the idea that monitoring relies on collecting

and processing information about the firm; monitoring is more effective if the lender has

more information about the firm (i.e., if 𝐼𝑖(𝑧) is higher) or if the lender has a better

model to process the data (i.e., if 𝛼𝑖 is larger). However, the effectiveness of a lender’s

data analysis must be discounted by a distance friction factor
√
1− 𝑞𝑖𝑠𝑖 because a lender

may not have a uniform capability to collect and analyze the information of entrepreneurs

of different characteristics.

The distance friction can be interpreted in two ways. First, we can view 𝑠𝑖 as the

“physical distance” between location 𝑧 and lender 𝑖. Physical distance matters because

first-hand borrower information often contains soft information that is hard to perfectly

convey to distant loan officers (see Liberti and Petersen, 2019); in this case the distance

friction factor reflects the informativeness loss in the process of remote information trans-

mission. In contrast, if an entrepreneur is physically close to the lender, loan officers can

closely communicate with the borrower, avoiding the loss of soft information. The second

way is to view 𝑠𝑖 as the “expertise gap” between an entrepreneur’s characteristics and
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lender 𝑖’s s specialized area. The expertise gap matters because the effectiveness of an

information processing model will be lower when it is used to deal with firms that the

model is not designed for. For example, the framework for analyzing a food company’s

information cannot maintain high effectiveness if it is applied to a real-estate company.

We further assume that acquiring information amount 𝐼𝑖(𝑧) will incur a cost of

𝛾𝑖(𝐼𝑖(𝑧))
2/2 for lender 𝑖, where 𝛾𝑖 measures the lender’s cost of information acquisition. If

the lender chooses monitoring intensity 𝑚𝑖 (𝑧) for an entrepreneur at 𝑧, then the amount

of information (i.e., 𝐼𝑖(𝑧)) needed is equal to 𝑚𝑖 (𝑧)/(𝛼𝑖

√
1− 𝑞𝑖𝑠𝑖), which will cost the

lender
𝛾𝑖

2𝛼2
𝑖 (1− 𝑞𝑖𝑠𝑖)

(𝑚𝑖 (𝑧))
2 . (3)

Letting 𝑐𝑖 ≡ 𝛾𝑖/𝛼
2
𝑖 , the cost of monitoring an entrepreneur at location 𝑧 with intensity

𝑚𝑖 (𝑧) is exactly given by the cost function (1). Therefore, 𝑐𝑖 can be interpreted as the cost

of acquiring an efficiency unit of information at zero distance, which inversely measures

a lender’s basic efficiency of information acquisition and processing (i.e., IT-basic).

Technologies that decrease 𝑐𝑖 are related to improvements in information acquisition

(i.e., a lower 𝛾𝑖) and processing (i.e., a higher 𝛼𝑖), as shown in the following examples.

Advances in chip technology and cloud computing/storage increase 𝛼𝑖. Adopting better

software (e.g. desktop applications) improves the efficiency of document assembly and

information classification and processing, which facilitates both information acquisition

and data analyzing (i.e., decreases 𝛾𝑖 and increases 𝛼𝑖, see He et al., 2022). Exploiting new

sources of information (like transaction data and digital footprints) with machine learning

(ML) techniques also decreases 𝑐𝑖 because it extends the pool of valuable information (i.e.,

decreases 𝛾𝑖) and upgrades information processing methods (i.e., increases 𝛼𝑖).
16

One consequence of technological progress is the increased availability of cheap but

imprecise data (see Dugast and Foucault, 2018). In our model, the abundance of such data

can be represented by a decrease in both 𝛾𝑖 and 𝛼𝑖. As information availability increases,

𝛾𝑖 will decrease because information acquisition becomes easier. However, the decrease

in data quality increases the difficulty of information processing, thereby reducing 𝛼𝑖. A

lender’s basic monitoring efficiency will decrease (i.e., 𝑐𝑖 increases) if the lower 𝛼𝑖 (caused

16ML can process real-time borrower data quickly at large volumes and low operating costs (Huang
et al., 2020). Mester et al. (2007) find that transaction information in borrowers’ accounts - which
provides ongoing data on borrowers’ activities - is useful for lenders’ monitoring. Dai et al. (2022) show
that monitoring borrowers’ digital footprints can increase the repayment likelihood on delinquent loans
by 26.5%, because digital footprints (e.g., cell phone, email or/and apps footprints) reveal borrowers’
social networks and physical locations, thereby increasing lenders’ ability to intervene and enforce the
repayment of borrowers.
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by low-quality data) dominates.

Technologies that decrease 𝑞𝑖 can diminish the physical distance friction (e.g., improve-

ments in communication) or the expertise friction (such as extending the competence of

human capital or hardening soft information). The diffusion of internet and the devel-

opment of communication technology (like smart phones, mobile apps, social media, or

video conferencing) facilitate remote information collection and exchange, and hence re-

duce the friction caused by the lender-borrower physical distance. The friction of the

expertise gap can be weakened if an IT improvement facilitates lenders to extend their

specialized areas. For example, improvements in human capital, facilitated by remote

learning, better search engines and AI such as ChatGPT, make it easier for loan offi-

cers to process the information of firms they do not specialize in, thereby decreasing 𝑞𝑖.

The development of code sharing platforms (like Github) is another example that can

facilitate lenders’ expertise extension.

Table 1: Technology Improvements and Monitoring Efficiency

Improvement of efficiency Related technology
Decreasing 𝑐𝑖

(improvement in collecting or/and
processing information)

ML with big/unconventional data
advances in cloud storage and computing,

information management software
Decreasing 𝑞𝑖 (physical distance friction)

(improvement in communication)
Diffusion of internet, video conferencing,
smart phone, mobile apps, social media

Decreasing 𝑞𝑖 (expertise friction)
(extending competence of human capital/

hardening soft information)

ML with big/unconventional data,
remote learning and AI

There are also technologies that decrease both 𝑐𝑖 and 𝑞𝑖: ML with big data decreases 𝑐𝑖

by improving lender 𝑖’s ability to acquire and process information. It makes also possible

to harden soft information (e.g., digital footprints) and hence reduces the reliance on

lenders’ expertise in certain areas, which lowers 𝑞𝑖. Table 1 summarizes the technology

improvements and the corresponding effects on monitoring efficiency.

The difference between a traditional bank and a fintech lender can be reflected in

parameters 𝑞𝑖 and 𝑐𝑖. Compared with banks, fintechs tend to have better IT-distance (i.e.,

lower 𝑞𝑖) since they connect digitally with entrepreneurs and process information with

automatic algorithms. In contrast, banks may have higher basic monitoring efficiency

(i.e., lower 𝑐𝑖) because they usually have better access to firm information.17 Banks and

17Banks’ advantage in the access to firm data is the rationale of Open Banking initiative launched by
several governments including the European Union and the United Kingdom. See Babina et al. (2022)
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fintechs have different abilities to acquire information (measured by 𝛾𝑖) and to process it

(measured by 𝛼𝑖). Better access to firm information by banks shows in a lower 𝛾𝑖 than

fintech lenders. Fintechs’ more capable IT infrastructure shows in a higher 𝛼𝑖. Therefore,

a bank will have better basic monitoring efficiency than a fintech if the bank’s advantage

in information acquisition dominates the disadvantage in the capability of information

processing.

Competition with discriminatory loan pricing. When extending loans, lenders

compete in a localized Bertrand fashion. Lender 𝑖 follows a discriminatory pricing policy

in which the loan rate 𝑟𝑖(𝑧) varies as a function of the entrepreneurial location 𝑧.18

The timing of the two-stage duopoly lending game is shown in Figure 2 and consists

of an IT investment stage and a lending competition stage. At the IT investment stage,

lenders simultaneously choose their information technology (i.e., lender 𝑖 determines 𝑞𝑖

and 𝑐𝑖). Then at the lending competition stage, lenders compete taking as given 𝑞𝑖 and

𝑐𝑖.

Figure 2: Timeline.

Within the lending competition stage, the following events take place in sequence:

First, lenders post loan rate schedules simultaneously. Once the loan rate schedules are

chosen and posted, entrepreneurs decide whether to implement their projects and which

lender to approach for funding. Given entrepreneurs’ decisions and the loan rates of each

lender, lender 𝑖 chooses its optimal monitoring intensity 𝑚𝑖(𝑧) depending on the location

of entrepreneurs. Finally, investors – after observing 𝑚𝑖(𝑧) – put their money into lenders

and are promised a nominal return 𝑑𝑖.

and He et al. (2023).
18Degryse and Ongena (2005) document spatial discrimination in loan pricing. See also Agarwal and

Hauswald (2010) and Herpfer et al. (2022).
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3 Equilibrium at the lending competition stage

In this section we analyze the equilibrium at the lending competition stage. Two types

of equilibria may arise. The first type is the equilibrium with direct competition, in

which case all locations are served by the two lenders. The second type is the local

monopoly equilibrium, where the two lenders do not compete with each other and some

locations are not served by either lender. Throughout the paper we focus mostly on

the equilibrium with direct competition but we also characterize the local monopoly

equilibrium in Appendix C.

Since lenders’ loan rates can vary with entrepreneurial locations, there is localized

Bertrand competition between lenders at each location. Without loss of generality, we

concentrate on location 𝑧 and analyze how lenders set loan rates to compete for en-

trepreneurs at 𝑧.

3.1 Optimal monitoring intensity

We solve the equilibrium by backward induction and so first examine how lenders choose

their monitoring intensities. Lender 𝑖’s loan rate and monitoring intensity for entrepreneurs

at 𝑧 are denoted by 𝑟𝑖(𝑧) and 𝑚𝑖(𝑧), respectively.

According to the timeline, an entrepreneur at 𝑧 has decided whether to implement

her project and which lender to borrow from before lenders choose their monitoring

intensities. If an entrepreneur at 𝑧 approaches lender 1, then lender 1’s expected profit

from financing the entrepreneur can be written as

𝜋1(𝑧) ≡ 𝑟1(𝑧)𝑚1(𝑧)− 𝑓 − 𝑐1
2(1− 𝑞1𝑧)

(𝑚1(𝑧))
2. (4)

The first term of 𝜋1(𝑧) is the expected loan repayment from the entrepreneur at 𝑧, because

the entrepreneur repays lender 1 the amount 𝑟1(𝑧) with probability 𝑚1(𝑧). The second

term measures lender 1’s expected funding costs by borrowing from investors, which is

determined by investors’ break-even expected return 𝑓 , not the lender’s promised nomi-

nal return 𝑑1. The reason is that 𝑑1 is determined after investors have observed lender 1’s

monitoring intensity schedule and hence is adjusted to reflect the lender’s ultimate risk.

When lender 1 makes its decisions, it knows that investors can undo lender risk by ad-

justing 𝑑1, so its expected return to investors will be 𝑓 . Finally, the third term represents

lender 1’s non-pecuniary monitoring costs.

Lender 1 chooses its optimal monitoring intensity 𝑚1(𝑧) to maximize its expected
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profit 𝜋1(𝑧), taking 𝑟1(𝑧) as given; the result is presented in Lemma 1.

Lemma 1. Lender 1’s optimal monitoring intensity for entrepreneurs at 𝑧 is given by

𝑚1(𝑧) =
𝑟1(𝑧)(1− 𝑞1𝑧)

𝑐1
.

A symmetric result holds for lender 2.

Note first that 𝑚1(𝑧) is decreasing in 𝑐1 since lender 1 has a lower monitoring incentive

as monitoring becomes more costly. Second, 𝑚1(𝑧) is decreasing in 𝑧 (when 𝑞1 > 0)

because monitoring an entrepreneur is more costly when the entrepreneur is located

farther away. Finally, 𝑚1(𝑧) is increasing in 𝑟1(𝑧). This follows because 𝑟1(𝑧) represents

lender 1’s skin in the game, which determines the marginal benefit of monitoring an

entrepreneur at 𝑧.19

3.2 Equilibrium loan rates

In this section we study how lenders determine their loan rates. We look first at how

entrepreneurs decide which lender to approach after observing lenders’ loan rates.

Entrepreneurs’ decisions. After observing the loan rates posted by lenders, an en-

trepreneur will approach the lender that can provide higher expected utility. If lender

𝑖 offers loan rate 𝑟𝑖(𝑧) at 𝑧, then entrepreneurs can expect that the lender’s monitor-

ing intensity 𝑚𝑖(𝑧) equals 𝑟𝑖(𝑧)(1 − 𝑞𝑖𝑠𝑖)/𝑐𝑖 at this location. Hence entrepreneurs at 𝑧

will consider lender 1 for loans if and only if they derive higher (gross) expected util-

ity by approaching lender 1 instead of lender 2: (𝑅 − 𝑟1(𝑧))𝑚1(𝑧) ≥ (𝑅 − 𝑟2(𝑧))𝑚2(𝑧).

19According to Lemma 1, lender 1’s promised nominal payment 𝑑1 to investors does not affect 𝑚1(𝑧).
This result differs from Martinez-Miera and Repullo (2017, 2019), who assume that investors cannot
observe a lender’s monitoring intensity and show that such intensity is determined by the lender’s inter-
mediation margin (loan income minus its promised payment to investors), generating a debt overhang
problem. In our paper, 𝑑𝑖 is adjusted to lender 𝑖’s risk because its monitoring intensity is observable
to investors. We make this assumption for tractability. In the Martinez-Meira and Repullo model,
each lender serves only one entrepreneur (or a group of identical entrepreneurs), so a project’s failure is
equivalent to lender failure and default on the promised payment to investors. Our model extends theirs
by letting each lender serve non-identical entrepreneurs. As a result, a project’s failure in our model
is not equivalent to a lender’s default, which would make a lender’s optimization problem intractable.
The advantage of the observable monitoring assumption is that a lender’s optimization problem at each
location is independent, giving rise to tractable localized Bertrand competition. In Online Appendix G
we consider the case of unobservable monitoring with debt overhang where entrepreneurs are at a unique
location and show that our results are robust and, in fact, that debt overhang plays a reinforcement role
in some of them.
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When the inequality holds, an entrepreneur at 𝑧 will approach lender 1 if the gross utility

𝜋𝑒(𝑧) = (𝑅− 𝑟1(𝑧))𝑚1(𝑧) is no smaller than her reservation utility 𝑢
¯
.

Note that increasing lender 𝑖’s loan rate has two competing effects on entrepreneurial

utility at 𝑧: First, the residual payoff 𝑅 − 𝑟𝑖(𝑧) will decrease, which tends to reduce en-

trepreneurs’ utility. However, lender 𝑖 will increase its monitoring intensity 𝑚𝑖(𝑧), which

increases the success probability of entrepreneurs who approach the lender. Therefore,

entrepreneurs do not simply choose the lender whose loan rate is lower.

Best loan rate. The competitiveness of a lender is determined by its best loan rate,

which is defined as follows:

Definition 1. The best loan rate that lender 𝑖 can offer to an entrepreneur at 𝑧 is the

loan rate that maximizes the entrepreneur’s expected utility and ensures the lender a non-

negative profit.

In a competition of the Bertrand type, a lender that wants to win the contest for an

entrepreneur at 𝑧 must offer a loan rate that is more attractive to the entrepreneur than

its rival lender’s best loan rate. The best loan rate is characterized by the next lemma.

Lemma 2. If 𝑅 ≥
√︀
8𝑐𝑖𝑓/(1− 𝑞𝑖), then lender 𝑖’s best loan rate is 𝑅/2 for any en-

trepreneur. Hence, the maximum gross utility lender 𝑖 can provide to an entrepreneur at

𝑧 is 𝑅2(1− 𝑞𝑖𝑠𝑖)/(4𝑐𝑖). Neither lender will offer a loan rate that is lower than 𝑅/2.

We can best explain Lemma 2 by proving it here. When an entrepreneur at 𝑧 borrows

from lender 1, her expected utility is

𝑈 ≡ 𝜋𝑒(𝑧)− 𝑢
¯
= (𝑅− 𝑟1(𝑧))𝑚1(𝑧)− 𝑢

¯

with 𝑚1(𝑧) = 𝑟1(𝑧)(1− 𝑞1𝑧)/𝑐1 (Lemma 1). The best loan rate should maximize 𝑈 (or

𝜋𝑒(𝑧)), and the result is 𝑟1(𝑧) = 𝑅/2. The corresponding maximum 𝜋𝑒(𝑧) follows.

Lender 1’s expected profit from financing an entrepreneur at 𝑧 (i.e., 𝜋1(𝑧)) is given

in (4). By Lemma 1, 𝜋1(𝑧) is equal to (𝑟1(𝑧))
2(1− 𝑞1𝑧)/(2𝑐1)− 𝑓 , which is positive when

both 𝑟1(𝑧) = 𝑅/2 and 𝑅 ≥
√︀
8𝑐1𝑓/(1− 𝑞1) hold. Therefore, the best loan rate 𝑅/2 is

acceptable to lender 1. In a symmetric way, we can show the result for lender 2.

Lemma 2 shows that (a) lowering the loan rate may not increase a lender’s attrac-

tiveness and (b) the lower bound for a lender’s loan rate should be 𝑅/2. A lower loan rate

to an entrepreneur implies a lower monitoring intensity and hence a higher probability of

failure, although it leaves a higher payoff in the event of success. When lender 𝑖’s loan rate
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is as low as 𝑅/2, the effect of the loan rate on monitoring intensity becomes dominant, so

lender 𝑖 cannot increase its attractiveness by further reducing its loan rate. Since better

IT implies a higher ability to increase entrepreneurs’ success probabilities, the maximum

utility lender 𝑖 can provide is increasing in its monitoring efficiency, (1− 𝑞𝑖𝑠𝑖)/𝑐𝑖.

When 𝑅 is not large enough (i.e., when 𝑅 <
√︀
8𝑐𝑖𝑓/(1− 𝑞𝑖)), a loan rate as low

as 𝑅/2 cannot ensure lenders a non-negative profit at some locations. In this case, a

lender’s best loan rate is not always 𝑅/2 (see the analysis in Appendix B; in Appendix

C we show that this assumption eliminates the possibility of local monopoly equilibria).

We maintain throughout the section the assumption that 𝑅 ≥
√︀

8𝑐𝑖𝑓/(1− 𝑞𝑖).

Monopoly loan rates. We use 𝑟𝑚𝑖 (𝑧) to denote lender 𝑖’s monopoly loan rate at 𝑧,

which is defined as follows:

Definition 2. The monopoly loan rate 𝑟𝑚𝑖 (𝑧) of lender 𝑖 at location 𝑧 is the loan rate the

lender would choose if it faced no competition at the location.

At location 𝑧, lender 𝑖 would never offer a loan rate that is higher than 𝑟𝑚𝑖 (𝑧). While

the best loan rate is the lower bound of a lender’s loan rate, the monopoly loan rate

(with 𝑟𝑚𝑖 (𝑧) > 𝑅/2, see Lemma A.1 in Appendix A) is the upper bound.

Equilibrium loan rates. Given Lemmas 1 and 2, we can solve for lenders’ equilibrium

loan rates. If lender 1 wants to attract an entrepreneur (at 𝑧), it must offer a loan rate

more attractive than the best loan rate 𝑅/2 of lender 2 (that is, providing expected utility

no less than the maximum utility lender 2 can provide). If lender 1 cannot do so, then

the entrepreneur will instead be served by lender 2. Reasoning in this way yields the

equilibrium loan rates in Proposition 1.

Proposition 1. Assume that 𝑅 ≥
√︀

8𝑐𝑖𝑓/(1− 𝑞𝑖), 𝑖 = {1, 2}. Let

𝑟comp
1 (𝑧) ≡ 𝑅

2

(︂
1 +

√︃
1− 𝑐1

𝑐2

1− 𝑞2(1− 𝑧)

1− 𝑞1𝑧

)︂
,

𝑟comp
2 (𝑧) ≡ 𝑅

2

(︂
1 +

√︃
1− 𝑐2

𝑐1

1− 𝑞1𝑧

1− 𝑞2(1− 𝑧)

)︂
,

𝑥̃ ≡
1− 𝑐1

𝑐2
+ 𝑐1

𝑐2
𝑞2

𝑐1
𝑐2
𝑞2 + 𝑞1

.

When 0 < 𝑥̃ < 1, there exists a unique equilibrium in which entrepreneurs located in

[0, 𝑥̃] (resp. (𝑥̃, 1] ) are served by lender 1 (resp. lender 2 ). The equilibrium loan rates
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of lender 1 and lender 2, respectively 𝑟*1(𝑧) and 𝑟*2(𝑧), are as follows:

𝑟*1(𝑧) = min{𝑟comp
1 (𝑧), 𝑟𝑚1 (𝑧)}, 𝑧 ∈ [0, 𝑥̃];

𝑟*2(𝑧) = min{𝑟comp
2 (𝑧), 𝑟𝑚2 (𝑧)}, 𝑧 ∈ (𝑥̃, 1].

Proposition 1 describes the equilibrium with direct lender competition. The restriction

0 < 𝑥̃ < 1 guarantees that both lenders can attract a positive mass of entrepreneurs in

equilibrium. If this restriction does not hold (which occurs when the difference between

the two lenders’ IT is sufficiently large), then one lender will drive the other lender out in

equilibrium; in this case, lenders’ pricing policy displayed in Proposition 1 is still robust

for the dominant lender.20 For convenience, we focus on the case 0 < 𝑥̃ < 1 for the rest

of the paper.

Proposition 1 implies that lender-borrower distance matters for lending if 𝑞𝑖 > 0 holds

for some 𝑖 (i.e., if distance friction exists in the market). Attracting an entrepreneur will

be harder for a lender if the entrepreneur is located father away, because then the lender’s

relative cost advantage in monitoring is smaller. As a result, lender 1 (resp. lender 2) can

originate loans only in the region [0, 𝑥̃] (resp. (𝑥̃, 0]), and so must give up entrepreneurs

who are sufficiently distant. The location 𝑧 = 𝑥̃ is the indifference location where neither

lender has a cost advantage in monitoring, that is: (1− 𝑞1𝑥̃)/𝑐1 = (1− 𝑞2(1− 𝑥̃))/𝑐2.

Note that 𝑥̃ is decreasing in 𝑞1 and 𝑐1; this means lender 1 can reach farther locations if

its information technology develops (i.e., if 𝑞1 and/or 𝑐1 decrease). This result is consistent

with Ahnert et al. (2022) who document that small business lending by banks with higher

IT adoption is less affected by bank-borrower distance.

Next we look at lenders’ pricing strategies. Proposition 1 states that two cases may

arise when lender 1 chooses its loan rate for entrepreneurs at 𝑧 ∈ [0, 𝑥̃]. In the first case,

which occurs when lender 1’s competitive advantage is high (i.e., when (1− 𝑞2(1− 𝑧))/𝑐2

is sufficiently lower than (1 − 𝑞1𝑧)/𝑐1), lender 2 does not put competitive pressure on

lender 1, so the latter offers the monopoly loan rate 𝑟𝑚1 (𝑧), which can provide higher

entrepreneurial utility than lender 2’s best loan rate. Then there is no effective lender

competition at 𝑧. In the second case, which occurs when lender 1’s competitive advantage

at 𝑧 is not so high, lender 2 can exert sufficient competitive pressure, so lender 1 can no

longer maintain its monopoly loan rate at 𝑧, charging instead 𝑟comp
1 (𝑧) < 𝑟𝑚1 (𝑧) (the

20For example, if 𝑐2 is much larger than 𝑐1, then 𝑥̃ ≥ 1 will hold; in this case, lender 1 is the dominant
lender; the monitoring intensity of lender 2 is so low that it cannot attract any entrepreneur even if
its best loan rate 𝑅/2 is offered. The equilibrium loan rate of lender 1 at 𝑧 still equals 𝑟*1(𝑧), because
lender 2’s competitive pressure still exists despite that it serves no locations.
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superscript “comp” indicates that the lender faces effective competition). Lender 2’s

pricing strategy follows the same logic.

Because our focus here is on competition, we are primarily interested in 𝑟comp
𝑖 (𝑧). The

following corollary gives a property of 𝑟comp
1 (𝑧); a symmetric result holds for 𝑟comp

2 (𝑧).21

Corollary 1. Let 𝑞𝑖 > 0 for some 𝑖 ∈ {1, 2} and 𝑧 ∈ [0, 𝑥̃]. With effective lender

competition at 𝑧 (i.e., if 𝑟comp
1 (𝑧) < 𝑟𝑚1 (𝑧)), lender 1’s equilibrium loan rate 𝑟comp

1 (𝑧) is

decreasing in 𝑧. At the indifference location 𝑧 = 𝑥̃, 𝑟comp
1 (𝑧) = 𝑅/2 holds.

With distance friction (i.e., 𝑞𝑖 > 0 for some 𝑖 ∈ {1, 2}), the curve of 𝑟comp
1 (𝑧) displays a

“perverse” pattern (see Figure 3): As lender 1’s monitoring efficiency goes down (i.e., an

entrepreneur is located farther away, so is more costly to monitor), the loan rate offered

to that entrepreneur decreases. Such a pattern results from the optimal pricing strategy

of lender 1 at 𝑧 ∈ [0, 𝑥̃]: maximizing the lender’s lending profit, while ensuring that

entrepreneurial utility is no less than the maximum utility the rival can provide. Based

on this strategy, at 𝑧 ∈ [0, 𝑥̃] the entrepreneurial utility implied by lender 1’s competitive

loan rate 𝑟comp
1 (𝑧) should exactly match the maximum utility lender 2 can provide (i.e.,

the utility implied by lender 2’s best loan rate 𝑅/2). As 𝑧 increases in the region [0, 𝑥̃],

lender 1’s (resp. lender 2’s) monitoring efficiency becomes lower (resp. higher). Then

lender 1 must offer a lower competitive loan rate 𝑟comp
1 (𝑧) to match the maximum utility

provided by lender 2, implying the loan rate pattern. The implication of the result is that,

under effective lender competition, entrepreneurs at 𝑧 ∈ [0, 𝑥̃] cannot benefit from lender

1’s advantageous monitoring efficiency; instead, lender 1 itself extracts all the benefit of

its IT advantage over lender 2. Corollary 1 is consistent with Herpfer et al. (2022) who

find that a bank will charge its borrowers higher loan rates if the borrowers geographically

get closer to the bank or/and farther away from competing banks.

At the indifference location 𝑧 = 𝑥̃, neither lender has a cost advantage in monitoring,

so the intensity of lender competition is maximal there; lender 1 must offer its the best

loan rate 𝑅/2 to attract entrepreneurs there. Figure 3 graphically illustrates lenders’

equilibrium rates when 𝑞𝑖 > 0.

Competition between a bank and a fintech. Suppose that lender 1 is a fintech with

relatively high 𝑐1 (because of lack of data) and 𝑞1 = 0, while lender 2 is a bank with

relatively low 𝑐2 (smaller than 𝑐1) and positive 𝑞2. Then according to Corollary 1, the

fintech’s loan rate (under effective competition) is still decreasing in 𝑧 ∈ [0, 𝑥̃], even if the

fintech itself has no distance friction. The reason is that the maximum utility provided by

21See Appendix C for details about 𝑟𝑚𝑖 (𝑧).
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Figure 3: Equilibrium Loan Rates for Different Locations. This figure plots the equilibrium

loan rate against the entrepreneurial location in the equilibrium under direct lender competition. The

parameter values are 𝑅 = 20, 𝑓 = 1, 𝑐1 = 1.01𝑅, 𝑐2 = 1.01𝑅, 𝑞1 = 0.5, and 𝑞2 = 0.5.

the bank (i.e., lender 2) is increasing in 𝑧; to match this utility the fintech must decrease

its loan rate as 𝑧 increases in the region [0, 𝑥̃]. This result is consistent with Butler

et al. (2017) who document that borrowers with better access to bank financing request

loans at lower interest rates on a fintech platform. Moreover, note that 𝑐1 > 𝑐2 must

imply 𝑥̃ < 1, no matter how large the bank’s 𝑞2 is; the reason is that the bank, with its

better access to firm information (which leads to 𝑐1 > 𝑐2), can ensure that it has higher

monitoring efficiency than the fintech when 𝑧 is sufficiently close to 1. The implication

is that although fintechs, with their advantage in IT-distance, can bring competitive

pressure to banks, the latter will not be completely replaced because of their superior

capability of serving certain types of firms.

The case with no distance friction (𝑞1 = 𝑞2 = 0). If 𝑐1 = 𝑐2 holds, then the two

lenders have the same monitoring efficiency at all locations, which means competition

intensity is infinitely high everywhere. In this case, every location is an indifference

location with both lenders offering the best loan rate 𝑅/2; we let 𝑥̃ = 1/2 still hold

(since this is the natural limit by letting 𝑞1 = 𝑞2 tend to 0). Then the pricing strategies

displayed in Proposition 1 hold: Lender 1’s (resp. lender 2’s) equilibrium loan rate is

𝑟comp
1 (𝑧) = 𝑅/2 at 𝑧 ∈ [0, 1/2] (resp. 𝑟comp

2 (𝑧) = 𝑅/2 at 𝑧 ∈ (1/2, 1]).22

22If 𝑞1 = 𝑞2 = 0 and 𝑐1 ̸= 𝑐2 hold, then the lender with better IT-basic (i.e., higher monitoring
efficiency) will drive out the other lender. In this case, the equilibrium loan rate of the dominant lender
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Locations with no effective competition. At such a location served by lender 𝑖,

the equilibrium loan rate is 𝑟𝑚𝑖 (𝑧) (Proposition 1). In Appendix C we show that 𝑟𝑚𝑖 (𝑧)

is increasing in the corresponding lender-borrower distance if 𝑞𝑖 > 0 (e.g., 𝑟𝑚1 (𝑧) is in-

creasing in 𝑧 if 𝑞1 > 0). The reason is that 𝑟𝑚𝑖 (𝑧) only reflects lender 𝑖’s costs of serving

entrepreneurs when competition is absent. As the lender’s lending distance increases,

monitoring will be more costly if 𝑞𝑖 > 0, so the monopolistic loan rate 𝑟𝑚𝑖 (𝑧) will increase

in response to the rising costs. Figure 3 illustrates how 𝑟𝑚𝑖 (𝑧) varies with 𝑧 when 𝑞𝑖 > 0.

More properties of 𝑟𝑚𝑖 (𝑧) are displayed in Appendix C.

Corollary 2. Entrepreneurs’ funding demand. Let 𝑞2 > 0 and 𝑧 ∈ [0, 𝑥̃]. With

effective lender competition at 𝑧, the funding demand 𝐷(𝑧) of entrepreneurs (i.e., lender

1’s lending volume) is increasing in 𝑧.

