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1 Introduction

It has long been emphasized that firms’ incentives to adopt a technology depend on their

expectations about future technological improvements (Schumpeter (1950)). Thus Rosenberg

(1976, page 525) argues that “as soon as we accept the perspective of the on-going nature of

much technological change, the optimal timing of an innovation becomes heavily influenced

by expectations concerning the timing and significance of future improvements.” As a result,

a firm expecting imminent technological improvements may be reluctant to adopt the current

state-of-the-art technology, for fear of committing itself to practices soon to be antiquated.

Expectations of future improvements may thus be a factor accounting for the apparently

slow rate at which, historically, some technologies—such as the steam engine in shipping, the

oxygen steel-making process, or, more recently, photovoltaic power and hybrid vehicles—have

diffused throughout the economy (Rosenberg (1972)).

Since the seminal contribution of Balcer and Lippman (1984), models of technology

adoption under technological uncertainty have assumed that the process through which

technological innovations are made available to firms is exogenous to the industry under

consideration. In particular, it is independent of market conditions, such as the evolution

of demand for the final goods manufactured by firms in the client industry. This implies

that the interactions between the supply and the demand for innovations are not taken

into account, even in a reduced-form way. This assumption may be relatively harmless

in the case of general-purpose technologies, but less so for technologies that are targeted

at a specific sector. For instance, the incentives of aircraft manufacturers to develop new

airplanes can hardly be divorced from the evolution of air traffic, and thus from airlines’

willingness to invest in new equipment. Or, to take another example, the incentives of arms

manufacturers to develop new weapon systems depend on geopolitical factors that affect the

DoD’s willingness to acquire such weapons.

To speak to these issues, this paper characterizes the optimal investment policy of a firm

who can invest in the current, stand-alone technology, or wait until a breakthrough occurs

and a superior technology becomes available. We build on a standard real-options model

in the spirit of McDonald and Siegel (1986) or Dixit and Pindyck (1994), in which market

conditions—representing, for instance, the output price in the industry under consideration—

evolve in continuous time according to a diffusion process. The novelty of our approach,

compared to real-options models of investment under technological and cash-flow uncertainty,

is that breakthroughs do not occur independently of market conditions. Specifically, we

assume that a breakthrough occurs only when market conditions become favorable enough,
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exceeding a certain threshold value. Technological uncertainty is captured by assuming that

the firm has incomplete information about the value of this threshold. Thus it does not

know when, and under which market conditions, a breakthrough will occur.

Because they are key to our results, we provide a microfoundation for these assumptions

in Section 2. The idea of this motivating example is to explicitly model the supply of the

superior technology by competing developers. These developers are assumed to be caught in

a race to be the first to supply this technology to the firm; supplying the technology involves a

development cost, the same for each developer, which is their private information. Following

the usual logic of rent dissipation in winner-take-all preemption games, as in Fudenberg and

Tirole (1985), each developer is ready, in equilibrium, to develop the new technology as

soon as the payoff from doing so covers the development cost. Assuming that the surplus

of investing in the superior technology relative to investing in the stand-alone technology is

shared between the firm and the developer who wins the race according to the Nash (1950)

bargaining solution, this implies that a breakthrough must occur in a boom—specifically,

when market conditions reach a certain threshold value, which triggers the development of

the new technology. However, because the firm does not know the cost of developing the

new technology, it does not know under which market conditions the developers just break

even either. This gives the firm’s optimal stopping problem the general structure that is

analyzed in this paper.

In this context, we study the optimal investment decision of the firm. At each point in

time, the firm can invest in the stand-alone technology, or wait until the superior technology

becomes available. A key observation is that the resulting optimal stopping problem is not

Markovian with respect to current market conditions, unlike in the real-options literature on

technological adoption that assumes a memoryless process for technological breakthroughs.

This reflects that, at each point in time, the history of market conditions encodes both the

desirability of investing in the stand-alone technology, which typically is high when current

market conditions are favorable, and what the firm has learned about the likelihood of

benefiting from the superior technology. An implication of this is that the optimal investment

policy is necessarily path-dependent.

An intuitive property of the optimal investment policy is that it is not optimal for the

firm to immediately invest in the stand-alone technology once market conditions reach a new

maximum, because this may be precisely the time at which a breakthrough occurs and the

superior technology becomes available. By contrast, once such a maximum has been reached

and market conditions start to deteriorate, then the firm for a while no longer learns about
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the advent of a breakthrough—for instance, in our motivating example, it no longer learns

about the cost of developing the new technology. This suggests that the relevant Markov

state variables are the current market conditions and their current historic maximum, as

established in Proposition 1. This result further shows that the option value of waiting

for a breakthrough can be written as the expectation of an integral with respect to future

increments of the maximum process, which is a novel feature of the optimal stopping problem

studied in this paper. An intuitive complement to this result is that, after market conditions

have reached a maximum yet no breakthrough has occurred, the firm revises its beliefs and

becomes more pessimistic about benefiting from the superior technology, at least in the near

future. In particular, the more market conditions deteriorate, the longer it will take for the

market to recover and for the firm to resume learning. Our central result, Theorem 1, shows

that, as a consequence, investment in the stand-alone technology takes place when market

conditions cross from above an investment boundary.

The resulting optimal investment policy is characterized by two phases. In a first phase,

which takes place before the market conditions have reached a certain level, the firm never

invests in the stand-alone technology; it may, however, invest in the superior technology,

should it become available. Once this level has been reached, the firm enters into a new

phase, and invests in the stand-alone technology when market conditions deteriorate enough

after having reached a maximum. The corresponding lower investment threshold is not

a constant, unlike in Dixit’s (1989) model of entry and exit decisions under uncertainty.

Rather, this threshold, which is always greater than the optimal stand-alone investment

threshold, is a strictly increasing function of the maximum market conditions achieved

so far, which describes the optimal investment boundary. This implies that the required

return for investing in the stand-alone technology is always higher than if this were the only

available technology, and that it can take arbitrarily large values following certain histories.

Theorem 1 gives a complete characterization of the optimal investment boundary and of

the firm’s optimal value function as the solutions to a variational problem; specifically, the

optimal investment boundary is shown to be the unique solution of an ordinary differential

equation that satisfies a limit condition, akin to a transversality condition, and the firm’s

value function is explicit given the investment boundary.

In the context of our motivating example, a testable implication of our model is that

investments in new technologies requiring the active cooperation of developers should take

place in booms, whereas investments in the current state-of-the-art technology should take

place in busts. This is because favorable market conditions give developers an incentive to
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supply superior technologies by increasing the surplus from investing in such technologies

rather than in the state-of-the-art technology, which they share with the firms in the client

industry. This, in turn, gives incentive to these firms to invest in the state-of-the-art

technology only if market conditions deteriorate enough, while still remaining sufficiently

favorable so that investment would take place immediately if firms were not expecting

future technological breakthroughs. We show that a decrease in development costs in the

hazard-rate order, or an increase in the value of the new technology in both absolute and

marginal terms, makes the firm more prone to bear downside risk and to delay investment

in the stand-alone technology.

The paper is organized as follows. Section 2 provides our motivating example. Section

3 discusses the relevant economic and mathematical literature. Section 4 precisely describes

the firm’s problem and the assumptions under which we solve it. Section 5 provides the

Markovian formulation of the firm’s problem. Section 6 heuristically derives and formally

states our main theorem. Section 7 is devoted to the analysis of the variational system.

Section 8 completes the proof of our main theorem by providing the required verification

argument. Section 9 discusses the implications of our analysis. Section 10 concludes. Proofs

not given in the main text are collected in Appendices A–C.

2 A Motivating Example

Our motivating example is an investment-timing game with technological breakthroughs that

can be informally described as follows. The benchmark is that of a decision maker (DM) who

decides when to invest in a project whose net value at investment time τ is R(Xτ ), where

X ≡ (Xt)t≥0 is an observable and continuous Markov process and R is a net payoff function.

The interpretation of X depends on the intended application of the model. If the DM is a

firm, X may stand for the cash-flow upon investing or for the consumers’ willingness-to-pay

for the DM’s output. If X is a social planner, X stands for the social desirability of the

investment project. Whatever the interpretation, the DM, if left to his own devices, would

solve the following standard optimal stopping problem:

VR(x) ≡ sup
τ

Ex [e−rτR(Xτ )], (1)

where r > 0 is the DM’s discount rate. Now, suppose that the DM can benefit from the help

of two competing developers D1 and D2, each of whom can develop, at some endogenously

determined random time, a new technology allowing the DM to improve his net payoff
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function from R to U > R. We refer to such an event as a breakthrough; a breakthrough

increases the value of the investment project to

VU(x) ≡ sup
τ

Ex [e−rτU(Xτ )]. (2)

An immediate implication of (1)–(2) is that VU(x) > VR(x), so that there is a surplus to be

shared between the DM and the developers.

Developing the new technology involves a sunk cost Z ∈ R+, the same for each developer.

We assume that Z is the developers’ private information; from the DM’s perspective, Z

is drawn at time 0 from a known distribution, independently of X. Like the DM, each

developer observes the evolution of X and decides when to develop the new technology; she

also observes the decisions of her competitor. To avoid coordination failures, we assume

that, if both developers simultaneously attempt to develop the new technology, then only

one of them, each with probability 1
2
, can effectively have a breakthrough.1

The payoffs of the different parties can be described as follows. If the DM invests at

time τ before a breakthrough occurs, then he obtains his stand-alone payoff R(Xτ ) and

each developer obtains a zero payoff. If a breakthrough occurs before the DM invests in

the project, at a time τB ≤ τ at which XτB = x, then the DM and the developer who has

a breakthrough share the surplus VU(x) − VR(x) according to the Nash (1950) bargaining

solution. By himself, the DM can obtain VR(x) and, by herself, the successful developer can

obtain zero. We deduce that their continuation payoffs at time τB are

G(x) ≡ 1

2
[VU(x) + VR(x)] and P (x) ≡ 1

2
[VU(x)− VR(x)], (3)

respectively, while the other developer obtains a zero payoff.

For every strategy τ of the DM, these assumptions on payoffs give to the interaction

between the developers the structure of a pure preemption game. Following Dutta and

Rustichini (1993), we obtain that, in any pure-strategy subgame-perfect equilibrium, a

breakthrough occurs at the first time at which the developers break even; that is, assuming

that P is strictly increasing and maps the state space for X onto R+, we have

τB = τX≥Y ≡ inf {t ≥ 0 : Xt ≥ Y },

where Y ≡ P−1(Z). The upshot from this discussion is that, when τ ≥ τX≥Y , the DM

pays P (XτX≥Y ) to a developer at time τX≥Y , which gives him the opportunity to benefit

from a superior payoff U(Xτ ) at time τ . Thus the DM solves the following optimal stopping

1As in Katz and Shapiro (1987), this implicitly assumes that the developer losing the coin flip does not
incur the cost Z. In Remark 1 below, we argue that dispensing with this public randomizing device would
not significantly modify the DM’s problem.
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problem:

sup
τ

Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y}

[
e−rτU(Xτ )− e−rτX≥Y P (XτX≥Y )

]]
. (4)

Because VU(XτX≥Y ) − P (XτX≥Y ) = G(XτX≥Y ) by (3), the dynamic programming principle

implies that the DM’s problem (4) can be rewritten as

sup
τ

Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y} e−rτX≥YG(XτX≥Y )

]
. (5)

This is the general form of the problem we shall deal with in this paper.

Remark Whenever a public randomization device is not available, the game can easily be

modified to allow for simultaneous developments. In that case, it is convenient to assume

that the DM and the developers share the surplus VU(x)− VR(x) according to the Shapley

(1953) value, which generalizes the Nash (1950) bargaining solution in the transferable-utility

case. We distinguish two cases. Suppose first that only one developer, say, D1, develops

the new technology at time τB. Then D2 is effectively a null player, and hence she obtains

a zero payoff; the DM’s and D1’s continuation payoffs at time t are then given by (3) as

before. Suppose next that D1 and D2 simultaneously develop the new technology at time

τB. By himself, the DM can obtain VR(x) and, by themselves, D1 and D2 can obtain zero.

Moreover, each developer does not increase the value of the coalition consisting of the DM

and the other developer. We deduce that the continuation payoffs for the DM and each

developer at time τB are

G(x) ≡ 1

3
[2VU(x) + VR(x)] and P (x) ≡ 1

6
[VU(x)− VR(x)], (6)

respectively. Notice from (3) and (6) that G(x) > G(x) and P (x) > P (x), reflecting

that the DM has a higher bargaining power when both developers have a breakthrough.

The developers’ strategies can be described using Riedel and Steg’s (2017) adaptation of

Fudenberg and Tirole’s (1985) concept of extended mixed strategies to stochastic timing

games. The equilibrium outcome is as follows. First, if X0 ≤ P−1(Z), then a single

breakthrough occurs at time τX≥Y . Next, if P−1(Z) < X0 < P−1(Z), then one or two

simultaneous breakthroughs occur at time 0, depending on the realizations of the developers’

extended mixed strategies. Finally, if X0 ≥ P−1(Z), then two simultaneous breakthroughs

occur at time 0. Thus the possibility of benefiting from two simultaneous breakthroughs can

only increase the DM’s payoff at time 0, which does not modify the solution to problem (5).

More generally, problem (5) naturally arises in any situation in which a DM decides

at each instant of time whether to settle for a basic payoff function R or to wait until
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a continuation value function G guaranteeing him a higher value than the option value

associated to R becomes available. As we will see in Section 5, because the time τX≥Y at

which this occurs is, by construction, the hitting time by X of an unknown threshold Y , the

Markovian formulation of problem (5) leads to a two-dimensional stopping problem whose

state variables are the process X and its running maximum.

3 Related Literature

This paper is closely related to the literature on technology adoption under technological

uncertainty pioneered by Balcer and Lippman (1984) and further developed by Weiss (1994),

Farzin, Huisman, and Kort (1998), and Doraszelski (2004). We share with these authors the

basic premise that the DM faces uncertainty about the arrival of a new technology or of

an improvement on the current best practice. This implies that he has an option value

of waiting before adopting the current state-of-the-art technology; for instance, Balcer and

Lippman (1984) show that it is optimal for a firm to do so only if the technology it has

in place lags behind by more than a certain amount. However, a key assumption of these

models is that the value of the current state-of-the-art technology is fixed and known to the

firm; thus, for instance, there is no output-price uncertainty. By contrast, we assume that

this value—as well as the value of the new technology, should it become available—fluctuates

randomly as a function of market conditions. Thus, in addition to technological uncertainty,

the DM in our model faces cash-flow uncertainty, as in the standard real-options models of

MacDonald and Siegel (1986) and Dixit and Pindyck (1994), or, in the context of technology

adoption, as in the pure uncertain-profitability models of Jensen (1982), McCardle (1985),

and Bhattacharya, Chatterjee, and Samuelson (1986). A contribution of our paper is to

bring together these two classes of models of technology adoption.

In this respect, it is interesting to contrast our general investment problem and the

investment-timing example of Section 2 with recent developments of the real-options literature

on investment under technological and cash-flow uncertainty. Papers in that literature, such

as Alvarez and Stenbacka (2001), Huisman and Kort (2004), Murto (2007), Chronopoulos

and Siddiqui (2015), and Chronopoulos and Lumbreras (2017), assume that technological

breakthroughs are exogenous and arise independently of the realizations of the cash-flow

process; a common assumption is that breakthroughs occur in a memoryless way, according to

an independent Poisson process. This implies that current market conditions are the relevant

Markov state variable for the firm’s optimal investment policy. By contrast, breakthroughs

are endogenous in our investment-timing example, and they arise in equilibrium when the
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market conditions become favorable enough to cover the developers’ cost of introducing

the new technology. This generates a rich two-dimensional dynamics involving current

market conditions as well as their historic maximum, and leads to the stark prediction

that investment in the stand-alone technology only takes place when market conditions

deteriorate enough after having reached a maximum.

