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[In a coordination game, players] must somehow use the labeling of [actions] in order to do

better than pure chance; and how to use it may depend more on imagination than on logic, more

on poetry or humor than on mathematics. It is noteworthy that traditional game theory does not

assign a “value” to this game: how well people can concert in this fashion is something that, though

hopefully amenable to systematic analysis, cannot be discovered by reasoning a priori.

Schelling (1960, pp. 97–98)

1 Introduction

The value of a game is the payoff a player can expect (ex ante) from playing the game. Under-

standing how the value changes with economic primitives is critical for policy evaluation and

design. For example, when designing institutions, a planner needs to know the payoff that play-

ers can expect to receive when they interact under different institutional constraints. Likewise,

before introducing a new policy, a policy maker would want to know how it changes players’ wel-

fare. In settings where economic primitives uniquely pin down behavior, defining the value of a

game is simple. To give an example, in standard principal-agent problems, it is straightforward to

determine what a contract is worth to both parties. However, for games with multiple equilibria,

the value is often difficult to determine theoretically. For example, a policy change that leaves

the set of Nash equilibria unchanged may still affect the value if it changes the way the game is

played (e.g., by making an unplayed equilibrium more attractive in terms of payoffs). But while

there is an extensive literature on how equilibrium behavior changes with payoffs in games with

multiple equilibria (e.g., Milgrom and Roberts, 1990; Milgrom and Shannon, 1994; Athey, 2002;

Echenique, 2002; Vives, 2005), the question of how the value changes with economic primitives

is largely open.1 This is problematic: While the literature shows that equilibrium behavior is

monotone in payoffs for a large class of games with multiple equilibria (supermodular games),2

this does not imply that the value will also change monotonically (Angeletos and Pavan, 2004).

This means that a policy that shifts behavior in the desired direction may make everyone worse

off. Thus, it is critical to understand how the value varies with economic primitives in games

with multiple equilibria.

This paper takes a first step in this research program by deriving testable comparative statics

on the value of coordination games (a subclass of supermodular games). A key difficulty is that

1An exception is Theorem 7 in Milgrom and Roberts (1990) which gives sufficient conditions under which

one pure Nash equilibrium is Pareto-preferred over another in a game with strategic complementarities. It does

not provide comparative statics. Crawford and Smallwood (1984) provide comparative statics on the value for

zero-sum games; however, their methods do not extend to non-zero sum games like the ones studied here.
2That is, the set of equilibria changes monotonically with payoffs (e.g., Milgrom and Roberts, 1990). The

same is true for stable equilibria (Echenique, 2002).
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when games have multiple equilibria, the payoff structure does not uniquely pin down behavior.

Nevertheless, we often have clear intuitions about what the value should be. For example,

consider the following game, denoted Gw:

s1 s2

s1 w,w 0,0

s2 0,0 1,1

with w ≥ 1. The following predictions seem intuitive: (p1) If w is sufficiently large, then the

value of the game Gw equals w; (p2) If w equals 1, then the value of Gw lies strictly between
1
2 and 1. Intuitively, if w is sufficiently large, action s1 stands out in terms of payoffs. The

Nash equilibrium in which both players choose s1 thus becomes the unique focal point, and

the value equals w. This is so intuitive that whenever w > 1 the literature generally restricts

attention to the (s1, s1) equilibrium on the grounds that it is the unique Nash equilibrium

that might plausibly be played (Harsanyi and Selten, 1988).3 By contrast, if w = 1, the payoff

structure of the game does not give any guidance on how to play. However, oftentimes, one of

the action labels somehow “stands out,” e.g., through associations that connect those labels to

some aspect of players’ common experience or culture. In such cases, we would expect players

to be more successful at coordinating than they would have been had they chosen their actions

independently. At the same time, because players almost never have been exposed to exactly

the same cultural and social patterns, coordination is likely to be imperfect. Thus, we would

expect players to do better than in mixed Nash equilibrium (which gives a value of 1
2) but less

well than in pure Nash equilibrium (which gives a value of 1). Consistent with this prediction,

Mehta et al. (1994, p. 668) show experimentally that if one of the actions has a salient label,

then the value of Gw with w = 1 is 0.76.