Corollary 2 states that the allocation of loans runs counter cost considerations: With

effective competition and 𝑞2 > 0, lender 1’s lending volume (i.e., the funding demand met

by the lender) is greatest at the farthest point (𝑧 = 𝑥̃) served by the lender. This loan

allocation is consistent with the “perverse” loan rate pattern displayed in Corollary 1. The

reason is that, based on the pricing strategy of lender 1, the entrepreneurial utility implied

by its competitive loan rate 𝑟comp
1 (𝑧) should exactly match the maximum utility lender 2

can provide. Let 𝑧 ∈ [0, 𝑥̃] be a location with effective competition. As 𝑧 decreases, the

location becomes farther away from lender 2, so the maximum utility lender 2 can provide

becomes lower. To match such utility, lender 1 need only provide a lower entrepreneurial

utility, which corresponds to a smaller funding demand. Although a smaller 𝑧 implies

higher lender 1’s monitoring efficiency, such an efficiency improvement only translates

into a higher lender 1’s lending profit at 𝑧, rather than higher entrepreneurial utility.

As is stated below Corollary 1, with effective competition lender 1 will extract all the

benefit of its IT advantage after matching the maximum utility lender 2 can provide.23

A symmetric result holds for lender 2’s region (𝑥̃, 1].

still follows the pricing policy in Proposition 1 and is invariant to 𝑧 because locations will not affect a
lender’s competitive advantage when distance friction is absent.

23If 𝑞2 = 0, however, there is no distance friction for lender 2. In this case, the maximum utility
lender 2 can provide is invariant to 𝑧. As a result, lender 1 need not provide higher expected utility to
entrepreneurs as 𝑧 increases, which implies that entrepreneurs’ funding demand does not vary with 𝑧 in
the region [0, 𝑥̃].
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3.3 Information technology and lender competition

The following corollary shows how lender 1’s loan rate schedule (under effective compe-

tition) is affected by lenders’ IT. A symmetric result holds for lender 2.

Corollary 3. Let 𝑧 ∈ [0, 𝑥̃). With effective lender competition at 𝑧, lender 1’s equilibrium

loan rate 𝑟comp
1 (𝑧) is increasing in the lender’s competitive advantage, be it due to better

basic monitoring technology (i.e., lower 𝑐1/𝑐2) or to higher local expertise (i.e., lower

(1− 𝑞2(1− 𝑧))/(1− 𝑞1𝑧)).

Corollary 3 states that lender 1’s equilibrium loan rate is decreasing in 𝑐1 and 𝑞1

(except for location 𝑧 = 0 where 𝑞1 has no effect) and is increasing in 𝑐2 and 𝑞2. As 𝑐1 or

𝑞1 increases, monitoring becomes more costly for lender 1; this outcome reduces lender 1’s

competitive advantage and induces it to decrease its loan rate in an attempt to match the

maximum utility provided by lender 2. Yet as 𝑐2 or 𝑞2 increases, lender 2’s competitive

advantage will decrease, which allows lender 1 to increase its loan rate. Corollary 3

is reminiscent of the loan rate pattern displayed in Corollary 1: With effective lender

competition at 𝑧 ∈ [0, 𝑥̃), an increase in lender 1’s monitoring efficiency does not translate

into a lower loan rate, because lender 1 itself extracts all the benefit of its IT improvement.

We have witnessed the development and diffusion of information technology through-

out the entire lending sector. We check now the implications for lender competition. We

let 𝑐1 = 𝑐2 = 𝑐 and 𝑞1 = 𝑞2 = 𝑞 hold and then analyze how equilibrium loan rates vary

with 𝑐 and 𝑞, which determine the lending sector’s information technology.

Corollary 4. Let 𝑐1 = 𝑐2 = 𝑐 and 𝑞1 = 𝑞2 = 𝑞. With effective lender competition

at 𝑧 (served by lender 𝑖), the equilibrium loan rate 𝑟comp
𝑖 (𝑧) is increasing in 𝑞 (except for

𝑧 = 1/2 where 𝑟comp
𝑖 (𝑧) = 𝑅/2) but is not affected by 𝑐.

Corollary 4 highlights a crucial difference between 𝑐 (IT-basic) and 𝑞 (IT-distance).

As 𝑞 increases, monitoring costs become more sensitive to distance; this reduces lenders’

incentives to monitor far-away entrepreneurs. Then entrepreneurs are more willing to

choose nearby lenders because the monitoring intensity to which they are subject de-

creases more rapidly with distance as 𝑞 increases. The result is that both lenders can

post higher loan rates for their respective entrepreneurs, so 𝑟comp
𝑖 (𝑧) is increasing in 𝑞. In

contrast, if 𝑐 increases then lenders’ monitoring costs increase but their differentiation is

unaffected; hence equilibrium loan rates are not affected. In sum: increasing 𝑞 not only

makes monitoring more costly but also increases lenders’ differentiation, and the latter

effect renders lender competition less intense. This result is consistent with Duquerroy
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et al. (2022) who find that increased branch specialization in SME lending – which can be

viewed as an increase in 𝑞 – substantially curtails the intensity of lending competition.24

Paravisini et al. (2023) find a similar result in the credit market for export-related loans.

Corollary 4 tells us that, when studying how changes in information technology affect

lender competition, we should first specify the type of IT change. Finally, note that this

corollary holds for a more general cost function 𝐶𝑖(𝑚𝑖, 𝑧) = 𝑔(𝑐𝑖, 𝑞𝑖, 𝑠𝑖)𝑚
2
𝑖 that satisfies

𝜕
(︀
𝐶1(𝑚1,𝑧)
𝐶2(𝑚2,𝑧)

)︀
𝜕𝑐

= 0 and
𝜕2
(︀
𝐶1(𝑚1,𝑧)
𝐶2(𝑚2,𝑧)

)︀
𝜕𝑧𝜕𝑞

> 0,

where 𝑐1 = 𝑐2 = 𝑐, 𝑞1 = 𝑞2 = 𝑞, and 𝑔(𝑐𝑖, 𝑞𝑖, 𝑠𝑖) is an increasing function of 𝑐𝑖, 𝑞𝑖 and 𝑠𝑖.

The differentiation effect of improving lenders’ IT-distance (i.e., decreasing 𝑞) can

reduce lenders’ monitoring incentives, which is established in the following corollary.

Corollary 5. Let 𝑐1 = 𝑐2 = 𝑐 and 𝑞1 = 𝑞2 = 𝑞. With effective lender competition at 𝑧

(served by lender 𝑖), the monitoring intensity 𝑚𝑖(𝑧) is decreasing in 𝑐 while it is increasing

in 𝑞 (except for 𝑧 = 1/2) if 𝑞 is sufficiently small.

As 𝑞 decreases, there is a cost-saving effect, meaning that monitoring becomes cheaper;

this effect tends to increase lender 𝑖’s monitoring incentive. However, the differentiation

effect of lowering 𝑞 intensifies lender competition and hence reduces 𝑟comp
𝑖 (𝑧) (except for

𝑧 = 1/2), which tends to reduce its monitoring incentive. When 𝑞 is sufficiently small, the

differentiation effect dominates the cost-saving effect, so lender 𝑖’s monitoring intensity

decreases (except for 𝑧 = 1/2).25 In contrast, a decrease in 𝑐 brings no differentiation

effect, so lenders’ monitoring intensities increase because of the cost-saving effect.

Information technology and local monopoly equilibrium. When lender compe-

tition is absent, lender 𝑖’s equilibrium loan rate 𝑟𝑚𝑖 (𝑧) depends only on its own IT. In

Appendix C we show that 𝑟𝑚𝑖 (𝑧) is increasing in 𝑞𝑖𝑠𝑖 and 𝑐𝑖. The reason is that in the

local monopoly case an improvement of IT, be it IT-basic or IT-distance, has no com-

petition effect; instead, it only makes monitoring cheaper, which is reflected in lender

𝑖’s lower loan rates. Moreover, an IT improvement allows lender 𝑖 to serve farther en-

trepreneurs. In particular, if lender 𝑖 is a fintech with zero distance friction (i.e., 𝑞𝑖 = 0),

then the local monopoly equilibrium cannot arise because the fintech is willing to serve

24As 𝑞 increases, a lender’s knowledge specializes more in nearby locations and is discounted faster
with distance, implying a higher lender specialization. The loan rate and volume disparity at different
locations will increase as a consequence.

25At the mid location 𝑧 = 1/2, the equilibrium loan rate has already reached the lower bound 𝑅/2, so
a decrease in 𝑞 always increases the monitoring intensity there.
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all locations. Hence, the development of fintech lending can improve financial inclusion

by helping some unbanked locations gain access to fintech finance (Jagtiani and Lemieux,

2018). See Proposition C.2 and Corollary C.2 in Appendix C for more details.

Next we look at the relation between the lending sector’s IT and a lender’s aggregate

lending profit. At the lending competition stage, lender 1’s aggregate lending profit from

all locations is equal to
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧; here 𝐷(𝑧) is the funding demand at location 𝑧,

and 𝜋1(𝑧) is lender 1’s profit from financing an entrepreneur at 𝑧. Symmetrically we can

define lender 2’s aggregate lending profit. The following proposition shows how a lender’s

aggregate lending profit is affected by the lending sector’s information technology.

Proposition 2. Let 𝑐1 = 𝑐2 = 𝑐 and 𝑞1 = 𝑞2 = 𝑞. Lender 𝑖’s aggregate lending profit

from all locations is decreasing in 𝑐 while it is increasing in 𝑞 if 𝑞 is sufficiently small.

Decreasing 𝑐 makes monitoring cheaper without reducing lender differentiation. In

contrast, the net effect of 𝑞 is more complex. Decreasing 𝑞 has two competing effects on

lender 𝑖’s aggregate lending profit. First, there is a cost-saving effect: a smaller 𝑞 makes

monitoring less costly for lender 𝑖, which should increase the lender’s lending profit.

Second, there is a differentiation effect: a smaller 𝑞 decreases lender differentiation and

so increases the intensity of lender competition, which should reduce lenders’ profits. The

differentiation effect will dominate the cost-saving effect when 𝑞 is small enough. The

reason is that the intensity of lender competition will go to infinity as 𝑞 approaches 0

(i.e., as lender differentiation disappears); in contrast, for a given monitoring intensity

𝑚𝑖(𝑧), a marginal decrease in 𝑞 can reduce the costs of monitoring an entrepreneur at 𝑧

by only
𝜕𝐶𝑖(𝑚𝑖(𝑧), 𝑧)

𝜕𝑞
=

2𝑠𝑖𝑐

4(1− 𝑞𝑠𝑖)2
(𝑚𝑖(𝑧))

2,

which is finite even if 𝑞 approaches 0.

Information technology and lending volume. Does the progress of information

technology spur entrepreneurship? To shed light on this question, first we study how

the IT progress of a lender affects the mass of entrepreneurs it serves. The mass of

entrepreneurs financed by lender 1 (resp. lender 2) – which is also the lender’s aggregate

loan volume – equals 𝐿1 ≡
∫︀ 𝑥̃

0
𝐷(𝑧)𝑑𝑧 (resp. 𝐿2 ≡

∫︀ 1

𝑥̃
𝐷(𝑧)𝑑𝑧).

Proposition 3. Lender 𝑖’s aggregate loan volume 𝐿𝑖 is decreasing in 𝑞𝑖 and 𝑐𝑖.

Proposition 3 states that the progress of a lender’s IT, whatever its type, will induce

the lender to serve more entrepreneurs (i.e., to provide more loans). We explain the result
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by looking at the IT progress of lender 1 (i.e., a decrease in 𝑞1 or 𝑐1): First, lender 1 will

extend its market area (i.e., 𝑥̃ will increase) since its competitiveness is increased by the

IT progress. Second, at a location served by lender 1, entrepreneurs’ funding demand will

not be affected by the lender’s IT progress; the reason is that an entrepreneur’s utility

at that location is determined by the maximum utility lender 2 can provide, which is not

affected by lender 1’s IT. As a result, lender 1’s aggregate loan volume will increase as the

lender’s IT improves. This result is consistent with Dadoukis et al. (2021) and Branzoli

et al. (2021) who find that banks with higher IT adoption have larger loan growth.

We also show in Proposition D.1 of Online Appendix D that the progress of a lender’s

IT-basic (i.e. a lower 𝑐𝑖) will bring more loan volume to the lender when the intensity of

lender competition is higher (i.e., when 𝑞 is smaller).

Next we analyze how the total mass of entrepreneurs undertaking investment projects

(i.e., 𝐿1 + 𝐿2) is affected by the lending sector’s IT.

Proposition 4. Let 𝑐1 = 𝑐2 = 𝑐 and 𝑞1 = 𝑞2 = 𝑞. The total mass of entrepreneurs

undertaking investment projects (i.e., 𝐿1 + 𝐿2) is decreasing in 𝑞 and 𝑐.

Proposition 4 states that the progress of the lending sector’s IT, whatever its type,

will promote entrepreneurs’ investment. A decrease in 𝑞 has two effects that spur en-

trepreneurship. First, there is a (competition) differentiation effect: Decreasing 𝑞 di-

minishes lender differentiation and hence increases the intensity of lender competition.

A more intense competition forces lenders to provide higher expected utility to en-

trepreneurs, which induces more entrepreneurs to undertake their projects. Second, there

is a cost-saving effect: A decrease in 𝑞 makes monitoring less costly, so lenders will choose

higher monitoring intensities for given loan rates, which benefits entrepreneurs and hence

promotes their investment. Decreasing 𝑐 does not have the differentiation effect, but the

cost-saving effect still works. Proposition 4 is consistent with Ahnert et al. (2022) who

find that job creation by young enterprises, which is an indirect measure of entrepreneurial

investment, is higher in US counties that are more exposed to IT-intensive banks.

What happens when 𝑅 is not large enough? In Appendix B we consider the case

when 𝑅 is not large enough and so at some locations lender 𝑖 cannot make a non-negative

profit by posting the loan rate 𝑅/2. For such a location, the best loan rate lender 𝑖

can offer to entrepreneurs equals the loan rate that exactly brings lender 𝑖 zero profit.

Appendix B shows that lender 𝑖’s best loan rate (which is also its lowest acceptable loan

rate) is higher than 𝑅/2 and is increasing in 𝑞𝑖 and 𝑐𝑖 if 𝑅/2 is too low to ensure lender 𝑖

a non-negative profit at 𝑧. Most results in this section are robust when 𝑅 is not large,
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because the essential difference between 𝑐 and 𝑞 still exists – that is, 𝑐 does not control

lender differentiation as 𝑞 does. However, the result that 𝑟comp
𝑖 (𝑧) is unaffected by 𝑐

(Corollary 4) does not hold when 𝑅/2 is not lender 𝑖’s best loan rate (see Corollary B.4

in Appendix B.)

The effects of funding costs. From Proposition 1 we have that 𝑥̃ and 𝑟comp
𝑖 (𝑧) do

not depend on the funding cost 𝑓 . The reason is that with a large 𝑅 the funding cost 𝑓

does not affect a lender’s best loan rate 𝑅/2, thereby having no effect on the maximum

utility lenders can provide and competition between them. When 𝑅 is not large, however,

funding costs will affect lender competition. This is analyzed in Appendix B, where we

allow the two lenders to have different marginal funding costs (which can be viewed as a

measure of the investor-lender relationship). There we find that with small 𝑅 a decrease

in a lender’s funding cost (say an improvement in the investor relationship) will increase

the maximum utility provided by the lender, because then the lender’s best loan rate

becomes lower. As a result, the lender gains a larger market area (Proposition B.2) and

forces its rival to price lower (Corollary B.3). If both lenders’ funding costs decrease,

then both lenders will price lower when 𝑅 is not large (Corollary B.4), implying lower

monitoring intensities. However, since the decrease in funding costs does not reduce lender

differentiation as 𝑞 does, the cost-saving effect of cheaper funding dominates and thereby

increases lenders’ profits (Proposition B.3). Finally, as lowering funding costs decreases

lenders’ best loan rates, entrepreneurs will benefit from the increase in the maximum

utility lenders can provide, implying an increase in total investment (Proposition B.5).

4 Technology investment choice

In this section we analyze how lenders determine their information technology – repre-

sented by 𝑞𝑖 and 𝑐𝑖 – at the IT investment stage. To develop an IT infrastructure that

is characterized by 𝑞𝑖 and 𝑐𝑖, lender 𝑖 must incur a cost 𝑇 (𝑞𝑖, 𝑐𝑖) ≥ 0. We assume that

𝑇 (𝑞𝑖, 𝑐𝑖) is differentiable with 𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑞𝑖 ≤ 0 and 𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑐𝑖 ≤ 0, which means

that adopting better information technology needs more investment and so is (weakly)

more costly. Lender 1’s ex ante profit at the IT investment stage is equal to

Π1 (𝑞1, 𝑞2, 𝑐1, 𝑐2) ≡
∫︁ 𝑥̃

0

𝐷(𝑧)𝜋1(𝑧)𝑑𝑧 − 𝑇 (𝑞1, 𝑐1) ,

29



where
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧 is lender 1’s aggregate lending profit at the second stage. Some-

times Π1 (𝑞1, 𝑞2, 𝑐1, 𝑐2) is also written as Π1 for short. In a symmetric way we can define

lender 2’s first-stage profit Π2.

We assume that there exist 𝑞 > 0 and 𝑐 > 𝑐
¯
such that 𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑞𝑖 = 0 for 𝑞𝑖 ≥ 𝑞 and

𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑐𝑖 = 0 for 𝑐𝑖 ≥ 𝑐. Then lender 𝑖 need only consider information technology

that satisfies 𝑞𝑖 × 𝑐𝑖 ∈ [0, 𝑞] × [𝑐
¯
, 𝑐]. We let 𝑅 ≥

√︀
8𝑐𝑓/(1− 𝑞), implying that lenders’

best loan rate equals 𝑅/2 at the lending competition stage (characterized in Section 3).

4.1 Lender IT investment: substitutes or complements?

Are the two types of lender 𝑖’s own IT investment, IT-basic and IT-distance, substitutes

or complements? What is the strategic relation between lender 1’s IT investment and

lender 2’s IT investment?

Lender’s own IT investment: substitutes or complements? Let’s focus on lender

1. Lender 1’s own IT-basic and IT-distance (i.e., 𝑐1 and 𝑞1) are complements (resp.

substitutes) if 𝜕2Π1/(𝜕𝑞1𝜕𝑐1) > 0 (resp. 𝜕2Π1/(𝜕𝑞1𝜕𝑐1) < 0). The complexity of the

integral
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧 makes it very difficult to determine the sign of 𝜕2Π1/(𝜕𝑞1𝜕𝑐1) in

an analytical way. However, we can obtain the following numerical result.

Numerical Result 1. 26 With effective lender competition at all locations, 𝑐1 and 𝑞1 are

complements for lender 1 – that is, 𝜕2Π1/(𝜕𝑞1𝜕𝑐1) > 0 – if 𝑇 (𝑞1, 𝑐1) is submodular (i.e.,

if 𝜕2𝑇 (𝑞1, 𝑐1) / (𝜕𝑞1𝜕𝑐1) ≤ 0).

Numerical Result 1 states that if investing in one type of IT does not increase the

marginal cost of developing the other type, then the two types of IT are complements

for the lender. A smaller 𝑐1 (resp. 𝑞1) increases lender 1’s marginal benefit of decreasing

𝑞1 (resp. 𝑐1) for three reasons. First, lender 1’s monitoring efficiency at location 𝑧 is

determined by (1− 𝑞1𝑧)/𝑐1, so a marginal decrease in 𝑞1 (resp. 𝑐1) has a larger effect

on improving the lender’s monitoring efficiency if 𝑐1 (resp. 𝑞1) is smaller. Second, it is

easy to show that 𝜕2𝑥̃/(𝜕𝑞1𝜕𝑐1) > 0, which means that a marginal decrease in 𝑞1 (resp.

𝑐1) will extend a larger market area for lender 1 if 𝑐1 (resp. 𝑞1) is smaller. Finally, we

can show that 𝜕 (𝐷(𝑥̃)𝜋1(𝑥̃))/𝜕𝑐1 < 0 and 𝜕 (𝐷(𝑥̃)𝜋1(𝑥̃))/𝜕𝑞1 < 0; this means a smaller

𝑐1 (resp. 𝑞1) will increase lender 1’s expected lending profit at the indifference location

26The grid of parameters is as follows: 𝑅 ranges from 15 to 100; 𝑐
¯
= 1.01𝑅; 𝑞𝑖 ranges from 0 to 0.3; 𝑓

ranges from 0.8 to 1.2; 𝑐1 ranges from 𝑐
¯
to 1.3𝑅; 𝑐2 ranges from 𝑚𝑎𝑥{𝑐1 − 𝑐1𝑞2, 𝑐

¯
} to 𝑐1/(1− 𝑞1), which

ensures that 0 < 𝑥̃ < 1.
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𝑧 = 𝑥̃, implying a larger marginal benefit of extending market area by reducing 𝑞1 (resp.

𝑐1).
27 As a consequence, 𝑞1 and 𝑐1 are complements if 𝑇 (𝑞1, 𝑐1) is submodular.

Lenders’ IT investment: strategic substitutes or strategic complements? We

obtain the following.

Numerical Result 2. 28 With effective lender competition at all locations, 𝑞1 and 𝑐2 are

strategic substitutes for lender 1: 𝜕2Π1/ (𝜕𝑞1𝜕𝑐2) < 0, while the signs of 𝜕2Π1/ (𝜕𝑐1𝜕𝑐2),

𝜕2Π1/ (𝜕𝑐1𝜕𝑞2) and 𝜕2Π1/ (𝜕𝑞1𝜕𝑞2) are ambiguous.

Let 𝐼𝑇𝑖, which equals either 𝑞𝑖 or 𝑐𝑖, denote lender 𝑖’s IT. Then

𝜕2Π1

𝜕𝐼𝑇1𝜕𝐼𝑇2

=
𝜕
∫︀ 𝑥̃

0
𝜕𝐷(𝑧)𝜋1(𝑧)

𝜕𝐼𝑇1
𝑑𝑧

𝜕𝐼𝑇2⏟  ⏞  
share squeezing effect −

+
𝜕 (𝐷(𝑥̃)𝜋1(𝑥̃))

𝜕𝐼𝑇2

𝜕𝑥̃

𝜕𝐼𝑇1⏟  ⏞  
boundary profit effect +

+ 𝐷(𝑥̃)𝜋1(𝑥̃)
𝜕2𝑥̃

𝜕𝐼𝑇1𝜕𝐼𝑇2⏟  ⏞  
share sensitivity effect +/−

. (5)

Equation (5) shows that lender 2’s IT progress (i.e., decreasing 𝑞2 or/and 𝑐2) affects

lender 1’s marginal benefit of developing IT through three channels. First, there is a

“share squeezing effect”(first term of Equation 5) we find negative, implying strategic

substitutability: a decrease in 𝑞2 or/and 𝑐2 erodes the market area served by lender 1

and its marginal benefit of improving IT decreases. Second, there is a “boundary profit

effect” (second term of Equation 5), which is positive and implies strategic complemen-

tarity because: (a) 𝜕𝑥̃/𝜕𝐼𝑇1 < 0, a decrease in 𝐼𝑇1, be it 𝑞1 or 𝑐1, increases lender 1’s

market area; (b) 𝜕 (𝐷(𝑥̃)𝜋1(𝑥̃))/𝜕𝐼𝑇2 < 0, lender 1’s expected profit (i.e., 𝐷(𝑥̃)𝜋1(𝑥̃)) at

the indifference location 𝑧 = 𝑥̃ will increase as 𝐼𝑇2 (i.e., 𝑞2 or 𝑐2) decreases and forces the

lender to specialize in a smaller area.29 A higher profit at location 𝑧 = 𝑥̃ implies a larger

marginal benefit of increasing 𝑥̃, so this is a force for strategic complementarity with

lender 1 having a greater incentive to reduce 𝑞1 or/and 𝑐1. Finally, there is a “share sen-

sitivity effect” (third term of Equation 5) with an ambiguous sign since 𝜕2𝑥̃/(𝜕𝐼𝑇1𝜕𝐼𝑇2)

may be positive or negative. If it is positive (resp. negative), then 𝜕𝑥̃/𝜕𝐼𝑇1 - which is

negative - will decrease (resp. increase) as 𝑐2 or 𝑞2 decreases, implying a force for strategic

complementarity (resp. substitutability) since 𝑥̃ becomes more (resp. less) sensitive to

27It can be shown that 𝐷(𝑥̃)𝜋1(𝑥̃) =
(1−𝑞2(1−𝑥̃)𝑅2)

4𝑐2

(︁
𝑅2

8
1−𝑞2(1−𝑥̃)

𝑐2
− 𝑓

)︁
, which is decreasing in 𝑞1 and

𝑐1 because 𝑥̃ is decreasing in 𝑞1 and 𝑐1.
28The grid of parameters is as follows: 𝑅 ranges from 15 to 100; 𝑐

¯
= 1.01𝑅; 𝑞𝑖 ranges from 0 to 0.3; 𝑓

ranges from 0.8 to 1.2; 𝑐1 ranges from 𝑐
¯
to 1.3𝑅; 𝑐2 ranges from 𝑚𝑎𝑥{𝑐1 − 𝑐1𝑞2, 𝑐

¯
} to 𝑐1/(1− 𝑞1), which

ensures that 0 < 𝑥̃ < 1.
29It can be shown that𝐷(𝑥̃)𝜋1(𝑥̃) =

(1−𝑞1𝑥̃)𝑅
2

4𝑐1

(︁
𝑅2

8
1−𝑞1𝑥̃

𝑐1
− 𝑓

)︁
, which is decreasing in 𝑞2 and 𝑐2 because

𝑥̃ is increasing in 𝑞2 and 𝑐2.
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lender 1’s IT investment. The net strategic relation between the two lenders’ IT depends

on which effect dominates. Numerical Result 2 shows that 𝑞1 and 𝑐2 are strategic substi-

tutes, which means the share squeezing effect is dominant in this case. However, for the

pairs {𝑐1, 𝑐2}, {𝑐1, 𝑞2} and {𝑞1, 𝑞2}, the strategic relation is ambiguous.

Strategic complementarity between bank and fintech. Suppose that lender 1 is a

bank with high 𝑞1 and low 𝑐1, while lender 2 is a fintech with low 𝑞2 and high 𝑐2 (because

of lack of firm data). A numerical study finds that if 𝑐2 is sufficiently higher than 𝑐1, the

IT-distance investment of lender 2 is a strategic complement of lender 1’s both types of

IT (because 𝜕2Π1/ (𝜕𝑞1𝜕𝑞2) > 0 and 𝜕2Π1/ (𝜕𝑐1𝜕𝑞2) > 0 in this case). Then the fintech’s

improvement in the ability to serve distant customers (i.e., reducing 𝑞2) will encourage the

bank to improve both types of IT. If the fintech invests to improve its basic IT (i.e., reduce

𝑐2), the bank may invest more in IT-basic because again of strategic complementarity,

𝜕2Π1/ (𝜕𝑐1𝜕𝑐2) > 0, which holds when 𝑐2 is sufficiently higher than 𝑐1.
30

4.2 Equilibrium technology investment

We restrict our attention to subgame perfect equilibria (SPE) of the two stage game. The

equilibrium at the IT investment stage relies on the properties of function 𝑇 (𝑞𝑖, 𝑐𝑖). The

following proposition characterizes lenders’ IT investment when IT is cheap to acquire.

Proposition 5. If

Π𝑖 (0, 0, 𝑐
¯
, 𝑐
¯
) =

𝑅2

8𝑐
¯

(︂
𝑅2

8𝑐
¯

− 𝑓

)︂
− 𝑇 (0, 𝑐

¯
) > 0, (6)

then at the unique SPE we have that 𝑞1 = 𝑞2 = 0 and 𝑐1 = 𝑐2 = 𝑐
¯
.

Condition (6) means that each lender can still make a positive ex ante profit when

both lenders acquire the best possible information technology. If Condition (6) is satisfied,

we say IT is “cheap” to acquire. Proposition 5 states that both lenders will choose the

best possible IT (i.e., decrease both 𝑞𝑖 and 𝑐𝑖 to their lower bounds) if it is cheap. In

this equilibrium, competition at the second stage is extremely intense because there is no

lender differentiation when 𝑞1 = 𝑞2 = 0. Lender 1 (resp. lender 2) serves entrepreneurs in

[0, 1/2] (resp. (1/2, 1]) and offers the best loan rate 𝑅/2; each lender’s aggregate lending

profit at the second stage equals 𝑅2 (𝑅2/(8𝑐
¯
)− 𝑓) /(8𝑐

¯
).

30However, the bank may invest less in its both types of IT when 𝑐2 gets close to 𝑐1 because then
𝜕2Π1/ (𝜕𝑞1𝜕𝑐2) < 0 and 𝜕2Π1/ (𝜕𝑐1𝜕𝑐2) < 0.
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We prove here that {𝑞𝑖 = 0, 𝑐𝑖 = 𝑐
¯
} is indeed an equilibrium under Condition (6).

Given that 𝑞2 = 0 and 𝑐2 = 𝑐
¯
, lender 1 can make a positive expected profit by setting

𝑞1 = 0 and 𝑐1 = 𝑐
¯
according to Condition (6). If lender 1 deviates (from 𝑞1 = 0 and/or

𝑐1 = 𝑐
¯
), it will lose all its market share and so make a non-positive ex ante profit. Hence

lender 1 has no incentive to deviate. The same reasoning applies to lender 2. The

uniqueness of the equilibrium is relegated to Appendix A. Both lenders would be better-

off if 𝑞 (= 𝑞1 = 𝑞2) were moderately increased from 0 (see Proposition 2). However, lender

𝑖 is not willing to increase 𝑞𝑖 because the marginal cost of deviating is infinite, implying

a prisoner’s dilemma.31

When IT is not cheap. Now we look at lenders’ IT investment when Condition (6) is

not satisfied. In this case we focus on the interplay between IT-basic and IT-distance in

a symmetric interior equilibrium. To do so, we assume

𝑇 (𝑞𝑖, 𝑐𝑖) ≡ 𝛽𝑞𝑄 (𝑞𝑖) + 𝛽𝑐𝐻 (𝑐𝑖) , (7)

where 𝑄 (·) ≥ 0, 𝐻 (·) ≥ 0, are differentiable with 𝑄′ (·) ≤ 0 and 𝐻 ′ (·) ≤ 0. The cost

function (7) implies that the costs of the two types of IT are independent, so 𝑇 (𝑞𝑖, 𝑐𝑖)

itself cannot induce any interaction between IT-basic and IT-distance. Parameter 𝛽𝑞 > 0

(resp. 𝛽𝑐 > 0) affects lender 𝑖’s total and marginal costs of reducing 𝑞𝑖 (resp. 𝑐𝑖).