Grenadier and Weiss (1997) is closer to the present setup. However, they do not interpret

the underlying stochastic process as a cash-flow process, but rather as describing the evolution

of the state of technological progress; they assume that a breakthrough occurs when this

process reaches a known threshold. By contrast, the threshold at which a breakthrough

occurs in our investment-timing example is unknown to the DM as he does not observe the

cost of introducing the new technology; as time goes by and the cash-flow process reaches

new maximum values without a breakthrough occurring, the DM learns about this cost,

becoming more pessimistic that he will eventually benefit from a breakthrough. Another

difference is that the payoffs upon investing are functions of the current cash-flow in our

model, whereas they are random variables independent of the state of technological progress

in Grenadier and Weiss (1997).

From a technical viewpoint, this paper is related to the literature on two-dimensional

stopping problems involving the running maximum of a one-dimensional diffusion. Following

the seminal contributions of Shepp and Shiryaev (1993), Dubins, Shepp, and Shiryaev (1994),

Graversen and Peskir (1998), and Peskir (1998), an abundant literature in mathematical

finance has used such models for the pricing of exotic options; see, for instance, Pedersen

(2000), Guo and Shepp (2001), Dai and Kwok (2006), Guo and Zervos (2010), Ott (2014),

and Rodosthenous and Zervos (2017). Compared to these studies, we do not a priori

postulate an objective functional depending on the running maximum, as, for instance,

in the analysis of Russian options; rather, we derive it from a natural investment problem

using an appropriate change-of-variables formula. Moreover, a key distinctive feature of the

Markovian formulation of our problem is that the objective functional does not involve the

running maximum itself, but rather the integral of the discounted payoff from investing in

the superior technology with respect to the increments of the maximum process, reflecting

that the DM does not know at which threshold value of the underlying diffusion process

a breakthrough will occur. Finally, most studies that provide an explicit solution to an

optimal stopping problem involving the running maximum assume a specific functional

form—typically, a geometric Brownian motion—for the underlying diffusion process; by

contrast, our results hold for a rich class of time-homogenous diffusion processes.
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4 The Model

In this section, we precisely formulate our general stopping problem and relate it to the

model of investment under technological breakthroughs informally presented in Section 2.

4.1 A General Stopping Problem

Let X ≡ (Xt)t≥0 be a one-dimensional time-homogeneous diffusion process defined over the

canonical space (Ω,F ,Px) of continuous trajectories with X0 = x under Px, which is solution

in law to the stochastic differential equation (SDE)

dXt = µ(Xt) dt + σ(Xt) dWt, t ≥ 0, (7)

driven by some Brownian motion W ≡ (Wt)t≥0. The state space for X is an interval

I ≡ (α, β), with −∞ ≤ α < β ≤ ∞, and µ and σ are continuous functions, with σ > 0

over I. We assume that α and β are inaccessible (natural) endpoints for the diffusion.

Therefore, X is regular over I and the SDE (7) admits a weak solution that is unique in

law. We also consider a random variable Y with law Q taking values in I and independent

of X. Overall, the relevant probability space for our analysis is the canonical product space

(Ω,F ,Px) ≡ (Ω× I,F ⊗B(I),Px ⊗Q), where B(I) is the Borel σ-field over I. We denote

by Ex and Ex the expectation operators associated to Px and Px, respectively.

The DM observes the evolution ofX, which he must stop at an appropriate time. Thus his

strategy space is the set TX of all stopping times of the right-continuous filtration generated

by X over the canonical space; notice that the elements of TX can be identified to functions

defined over Ω and taking values in R+ ∪ {∞}. Letting

τX≥Y ≡ inf {t ≥ 0 : Xt ≥ Y },

we define the value for the DM of stopping X at τ ∈ TX as

J(x, τ) ≡ Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y} e−rτX≥YG(XτX≥Y )

]
(8)

for some Borel functions R and G defined over I.2 The interpretation of (8) is that the DM

chooses τ without knowing the realization of Y . If he stops the process X before it reaches

Y , then he is rewarded according to R, at time τ . Otherwise, the game is stopped when X

reaches Y , and he is rewarded according to G, at time τX≥Y . Our objective is to solve the

following optimal stopping problem:

V (x) ≡ sup
τ∈TX

J(x, τ). (9)

2By convention, we let f(Xτ ) ≡ 0 over {τ =∞} for any Borel function f and any random time τ .
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Before we detail the technical assumptions we impose on the primitives of the model, it is

helpful to relate problem (9) to the investment problem with technological breakthroughs

(4), which we used to motivate our analysis in Section 2. In problem (4), the stopping time

τ belongs to TX,X≥Y , the set of all stopping times of the filtration (Gt)t≥0 over Ω defined

by Gt ≡ σ(Xs, 1{τX≥Y ≤s}; s ≤ t) for all t ≥ 0. That is, the information that accrues to the

DM up to any time t is the evolution of X up to time t, as well as the breakthrough time

at which X reaches Y , should this happen before time t. For the sake of completeness, we

verify in Appendix B that the dynamic programming principle applies to problem (4), which

allows us to rewrite it under the general form (9).

4.2 Technical Assumptions

We first recall useful properties of the solution X to the SDE (7). We next detail the

assumptions on the payoff functions R and G and on the law Q of the random variable

Y under which we solve problem (9). We also emphasize useful properties of the following

auxiliary optimal stopping problem:

VR(x) ≡ sup
τ∈TX

Ex [e−rτR(Xτ )], (10)

which plays an important role in our analysis. Intuitively, (10) corresponds to the stand-alone

investment problem in which the DM cannot benefit from a technological breakthrough.

Properties of the Diffusion X The infinitesimal generator of the diffusion X is defined

for functions u ∈ C2(I) by

Lu(x) ≡ µ(x)u′(x) +
1

2
σ2(x)u′′(x), x ∈ I. (11)

That σ > 0 over I ensures that the equation Lu − ru = 0 admits a two-dimensional

space of solutions in C2(I), spanned by two positive fundamental solutions h1 and h2,

respectively strictly increasing and strictly decreasing, that are uniquely defined up to a

linear transformation. By Abel’s theorem, the ratio

γ ≡ h′1(x)h2(x)− h1(x)h′2(x)

S ′(x)
> 0 (12)

of the Wronskian of h1 and h2 and of the derivative of the scale function of the diffusion X,

which is uniquely defined up to an affine transformation by

S(x) ≡
∫ x

c

exp

(
−
∫ y

c

2µ(z)

σ2(z)
dz

)
dy, x ∈ I (13)
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for some fixed c ∈ I, is a constant independent of x. Because the boundaries α and β of I
are natural, we know in particular that

lim
x→α+

h1(x) = 0, lim
x→β−

h1(x) =∞, lim
x→α+

h2(x) =∞, lim
x→β−

h2(x) = 0. (14)

Furthermore, defining the hitting time τ(y) ≡ inf {t ≥ 0 : Xt = y} for all y ∈ I, the mapping

(x, y) 7→ Ex [e−rτ(y)] =

{
h1(x)
h1(y)

if x ≤ y,
h2(x)
h2(y)

if x > y,
(15)

is continuous and C2 over {(x, y) ∈ I × I : x 6= y}.

Assumptions on the Payoff Functions R and G We assume that R ∈ C2(I), and that

it satisfies

A1 For each x ∈ I, Ex [supt≥0 e−rt|R(Xt)|] <∞.

A2 For each x ∈ I, limt→∞ e−rtR(Xt) = 0, Px-almost surely.

A3 There exists x0 ∈ I such that LR− rR > 0 over (α, x0) and LR− rR < 0 over (x0, β).

A1 guarantees that the family (e−rτR(Xτ ))τ∈TX is uniformly integrable. A1–A2 imply the

useful growth property

lim
x→α+

R(x)

h2(x)
= lim

x→β−

R(x)

h1(x)
= 0 (16)

and are in line with the convention made in Footnote 2. A3 guarantees that the optimal

stopping region {x ∈ I : VR(x) = R(x)} for the stand-alone optimal stopping problem (10)

is of the form [xR, β) for some threshold xR > x0, so that

VR(x) =

{
h1(x)
h1(xR)

R(xR) if x < xR,

R(x) if x ≥ xR,
(17)

and the smooth-fit property applies at xR, that is, R′(xR) =
h′1(xR)

h1(xR)
R(xR) (Peskir and

Shiryaev (2006), Dayanik and Karatzas (2003, Corollary 7.1)). It follows from standard

optimal stopping theory that (e−rtVR(Xt))t≥0 is a supermartingale and that LVR − rVR ≤ 0

over I \ {xR}. The following lemma holds.

Lemma 1 VR > 0 over I and R > 0 over [xR, β).

We assume that G ∈ C1(I), that G is piecewise C2 over I, and that it satisfies

A4 For each x ∈ I, Ex [supt≥0 e−rtG(Xt)] <∞.

11



A5 For each x ∈ I, limt→∞ e−rtG(Xt) = 0, Px-almost surely.

A6 G > VR over I.

A7 LG− rG ≤ 0 everywhere G′′ is defined.

From (10), A6, and Lemma 1, we have G > R ∨ 0 over I; hence A4 guarantees that the

family (e−rτG(Xτ ))τ∈TX is uniformly integrable. A4–A5 imply the useful growth property

lim
x→α+

G(x)

h2(x)
= lim

x→β−

G(x)

h1(x)
= 0. (18)

The interpretation of A6–A7 is that G dominates the value function VR of the stand-alone

optimal stopping problem (10) and that it incorporates itself the solution to an optimal

stopping problem, so that (e−rtG(Xt))t≥0 is a supermartingale. In the investment problem

with technological breakthroughs (4), this occurs because, at time τX≥Y , the developers allow

the DM to substitute to the stand-alone technology, with payoff function R, a more efficient

technology, with payoff function U > R. The function G results from a subsequent optimal

stopping problem involving the superior payoff function U , as shown by (2)–(3).

Assumptions on the Distribution of Y Recall that the random variable Y takes values

in I and is independent of X. We further assume that its law Q satisfies

A8 Q has locally Lipschitz density f > 0 over I with respect to Lebesgue measure.

We denote by F the cumulative distribution function of Y .

In line with the real-options literature (Dixit and Pindyck (1994)), a natural specification

of the model consists in letting X follow a geometric Brownian motion with drift µ < r

and volatility σ > 0, and in letting the payoff functions be given by R(x) ≡ x − I and

U(x) ≡ κx − I; here I is a positive investment cost that the DM must incur to obtain a

cash-flow X (under the stand-alone technology) or κX (under the more efficient technology),

where κ > 1. Finally, we assume that the development cost Z is drawn from a distribution

with locally Lipschitz density fZ > 0 over (0,∞) with respect to Lebesgue measure. We

verify in Appendix C that this specification satisfies A1–A8.

5 A Markovian Formulation

We now turn to the analysis of our main problem (9), for which we first give a convenient

Markovian formulation. Given m ∈ [x, β), define the maximum process M ≡ (Mt)t≥0 by

Mt = m ∨ sup
s≤t

Xs

12



for all t ≥ 0, so that the pair (X,M) defines a continuous Markov process starting at (x,m).

We denote by Px,m the law of this Markov process over (Ω,F) ⊗ (Ω,F) and by Ex,m the

corresponding expectation operator. Observe that any stopping time in the set TX,M of all

stopping times of the right-continuous filtration generated by (X,M) over (Ω,F) ⊗ (Ω,F)

is Px,m-almost surely equal to a stopping time in TX .

Proposition 1 The function

V (x,m) ≡ sup
τ∈TX,M

Ex,m

[
[1− F (Mτ )] e−rτR(Xτ ) +

∫ τ

0

e−rtG(Mt)f(Mt) dMt

]
(19)

is well-defined and

V (x) = V (x, x) + F (x)G(x) (20)

for all x ∈ I.

To grasp the intuition for this result, consider a static version of our problem in which

the DM has no decision to take and all uncertainty is resolved immediately at time 0. Then

the DM obtains G(x) with probability F (x), as in (20), and R(x) with probability 1−F (x),

as in (19) for τ = 0. The integral with respect to the maximum process in (19) should thus

be interpreted as the added value of postponing investment in the hope of a technological

breakthrough. Specifically, because breakthroughs only occur when the process X reaches

new maximum values, the probability that a breakthrough occurs during the time interval

(0, τ) is F (Mτ ) − F (m), and the expected discounted value of such breakthroughs to the

DM, compounded over the increments of M over (0, τ), is given by∫ τ
0

e−rtG(Mt)f(Mt) dMt

F (Mτ )− F (m)
.

By contrast, the downside risk of postponing investment is that, with probability 1−F (Mτ ),

no breakthrough may occur before time τ , in which case the DM may well end up with a

payoff R(Xτ ) < R(x).

Proof. Because the diffusion X is regular over I, we know that, for each y ∈ [x, β), the

hitting time τ(y) = inf {t ≥ 0 : Xt = y} is finite with positive probability under Px. Notice

that τX≥Y = τ(Y ) over {Y > x} and τX≥Y = 0 over {Y ≤ x}. By Fubini’s theorem, we have

J(x, τ) = Ex

[∫ β

x

[
1{τ<τ(y)} e−rτR(Xτ ) + 1{τ≥τ(y)} e−rτ(y)G(y)

]
Q(dy) + F (x)G(x)

]
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= Ex,x

[∫ β

Mτ

f(y) dy e−rτR(Xτ ) +

∫ Mτ

x

e−rτ(y)G(y)f(y) dy

]
+ F (x)G(x)

= Ex,x

[
[1− F (Mτ )] e−rτR(Xτ ) +

∫ Mτ

x

e−rτ(y)G(y)f(y) dy

]
+ F (x)G(x). (21)

By A1, we have

Ex,m

[
[1− F (Mτ )] e−rτR(Xτ )

]
<∞

for all τ ∈ TX,M . The remainder of the proof of Proposition 1 relies on the following lemma,

which establishes a change-of-variables formula that clarifies the dependence of the payoff

with respect to the maximum process M .

Lemma 2 For each τ ∈ TX,M ,∫ Mτ

m

e−rτ(y)G(y)f(y) dy =

∫ τ

0

e−rtG(Mt)f(Mt) dMt (22)

Px,m-almost surely.