While predictions (p1) and (p2) are intuitive, standard solution concepts all fail to make

at least one of these predictions uniquely (i.e., as the only possible outcome) or fail to make

both of them (see Section 5.5 for details). Motivated by this, we develop a novel theory of

the value for symmetric (2 × 2) coordination games.4 A key insight is that the comparative

statics of the value are driven by the tradeoff between two basic coordination problems that

players face: (1) How to coordinate on some Nash equilibrium (i.e., avoid miscoordination); and

(2) How to coordinate on the “right” Nash equilibrium (i.e., avoid coordination failure). To

capture this tradeoff we build on our earlier work (Kets and Sandroni, 2019, 2021). This earlier

3Indeed, we are not aware of experimental papers that study games like Gw for w > 1. This is consistent with

our argument: If there is an obvious way to play, then there is no reason to study the game experimentally. See

Schmidt et al. (2003, p. 285) for comments along these lines.
4Focusing on simple stylized games allows us to obtain the cleanest insights. However, our methods can be

extended to more general coordination games.
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work introduced a behavioral solution concept, introspective equilibrium, that allows for both

economic and non-economic factors to influence behavior. This makes it possible to understand

how the relative importance of miscoordination and coordination failure varies with economic

factors (i.e., payoff parameters). When payoff considerations dominate any non-economic factors

(as in Gw for w large), there is no miscoordination, but there can be coordination failure. By

contrast, when the payoff structure provides little guidance (as in Gw for w = 1), there can be

miscoordination; however, because non-economic factors can help players coordinate, the value

exceeds the expected payoff in the mixed Nash equilibrium. Hence, this novel theory is able to

deliver the intuitive predictions (p1) and (p2) (Section 3.2.1).

We can go well beyond this to formalize other intuitions that cannot be captured by standard

theory. Consider, for instance, the following variant of Gw, denoted by G̃x:

s1 s2

s1 w,w −c,0

s2 0,−c 1 + x,1 + x

where x, c ≥ 0 and x+ 1 < w. We show that if w is sufficiently high, then the value of G̃x is lower

when 1 + x is close to w > 1 than if it is close to 1. So, the value of the game can fall when

all payoffs increase (weakly) (Section 3.2.1). Intuitively, there is both a direct and an indirect

effect. The direct (payoff) effect means that as x increases, players who coordinate on s2 receive

a higher payoff. The indirect (strategic) effect means that a change in x changes the way the

game is played: If w is sufficiently high and x is close to 0, then players choose s1 and the value

of the game is w > 1. When the unplayed equilibrium (s2, s2) becomes more attractive in terms

of payoffs (i.e., x close to w − 1), there is miscoordination. This leads to a reduction in value

even though all payoffs are weakly higher. This insight cannot be formalized using traditional

game-theoretic models, as an increase in x does not change the set of Nash equilibria.5 However,

it is critical for understanding why policy changes that create direct benefits may ultimately

reduce welfare. For example, if labor supply decisions are strategic complements, an increase

in unemployment benefits (a positive direct effect) may make workers worse off if it induces

miscoordination (a negative strategic effect) (Lindbeck et al., 1999).

As illustrated by these simple examples, a theory of the value of coordination games can

provide nontrivial welfare implications that cannot be derived with standard game-theoretic

models. We therefore develop a general theory of the value of coordination games. Our first

main result (Theorem 1) focuses on the comparative statics of the value as a function of a key

parameter, the parameter ρ = (u22−u12)/(u11−u21+u22−u12) that summarizes the best-response

5Standard refinements are also unable to formalize this intuition: Payoff dominance selects (s1, s1); and if c

is not too large, the same is true for risk dominance. See Section 5.5 for further discussion.
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correspondence (where unm is the payoff to a player who chooses sn when the other player chooses

sm). Theorem 1 is an important starting point in that the parameter ρ fully characterizes the

comparative statics for equilibrium behavior.6 However, as Theorem 1 demonstrates, the value

typically depends on all payoff parameters (i.e., u11, u22, u21, u12), not just the parameter ρ.

This means that making more specific predictions requires considering specific applications. We

therefore consider various applications, selected to showcase the breadth of economic insights

that can be obtained through studying the comparative statics on the value.

Our first economic application addresses the key question whether policies to stimulate in-

vestment are necessarily welfare improving. Consider a setting where players can choose whether

to invest or not, with both full investment and no investment being Nash equilibria. Full in-

vestment is Pareto optimal, and players who invest receive a subsidy s > 0 regardless of whether

the other player invests. Even though there is no apparent downside to this policy (because it

(weakly) increases the payoffs to any action profile), our results show that this policy may reduce

players’ welfare by creating miscoordination (Theorem 2). This is true even though the policy

destabilizes a Pareto-inferior equilibrium (i.e., reduces coordination failure). These insights ap-

ply more widely. For example, in societies that rely on informal contracts, strengthening judicial

enforcement may be counterproductive if this destabilizes cooperation, even if it leads to an

expansion of the formal sector, i.e., it eliminates coordination failure (Dixit, 2004, Ch. 2). Thus,

policies that shift behavior in the desired direction may make everyone worse off. Because our

results provide a full characterization of the conditions under which a policy has a net positive

or negative effect on the value, the theory also shows how to implement the policy in a way

that ensures it has the desired welfare effects. Hence, the theory not only points to the limita-

tions inherent in focusing on comparative statics on equilibrium behavior in policy design, but

also offers guidance on how to ensure that a desired change in behavior also leads to a welfare

improvement.