We impose some conditions on the IT cost function to ensure the existence of a

symmetric interior equilibrium. First, we assume that 𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑞𝑖 and 𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑐𝑖

are continuous functions. Second, 𝑞 and 𝑐 are sufficiently small such that the a lender

cannot have much better IT than its rival, which ensures effective lender competition for

all locations. Finally, we assume that lim
𝑞𝑖→0

−𝑞𝑖𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑞𝑖 (resp. −𝑐𝑖𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑐𝑖|𝑐𝑖=𝑐
¯
)

is large enough for any 𝑐𝑖 ∈ [𝑐
¯
, 𝑐) (resp. for any 𝑞𝑖 ∈ [0, 𝑞)), and that −𝑞𝑖

𝜕2𝑇 (𝑞𝑖,𝑐𝑖)/𝜕𝑞
2
𝑖

𝜕𝑇 (𝑞𝑖,𝑐𝑖)/𝜕𝑞𝑖
and

−𝑐𝑖
𝜕2𝑇 (𝑞𝑖,𝑐𝑖)/𝜕𝑐

2
𝑖

𝜕𝑇 (𝑞𝑖,𝑐𝑖)/𝜕𝑐𝑖
are large enough for 𝑞𝑖 × 𝑐𝑖 ∈ (0, 𝑞)× [𝑐

¯
, 𝑐).

With those assumptions, a unique symmetric interior IT investment equilibrium exists

(see Lemma A.2). The following proposition characterizes how lenders’ equilibrium IT

31Lender 𝑖 is not willing to deviate from 𝑞𝑖 = 0 and 𝑐𝑖 = 𝑐
¯
despite a potentially large marginal benefit

of deviation because the extent of strategic complementarity between lender 𝑖’s IT and 𝑞𝑗 (𝑗 ̸= 𝑖) is
infinitely high in this boundary equilibrium (see Numerical Result D.1 in Online Appendix D). As a
consequence, both lenders are trapped in a prisoner’s dilemma if IT is cheap. Under Condition (6) a
lender will have the ability to dominate the entire market and exclude the rival unless the rival chooses
the best technology; but since they both have access to the same IT choice set, they end up acquiring the
best technology and sharing the market. In such an equilibrium without lender differentiation, a slight
deviation at the IT investment stage will cause a discontinuous profit fall at the lending competition
stage, so the marginal cost of deviation is infinite.
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investment will be affected by a cost shock on one type of IT.

Proposition 6. There exists a unique symmetric interior equilibrium: 𝑞𝑖 = 𝑞* ∈ (0, 𝑞)

and 𝑐𝑖 = 𝑐* ∈ (𝑐
¯
, 𝑐). At this equilibrium we have:

𝜕𝑞*

𝜕𝛽𝑞

> 0,
𝜕𝑐*

𝜕𝛽𝑞

> 0,
𝜕𝑞*

𝜕𝛽𝑐

> 0 and
𝜕𝑐*

𝜕𝛽𝑐

> 0.

Proposition 6 implies that the two types of IT (of the entire lending sector) will

co-move in response to a cost shock in the symmetric interior equilibrium. Yet this

result hides subtle interactions between lenders’ technological choices. Where does the

co-movement come from? Numerical Result 3 provides the strategic relation between the

two lenders’ IT in the symmetric case where 𝑞1 = 𝑞2 > 0 and 𝑐1 = 𝑐2 hold; the interior

equilibrium displayed in Lemma A.2 and Proposition 6 belongs to this symmetric case.

Numerical Result 3. 32 With effective lender competition at all locations, we have:

𝜕2Π1

𝜕𝑐1𝜕𝑞2
> 0,

𝜕2Π1

𝜕𝑞1𝜕𝑐2
< 0,

𝜕2Π1

𝜕𝑞1𝜕𝑞2
< 0 and

𝜕2Π1

𝜕𝑐1𝜕𝑐2
< 0

if 𝑞1 = 𝑞2 > 0 and 𝑐1 = 𝑐2 hold.

When 𝑞1 = 𝑞2 > 0 and 𝑐1 = 𝑐2 hold, 𝑐1 and 𝑞2 are strategic complements for lender 1,

while the strategic relation is substitutive for IT pairs {𝑞1, 𝑐2}, {𝑞1, 𝑞2} and {𝑐1, 𝑐2}. The
results are explained by the interplay of effects displayed in Table 2. In Online Appendix

D there is a more detailed explanation.

Table 2: The Strategic Relation between Lenders’ IT in the Symmetric Case.

Share squeezing effect Boundary profit effect Share sensitivity effect Net effect
𝑐1 and 𝑞2 substitutive complementary complementary complementary
𝑞1 and 𝑐2 substitutive complementary substitutive substitutive
𝑞1 and 𝑞2 substitutive complementary complementary substitutive
𝑐1 and 𝑐2 substitutive complementary null substitutive

As 𝛽𝑞 decreases, lender 1 reduces 𝑞1 because the direct effect of reducing 𝛽𝑞 dominates

the strategic substitutability effects of lower 𝑞2 and 𝑐2 (and is reinforced by the com-

plementary effect of the decrease in 𝑐1); lender 1 reduces 𝑐1 because the complementary

effects of lower 𝑞1 and 𝑞2 dominate the strategic substitutability effect of a lower 𝑐2.

32The grid of parameters is as follows: 𝑅 ranges from 15 to 100; 𝑐
¯
= 1.01𝑅; 𝑞1 (= 𝑞2) ranges from 0.01

to 0.3; 𝑓 ranges from 0.8 to 1.2; 𝑐1 (= 𝑐2) ranges from 𝑐
¯
to 1.3𝑅.
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As 𝛽𝑐 decreases, lender 1 reduces 𝑐1 because the direct effect of reducing 𝛽𝑐 dominates

the strategic substitutability effect of a lower 𝑐2 (and is reinforced by the complementary

effects of the decrease in 𝑞1 and 𝑞2); lender 1 reduces 𝑞1 because the complementary effect

of a lower 𝑐1 dominates the strategic substitutability effects of lower 𝑞2 and 𝑐2.

Summary: When lenders endogenously determine their IT, the equilibrium results de-

pend on whether IT is cheap to acquire. With cheap IT (i.e., Condition 6), both lenders

will acquire the best possible IT in their quest to compete for the market. As a result,

lender differentiation disappears and lender competition becomes extremely intense, trap-

ping both lenders in a prisoner’s dilemma. If IT is not so cheap, then the two types of

IT co-move in an interior symmetric equilibrium in response to cost shocks; that is, a

decrease in the cost of acquiring one type of IT will increase lenders’ investment in both

types of IT. Furthermore, we find also that the IT investments of a bank and a fintech

(which are asymmetric) will tend to be strategic complements.

5 Lender stability

In this section we study how the progress of information technology affects lender stability

(measured by the inverse of the probability of lender default). Lender 𝑖 will default if

and only if the aggregate loan repayment it receives cannot satisfy its promised return 𝑑𝑖

to investors.33 The probability of lender 𝑖’s default is denoted by 𝜃*𝑖 , which is determined

as described in Lemma A.3 in Appendix A.

Lender stability when 𝑅 is large. We do not have a closed-form solution for a

lender’s default probability, so we use numerical methods to analyze how IT change – as

represented by changes in 𝑐𝑖 or 𝑞𝑖 – affects this probability.

We find that lender 1 becomes less stable as 𝑞1 or/and 𝑐1 increases (i.e., as the lender’s

IT becomes worse. See Panels 1 and 3 of Figure 4). As stated in Section 1, this result

is consistent with the empirical findings of Pierri and Timmer (2022). An increase in 𝑞1

or/and 𝑐1 reduces lender 1’s stability by way of three channels. First, a higher 𝑞1 or/and 𝑐1

increases lender 1’s monitoring cost, which decreases the lender’s monitoring incentive

and reduces the projects’ likelihood of success. Second, Corollary 3 establishes that

an increase in 𝑞1 or/and 𝑐1 decreases lender 1’s competitiveness and thus forces the

lender to set lower loan rates, which reduces not only its monitoring intensity but also

33This happens when the risk factor 𝜃 is sufficiently low. Recall that an entrepreneur (monitored
with intensity 𝑚(𝑧)) succeeds if and only if 𝜃 ≥ 1 − 𝑚(𝑧), so a lender receives less repayment from
entrepreneurs when 𝜃 is lower. If 𝜃 = 0, all entrepreneurs will fail, so lenders default for sure.
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an entrepreneur’s loan repayment in the event of success. The two channels together

reduce entrepreneurs’ expected repayment to lender 1. Third, investors, knowing that

a higher 𝑞1 or/and 𝑐1 reduces entrepreneurs’ expected repayment, will require a higher

promised return 𝑑1 to break even, which further increases the difficulty for lender 1 to

stay solvent. The three channels together reduce the lender’s stability. Yet we must point

out that increasing 𝑞1 or/and 𝑐1 also has a pro-stability market area effect. Namely: as

𝑞1 or/and 𝑐1 increases, the region lender 1 serves will shrink (i.e., 𝑥̃ will decrease); hence

lender 1 can focus more on nearby entrepreneurs (who are easier to monitor), which

promotes stability. However, this pro-stability market area effect is dominated by the

stability-reducing effects mentioned previously.

Figure 4: Lender 1’s Probability of Default (w.r.t. 𝑞𝑖 and 𝑐𝑖). This figure plots lender 1’s

probability of default against 𝑞𝑖 and 𝑐𝑖 in the equilibrium under direct lender competition. Except when

used as a panel’s independent variable, the parameter values are 𝑅 = 20, 𝑓 = 1, 𝑐1 = 1.01𝑅, 𝑐2 = 1.01𝑅,

𝑞1 = 0.1, and 𝑞2 = 0.1.

As 𝑞2 or/and 𝑐2 increases, lender 1 becomes more stable (Panels 2 and 4 of Figure 4).

This occurs because a higher 𝑞2 or/and 𝑐2 decreases lender 2’s competitive advantage

(Corollary 3) and enables lender 1 to set higher loan rates, which increases lender 1’s

monitoring intensity and an entrepreneur’s loan repayment in the event of success, and

decreases the promised return 𝑑1 required by investors. However, increasing 𝑞2 or/and 𝑐2

has a negative market area effect on lender 1’s stability because the region that lender 1
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serves will expand (i.e., 𝑥̃ will increase). That being said, this market area effect is

dominated by those stability-improving effects.

Figure 5: Lender 1’s Probability of Default (w.r.t. 𝑞 and 𝑐). This figure plots lender 1’s

probability of default against 𝑞 and 𝑐 with the restriction that 𝑞1 = 𝑞2 = 𝑞 and 𝑐1 = 𝑐2 = 𝑐 in the

equilibrium under direct lender competition. Except when used as a panel’s independent variable, the

parameter values are 𝑅 = 20, 𝑓 = 1, 𝑐 = 1.01𝑅, and 𝑞 = 0.1.

Letting 𝑞1 = 𝑞2 = 𝑞 and 𝑐1 = 𝑐2 = 𝑐 allows us to analyze how the development and

diffusion of information technology in the entire lending sector affect lenders’ stability.

Although both 𝑞 and 𝑐 can be seen as inverse measures of IT in the lending sector, their

effects on lender stability are different. Numerical studies show that lender 1 becomes

more stable as 𝑞 increases but becomes less stable as 𝑐 increases (see Figure 5). As 𝑞

or 𝑐 increases, the direct (cost) effect is that monitoring becomes more costly for lenders;

this effect tends to reduce lenders’ monitoring and hence stability. Yet an increase in 𝑞

increases lenders’ differentiation and so makes competition less intense. As a result, both

lenders can post higher loan rates (Corollary 4), which tends to enhance the stability of

lenders. Here the differentiation effect of 𝑞 dominates.34 In contrast, an increase in 𝑐 does

not have the differentiation effect, so the direct cost effect reduces lender stability.

Lender stability when 𝑅 is not large. If 𝑅 ≥
√︀

8𝑐𝑖𝑓/(1− 𝑞𝑖) is not satisfied (i.e.,

if 𝑅 is not large), the net effect of IT progress on lender stability is more complex. In

Appendix C, we show that a local monopoly equilibrium will arise if 𝑅 is not large while

𝑞𝑖 and 𝑐𝑖 are sufficiently high (Proposition C.1). However, as 𝑞 or 𝑐 decreases (with

𝑞1 = 𝑞2 = 𝑞 and 𝑐1 = 𝑐2 = 𝑐), the local monopoly equilibrium may disappear and then

lenders begin to compete. The effect of IT progress depends on (a) whether or not lenders

34This result is in line with Jiang et al. (2018) who document that an intensification of bank competition
materially boosts bank risk by reducing bank profits, charter values, and relationship lending.
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enjoy local monopolies and (b) the extent of lender competition. Figure 6 graphically

illustrates how lender stability is affected by IT progress when 𝑅 is not large.

Figure 6: Lender 1’s Probability of Default (w.r.t. 𝑞 and 𝑐) when 𝑅 is not large. This

figure plots lender 1’s probability of default against 𝑞 and 𝑐 with the restriction that 𝑞1 = 𝑞2 = 𝑞 and

𝑐1 = 𝑐2 = 𝑐. Except when used as a panel’s independent variable, the parameter values are 𝑅 = 5, 𝑓 = 1,

𝑐 = 10, and 𝑞 = 0.4.

A numerical study (see Panel 1 of Figure 6) indicates that, when lenders are initially

in a local monopoly equilibrium, lender 1’s probability of default is at first independent

of 𝑞; it then decreases and finally increases as 𝑞 decreases. The intuition is as follows.

At the beginning, a reduction in 𝑞 does not change the equilibrium type; in this local

monopoly equilibrium, lender stability does not vary with 𝑞 because the cost-saving effect

exactly offsets the market area effect (see Proposition C.3 in Appendix C for a detailed

explanation). When 𝑞 declines to a certain level, the equilibrium switches to the one

with lender competition (see Inequality C.2 of Appendix C). In this new equilibrium, a

further reduction in 𝑞 brings a differentiation effect, which tends to reduce lender stability.

However, decreasing 𝑞 will improve lender 1’s stability when 𝑞 is not small enough. This

happens because then lender 1 has monopoly power over a large part of its entrepreneurs

and effective competition occurs only for entrepreneurs who are located near the mid

point 𝑧 = 1/2. As a result, the (competition) differentiation effect of 𝑞 is weak and the

cost-saving effect dominates. However, when 𝑞 is small enough, competition will be so

intense that lender 1 has monopoly power over only a small fraction of its entrepreneurs;

then the differentiation effect of decreasing 𝑞 dominates the cost-saving effect. As a result,

the net effect of decreasing 𝑞 on lender stability will flip when 𝑞 is small enough.35

35Comparing Panel 1 of Figure 5 and Panel 1 of Figure 6, we find that the “decrease then increase”
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The net effect of reducing 𝑐 is simpler. Since a reduction in 𝑐 significantly lowers

the monitoring costs for all locations, it follows that the cost-saving effect of decreasing

𝑐 is strong and always dominates other effects – that is, regardless of whether or not

competition arises for a large group of entrepreneurs. Therefore, lender 1’s probability of

default is increasing in 𝑐 (see Panel 2 of Figure 6).

6 Welfare analysis

In this section we analyze the social planner’s problem. First we look at the relation

between equilibrium loan rates and socially optimal ones. We then analyze how the de-

velopment and diffusion of the lending sector’s information technology affect social welfare

in the direct competition equilibrium. In Appendix C, the welfare effect of IT progress

in the local monopoly equilibrium is analyzed and the main results are presented in the

text. Throughout the section we let 𝑞1 = 𝑞2 = 𝑞 and 𝑐1 = 𝑐2 = 𝑐, and hence use 𝑞 and 𝑐

to inversely measure the lending sector’s IT-distance and IT-basic.

6.1 Socially optimal loan rates

If Ω ⊆ [0, 1] is the set of locations that are served and if entrepreneurs at location 𝑧 are

financed by lender 𝑖,36 then social welfare is given by

𝑊 =

∫︁
Ω

(︀
(𝑅− 𝑟𝑖(𝑧))𝑚𝑖(𝑧)

)︀2
2

𝑑𝑧⏟  ⏞  
Entrepreneurs’ aggregate expected utility

+

∫︁
Ω

𝐷(𝑧)

(︂
𝑟𝑖(𝑧)𝑚𝑖(𝑧)− 𝑓 − 𝑐(𝑚𝑖(𝑧))

2

2(1− 𝑞𝑠𝑖)

)︂
𝑑𝑧⏟  ⏞  

Lenders’ expected profits

− (𝜃*1 + 𝜃*2)𝐾⏟  ⏞  
Deadweight loss of lender failure

. (8)

Here 𝑟𝑖(𝑧) (resp. 𝑚𝑖(𝑧)) is lender 𝑖’s loan rate (resp. monitoring intensity) for en-

trepreneurs at 𝑧, 𝐷(𝑧) is the funding demand at 𝑧, 𝜃*𝑖 is the probability that lender 𝑖 is

insolvent, and 𝐾 is the deadweight loss (i.e., bankruptcy costs) associated with a lender’s

failure. Equation (8) divides social welfare into three components: entrepreneurs’ utility,

pattern of lender 1’s probability of default (as illustrated in Panel 1 of Figure 6) does not arise when 𝑅
is large. The reason is that a large 𝑅 ensures effective lender competition for a significant range of (or
even for all) locations.

36We will show below that it is socially optimal that a location in Ω is served by the lender with
(weakly) smaller lending distance.
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lenders’ profits, and the expected deadweight loss due to lenders’ failure. Bankruptcy

costs can be interpreted as the costs of systemic lending sector failure given that both

lenders stay solvent or default together when 𝑞1 = 𝑞2 = 𝑞 and 𝑐1 = 𝑐2 = 𝑐 hold.

Second-best allocation. We consider the second-best case where the social planner

can (a) determine the locations each lender serves and (b) choose the second-best socially

optimal loan rate schedule of lender 𝑖, denoted by {𝑟SB𝑖 (𝑧)}, to maximize social welfare

under the constraint that lender 𝑖’s monitoring intensity at 𝑧 is equal to 𝑟SB𝑖 (𝑧)(1− 𝑞𝑠𝑖)/𝑐.

In this case the social planner cannot control lenders’ monitoring intensities, which hence

must be as described in Lemma 1.

Proposition 7. Let 𝐾 = 0. At the second-best case lender 𝑖 serves the same locations

as in equilibrium37 and the loan rate 𝑟SB𝑖 (𝑧) at location 𝑧 (served by lender 𝑖) is given by

𝑟SB𝑖 (𝑧) =
(2𝑅2(1− 𝑞𝑠𝑖) + 4𝑐𝑓) +

√︀
(2𝑅2(1− 𝑞𝑠𝑖) + 4𝑐𝑓)2 − 24𝑐𝑓𝑅2(1− 𝑞𝑠𝑖)

6𝑅(1− 𝑞𝑠𝑖)
,

which satisfies 𝑅/2 < 𝑟SB𝑖 (𝑧) ≤ 𝑟𝑚𝑖 (𝑧).
38

Since monitoring incurs social costs, for each location it is always socially more de-

sirable to assign the lender with better monitoring efficiency (i.e., with smaller lending

distance). If there exist locations that neither lender is willing to serve in equilibrium

(see Appendix C), then it means that projects in those locations cannot generate positive

expected values net of monitoring and funding costs; hence the social planner will not

let either lender serve such locations. Overall, the social planner will let lender 𝑖 serve

locations that it would serve in equilibrium.

From the perspective of social welfare, lowering 𝑟SB𝑖 (𝑧) decreases lender 𝑖’s incentive to

monitor, which reduces the expected value of projects financed by the lender. Yet as 𝑟SB𝑖 (𝑧)

decreases, an entrepreneur’s utility will increase (since 𝑟SB𝑖 (𝑧) ≥ 𝑅/2), which will increase

the mass of entrepreneurs undertaking investment projects. Hence a social planner must

balance the social benefits (i.e., investment-spurring effect) and costs (i.e., monitoring-

reducing effect) of decreasing 𝑟SB𝑖 (𝑧) – here 𝑅/2 is one extreme loan rate, which maximizes

entrepreneurs’ utility and investment at 𝑧; the monopoly loan rate 𝑟𝑚𝑖 (𝑧) is the other

extreme, which maximizes lender 𝑖’s profit and hence incentivizes the lender to choose a

high monitoring intensity – leading to the relation 𝑅/2 < 𝑟SB𝑖 (𝑧) ≤ 𝑟𝑚𝑖 (𝑧).

37If there is direct competition in equilibrium, then in the second-best case lender 1 (resp. lender 2)
serves the region [0, 1/2] (resp. (1/2, 1]); if there is no competition in equilibrium (see Appendix C), then

lender 1 (resp. lender 2) serves the region [0, 𝑅2−2𝑐𝑓
𝑞𝑅2 ] (resp. [1− 𝑅2−2𝑐𝑓

𝑞𝑅2 , 1]).
38The equality 𝑟SB𝑖 (𝑧) = 𝑟𝑚𝑖 (𝑧) holds only when lender 𝑖’s best loan rate at 𝑧 is 𝑅.
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In a local monopoly equilibrium, lender 𝑖’s loan rate at 𝑧 equals 𝑟𝑚𝑖 (𝑧). Hence Propo-

sition 7 implies that in such an equilibrium lender 𝑖’s loan rates are higher than the

second-best ones (except for the boundary location where 𝑟SB𝑖 (𝑧) = 𝑟𝑚𝑖 (𝑧) holds). See

Corollary C.3 in Appendix C for more details.

The following corollary shows how the pattern of 𝑟SB𝑖 (𝑧) differs from that of lender 𝑖’s

competitive equilibrium loan rate.

Corollary 6. Let 𝑧 ∈ [0, 1/2]. With distance friction (i.e., 𝑞 > 0), lender 1’s second-

best socially optimal loan rate 𝑟SB1 (𝑧) is increasing in 𝑧, while the corresponding funding

demand is decreasing in 𝑧.

This corollary means that the “perverse” pattern of a lender’s competitive loan rate

and lending volume is not efficient. Instead, it is socially more desirable for a lender to

provide higher loan volumes to closer locations, because entrepreneurs there are cheaper

to monitor. Specifically, in the region served by lender 1, the social planner would choose

a lower 𝑟SB1 (𝑧) to stimulate more funding demand as 𝑧 decreases (i.e., monitoring becomes

cheaper). Under the second-best allocation, entrepreneurs closer to lender 1 benefit from

the lender’s higher monitoring efficiency and thereby derive higher utility; this is not the

case when lender 1 determines its competitive loan rate in equilibrium.

Panel 1 of Figure 7 illustrates 𝑟SB1 (𝑧) and lender 1’s equilibrium loan rate as 𝑧 varies

from 0 to 0.5. When 𝑧 is sufficiently close to 0, lender 1 faces no effective threat from

lender 2 and thereby offers 𝑟𝑚1 (𝑧), which is higher than 𝑟SB1 (𝑧) according to Proposition 7.

With effective lender competition, lender 1’s equilibrium loan rate 𝑟comp
1 (𝑧) is decreasing

in 𝑧, while 𝑟SB1 (𝑧) is increasing in 𝑧.

A straightforward policy implication of Corollary 6 is that regulators can guide lenders’

pricing to improve allocation efficiency. If regulators have enough information, then the

best policy is to set 𝑟SB𝑖 (𝑧) as the reference loan rate schedule for lender 𝑖. However,

regulators probably do not have precise information to provide a loan rate schedule based

on 𝑧; in this case, a crude way to improve allocation efficiency is to set a uniform reference

loan rate that does not vary with 𝑧 but is between 𝑟SB1 (𝑧) and lender 1’s equilibrium loan

rate for any 𝑧 ∈ [0, 1/2]. Such a uniform reference rate exists because 𝑟SB1 (𝑧) and 𝑟comp
1 (𝑧)

have different monotonicity with respect to 𝑧. Take Panel 1 of Figure 7 as an example, the

intersect loan rate 𝑟SB1 (𝑧Δ) (at location 𝑧Δ) is between 𝑟SB1 (𝑧) and lender 1’s equilibrium

loan rate for any 𝑧 ∈ [0, 1/2], so social welfare can be improved if regulators force both

lenders to price at 𝑟SB1 (𝑧Δ).

Moreover, our numerical study finds that an increase in 𝑧 has much lower an effect on
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Figure 7: Comparing 𝑟comp
1 (𝑧), 𝑟𝑚1 (𝑧), and 𝑟SB1 (𝑧). This figure plots 𝑟comp

1 (𝑧), 𝑟𝑚1 (𝑧), and 𝑟SB1 (𝑧)

against 𝑧 (Panel 1) and 𝑞 (Panel 2). The parameter values are: 𝑅 = 20, 𝑓 = 1 and 𝑐 = 1.01𝑅 in both

panels; 𝑞 = 0.5 in Panel 1; 𝑧 = 0.25 in Panel 2.

𝑟SB1 (𝑧) than on 𝑟comp
1 (𝑧).39 Therefore, the second-best loan rate schedule 𝑟SB1 (𝑧) can be

proxied by an arbitrary reference loan rate in [𝑟SB1 (0), 𝑟SB1 (1/2)], which provides an easier

way for regulators to find an efficiency-improving reference rate. We find (see Table 3)

that the social planner can improve welfare by regulating rates and forcing both lenders

to price at 𝑟SB1 (0).

Table 3: Welfare: Equilibrium v.s. Regulated Rate at 𝑟SB1 (0)

𝑞 = 0 𝑞 = 0.2 𝑞 = 0.4
𝑐 = 20.2 19.7, 24.7 21.6, 22.1 18.9, 19.7
𝑐 = 40 3.8, 5.3 4.4, 4.6 3.9, 4.1
𝑐 = 60 1.4, 1.9 1.56, 1.64 1.3, 1.4

This table compares social welfare in equilibrium with that of the regulated rate at
𝑟SB1 (0). The numbers in a cell are social welfare levels: equilibrium, regulated. The
other parameters are 𝑅 = 20 and 𝑓 = 1.

Next we provide an analytical result in relation to Panel 2 of Figure 7.

Proposition 8. Let 𝐾 = 0. If 𝑅 >
√
2𝑐𝑓 and if location 𝑧 is served by lender 𝑖, then

the inequality 𝑟comp
𝑖 (𝑧) < 𝑟SB𝑖 (𝑧) holds for all locations when 𝑞 is small enough.40

Proposition 8 states that the intensity of lender competition will be too high when 𝑞

(the differentiation between lenders) is sufficiently low. Entrepreneurs will be better-off as

39Because the effect of 𝑧 on 𝑟SB1 (𝑧) is quite small, the curve of 𝑟SB1 (𝑧) looks like a horizontal line in
Panel 1 of Figure 7.

40If 𝑅 >
√
2𝑐𝑓 , then there is always effective competition at 𝑧 when 𝑞 is small enough. In the boundary

case 𝑅 =
√
2𝑐𝑓 , lender 𝑖 must set its loan rate to 𝑅 – even when 𝑞 = 0 – in order to ensure itself a

non-negative profit; then we always have 𝑟comp
𝑖 (𝑧) = 𝑟SB𝑖 (𝑧) = 𝑟𝑚𝑖 (𝑧) = 𝑅 at locations served by lender 𝑖.
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the intensity of lender competition increases, which will increase the mass of entrepreneurs

undertaking investment projects; but low differentiation can hurt lenders and reduce

their monitoring intensities, thereby decreasing the expected value of financed projects.41

When 𝑞 is low enough, the monitoring-reducing effect dominates the investment-spurring

effect, so the equilibrium loan rate is lower than the socially optimal one. Figure 8

illustrates the relation between 𝑟comp
1 (𝑧) and 𝑟SB1 (𝑧) in 𝑧 × 𝑞 space.

Figure 8: Relations between 𝑟comp
1 (𝑧) and 𝑟SB1 (𝑧) in 𝑧 × 𝑞 space. This figure compares 𝑟comp

1 (𝑧)

with 𝑟SB1 (𝑧) in 𝑧 × 𝑞 space. The parameter values are 𝑅 = 20, 𝑐 = 1.01𝑅, and 𝑓 = 1.

First-best allocation. In Online Appendix D we consider the first-best case where the

social planner not only determines lenders’ loan rates but also controls their monitoring

intensities. Since the social planner need not use loan rates to incentivize lenders’ mon-

itoring, the first-best loan rates are lower than the second-best ones (Proposition D.2).

When 𝑞 is sufficiently small, 𝑟comp
1 (𝑧) is lower than the first-best loan rate at 𝑧 because

the latter must be high enough to prevent excessive investment (Proposition D.3).

6.2 Welfare properties of the symmetric equilibrium

We analyze the welfare effects of information technology progress for the case of large 𝑅

(which ensures direct competition).

41Gehrig (1998) also finds that under certain conditions competition will decrease lenders’ efforts, and
so reduce the quality of the overall loan portfolio.
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Figure 9 shows how entrepreneurs’ utility, lenders’ profits, and social welfare vary

with 𝑞 and 𝑐. A decrease in 𝑞 will increase the intensity of lending competition because

differentiation will be diminished (Corollary 4). Greater lender competition (together

with higher monitoring efficiency) translates into lenders providing higher entrepreneurial

utility, which spurs investment. So as can be seen in Panels 1 and 2 of Figure 9, en-

trepreneurial utility increases if 𝑞 decreases. From the lenders’ perspective, reducing 𝑞

has two opposing effects: a cost-saving effect since monitoring is cheaper and a differen-

tiation effect which implies more intense competition, with an ambiguous net effect on

profits. When 𝑞 is not small, the cost-saving effect dominates and so decreasing 𝑞 increases

lenders’ profits. When 𝑞 is small enough, however, the differentiation effect dominates and

hence reducing 𝑞 decreases lenders’ profits (see Proposition 2). Perhaps more surprising

is the following proposition, which shows that decreasing 𝑞 reduces social welfare for 𝑞

small enough, even if lender failure incurs no social costs (i.e., if 𝐾 = 0; see Panel 1 of

Figure 9).