Proof. Fix some ω ∈ Ω, and consider the continuous nondecreasing mapping t 7→ Mt and

its right-continuous inverse

Cy ≡ inf{t ≥ 0 : Mt > y}, y ∈ [m,β),

with inf ∅ =∞ by convention. By construction, Cy− = τ(y) for all y ∈ (m,β). Consider the

Borel function

g(t) ≡ 1{0<t≤τ} e−rtG(Mt)f(Mt), t ≥ 0,

with g(∞) ≡ 0 by convention, which is nonnegative as G > 0 over I. According to

the change-of-variables formula for Stieltjes integrals (Revuz and Yor (1999, Chapter 0,

Proposition 4.9)), we have ∫
[0,∞)

g(t) dMt =

∫ β

m

g(Cy) dy (23)

whenever these integrals are well-defined. To check that this is the case, notice first that,

because M is continuous, y = Mτ(y) for all y ∈ [m,β); moreover, because C is right-

continuous and nondecreasing, τ(y) = Cy− = Cy for all y ∈ [m,β) outside of a countable

set. It follows that ∫ β

m

g(Cy) dy =

∫ β

m

1{0<Cy≤τ} e−rCyG(MCy)f(MCy) dy

=

∫ Mτ

m

e−rτ(y)G(y)f(y) dy. (24)
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We claim that the quantity (24) is Px,m-almost surely finite. Indeed, taking expectations

and using Fubini’s theorem, we have

Ex,m

[∫ Mτ

m

e−rτ(y)G(y)f(y) dy

]
≤
∫ β

m

Ex

[
e−rτ(y)

]
G(y)f(y) dy

≤ [1− F (m)] sup
τ∈TX

Ex

[
e−rτG(Xτ )

]
,

which is finite by A4. Therefore, the integrals in (23) are well-defined, as claimed. To

conclude the proof of Lemma 2, simply observe that the left-hand side of (23) is equal to

the right-hand side of (22) and that, in line with (24), the right-hand side of (23) is equal

to the left-hand side of (22). The result follows. �

We are now ready to complete the proof of Proposition 1. By Lemma 2, the value function

V of problem (19) is well-defined and, by (21)–(22), we have

V (x) = sup
τ∈TX

J(x, τ)

= sup
τ∈TX,M

Ex,x

[
[1− F (Mτ )] e−rτR(Xτ ) +

∫ Mτ

x

e−rτ(y)G(y)f(y) dy

]
+ F (x)G(x)

= sup
τ∈TX,M

Ex,x

[
[1− F (Mτ )] e−rτR(Xτ ) +

∫ τ

0

e−rtG(Mt)f(Mt) dMt

]
+ F (x)G(x),

which is (20) by (19). Hence the result. �

Our initial problem (9) hence reduces to an optimal stopping problem for the two-

dimensional Markov process (X,M) over the state space J ≡ {(x,m) ∈ I × I : m ≥ x}.
Compared to similar problems involving the maximum process so far considered in the

literature, a distinctive feature of problem (19) is that the DM’s payoff function features an

integral with respect to the maximum process.

6 The Main Theorem

In this section, we first heuristically derive a variational system for the value function V

of problem (19). Our main theorem then states that this system has a unique solution,

which coincides with V , and expresses the optimal stopping time for (19) in terms of a free

boundary in the domain J .

6.1 A Heuristic Derivation

The Stopping Region We start with three educated guesses about the optimal stopping

region S ⊂ J for problem (19), which are in line with Peskir’s (1998) classic analysis of the

stopping problem for the maximum process.
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First, because G > VR by A6, a lower bound for V is obtained by stopping X at the

optimal threshold xR for the stand-alone optimal stopping problem (10). Intuitively, it is

thus suboptimal for the DM to stop (X,M) before X reaches xR. That is, we guess

S ⊂ {(x,m) ∈ J : x ≥ xR}.

Second, the maximum process M can increase only when (X,M) hits the diagonal D ≡
{(x,m) ∈ J : x = m} of J , at which point the DM’s payoff may jump upwards. Intuitively,

it is thus suboptimal for him to stop (X,M) over D. That is, we guess

S ∩ D = ∅.

Third, after (X,M) hits D, it is costly for the DM to let it run horizontally too far to

the left of D because of the time needed to reach a new value of M . Intuitively, because

of discounting, the opportunity cost of delaying action increases when (X,M) moves away

from D. That is, we guess

S = {(x,m) ∈ J : m ≤ m < β and xR ≤ x ≤ b(m)}

for some m ∈ (xR, β) and some function b : [m,β) → [xR, β) that satisfies b(m) = xR,

b(m) < m for all m ∈ [m,β), and the limit condition

lim
m→β−

b(m) = β.

The fact that the free boundary x = b(m) is defined for x ≥ xR and m ≥ m follows naturally

from our investment problem and is specific to our model. We will see that the limit condition

turns out to be a consequence of the growth property (18). This reflects the idea that the

DM should be reluctant to let the process (X,M) run too far from D as X grows large.

Dynamic Programming The dynamic programming principle for (19) relies on the key

observation that M does not increase as long as (X,M) stays away from D. Hence the

infinitesimal generator of (X,M) restricted to functions u ∈ C2,1(intJ ) coincides over intJ
with the infinitesimal generator of X,

Lu(x,m) ≡ µ(x)
∂u

∂x
(x,m) +

1

2
σ2(x)

∂2u

∂x2
(x,m), (x,m) ∈ intJ .

Letting C ≡ J \ S be the continuation region, the dynamic programming principle then

states that, provided V is C2,1 over int C ⊂ intJ , we have

LV (x,m)− rV (x,m) = 0, (x,m) ∈ int C.

The dynamic programming principle is at this stage only an educated guess, which we will

ultimately confirm by a verification argument.
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Value-Matching As usual, the value-matching condition

V (x,m) = [1− F (m)]R(x), (x,m) ∈ S

pins down the value function on the stopping region.

Smooth-Fit We conjecture that the value function satisfies the smooth-fit property along

horizontal lines at the free boundary x = b(m):

∂V

∂x
(b(m),m) = [1− F (m)]R′(b(m)), m ∈ [m,β).

Like the dynamic programming principle, the smooth-fit property is at this stage only an

educated guess, which we will ultimately have to verify using an appropriate candidate for

the free boundary.

Neumann Condition The Neumann condition expresses the behavior of the value function

at D, where the process (X,M) undergoes a normal reflection. In our setting, the Neumann

condition takes the form

∂V

∂m
(m,m) = −f(m)G(m), m ∈ I,

which can be heuristically derived by observing that, from (19) and (22),

V (m,m) ≡ sup
τ∈TX,M

Em,m

[
[1− F (Mτ )] e−rτR(Xτ ) +

∫ Mτ

m

e−rτ(y)G(y)f(y) dy

]
.

Intuitively, starting from a point (m,m) ∈ D, a marginal increase in the second argument

brings bad news to the DM. Indeed, noticing that f(m) dm corresponds to the probability

that a breakthrough occurs in [m,m + dm], the term f(m)G(m) on the right-hand side of

the Neumann condition represents the expected foregone payoff for the DM if X reaches

a new maximum value yet no breakthrough occurs. It should be noted that this heuristic

derivation incorporates our guess that the free boundary x = b(m) does not cut D.

Boundary Condition Finally, because the lower endpoint α of I is inaccessible for X and

limx→α+ VR(x) = 0 by (14) and (17), we conjecture that the value function vanishes at α,

lim
x→α+

V (x,m) = 0, m ∈ I.

Overall, we are led to find a threshold m ∈ (xR, β), a function b : [m,β) → [xR, β), and a

function W : J → R that jointly satisfy the following variational system (VS):

b(m) = xR, (25)
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xR ≤ b(m) < m, m ∈ [m,β), (26)

lim
m→β−

b(m) = β, (27)

LW (x,m)− rW (x,m) = 0, (x,m) ∈ int C, (28)

W (x,m) = [1− F (m)]R(x), (x,m) ∈ S, (29)

∂W

∂x
(b(m),m) = [1− F (m)]R′(b(m)), m ∈ [m,β), (30)

∂W

∂m
(m,m) = −f(m)G(m), m ∈ I, (31)

lim
x→α+

W (x,m) = 0, m ∈ I, (32)

where S ≡ {(x,m) ∈ J : m ≤ m < β and xR ≤ x ≤ b(m)} and C ≡ J \ S.

Remark As in the literature on two-dimensional stopping problems involving the running

maximum of a one-dimensional diffusion, an important feature of our variational system

is that the smooth-fit condition is not sufficient to characterize the solution that coincides

with the value function of the optimal stopping problem. To address this issue, the classical

method of Shepp and Shiryaev (1993) and Dubins, Shepp, and Shiryaev (1994) consists in

imposing a well-chosen growth condition on the free boundary or on the solution of the

variational system; this is analogous to a transversality condition and allows them to pin

down the optimal free boundary. The corresponding solution to the ODE turns out to be

the largest solution which stays strictly below D, a property referred to by Peskir (1998) as

the maximality principle. In our problem, it is not straightforward to guess the appropriate

growth condition, nor to apply the maximality principle. Instead, the simple limit condition

(27) turns out to characterize the optimal free boundary among all candidate solutions.

6.2 A Formal Statement

Our central theorem can now be stated as follows.

Theorem 1 (VS) admits a unique solution (m, b,W ) in (xR, β)× C1([m,β))× V , where

V ≡ C0(J ) ∩ C1(J \ Jm) ∩ C2,1(J1) ∩ C2,1(J2) ∩ C2,1(J3) ∩ C2,1(S),

Jm ≡ {(x,m) ∈ J : x ∈ (α,m]},

J1 ≡ {(x,m) ∈ J : m ∈ [m,β) and x ≤ xR},

J2 ≡ {(x,m) ∈ J : m ∈ [m,β) and x ≥ b(m))},

J3 ≡ {(x,m) ∈ J : m ∈ (α,m]}.

Moreover,
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Figure 1: The optimal stopping region.

(i) the function b is strictly increasing;

(ii) the function W coincides with the value function V of problem (19);

(iii) the stopping time

τb ≡ inf {t ≥ 0 : Mt ≥ m and xR ≤ Xt ≤ b(Mt)}

is optimal for problem (19), that is,

V (x,m) = Ex,m

[
[1− F (Mτb)] e−rτbR(Xτb) +

∫ τb

0

e−rtG(Mt)f(Mt) dMt

]
for all (x,m) ∈ J .

Remark Notice that a function in V need not be globally C1 over J . Indeed, it will turn

out that the partial derivative with respect to m of the function W part of the solution to

(VS) is not continuous at the points (x,m) for x < m. This relates to the fact that the DM

is willing to invest in the stand-alone technology only after X reaches m. We elaborate on

this distinctive feature of our solution in Proposition 4 of Section 9.

The optimal stopping region is illustrated on Figure 1. The proof of Theorem 1 consists

of two parts.
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The first part of the proof is purely analytical, and consists in showing that (VS) admits

a solution (m, b,W ) that satisfies the required regularity conditions. The function b is

characterized as the solution to an ordinary differential equation (ODE), and the function

W is explicit given b. This part of the proof is provided in Section 7.

The second part of the proof follows the theory of optimal stopping. We exploit two

properties, which we show are satisfied by any function W part of a solution to (VS). The

first property is that W is bounded below and above as follows:

[1− F (m)]R(x) ∨ 0 ≤ W (x,m) < [1− F (m)]G(x)

for all (x,m) ∈ J ; this notably implies a useful uniform integrability property. The second

property is that W is superharmonic; that is, for any stopping time τ ∈ TX,M ,

W (x,m) ≥ Ex,m

[
e−rτW (Xτ ,Mτ ) +

∫ τ

0

e−rtG(Mt)f(Mt) dMt

]
for all (x,m) ∈ J . We then argue that these two properties together imply that W must

coincide with the value function V of problem (19) and that the stopping time τb is optimal

for this problem. Incidentally, this also shows that (VS) admits a unique solution. This part

of the proof is provided in Section 8.

7 Analysis of the Variational System

The central result of this section is that (VS) admits a solution.

Proposition 2 There exist m ∈ (xR, β), a strictly increasing function b ∈ C1([m,β)), and

a function W ∈ V such that (m, b,W ) is a solution to (VS).

It should be noted that Proposition 2 does not establish that (VS) admits a unique

solution. Instead, uniqueness is a by-product of the verification procedure in Section 8. The

proof of Proposition 2 consists of three steps, which we develop in Sections 7.1–7.3.

7.1 An ODE for the Free Boundary

The first step of the proof consists in showing that, if a solution (m, b,W ) to (VS) exists, then

the function b describing the free boundary satisfies an ODE. Specifically, let E : JE → R
be the vector field defined over JE ≡ {(x,m) ∈ J : x ≥ xR} \ D by

E(x,m) ≡ H(m)σ2(x)

2L(x)h2(x)
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×
{
γS ′(x)

D(x,m)
[R(x)h2(m)−G(m)h2(x)] +R′(x)h2(x)−R(x)h′2(x)

}
, (33)

where

L(x) ≡ LR(x)− rR(x), (34)

D(x,m) ≡ h1(m)h2(x)− h1(x)h2(m), (35)

H(m) ≡ f(m)

1− F (m)
. (36)

Notice that H corresponds to the breakthrough rate, that is, H(m) dm is the probability

that a breakthrough occurs over (m,m+dm] conditional on no breakthrough occurring over

(α,m]. Observe that E is well-defined because L < 0 over [xR, β) by A3 along with the

fact that xR > x0, and because D > 0 over JE as h1 is strictly increasing and h2 is strictly

decreasing. Moreover, E is continuous and, as h1 and h2 are C2, G is C1, and H is locally

Lipschitz by A8, E is locally Lipschitz in its second argument. However, because D vanishes

over D, E cannot be continuously extended to the closure JE ≡ {(x,m) ∈ J : x ≥ xR} of

JE, as the following lemma shows.

Lemma 3 For each m ∈ [xR, β),

lim
(x,m′),x<m′→(m,m)

E(x,m′) =∞. (37)

We are now ready to state the central result of this section.

Lemma 4 If (m, b,W ) is a solution to (VS) such that b ∈ C1([m,β)) and W ∈ V , then b

satisfies the ODE

b′(m) = E(b(m),m), m ∈ [m,β), (38)

b(m) = xR. (39)

The proofs of Lemmas 3–4 are provided in Appendix A.

In light of (26)–(27), Lemma 4 narrows down the set of candidates for the free boundary

to the set of solutions to (38)–(39) that satisfy xR ≤ b(m) < m for all m ∈ [m,β) and

limm→β− b(m) = β for an appropriate choice of the endpoint m.

7.2 The Set of Candidates for the Free Boundary

The second step of the proof consists in showing that the set of candidates for the free

boundary is nonempty. As the vector field E in (38) cannot be continuously extended
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to JE by Lemma 3, the existence of such a candidate does not immediately follow from

standard results and requires a specific analysis. Our approach relies on the following lemma,

whose geometrical interpretation is that the vector field E points to the left above a strictly

increasing C1 curve.

Lemma 5 There exists a strictly increasing C1 mapping x 7→ mx over [xR, β) such that

(i) for each x ∈ [xR, β), mx > x;

(ii) for each (x,m) ∈ JE, E(x,mx) = 0 and E(x,m) ≶ 0 if m ≷ mx;

(iii) limx→β−mx = β.

Proof. We use a change of variable introduced by Dayanik and Karatzas (2003). For each

x ∈ I, define ζ(x) ≡ h1(x)
h2(x)

, which is strictly increasing in x and maps I onto (0,∞). For any

function g : I → R, define the function ĝ by

ĝ(y) ≡ g

h2

◦ ζ−1(y), y ∈ (0,∞). (40)

A direct computation (De Angelis, Ferrari, and Moriarty (2018, Appendix A.1)) shows that,

if g is twice differentiable at x ∈ I, then (Lg − rg)(x) has the same sign as ĝ′′(ζ(x)). Hence

A3 and xR > x0 imply that R̂′′ < 0 over [ζ(xR),∞), and A7 and G is C1 imply that Ĝ is

concave over (0,∞). Moreover, Ĝ > 0 over (0,∞) as G > 0 over I, and (18) implies

lim
y→∞

Ĝ(y)

y
= 0. (41)

Finally, because R > 0 over [xR, β) by Lemma 1, we have R̂ > 0 over [ζ(xR),∞); because R̂

is strictly concave over [ζ(xR),∞), it must then be that R̂′ > 0 over [ζ(xR),∞).