Figure 9: Social Welfare and Lending Sector’s Information Technology under Competi-

tion. This figure plots social welfare, entrepreneurial utility, and lenders’ profits against 𝑐 and 𝑞 in the

equilibrium under lender competition. The parameter values are: 𝑅 = 20 and 𝑓 = 1 in all panels; 𝑐 = 22

in Panels 1 and 2; 𝑞 = 0.1 in Panels 3 and 4; 𝐾 = 0 in Panels 1 and 3; and 𝐾 = 10 in Panels 2 and 4.
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Proposition 9. Let 𝐾 = 0. Social welfare is increasing in 𝑞 if 𝑞 is sufficiently small

while it is decreasing in 𝑐.

Lenders’ loan rates will be excessively low when competition is very intense (i.e., when

𝑞 is small enough; Proposition 8). Then decreasing 𝑞 reduces social welfare because a lower

lenders’ monitoring effort dominates the cost-saving and investment-spurring effects.

Panel 1 of Figure 9 gives a graphic illustration on how 𝑞 affects social welfare when𝐾 =

0. Whether a reduction in 𝑞 (and the resultant increased competition intensity) is welfare-

improving depends on whether we start with a low or high level of competition. Recall

that 𝐾 is an exogenous cost associated with lenders’ failure. Since a higher intensity of

lender competition increases lenders’ probability of default, it follows that the socially

optimal level of 𝑞 is higher when 𝐾 is positive than when 𝐾 = 0 (see Panel 2 of Figure 9).

The second part of Proposition 9 shows that decreasing 𝑐 improves social welfare

when 𝐾 = 0 (see Panel 3 of Figure 9) since it has no effect on lender differentiation

(Corollary 4). If 𝐾 > 0, the welfare-improving effect of decreasing 𝑐 will be strengthened

(see Panel 4 of Figure 9) because decreasing 𝑐 enhances lender stability.

In short: although reducing 𝑞 (i.e., improving IT-distance) and reducing 𝑐 (i.e., im-

proving IT-basic) can each be viewed as progress in information technology, their welfare

effects are quite different. So when discussing IT progress, one must stipulate the type of

IT involved. However, in a local monopoly equilibrium lenders do not compete with each

other, and a decrease in 𝑞 or/and 𝑐 brings only a cost-saving effect, thereby improving

social welfare (see Proposition C.4 in Appendix C).

The effect of IT investment costs. Finally we take into consideration the IT invest-

ment cost 𝑇 (𝑞, 𝑐) when analyzing the welfare effect of changing 𝑞 and 𝑐.

IT is cheap. In this case 𝑞 = 0 and 𝑐 = 𝑐
¯
arises endogenously (Proposition 5). Ac-

cording to Proposition 9, the monitoring-reducing effect will dominate the cost-saving

and investment-spurring effects when 𝑞 is sufficiently small, so lenders’ endogenous IT

investment will induce an excessively low level of differentiation (i.e., too low a 𝑞) from

the social point of view. Taking IT investment costs into consideration strengthens the

negative effect of decreasing 𝑞 (Panel 1 of Figure 10).

As for IT-basic, note that the cheap IT condition (6) does not restrict the marginal

cost of decreasing 𝑐, so 𝑐 = 𝑐
¯
(which is lenders’ endogenous choice) will be lower than

the socially optimal level if lim
𝑐→𝑐

¯

𝜕𝑇 (𝑞, 𝑐)/𝜕𝑐 ≤ 0 is low enough. The reason is that the

marginal benefit (cost-saving effect) of decreasing 𝑐 is always finite from the social plan-

ner’s perspective. Panel 2 of Figure 10 gives an example in which 𝑐 = 𝑐
¯
is excessively
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low; in this figure lim
𝑐→𝑐

¯

𝜕𝑇 (𝑞, 𝑐)/𝜕𝑐 = −∞.

The cheap-IT scenario can arise for example if information technology is highly ad-

vanced in non-financial sectors and then it spills over the lending sector.

Figure 10: Social Welfare and Lending Sector’s Information Technology with Competition

and Cheap IT. This figure plots social welfare, entrepreneurial utility, and lenders’ profits against 𝑐

and 𝑞 in the equilibrium with lender competition and cheap IT. The parameter values are: 𝑅 = 20,

𝐾 = 0 and 𝑓 = 1 in both panels; 𝑐 = 22 in Panel 1; 𝑞 = 0.1 in Panel 2.

IT is not cheap. As in Section 4, we focus on the case that 𝜕𝑇 (𝑞, 𝑐)/𝜕𝑞 = 0 (resp.

𝜕𝑇 (𝑞, 𝑐)/𝜕𝑐 = 0) for 𝑞 ≥ 𝑞 (resp. 𝑐 ≥ 𝑐), meaning that lender 𝑖 need only consider

information technology that satisfies 𝑞𝑖 × 𝑐𝑖 ∈ [0, 𝑞] × [𝑐
¯
, 𝑐]. Under the assumptions in

Lemma A.2, there exists a unique symmetric interior IT investment equilibrium, for which

we have the following result.

Proposition 10. Let 𝐾 = 0, the assumptions of Lemma A.2 hold, and 𝑇 (𝑞, 𝑐) be sub-

modular. If 𝑞 is sufficiently small, then 𝑞𝑖 = 𝑞* and 𝑐𝑖 = 𝑐* (i.e., lenders’ IT-distance and

IT-basic choices in the unique symmetric interior equilibrium) are excessively low from

the social planner’s perspective.

A lender and the social planner have different marginal benefits of IT investment. A

lender cares only about its own profit, so its marginal benefit of IT investment consists of

a cost-saving effect on monitoring and a business stealing effect. The latter means that

by adopting better IT the lender will have a higher competitive advantage and erode the

rival lender’s profit. In contrast, the social planner cares about entrepreneurial utility

and both lenders’ profits, so it does not value the business stealing effect.
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Because of the cost-saving and business stealing effects, investing in IT always has a

positive marginal benefit for a lender, so 𝑞* is always lower than 𝑞 no matter how small 𝑞

is. For the social planner, however, the marginal benefit of decreasing 𝑞 will turn negative

when 𝑞 is sufficiently small (Proposition 9). Hence 𝑞* must be excessively low from the

social planner’s perspective when 𝑞 is sufficiently small.

With sufficiently low 𝑞 (and hence low 𝑞*), lenders’ endogenous IT investment will

induce a very low level of differentiation, giving rise to a very strong business stealing

effect: A lender’s small improvement in IT-basic will increase the lender’s profit by a lot

(through eroding the rival’s market share).42 Such a large business stealing effect gives

lender 𝑖 quite a strong incentive to reduce 𝑐𝑖, which leads to an excessively low 𝑐* from

the social planner’s perspective if 𝑇 (𝑞, 𝑐) is submodular (i.e., if a lower 𝑞 does not increase

the marginal cost of decreasing 𝑐).

Remark (local monopoly equilibrium): In this case investing in IT, whatever its

type, has a higher marginal benefit for the social planner than for a lender, because a

lender does not internalize that higher monitoring efficiency also benefits entrepreneurs.

Therefore, lenders’ endogenous IT investment will lead to excessively high 𝑞 and 𝑐 from

the social planner’s perspective if 𝑇 (𝑞, 𝑐) is submodular.

7 Conclusion

Our study shows that whether the development of information technology intensifies

lender competition depends on its impact on differentiation. If IT progress in the lending

sector is of type IT-basic – reducing the costs of monitoring an entrepreneur without

altering lenders’ relative cost advantage (i.e., lower 𝑐) – then neither differentiation nor

competition among lenders is affected; hence lenders will be more profitable and more

stable. Yet, if the industry’s IT progress is of type IT-distance – weakening the influence

of lender–entrepreneur distance on monitoring costs (i.e., lower 𝑞) – then differentiation

among lenders will decrease, competition will become more intense, and lenders may

become less profitable and less stable (Proposition 2 and Figure 5). We should therefore

be careful to identify the kind of information technology change being considered before

gauging its impact.

In any case, and consistently with received empirical evidence, we have the testable

42An extreme example is the case where 𝑞 (and hence 𝑞*) approach 0. In this case lender differentiation
almost disappears, so lender 1 can gain a lot of market share if it slightly decreases 𝑐1 (from 𝑐1 = 𝑐2 = 𝑐*),
which implies that the business stealing effect is nearly infinitely strong for the lender.
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implication that a technologically more advanced lender – regardless of how changes in

IT affect lender differentiation – lends to more industries/locations, commands greater

market power and is more stable (Proposition 1 and Figure 4). We find also that in

locations (or industries) with effective lender competition (proxied by low lender concen-

tration), a lender’s loan rate will increase after the lender’s IT improves relative to other

lenders’ (Corollaries 1 and 3), while if the lender has monopoly power IT improvements

will decrease its loan rate.

In our model, the equilibrium consequences of one lender’s IT improvement are quite

different from those of the entire lending sector’s IT improvement. For example, a lender

adopting better IT increases its loan rates, while both lenders’ loan rates will decrease

if the lending sector’s IT-distance improves. The reason of the difference is that an IT

improvement of a lender affects not only itself but also the other lender’s behavior, a

competitive spillover effect. Our model highlights that caution is necessary when using

diff-in-diff methods in empirical research on technological progress.43

How lenders endogenously choose their IT investment depends on the acquisition

cost of IT. If it is cheap enough, then lenders will acquire the best possible IT (i.e.,

𝑞1 = 𝑞2 = 0 and 𝑐1 = 𝑐2 = 𝑐
¯
) in an attempt to obtain all the market, resulting in no lender

differentiation and hence extremely intense competition (Proposition 5). If IT is not so

cheap, then the two types of IT will co-move in response to a cost shock when a unique

interior symmetric equilibrium exists (Proposition 6). The testable implication then is

that investment in different types of IT are complements. Furthermore, IT investments

of a bank and a fintech tend to be strategic complements.

We find that the welfare effect of information technology progress is ambiguous when

it is of type IT-distance. On the one hand, higher competition intensity and better

IT always favor entrepreneurs and spur their investment (Proposition 4); on the other

hand, lower lender differentiation can reduce lenders’ monitoring and profits (and increase

expected bankruptcy costs). Whether or not an improvement in lenders’ IT-distance

benefits social welfare depends on whether the lending market has not enough or too

much competition at the outset. When 𝑞 is low, there is always excessive competition

and insufficient monitoring (Proposition 9). This is always the case when information

technology is cheap because then lenders choose endogenously a very low 𝑞. However,

if lenders enjoy local monopolies in equilibrium, then IT progress has no (competition)

differentiation effect; in this case lenders’ IT investment is inefficiently low because they

cannot internalize the benefit of IT improvement on entrepreneurs.

43Berg et al. (2021) analyze the spillover-induced bias and provide guidance on how to deal with it.
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Demirgüç-Kunt, A., E. Kane, and L. Laeven (2015): “Deposit insurance around

the world: A comprehensive analysis and database,” Journal of Financial Stability, 20,

155–183.

Deng, S. and E. Elyasiani (2008): “Geographic diversification, bank holding company

value, and risk,” Journal of Money, Credit and Banking, 40, 1217–1238.

Diamond, D. W. (1984): “Financial intermediation and delegated monitoring,” The

Review of Economic Studies, 51, 393–414.

Dorfleitner, G., C. Priberny, S. Schuster, J. Stoiber, M. Weber, I. de Cas-

tro, and J. Kammler (2016): “Description-text related soft information in peer-to-

peer lending–Evidence from two leading European platforms,” Journal of Banking &

Finance, 64, 169–187.

Drechsler, I., A. Savov, and P. Schnabl (2021): “Banking on deposits: Maturity

transformation without interest rate risk,” The Journal of Finance, 76, 1091–1143.

Dugast, J. and T. Foucault (2018): “Data abundance and asset price informative-

ness,” Journal of Financial Economics, 130, 367–391.

Duquerroy, A., C. Mazet-Sonilhac, J.-S. Mésonnier, D. Paravisini, et al.
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Appendix A: Proofs

Proof of Equation (4). Let Ω1 denote the set of locations served by lender 1. When

the common risk factor is 𝜃, the aggregate loan repayment lender 1 receives from en-

trepreneurs is equal to
∫︀
𝑧∈Ω1

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧 , which is (weakly) increasing in 𝜃.

Meanwhile the lender must raise
∫︀
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧 units of funding from investors to finance

its loans. Thus the lender must promise to pay back 𝑑1
∫︀
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧 (here 𝑑1 is endoge-

nous). Then when 𝜃 is small enough, the lender cannot fully pay back the promised

return to investors.

Let 𝜃*1 denote the cut-off risk factor such that the lender can fully pay back investors

if and only if 𝜃 ≥ 𝜃*1. Then the lender’s expected aggregate lending profit is

𝐴𝑃1 =

(︃ ∫︀ 1

𝜃*1

(︁∫︀
𝑧∈Ω1

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧 − 𝑑1
∫︀
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧
)︁
𝑑𝜃

−
∫︀
𝑧∈Ω1

𝐷(𝑧)𝐶1 (𝑚1 (𝑧) , 𝑧) 𝑑𝑧

)︃
.

Since the value of 𝑑1 must ensure that the expected return to investors is 𝑓 for each unit

of funding, we must have the following equation:∫︁ 𝜃*1

0

∫︁
𝑧∈Ω1

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧 𝑑𝜃 +

∫︁ 1

𝜃*1

∫︁
𝑧∈Ω1

𝑑1𝐷(𝑧) 𝑑𝑧𝑑𝜃 = 𝑓

∫︁
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧. (A.1)

The intuition behind (A.1) is the same as that of the participation condition of Equation

(A.6), which explained below Lemma A.3. Inserting (A.1) into 𝐴𝑃1 to cancel 𝑑1, we can

show that

𝐴𝑃1 =

∫︁
𝑧∈Ω1

𝐷(𝑧)(𝑟1(𝑧)𝑚1 (𝑧)− 𝑓 − 𝐶1 (𝑚1 (𝑧) , 𝑧))⏟  ⏞  
𝜋1(𝑧)

𝑑𝑧

because
∫︀ 1

0

∫︀
𝑧∈Ω1

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧𝑑𝜃 =
∫︀
𝑧∈Ω1

𝐷(𝑧)𝑟1(𝑧)𝑚1 (𝑧) 𝑑𝑧 holds. There-

fore, the lender’s profit from financing an entrepreneur at 𝑧 is given by Equation (4).

Proof of Lemma 1. Taking 𝑟1 (𝑧) as given, maximizing 𝜋1 (𝑧) ≡ 𝑟1 (𝑧)𝑚1 (𝑧) −
𝑐1

2(1−𝑞1𝑧)
(𝑚1 (𝑧))

2−𝑓 by choosing 𝑚1 (𝑧) directly yields the following first order condition:

𝑟1 (𝑧)−
𝑐1

(1− 𝑞1𝑧)
𝑚1 (𝑧) = 0 =⇒ 𝑚1 (𝑧) =

(1− 𝑞1𝑧)𝑟1 (𝑧)

𝑐1
.

Symmetrically, we can derive 𝑚2(𝑧).

Lemma A.1. The monopoly loan rate 𝑟𝑚1 (𝑧) of lender 1 for entrepreneurs at 𝑧 is the
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largest solution of the following equation:

(𝑟𝑚1 (𝑧))
2(3𝑅− 4𝑟𝑚1 (𝑧))(1− 𝑞1𝑧)

2𝑐1
+ (2𝑟𝑚1 (𝑧)−𝑅)𝑓 = 0

(a symmetric statement holds for lender 2). Both 𝑟𝑚1 (𝑧) and 𝑟𝑚2 (𝑧) are higher than the

best loan rate 𝑅/2.

Proof of Lemma A.1. If lender 1 faces no competition, then it will choose 𝑟1 (𝑧) to

maximize its expected profit from location 𝑧; such profit is equal to

𝜋𝑡𝑜𝑡𝑎𝑙
1 (𝑧) ≡ 𝐷 (𝑧)

(︂
𝑟1 (𝑧)𝑚1 (𝑧)−

𝑐1
2(1− 𝑞1𝑧)

(𝑚1 (𝑧))
2 − 𝑓

)︂
.

Recall that 𝐷 (𝑧) = (𝑅− 𝑟1 (𝑧))𝑚1 (𝑧) and 𝑚1 (𝑧) = 𝑟1(𝑧)(1−𝑞1𝑧)
𝑐1

. After inserting 𝐷 (𝑧)

and 𝑚1 (𝑧) into 𝜋𝑡𝑜𝑡𝑎𝑙
1 (𝑧), the objective function lender 1 finally needs to maximize is

(𝑅− 𝑟1 (𝑧)) (𝑟1 (𝑧))
3 (1− 𝑞1𝑧)

2

2𝑐21
− (𝑅− 𝑟1 (𝑧)) 𝑟1 (𝑧) (1− 𝑞1𝑧)

𝑐1
𝑓.

The monopolistic loan rate, denoted by 𝑟𝑚1 (𝑧), that maximizes the objective function is

determined by the following first order condition:

ℎ (𝑟1 (𝑧)) ≡
(𝑟1 (𝑧))

2 (3𝑅− 4𝑟1 (𝑧)) (1− 𝑞1𝑧)

2𝑐1
+ (2𝑟1 (𝑧)−𝑅) 𝑓 = 0. (A.2)

It is clear that ℎ (−∞) → +∞, ℎ (0) = −𝑅𝑓 < 0 and ℎ
(︀
𝑅
2

)︀
=

(𝑅
2 )

2
𝑅(1−𝑞1𝑧)

2𝑐1
> 0.

Therefore, within (−∞, 0) and
(︀
0, 𝑅

2

)︀
, there exist two roots for ℎ (𝑟1 (𝑧)) = 0. However,

those two roots cannot be the profit maximizing loan rate of lender 1 because we have

shown that no lender would offer a loan rate that is lower than 𝑅/2 (see Lemma 2).

We can further show that ℎ (+∞) → −∞. So there must exist a third root, denoted

by 𝑟3𝑟𝑑, within
(︀
𝑅
2
,+∞

)︀
. If lender 1 finds it profitable to finance entrepreneurs at 𝑧, then

𝑟3𝑟𝑑 must be no larger than 𝑅, because total finding demand and lender 1’s profit will

be negative at location 𝑧 if the lender offers a loan rate that is higher than 𝑅, which is

never optimal for the lender. As a consequence, 𝑟3𝑟𝑑, which must be within
(︀
𝑅
2
, 𝑅
]︀
, is the

solution that maximizes lender 1’s profit, and we denote it by 𝑟𝑚1 (𝑧) in the main text.

The schedule 𝑟𝑚2 (𝑧) can be pinned down in the same way.

Proof of Proposition 1. First we determine the cut-off (indifference) location. Because

the two lenders compete in a localized Bertrand fashion, both lenders will offer their best
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loan rates at the indifference location; meanwhile an entrepreneur at the location feels

indifferent. So we have the following equation for the indifference location 𝑥̃:(︂
𝑅− 𝑅

2

)︂ 𝑅
2
(1− 𝑞1𝑥̃)

𝑐1
− 𝑢

¯
=

(︂
𝑅− 𝑅

2

)︂ 𝑅
2
(1− 𝑞2(1− 𝑥̃))

𝑐2
− 𝑢

¯
,

and the result is the 𝑥̃ displayed in Proposition 1. At the point 𝑥̃ neither lender has a

competitive advantage. On the left (resp. right) side of 𝑥̃, lender 1 (resp. lender 2) will

have advantage in the competition with its rival. So if 0 < 𝑥̃ < 1, entrepreneurs in [0, 𝑥̃]

are served by lender 1, while the other locations are served by lender 2.

At location 𝑧 ∈ [0, 𝑥̃], lender 1 must offer a loan rate 𝑟1 (𝑧) to maximize its own profit

from this location, subject to the constraint that an entrepreneur at 𝑧’s utility is no less

than what she would derive from the best loan rate (𝑅/2) of lender 2. If lender 1 has

no monopoly power on the entrepreneur, then lender 1’s optimal choice is to set 𝑟1 (𝑧) as

high as possible; this implies the following equation:

(𝑅− 𝑟1 (𝑧))
𝑟1 (𝑧) (1− 𝑞1𝑧)

𝑐1
− 𝑢

¯
=

(︂
𝑅− 𝑅

2

)︂ 𝑅
2
(1− 𝑞2(1− 𝑧))

𝑐2
− 𝑢

¯
.

The equation yields 𝑟1 (𝑧) = 𝑟comp
1 (𝑧). However, if 𝑟comp

1 (𝑧) is higher than lender 1’s

monopoly loan rate 𝑟𝑚1 (𝑧), then lender 1 has monopoly power on entrepreneurs at 𝑧. In

this case, lender 1 will simply choose 𝑟𝑚1 (𝑧) as its loan rate. Therefore, lender 1’s pricing

strategy is 𝑟*1 (𝑧) = min {𝑟comp
1 (𝑧), 𝑟𝑚1 (𝑧)} for entrepreneurs located in [0, 𝑥̃]. Similarly, we

can derive lender 2’s equilibrium loan rate 𝑟*2 (𝑧).

Proof of Corollary 2. If there is effective competition between lenders at 𝑧, the loan vol-

ume provided by lender 1 to entrepreneurs at 𝑧 ∈ [0, 𝑥̃] is 𝐷 (𝑧) = (𝑅−𝑟comp
1 (𝑧))𝑚1(𝑧).We

can show that 𝐷 (𝑧) = (1−𝑞2(1−𝑧))𝑅2

4𝑐2
, which is increasing in 𝑧 ∈ [0, 𝑥̃] when 𝑞2 > 0. In the

same way, we can show that the loan volume provided by lender 2 to entrepreneurs at

𝑧 ∈ (𝑥̃, 1] is decreasing in 𝑧 when 𝑞1 > 0.

Proof of Corollary 5. With effective lender competition, obviously 𝑚𝑖(𝑧) is decreasing

in 𝑐 because 𝑟comp
𝑖 (𝑧) is independent of 𝑐. For the effect of 𝑞, we focus on lender 1’s

monitoring intensity 𝑚1(𝑧) for convenience. In equilibrium, we can show that

𝜕𝑚1(𝑧)

𝜕𝑞
= 𝑅

⎛⎜⎝
√︁

𝑞(1−2𝑧)
1−𝑞𝑧

4𝑐𝑞
−

𝑧
(︁
1 +

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

)︁
2𝑐

⎞⎟⎠ .
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If 𝑧 = 1/2, then 𝜕𝑚1(𝑧)/𝜕𝑞 = −𝑅/ (4𝑐) < 0. If 𝑧 ∈ [0, 1/2), then lim
𝑞→0

𝜕𝑚1(𝑧)/𝜕𝑞 = +∞.

Therefore, 𝑚1(𝑧) is increasing in 𝑞 (except for 𝑧 = 1/2) if 𝑞 is sufficiently small.

Proof of Proposition 2. We need only look at lender 1’s aggregate profit because the

two lenders are symmetric. If lender 1 has monopoly power in the region [0, 𝑥𝑚] ⊂ [0, 1/2],

then its aggregate profit (denoted by 𝐴𝑃1) is given by

𝐴𝑃1 ≡
∫︁ 𝑥𝑚

0

𝐷(𝑧)

(︂
(𝑟𝑚1 (𝑧))

2(1− 𝑞𝑧)

2𝑐
− 𝑓

)︂
𝑑𝑧+

∫︁ 1/2

𝑥𝑚

𝐷(𝑧)

(︂
(𝑟comp

1 (𝑧))2(1− 𝑞𝑧)

2𝑐
− 𝑓

)︂
𝑑𝑧.

We can show that

𝜕𝐴𝑃1

𝜕𝑐
=

⎛⎜⎝ ∫︀ 𝑥𝑚

0

𝜕

(︂
𝐷(𝑧)

(︂
(𝑟𝑚1 (𝑧))2(1−𝑞𝑧)

2𝑐
−𝑓

)︂)︂
𝜕𝑐

𝑑𝑧 +
∫︀ 1/2

𝑥𝑚

𝜕

(︂
𝐷(𝑧)

(︂
(𝑟

comp
1 (𝑧))2(1−𝑞𝑧)

2𝑐
−𝑓

)︂)︂
𝜕𝑐

𝑑𝑧

+
(︁
𝐷(𝑥𝑚)

(︁
(𝑟𝑚1 (𝑥𝑚))2(1−𝑞𝑥𝑚)

2𝑐
− 𝑓

)︁
−𝐷(𝑥𝑚)

(︁
(𝑟comp

1 (𝑥𝑚))2(1−𝑞𝑥𝑚)

2𝑐
− 𝑓

)︁)︁
𝜕𝑥𝑚

𝜕𝑐

⎞⎟⎠ .

The third term of 𝜕𝐴𝑃1/𝜕𝑐 is equal to 0 because at location 𝑧 = 𝑥𝑚, 𝑟𝑚1 (𝑥
𝑚) is equal to

𝑟comp
1 (𝑥𝑚). Therefore, the sign of 𝜕𝐴𝑃1/𝜕𝑐 depends on the signs of its first two terms.

Obviously we have 𝜕
(︁
𝐷(𝑧)

(︁
(𝑟𝑚1 (𝑧))2(1−𝑞𝑧)

2𝑐
− 𝑓

)︁)︁
/𝜕𝑐 < 0 because lender 1’s monopoly

profit at 𝑧 must be lower when monitoring is more costly. Meanwhile, we can also show

that 𝜕
(︁
𝐷(𝑧)

(︁
(𝑟comp

1 (𝑧))2(1−𝑞𝑧)

2𝑐
− 𝑓

)︁)︁
/𝜕𝑐 < 0 because 𝐷 (𝑧) = (1−𝑞(1−𝑧))𝑅2

4𝑐
is decreasing in

𝑐 (see the proof of Corollary 2) while 𝑟comp
1 (𝑧) is independent of 𝑐 when 𝑧 ∈ (𝑥𝑚, 1/2].

Therefore, we have 𝜕𝐴𝑃1/𝜕𝑐 < 0; lender 1’s aggregate profit is decreasing in 𝑐.

Next we look at the effect of 𝑞. If 𝑞 is small enough, lender competition is effective at

all locations (i.e., 𝑥𝑚 = 0). In this case, we can show that

𝜕𝐴𝑃1

𝜕𝑞
=

∫︁ 1/2

0

⎛⎝𝑅4
√︁

𝑞(1−2𝑧)
1−𝑞𝑧

32𝑐2𝑞
+ 𝜇𝑏 (𝑞, 𝑐, 𝑧)

⎞⎠ 𝑑𝑧,

where 𝜇𝑏 (𝑞, 𝑐, 𝑧) is a term that is finite for 𝑞 → 0. For 𝑧 < 1/2, it is easy to show

lim
𝑞→0

𝑅4
√︁

𝑞(1−2𝑧)
1−𝑞𝑧

32𝑐2𝑞
→ +∞. If 𝑧 = 1/2, we have

𝑅4
√︁

𝑞(1−2𝑧)
1−𝑞𝑧

32𝑐2𝑞
= 0. Therefore, we must have

lim
𝑞→0

𝜕𝐴𝑃1

𝜕𝑞
→ +∞. As a result, lender 1’s aggregate profit is increasing in 𝑞 if 𝑞 is sufficiently

small.

Proof of Proposition 3. First we calculate 𝜕𝐿1

𝜕𝑞1
and 𝜕𝐿1

𝜕𝑐1
. A symmetric result holds for

lender 2. If lender 1 has monopoly power in the region [0, 𝑥𝑚] ⊂ [0, 𝑥̃], then

𝐿1 =

∫︁ 𝑥𝑚

0

(1− 𝑞1𝑧) 𝑟
𝑚
1 (𝑧) (𝑅− 𝑟𝑚1 (𝑧))

𝑐1
𝑑𝑧 +

∫︁ 𝑥̃

𝑥𝑚

(1− 𝑞2(1− 𝑧))𝑅2

4𝑐2
𝑑𝑧.
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If 𝑥𝑚 = 0, then obviously 𝜕𝐿1

𝜕𝑞1
< 0 and 𝜕𝐿1

𝜕𝑐1
< 0 hold because 𝜕𝑥̃

𝜕𝑞1
< 0 and 𝜕𝑥̃

𝜕𝑐1
< 0 hold. If

𝑥̃ > 𝑥𝑚 > 0, then

𝜕𝐿1

𝜕𝑞1
=

∫︁ 𝑥𝑚

0

𝜕

(︂
(1−𝑞1𝑧)𝑟𝑚1 (𝑧)(𝑅−𝑟𝑚1 (𝑧))

𝑐1

)︂
𝜕𝑞1

𝑑𝑧 +
(1− 𝑞2(1− 𝑥̃))𝑅2

4𝑐2

𝜕𝑥̃

𝜕𝑞1⏟  ⏞  
<0

(A.3)

because 𝑟𝑚1 (𝑥
𝑚) = 𝑟comp

1 (𝑥𝑚). According to Equation (A.2), 𝑟𝑚1 (𝑧) is increasing in 𝑞1 for

𝑧 > 0; an increase in 𝑞1𝑧 will make ℎ (𝑟𝑚1 (𝑧)) positive, so 𝑟𝑚1 (𝑧) must increase to keep

ℎ (𝑟𝑚1 (𝑧)) = 0 holding. Hence the first term of Equation (A.3) is negative. Therefore
𝜕𝐿1

𝜕𝑞1
< 0 must hold. In the same way, we can show that 𝜕𝐿1

𝜕𝑐1
< 0 holds.

Proof of Proposition 4. When 𝑞𝑖 = 𝑞 and 𝑐𝑖 = 𝑐, we must have 𝐿1 = 𝐿2 and 𝑥̃ = 1/2,

so we need only calculate 𝜕𝐿1

𝜕𝑞
and 𝜕𝐿1

𝜕𝑐
. If lender 1 has monopoly power in the region

[0, 𝑥𝑚] ⊂ [0, 𝑥̃], then

𝐿1|𝑞𝑖=𝑞,𝑐𝑖=𝑐 =

∫︁ 𝑥𝑚

0

(1− 𝑞𝑧) 𝑟𝑚1 (𝑧) (𝑅− 𝑟𝑚1 (𝑧))

𝑐
𝑑𝑧 +

∫︁ 1/2

𝑥𝑚

(1− 𝑞(1− 𝑧))𝑅2

4𝑐
𝑑𝑧.