We now use (40) to obtain a more compact expression for E(x,m). By (12) and the

definition of ζ, we have

ζ ′(x) =
h′1(x)h2(x)− h1(x)h′2(x)

[h2(x)]2
=

γS ′(x)

[h2(x)]2
,

for all x ∈ I, and thus (ζ−1)′(ζ(x)) = [h2(x)]2

γS′(x)
. By (40), this implies

R̂′(ζ(x)) =

(
R

h2

)′
(x)(ζ−1)′(ζ(x)) =

R′(x)h2(x)−R(x)h′2(x)

γS ′(x)
. (42)

Thus, for each (x,m) ∈ JE, we have

E(x,m) =
H(m)σ2(x)γS ′(x)

2L(x)h2(x)

[
R(x)h2(m)−G(m)h2(x)

h1(m)h2(x)− h1(x)h2(m)
+
R′(x)h2(x)−R(x)h′2(x)

γS ′(x)

]
=
H(m)σ2(x)γS ′(x)

2L(x)h2(x)

{
1

ζ(m)− ζ(x)

[
R(x)

h2(x)
− G(m)

h2(m)

]
+ R̂′(ζ(x))

}
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= −H(m)σ2(x)γS ′(x)

2L(x)h2(x)

[
Ĝ(ζ(m))− R̂(ζ(x))

ζ(m)− ζ(x)
− R̂′(ζ(x))

]
, (43)

where the first equality follows from (33) and (35), the second inequality follows from (42)

and the definition of ζ, and the third equality follows from (40).

Because L(x) < 0 for all x ≥ xR, the upshot from (43) is that, for each (x,m) ∈ JE,

sgnE(x,m) = sgn

[
Ĝ(ζ(m))− R̂(ζ(x))

ζ(m)− ζ(x)
− R̂′(ζ(x))

]
. (44)

Using the notation z = ζ(m) and y = ζ(x), consider for all z > y > 0 the quantity

η(z, y) ≡ Ĝ(z)− R̂(y)

z − y
− R̂′(y). (45)

For each y ≥ ζ(xR), we have limz→y+ η(z, y) =∞ and limz→∞ η(z, y) < 0 by (41) along with

the fact that R̂′(y) > 0. Moreover, for each z > y,

∂η

∂z
(z, y) =

Ĝ′(z)(z − y)− [Ĝ(z)− R̂(y)]

(z − y)2
<
Ĝ′(z)(z − y)− [Ĝ(z)− Ĝ(y)]

(z − y)2
≤ 0, (46)

where the first inequality follows from Ĝ(y) > R̂(y), and the second inequality follows from

the concavity of Ĝ. This shows that, for each y ≥ ζ(xR), there exists a unique zy > y

such that η(zy, y) = 0, η(z, y) < 0 for all z > zy, and η(z, y) > 0 for all z ∈ (y, zy). By

construction, limy→∞ zy = ∞. To conclude the proof, observe from (45) and η(zy, y) = 0

that

∂η

∂y
(zy, y) =

−R̂′(y)(zy − y) + Ĝ(zy)− R̂(y)

(zy − y)2
− R̂′′(y) = −R̂′′(y) > 0 (47)

for all y ∈ [ζ(xR),∞). Applying the implicit function theorem, we obtain from (46)–(47)

that the mapping y 7→ zy is C1, with dzy
dy

> 0 over [ζ(xR),∞). Letting mx ≡ ζ−1(zζ(x)) for all

x ∈ [xR, β) and recalling that ζ is C2 and strictly increasing, it is straightforward to verify

that the mapping x 7→ mx is C1 and strictly increasing over [xR, β), and that it satisfies

(i)–(iii). The result follows. �

It follows from Lemmas 4–5 along with the limit condition limm→β− b(m) = β that, in

the space (x,m), the free boundary x = b(m) must lie strictly below the locus of points

m = mx, at which E vanishes, and strictly above D, at which E explodes; this situation is

illustrated in Figure 2. In particular, the endpoint m must belong to the interval (xR,mxR).

Notice that it is crucial for this argument that the mapping x 7→ mx be C1. We denote by

J +
E ≡ {(x,m) ∈ JE : mx > m > x} the corresponding domain.
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Figure 2: The vector field E and the free boundary x = b(m).

The set of candidates for the free boundary b can then be formally described as follows.

For each m0 ∈ (xR,mxR), let bm0 be the maximal solution to the ODE b′(m) = E(b(m),m)

with initial condition b(m0) = xR that satisfies (bm0(m),m) ∈ J +
E for all m in a nonempty

maximal interval (m0,mm0). Because the vector field E is continuous and locally Lipschitz

in its second argument and b′m0
(m0) > 0 as m0 < mxR , the existence and uniqueness of bm0

is guaranteed for all m0 ∈ (xR,mxR) by the Cauchy–Lipschitz theorem. For any such m0,

we will say that bm0 is a candidate for the free boundary if and only if mm0 = β. Observe

that we then have mbm0 (m) > m for all m ∈ [m0, β); hence, by Lemma 5(iii), the limit

condition limm→β− bm0(m) = β is automatically satisfied, which justifies the terminology.

Moreover, bm0 is strictly increasing as J +
E = E−1((0,∞)) by Lemma 5(ii). As the following

lemma shows, the fact that the vector field E is outward-pointing at the boundary of J +
E

guarantees the existence of such candidates.

Lemma 6 There exists a nonempty compact interval I0 ⊂ (xR,mxR) such that bm0 is a

candidate for the free boundary if and only if m0 ∈ I0.

Proof. Fix some m0 ∈ (xR,mxR) and the corresponding maximal solution bm0 . If mm0 < β,

then we either have bm0(m
−
m0

) = mm0 and bm0 cuts ∂−J +
E ≡ {(x,m) ∈ D : x ≥ xR} at mm0 ,

or bm0(m
−
m0

) = mbm0 (m−m0
) and bm0 cuts ∂+J +

E ≡ {(x,m) ∈ JE : m = mx} at mm0 . Define
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also the degenerate solutions bxR ≡ {(xR, xR)} and bmxR = {(xR,mxR)}, which correspond to

the limit cases of these two situations, respectively. Therefore, we can partition the interval

[xR,mxR ] into three pieces:

1. I−, the set of m0 such that bm0 cuts ∂−J +
E ;

2. I0, the set of m0 such that mm0 = β;

3. I+, the set of m0 such that bm0 cuts ∂+J +
E .

Clearly I− 6= ∅ as xR ∈ I−, I+ 6= ∅ as mxR ∈ I+, and I− ∩ I+ = ∅ as mx > x for all

x ∈ [xR, β). From the non-crossing property of the solutions to the ODE b′(m) = E(b(m),m),

I− and I+ are intervals. If I− and I+ are relatively open in [xR,mxR ], then, because

[xR,mxR ] cannot be the union of two disjoints open intervals, I0 must be a nonempty closed

interval in (xR,mxR), which concludes the proof. The fact that I− and I+ are relatively

open in [xR,mxR ] follows directly along the lines of the proof of Theorem 1 in Bobtcheff,

Bolte, and Mariotti (2017), to which we refer for details. Specifically, that I− is relatively

open in [xR,mxR ] is a consequence of the fact that, by Lemma 3, the vector field E explodes

over ∂−J +
E , whose slope is 1; and that I+ is relatively open in [xR,mxR ] is a consequence

of the fact that, by Lemma 5, the vector field E vanishes over ∂+J +
E , whose slope is locally

bounded as the mapping x 7→ mx is C1. The result follows. �

The proof essentially follows the retraction principle of Ważewski (1947), see for instance

Hartman (1964, Chapter X, Theorem 2.1), with slight adjustments owing to the fact that

E cannot be continuously extended to JE. Observe that Lemma 6 shows the existence but

not the uniqueness of a candidate for the free boundary: for all we know at this stage, the

set I0 may not be reduced to a singleton.

7.3 A Solution to the Variational System

The third and final step of the proof consists in showing that to every candidate b : [m,β)→
[xR, β) for the free boundary corresponds a solution (m, b,W ) to (VS). Specifically, because

any such b ∈ C1([m,β)) is strictly increasing and satisfies (25)–(27), all we need to do in

order to complete the proof of Proposition 2 is to exhibit a function W ∈ V that satisfies

(28)–(32) for S ≡ {(x,m) ∈ J : m ≤ m < β and xR ≤ x ≤ b(m)} and C ≡ J \ S. Our

construction of W is explicit given b and consists of four steps.

Step 1 Consider first the points (x,m) ∈ S. In this region, we let W be equal to the
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payoff from stopping (X,M) immediately,

W (x,m) ≡ [1− F (m)]R(x), (x,m) ∈ S, (48)

in line with (29).

Step 2 Consider next the points (x,m) ∈ C to the left of S, such that (x,m) ∈ (α, xR)×
[m,β). In this region, we let W be equal, up to multiplication by 1 − F (m), to the stand-

alone value function VR,

W (x,m) ≡ [1− F (m)]
h1(x)

h1(xR)
R(xR), (x,m) ∈ (α, xR)× [m,β), (49)

which satisfies (28) by definition of h1 and (32) by (14), and pastes continuously with (48).

Step 3 Consider now the points (x,m) ∈ C to the right of S, such that m ∈ [m,β)

and x ∈ (b(m),m]. In this region, we let W be equal to the solution to (28) that pastes

continuously with (48) at the free boundary x = b(m), and that satisfies the smooth-fit

condition (30). As shown in the proof of Lemma 4, this leads to

W (x,m) ≡ A(m)h1(x) +B(m)h2(x), m ∈ [m,β) and x ∈ (b(m),m], (50)

where

A(m) =
1− F (m)

γS ′(b(m))
[R′(b(m))h2(b(m))−R(b(m))h′2(b(m))], (51)

B(m) = − 1− F (m)

γS ′(b(m))
[R′(b(m))h1(b(m))−R(b(m))h′1(b(m))], (52)

and the ODE (38) for b guarantees that the Neumann condition (31) is satisfied. Notice

that B(m) = 0 as b(m) = xR by construction and R′(xR) =
h′1(xR)

h1(xR)
R(xR) by the smooth-fit

property for VR.

Step 4 Consider finally the remaining points (x,m) ∈ C, such that m ∈ (α,m) and

x ∈ (α,m]. In this region, we let W be equal to the solution to (28) that satisfies the

boundary condition (32), the Neumann condition (31), and that pastes continuously with

the solution constructed so far. By (14), the boundary condition leads to

W (x,m) ≡ C(m)h1(x), m ∈ (α,m) and x ∈ (α,m], (53)

for some function C ∈ C1((α,m)). Because B(m) = 0, continuous pasting requires

C(m) = A(m) =
1− F (m)

h1(xR)
R(xR)
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by (51), using (12) along with the smooth-fit property for VR. The Neumann condition is

satisfied if and only if

C ′(m) = − f(m)

h1(m)
G(m),

from which we conclude that

C(m) ≡ 1− F (m)

h1(xR)
R(xR) +

∫ m

m

f(y)

h1(y)
G(y) dy. (54)

This completes the construction of a function W satisfying (28)–(32) and, hence, of a solution

(m, b,W ) to (VS). It should be noted that, given b, W is the unique solution to (28)–(32)

that is continuous over J . Together with Lemma 6, which characterizes the set of candidates

for the free boundary b, this yields a complete characterization of the solutions to (VS).

There only remains to check that the function W defined by (48)–(54) satisfies the

regularity conditions required in Proposition 2.

Lemma 7 W ∈ V.

The proof of Lemma 7 is provided in Appendix A.

To conclude this section, we note that W is strictly positive over J , which reflects that

the functions A, B, and C are strictly positive over [m,β), (m,β), and (α,m], respectively.

Corollary 1 For each (x,m) ∈ J , W (x,m) > 0.

8 Verification

Let us now fix a candidate b for the free boundary, which by Lemmas 4 and 6 satisfies the

ODE (38)–(39) for some endpoint m ∈ I0 and is strictly increasing, and let (m, b,W ) be the

corresponding solution to (VS) constructed in Section 7.3. Denote by

τb ≡ inf {t ≥ 0 : (Xt,Mt) ∈ S}

the hitting time of the stopping region S = {(x,m) ∈ J : m ≤ m < β and xR ≤ x ≤ b(m)}
associated to b, which need not be Px,m-almost surely finite, and denote by

Vb(x,m) ≡ Ex,m

[
[1− F (Mτb)] e−rτbR(Xτb) +

∫ τb

0

e−rtG(Mt)f(Mt) dMt

]
(55)

the value for the DM of stopping (X,M) at τb, starting from (x,m).
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So far, our analysis has thus led us to construct three functions over J : the value

function V of problem (19), the function W analytically characterized by (48)–(54) as part

of a solution (m, b,W ) to (VS) given the candidate b for the free boundary, and the function

Vb defined by (55) given the stopping time τb. The central result of this section is that these

three functions coincide.

Proposition 3 V = W = Vb.

Proposition 3 concludes the proof of Theorem 1. As a by-product, it entails that the

interval I0 of possible endpoints for a candidate for the free boundary is reduced to a

point, which in turn implies that there is a single such candidate. Indeed, if there were two

different candidates b1 and b2 for the free boundary corresponding to different endpoints

m1,m2 ∈ I0, then we would have two different solutions (m1, b1,W1) and (m1, b1,W2) to

(VS), contradicting Proposition 3 given that the value function V of problem (19) is uniquely

defined. Therefore, (VS) has a unique solution.

The proof of Proposition 3 consists of three steps, which we develop in Sections 8.1–8.3.

8.1 Two Useful Bounds

The first step of the proof consists in providing appropriate bounds for the function W

defined by (48)–(54). We first show that W is bounded below by the DM’s payoff from

stopping (X,M) immediately.

Lemma 8 For each (x,m) ∈ J ,

W (x,m) ≥ [1− F (m)]R(x), (56)

and this inequality is strict if (x,m) ∈ C.

Proof. By (48), (56) holds as an equality for (x,m) ∈ S. We thus only need to prove that

(56) holds as a strict inequality for (x,m) ∈ C. We consider two cases in turn.

Case 1 Suppose first that (x,m) ∈ C is such that m ∈ (α,m), so that W (x,m) is given

by (53)–(54) and (56) is equivalent to

C(m)

1− F (m)
≥ R(x)

h1(x)
.

Now, observe that the optimality of the stopping threshold xR for problem (10) implies that,

for each x ∈ I,

R(xR)

h1(xR)
≥ R(x)

h1(x)
.
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Thus it is sufficient to show that, for each m ∈ (α,m),

C(m)

1− F (m)
>
R(xR)

h1(xR)

or, equivalently, by (54),∫ m

m

f(y)

h1(xR)

[
h1(xR)

h1(y)
G(y)−R(xR)

]
dy > 0. (57)

We now prove that the integrand in (57) is strictly positive for all y ∈ (α,m), which concludes

the discussion of this case. For y ∈ (α, xR), we have

h1(y)

h1(xR)
G(xR) = Ey [e−rτ(xR)G(Xτ(xR))] = G(y) + Ey

[∫ τ(xR)

0

e−rt(LG− rG)(Xt) dt

]
≤ G(y)

by Itô’s lemma, where the inequality follows from A7. Hence, by A6,

h1(xR)

h1(y)
G(y)−R(xR) ≥ G(xR)−R(xR) > 0,

as desired. For y ∈ [xR,m), we similarly have

h1(xR)

h1(y)
G(y) = ExR [e−rτ(y)G(Xτ(y))] = G(xR) + ExR

[∫ τ(y)

0

e−rt(LG− rG)(Xt) dt

]
.

Because the mapping y 7→ τ(y) is PxR-almost surely strictly increasing, it follows from this

and A7 that the mapping y 7→ h1(xR)
h1(y)

G(y) is nonincreasing over [xR,m). To conclude, we

thus only need to check that

h1(xR)

h1(m)
G(m) > R(xR). (58)

To see this, recall that, because m ∈ I0 ⊂ (xR,mxR) by Lemma 6, we have E(xR,m) > 0 by

Lemma 5. Hence

1 = sgn

{
γS ′(xR)

D(xR,m)
[G(m)h2(xR)−R(xR)h2(m)] +R(xR)h′2(xR)−R′(xR)h2(xR)

}
= sgn

{
γS ′(xR)

D(xR,m)
[G(m)h2(xR)−R(xR)h2(m)] +R(xR)

[
h′2(xR)− h′1(xR)

h1(xR)
h2(xR)

]}
= sgn

{
1

D(xR,m)
[G(m)h2(xR)−R(xR)h2(m)]− 1

h1(xR)
R(xR)

}
= sgn

[
h1(xR)

h1(m)
G(m)−R(xR)

]
,

where the first equality follows from (33) along with the fact that L(xR) < 0, the second

equality follows from the smooth-fit condition R′(xR) =
h′1(xR)

h1(xR)
R(xR) for problem (10), the

third inequality follows from (12), and the fourth equality follows from (35) along with the

fact that D(xR,m) > 0. This proves (58), which concludes the discussion of this case.
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Case 2 Suppose next that (x,m) ∈ C is such that m ≥ m. For x ∈ (α, xR), we have

W (x,m) = [1 − F (m)]VR(x) by (49), and the result follows from noticing that VR > R

over (α, xR). For x ∈ (b(m),m] and, hence, x > xR, we once more rely on the change of

variable (40). As pointed out in the proof of Lemma 5, A3 and xR > x0 imply that R̂′′ < 0

over [ζ(xR),∞); thus R̂ is strictly concave over [ζ(xR),∞). Now, let us fix some m ≥ m

and, for each x ≥ b(m), let um(x) ≡ W (x,m). By (40) and the continuous-fit condition

um(b(m)) = [1− F (m)]R(b(m)), we have

ûm(ζ(b(m))) = [1− F (m)]R̂(ζ(b(m))). (59)

Next, by (40) and (50), we have

ûm(y) = A(m)y +B(m) (60)

for all y ≥ ζ(b(m)). Finally, by (42) and (51), we have

[1− F (m)]R̂′(ζ(b(m))) = [1− F (m)]
R′(b(m))h2(b(m))−R(b(m))h′2(b(m))

γS ′(b(m))
= A(m). (61)

Taken together, (59)–(61) imply that the affine mapping y 7→ ûm(y) is tangent to the

mapping y 7→ [1 − F (m)]R̂(y) at ζ(b(m)). As the latter is strictly concave over [ζ(xR),∞)

and, hence, over [ζ(b(m)),∞), we obtain that

ûm(y) > [1− F (m)]R̂(y)

for all y ∈ (ζ(b(m)), ζ(m)], and thus, by (40), that

um(x) > [1− F (m)]R(x)

for all x ∈ (b(m),m], which is the desired inequality. The result follows. �

It should be noted that the proof of Lemma 8 makes essential use of A7, which reflects

that G incorporates itself the solution to an optimal stopping problem. The key inequality

(58) intuitively expresses that, at (xR,m), the DM would be ready to wait until X reaches

m again if he were certain that a breakthrough would occur at this point, allowing him to

obtain a payoff G(m) instead of his payoff R(xR) from stopping (X,M) immediately; yet,

precisely because a breakthrough may occur only later on, it will be optimal for him to invest

in the stand-alone technology at (xR,m).

We next show that W is bounded above by the value the DM could obtain if G(X) were

immediately available.
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Lemma 9 For each (x,m) ∈ J ,

W (x,m) < [1− F (m)]G(x). (62)

Proof. We consider four cases in turn.

Case 1 Suppose first that (x,m) ∈ S, so that W (x,m) is given by (48). Then

W (x,m) = [1− F (m)]R(x) < [1− F (m)]G(x)

by A6.

Case 2 Suppose next (x,m) ∈ (α, xR)× [m,β), so that W (x,m) is given by (49). Then

W (x,m) = [1− F (m)]
h1(x)

h1(xR)
R(xR) < [1− F (m)]G(x)

by (17) and A6.

Case 3 Suppose now that m ∈ [m,β) and x ∈ (b(m),m], so that W (x,m) is given by

(50)–(52). Then

W (x,m) = A(m)h1(x) +B(m)h2(x)

= [A(m)ζ(x) +B(m)]h2(x)

= [1− F (m)]{R̂(ζ(b(m))) + R̂′(ζ(b(m)))[ζ(x)− ζ(b(m))]}h2(x)

= [1− F (m)]{Ĝ(ζ(x))− η(ζ(x), ζ(b(m)))[ζ(x)− ζ(b(m))]}h2(x)

< [1− F (m)]Ĝ(ζ(x))h2(x)

= [1− F (m)]G(x),

where the second equality follows from the definition of ζ(x), the third equality follows from

(51)–(52) using (40) and (42), the fourth equality follows from (45), and the inequality follows

from noticing that ζ(x) > ζ(b(m)) and η(ζ(x), ζ(b(m))) > 0. To prove this last inequality,

let zζ(b(m)) be the unique z such that η(z, ζ(b(m))) = 0 as in the proof of Lemma 5; we then

have η(z, ζ(b(m))) > 0 if and only if z ∈ (ζ(b(m)), zζ(b(m))). Because ζ(x) > ζ(b(m)), we thus

only need to show that ζ(x) < zζ(b(m)); this follows from the fact that ζ(x) ≤ ζ(m) along

with the observation that (44)–(45) and E(b(m),m) = b′(m) > 0 imply η(ζ(m), ζ(b(m)) > 0

and, hence, ζ(m) < zζ(b(m)).

Case 4 Suppose finally that m ∈ (α,m) and x ∈ (α,m], so that W (x,m) is given by

(53)–(54). Then

W (x,m) =

[
1− F (m)

h1(xR)
R(xR) +

∫ m

m

f(y)

h1(y)
G(y) dy

]
h1(x)
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<

[
1− F (m)

h1(m)
G(m) +

∫ m

m

f(y)

h1(y)
G(y) dy

]
h1(x)

≤ [1− F (m)]G(x),

where the first inequality follows from (58), and the second inequality follows from the fact

that the mapping y 7→ G(y)
h1(y)

is nonincreasing over [x,m], as shown as in the proof of Lemma

8. The result follows. �

It should be noted that the proof of Lemma 9 makes essential use of the fact that the

candidate for the free boundary is strictly increasing. Observe that the bounds (56) and

(62) have intuitive interpretations in terms of problem (19): the lower bound (56) results

from letting τ ≡ 0 in (19), while the upper bound (62) results from (19) upon observing that

G > R by A6 and that (e−rtG(Xt))t≥0 is a supermartingale by A7.

The final result of this section is an immediate consequence of A4, Corollary 1, and

Lemma 9.

Corollary 2 The family (e−rτW (Xτ ,Mτ ))τ∈TX,M is uniformly integrable.

Corollary 2 is key to the next step of the verification argument, as we shall now see.

8.2 The Superharmonicity Property

The second step of the proof consists in showing that the function W defined by (48)–(54)

is superharmonic.

Lemma 10 For all τ ∈ Tx,m and (x,m) ∈ J ,

W (x,m) ≥ Ex,m

[
e−rτW (Xτ ,Mτ ) +

∫ τ

0

e−rtG(Mt)f(Mt) dMt

]
. (63)

Proof. Because b ∈ C1([m,β)) is strictly increasing, (b(Mt))t≥0 is a semimartingale of locally

bounded variation. Therefore, we can apply the generalized version of Itô’s lemma due to

Peskir (2007, Theorem 4.1).3 We obtain that, for any Px,m-almost surely finite stopping

time τf ∈ TX,M ,

W (x,m) = e−rτfW (Xτf ,Mτf ) +

∫ τf

0

e−rt(rW − LW )(Xt,Mt)1{Xt /∈{xR,b(Mt)}} dt

+

∫ τf

0

e−rtf(Mt)G(Mt) dMt −
∫ τf

0

e−rt
∂W

∂x
(Xt,Mt)σ(Xt) dWt, (64)

3Actually, we need a slightly more general version of Peskir’s (2007) formula that can easily be obtained
by concatenation across the four regions over which W is piecemeal constructed.
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Px,m-almost surely; notice that there is no local-time term in (64) as W is C1 on each

horizontal line. Let ([αn, βn])n∈N be an increasing sequence of compact intervals of I such

that
⋃
n∈N [αn, βn] = I, and, for each n ∈ N, let τn ≡ inf {t ≥ 0 : Xt /∈ [αn, βn]}. Observe

that τn < ∞ and that (Xt,Mt) ∈ [αn, βn] × [αn, βn] over {t ≤ τn}, Px,m-almost surely

(Karatzas and Shreve (1991, Chapter 5, Section 5.C)); as W ∈ V and σ is continuous, there

exists Kn > 0 such that
∣∣∂W
∂x

(Xt,Mt)
∣∣σ(Xt) ≤ Kn over {t ≤ τn}, Px,m-almost surely. It

follows that

Ex,m

[∫ τ∧τn

0

e−rt
∂W

∂x
(Xt,Mt)σ(Xt) dWt

]
= 0.

Next, because LW − rW = LVR − rVR ≤ 0 over intS and LW − rW = 0 over C, we have

Ex,m

[∫ τ∧τn

0

e−rt(rW − LW )(Xt,Mt)1{Xt /∈{xR,b(Mt)}} dt

]
≥ 0.

Therefore, applying (64) to τf ≡ τ ∧ τn and taking expectations, we obtain

W (x,m) ≥ Ex,m

[
e−rτ∧τnW (Xτ∧τn ,Mτ∧τn) +

∫ τ∧τn

0

e−rtG(Mt)f(Mt) dMt

]
. (65)

Using Lemma 2 along with the fact that G > 0 over I, we have∫ τ∧τn

0

e−rtG(Mt)f(Mt) dMt ≤
∫ ∞

0

e−rtG(Mt)f(Mt) dMt =

∫ β

m

e−rτ(y)G(y)f(y) dy,

and the right-hand side of this inequality has finite expectation as shown in the proof of

Lemma 2. Because X is a regular diffusion, limn→∞ τn =∞ and, hence, limn→∞ τ ∧ τn = τ ,

Px,m-almost surely. Therefore, we have

lim
n→∞

Ex,m

[∫ τ∧τn

0

e−rsG(Mt)f(Mt) dMt

]
= Ex,m

[∫ τ

0

e−rtG(Mt)f(Mt) dMt

]
(66)

by Lebesgue’s dominated convergence theorem. Next, because

lim
n→∞

e−rτ∧τnW (Xτ∧τn ,Mτ∧τn)1{τ<∞} = e−rτW (Xτ ,Mτ )1{τ<∞},

Px,m-almost surely and, hence, in Px,m-probability, and because, by Corollary 2, the sequence

(e−rτ∧τnW (Xτ∧τn ,Mτ∧τn)1{τ<∞})n∈N is uniformly integrable, we have

lim
n→∞

Ex,m [e−rτ∧τnW (Xτ∧τn ,Mτ∧τn)1{τ<∞}] = Ex,m [e−rτW (Xτ ,Mτ )1{τ<∞}] (67)

by Vitali’s convergence theorem. Finally, over {τ =∞}, we have e−rτ∧τnW (Xτ∧τn ,Mτ∧τn) =

e−rτnW (Xτn ,Mτn). For n large enough, x ∈ (αn, βn). Therefore,

Ex,m [e−rτnW (Xτn ,Mτn)]

= Ex,m [e−rτnW (Xτn ,Mτn)1{Xτn=αn}] + Ex,m [e−rτnW (Xτn ,Mτn)1{Xτn=βn}]

≤ Ex,m [e−rτ(αn)W (αn,Mτ(αn))] + Ex,m [e−rτ(βn)W (βn, βn)]
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≤ [1− F (m)]

[
h2(x)

h2(αn)
G(αn) +

h1(x)

h1(βn)
G(βn)

]
for any such n, where the second inequality follows from Lemma 9 along with the fact that the

maximum process M is nondecreasing. Together with Corollary 1 and the growth property

(18), this implies

lim
n→∞

Ex,m [e−rτnW (Xτn ,Mτn)] = 0. (68)

Using (66)–(68) to take the limit as n goes to ∞ in (65) yields (63). The result follows. �

8.3 Wrapping Up

We are now ready to complete the proof of Proposition 3 and, thereby, of Theorem 1. First,

by (19) and (55), we have Vb ≤ V . Next, by Lemmas 8 and 10, we have

W (x,m) ≥ Ex,m

[
[1− F (Mτ )] e−rτR(Xτ ) +

∫ τ

0

e−rtG(Mt)f(Mt) dMt

]
,

for all τ ∈ Tx,m and (x,m) ∈ J . Taking the supremum over τ , we obtain V ≤ W by (19).

All we then need is the following lemma.

Lemma 11 W = Vb.

Proof. By (48) and (55), we have W (x,m) = Vb(x,m) for all (x,m) ∈ S. Now, let

(x,m) ∈ C and, for each n ∈ N, define τn as in the proof of Lemma 10. For each t < τb ∧ τn,

we have (Xt,Mt) ∈ C, Px,m-almost surely, and thus Xt /∈ {xR, b(Mt)}. Hence, applying (64)

to τf = τb ∧ τn, we have

W (x,m) = e−rτb∧τnW (Xτb∧τn ,Mτb∧τn) +

∫ τb∧τn

0

e−rt(rW − LW )(Xt,Mt) dt

+

∫ τb∧τn

0

e−rtG(Mt)f(Mt) dMt −
∫ τb∧τn

0

e−rt
∂W

∂x
(Xt,Mt)σ(Xt) dWt,

Px,m-almost surely. The second term on the right-hand side vanishes as LW − rW = 0 over

C, and the fourth term on the right-hand side has zero expectation as shown in the proof of

Lemma 10. Therefore,

W (x,m) = Ex,m

[
e−rτb∧τnW (Xτb∧τn ,Mτb∧τn) +

∫ τb∧τn

0

e−rtG(Mt)f(Mt) dMt

]
.

Letting n go to ∞ as in the proof of Lemma 10, we obtain

W (x,m) = Ex,m

[
e−rτbW (Xτb ,Mτb) +

∫ τb

0

e−rtG(Mt)f(Mt) dMt

]
= Ex,m

[
[1− F (Mτb)] e−rτbR(Xτb) +

∫ τb

0

e−rtG(Mt)f(Mt) dMt

]
= Vb(x,m)
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by (48) and (55). The result follows. �

The proof of Theorem 1 is now complete.

9 Discussion

In this section, we discuss the implications of our model in the context of the motivating

example introduced in Section 2.

9.1 Properties of the Value Function

Intuitively, an increase in m, holding x fixed, brings bad news for the DM unless it is

accompanied by a breakthrough, for it means that he will have to wait for X to reach

a higher maximum value before hoping to benefit from a breakthrough. Our next result

confirms this intuition, and moreover shows that the marginal cost of an increase in m is

discontinuous across the open half-line (α,m)× {m}.

Proposition 4 The following holds:

(i) ∂V
∂m

< 0 over J \ (Jm \ {(m,m)}).

(ii) For each (x,m) ∈ Jm \ {(m,m)}, ∂V
∂m

(x,m+) > ∂V
∂m

(x,m−).

Hence, over the half-line (α,m]×{m}, ∂V
∂m

is continuous at the endpoint (m,m)—because

the Neumann condition holds everywhere over D—but not at the points (x,m) for x < m.

This notably reflects that, whereas B(m) = 0—which is required by the continuous-fit

condition—we have B′(m) > 0. One can also check that the Neumann condition at (m,m)

implies A′(m) < C ′(m). This discontinuity intuitively reflects the change of regime across the

half-line (α,m]×{m}: before X reaches m, the DM only invests in the superior technology,

should it become available; afterwards, the DM starts investing in the stand-alone technology,

which happens if X decreases enough after having reached a maximum.

We now examine the impact on the DM’s value of an increase in x, holding m fixed. To

obtain a clear-cut result, we have to make additional assumptions about the diffusion X and

the payoff function R. The following result holds.