If 𝑥𝑚 = 0, then obviously 𝜕𝐿1

𝜕𝑞
< 0 and 𝜕𝐿1

𝜕𝑐1
< 0 hold because (1−𝑞(1−𝑧))𝑅2

4𝑐
is decreasing in

𝑞 and 𝑐. If 𝑥̃ > 𝑥𝑚 > 0, then

𝜕𝐿1

𝜕𝑐
=

∫︁ 𝑥𝑚

0

𝜕

(︂
(1−𝑞𝑧)𝑟𝑚1 (𝑧)(𝑅−𝑟𝑚1 (𝑧))

𝑐

)︂
𝜕𝑐

𝑑𝑧 +

∫︁ 1/2

𝑥𝑚

𝜕
(︁

(1−𝑞(1−𝑧))𝑅2

4𝑐

)︁
𝜕𝑐

𝑑𝑧⏟  ⏞  
<0

(A.4)

because 𝑟𝑚1 (𝑥
𝑚) = 𝑟comp

1 (𝑥𝑚). According to Equation (A.2), 𝑟𝑚1 (𝑧) is increasing in 𝑐; an

increase in 𝑐 will make ℎ (𝑟𝑚1 (𝑧)) positive, so 𝑟𝑚1 (𝑧) must increase to keep ℎ (𝑟𝑚1 (𝑧)) = 0

holding. Hence the first term of Equation (A.4) is negative. Therefore 𝜕𝐿1

𝜕𝑐
< 0 must

hold. In the same way, we can show that 𝜕𝐿1

𝜕𝑞
< 0 holds.

Proof of Proposition 5. In the main text we have already shown that 𝑞1 = 𝑞2 = 0

and 𝑐1 = 𝑐2 = 𝑐
¯
indeed constitute an equilibrium. Here we show that the equilibrium is

unique.

First, we show that {𝑞2 = 0, 𝑐2 = 𝑐
¯
} and {𝑞1 > 0 or 𝑐1 > 𝑐

¯
} cannot be an equilibrium.

If lender 2 chooses {𝑞2 = 0, 𝑐2 = 𝑐
¯
}, then lender 1’s best response must be {𝑞1 = 0, 𝑐1 = 𝑐

¯
},

in which case lender 1’s ex ante profit is Π1 (0, 0, 𝑐
¯
, 𝑐
¯
) > 0. In contrast, if lender 1’s IT
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choice is not {𝑞1 = 0, 𝑐1 = 𝑐
¯
}, then lender 1’s market share must be 0, which means

Π1 (𝑞1, 0, 𝑐1, 𝑐
¯
)|𝑞1>0 or 𝑐1>𝑐

¯
= −𝑇 (𝑞1, 𝑐1) ≤ 0.

Therefore, {𝑞1 > 0 or 𝑐1 > 𝑐
¯
} cannot be lender 1’s best choice. Overall, {𝑞2 = 0, 𝑐2 = 𝑐

¯
}

and {𝑞1 > 0 or 𝑐1 > 𝑐
¯
} cannot be an equilibrium. Reasoning symmetrically, {𝑞1 = 0, 𝑐1 = 𝑐

¯
}

and {𝑞2 > 0 or 𝑐2 > 𝑐
¯
} cannot be an equilibrium either.

Next, we show that {𝑞1 > 0 or 𝑐1 > 𝑐
¯
} and {𝑞2 > 0 or 𝑐2 > 𝑐

¯
} cannot be an equilib-

rium. In this case, we can show that lender 1 (resp. lender 2) has incentive to deviate

if 𝑥̃ ≤ 1/2 (resp. 𝑥̃ ≥ 1/2). If 𝑥̃ ≤ 1/2, then lender 1’s market share will increase from

𝑥̃ to 1 if the lender deviates from {𝑞1 > 0 or 𝑐1 > 𝑐
¯
} to {𝑞1 = 0, 𝑐1 = 𝑐

¯
}; the cost of this

deviation is no higher than 𝑇 (0, 𝑐
¯
), while the lender’s profit from the incremental market

area (𝑥̃, 1] must satisfy

∫︁ 1

𝑥̃

𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

⃒⃒⃒⃒
𝑞1=0,𝑐1=𝑐

¯
; 𝑞2>0 or 𝑐2>𝑐

¯

>

∫︁ 1/2

0

𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

⃒⃒⃒⃒
⃒
𝑞1=𝑞2=0,𝑐1=𝑐2=𝑐

¯

.

because 𝑥̃ ≤ 1/2. Meanwhile, lender 1’s profit from its initial market area [0, 𝑥̃] will

also (weakly) increase as the lender deviates to {𝑞1 = 0, 𝑐1 = 𝑐
¯
}. Overall, because of the

deviation, lender 1’s profit at the lending competition stage will increase by more than∫︀ 1/2

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

⃒⃒⃒
𝑞1=𝑞2=0,𝑐1=𝑐2=𝑐

¯

, while the IT investment cost will increase by no more

than 𝑇 (0, 𝑐
¯
). Then, because we have the condition

Π1 (0, 0, 𝑐
¯
, 𝑐
¯
) =

∫︁ 1/2

0

𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

⃒⃒⃒⃒
⃒
𝑞1=𝑞2=0,𝑐1=𝑐2=𝑐

¯

− 𝑇 (0, 𝑐
¯
) > 0,

lender 1 will become strictly better off if it deviates to {𝑞1 = 0, 𝑐1 = 𝑐
¯
}. Therefore, if

𝑥̃ ≤ 1/2, {𝑞1 > 0 or 𝑐1 > 𝑐
¯
} and {𝑞2 > 0 or 𝑐2 > 𝑐

¯
} cannot be an equilibrium.

Reasoning symmetrically, {𝑞1 > 0 or 𝑐1 > 𝑐
¯
} and {𝑞2 > 0 or 𝑐2 > 𝑐

¯
} cannot be an equi-

librium if 𝑥̃ ≥ 1/2 because then lender 2 can be strictly better off by deviating to

{𝑞2 = 0, 𝑐2 = 𝑐
¯
}. Overall, the unique equilibrium is {𝑞1 = 0, 𝑐1 = 𝑐

¯
} and {𝑞2 = 0, 𝑐2 = 𝑐

¯
}

if we have the condition Π1 (0, 0, 𝑐
¯
, 𝑐
¯
) > 0.

Lemma A.2. Assume: (a) 𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑞𝑖 and 𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑐𝑖 are continuous functions;

(b) 𝑞 and 𝑐 are sufficiently small; (c) lim
𝑞𝑖→0

−𝑞𝑖𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑞𝑖 (resp. −𝑐𝑖𝜕𝑇 (𝑞𝑖, 𝑐𝑖) /𝜕𝑐𝑖|𝑐𝑖=𝑐
¯
)

is large enough for any 𝑐𝑖 ∈ [𝑐
¯
, 𝑐) (resp. for any 𝑞𝑖 ∈ [0, 𝑞)); (d) −𝑞𝑖

𝜕2𝑇 (𝑞𝑖,𝑐𝑖)/𝜕𝑞
2
𝑖

𝜕𝑇 (𝑞𝑖,𝑐𝑖)/𝜕𝑞𝑖
and
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−𝑐𝑖
𝜕2𝑇 (𝑞𝑖,𝑐𝑖)/𝜕𝑐

2
𝑖

𝜕𝑇 (𝑞𝑖,𝑐𝑖)/𝜕𝑐𝑖
are large enough for 𝑞𝑖 × 𝑐𝑖 ∈ (0, 𝑞) × [𝑐

¯
, 𝑐). Then there exists a unique

symmetric interior IT investment equilibrium: 𝑞𝑖 = 𝑞* ∈ (0, 𝑞) and 𝑐𝑖 = 𝑐* ∈ (𝑐
¯
, 𝑐).

Proof of Lemma A.2. Here we provide a sketch for the proof. See Online Appendix E

for a detailed proof of Lemma A.2.

In a symmetric equilibrium, the first order conditions of lender 1 w.r.t 𝑞1 and 𝑐1 are

respectively given by:

𝜕Π1

𝜕𝑞1

⃒⃒⃒⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

= 0 and
𝜕Π1

𝜕𝑐1

⃒⃒⃒⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

= 0. (A.5)

Since 𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞 = 0 when 𝑞 ≥ 𝑞 and lim
𝑞→0

− 𝑞𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞 is large enough, there must

exist a 𝑞* (𝑐) ∈ (0, 𝑞) that solves 𝜕Π1

𝜕𝑞1

⃒⃒⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

= 0 for any 𝑐 ∈ [𝑐
¯
, 𝑐]. The assumption that

−𝑞 𝜕2𝑇 (𝑞,𝑐)/𝜕𝑞2

𝜕𝑇 (𝑞,𝑐)/𝜕𝑞
is large enough for 𝑞 < 𝑞 ensures that such 𝑞* (𝑐) is unique. Meanwhile,

since 𝜕𝑇 (𝑞,𝑐)
𝜕𝑐

= 0 for 𝑐 ≥ 𝑐 and −𝑐𝜕𝑇 (𝑞, 𝑐) /𝜕𝑐 is large enough when 𝑐 = 𝑐
¯
, there must

exist a 𝑐* ∈ (𝑐
¯
, 𝑐) that solves 𝜕Π1

𝜕𝑐1

⃒⃒⃒
𝑞𝑖=𝑞*(𝑐),𝑐𝑖=𝑐

= 0. The assumption that −𝑐𝜕
2𝑇 (𝑞,𝑐)/𝜕𝑐2

𝜕𝑇 (𝑞,𝑐)/𝜕𝑐
is

large enough for 𝑐 < 𝑐 ensures that such 𝑐* is unique. Therefore, the unique solution to

(A.5) is {𝑞𝑖 = 𝑞* (𝑐*) , 𝑐𝑖 = 𝑐*} .
In a similar way, we can show that {𝑞1 = 𝑞* (𝑐*) , 𝑐1 = 𝑐*} is the unique solution to

lender 1’s first order condition given that lender 2 chooses {𝑞2 = 𝑞* (𝑐*) , 𝑐2 = 𝑐*}, so

{𝑞𝑖 = 𝑞* (𝑐*) , 𝑐𝑖 = 𝑐*} indeed constitutes an equilibrium.

Proof of Proposition 6. See Lemma A.2 for the existence of a unique symmetric

equilibrium. In the symmetric equilibrium 𝑞 and 𝑐 solves the following system of equations

(which is lender 1’s FOC):⎛⎜⎜⎝
∫︀ 1

2

0

𝑅4(1−𝑞(1−𝑧))𝑧

(︂
(1−𝑞𝑧)

(︂
1+2

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

)︂
+𝑞(1−2𝑧)

)︂
32𝑐2

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

(1−𝑞𝑧)
𝑑𝑧

+
(2−𝑞)𝑅2((2−𝑞)𝑅2−16𝑐𝑓)

128𝑐2

(︁
1
4𝑞

)︁
⎞⎟⎟⎠

⏟  ⏞  
denoted by 𝐿𝑞(𝑞,𝑐)

= −𝛽𝑞𝑄
′ (𝑞) ;

⎛⎜⎜⎝
∫︀ 1

2

0

𝑅4(1−𝑞(1−𝑧))

(︂
(1−𝑞𝑧)

(︂
1+2

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

)︂
+𝑞(1−2𝑧)

)︂
32𝑐3

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

𝑑𝑧

+
(2−𝑞)𝑅2((2−𝑞)𝑅2−16𝑐𝑓)

128𝑐2

(︁
2−𝑞
4𝑐𝑞

)︁
⎞⎟⎟⎠

⏟  ⏞  
denoted by 𝐿𝑐(𝑞,𝑐)

= −𝛽𝑐𝐻
′ (𝑐) .

Obviously, 𝐿𝑞 (𝑞, 𝑐) is decreasing 𝑐. Note that (2− 𝑞)𝑅2 − 16𝑐𝑓 ≥ 0 holds because, by
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assumption, a lender can make non-negative profit at location 𝑧 = 1/2 when it offers the

best loan rate 𝑅/2. Next we show that 𝐿𝑐 (𝑞, 𝑐) is decreasing in 𝑞. Obviously the second

term of 𝐿𝑐 (𝑞, 𝑐) is decreasing in 𝑞. The first term of 𝐿𝑐 (𝑞, 𝑐) can be rewritten as

∫︁ 1
2

0

𝑅4 (1− 𝑞 (1− 𝑧))
√
1− 𝑞𝑧

(︂(︁
2
√
1− 𝑞𝑧 −

√
𝑞𝑧√

1−2𝑧

)︁
+ 1√

𝑞(1−2𝑧)
+
√︀
𝑞 (1− 2𝑧)

)︂
32𝑐3

𝑑𝑧,

which is also decreasing in 𝑞 because 1√
𝑞(1−2𝑧)

+
√︀

𝑞 (1− 2𝑧) is decreasing in 𝑞 for 𝑞 ≤ 1.

Therefore, 𝐿𝑐 (𝑞, 𝑐) is decreasing in 𝑞.

The equation 𝐿𝑞 (𝑞, 𝑐) = −𝛽𝑞𝑄
′ (𝑞) implies that 𝑞 is an implicit function of 𝑐 and 𝛽𝑞,

and we denote the implicit function as 𝑞 (𝑐, 𝛽𝑞). For a given 𝑐, we have 𝜕𝑞 (𝑐, 𝛽𝑞) /𝜕𝛽𝑞 > 0

in the unique symmetric equilibrium because: (a)−𝛽𝑞𝑄
′(𝑞) and 𝐿𝑞 (𝑞, 𝑐) cross only once as

𝑞 varies; (b)−𝛽𝑞𝑄
′(𝑞) is higher than 𝐿𝑞 (𝑞, 𝑐) as 𝑞 approaches zero, since−lim

𝑞→0
𝑞𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞

is sufficiently large while lim
𝑞→0

𝑞𝐿𝑞 (𝑞, 𝑐) is finite. Hence 𝐿𝑐 (𝑞 (𝑐, 𝛽𝑞) , 𝑐) is decreasing in

𝛽𝑞 for a given 𝑐. If 𝛽𝑞 increases to some ̂︀𝛽𝑞 > 𝛽𝑞 while 𝑐 does not change, then we

must have 𝐿𝑐

(︁
𝑞
(︁
𝑐, ̂︀𝛽𝑞

)︁
, 𝑐
)︁

< −𝛽𝑐𝐻
′ (𝑐) because 𝛽𝑐𝐻

′ (𝑐) is not affected by 𝛽𝑞. Since

−𝑐𝜕
2𝑇 (𝑞,𝑐)/𝜕𝑐2

𝜕𝑇 (𝑞,𝑐)/𝜕𝑐
is large (which means −𝑐𝜕

2𝐻(𝑐)/𝜕𝑐2

𝜕𝐻(𝑐)/𝜕𝑐
is large) for 𝑐 ∈ [𝑐

¯
, 𝑐), to regain the sym-

metric equilibrium 𝑐 must increases to ̂︀𝑐 > 𝑐 such that 𝐿𝑐

(︁
𝑞
(︁̂︀𝑐, ̂︀𝛽𝑞

)︁
,̂︀𝑐)︁ = −𝛽𝑐𝐻

′ (̂︀𝑐).
Note that 𝜕𝑞 (𝑐, 𝛽𝑞) /𝜕𝑐 > 0 holds because 𝐿𝑞 (𝑞, 𝑐) is decreasing in 𝑐. Hence we must have

𝑞
(︁̂︀𝑐, ̂︀𝛽𝑞

)︁
> 𝑞 (𝑐, 𝛽𝑞) because ̂︀𝑐 > 𝑐 and ̂︀𝛽𝑞 > 𝛽𝑞. Overall, if 𝛽𝑞 increases to some ̂︀𝛽𝑞 > 𝛽𝑞,

then 𝑐 and 𝑞 = 𝑞 (𝑐, 𝛽𝑞) will respectively increase to ̂︀𝑐 and 𝑞
(︁̂︀𝑐, ̂︀𝛽𝑞

)︁
, which means 𝜕𝑞*

𝜕𝛽𝑞
> 0

and 𝜕𝑐*

𝜕𝛽𝑞
> 0. In a symmetric way, we can show that 𝜕𝑞*

𝜕𝛽𝑐
> 0 and 𝜕𝑐*

𝜕𝛽𝑐
> 0.

Lemma A.3. Suppose the entrepreneurs located within [0, 𝑥̃] are served by lender 1. Let

funding demand at 𝑧 ∈ [0, 𝑥̃] be 𝐷(𝑧), and let the loan rate and monitoring intensity of

lender 1 be respectively 𝑟1(𝑧) and 𝑚1 (𝑧) at 𝑧 ∈ [0, 𝑥̃]. Then lender 1’s default probability 𝜃*1

and the promised nominal return 𝑑1 to investors are jointly determined by the following

system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[𝐷𝑒𝑓𝑎𝑢𝑙𝑡] 𝑣1 (𝜃
*
1)⏟  ⏞  

return to investors conditional on 𝜃=𝜃*1

= 𝑑1;

[𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛]

∫︁ 𝜃*1

0

𝑣1 (𝜃) 𝑑𝜃⏟  ⏞  
𝜃*1𝐸[𝑣1(𝜃)|𝜃<𝜃*1]

+ (1− 𝜃*1)𝑑1 = 𝑓.

(A.6)
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Function 𝑣1 (𝜃) is defined as follows:

𝑣1 (𝜃) ≡
∫︀ 𝑥̃

0
𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧∫︀ 𝑥̃

0
𝐷(𝑧) 𝑑𝑧

,

which is entrepreneurs’ return to a unit of lender 1’s loans when the risk factor (i.e.,

economic condition) is 𝜃; 1{·} is an indicator function that equals 1 if the condition in

{·} holds and equals 0 otherwise. Lender 2’s default probability 𝜃*2 and promised nominal

return 𝑑2 can be determined in a symmetric way.

Proof of Lemma A.3. We first show why 𝑣1 (𝜃) is entrepreneurs’ return to a unit of

lender 1’s loans. When the risk factor is 𝜃, entrepreneurs with 1 − 𝑚1(𝑧) ≤ 𝜃 (resp.

1−𝑚1(𝑧) > 𝜃) will succeed (resp. fail) and repay 𝑟1(𝑧) (resp. zero) to lender 1; hence at

location 𝑧 ∈ [0, 𝑥̃] entrepreneurs’ loan repayment is 𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃}. The aggregate

loan repayment lender 1 receives from all locations (conditional on risk factor 𝜃) is thus∫︀ 𝑥̃

0
𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧 . Dividing this aggregate loan repayment by

∫︀ 𝑥̃

0
𝐷(𝑧) 𝑑𝑧 (i.e.,

total loan volume of lender 1) yields entrepreneurs’ return to a unit of lender 1’s loans,

which is exactly 𝑣1 (𝜃).

The equation system (A.6) consists of two conditions: lender 1’s default condition

and investors’ participation condition. Obviously, lender 1 can fully repay the promised

return 𝑑1 to investors if and only if 𝑣1 (𝜃) ≥ 𝑑1. Meanwhile, 𝑣1 (𝜃) is increasing in 𝜃

because 1{1−𝑚1(𝑧)≤𝜃} is more likely to be positive when 𝜃 becomes higher. If 𝜃 = 1, then

1{1−𝑚1(𝑧)≤𝜃} = 1 holds for all entrepreneurs served by lender 1; in this case lender 1 must

be solvent. If 𝜃 = 0, then 1{1−𝑚1(𝑧)≤𝜃} = 0 holds for all entrepreneurs served by lender 1;

in this case the lender must default. Therefore, there exists a unique threshold risk factor

𝜃*1 ∈ (0, 1) that makes 𝑣1 (𝜃
*
1) = 𝑑1 hold, implying that the loan repayment received by

lender 1 exactly covers the promised return to investors. When 𝜃 < 𝜃*1 holds, 𝑣1 (𝜃) < 𝑑1

will hold, which means that lender 1 defaults on its promised return to investors. Since

the risk factor 𝜃 is uniformly distributed on [0, 1], lender 1’s default probability is exactly

equal to 𝜃*1.

Next we look at the participation condition in (A.6). If 𝜃 < 𝜃*1 (which happens

with probability 𝜃*1), lender 1 defaults on its promised return, so all the loan repayment

received by lender 1 must be used to pay investors; in this case the actual return to

investors is 𝑣1 (𝜃). If 𝜃 ≥ 𝜃*1 (which happens with probability 1− 𝜃*1), lender 1 is solvent

and hence fully repays investors the promised return 𝑑1. As a result, the unconditional

expected return to investors is 𝜃*1𝐸 [𝑣1 (𝜃)| 𝜃 < 𝜃*1] + (1 − 𝜃*1)𝑑1, which is exactly the left
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hand side of the participation condition. To ensure that investors are willing to provide

funding, such an unconditional expected return to investors must equal 𝑓 , implying the

participation condition of (A.6). Combining both conditions can pin down lender 1’s

default probability.

Proof of Proposition 7 and Corollary 6. If an entrepreneur at location 𝑧 ∈ [0, 1/2]

is served by lender 2 with loan rate 𝑟2 (𝑧) and monitoring intensity 𝑟2(𝑧)(1−𝑞(1−𝑧))
𝑐

, then

the entrepreneur can derive expected utility 𝑟2(𝑧)(𝑅−𝑟2(𝑧))(1−𝑞(1−𝑧))
𝑐

−𝑢
¯
, while the lender’s

expected profit is (𝑟2(𝑧))
2(1−𝑞(1−𝑧))
2𝑐

− 𝑓 . If lender 1 serves the same entrepreneur with loan

rate 𝑟2 (𝑧), then the entrepreneur’s utility and the lender profit from serving her will

both (weakly) increase because 𝑧 ∈ [0, 1/2]. Therefore, the social planner will let lender

1 (resp. lender 2) serve the region [0, 1/2] (resp. (1/2, 1]) if lenders are willing to serve

all locations.

If lender 𝑖 serves an entrepreneur at 𝑧, then the total surplus generated (the en-

trepreneur’s utility plus the lender’s profit) is

𝑟𝑖 (𝑧) (𝑅− 𝑟𝑖 (𝑧)) (1− 𝑞𝑠𝑖)

𝑐
− 𝑢

¯
+

(𝑟𝑖 (𝑧))
2 (1− 𝑞𝑠𝑖)

2𝑐
− 𝑓,

which is maximized when 𝑟𝑖 (𝑧) = 𝑅; the resulting maximum surplus is (𝑅)2(1−𝑞𝑠𝑖)
2𝑐

−𝑢
¯
−𝑓 .

If neither lender is willing to serve location 𝑧, then it means (𝑅)2(1−𝑞𝑠𝑖)
2𝑐

− 𝑓 (lender profit

from serving an entrepreneur at 𝑧 with loan rate 𝑅) is negative for 𝑖 = 1, 2; in this case,

the social planner will not let either lender to serve location 𝑧 because (𝑅)2(1−𝑞𝑠𝑖)
2𝑐

− 𝑢
¯
− 𝑓

must be negative for any 𝑢
¯
≥ 0.

The second-best socially optimal loan rate of lender 𝑖 maximizes 𝑊 under the con-

straint 𝑚𝑖(𝑧) =
(1−𝑞𝑠𝑖)𝑟

SB
𝑖 (𝑧)

𝑐
. If 𝐾 = 0, then the first order condition satisfied by 𝑟SB𝑖 (𝑧)

is

ℎSB
(︀
𝑟SB𝑖 (𝑧)

)︀
≡

𝑟SB𝑖 (𝑧)𝑅
(︀
2𝑅− 3𝑟SB𝑖 (𝑧)

)︀
(1− 𝑞𝑠𝑖)

2𝑐
+
(︀
2𝑟SB𝑖 (𝑧)−𝑅

)︀
𝑓 = 0,

which has two solutions.

It must hold that 1 − 𝑞𝑠𝑖 > 0 because the farthest location lender 1 (or lender 2)

finances is 𝑧 = 1
2
in the symmetric case. Therefore, it is clear that ℎSB (−∞) → −∞,

ℎSB
(︀
𝑅
2

)︀
> 0 and ℎSB (+∞) → −∞; This means one solution of the FOC is smaller than

𝑅
2
, and the other solution is larger than 𝑅

2
. The second order condition (SOC), which is
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𝑅(2𝑅−6𝑟SB𝑖 (𝑧))(1−𝑞𝑠𝑖)

2𝑐
+ 2𝑓 < 0, is satisfied by the larger solution of the FOC:

𝑟SB𝑖 (𝑧) =
(2𝑅2 (1− 𝑞𝑠𝑖) + 4𝑐𝑓) +

√︁
(2𝑅2 (1− 𝑞𝑠𝑖) + 4𝑐𝑓)2 − 24𝑐𝑓𝑅2 (1− 𝑞𝑠𝑖)

6𝑅 (1− 𝑞𝑠𝑖)
>

𝑅

2
.

Given that 𝑟SB𝑖 (𝑧) > 𝑅/2, obviously ℎSB
(︀
𝑟SB𝑖 (𝑧)

)︀
is increasing in 𝑠𝑖 when 𝑞 > 0. Thus

an increase in 𝑠𝑖 (with 𝑞 > 0) will increase 𝑟SB𝑖 (𝑧) to keep ℎSB
(︀
𝑟SB𝑖 (𝑧)

)︀
holding. Therefore

Corollary 6 is proved.

The monopoly loan rate 𝑟𝑚𝑖 (𝑧) is the largest solution (which is larger than 𝑅
2
) of

following equation:

ℎ (𝑟𝑚𝑖 (𝑧)) ≡ (𝑟𝑚𝑖 (𝑧))2 (3𝑅− 4𝑟𝑚𝑖 (𝑧)) (1− 𝑞𝑠𝑖)

2𝑐
+ (2𝑟𝑚𝑖 (𝑧)−𝑅) 𝑓 = 0.

Based on the equation above, we have 𝑟𝑚𝑖 (𝑧) > 3
4
𝑅 because ℎ

(︀
3
4
𝑅
)︀
> 0 and ℎ (+∞) →

−∞ hold. Meanwhile, it is easy to see that ℎ (𝑥) > ℎSB (𝑥) if 𝑅 > 𝑥 > 3𝑅
4
. Therefore, if

𝑟𝑚𝑖 (𝑧) < 𝑅, we have ℎ (𝑟𝑚𝑖 (𝑧)) = 0 > ℎSB (𝑟𝑚𝑖 (𝑧)), which implies 𝑟SB𝑖 (𝑧) < 𝑟𝑚𝑖 (𝑧).

If 𝑟𝑚𝑖 (𝑧) = 𝑅, however, it must hold that 𝑅 =
√︁

2𝑐𝑓
1−𝑞𝑠𝑖

. In this case, lender 𝑖’s best loan

rate is 𝑅 (=
√︁

2𝑐𝑓
1−𝑞𝑠𝑖

), and it is easy to show that ℎSB (𝑅) = 0, so 𝑟𝑚𝑖 (𝑧) = 𝑟SB𝑖 (𝑧) = 𝑅 in

this case.

Proof of Proposition 8. We consider the limiting case 𝑞 = 0. In this case, lender

𝑖 must offer its best loan rate in equilibrium because there is no lender differentiation.

That is, 𝑟comp
𝑖 (𝑧) = 𝑅

2
if 𝑅 ≥ 2

√
2𝑐𝑓 and 𝑟comp

𝑖 (𝑧) =
√
2𝑐𝑓 if

√
2𝑐𝑓 < 𝑅 < 2

√
2𝑐𝑓 (see

Appendix B for lender 𝑖’s best loan rates when 𝑅 is not large). In the case 𝑅 ≥ 2
√
2𝑐𝑓 ,

it is easy to see 𝑟comp
𝑖 (𝑧) = 𝑅

2
< 𝑟SB𝑖 (𝑧) because ℎSB

(︀
𝑅
2

)︀
> 0. So we need only look at

the case
√
2𝑐𝑓 < 𝑅 < 2

√
2𝑐𝑓 .

In the case
√
2𝑐𝑓 < 𝑅 < 2

√
2𝑐𝑓 , we can show that

ℎSB (𝑟comp
𝑖 (𝑧)) =

2
√
2𝑐𝑓

(︀
𝑅−

√
2𝑐𝑓
)︀2

2𝑐
,

which is positive if 𝑅 >
√
2𝑐𝑓 holds. Therefore, we have 𝑟comp

𝑖 (𝑧) < 𝑟SB𝑖 (𝑧) if 𝑅 >
√
2𝑐𝑓

and if 𝑞 = 0; this means 𝑟comp
𝑖 (𝑧) < 𝑟SB𝑖 (𝑧) holds when 𝑞 is small enough and 𝑅 >

√
2𝑐𝑓 .

Proof of Proposition 9. In a symmetric competitive equilibrium with 𝐾 = 0, social

A11



welfare 𝑊 can be simplified to

𝑊 = 2

∫︁ 1/2

0

(︂
1

2
(𝐷(𝑧))2 +𝐷(𝑧)

(︂
(𝑟1(𝑧))

2(1− 𝑞𝑧)

2𝑐
− 𝑓

)︂)︂
𝑑𝑧.

If lender 1 has monopoly power in the region [0, 𝑥𝑚] ⊂ [0, 1/2], then following the proof

of Proposition 2 we can show that

𝜕𝑊

𝜕𝑐
=

⎛⎜⎜⎝ 2
∫︀ 𝑥𝑚

0

𝜕

(︂(︂
1
2
(𝐷(𝑧))2+𝐷(𝑧)

(︂
(𝑟𝑚1 (𝑧))2(1−𝑞𝑧)

2𝑐
−𝑓

)︂)︂)︂
𝜕𝑐

𝑑𝑧

+2
∫︀ 1/2

𝑥𝑚

𝜕

(︂(︂
1
2
(𝐷(𝑧))2+𝐷(𝑧)

(︂
(𝑟𝑐𝑜𝑚1 (𝑧))2(1−𝑞𝑧)

2𝑐
−𝑓

)︂)︂)︂
𝜕𝑐

𝑑𝑧

⎞⎟⎟⎠ . (A.7)

For 𝑧 ∈ [0, 𝑥𝑚], 𝐷 (𝑧) =
𝑟𝑚1 (𝑧)(1−𝑞𝑧)

𝑐
(𝑅− 𝑟𝑚1 (𝑧)) is decreasing in 𝑐 because 𝑟𝑚1 (𝑧) is in-

creasing in 𝑐 (Proposition C.2); meanwhile, 𝐷(𝑧)
(︁

(𝑟𝑚1 (𝑧))2(1−𝑞𝑧)

2𝑐
− 𝑓

)︁
is also decreasing

in 𝑐 according to the proof of Proposition 2. Therefore, the first term of 𝜕𝑊
𝜕𝑐

is nega-

tive. For 𝑧 ∈ (𝑥𝑚, 1/2], 𝐷 (𝑧) = (1−𝑞(1−𝑧))𝑅2

4𝑐
is obviously decreasing in 𝑐; meanwhile,

𝐷(𝑧)
(︁

(𝑟𝑐𝑜𝑚1 (𝑧))2(1−𝑞𝑧)

2𝑐
− 𝑓

)︁
is also decreasing in 𝑐 according to the proof of Proposition

2. Therefore, the second term of 𝜕𝑊
𝜕𝑐

is also negative. Overall, we have 𝜕𝑊
𝜕𝑐

< 0, which

means social welfare is decreasing in 𝑐.