Proposition 5 If h1 and h2 are convex and R′ > 0 over I, then ∂V
∂x

> 0 over J .

The assumption that h1 and h2 be convex is mild and is typically satisfied in real-options

models of investment; for instance, this is the case if X follows a geometric Brownian motion.
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More generally, because the lower endpoint α of I is, by assumption, inaccessible, a sufficient

condition is that the net depreciation rx − µ(x) of an asset yielding a revenue flow X be

nondecreasing in x (Alvarez (2003, Corollary 1)).

9.2 Implications for Investment Theory

A key feature of the optimal investment strategy is that investment in the stand-alone

technology with payoff function R only takes place when the process (X,M) hits the free

boundary x = b(m), that is, when, after having reached a maximum value m, the process

X drops down to the lower threshold b(m). Thus, unlike in the standard real-options model

(Dixit and Pindyck (1994)), investment in the stand-alone technology takes place in busts

rather than in booms; this reflects that the stand-alone technology becomes attractive for the

DM only if he becomes sufficiently pessimistic about eventually benefiting from the superior

technology with payoff function U . In line with this intuition, a necessary condition for

investment in the stand-alone technology is that X must have reached m.

By contrast, if U satisfies A1–A3, then investment in the superior technology only takes

place, after a breakthrough has occurred, when X reaches an upper threshold xU ; that is,

in booms rather than in busts. For instance, in the specification outlined in Section 4.2 and

detailed in Appendix C, we have xU > xR; hence, when m ≥ m, either X drops down to

b(m) before reaching a new maximum value, which triggers investment in the stand-alone

technology, or, if a breakthrough occurs when X reaches a new maximum value, investment

in the superior technology takes place immediately.

This qualitative difference between investments taking place in booms and investments

taking place in busts is a novel prediction of the model. An empirical implication is that

investments requiring cooperation from outside developers should take place in booms, in

contrast with investments involving a more routine technology. A further implication of our

model is that, because b(m) > xR is strictly increasing in m > m, the return required to

invest in the stand-alone technology is path-dependent and is always higher than it would

be, were this the only available technology. In particular, when β = ∞ and R is strictly

increasing and unbounded above, the limit condition (27) implies that the required return for

investing in the stand-alone technology may assume arbitrarily high values. Intuitively, this

is because, under technological uncertainty, the DM is willing to further delay investment in

the stand-alone technology, and requires a higher return to give up the option to invest in

the superior technology.

It is interesting to compare this pattern of investment to that arising in models of
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investment under uncertainty where the DM can invest in alternative projects. Building

on Dixit (1993), Décamps, Mariotti, and Villeneuve (2006) suppose that the DM can invest

in two alternative projects, one with a high investment cost and a high output rate, and the

other with a low investment cost and a low output rate. They show that investment in the

former only takes place in booms, while, for certain values of the parameters, investment in

the latter can also take place in busts, that is, when the DM becomes sufficiently pessimistic

about the output price recovering soon enough to make investment in the high-cost and

high-output project worthwhile again. The distinguishing feature of the present model is

that the superior technology is not present from the outset, as it is only supplied by the

developers when the share of the surplus they can secure by bargaining with the DM covers

their development cost; moreover, the time at which such a breakthrough occurs is unknown

to the DM because the development cost is the developers’ private information. Thus the

evolution of the cash-flow process X provides information both about the desirability of

investment and about the developers’ cost, leading to a rich two-dimensional dynamics. A

similar duality arises in the war-of-attrition investment model of Décamps and Mariotti

(2004), where each player does not observe his rival’s cost; however, their model is cast in

a Poisson rather than in a Brownian framework, which allows one to reduce each player’s

decision problem to a standard one-dimensional optimal stopping problem.

In our model, investment in the stand-alone technology optimally takes place in busts

because the DM faces a downside risk as well as a standard upside potential. This feature

also arises when the DM learns about the drift of the cash-flow process, as in Décamps,

Mariotti, and Villeneuve (2005) and Klein (2009). The difference is that the downside risk

in our model is not tied to an intrinsic but unknown characteristic of the investment project,

but rather to the fact that, while the DM has the option to wait until a superior technology

becomes available, he may have to resign himself to use the stand-alone technology should

the underlying cash-flow deteriorate too much.

9.3 Comparative Statics

Our comparative-statics results rely on two partial orders over the sets of development-cost

distributions and of payoff functions that are motivated by (33) and (38)–(39). We throughout

assume that U satisfies the same assumptions as R, so that, following a breakthrough, it is

optimal for the DM to invest as soon as X reaches a threshold xU , and that P ′ > 0 over I.

A case in point is the specification outlined in Section 4.2.

First, let FZ,1 and FZ,2 be two distributions of development costs with C1 densities fZ,1 > 0
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and fZ,2 > 0 over R+. Following Shaked and Shanthikumar (2007, Section 1.B.1), we say

that FZ,2 dominates FZ,1 in the hazard-rate order if

fZ,1
1− FZ,1

>
fZ,2

1− FZ,2
(69)

over R+, so that, in particular, FZ,2 first-order stochastically dominates FZ,1: development

costs tend to to be higher under FZ,2 than under FZ,1. The following result then holds.

Proposition 6 Let b1 : [m1, β) → [xR, β) and b2 : [m2, β) → [xR, β) be the optimal free

boundaries under the distributions FZ,1 and FZ,2 of development costs. If FZ,2 dominates

FZ,1 in the hazard-rate order, then m1 > m2 and b2 > b1 over [m1, β).

A consequence of this result is that, if the development cost increases in the hazard-rate

order, then the DM becomes more cautious and less prone to bear downside risk. As a result,

he is more likely to invest in the stand-alone technology.

Next, let U1 and U2 two payoff functions from investing in the new technology, and let

FZ be the distribution of development costs. We say that U2 dominates U1 if U2 > U1 and

U ′2 > U ′1. As usual, we say that FZ satisfies the monotone hazard-rate property (MHRP) if
fZ

1−FZ
is nondecreasing over I. The following result then holds.

Proposition 7 Suppose that h1 is convex, U1 is concave, and FZ satisfies MHRP, and let

b1 : [m1, β) → [xR, β) and b2 : [m2, β) → [xR, β) be the optimal free boundaries under the

payoffs functions U1 and U2 from investing in the new technology. If U2 dominates U1, then

m2 > m1 and b1 > b2 over [m2, β).

When the payoff function from investing in the new technology increases from U1 to U2

in the partial order we have defined, two effects are at play. The direct effect is that, by

(2), the value VU increases, and hence that so does, by (3), the continuation value G that

the DM can obtain by bargaining with a successful developer. The indirect effect operates

through the incentives of the developers. Notice, indeed, that the breakthrough rate H in

(33) can be written as H = P ′ fZ◦P
1−FZ◦P

, and hence depends on the share P of the surplus

VU − VR that a successful developer can obtain by bargaining with the DM, as well as on

its derivative P ′. If h1 is convex and U1 is concave, then, when U increases from U1 to U2,

both P and P ′ increase, reflecting that the developers stand to gain both in absolute and

marginal terms;4 if, moreover, FZ satisfies MHRP, then we obtain that the breakthrough

4The convexity assumptions on h1 and U1 are not needed for this result if the optimal investment threshold
is higher under U2 than under U1.

38



rate increases, as in Proposition 6. Overall, an increase in U makes it more likely that the

DM will benefit from an even superior technology earlier on, which makes him more prone

to bear downside risk; observe that the indirect effect described above is absent from models

that treat technological breakthroughs as exogenous.

10 Concluding Remarks

In this paper, we have provided a new model of investment under technological and cash-flow

uncertainty. The distinctive feature of our model is that the values of the stand-alone

technology and of the superior technology depend on current market conditions, and that

the occurrence of technological breakthroughs is correlated with the evolution of market

conditions; hence, in our motivating example, a new technology is introduced as soon as

market conditions are favorable enough to make it profitable for developers to do so, given

the share of the surplus from the innovation that accrues to a successful developer. Thus our

model may be seen as a first step towards a theory of the interactions between both sides of

the market for technological innovations.

The main insight from our analysis is that investment in the stand-alone technology

should only occurs in busts, when the market conditions deteriorate enough after having

reached a maximum; we provide a complete characterization of the corresponding optimal

investment boundary. By contrast, investments in new technologies requiring the active

cooperation of developers should take place in booms. This intuitively reflects that the

stand-alone technology becomes attractive only when the firm becomes pessimistic enough

about a breakthrough shortly being forthcoming. As a result, and in contrast with standard

models of investment under uncertainty, the firm bears downside risk, in addition to the

upside potential associated to technological breakthroughs. A decrease in development costs,

or an increase in the value of the new technology, makes the firm more prone to bear such

downside risk and to delay investment in the stand-alone technology.

We have throughout assumed that at most two technologies are available. In that respect,

our analysis is less rich than that of Balcer and Lippman (1984), who consider a sequence

of innovations arising according to a semi-Markov process. We conjecture, however, that

qualitatively similar results would hold if the model were extended to allow for multiple

innovations. Another limitation of our analysis is that we have considered the investment

policy of an isolated firm. A fascinating avenue of research would be to investigate the

implication of technological and cash-flow uncertainty for the equilibrium of an industry.

We leave these questions for future work.
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Appendix A: Ommitted Proofs

Proof of Lemma 1. By (10) and (15),

VR(x) ≥ Ex [e−rτ(y)R(Xτ(y))] =
h1(x)

h1(y)
R(y)

for all x ∈ I and y ∈ [x, β). Letting y go to β− and taking advantage of (16), we obtain that VR ≥ 0

over I and, as R = VR over [xR, β) by (17), that R ≥ 0 over [xR, β). To show that these inequalities

are strict, observe from A3 that R cannot be identically zero over [xR, β). Thus R(y) > 0 for some

y ∈ [xR, β). Because, by (10), (15), and (17),

R(x) = VR(x) ≥ Ex [e−rτ(y)R(Xτ(y))] =

{
h1(x)
h1(y) R(y) if x ≤ y,
h2(x)
h2(y) R(y) if x > y,

for all x ∈ [xR, β), this implies that R > 0 over [xR, β), which, along with (17) again, in turn

implies that VR > 0 over I. The result follows. �

Proof of Lemma 3. For each m ∈ [xR, β), we have G(m) > R(m) by A6, and L(m) < 0 as shown

in the text. It follows that

lim
(x,m′),x<m′→(m,m)

D(x,m′)E(x,m′) =
H(m)σ2(m)

2L(m)h2(m)
γS′(m)h2(m)[R(m)−G(m)] > 0.

Thus the mapping (x,m) 7→ D(x,m)E(x,m) can be continuously extended over JE , which implies

(37) as D vanishes over D. The result follows. �

Proof of Lemma 4. To avoid notational clutter, we hereafter write b for b(m) and b′ for b′(m).

Notice first that, over the subset {(x,m) ∈ J : m ≥ m and x ∈ (b,m]} of C, any solution W ∈ V
to (28) is of the form

W (x,m) = A(m)h1(x) +B(m)h2(x) (A.1)

for some functionsA,B ∈ C1([m,β)). By (A.1), the continuous- and smooth-fit conditionsW (b,m) =

[1− F (m)]R(b) and ∂W
∂x (b,m) = [1− F (m)]R′(b) are satisfied if and only if

A(m)h1(b) +B(m)h2(b) = [1− F (m)]R(b), (A.2)

A(m)h′1(b) +B(m)h′2(b) = [1− F (m)]R′(b). (A.3)

By (A.3), we have

B(m) =
1

h′2(b)
{[1− F (m)]R′(b)−A(m)h′1(b)}.

Substituting in (A.2) and multiplying by h′2(b), we obtain

A(m)h1(b)h′2(b) + [1− F (m)]R′(b)h2(b)−A(m)h′1(b)h2(b) = [1− F (m)]R(b)h′2(b)

and thus, by (12),

A(m) =
1− F (m)

γS′(b)
[R′(b)h2(b)−R(b)h′2(b)]. (A.4)
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By symmetry,

B(m) = −1− F (m)

γS′(b)
[R′(b)h1(b)−R(b)h′1(b)]. (A.5)

By (A.1), the Neumann condition ∂W
∂m (m,m) = −f(m)G(m) is satisfied if and only if

A′(m)h1(m) +B′(m)h2(m) = −f(m)G(m). (A.6)

Differentiating (A.4) with respect to m yields

A′(m) =
b′[1− F (m)]

γS′(b)

{
R′′(b)h2(b)−R(b)h′′2(b)− S′′(b)

S′(b)
[R′(b)h2(b)−R(b)h′2(b)]︸ ︷︷ ︸

≡Q(b)

}

− f(m)

γS′(b)
[R′(b)h2(b)−R(b)h′2(b)]. (A.7)

Now, observe that

Q(b) =
2

σ2(b)

{
1

2
σ2(b)R′′(b)h2(b)− 1

2
σ2(b)R(b)h′′2(b) + µ(b)[R′(b)h2(b)−R(b)h′2(b)]

}
=

2

σ2(b)
[(LR− rR)(b)h2(b)−R(b)(Lh2 − rh2)(b)]

=
2

σ2(b)
(LR− rR)(b)h2(b)

=
2

σ2(b)
L(b)h2(b), (A.8)

where the first equality follows from noticing that S′′(b)
S′(b) = −2µ(b)

σ2(b)
by (13), the second equality

follows from (11), the third equality follows from the fact that Lh2 − rh2 = 0, and the fourth

equality follows from (34). Using (A.8) to rewrite (A.7) yields

A′(m) =
1

γS′(b)

{
2b′[1− F (m)]

σ2(b)
L(b)h2(b)− f(m)[R′(b)h2(b)−R(b)h′2(b)]

}
. (A.9)

By symmetry,

B′(m) = − 1

γS′(b)

{
2b′[1− F (m)]

σ2(b)
L(b)h1(b)− f(m)[R′(b)h1(b)−R(b)h′1(b)]

}
. (A.10)

Using (35)–(36), we obtain from (A.9)–(A.10) that (A.6) holds if and only if

2b′

σ2(b)
L(b)D(b,m) = H(m){R′(b)D(b,m) +R(b)[h′1(b)h2(m)− h′2(b)h1(m)]− γS′(b)G(m)},

that is, observing that

h′1(b)h2(m)− h′2(b)h1(m) =
γS′(b) + h1(b)h′2(b)

h2(b)
h2(m)− h′2(b)h1(m)

=
γS′(b)h2(m)− h′2(b)D(b,m)

h2(b)

by (12) and (35), and that D(b,m) > 0 as b < m, if and only if

b′ =
H(m)σ2(b)

2L(b)h2(b)

{
γS′(b)

D(b,m)
[R(b)h2(m)−G(m)h2(b)] +R′(b)h2(b)−R(b)h′2(b)

}
,
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which is (38) by (33). The result follows. �

Proof of Lemma 7. First, W ∈ C0(J ) by construction. Next, as R, h1, and h2 are C2, and F , G,

and b are C1, the functions (48)–(50) and (53) are C2,1 over the domains S, J1 = (α, xR]× [m,β),

J2 = {(x,m) ∈ J : m ≥ m and x ∈ [b(m),m]} and J3 = {(x,m) ∈ J : m ≤ m}, respectively.

Finally, that W ∈ C1(J \Jm) follows from the following observations. First, the function obtained

by pasting together (48)–(49) is C1 at {xR} × (m,β) by the smooth-fit property for VR at xR;

Second, the function obtained by pasting together (48) and (50) is C1 at {(x,m) ∈ J : m >

m and x = b(m)} because the “horizontal” smooth-fit condition

A(m)h′1(b(m)) +B(m)h′2(b(m)) =
∂W

∂x
(b(m)+,m) =

∂W

∂x
(b(m)−,m) = [1− F (m)]R′(b(m))

implies, upon differentiating the continuous-fit condition

W (b(m),m) = A(m)h1(b(m)) +B(m)h2(b(m)) = [1− F (m)]R(b(m)),

the “vertical” smooth-fit condition

∂W

∂m
(b(m),m−) = A′(m)h1(b(m)) +B′(m)h2(b(m)) = −f(m)R(b(m)) =

∂W

∂m
(b(m),m+).

Thus W ∈ V, as claimed. Notice finally that the function obtained by pasting together (50) and

(53) has continuous partial derivatives at (m,m) by the Neumann condition along with the fact

that A(m) = C(m). The result follows. �

Proof of Corollary 1. Recall from A6 and Lemma 1 that R > 0 over [xR, β) and that G > 0

over I. We consider four cases in turn.

Case 1 Suppose first that (x,m) ∈ S, so that W (x,m) is given by (48). Then x ≥ xR and thus

W (x,m) > 0 as R > 0 over [xR, β).

Case 2 Suppose next that (x,m) ∈ (α, xR) × [m,β), so that W (x,m) is given by (49). Then

W (x,m) > 0 as R(xR) > 0.

Case 3 Suppose now that m ∈ [m,β) and x ∈ (b(m),m], so that W (x,m) is given by (50)–(52).

We just need to check that A(m) and B(m) are nonnegative, with one of them strictly positive.

By (42) and (51), we have

A(m) = [1− F (m)]R̂′(ζ(b(m)) > 0 (A.11)

because ζ(b(m)) ≥ ζ(xR) and R̂′ > 0 over [ζ(xR),∞) as shown in the proof of Lemma 5. By (42)

and (52), we have B(m) = 0, and for m ∈ (m,β), we have

B(m) = [1− F (m)]ζ(b(m))

[
R(b(m))

h1(b(m))
− R̂′(ζ(b(m)))

]
> [1− F (m)]ζ(b(m))

[
R(b(m))

h1(b(m))
− R̂(ζ(b(m)))− R̂(ζ(xR))

ζ(b(m))− ζ(xR)

]

= [1− F (m)]
ζ(b(m))ζ(xR)

ζ(b(m))− ζ(xR)

[
R(xR)

h1(xR)
− R(b(m))

h1(b(m))

]
≥ 0,

where the first inequality follows from the strict concavity of R̂ over [ζ(xR),∞), and the second

inequality follows from the optimality of the stopping threshold xR for (10).
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Case 4 Suppose finally that m ∈ (α,m) and x ∈ (α,m], so that W (x,m) is given by (53)–(54).

Then W (x,m) > 0 as R(xR) > 0 and G > 0 over I. Hence the result. �

Proof of Proposition 4. (i) That ∂V
∂m (m,m) < 0 directly follows from the Neumann condition.

We then consider four cases in turn.

Case 1 Suppose first that (x,m) ∈ S \ {(xR,m)}, so that V (x,m) is given by (48). Then
∂V
∂m (x,m) = −f(m)R(x) < 0 as f > 0 over I and R > 0 over [xR, β).

Case 2 Suppose next that (x,m) ∈ (α, xR) × (m,β), so that V (x,m) is given by (49). Then
∂V
∂m (x,m) = −f(m) h1(x)

h1(xR) R(xR) < 0 as f > 0 and h1 > 0 over I and R(xR) > 0.

Case 3 Suppose now that m ∈ (m,β) and x ∈ (b(m),m], so that V (x,m) is given by (50)–(52).

Then ∂V
∂m (x,m) = A′(m)h1(x) +B′(m)h2(x). By (A.11), we have

A′(m) = −f(m)R̂′(ζ(b(m)) + [1− F (m)]R̂′′(ζ(b(m))ζ ′(b(m))b′(m) < 0 (A.12)

as f > 0 and ζ ′ > 0 over I, b′ > 0 over [m,β), and ζ(b(m)) ≥ ζ(xR) and R̂′ > 0 and R̂′′ < 0

over [ζ(xR),∞) as shown in the proof of Lemma 5. Because the mapping x 7→ h1(x)
h2(x) is strictly

increasing, (A.12) implies that

∂V

∂m
(x,m) = h2(x)

[
A′(m)

h1(x)

h2(x)
+B′(m)

]
≤ h2(x)

[
A′(m)

h1(b(m))

h2(b(m))
+B′(m)

]
= − h2(x)

h2(b(m))
f(m)R(b(m))

< 0,

where the second equality follows from the vertical smooth-fit condition ∂V
∂m (b(m),m) = −f(m)

R(b(m)), and the second inequality follows from the fact that f > 0 and h2 > 0 over I and that

R > 0 over [xR, β).

Case 4 Suppose finally that m ∈ (α,m) and x ∈ (α,m], so that V (x,m) is given by (53)–(54).

Then ∂V
∂m (x,m) = − f(m)

h1(m) G(m)h1(x) < 0 as f > 0, h1 > 0, and G > 0 over I. This proves (i).

(ii) We consider two cases in turn.

Case 1 Suppose first that x ∈ (α, xR]. On the one hand, by (48)–(49), we have

∂V

∂m
(x,m+) = −f(m)

h1(x)

h1(xR)
R(xR).

On the other hand, by (53)–(54), we have

∂V

∂m
(x,m−) = −f(m)

h1(x)

h1(m)
G(m),

and the result follows from (58).

Case 2 Suppose next that x ∈ (xR,m). We first derive more compact expressions for A′(m)

and B′(m), where m ∈ (m,β). To avoid notational clutter, we hereafter write b for b(m). By (50),

the vertical smooth-fit condition ∂V
∂m (b,m) = −f(m)R(b) and the Neumann condition ∂V

∂m (m,m) =
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−f(m)G(m) are satisfied if and only if

A′(m)h1(b) +B′(m)h2(b) = −f(m)R(b), (A.13)

A′(m)h1(m) +B′(m)h2(m) = −f(m)G(m). (A.14)

By (A.14), we have

B′(m) = − 1

h2(m)
[f(m)G(m) +A′(m)h1(m)].

Substituting in (A.13) and multiplying by h2(m), we obtain

A′(m)h1(b)h2(m)− f(m)G(m)h2(b)−A′(m)h1(m)h2(b) = −f(m)R(b)h2(m)

and thus, by (35),

A′(m) =
f(m)

D(b,m)
[R(b)h2(m)−G(m)h2(b)]. (A.15)

By symmetry,

B′(m) = − f(m)

D(b,m)
[R(b)h1(m)−G(m)h1(b)]. (A.16)

Both (A.15)–(A.16) can be extended by continuity at m to evaluate ∂V
∂m (x,m+) for all x ∈ (xR,m).

Notice from (39) and (A.16) that

B′(m) = − f(m)

D(xR,m)
[R(xR)h1(m)−G(m)h1(xR)] > 0,

taking again advantage from (58). By (50) and (53), (i) holds at x ∈ (xR,m) if and only if

A′(m)h1(x) +B′(m)h2(x) > C ′(m)h1(x).

Because B′(m) > 0 and the mapping x 7→ h2(x)
h1(x) is strictly decreasing, this is the case for all

x ∈ (xR,m) if and only if

A′(m)h1(m) +B′(m)h2(m) ≥ C ′(m)h1(m). (A.17)

Using (35), (39), (54), and (A.15)–(A.16), it is easily checked that (A.17) is in fact an equality.

This, incidentally, reflects that ∂V
∂m is continuous at (m,m) because the Neumann condition holds

everywhere over D; notice also that this implies A′(m) < C ′(m) as B′(m) > 0. This proves (ii).

Hence the result. �

Proof of Proposition 5. We consider four cases in turn.

Case 1 Suppose first that (x,m) ∈ S, so that V (x,m) is given by (48). Then ∂V
∂x (x,m) =

[1− F (m)]R′(x) > 0 as R′ > 0 over I.

Case 2 Suppose next that (x,m) ∈ (α, xR) × [m,β), so that V (x,m) is given by (49). Then
∂V
∂x (x,m) = [1− F (m)]

h′1(x)
h1(xR) R(xR) > 0 as h′1 > 0 over I and R(xR) > 0.

Case 3 Suppose now that m ∈ [m,β) and x ∈ (b(m),m], so that V (x,m) is given by (50)–(52).

Then ∂V
∂x (x,m) = A(m)h′1(x)+B(m)h′2(x). It follows from the proof of Corollary 1 that A(m) > 0

for m ∈ [m,β) and that B(m) > 0 for m ∈ (m,β), with B(m) = 0. Hence V (x,m) is convex in

x ∈ (b(m),m] as h1 and h2 are convex. Thus ∂V
∂x (x,m) > 0 because, by the smooth-fit condition,

∂V
∂x (b(m),m) = [1− F (m)]R′(b(m)) > 0 as R′ > 0 over I.
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Case 4 Suppose finally that m ∈ (α,m) and x ∈ (α,m], so that V (x,m) is given by (53)–(54).

Then ∂V
∂x (x,m) = C(m)h′1(x) > 0 as h′1 > 0 over I and C > 0 over (α,m). Hence the result. �

Proof of Proposition 6. Consider the breakthrough densities f1 ≡ P ′fZ,1 ◦P and f2 ≡ P ′fZ,2 ◦P
associated to fZ,1 and fZ,2. Then, as P ′ > 0, the corresponding breakthrough rates H1 and H2

satisfy

H1(m) ≡ P ′(m)
fZ,1(P (m))

1− FZ,1(P (m))
> P ′(m)

fZ,2(P (m))

1− FZ,2(P (m))
≡ H2(m)

for all m ∈ I. Using (33) and Lemma 5, we deduce from this that the vector fields E1 and E2

associated to fZ,1 and fZ,2 satisfy

E1(x,m) > E2(x,m) (A.18)

for all (x,m) such that x ≥ b2(m). Now, suppose, by way of contradiction, that b1(m0) ≥ b2(m0)

for some m0 ∈ [m1, β) ∩ [m2, β). Then, by (A.18), we have b1(m) > b2(m) for all m ∈ (m0, β). Fix

some ε ∈ (0, β −m0) and consider the following ODE:

b′(m) = E2(b(m),m), m ≥ m0 + ε,

b(m0 + ε) = b1(m0 + ε),

with maximal solution b12 satisfying (b12(m),m) ∈ J +
E2

for all m in a maximal interval with lower

endpoint m0 + ε. By (A.18) again, we have b1 ≥ b12 > b2 over this maximal interval, which must

thus coincide with [m0 +ε, β). But then the interval I0
2 of possible endpoints for a candidate for the

free boundary when the breakthrough density is f2 cannot be reduced to a point, a contradiction.

It follows that b2(m) > b1(m) for all m ∈ [m1, β) ∩ [m2, β), and, in particular, that m1 > m2.

Hence the result. �

Proof of Proposition 7. The proof consists of two steps.

Step 1 Consider the value functions VU1 and VU2 associated to U1 and U2 as in (B.1). Because

U1 and U2 satisfy the same properties as R, we obtain

VU1(x) =

{
h1(x)
h1(xU1

) U1(xU1) if x < xU1 ,

U1(x) if x ≥ xU1

and VU2(x) =

{
h1(x)
h1(xU2

) U2(xU2) if x < xU2 ,

U2(x) if x ≥ xU2

for some optimal thresholds xU1 and xU2 . We claim that VU2 > VU1 and V ′U2
> V ′U1

over I. The

first inequality follows directly from the assumption that U2 > U1. As for the second inequality, it

is clear from the above expressions that it is satisfied over (α, xU1 ∧ xU2 ] (the common part of the

continuation regions) and over [xU1 ∨ xU2 , β) (the common part of the stopping regions). Consider

now the region (xU1 ∧xU2 , xU1 ∨xU2). Suppose first that xU1 < xU2 . Then, for each x ∈ (xU1 , xU2),

V ′U2
(x)− V ′U1

(x) =
h′1(x)

h1(xU2)
U2(xU2)− U ′1(x)

≥ h′1(xU1)

h1(xU2)
U2(xU2)− U ′1(xU1)

≥ h′1(xU1)

h1(xU1)
U2(xU1)− U ′1(xU1)

>
h′1(xU1)

h1(xU1)
U1(xU1)− U ′1(xU1)

= 0,
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where the first inequality follows from the convexity of h1 and the concavity of U1, the second

inequality follows from the optimality of the threshold xU2 under U2, the third inequality follows

from U2 > U1, and the second equality follows from the smooth-fit property under U1. Suppose

next that xU2 < xU1 . Then, for each x ∈ (xU2 , xU1),

V ′U2
(x)− V ′U1

(x) = U ′2(x)− h′1(x)

h1(xU1)
U1(xU1)

> U ′1(x)− h′1(x)

h1(xU1)
U1(xU1)

≥ U ′1(xU1)− h′1(xU1)

h1(xU1)
U1(xU1)

= 0,

where the first inequality follows from U ′2 > U ′1, the second inequality follows from the convexity

of h1 and the concavity of U1, and the second equality follows from the smooth-fit property under

U1. The claim follows.

Step 2 Together with (3), Step 1 implies that G2 > G1, P2 > P1, and P ′2 > P ′1, with obvious

notation. In particular, because FZ satisfies MHRP, the corresponding breakthrough rates H1 and

H2 satisfy

H2(m) = P ′2(m)
fZ(P2(m))

1− FZ(P2(m))
> P ′1(m)

fZ(P1(m))

1− FZ(P1(m))
= H1(m)

for all m ∈ I. Using (33) and Lemma 5, we deduce from this along with G2 > G1 that the vector

fields E1 and E2 associated to U1 and U2 satisfy (A.18) for all (x,m) such that x ≥ b2(m). The

remainder of the proof follows along the lines of the proof of Proposition 6. Hence the result. �

Appendix B: The Dynamic Programming Principle

In this appendix, we show how to apply the dynamic programming principle to obtain the general

form (5) of our problem, as announced in Section 2. On top of the assumptions made in Section

4.2, we assume that U ∈ C2(I), with U > R over I, and that U satisfies A1–A3, so that there

exists xU ∈ I such that the stopping time τX≥xU ≡ inf {t ≥ 0 : Xt ≥ xU} is the solution to the

optimal stopping problem

VU (x) ≡ sup
τ∈TX

Ex [e−rτU(Xτ )]. (B.1)

Recall that the payoff for the DM when stopping at τ ∈ TX,X≥Y is

Ĵ(x, τ) ≡ Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y}

[
e−rτU(Xτ )− e−rτX≥Y P (XτX≥Y )

]]
. (B.2)

The following result then holds.

Lemma 12 For each x ∈ I, supτ∈TX,X≥Y Ĵ(x, τ) = V (x).

Proof. Given that, by (3),

VU (XτX≥Y )− P (XτX≥Y ) = G(XτX≥Y ),

it is sufficient to prove that

sup
τ∈TX,X≥Y

Ĵ(x, τ) = sup
τ∈TX

Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y} e−rτX≥Y

[
VU (XτX≥Y )− P (XτX≥Y )

]]
.

The proof consists of two parts.
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Proof of ≥ Consider the filtrations (F0
t )t≥0 and (Ft)t≥0 over Ω defined by F0

t ≡ σ(Xs; s ≤ t)

and Ft ≡ ∩s>tF0
s for all t ≥ 0 and let T 0

X denote the set of stopping times with respect to the

filtration (F0
t )t≥0. Recall that the filtration (Gt)t≥0 over Ω is defined by Gt ≡ σ(Xs, 1{τX≥Y ≤s}; s ≤ t)

for all t ≥ 0, so that we have, for any such t,

F0
t ⊗ {∅, I} ⊂ Gt ⊂ F0

t ⊗ B(I) (B.3)

and

Gt = σ

(
Xs, {Y ≤ X0},

{
Y > sup

s∈[0,t]
Xs

}
, Y 1{Y ∈(X0, sups∈[0,t]Xs]}; s ≤ t

)
, (B.4)

and τX≥Y is a stopping time with respect to the filtration (Gt)t≥0. Notice also that T 0
X ⊂ TX,X≥Y

if we identify the elements of T 0
X to functions defined on Ω. For any τ ∈ TX,X≥Y , let us define

τ̃(τ) ≡ τ1{τ<τX≥Y} + (τX≥xU ∨ τX≥Y )1{τ≥τX≥Y}.