Next we look at the effect of 𝑞. If 𝑞 is small enough, lender competition is effective at

all locations (i.e., 𝑥𝑚 = 0). In this case, we can show that

𝜕𝑊

𝜕𝑞
= 2

∫︁ 1/2

0

⎛⎝𝑅4
√︁

𝑞(1−2𝑧)
1−𝑞𝑧

32𝑐2𝑞
+ 𝜇𝑊 (𝑞, 𝑐, 𝑧)

⎞⎠ 𝑑𝑧,

where 𝜇𝑊 (𝑞, 𝑐, 𝑧) is a term that is finite for 𝑞 → 0. For 𝑧 < 1/2, we have lim
𝑞→0

𝑅4
√︁

𝑞(1−2𝑧)
1−𝑞𝑧

32𝑐2𝑞
→

+∞. For 𝑧 = 1/2, we have
𝑅4

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

32𝑐2𝑞
= 0. Therefore, lim

𝑞→0

𝜕𝑊
𝜕𝑞

→ +∞ must hold. As a

consequence, social welfare is increasing in 𝑞 if 𝑞 is sufficiently small.

Proof of Proposition 10. Since 𝑞* ∈ (0, 𝑞), obviously 𝑞* is excessively low if 𝑞 is

sufficiently close to zero (Proposition 9). When lenders endogenously choose their IT,

lender 𝑖’s marginal benefit of decreasing 𝑐𝑖 at the symmetric equilibrium is 𝐿𝑐 (𝑞
*, 𝑐*) (see

the proof of Proposition 6). 𝑐* is determined by

𝐿𝑐 (𝑞
*, 𝑐*) = − 𝜕𝑇 (𝑞*, 𝑐)

𝜕𝑐

⃒⃒⃒⃒
𝑐=𝑐*

.
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From the perspective of the social planner, the marginal benefit of decreasing 𝑐 is −𝜕𝑊
𝜕𝑐

(see Equation A.7 in the proof of Proposition 9). Let 𝑞𝑜 denote the social planner’s choice

of 𝑞, then the social planner’s choice about 𝑐 (denoted by 𝑐𝑜) is determined by

− 𝜕𝑊

𝜕𝑐

⃒⃒⃒⃒
𝑞=𝑞𝑜,𝑐=𝑐𝑜

= − 𝜕𝑇 (𝑞𝑜, 𝑐)

𝜕𝑐

⃒⃒⃒⃒
𝑐=𝑐𝑜

.

Note that − 𝜕𝑊
𝜕𝑐

⃒⃒
𝑞=𝑞𝑜

is finite for any 𝑞𝑜 ≥ 0 and 𝑐 ≥𝑐> 𝑅. However, it is clear that

lim
𝑞*→0

𝐿𝑐 (𝑞
*, 𝑐*) = +∞. When 𝑞 is sufficiently small, both 𝐿𝑐 (𝑞

*, 𝑐*) > − 𝜕𝑊
𝜕𝑐

⃒⃒
𝑞=𝑞𝑜

and

𝑞* < 𝑞𝑜 will hold; in this case, the following inequality must hold

𝜕𝑇 (𝑞*, 𝑐)

𝜕𝑐

⃒⃒⃒⃒
𝑐=𝑐*

<
𝜕𝑇 (𝑞𝑜, 𝑐)

𝜕𝑐

⃒⃒⃒⃒
𝑐=𝑐𝑜

< 0,

which implies 𝑐* < 𝑐𝑜 if 𝜕2𝑇 (𝑞,𝑐)
𝜕𝑞𝜕𝑐

≤ 0 (i.e., if 𝑇 (𝑞, 𝑐) is submodular).
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Appendix B: Insufficiently large 𝑅

In this part we consider lender competition under a general 𝑅 that need not be large. In

addition, we relax the assumption that investors require the same break-even expected

return 𝑓 for both lenders; instead, investors’ required expected return is 𝑓𝑖 for lender 𝑖.

All the other set-ups in the main text still hold.

Following the proof of Equation (4) in Appendix A, we can find that Equation (4)

still holds when 𝑓 is replaced by the corresponding lender’s marginal funding cost (i.e.,

𝑓𝑖 for lender 𝑖). Hence, Lemma 1 also holds. Following the way we prove Lemma 2, it

is easy to show that 𝑅/2 is still lender 𝑖’s best loan rate at 𝑧 if it can guarantee a non-

negative profit for the lender at this location. However, 𝑅/2 may not guarantee lenders

a non-negative profit at 𝑧 when 𝑅 is not large enough. Specifically, lender 1’s expected

profit from financing an entrepreneur at 𝑧 is given by:

𝜋1(𝑧) =
(𝑟1 (𝑧))

2 (1− 𝑞1𝑧)

2𝑐1
− 𝑓1

when lender 1 posts loan rate 𝑟1 (𝑧) for the entrepreneur. If 𝜋1(𝑧) is positive given

𝑟1 (𝑧) = 𝑅/2, then lender 1’s best loan rate at location 𝑧 is still 𝑅/2. However, if 𝜋1(𝑧) is

negative given 𝑟1 (𝑧) = 𝑅/2, then 𝑅/2 is no longer lender 1’s best loan rate. A symmetric

result holds for lender 2. When 𝑅/2 is too low to be lender 1’s best loan rate, the lowest

acceptable loan rate for lender 1 is determined by 𝜋1(𝑧) = 0, which yields:

𝑟1 (𝑧) = 𝑟1 (𝑧) ≡

√︃
2𝑐1𝑓1
1− 𝑞1𝑧

.

Similarly, the lowest acceptable loan rate for lender 2 equals 𝑟2 (𝑧) ≡
√︀
2𝑐2𝑓2/ (1− 𝑞2 (1− 𝑧))

if 𝑅/2 is too low to be the best loan rate. As a result, lender 𝑖 ’s best loan loan rate at

location 𝑧 is given by

𝑟𝑏𝑖 (𝑧) = max

{︂
𝑅

2
, 𝑟𝑖 (𝑧)

}︂
. (B.1)

Because the two lenders are symmetric, we need only look at how lender 1 chooses

its loan rates. If at 𝑧 lender 1 does not face enough competition pressure from lender

2, then lender 1 will maintain its monopoly loan rate 𝑟𝑚1 (𝑧). If lender 1 faces effective

competition at 𝑧, and wants to attract entrepreneurs at the location, then it must be

able to offer entrepreneurs at 𝑧 a loan rate that is more attractive than 𝑟𝑏2 (𝑧) offered by

lender 2. If lender 1 cannot do so, then location 𝑧 will be served by lender 2. If lender 1
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can do so, then its strategy is to maximize its own profit, subject to the constraint that

an entrepreneur’s expected utility is no less than what she would derive from accepting

𝑟𝑏2 (𝑧) offered by lender 2 (i.e., the maximum utility lender 2 can provide). Following this

reasoning, the equilibrium loan rate offered by lender 1, if there is effective competition

between lenders, is determined by the following equation:

(𝑅− 𝑟1 (𝑧))
𝑟1 (𝑧) (1− 𝑞1𝑧)

𝑐1
− 𝑢

¯
=
(︀
𝑅− 𝑟𝑏2 (𝑧)

)︀ 𝑟𝑏2 (𝑧) (1− 𝑞2 (1− 𝑧))

𝑐2
− 𝑢

¯
,

which yields

𝑟comp
1 (𝑧) =

𝑅

2
+

1

2

√︃
𝑅2 − 4

𝑐1
𝑐2

1− 𝑞2 (1− 𝑧)

1− 𝑞1𝑧

(︀
𝑅− 𝑟𝑏2 (𝑧)

)︀
𝑟𝑏2 (𝑧). (B.2)

In a similar way, lender 2’s loan rate, if there is effective competition between lenders, is

given by

𝑟comp
2 (𝑧) =

𝑅

2
+

1

2

√︃
𝑅2 − 4

𝑐2
𝑐1

1− 𝑞1𝑧

1− 𝑞2 (1− 𝑧)

(︀
𝑅− 𝑟𝑏1 (𝑧)

)︀
𝑟𝑏1 (𝑧). (B.3)

The indifference entrepreneur is located at the point 𝑥̃ where an entrepreneur feels in-

different about which lender to choose and meanwhile both lenders offer their best loan

rates. Therefore, 𝑥̃ is determined by the following equation:

(︀
𝑅− 𝑟𝑏1 (𝑥̃)

)︀ 𝑟𝑏1 (𝑥̃) (1− 𝑞1𝑥̃)

𝑐1
− 𝑢

¯
=
(︀
𝑅− 𝑟𝑏2 (𝑥̃)

)︀ 𝑟𝑏2 (𝑥̃) (1− 𝑞2 (1− 𝑥̃))

𝑐2
− 𝑢

¯
. (B.4)

Equation (B.4) does not yield a closed-form solution. However, at locations where both

lenders are willing to serve, 𝑅/2 ≤ 𝑟𝑏𝑖 (𝑧) ≤ 𝑅 must hold, so the left hand side of Equation

(B.4) is weakly decreasing in 𝑥̃, and the right hand side is weakly increasing in 𝑥̃. If 𝑞𝑖 > 0

for some 𝑖, then whenever there exists a solution 𝑥̃ ∈ [0, 1] that solves Equation (B.4),

such a solution must be unique (in the special case with 𝑞1 = 𝑞2 = 0, 𝑐1 = 𝑐2 and 𝑓1 = 𝑓2,

we let 𝑥̃ = 1/2).

It is possible that Equation (B.4) yields no solution in the region [0, 1]. If this occurs,

then it means one lender dominates the entire lending market. We focus on the interesting

case that both lenders can serve a positive measure of locations in equilibrium, and so

summarize our foregoing analysis with the following proposition:

Proposition B.1. Assume that there exists an 𝑥̃ ∈ (0, 1) solving Equation (B.4). Then
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there exists an equilibrium where entrepreneurs located in [0, 𝑥̃] are served by lender 1,

while the other locations are served by lender 2. Lender 1 and lender 2’s equilibrium loan

rates, 𝑟*1(𝑧) and 𝑟*2(𝑧), are respectively given by the following two equations:

𝑟*1 (𝑧) = min {𝑟comp
1 (𝑧), 𝑟𝑚1 (𝑧)} , 𝑧 ∈ [0, 𝑥̃] ;

𝑟*2 (𝑧) = min {𝑟comp
2 (𝑧), 𝑟𝑚2 (𝑧)} , 𝑧 ∈ (𝑥̃, 1] ;

where 𝑟comp
𝑖 (𝑧) is defined by Equations (B.2) and (B.3).

We need only focus on lender 1 because the two lenders are symmetric. Note that if

𝑟𝑏2 (𝑧) = 𝑅/2, then 𝑟comp
1 (𝑧) exactly equals

𝑅

2

(︃
1 +

√︃
1− 𝑐1

𝑐2

1− 𝑞2(1− 𝑧)

1− 𝑞1𝑧

)︃
,

which is what we have in Proposition 1 and does not depend on 𝑓𝑖.

In this appendix, we focus on the case 𝑟𝑏2 (𝑧) = 𝑟2 (𝑧), which implies

𝑟comp
1 (𝑧) =

𝑅

2
+

1

2

√︃
𝑅2 − 4

𝑐1
𝑐2

1− 𝑞2 (1− 𝑧)

1− 𝑞1𝑧
(𝑅− 𝑟2 (𝑧)) 𝑟2 (𝑧).

The following corollary characterizes 𝑟comp
1 (𝑧) when 𝑟𝑏2 (𝑧) = 𝑟2 (𝑧).

Corollary B.1. Let 𝑞𝑖 > 0 for some 𝑖, 𝑧 ∈ [0, 𝑥̃] and 𝑟𝑏2 (𝑧) = 𝑟2 (𝑧). With effective

lender competition at 𝑧, lender 1’s equilibrium loan rate 𝑟comp
1 (𝑧) is decreasing in 𝑧. At

the indifference location 𝑧 = 𝑥̃ , 𝑟comp
1 (𝑧) = 𝑟𝑏1 (𝑧).

This corollary is consistent with Corollary 1 except that the best loan rate offered by

lender 1 at 𝑧 = 𝑥̃ is 𝑟𝑏1 (𝑧), which may or may not be 𝑅/2.

Corollary B.2. Let 𝑞2 > 0, 𝑧 ∈ [0, 𝑥̃] and 𝑟𝑏2 (𝑧) = 𝑟2 (𝑧) hold. With effective lender

competition at 𝑧, the funding demand 𝐷(𝑧) of entrepreneurs (i.e., lender 1’s lending

volume) is increasing in 𝑧.

The intuition underlying Corollary 2 directly applies here.

Comparative statics. Next we analyze how the foregoing equilibrium is affected by

parameters. The following proposition characterizes the role of 𝑓𝑖.
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Proposition B.2. If 𝑟𝑏1 (𝑥̃) = 𝑟1 (𝑥̃) > 𝑅/2 (resp. 𝑟𝑏2 (𝑥̃) = 𝑟2 (𝑥̃) > 𝑅/2), then 𝑥̃ is

decreasing (resp. increasing) in 𝑓1 (resp. 𝑓2).

This proposition states that if lender 𝑖’s best loan rate 𝑟𝑏𝑖 (𝑥̃) at the indifference location

𝑥̃ is the zero-profit loan rate 𝑟𝑖 (𝑥̃), then decreasing the lender’s funding cost 𝑓𝑖 can increase

the market area served by the lender. The reason is that a lower 𝑓𝑖 will decrease 𝑟𝑖 (𝑧) for

a given 𝑧, which increases the maximum utility lender 𝑖 can provide. Therefore, lender 𝑖

becomes more competitive and can serve a larger market area. Note that this result does

not hold in the main text (see the formula of 𝑥̃ in Proposition 1); the reason is that with

a sufficiently large 𝑅 lender 𝑖’s funding cost has no effect on the lender’s best loan rate,

thereby the maximum utility (which represents the lender’s competitiveness) provided by

lender 𝑖 does not depend on the lender’s funding cost.

Corollary B.3. Let 𝑧 ∈ (0, 𝑥̃) and 𝑟𝑏2 (𝑧) = 𝑟2 (𝑧) hold. With effective lender competition

at 𝑧, lender 1’s equilibrium loan rate 𝑟comp
1 (𝑧) is decreasing in 𝑐1 and 𝑞1, is independent

of 𝑓1, and is increasing in 𝑐2, 𝑞2 and 𝑓2.

The effects of 𝑐𝑖 and 𝑞𝑖 are consistent and share the same intuition with those in

Corollary 3, so we focus on explaining the effects of 𝑓𝑖 here. An increase in 𝑓1 has no

effect on 𝑟comp
1 (𝑧) because lender 1 must choose 𝑟comp

1 (𝑧) to match the maximum utility

provided by lender 2, which is not affected by 𝑓1. Therefore, lender 1 need not adjust

𝑟comp
1 (𝑧) as 𝑓1 varies. As 𝑓2 increases, lender 2’s best loan rate (which equals 𝑟2 (𝑧) here)

will increase; hence the maximum utility lender 2 can provide will decrease, allowing

lender 1 to match that utility with a higher 𝑟comp
1 (𝑧).

Letting 𝑐1 = 𝑐2 = 𝑐, 𝑞1 = 𝑞2 = 𝑞, and 𝑓1 = 𝑓2 = 𝑓 , we can study the effects of the

lending sector’s information technology in the symmetric case. The following corollary

gives the result:

Corollary B.4. Let 𝑐𝑖 = 𝑐, 𝑞𝑖 = 𝑞, 𝑓𝑖 = 𝑓 and 𝑧 ∈ [0, 1/2]. With effective lender

competition at 𝑧, lender 1’s equilibrium loan rate 𝑟comp
1 (𝑧) is increasing in 𝑐, 𝑞 and 𝑓

when 𝑟𝑏2 (𝑧) = 𝑟2 (𝑧). A symmetric result holds for lender 2.

Different from Corollary 4, if 𝑟𝑏2 (𝑧) = 𝑟2 (𝑧) (i.e., if 𝑅 is not large enough to make 𝑅/2

the best loan rate of lender 2 at 𝑧), 𝑟comp
1 (𝑧) is increasing in 𝑐. The reason is that now

the best loan rate lender 2 can offer is 𝑟2 (𝑧), rather than 𝑅/2. If 𝑐 increases, then 𝑟2 (𝑧)

will also increase, which decreases the competition pressure lender 2 puts on lender 1.

As a consequence, lender 1 can choose a higher 𝑟comp
1 (𝑧) to match the maximum utility
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provided by lender 2. Symmetrically, lender 2 also faces less competition from lender 1

if 𝑐 increases, so 𝑟comp
2 (𝑧) is increasing in 𝑐 at 𝑧 ∈ (1/2, 1].

Reasoning similarly, as 𝑓 increases, lender 2’s best loan rate 𝑟2 (𝑧) will increase, which

reduces the maxiumum utility lender 2 can provide; to match this utility lender 1 can

increase 𝑟comp
1 (𝑧).

Proposition B.3. Let 𝑐𝑖 = 𝑐, 𝑞𝑖 = 𝑞, 𝑓𝑖 = 𝑓 and 𝑟𝑏𝑖 (𝑧) = 𝑟𝑖 (𝑧) hold. Lender 𝑖’s aggregate

lending profit from all locations is increasing in 𝑞 if 𝑞 is sufficiently small; a numerical

study finds that lender 𝑖’s aggregate lending profit is decreasing in 𝑐 and 𝑓 .

This result confirms the robustness of Proposition 2. As parameter 𝑞 approaches

0, lender differentiation will disappear, which will dominate the cost-saving effect and

thereby reduce lender profit. Decreasing 𝑐 or 𝑓 will intensify lender competition by

decreasing the value of 𝑟𝑖 (𝑧), but it will not reduce lender differentiation, so the cost-

saving effect of decreasing 𝑐 or 𝑓 dominates according to the numerical study.

Proposition B.4. Let 𝑟𝑏𝑖 (𝑧) = 𝑟𝑖 (𝑧) hold. Lender 𝑖’s aggregate loan volume 𝐿𝑖 is de-

creasing in 𝑞𝑖, 𝑐𝑖 and 𝑓𝑖.

The intuition of Proposition 3 directly applies here.

Proposition B.5. Let 𝑐𝑖 = 𝑐, 𝑞𝑖 = 𝑞, 𝑓𝑖 = 𝑓 and 𝑟𝑏𝑖 (𝑧) = 𝑟𝑖 (𝑧) hold. The total mass of

entrepreneurs undertaking investment projects (i.e., 𝐿1 +𝐿2) is decreasing in 𝑞, 𝑐 and 𝑓 .

This result means Proposition 4 is robust for the case without large 𝑅. The intuition

is that a higher competition intensity and better monitoring efficiency are beneficial for

entrepreneurs. In addition, a decrease in 𝑓 also benefits entrepreneurs because both

lenders must offer lower loan rates according to Corollary B.4; this does not happen in

the main text because there 𝑓 has no effect on 𝑟comp
𝑖 (𝑧).
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Appendix C: Local monopoly equilibrium

In this appendix we consider the local monopoly equilibrium, where the two lenders

do not compete with each other. Studying this equilibrium requires us to abandon the

assumption that 𝑅 is large (i.e., that 𝑅 ≥
√︀

8𝑐𝑖𝑓/(1− 𝑞𝑖) for 𝑖 = {1, 2}); otherwise, there
will exist no local monopoly equilibria. The reason is that such an equilibrium exists only

if lenders are unwilling to finance far-away entrepreneurs even when the loan rate is 𝑅,

which contradicts the condition 𝑅 ≥
√︀

8𝑐𝑖𝑓/(1− 𝑞𝑖) (𝑖 = {1, 2}) that ensures lenders are
willing to offer the loan rate 𝑅/2 to any entrepreneur.

Since the two lenders are symmetric, we focus on lender 1’s decisions. If entrepreneurs

at 𝑧 are target clients of lender 1 and if there is no lender competition, then lender 1 must

guarantee that the expected profit of an entrepreneur at 𝑧 who borrows from the lender

is non-negative; otherwise, no entrepreneur at 𝑧 would want to be served by the lender.

If lender 1’s loan rate for entrepreneurs at 𝑧 is 𝑟1(𝑧) ∈ [0, 𝑅], then an entrepreneur’s

expected net utility from investment at 𝑧 is

(𝑅− 𝑟1(𝑧))
𝑟1(𝑧)(1− 𝑞1𝑧)

𝑐1
− 𝑢

¯
,

which is non-negative for 𝑢
¯
= 0. In other words, lender 1 can serve all locations by

offering a loan rate 𝑟1(𝑧) ∈ [0, 𝑅]. Even if 𝑟1(𝑧) = 𝑅, an entrepreneur with 𝑢
¯
= 0 is

willing to accept the offer of lender 1.

Yet in a local monopoly equilibrium, there must exist locations that lender 1 is not

willing to serve. If entrepreneurs at 𝑧 are clients that lender 1 does not want to finance,

then lender 1’s expected profit from financing an entrepreneur at that location must be

negative even if lender 1 sets 𝑟1(𝑧) = 𝑅, which implies the following inequality:

𝑧 >
𝑅2 − 2𝑐1𝑓

𝑞1𝑅2
. (C.1)

Inequality (C.1) implies that lender 1 is willing to serve entrepreneurs in
[︀
0, 𝑅

2−2𝑐1𝑓
𝑞1𝑅2

]︀
if 𝑅2−2𝑐1𝑓

𝑞1𝑅2 ≥ 0. By symmetric reasoning, lender 2 is willing to serve entrepreneurs in[︀
1 − 𝑅2−2𝑐2𝑓

𝑞2𝑅2 , 1
]︀
if 1 − 𝑅2−2𝑐2𝑓

𝑞2𝑅2 ≤ 1. To ensure that the equilibrium is indeed of the local

monopoly type, there cannot exist a location that both lenders are willing to serve. Hence

the local monopoly equilibrium exists if

𝑅2 − 2𝑐1𝑓

𝑞1𝑅2
+

𝑅2 − 2𝑐2𝑓

𝑞2𝑅2
< 1. (C.2)
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In such an equilibrium, there is no competition between lenders and so lender 𝑖’s equilib-

rium loan rate for an entrepreneur at 𝑧 is the monopoly loan rate 𝑟𝑚𝑖 (𝑧).

We summarize the foregoing analysis in our next proposition.

Proposition C.1. Let 𝑅2−2𝑐𝑖𝑓
𝑞𝑖𝑅2 ≥ 0 for 𝑖 = {1, 2}, and 𝑅2−2𝑐1𝑓

𝑞1𝑅2 + 𝑅2−2𝑐2𝑓
𝑞2𝑅2 < 1. Then there

exists a local monopoly equilibrium where lender i’s loan rate at 𝑧 equals 𝑟𝑚𝑖 (𝑧). Lender 1

serves entrepreneurs in
[︀
0, 𝑅

2−2𝑐1𝑓
𝑞1𝑅2

]︀
while lender 2 serves entrepreneurs in

[︀
1−𝑅2−2𝑐2𝑓

𝑞2𝑅2 , 1
]︀
.

According to Proposition C.1, a local monopoly equilibrium will arise when 𝑅 is not

large yet 𝑞𝑖 and 𝑐𝑖 are sufficiently large. Note that 𝑞𝑖 > 0, 𝑖 = {1, 2} must hold in such an

equilibrium; otherwise Condition (C.2) will be violated.

Corollary C.1 shows how 𝑟𝑚1 (𝑧) varies with entrepreneurial location 𝑧; a symmetric

result holds for 𝑟𝑚2 (𝑧).

Corollary C.1. In the local monopoly equilibrium (which ensures 𝑞𝑖 > 0), lender 1’s

equilibrium loan rate 𝑟𝑚1 (𝑧) is increasing in 𝑧 when 𝑧 ∈
[︀
0, 𝑅

2−2𝑐1𝑓
𝑞1𝑅2

]︀
. At the location

𝑧 = 𝑅2−2𝑐1𝑓
𝑞1𝑅2 , we have 𝑟𝑚1 (𝑧) = 𝑅.

Note that the pattern of lender 1’s loan rate with respect to 𝑧 in the local monopoly

equilibrium is different from that in the case with lender competition (see Corollary 1).

The reason is that the determinants of loan rates are completely different in the two types

of equilibria. When the two lenders compete for entrepreneurs at 𝑧, what determines the

equilibrium loan rate is the intensity of lender competition. In this case, the equilibrium

loan rate is higher at the locations where the competition is less intense. In the local

monopoly equilibrium, however, lenders no longer compete with each other and so the

equilibrium loan rate reflects lenders’ costs of providing loans (monitoring and funding

costs) instead of competition intensity.

Information technology and local monopoly equilibrium. The following propo-

sition shows how information technology affects loan rates in the local monopoly equilib-

rium.

Proposition C.2. In the local monopoly equilibrium, lender 1’s equilibrium loan rate

𝑟𝑚1 (𝑧) is increasing in 𝑐1 and 𝑞1 when 𝑧 ∈
(︀
0, 𝑅

2−2𝑐1𝑓
𝑞1𝑅2

)︀
.

In the local monopoly equilibrium information technology progress (i.e., reducing 𝑐1

or 𝑞1) simply makes monitoring cheaper for lender 1 (except for the special location 𝑧 = 0

where reducing 𝑞1 has no effect on lender 1’s monitoring efficiency), which increases

lender 1’s profit per unit of loans and hence induces the lender to be more concerned
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about total funding demand. As a result, lender 1 decreases its loan rates in order to

increase the funding demand and maximize its monopoly profit.

The following corollary shows how information technology affects the market area a

lender can serve.

Corollary C.2. In the local monopoly equilibrium, the market area served by lender 1

(i.e., [0, 𝑅
2−2𝑐1𝑓
𝑞1𝑅2 ]) will shrink as 𝑞1 or/and 𝑐1 increases.

The local monopoly equilibrium arises only when both lenders find it too costly to

serve sufficiently distant entrepreneurs. As lender 1’s IT improves (i.e., 𝑞1 or/and 𝑐1

decreases), the lender will reach farther locations because monitoring becomes less costly.

Corollary C.2 implies that in the local monopoly equilibrium IT progress of lenders will

improve financial inclusion by enabling lenders to cover more locations.

Lender stability under local monopoly. In a local monopoly equilibrium, lender 1

is not affected by 𝑞2 or 𝑐2; therefore, we need only look at the effects of 𝑞1 and 𝑐1 on

lender 1’s stability. Proposition C.3 gives a relevant result.

Proposition C.3. In the local monopoly equilibrium, lender 1’s probability of default is

independent of 𝑞1.

A higher 𝑞1 has two competing effects on lender 1’s stability. The first one is a direct

cost effect: increasing 𝑞1 makes monitoring more costly, which reduces the intensity of

lender 1’s monitoring and thus reduces lender stability. The second effect is an indirect

market area effect: the region that lender 1 serves will shrink as 𝑞1 increases, which pro-

motes the lender’s stability because it can then concentrate more on nearby entrepreneurs

(who are easier to monitor). Proposition C.3 means that the market area effect exactly

offsets the cost effect.44

Increasing 𝑐1 induces a cost effect and a market area effect, just as changing 𝑞1 does.

Yet because 𝑐1 significantly affects monitoring costs for all locations, the cost effect of 𝑐1

is stronger than that of 𝑞1.
45 A numerical study establishes that the cost effect dominates

as 𝑐1 increases.

44The market area effect in our model is in line with empirical evidence. Acharya et al. (2006) find that
geographic expansion does not guarantee greater safety for banks. Deng and Elyasiani (2008) document
that increased distance between a bank holding company (BHC) and its branches is associated with
BHC value reduction and risk increase.

45In contrast, 𝑞1 does not significantly affect lender 1’s monitoring costs for given monitoring intensity
when 𝑧 is close to zero.
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Welfare analysis in the local monopoly equilibrium. In Proposition 7, we have

shown that 𝑅/2 < 𝑟SB𝑖 (𝑧) ≤ 𝑟𝑚𝑖 (𝑧) holds. According to Proposition C.1, lender 𝑖’s

equilibrium loan rate in the local monopoly equilibrium exactly equals 𝑟𝑚𝑖 (𝑧), so we have

the following corollary.

Corollary C.3. Let 𝐾 = 0. Then, in a local monopoly equilibrium where lender 1 serves

the region
[︀
0, 𝑅

2−2𝑐𝑓
𝑞𝑅2

]︀
, lender 1’s equilibrium loan rate is higher than 𝑟SB1 (𝑧) when 𝑧 ∈[︀

0, 𝑅
2−2𝑐𝑓
𝑞𝑅2

)︀
– provided that 𝑅2−2𝑐𝑓

𝑞𝑅2 > 0 – and is equal to 𝑟SB1 (𝑧) (= 𝑅) at 𝑧 = 𝑅2−2𝑐𝑓
𝑞𝑅2 .

A symmetric result holds for lender 2.

Next we analyze how the development and diffusion of information technology affect

social welfare in the local monopoly equilibrium. The following proposition shows how

social welfare is affected by 𝑞 and 𝑐 when there is no social cost of lender failure.

Proposition C.4. Let 𝐾 = 0. Social welfare is decreasing in 𝑞 and 𝑐 in the local

monopoly equilibrium.

In a local monopoly equilibrium, the welfare effects of 𝑞 and 𝑐 are not qualitatively

different. A marginal decrease in 𝑞 or 𝑐 brings only a cost-saving effect in this equilibrium,

which promotes entrepreneurial utility, lenders’ profits, and social welfare (Panels 1 and 3

of Figure C.1). Taking bankruptcy cost 𝐾 into consideration strengthens (resp. does not

change) the welfare-improving effect of decreasing 𝑐 (resp. 𝑞) because, when there is no

lender competition, a smaller 𝑐 (resp. 𝑞) enhances (resp. does not affect) lender stability;

see Panels 2 and 4 of Figure C.1.
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Figure C.1: Social Welfare and Lending Sector’s Information Technology under Local

Monopoly. This figure plots social welfare, entrepreneurial utility, and lenders’ profits against 𝑐 and 𝑞

in the local monopoly equilibrium. The parameter values are: 𝑅 = 5 and 𝑓 = 1 in all panels; 𝑐 = 10 in

Panels 1 and 2; 𝑞 = 0.4 in Panels 3 and 4; 𝐾 = 0 in Panels 1 and 3; and 𝐾 = 1/200 in Panels 2 and 4.
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Online Appendix

Appendix D: Supplementary findings

In this appendix, we provide supplementary results and explanations for the paper.

Supplementary findings for Section 3

Proposition D.1. IT and lending volume sensitivity. If 𝑞1 = 𝑞2 = 𝑞 and if there

is effective lender competition at all locations (i.e., if 𝑟comp
𝑖 (𝑧) < 𝑟𝑚𝑖 (𝑧) for all 𝑧 ∈ [0, 1]),

then the sensitivity of lender 𝑖’s aggregate loan volume to 𝑐𝑖 is decreasing in 𝑞 (i.e.,
𝜕2𝐿𝑖

𝜕𝑐𝑖𝜕𝑞

⃒⃒⃒
𝑞𝑖=𝑞

> 0).

This proposition states that the progress of a lender’s IT-basic (i.e. a lower 𝑐𝑖) will

bring more loan volume to the lender when the intensity of lender competition is higher

(i.e., when 𝑞 is smaller). Two factors contribute to the result. First, a lender’s marginal

expansion of market area (which is caused by the progress of the lender’s IT-basic) will

bring more loans to the lender if 𝑞 is smaller because entrepreneurs are better off and hence

demand more funding at each location when lenders compete more intensely. Second,

a lender’s marginal progress of IT-basic will lead to a larger market area expansion if 𝑞

is smaller (i.e., 𝜕2𝑥̃
𝜕𝑐1𝜕𝑞

⃒⃒⃒
𝑞𝑖=𝑞

> 0) because the IT-basic progress can affect more (distant)

entrepreneurs’ decisions when lender differentiation is smaller.

Endogenous lender differentiation. In our model lenders are by assumption located

at the two extremes of the linear city; that is, the differentiation of lenders’ expertise

is maximal. We find from a numerical study that such maximal lender differentiation

will arise endogenously in equilibrium if lenders have similar IT (i.e., if 𝑞1 and 𝑐1 are

respectively close to 𝑞2 and 𝑐2), because then it is a dominant strategy for either lender

to stay as distant as possible from its rival. However, if a lender’s IT is sufficiently better

than that of the other lender (e.g., if 𝑞1 and/or 𝑐1 are sufficiently lower than 𝑞2 and/or

𝑐2), then the lender with better IT would prefer a small or even zero distance from its

rival in order to obtain more market share or drive the other lender out of the market;

in contrast, the lender with inferior IT would like to maximize its distance from the rival

to protect its market share. In this case, there may be no pure equilibrium in locations.

D1



Supplementary findings for Section 4

Complementary explanation for Proposition 5. If we restrict our attention to the

case 𝑐1 = 𝑐2, which will hold in a symmetric equilibrium, then we have the following

limiting result.

Numerical Result D.1. 46 If lender competition is effective at all locations and if 𝑐1 =

𝑐2, then for 𝑞2 > 0 we have:

lim
𝑞1→0

𝜕2Π1

𝜕𝑞1𝜕𝑞2
> 0 and lim

𝑞2→0

(︂
lim
𝑞1→0

𝜕2Π1

𝜕𝑞1𝜕𝑞2

)︂
→ +∞;

lim
𝑞1→0

𝜕2Π1

𝜕𝑐1𝜕𝑞2
> 0 and lim

𝑞2→0

(︂
lim
𝑞1→0

𝜕2Π1

𝜕𝑐1𝜕𝑞2

)︂
→ +∞.

The restriction 𝑐1 = 𝑐2 ensures 0 < 𝑥̃ < 1 no matter how 𝑞1 and 𝑞2 vary.47 Numerical

Result D.1 states that if there is no gap between the two lenders’ IT-basic (i.e., if 𝑐1 = 𝑐2)

and if 𝑞1 → 0, then 𝑞2 and the IT of lender 1 are strategic complements. The reason is that

the share sensitivity effect of decreasing 𝑞2 becomes strategically complementary if 𝑞1 →
0.48 The share sensitivity effect, together with the boundary profit effect, dominate the

share squeezing effect in this limiting case. Furthermore, the strategically complementary

share sensitivity effect is infinitely large if 𝑞2 also approaches 0, because then lender

differentiation almost disappears. Then lender 1’s market share is infinitely sensitive to

its IT investment. Numerical Result D.1 is relevant to understand Proposition 5 where

the two lenders are trapped in a limiting (boundary) equilibrium.

Complementary explanation for Numerical Result 3. First, note that Numerical

Result 2 has already shown that 𝜕2Π1/(𝜕𝑞1𝜕𝑐2) > 0 holds in more general cases because

the share squeezing effect is dominant; hence it is natural that 𝜕2Π1/(𝜕𝑞1𝜕𝑐2) > 0 holds

in the interior symmetric case. Meanwhile, it is easy to show that 𝜕2𝑥̃/(𝜕𝑞1𝜕𝑐2) < 0

when 𝑞1 = 𝑞2 > 0 and 𝑐1 = 𝑐2 hold; this means the share sensitivity effect of 𝑐2 on 𝑞1 is

strategically substitutive, which strengthens the share squeezing effect. The strategically

complementary boundary profit effect is dominated.

46The grid of parameters is as follows: 𝑅 ranges from 15 to 100; 𝑐
¯
= 1.01𝑅; 𝑞2 ranges from 0 to 0.3; 𝑓

ranges from 0.8 to 1.2; 𝑐1 (= 𝑐2) ranges from 𝑐
¯
to 1.3𝑅.

47Without the restriction 𝑐1 = 𝑐2, as 𝑞1 and 𝑞2 approach 0, lender 1 will drive out (resp. be driven out
by) lender 1 if 𝑐1 < 𝑐2 (resp. 𝑐1 > 𝑐2).

48We can show that lim
𝑞1→0

𝜕2𝑥̃/(𝜕𝑞1𝜕𝑞2) > 0, lim
𝑞1→0

𝜕2𝑥̃/(𝜕𝑐1𝜕𝑞2) > 0, lim
𝑞2→0

(︂
lim
𝑞1→0

𝜕2𝑥̃/(𝜕𝑞1𝜕𝑞2)

)︂
→ +∞

and lim
𝑞2→0

(︂
lim
𝑞1→0

𝜕2𝑥̃/(𝜕𝑐1𝜕𝑞2)

)︂
→ +∞ if 𝑐1 = 𝑐2.
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For the strategic relation between 𝑐1 and 𝑞2, we can show that 𝜕2𝑥̃/(𝜕𝑐1𝜕𝑞2) > 0

when 𝑞1 = 𝑞2 > 0 and 𝑐1 = 𝑐2 hold; this means the share sensitivity effect of 𝑞2 on 𝑐1

is strategically complementary. The share sensitivity effect, together with the boundary

profit effect, dominates the strategically substitutive share squeezing effect, so 𝑐1 and 𝑞2

are strategic complements for lender 1 in the interior symmetric case.

For 𝑞1 and 𝑞2, the share squeezing effect is dominant in the interior symmetric case,

so 𝑞1 and 𝑞2 are strategic substitutes for lender 1. We can show that 𝜕2𝑥̃/(𝜕𝑞1𝜕𝑞2) > 0

when 𝑞1 = 𝑞2 > 0 and 𝑐1 = 𝑐2 hold; this means the share sensitivity effect of 𝑞2 on 𝑞1

is strategically complementary. However, the share sensitivity effect, together with the

boundary profit effect, is not strong enough to dominate the share squeezing effect.

Finally, we look at the strategic relation between 𝑐1 and 𝑐2. We can show that

𝜕2𝑥̃/(𝜕𝑐1𝜕𝑐2) = 0 when 𝑞1 = 𝑞2 > 0 and 𝑐1 = 𝑐2 hold; this means the share sensitiv-

ity effect of 𝑐2 on 𝑐1 is null. 𝑐1 and 𝑐2 are strategic substitutes for lender 1 in the interior

symmetric case because the share squeezing effect dominates the boundary profit effect.

Complementary discussion on the strategic relation between 𝑞1 and 𝑞2. Note

that Numerical Result 3 shows that 𝑞1 and 𝑞2 are strategic substitutes when 𝑞1 = 𝑞2 > 0

and 𝑐1 = 𝑐2 (the interior symmetric equilibrium belongs to this case); however, Numerical

Result D.1 shows that 𝑞1 and 𝑞2 are strategic complements in the limiting case 𝑞1 → 0.

Those are not contradictory results. The complementarity displayed in Numerical Result

D.1 highly relies on the condition 𝑞1 → 0; therefore, it is useful only when describing

lender 1’s marginal benefit of IT investment in boundary case 𝑞1 = 0. Proposition 5

exactly provides an equilibrium that belongs to the boundary case.

In contrast, Proposition 6 describes a symmetric interior equilibrium, which is beyond

the scope of Numerical Result D.1. In a symmetric interior equilibrium, 𝑞1 = 𝑞2 > 0 and

𝑐1 = 𝑐2 hold, so we can use Numerical Result 3 to understand the strategic relation

between 𝑞1 and 𝑞2. Figure D.1 reconciles Numerical Result D.1 with Numerical Result 3.

Panel 6 of Figure D.1 shows that 𝜕2Π1/(𝜕𝑞1𝜕𝑞2) is always negative when 𝑞1 = 𝑞2 = 𝑞 > 0

and 𝑐1 = 𝑐2. However, if we remove the restriction 𝑞1 = 𝑞2 and gradually let 𝑞1 approach

0 (from Panel 1 to Panel 5), we can find that the sign of 𝜕2Π1/(𝜕𝑞1𝜕𝑞2) gradually evolves

from being ambiguous to being positive.

Supplementary findings for Section 6

First-best allocation. Now we consider the first-best socially optimal case, where the

social planner can (a) determine the locations each lender serves, (b) choose the first-
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Figure D.1: The Effects of 𝑞2 on Lender 1’s Marginal Benefit of reducing 𝑞1. This figure

shows how the sign of 𝜕2Π1/ (𝜕𝑞1𝜕𝑞2) varies with parameters when lender competition is effective at all

locations and 0 < 𝑥̃ < 1. The parameter values are 𝑅 = 20, 𝑓 = 1, 𝑐1 = 1.01𝑅, 𝑐2 = 1.01𝑅.

best socially optimal loan rate schedule (denoted by {𝑟FB𝑖 (𝑧)}) of lender 𝑖, and (c) set

lenders’ monitoring intensities. The monitoring intensities chosen by the social planner

are observable for entrepreneurs, so they can have a correct expectation about investment

returns and make decisions accordingly. In the first best case, lenders’ monitoring inten-

sities are no longer constrained by Lemma 1. The following proposition characterizes the

first-best case.

Proposition D.2. Let 𝐾 = 0. At the first-best case lender 𝑖 serves the same locations

as in equilibrium. At location 𝑧 (served by lender 𝑖), the first-best socially optimal loan

rate 𝑟FB𝑖 (𝑧) and monitoring intensity 𝑚FB
𝑖 (𝑧) are given by

𝑟FB𝑖 (𝑧) =
𝑅

2
+

𝑐𝑓

(1− 𝑞𝑠𝑖)𝑅
and 𝑚FB

𝑖 (𝑧) =
(1− 𝑞𝑠𝑖)𝑅

𝑐
;

here 𝑟FB𝑖 (𝑧) ≤ 𝑟SB𝑖 (𝑧).49

In the first-best case, a social planner can directly choose monitoring intensities and

so need not rely on loan rates to incentivize lenders’ monitoring; the implication is that

𝑟FB𝑖 (𝑧) ≤ 𝑟SB𝑖 (𝑧). Meanwhile, the planner maximizes the expected value of investment

projects (net of monitoring costs) by setting the first-best monitoring intensity at 𝑧 to

49We have that 𝑟FB𝑖 (𝑧) = 𝑟SB𝑖 (𝑧) holds only when lender 𝑖’s best loan rate at 𝑧 is 𝑅.
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(1 − 𝑞𝑠𝑖)𝑅/𝑐, which is the monitoring intensity lender 𝑖 would choose in equilibrium if

and only if its loan rate were equal to the upper bound 𝑅.

The relation between 𝑟comp
𝑖 (𝑧) and the first-best socially optimal loan rate 𝑟FB𝑖 (𝑧) is

given by Proposition D.3.

Proposition D.3. Let 𝐾 = 0. If 𝑅 >
√
2𝑐𝑓 and if location 𝑧 is served by lender 𝑖, then

𝑟comp
𝑖 (𝑧) < 𝑟FB𝑖 (𝑧) holds for all locations when 𝑞 is small enough.

In the first-best case, the monitoring intensity 𝑚FB
𝑖 (𝑧) is higher than what lender 𝑖

would choose in equilibrium (unless the lender’s equilibrium loan rate is 𝑅). Since a

higher monitoring intensity benefits entrepreneurs, the social planner must control 𝑟FB𝑖 (𝑧)

in order to avoid inefficiently excessive funding demand (i.e., excessive investment) at

location 𝑧 – which means that 𝑟FB𝑖 (𝑧) cannot be too low. So when lender competition

is intense enough (i.e., when 𝑞 is small enough), the equilibrium loan rate 𝑟comp
𝑖 (𝑧) will

be lower than 𝑟FB𝑖 (𝑧). Figure D.2 illustrates the relations involving 𝑟comp
1 (𝑧), 𝑟SB1 (𝑧), and

𝑟FB1 (𝑧) in 𝑧 × 𝑞 space.

Figure D.2: Relations among 𝑟comp
1 (𝑧), 𝑟SB1 (𝑧), and 𝑟FB1 (𝑧) in 𝑧× 𝑞 space. This figure compares

𝑟𝑐𝑜𝑚𝑝
1 (𝑧) with 𝑟SB1 (𝑧) and 𝑟FB1 (𝑧) in 𝑧× 𝑞 space. The parameter values are 𝑅 = 20, 𝑐 = 1.01𝑅, and 𝑓 = 1.
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Appendix E: Detailed proof of Lemma A.2

In this appendix, we provide a detailed proof for Lemma A.2. The first order conditions

of lender 1 w.r.t 𝑞1 and 𝑐1 are respectively:

𝜕Π1 (𝑞1, 𝑞2, 𝑐1, 𝑐2)

𝜕𝑞1
= 0 and

𝜕Π1 (𝑞1, 𝑞2, 𝑐1, 𝑐2)

𝜕𝑐1
= 0.

In a symmetric equilibrium, the two equations above must hold with 𝑞1 = 𝑞2 = 𝑞 and

𝑐1 = 𝑐2 = 𝑐, which implies

𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

− 𝜕𝑇 (𝑞, 𝑐)

𝜕𝑞⏟  ⏞  
=

𝜕Π1(𝑞1,𝑞2,𝑐1,𝑐2)
𝜕𝑞1

⃒⃒⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

= 0;
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑐1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

− 𝜕𝑇 (𝑞, 𝑐)

𝜕𝑐⏟  ⏞  
=

𝜕Π1(𝑞1,𝑞2,𝑐1,𝑐2)
𝜕𝑐1

⃒⃒⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

= 0

(E.1)

where

𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

=

⎛⎜⎜⎝
∫︀ 1

2

0
−

𝑅4(1−𝑞(1−𝑧))𝑧

(︂
(1−𝑞𝑧)

(︂
1+2

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

)︂
+𝑞(1−2𝑧)

)︂
32𝑐2

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

(1−𝑞𝑧)
𝑑𝑧

+
(2−𝑞)𝑅2((2−𝑞)𝑅2−16𝑐𝑓)

128𝑐2

(︁
− 1

4𝑞

)︁
⎞⎟⎟⎠ ;

𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑐1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

=

⎛⎜⎜⎝
∫︀ 1

2

0
−

𝑅4(1−𝑞(1−𝑧))

(︂
(1−𝑞𝑧)

(︂
1+2

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

)︂
+𝑞(1−2𝑧)

)︂
32𝑐3

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

𝑑𝑧

+
(2−𝑞)𝑅2((2−𝑞)𝑅2−16𝑐𝑓)

128𝑐2

(︁
−2−𝑞

4𝑐𝑞

)︁
⎞⎟⎟⎠ .

We prove the lemma with two steps: first, we show that the system of equations (E.1)

has a unique solution; second, we prove that the solution is indeed an equilibrium.

Step 1. Now we show that the system of equations (E.1) indeed has a unique solution.

First, we show there exist a unique 𝑞 that solves

−
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

= −𝜕𝑇 (𝑞, 𝑐)

𝜕𝑞
(E.2)

for a given 𝑐 ∈ [𝑐
¯
, 𝑐]. The left hand side (LHS) of Equation (E.2) is lender 1’s marginal

benefit of decreasing 𝑞1 (under the restriction 𝑞𝑖 = 𝑞 and 𝑐𝑖 = 𝑐), while the right hand side

(RHS) is marginal cost of doing so. Obviously, both sides of Equation (E.2) are positive.
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Equation (E.2) is equivalent to

− 𝑞
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

= −𝑞
𝜕𝑇 (𝑞, 𝑐)

𝜕𝑞
(E.3)

if 𝑞 > 0. Obviously, we have that

− 𝑞
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞>0,𝑐𝑖=𝑐

> 0 and

lim
𝑞→0

⎛⎝− 𝑞
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞>0,𝑐𝑖=𝑐

⎞⎠ =
𝑅2 (𝑅2 − 8𝑐𝑓)

128𝑐2
< +∞

for all 𝑐 ∈ [𝑐
¯
, 𝑐]. Since 𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞 = 0 when 𝑞 ≥ 𝑞 and lim

𝑞→0
− 𝑞𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞 is large

enough, there must exist a 𝑞 ∈ (0, 𝑞) that solves Equation (E.3) for any 𝑐 ∈ [𝑐
¯
, 𝑐]. We

denote the largest solution as 𝑞 (𝑐) and let 𝑞max ≡ max
𝑐∈[𝑐

¯
,𝑐]
𝑞 (𝑐). The assumption lim

𝑞→0
−

𝑞𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞 is large ensures that 𝑞max must belong to the open interval (0, 𝑞).

Next we need to show that 𝑞 (𝑐) is the unique solution to Equation (E.3) when

−𝑞 𝜕2𝑇 (𝑞,𝑐)/𝜕𝑞2

𝜕𝑇 (𝑞,𝑐)/𝜕𝑞
is large enough for 𝑞 < 𝑞. Note that 𝑞 (𝑐) must be the unique solution

if −𝑞𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞 increases faster than − 𝑞𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧/𝜕𝑞1

⃒⃒⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

as 𝑞 decreases

in the interval (0, 𝑞 (𝑐)], which means:

𝜕𝑇 (𝑞, 𝑐)

𝜕𝑞
+ 𝑞

𝜕2𝑇 (𝑞, 𝑐)

𝜕𝑞2
> 𝜕

⎛⎝𝑞
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

⎞⎠ /𝜕𝑞

holds for 𝑞 ∈ (0, 𝑞 (𝑐)]. The inequality above can be written as

−1− 𝑞
𝜕2𝑇 (𝑞, 𝑐) /𝜕𝑞2

𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞
>

𝜕

(︂
𝑞
𝜕
∫︀ 𝑥̃
0 𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

)︂
/𝜕𝑞

−𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞
(E.4)

for 𝑞 ∈ (0, 𝑞 (𝑐)]. The assumption that −𝑞 𝜕2𝑇 (𝑞,𝑐)/𝜕𝑞2

𝜕𝑇 (𝑞,𝑐)/𝜕𝑞
is large enough for 𝑞 < 𝑞 means the

LHS of Inequality (E.4) is large enough for 𝑞 ∈ (0, 𝑞 (𝑐)]. This means Inequality (E.4) will

hold if the RHS of (E.4) is smaller than +∞ for 𝑞 ∈ (0, 𝑞 (𝑐)]. Since −𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞 > 0
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must hold for 𝑞 ≤ 𝑞max < 𝑞, we need only show that

𝜕

⎛⎝𝑞
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

⎞⎠ /𝜕𝑞 < +∞ (E.5)

holds for for 𝑞 ∈ (0, 𝑞 (𝑐)]. Note that

𝑞
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞,𝑐𝑖=𝑐

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
∫︁ 1

2

0

𝑞
𝑅4 (1− 𝑞 (1− 𝑧)) 𝑧

(︁
(1− 𝑞𝑧)

(︁
1 + 2

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

)︁
+ 𝑞 (1− 2𝑧)

)︁
32𝑐2

√︁
𝑞(1−2𝑧)
1−𝑞𝑧

(1− 𝑞𝑧)
𝑑𝑧

⏟  ⏞  
denoted by 𝑅𝐻𝑆𝑞

1

−1

4

(2− 𝑞)𝑅2 ((2− 𝑞)𝑅2 − 16𝑐𝑓)

128𝑐2⏟  ⏞  
denoted by 𝑅𝐻𝑆𝑞

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is clear that 𝜕𝑅𝐻𝑆𝑞
2/𝜕𝑞 < +∞. Since it holds that

𝑅𝐻𝑆𝑞
1 < 0 and lim

𝑞→0
𝑅𝐻𝑆𝑞

1 = 0,

we must have lim
𝑞→0

𝜕𝑅𝐻𝑆𝑞
1

𝜕𝑞
< 0 < +∞. Therefore, Inequality (E.5) indeed holds. As a

consequence, 𝑞 (𝑐) is the unique solution to Equation (E.3) when −𝑞 𝜕2𝑇 (𝑞,𝑐)/𝜕𝑞2

𝜕𝑇 (𝑞,𝑐)/𝜕𝑞
is large

enough for 𝑞 < 𝑞. Meanwhile, by implicit function theorem and Inequality (E.4), we can

show that max
𝑐∈[𝑐

¯
,𝑐]
𝜕𝑞 (𝑐) /𝜕𝑐 is finite.

To show that the system of equations (E.1) has a solution, next we need to show that

there exists a unique 𝑐 ∈ (𝑐
¯
, 𝑐) that solves

− 𝑐
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑐1

⃒⃒⃒⃒
⃒
𝑞𝑖=𝑞(𝑐),𝑐𝑖=𝑐

= − 𝑐
𝜕𝑇 (𝑞, 𝑐)

𝜕𝑐

⃒⃒⃒⃒
𝑞=𝑞(𝑐)

(E.6)

given that 𝑞 is equal to 𝑞 (𝑐). The LHS of Equation (E.6) must be positive and finite on

the close interval [𝑐
¯
, 𝑐]. Since 𝜕𝑇 (𝑞,𝑐)

𝜕𝑐
= 0 for 𝑐 ≥ 𝑐 and −𝑐𝜕𝑇 (𝑞, 𝑐) /𝜕𝑐 is large enough

when 𝑐 = 𝑐
¯
, there must at least exist a 𝑐 ∈ (𝑐

¯
, 𝑐) that solves Equation (E.6). We denote

the largest solution to (E.6) as 𝑐* ∈ (𝑐
¯
, 𝑐). Meanwhile, 𝑐* must be the unique solution if

−𝑐𝜕𝑇 (𝑞, 𝑐) /𝜕𝑐 increases faster than − 𝑐𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧/𝜕𝑐1

⃒⃒⃒
𝑞𝑖=𝑞(𝑐),𝑐𝑖=𝑐

as 𝑐 decreases in
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the interval [𝑐
¯
, 𝑐*], which means:

𝜕𝑇 (𝑞 (𝑐) , 𝑐)

𝜕𝑐
+ 𝑐

𝜕2𝑇 (𝑞 (𝑐) , 𝑐)

𝜕𝑐2
+

𝜕2𝑇 (𝑞 (𝑐) , 𝑐)

𝜕𝑞𝜕𝑐

𝜕𝑞 (𝑐)

𝜕𝑐
>

𝜕

(︂
𝑐
𝜕
∫︀ 𝑥̃
0 𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑐1

⃒⃒⃒
𝑞𝑖=𝑞(𝑐),𝑐𝑖=𝑐

)︂
𝜕𝑐

holds for 𝑐 ∈ [𝑐
¯
, 𝑐*]. The inequality above can be written as

−1−𝑐
𝜕2𝑇 (𝑞 (𝑐) , 𝑐) /𝜕𝑐2

𝜕𝑇 (𝑞 (𝑐) , 𝑐) /𝜕𝑐
−𝑐

𝜕2𝑇 (𝑞(𝑐),𝑐)
𝜕𝑞𝜕𝑐

𝜕𝑞(𝑐)
𝜕𝑐

𝜕𝑇 (𝑞 (𝑐) , 𝑐) /𝜕𝑐
>

𝜕

(︂
𝑐
𝜕
∫︀ 𝑥̃
0 𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑐1

⃒⃒⃒
𝑞𝑖=𝑞(𝑐),𝑐𝑖=𝑐

)︂
/𝜕𝑐

−𝜕𝑇 (𝑞 (𝑐) , 𝑐) /𝜕𝑐
(E.7)

Since max
𝑐∈[𝑐

¯
,𝑐]
𝜕𝑞 (𝑐) /𝜕𝑐 is finite, 𝜕

(︂
𝑐
𝜕
∫︀ 𝑥̃
0 𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑐1

⃒⃒⃒
𝑞𝑖=𝑞(𝑐),𝑐𝑖=𝑐

)︂
/𝜕𝑐 must be finite for all 𝑐 ∈

[𝑐
¯
, 𝑐] because it is a continuous function of 𝑐 in the close interval [𝑐

¯
, 𝑐]. Meanwhile,

the assumption that −𝑐𝜕
2𝑇 (𝑞,𝑐)/𝜕𝑐2

𝜕𝑇 (𝑞,𝑐)/𝜕𝑐
is large enough for 𝑐 ∈ [𝑐

¯
, 𝑐] ensures that the LHS of

Inequality (E.7) is large enough for 𝑐
¯
≤ 𝑐 ≤ 𝑐*; this means Inequality (E.7) indeed holds.

Therefore, 𝑐* is the unique solution to Equation (E.6). Overall, there exists a unique

solution {𝑐*, 𝑞* ≡ 𝑞 (𝑐*)} ∈ (𝑐
¯
, 𝑐)× (0, 𝑞) that solves the system of equations (E.1). This

means in a symmetric equilibrium we must have 𝑞𝑖 = 𝑞* ∈ (0, 𝑞) and 𝑐𝑖 = 𝑐* ∈ (𝑐
¯
, 𝑐).

Step 2. Next, we need to show that 𝑞𝑖 = 𝑞* and 𝑐𝑖 = 𝑐* indeed constitute an equilibrium.

To do this, we need to show that lender 1’s optimal IT investment is 𝑐1 = 𝑐* and 𝑞1 = 𝑞*

if lender 2’s investment is represented by 𝑐2 = 𝑐* and 𝑞2 = 𝑞*. Given that 𝑐2 = 𝑐* and

𝑞2 = 𝑞*, the first order conditions of lender 1 are

− 𝑞1
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞2=𝑞*, 𝑐2=𝑐*⏟  ⏞  

denoted by 𝑀𝐵𝑞1

= −𝑞1
𝜕𝑇 (𝑞1, 𝑐1)

𝜕𝑞1
and (E.8)

− 𝑐1
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑐1

⃒⃒⃒⃒
⃒
𝑞2=𝑞*, 𝑐2=𝑐*⏟  ⏞  

denoted by 𝑀𝐵𝑐1

= −𝑐1
𝜕𝑇 (𝑞1, 𝑐1)

𝜕𝑐1
(E.9)

where
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𝑀𝐵𝑞1 = −𝑞1

⎛⎜⎜⎜⎝
∫︀ 𝑥̃

0

𝑅4(1−𝑞2(1−𝑧))𝑧

(︂
𝑐1+𝑐1𝑞2(−1+𝑧)+2𝑐2(−1+𝑞1𝑧)

(︂
1+

√︂
1− 𝑐1(1−𝑞2(1−𝑧))

𝑐2(1−𝑞1𝑧)

)︂)︂
32𝑐1(𝑐2)

2(1−𝑞1𝑧)

√︂
1− 𝑐1(1−𝑞2(1−𝑧))

𝑐2(1−𝑞1𝑧)

𝑑𝑧

+
(𝑞1(−1+𝑞2)−𝑞2)𝑅2(8𝑐2𝑞1𝑓+8𝑐1𝑞2𝑓+(−𝑞1+(−1+𝑞1)𝑞2)𝑅2)

32(𝑐2𝑞1+𝑐1𝑞2)2
−𝑐2(𝑐2+𝑐1(−1+𝑞2))

(𝑐2𝑞1+𝑐1𝑞2)2

⎞⎟⎟⎟⎠ ;

𝑀𝐵𝑐1 = −𝑐1

⎛⎜⎜⎜⎝
∫︀ 𝑥̃

0

𝑅4(1−𝑞2(1−𝑧))

(︂
𝑐1+𝑐1𝑞2(−1+𝑧)+2𝑐2(−1+𝑞1𝑧)

(︂
1+

√︂
1− 𝑐1(1−𝑞2(1−𝑧))

𝑐2(1−𝑞1𝑧)

)︂)︂
32(𝑐1)

2(𝑐2)
2

√︂
1− 𝑐1(1−𝑞2(1−𝑧))

𝑐2(1−𝑞1𝑧)

𝑑𝑧

+
(𝑞1(−1+𝑞2)−𝑞2)𝑅2(8𝑐2𝑞1𝑓+8𝑐1𝑞2𝑓+(−𝑞1+(−1+𝑞1)𝑞2)𝑅2)

32(𝑐2𝑞1+𝑐1𝑞2)2
−𝑐2(𝑞2−𝑞1(−1+𝑞2))

(𝑐2𝑞1+𝑐1𝑞2)2

⎞⎟⎟⎟⎠ .