Using the properties of the σ-fields Gτ and GτX≥Y , we have τ̃(τ) ∈ TX,X≥Y as

{τ̃(τ) ≤ t} = ({τ ≤ t} ∩ {τ < τX≥Y }) ∪ ({τX≥xU ≤ t} ∩ {τX≥Y ≤ t} ∩ {τ ≥ τX≥Y })

for all t ≥ 0. Notice that

τX≥xU ∨ τX≥Y = τX≥Y + τX≥xU ◦ θτX≥Y 1{τX≥Y <∞},

where θ. denotes the shift operator on Ω.

By construction, X is a strong Markov process with respect to the filtration generated by X,

and also with respect to the filtration generated by X and Y as Y is independent of X. Hence,

because the filtration (Gt)t≥0 lies in between these two filtrations by (B.3), X is also a strong

Markov process with respect to the filtration (Gt)t≥0. Denoting by X̃ another copy of the canonical

process defined on (Ω̃, F̃) = (Ω,F), the strong Markov property yields

Ĵ(x,τ̃(τ))

= Ex

[
1{τ<τX≥Y} e−rτR(Xτ )

+ 1{τ≥τX≥Y} e−rτX≥Y
[
e
−rτX≥xU ◦ θτX≥Y U(XτX≥Y + τX≥xU ◦ θτX≥Y )− P (XτX≥Y )

]]
= Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y} e−rτX≥Y EXτX≥Y

[
e
−rτX̃≥xUU(X̃τX̃≥xU

)− P (X̃0)
]]

= Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y} e−rτX≥Y

[
VU (XτX≥Y )− P (XτX≥Y )

]]
.

We deduce from this that

sup
τ∈TX,X≥Y

Ĵ(x, τ)

≥ sup
τ∈TX,X≥Y

Ĵ(x, τ̃(τ))

= sup
τ∈TX,X≥Y

Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y} e−rτX≥Y

[
VU (XτX≥Y )− P (XτX≥Y )

]]
≥ sup

τ∈T 0
X

Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y} e−rτX≥Y

[
VU (XτX≥Y )− P (XτX≥Y )

]]
= sup

τ∈TX
Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y} e−rτX≥Y

[
VU (XτX≥Y )− P (XτX≥Y )

]]
,
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where the first inequality follows from the fact that τ̃(τ) ∈ TX,X≥Y for all τ ∈ TX,X≥Y , the second

inequality follows from T 0
X ⊂ TX,X≥Y , and the second equality follows from the fact that any τ ∈ TX

is the limit of the nonincreasing sequence of stopping times (τn)n∈N in T 0
X defined by

τn ≡
∑
k≥0

1{τ∈[k2−n,(k+1)2−n)}(k + 1)2−n, n ∈ N,

which, given thatX is continuous and R is continuous and satisfies A1, allows us to apply Lebesgue’s

dominated convergence theorem to replace the supremum over T 0
X with the supremum over TX .

This concludes the first part of the proof.

Proof of ≤ The proof of the reverse inequality is more technical, although it relies on a very

intuitive decomposition of stopping times in TX,X≥Y . Specifically, we show that for any τ ∈ TX,X≥Y ,

there exists τ0 ∈ T 0
X such that {τ < τX≥Y } = {τ0 < τX≥Y } and

τ(ω, y) = τ0(ω)1{τ0(ω)<τX≥Y (ω,y)} + τ(ω, y)1{τ0(ω)≥τX≥Y (ω,y)}, (ω, y) ∈ Ω. (B.5)

We provide a detailed proof for lack of a reference covering exactly the case at hand. The proof is

constructive. Let us choose a continuous strictly increasing map ψ : I → I such that ψ(x) > x for

all x ∈ I, and define

φ(ω, t) ≡ τ

(
ω, ψ

(
sup
s∈[0,t]

ωs

))
, (ω, t) ∈ Ω× R+.

We verify that (B.5) holds for

τ0(ω) ≡ inf {t ≥ 0 : φ(ω, t) ≤ t}, ω ∈ Ω.

To see this, observe that for each t ∈ R+, the mapping (ω, y) 7→ 1{τ(ω,y)≤t} is Gt-measurable. By

(B.4), this implies that for each (ω, t) ∈ Ω × R+, the mapping y 7→ 1{τ(ω,y)≤t} is constant over

(sups∈[0,t] ωs, β). Because ψ(x) > x for all x ∈ I, it follows that, for each t ≥ 0, the following

equivalences hold:

φ(ω, t) ≤ t⇔ there exists y > sups∈[0,t] ωs such that τ(ω, y) ≤ t
⇔ for each y > sups∈[0,t] ωs, τ(ω, y) ≤ t. (B.6)

A consequence of this is that, for each ω such that τ0(ω) <∞,

{t ≥ 0 : φ(ω, t) ≤ t} = [τ0(ω),∞). (B.7)

Indeed, assume that τ0(ω) < ∞. For each t′ ≥ t, ψ(sups∈[0,t′] ωs) > sups∈[0,t′] ωs ≥ sups∈[0,t] ωs.

Hence, by (B.6), φ(ω, t) ≤ t implies that, for each t′ ≥ t, φ(ω, t′) ≤ t ≤ t′, and thus (τ0(ω),∞) ⊂
{t ≥ 0 : φ(ω, t) ≤ t}. Finally, if y > sups∈[0,τ0(ω)] ωs, then y > sups∈[0,t′] ωs for t′ > τ0(ω) sufficiently

close to τ0(ω), and thus τ(ω, y) ≤ t′ by (B.6) as φ(ω, t′) ≤ t′. This implies τ(ω, y) ≤ τ0(ω) by

taking the limit and thus φ(ω, τ0(ω)) ≤ τ0(ω) by (B.6) again, which concludes the proof of (B.7).

Now, if τX≥y(ω) > τ0(ω), then y > sups∈[0,τ0(ω)] ωs and, as above, we obtain that τ(ω, y) ≤ τ0(ω).

Similarly, if τX≥y(ω) > τ(ω, y), then y > sups∈[0,τ(ω,y)] ωs, implying that φ(ω, τ(ω, y)) ≤ τ(ω, y) by

(B.6), and thus that τ0(ω) ≤ τ(ω, y) by (B.7). These two inequalities together imply

{τX≥y > τ} = {τX≥y > τ0} and τ(ω, y) = τ0(ω) if τX≥y(ω) > τ(ω, y). (B.8)

For each t ∈ R+, we have {τ0 ≤ t} = {φ(ω, t) ≤ t} by (B.7), and this set belongs to F0
t because

{(ω, y) : τ(ω, y) ≤ t} ∈ F0
t ⊗ B(I) and the mapping ω 7→ (ω, ψ(sup[0,t] ωs)) is F0

t /F0
t ⊗ B(I)

measurable. It follows that τ0 ∈ T 0
X , which, together with (B.8), concludes the proof of (B.5).
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Using this decomposition, we have

Ĵ(x, τ) = Ex

[
1{τ<τX≥Y} e−rτR(Xτ ) + 1{τ≥τX≥Y}

[
e−rτU(Xτ )− e−rτX≥Y P (XτX≥Y )

]]
= Ex

[
1{τ0<τX≥Y} e−rτ

0
R(Xτ0) + Ex

[
1{τ0≥τX≥Y}

[
e−rτU(Xτ )− e−rτX≥Y P (XτX≥Y )

)
|Y
]]
.

Notice that, by definition, τX≥Y (ω, y) = τX≥y(ω) and thus τX≥y ∈ T 0
X for all y ∈ I. Moreover, for

any such y, τy(·) ≡ τ(·, y) ∈ T 0
X because τ is also a stopping time with respect to the larger filtration

(F0
t ⊗B(I))t≥0. It follows from Dellacherie and Meyer (1975, Théorème 103) that, for each y ∈ I,

there exists a F0
τX≥y

⊗F0
∞-measurable function Ty : Ω×Ω→ [0,∞] such that Ty(ω, ·) ∈ T 0

X for all

ω ∈ Ω and

τy(ω)1{τy(ω)≥τX≥y(ω)} = [τX≥y(ω) + Ty(ω, θτX≥y(ω))]1{τy(ω)≥τX≥y(ω)}

for all ω ∈ Ω such that τX≥y(ω) <∞. We obtain that, for each y ∈ I,

Ex

[
1{τ0≥τX≥Y } e−rτU(Xτ ) |Y = y

]
= Ex

[
1{τ0≥τX≥y} e−rτyU(Xτy)

]
= Ex

[
1{τ0≥τX≥y} e−r(τX≥y+Ty)U(XτX≥y+Ty)

]
= Ex

[
1{τ0≥τX≥y} e−rτX≥y Ex

[
e−rTyU(XτX≥y+Ty) |FXτX≥y

]]
.

Applying the Markov property yields

Ex

[
e−rTyU(XτX≥y+Ty) |FXτX≥y

]
(ω) =

∫
Ω

e−rTy(ω,ω̃)U(XTy(ω,ω̃)) PXτX≥y (ω)(dω̃)

≤ VU (XτX≥y(ω))

for all (ω, y) ∈ Ω× I such that τX≥y(ω) <∞. Summing up, we obtain

Ĵ(x, τ) ≤ Ex

[
1{τ0<τX≥Y} e−rτ

0
R(Xτ0) + 1{τ0≥τX≥Y} e−rτX≥Y

[
VU (XτX≥Y )− P (XτX≥Y )

]]
≤ sup

τ̃∈TX
Ex

[
1{τ̃<τX≥Y} e−rτ̃R(Xτ̃ ) + 1{τ̃≥τX≥Y} e−rτX≥Y

[
VU (XτX≥Y )− P (XτX≥Y )

]]
,

where the second inequality follows from τ0 ∈ T 0
X ⊂ TX . This concludes the second part of the

proof. The result follows. �

It should be noted that the decomposition (B.5) of stopping times in TX,X≥Y allows us to

decompose any solution to (4)—where the supremum is taken over the stopping times in τX,X≥Y —

into a solution to (5)—where the supremum is taken over the stopping times in τX—and a solution

to (B.1) in the continuation game.

Appendix C: An Example

In this appendix, we verify that the specification of the model provided at the end of Section 4.2

satisfies A1–A8. We let X follow a geometric Brownian motion with drift µ < r and volatility

σ > 0,

dXt = µXt dt+ σXt dWt, t ≥ 0,

so that the state space for X is I = (0,∞) and the infinitesimal generator of X writes as

Lu(x) ≡ µxu′(x) +
1

2
σ2x2u′′(x), x ∈ (0,∞).
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The two fundamental solutions to Lu− ru = 0 are, up to a linear transformation,

h1(x) ≡ xβ1 and h2(x) ≡ xβ2 , x ∈ (0,∞),

where, letting ν ≡ µ
σ2 − 1

2 ,

β1 ≡ −ν +

√
ν2 +

2r

σ2
> 1 and β2 ≡ −ν −

√
ν2 +

2r

σ2
< 0.

Observe that h1 and h2 are strictly convex over (0,∞). The derivative of the scale function is, up

to a linear transformation,

S′(x) = exp

(
−
∫ x

1

2µ

σ2z
dz

)
= x−2ν−1, x ∈ (0,∞),

which leads to

γ =
h′1(x)h2(x)− h1(x)h′2(x)

S′(x)
= β1 − β2.

The payoff functions are R(x) ≡ x−I and U(x) ≡ κx−I for κ > 1, which satisfy A3 for x0 = r
r−µ I

and x0 = r
r−µ Iκ

−1, respectively. That R and U satisfy A2 follows from the explicit expression

Xt = x exp

((
µ− 1

2
σ2

)
t+ σWt

)
for the geometric Brownian motion starting at X0 = x along with the assumption that r > µ. That

R and U satisfy A1 follows from observing that

Ex

[
sup
t≥0

e−rtXt

]
= xEx

[[
exp

(
sup
t≥0

Wt −
1

σ

(
r − µ+

1

2
σ2

)
t

)]σ]
=

2

σ

(
r − µ+

1

2
σ2

)
x

∫ ∞
0

exp

(
σy − 2

σ

(
r − µ+

1

2
σ2

)
y

)
dy

=
r − µ+ 1

2 σ
2

r − µ
x,

where the second inequality follows from the fact that, for each λ > 0, the random variable

supt≥0Wt − λt has an exponential density with parameter 2λ (Revuz and Yor (1999, Chapter

II, §3, Exercise 3.12)). The value functions VR and VU write as

VR(x) =

{
h1(x)
h1(xR) (xR − I) if x < xR,

x− I if x ≥ xR,
and VU (x) =

{
h1(x)
h1(xU ) (κxU − I) if x < xU ,

κx− I if x ≥ xU ,

where

xR ≡
β1

β1 − 1
I and xU ≡

β1

β1 − 1
Iκ−1.

Observe that xR > xU and that VR and VU are C1 over (0,∞), that is, VR and VU satisfy the

smooth-fit property. Moreover, VR and VU are C2 and satisfy LVR − rVR ≤ 0 and LVU − rVU ≤ 0

over (0,∞) \ {xR} and (0,∞) \ {xU}, respectively, so that the function G = 1
2 (VU + VR) is C2 and

satisfies A7 over (0,∞)\{xR, xU}. That G satisfies A5 follows again from the explicit expression for

the geometric Brownian motion along with the fact that G is bounded above by a linear function,
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and that G satisfies A6 follows from the fact that VU > VR. Finally, because

0 < G <
1

2
[|R|+R(xR) + |U |+ U(xU )]

over (0,∞), G satisfies A4 because R and U satisfy A1. Now, consider the function P = 1
2 (VU−VR).

According to the analysis in Section 2, we need to show that P is strictly increasing and onto. We

have

VU (x)− VR(x) =


h1(x)
h1(xU ) (κxU − I)− h1(x)

h1(xR) (xR − I) if x < xU ,

κx− I − h1(x)
h1(xR) (xR − I) if xU ≤ x < xR,

(κ− 1)x if x ≥ xR.
(C.1)

That P is strictly increasing over [xR,∞) is obvious. Next, because VU > VR, we have

1

h1(xU )
(κxU − I) >

1

h1(xR)
(xR − I),

which implies, as h1 is strictly increasing, that P is strictly increasing over (0, xU ). Finally, for

each x ∈ [xU , xR), we have

V ′U (x)− V ′R(x) = κ− h′1(x)

h1(xR)
(xR − I) > 1− h′1(xR)

h1(xR)
(xR − I) = 0

where the inequality follows from the fact that h1 is strictly convex and that xR > I, and the second

equality follows from the smooth-fit property for VR. This implies that P is strictly increasing over

[xU , xR). Because P is continuous, and because limx→0+ P (x) = 0 and limx→∞ P (x) = ∞, we

obtain that P is strictly increasing and onto, as desired. To conclude, observe that, if Z is drawn

from a distribution with locally Lispchitz density fZ > 0 over (0,∞) with respect to Lebesgue

measure, then the density of the law Q of Y = P−1(Z) is given by f = P ′fZ ◦P > 0. It then follows

from (C.1) and from the properties of the value functions VR and VU that P ′ ∈ C1((0,∞)\{xR, xU}),
with bounded left- and right-derivatives at xR and xU , so that A8 is satisfied.
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