We can show that 𝑀𝐵𝑞1 > 0 and lim
𝑞1→0

𝑀𝐵𝑞1 = 0 hold, which implies

−𝜕𝑀𝐵𝑞1/𝜕𝑞1 = 𝜕

⎛⎝𝑞1
𝜕
∫︀ 𝑥̃

0
𝐷(𝑧)𝜋1(𝑧)𝑑𝑧

𝜕𝑞1

⃒⃒⃒⃒
⃒
𝑞2=𝑞*, 𝑐2=𝑐*

⎞⎠ /𝜕𝑞1 < +∞

for 𝑞1 ∈ (0, 𝑞]. Therefore, following the way in which we show the existence and uniqueness

of the solution to (E.1), we can also show that the solution to equations (E.8) and (E.9)

exists and is unique if lim
𝑞→0

− 𝑞𝜕𝑇 (𝑞, 𝑐) /𝜕𝑞 and −𝑐𝜕𝑇 (𝑞, 𝑐) /𝜕𝑐|𝑐=𝑐
¯
are large enough and

if −𝑞 𝜕2𝑇 (𝑞,𝑐)/𝜕𝑞2

𝜕𝑇 (𝑞,𝑐)/𝜕𝑞
(resp. −𝑐𝜕

2𝑇 (𝑞,𝑐)/𝜕𝑐2

𝜕𝑇 (𝑞,𝑐)/𝜕𝑐
) is large enough for 𝑞 ∈ (0, 𝑞) (resp. 𝑐 ∈ [𝑐

¯
, 𝑐)); in

this case, the solution must be 𝑞1 = 𝑞* and 𝑐1 = 𝑐*. Therefore, given that 𝑐2 = 𝑐* and

𝑞2 = 𝑞*, lender 1’s best response is to choose 𝑐1 = 𝑐* and 𝑞1 = 𝑞*; this means 𝑞𝑖 = 𝑞* and

𝑐𝑖 = 𝑐* indeed constitute an equilibrium.
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Appendix F: Fair deposit insurance

In this supplementary material, we consider the case that lenders are funded by depositors

who are fully insured. Whenever lender 𝑖 cannot fully repay its promised return to

depositors, a deposit insurance fund (DIF) would intervene and ensure that depositors

are fully paid. In exchange for the insurance fund’s service, lender 𝑖 must pay a fraction

𝛽𝑖 of its deposits to the DIF as the premium (for a similar deposit insurance set-up, see

Matutes and Vives, 1996, 2000). 𝛽𝑖 is called the “insurance premium rate”. We assume

𝛽𝑖 is fairly determined and so based on lender 𝑖’s risk (i.e., monitoring); this means the

DIF makes a zero expected profit.

Figure F.1: Timeline (at Lending Competition Stage) with Deposit Insurance.

With the deposit insurance (DI), the timeline of the lending competition stage is as

follows (see Figure F.1): First, lenders post loan rate schedules simultaneously. Once the

loan rate schedules are chosen and posted, entrepreneurs decide whether to implement

their projects and which lender to approach for funding. Given entrepreneurs’ decisions

and the loan rates of each lender, lender 𝑖 chooses its optimal monitoring intensity de-

pending on the location of entrepreneurs (i.e., 𝑚𝑖(𝑧)). The DIF – after observing 𝑚𝑖(𝑧) –

fairly determines the insurance premium rate 𝛽𝑖 for lender 𝑖. To provide loans, lender

𝑖 raises funds from depositors, and pays a fraction 𝛽𝑖 of the deposits to the DIF as the

premium.

Lender profit with the deposit insurance. Because the two lenders are symmetric,

we need only focus on lender 1 and analyze how the presence of the fair DI affects the

lender’s profit function, which determines its optimization problem. We denote lender 1’s

loan rate and monitoring intensity for entrepreneurs at 𝑧 by 𝑟1(𝑧) and 𝑚1(𝑧) respectively.

If lender 1 finances entrepreneurs located in Ω1 ⊆ [0, 1], then the total funding demand the

lender must meet is
∫︀
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧 (with 𝐷(𝑧) being the funding demand at 𝑧). To meet

the funding demand, the lender must raise 1/ (1− 𝛽1)
∫︀
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧 units of funds from

depositors and pay 𝛽1/ (1− 𝛽1)
∫︀
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧 to the DIF because the insurance premium
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rate is 𝛽1. Since insured deposits are riskless from the perspective of depositors, the

lender must promise to repay depositors 𝑓/ (1− 𝛽1)
∫︀
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧 to make them break

even.

When the common risk factor is 𝜃, the aggregate loan repayment lender 1 receives

from entrepreneurs is equal to
∫︀
𝑧∈Ω1

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧 , where 1{·} is an indicator

function that equals 1 (resp. 0) if the condition in {·} holds (resp. does not hold).

If 1{1−𝑚1(𝑧)≤𝜃} = 1, it means projects at 𝑧 succeed, so the 𝐷(𝑧) entrepreneurs (who

implement their projects at 𝑧) can repay 𝐷(𝑧)𝑟1(𝑧) to lender 1. Such aggregate loan

repayment is increasing in 𝜃. Let 𝜃*1 denote the cut-off risk factor such that lender 1 can

fully repay depositors if and only if 𝜃 ≥ 𝜃*1. Then the lender’s expected aggregate lending

profit is

𝐴𝑃1 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∫︀ 1

𝜃*1

(︂∫︁
𝑧∈Ω1

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧 −
𝑓

1− 𝛽1

∫︁
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧

)︂
⏟  ⏞  

lender 1’s monetary profit for a given 𝜃(≥𝜃*1)

𝑑𝜃

−
∫︁
𝑧∈Ω1

𝐷(𝑧)𝐶1 (𝑚1 (𝑧) , 𝑧) 𝑑𝑧⏟  ⏞  
non-pecuniary monitoring costs

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (F.1)

For a given 𝛽1, the expected profit of the DIF is

𝜋𝐷𝐼𝐹 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑓
𝛽1

1− 𝛽1

∫︁
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧⏟  ⏞  
value of the insurance premium

−
∫︀ 𝜃*1
0

(︂
𝑓

1− 𝛽1

∫︁
𝑧∈Ω1

𝐷(𝑧) 𝑑𝑧 −
∫︁
𝑧∈Ω1

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧

)︂
⏟  ⏞  

The DIF’s payment to depositors for a given 𝜃(<𝜃*1)

𝑑𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The sum of lender 1’s and the DIF’s expected profits is

𝐴𝑃1 + 𝜋𝐷𝐼𝐹 =

∫︁
𝑧∈Ω1

𝐷(𝑧) (𝑟1(𝑧)𝑚1 (𝑧)− 𝑓 − 𝐶1 (𝑚1 (𝑧) , 𝑧) ) 𝑑𝑧 > 0,

which is positive and independent of 𝛽1. Meanwhile, note that 𝜋𝐷𝐼𝐹 < 0 if 𝛽1 = 0;

𝐴𝑃1 = 0 (which means 𝜋𝐷𝐼𝐹 > 0) if 𝛽1 → 1. Therefore, there exists a positive fair

𝛽1 ∈ (0, 1) such that 𝜋𝐷𝐼𝐹 = 0, which means the deposit insurance is fairly priced. For
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such a fair 𝛽1, lender 1’s expected profit is

𝐴𝑃1 = 𝐴𝑃1 + 𝜋𝐷𝐼𝐹 =

∫︁
𝑧∈Ω1

𝐷(𝑧)(𝑟1(𝑧)𝑚1 (𝑧)− 𝑓 − 𝐶1 (𝑚1 (𝑧) , 𝑧))⏟  ⏞  
denoted by 𝜋𝐷𝐼

1 (𝑧)

𝑑𝑧.

Hence, the lender’s profit from financing an individual entrepreneur at 𝑧 ∈ Ω1 is

𝜋𝐷𝐼
1 (𝑧) = 𝑟1(𝑧)𝑚1(𝑧)− 𝑓 − 𝐶1(𝑚1(𝑧), 𝑧).

The first term of 𝜋𝐷𝐼
1 (𝑧) is the expected loan repayment lender 1 receives from an en-

trepreneur at 𝑧, because the entrepreneur repays 𝑟1(𝑧) with probability 𝑚1(𝑧). The

second term measures the expected marginal funding cost of providing loans. The intu-

ition is that lender 1 effectively bears all the funding costs of providing loans when the

DIF makes a zero expected profit (i.e., when 𝛽1 is fairly determined). The third term

represents lender 1’s non-pecuniary monitoring costs.

Note that 𝜋𝐷𝐼
1 (𝑧) is the same as 𝜋1 (𝑧) (see Equation 4), which means the presence

of the fair DI does not affect lenders’ objective functions in the lending competition.

Therefore, all propositions in Sections 3, 4 and 6 still hold here because they are based

on the objective function 𝜋𝑖 (𝑧), which is not affected by the deposit insurance.

Default probability. Since the risk factor 𝜃 is uniformly distributed on [0, 1], lender 1

would default when 𝜃 < 𝜃*1 if the lender’s default probability is equal to 𝜃*1. When 𝜃 = 𝜃*1

and Ω1 = [0, 𝑥̃], the aggregate loan repayment received by lender 1 should exactly equal

the lender’s promised payment to depositors, implying∫︁ 𝑥̃

0

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃*1} 𝑑𝑧⏟  ⏞  
aggregate loan repayment to lender 1 conditional on 𝜃 = 𝜃*1

=
𝑓

1− 𝛽1

∫︁ 𝑥̃

0

𝐷(𝑧) 𝑑𝑧⏟  ⏞  
promised repayment to depositors

. (F.2)

Meanwhile, a fair 𝛽1 implies 𝜋𝐷𝐼𝐹 = 0, so we have

𝛽1𝑓

1− 𝛽1

∫︁ 𝑥̃

0

𝐷(𝑧) 𝑑𝑧⏟  ⏞  
value of the insurance premium

=

∫︁ 𝜃*1

0

(︂
𝑓

1− 𝛽1

∫︁ 𝑥̃

0

𝐷(𝑧) 𝑑𝑧 −
∫︁ 𝑥̃

0

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧

)︂
⏟  ⏞  

The DIF’s payment to depositors for a given 𝜃(<𝜃*1)

𝑑𝜃,

which can be simplified to:

𝑓

∫︁ 𝑥̃

0

𝐷(𝑧) 𝑑𝑧 =

∫︁ 𝜃*1

0

∫︁ 𝑥̃

0

𝐷(𝑧)𝑟1(𝑧)1{1−𝑚1(𝑧)≤𝜃} 𝑑𝑧𝑑𝜃+ (1− 𝜃*1)
𝑓

1− 𝛽1

∫︁ 𝑥̃

0

𝐷(𝑧) 𝑑𝑧. (F.3)
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Inserting Equation (F.2) into Equation (F.3) and dividing both sides by
∫︀ 𝑥̃

0
𝐷(𝑧) yield

𝑓 =

∫︁ 𝜃*1

0

𝑣1 (𝜃) 𝑑𝜃 + (1− 𝜃*1) 𝑣1 (𝜃
*
1) . (F.4)

Note that in Lemma A.3 – which pins down a lender’s default probability in the baseline

model – if we insert the default condition of (A.6) into the participation condition, we can

exactly get Equation (F.4). Therefore, the presence of the fair deposit insurance does not

affect a lender’s default probability. All properties on a lender’s (or the lending sector’s)

stability displayed in Section 5 are robust.

The intuition for the result is as follows. Without deposit insurance, lender 1 must

promise a nominal return of 𝑑1 to investors for each unit of loan funding. With fair

DI, although the nominal promised return is reduced to 𝑓 (because DI makes deposits

riskless), the lender must raise 1/ (1− 𝛽1) units of funds for each unit of loans, where 𝛽1

is the DI premium rate. The reason is that, for each unit of funds raised from depositors,

lender 1 must first pay 𝛽1 units to the DIF, so only 1−𝛽1 units can be used for lending. As

a result, a unit of loans corresponds to a promised payment of 𝑓/ (1− 𝛽1) to depositors.

When 𝛽1 is fairly determined, the presence of DI neither increases nor decreases the

funding cost borne by the lender, so the equation 𝑑1 = 𝑓/(1− 𝛽1) must hold. This means

that in the presence of the fairly priced DI, 𝑓/ (1− 𝛽1) substitutes the role of the nominal

promised return 𝑑1. Therefore, allowing for such deposit insurance does not affect any

result in the paper.
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Appendix G: Unobservable monitoring intensity

Summary. Our baseline model lets investors observe lenders’ monitoring, so in Lemma

1 lender 𝑖’s monitoring intensity is not affected by 𝑑𝑖, which avoids lenders’ debt overhang

problem. To take debt overhang into account, we build a simplified model in this appendix

by assuming that: (a) there exists only one unique location (still called location 𝑧) with

entrepreneurs (that is, all the other locations are vacant and have no entrepreneurs living

there); (b) investors cannot observe lender monitoring. The rest of the set-up in Section 2

still applies. In this simplified model, the debt overhang problem arises because 𝑑𝑖 cannot

be contingent on lender 𝑖’s monitoring intensity. Suppose that the unique location 𝑧 is

served by lender 1. With unobservable monitoring the lender’s skin in the game becomes

𝑟1(𝑧) − 𝑑1, so the corresponding monitoring intensity is (1 − 𝑞1𝑧)(𝑟1(𝑧) − 𝑑1)/𝑐1. The

essential difference between 𝑐 and 𝑞 in our baseline model is robust with unobservable

monitoring. We find that lender 1’s skin in the game 𝑟1(𝑧) − 𝑑1 is increasing in 𝑞 while

it is unaffected by 𝑐, which is consistent with Corollary 4 where a lender’s loan rate is

increasing in 𝑞 but not affected by 𝑐. When 𝑞 is sufficiently small, the differentiation

effect of decreasing 𝑞 reduces lender 1’s monitoring and profit; the monitoring-reducing

effect (with small 𝑞) dominates the cost-saving and investment-spurring effects and hence

decreases social welfare. The debt overhang problem plays a role of reinforcement: As a

lower 𝑞 reduces lender 1’s monitoring and social welfare, investors will require a higher 𝑑1

to break even, which further decreases the lender’s skin in the game and hence reinforces

the decrease in monitoring and welfare. In contrast, the cost-saving and investment-

spurring effects of decreasing 𝑐 are always dominant, so lender 1’s monitoring and profit

increase and social welfare improves.

Model set-up with debt overhang. We consider the case that investors cannot observe

lenders’ monitoring intensities. To do this, we simplify the baseline model by assuming

that on the linear city there exists only one unique location with entrepreneurs of mass

𝑀 (that is, all the other locations are vacant and have no entrepreneurs living there). We

denote this unique location with entrepreneurs by location 𝑧, which means its distance

from lender 1 (resp. lender 2) is 𝑧 (resp. 1 − 𝑧). The rest of the set-up in the paper

(Section 2) still applies here. Now the two lenders compete (in Bertrand fashion) for

entrepreneurs of the unique location in the city.

The following lemma characterizes lenders’ monitoring intensities when investors can-

not observe lenders’ monitoring.
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Lemma G.1. Lender 1’s optimal monitoring intensity for entrepreneurs at 𝑧 is given by

𝑚1(𝑧) =
(𝑟1(𝑧)− 𝑑1) (1− 𝑞1𝑧)

𝑐1
=

1− 𝑞1𝑧

2𝑐1

(︃
𝑟1(𝑧) +

√︃
(𝑟1(𝑧))

2 − 4𝑐1𝑓

1− 𝑞1𝑧

)︃
.

A symmetric result holds for lender 2.

When investors cannot observe lenders’ monitoring, a debt overhang problem will

arise because the promised nominal return 𝑑1 cannot be contingent on 𝑚1(𝑧). In this

case, lender 1’s skin in the game is determined by the margin 𝑟1(𝑧)−𝑑1. As in the paper,

lender 1 has a higher monitoring incentive when 𝑟1(𝑧) and/or (1− 𝑞1𝑧) /𝑐1 are higher.

Different from the paper, 𝑚1(𝑧) is decreasing in 𝑑1 because a higher promised return will

reduce the lender’s skin in the game. The nominal promised return 𝑑1 is an endogenous

variable. Since there is only a unique location with entrepreneurs in the city, 𝑚1(𝑧) is

also lender 1’s probability of being solvent if the lender serves the location. As a result,

we have

𝑑1 =
𝑓

𝑚1(𝑧)
=

𝑓

1−𝑞1𝑧
2𝑐1

(︁
𝑟1(𝑧) +

√︁
(𝑟1(𝑧))

2 − 4𝑐1𝑓
1−𝑞1𝑧

)︁ ,
which is increasing in 𝑞1, 𝑐1 and 𝑓 , while is decreasing in 𝑟1(𝑧). The reason is that a higher

𝑟1(𝑧) or (1− 𝑞1𝑧) /𝑐1 implies a higher lender 1’s monitoring intensity, thereby decreasing

the nominal return required by investors.

In sum, increasing 𝑟1(𝑧) or (1− 𝑞1𝑧) /𝑐1 can increase lender 1’s monitoring inten-

sity, which is consistent with the result in the main text. Moreover, a higher 𝑟1(𝑧) or

(1− 𝑞1𝑧) /𝑐1 reduces 𝑑1, which further widens the margin 𝑟1(𝑧)− 𝑑1 and hence reinforces

the increase in lender 1’s monitoring intensity.

The following lemma characterizes lenders’ best loan rates and the maximum utility

they can provide.

Lemma G.2. With sufficiently large 𝑅, lender 𝑖’s best loan rate (i.e., the lower bound

of its loan rate) for the unique location 𝑧 is

𝑟𝑜𝑖 ≡
𝑅

2
+

2𝑐𝑖𝑓

𝑅 (1− 𝑞𝑖𝑠𝑖)
,

where 𝑠𝑖 is the distance between the location and lender 𝑖.
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The maximum gross utility provided by lender 𝑖 is 𝑈𝑖 (𝑟
𝑜
𝑖 ), where

𝑈𝑖 (𝑟) ≡
1− 𝑞𝑖𝑠𝑖
2𝑐𝑖

(︃
𝑟 +

√︃
𝑟2 − 4𝑐𝑖𝑓

1− 𝑞𝑖𝑠𝑖

)︃
⏟  ⏞  

monitoring intensity with loan rate 𝑟

(𝑅− 𝑟) .

Note that 𝑈𝑖 (𝑟) represents the gross utility provided by lender 𝑖 when the loan rate is

𝑟; an entrepreneur with opportunity costs 𝑢
¯
derives net utility 𝑈𝑖 (𝑟)− 𝑢

¯
if she borrowers

from the lender. As in the main text, entrepreneurial utility depends on not only the

residual return (i.e., 𝑅− 𝑟) to entrepreneurs in the event of success, but also the success

probability 𝑚𝑖 (𝑧), which is characterized by Lemma G.1. Lender 𝑖’s loan rate cannot be

too low; otherwise the negative effect on its monitoring becomes dominant. As a result,

lender 𝑖’s loan rate must be no less than its best loan rate 𝑟𝑜𝑖 . When the best loan rate 𝑟𝑜𝑖

is offered, the utility provided by lender 𝑖 will reach the maximum level 𝑈𝑖 (𝑟
𝑜
𝑖 ); increasing

the lender’s loan rate (above 𝑟𝑜𝑖 ) will decrease the utility provided by the lender.

Equilibrium loan rate. Without loss of generality, we assume

𝑈1 (𝑟
𝑜
1) > 𝑈2 (𝑟

𝑜
2) , (G.1)

which is equivalent to (1− 𝑞1𝑧)/𝑐1 > (1− 𝑞2(1− 𝑧))/𝑐2. Inequality (G.1) means that at

location 𝑧 lender 1 has better monitoring efficiency and hence can provide higher utility

than lender 2. As a result, in equilibrium the unique location 𝑧 will be served by lender

1, so we need only look at how lender 1 chooses its loan rate for entrepreneurs at 𝑧. In

the symmetric case with 𝑞𝑖 = 𝑞 and 𝑐𝑖 = 𝑐, the relation 𝑈1 (𝑟
𝑜
1) > 𝑈2 (𝑟

𝑜
2) can be reduced

to 𝑧 ∈ [0, 1/2), which means the unique location is closer to lender 1 than to lender 2.

Lender 1’s pricing strategy for location 𝑧 is exactly the same as in the main text. If

lender 1 wants to attract an entrepreneur (at 𝑧) who decides to undertake a project, it

must offer the entrepreneur a loan rate that is more attractive than the best loan rate 𝑟𝑜2

of lender 2. The best strategy is to maximize lender 1’s own profit – subject to the

constraint that the entrepreneur’s expected utility is no less than the maximum utility

𝑈2 (𝑟
𝑜
2) lender 2 can provide.

We focus on the case with effective lending competition; then lender 1’s equilibrium

competitive loan rate, denoted by 𝑟comp
1 (𝑧), is determined by the following equation:

𝑈1 (𝑟
comp
1 (𝑧)) = 𝑈2 (𝑟

𝑜
2) , (G.2)
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which has a unique solution for 𝑟comp
1 (𝑧) in the interval [𝑟𝑜1, 𝑅]. By offering 𝑟comp

1 (𝑧), the

utility provided by lender 1 exactly matches the maximum utility provided by lender

2, thereby ensuring that entrepreneurs at location 𝑧 will not approach lender 2. The

following proposition characterizes 𝑟comp
1 (𝑧).

Proposition G.1. With effective lender competition, lender 1’s equilibrium loan rate

𝑟comp
1 (𝑧) is decreasing in 𝑧 when 𝑞2 > 0. In addition, 𝑟comp

1 (𝑧) is decreasing in 𝑐1 and 𝑞1𝑧,

while increasing in 𝑐2 and 𝑞2 (1− 𝑧).

This proposition is consistent with Corollaries 1 and 3 of the main text. Note that the

curve of 𝑟comp
1 (𝑧) displays a “perverse” pattern as in Corollary 1. As 𝑧 increases, lender 1’s

(resp. lender 2’s) monitoring efficiency becomes lower (resp. higher). Therefore, lender 1

must offer a lower competitive loan rate 𝑟comp
1 (𝑧) to match the maximum utility 𝑈2 (𝑟

𝑜
2)

provided by lender 2. As 𝑐1 or 𝑞1𝑧 increases, monitoring becomes more costly for lender

1; this outcome reduces lender 1’s competitive advantage and induces it to decrease its

loan rate in an attempt to match the maximum utility provided by lender 2. Yet as 𝑐2

or 𝑞2 (1− 𝑧) increases, the maximum utility provided by lender 2 will decrease, which

allows lender 1 to increase its loan rate.

The following corollary analyzes how lender 1’s monitoring intensity is affected by

its IT. Since lender 1 serves only the unique location 𝑧, its insolvency is equivalent to

entrepreneurs’ failure at 𝑧. Therefore, lender 1’s monitoring intensity 𝑚1(𝑧) is a measure

of the lender’s stability.

Corollary G.1. With effective lender competition, lender 1’s stability (measured by

𝑚1(𝑧)) is decreasing in 𝑐1 and 𝑞1𝑧, while increasing in 𝑐2 and 𝑞2 (1− 𝑧).

An increase in 𝑐1 and 𝑞1𝑧 decreases 𝑚1(𝑧) for three reasons. First, 𝑟comp
1 (𝑧) decreases

according to Proposition G.1, which reduces lender 1’s skin in the game and its monitoring

incentive. Second, worse IT itself has a direct negative effect on lender 1’s monitoring

(Lemma G.1). Finally, there is a reinforcement effect through 𝑑1: knowing that lender

1’s lower 𝑟comp
1 (𝑧) and worse IT will reduce lender 1’s stability, investors will require

a higher 𝑑1 to break even, which further decreases lender 1’s skin in the game (i.e.,

𝑟comp
1 (𝑧)− 𝑑1) and hence monitoring intensity. Reasoning in a similar way, an increase in

𝑐2 and 𝑞2 (1− 𝑧) increases 𝑚1(𝑧) because (a) 𝑟comp
1 (𝑧) increases and (b) a decrease in 𝑑1

reinforces the increase in lender 1’s skin in the game.

Corollary G.2. Let 𝑞2 > 0 hold. With effective lender competition, the funding demand

of entrepreneurs (at the unique location served by lender 1) is increasing in 𝑧.
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This result is consistent with Corollary 2 of the main text. If 𝑞2 > 0, the maximum

utility 𝑈2 (𝑟
𝑜
2) provided by lender 2 will become higher as 𝑧 increases. To match 𝑈2 (𝑟

𝑜
2),

the utility provided by lender 1 must also increase, which increases the funding demand

of entrepreneurs at the unique location.

IT improvement in the lending sector. Next we focus on the symmetric case with

𝑞𝑖 = 𝑞 and 𝑐𝑖 = 𝑐. The following proposition shows that IT improvement in the lending

sector always spurs investment.

Proposition G.2. Let 𝑞𝑖 = 𝑞 and 𝑐𝑖 = 𝑐 hold. The funding demand of entrepreneurs (at

the unique location served by lender 1) is decreasing in 𝑞 and 𝑐.

This result is consistent with Proposition 4. As 𝑞 or 𝑐 decreases, the maximum utility

𝑈2 (𝑟
𝑜
2) provided by lender 2 will become higher, so the utility provided by lender 1 must

also increase, which increases the funding demand of entrepreneurs at the unique location.

Next we analyze the effects of 𝑞 and 𝑐 on 𝑟comp
1 (𝑧).

Proposition G.3. Let 𝑞𝑖 = 𝑞 and 𝑐𝑖 = 𝑐 hold. Then 𝑟comp
1 (𝑧) is increasing in 𝑞 and 𝑐

while 𝑟comp
1 (𝑧)− 𝑑1 is increasing in 𝑞 but it is not affected by 𝑐.

Different from Corollary 4 of the main text where 𝑟comp
1 (𝑧) is not affected by 𝑐, here

𝑟comp
1 (𝑧) will decrease as 𝑐 decreases. The reason is that a lower 𝑐 not only improves both

lenders’ basic technology but also lowers the best loan rate 𝑟𝑜𝑖 (Lemma G.2). However,

the essential difference between 𝑞 and 𝑐 is robust: 𝑐 does not control lender differentiation

as 𝑞 does.

Since 𝑐 has no differentiation effect, lowering 𝑐 reduces 𝑟comp
1 (𝑧) quite slowly and

approximately linearly (Panel 4 of Figure G.1). Therefore, the direct cost-saving effect

of decreasing 𝑐 is dominant; investors will require a lower 𝑑1, expecting that lender 1

will increase 𝑚1(𝑧) due to the cost-saving effect. The decrease in 𝑑1 offsets the decrease

in 𝑟comp
1 (𝑧), leaving lender 1’s skin in the game unaffected. In contrast, 𝑞 determines

lender differentiation, so its decrease will reduce 𝑟comp
1 (𝑧) quite rapidly; in particular, a

numerical study finds that 𝜕𝑟comp
1 (𝑧)/𝜕𝑞 will approach +∞ as 𝑞 approaches 0 (Panel 1 of

Figure G.1). As a result, the change of 𝑑1 cannot offset the decrease in 𝑟comp
1 (𝑧), implying

a lower 𝑟comp
1 (𝑧)−𝑑1. In fact, later we will show that for 𝑞 small enough the differentiation

effect of reducing 𝑞 will increase 𝑑1, thereby reinforcing the decrease in lender 1’s skin in

the game.

The following proposition characterizes the effects of IT on lender 1’s monitoring

intensity 𝑚1(𝑧) and profit.
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Proposition G.4. Let 𝑞𝑖 = 𝑞 and 𝑐𝑖 = 𝑐 hold. Lender 1’s monitoring intensity 𝑚1(𝑧)

(which measures the lender’s stability) and profit are decreasing in 𝑐. A numerical study

finds that they are increasing in 𝑞 if 𝑞 is sufficiently small.50

Decreasing 𝑞 brings a differentiation-reducing effect, which is strong enough to domi-

nate the cost-saving effect for 𝑞 small enough. Thus lender 1’s monitoring intensity and

profit are increasing in 𝑞 if 𝑞 is sufficiently small. Note that the promised nominal return

𝑑1 plays a role of reinforcement: When 𝑞 is small, its decrease will induce investors to

require a higher 𝑑1 to break even, which reinforces the decrease in lender 1’s skin in the

game, monitoring intensity and profit. See Panels 2 and 3 of Figure G.1 for an illustration.

In contrast, a decrease in 𝑐 does not affect lender 1’s skin in the game 𝑟comp
1 (𝑧)− 𝑑1,

so its monitoring intensity and lending profit will increase because monitoring becomes

cheaper (See Panels 5 and 6 of Figure G.1).

Figure G.1: The Effects of 𝑞 and 𝑐 on Lender 1’s Loan Rate, Monitoring Intensity and

Profit. This figure plots lender 1’s loan rate, monitoring intensity and lending profit against 𝑞 (Panels

1 to 3) and 𝑐 (Panels 4 to 6) in the equilibrium under lender competition. The parameter values are:

𝑅 = 20, 𝑓 = 1 and 𝑧 = 0.4 in all panels; 𝑐 = 20 in Panels 1 to 3; 𝑞 = 0.2 in Panels 4 to 6.

Social welfare. Finally, we consider how the change of 𝑞 and 𝑐 affects social welfare,

which is measured by the sum of lender 1’s profit and total entrepreneurial utility.

50The grid of parameters is as follows: 𝑅 ranges from 15 to 100; 𝑐 ranges from 0.8𝑅 to 1.2𝑅; 𝑞 ranges
from 0 to 0.3; 𝑓 ranges from 0.8 to 1.2; 𝑧 ranges from 0 to 0.49.
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Proposition G.5. Social welfare is decreasing in 𝑐. A numerical study finds that it is

increasing in 𝑞 if 𝑞 is sufficiently small.51

This result is consistent and shares the same intuition with Proposition 9. A de-

crease in 𝑞 will decrease lender differentiation and reduce lender 1’s loan rate 𝑟comp
1 (𝑧)

substantially when 𝑞 is sufficiently small. A very low 𝑟comp
1 (𝑧) implies too little mon-

itoring incentive of lender 1 from the social point of view; such a monitoring-reducing

effect of decreasing 𝑞 will dominate the cost-saving and investment-spurring effects when

𝑞 is sufficiently small, thereby reducing social welfare (Panel 1 of Figure G.2). Moreover,

𝑑1 will increase as the differentiation effect of decreasing 𝑞 is sufficiently strong, which

further reinforces the monitoring-reducing effect and the decrease in social welfare.

In contrast, decreasing 𝑐 brings no differentiation effect and does not affect lender 1’s

skin in the game 𝑟comp
1 (𝑧) − 𝑑1, so the lender’s monitoring intensity and profit increase

(Panels 5 and 6 of Figure G.1). Meanwhile, a lower 𝑐 will increase entrepreneurial utility

according to Proposition G.2. As a result, social welfare is decreasing in 𝑐 (Panel 2 of

Figure G.2).

Figure G.2: Social Welfare and Lending Sector’s Information Technology under Compe-

tition. This figure plots social welfare, entrepreneurial utility, and lenders’ profits against 𝑞 (Panel 1)

and 𝑐 (Panel 2) in the equilibrium under lender competition. The parameter values are: 𝑅 = 20, 𝑓 = 1

and 𝑧 = 0.4 in both panels; 𝑐 = 20 in Panel 1; 𝑞 = 0.2 in Panel 2.

51The grid of parameters is as follows: 𝑅 ranges from 15 to 100; 𝑐 ranges from 0.8𝑅 to 1.2𝑅; 𝑞 ranges
from 0 to 0.3; 𝑓 ranges from 0.8 to 1.2; 𝑧 ranges from 0 to 0.49.
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