The second economic application we consider is to collusion. It has been argued that the

risk of miscoordination renders tacit collusion impracticable so that policy makers need not

worry about tacit collusion and can focus on deterring explicit collusion (e.g., Motta, 2004,

p. 190). To examine this claim, we adopt a simple reduced-form model of collusion, where

a lack of collusion corresponds to coordination failure and where tacit collusion can lead to

miscoordination. Perhaps surprisingly, it turns out that it generally pays for firms to attempt

to collude: In terms of our model, miscoordination tends to be less costly than coordination

failure (Theorem 3). This suggests that industry lobbies have an incentive to lobby for changes

that make collusion more attractive, such as improving the ease of detection or increasing the

6This holds for any solution concept that assumes that players choose best responses, not just introspective

equilibrium.
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frequency of interaction (Ivaldi et al., 2003). Understanding when parties have an incentive to

change their economic environment requires doing comparative statics on the value; comparative

statics on equilibrium behavior, while providing valuable insights into when collusion can be

sustained, does not provide any insight into this key question.

The main contribution of our paper is that it is one of the very few papers that provides

comparative statics on the value of coordination games. Relative to the existing literature which

focuses largely on comparative statics on equilibrium behavior, this delivers important new

insights. As we show, comparative statics on the value are crucial for understanding how and

when policies that shift behavior in the desired direction improve or reduce welfare. They are

also crucial for understanding how and when policies that provide only benefits in the absence

of strategic interactions may ultimately reduce welfare, and for when parties have an incentive

to influence their economic environments.

To develop this theory of the value, we build on our earlier work (Kets and Sandroni, 2019,

2021). Although the present paper uses the solution concept (introspective equilibrium) intro-

duced in our earlier work, there are several fundamental differences between this paper and our

earlier work. First and foremost, Kets and Sandroni (2019, 2021) focus on different questions

and do not provide any comparative statics on the value.7 As a consequence, none of our main

results (Theorem 1–3) are suggested by or follow from our earlier work; the same is true for the

intuitive predictions for Gw and G̃x (Propositions 2–3). A smaller but still substantial contribu-

tion relative to our earlier work is that we use an axiomatic approach when defining introspective

equilibrium in the current paper (Section 2.2). By contrast, Kets and Sandroni (2019, 2021) use

a simple parametric model that is a special (limiting) case of the current framework. The cur-

rent axiomatic approach not only makes the results stronger (since the results hold across all

environments that satisfy our axioms), it also elucidates the main drivers behind the results.

Importantly, our predictions are testable even if the relevant non-economic factors are un-

observable. This is because we focus on comparative statics: Our results predict how the value

changes with payoffs (e.g., an increase in w in Gw or x in G̃x) for a broad range of assump-

tions on the non-economic factors that govern behavior. Because we obtain the same qualitative

comparative statics on the value regardless of the exact assumptions on non-economic factors,

our predictions can be tested even if the relevant non-economic factors cannot be observed. By

contrast, much of the behavioral game theory literature estimates the relevant behavioral pa-

rameters from data, with the notable exception of Alaoui and Penta (2016) and Alaoui et al.

7Kets and Sandroni (2021) study the economic impact of diversity. Diversity is taken to affect what we call

introspective type spaces here, and the focus is on how diversity affects behavior, with some limited results on

the welfare implications of diversity (Propositions 3.4–3.5). Diversity increases the scope for miscoordination

but may reduce coordination failure. Kets and Sandroni (2019) only consider miscoordination. Neither of these

earlier papers provides comparative statics on the value.

6



(2020) who provide testable comparative statics for level-k models and test their predictions

experimentally.8 Instead of assuming that the relevant parameters can be estimated from the

data, we focus on predictions that are independent of the precise behavioral parameters.

The outline of this paper is as follows. Section 2 introduces the model and presents an

auxiliary result (Proposition 1). Section 3 presents the main results. Section 4 presents a

dynamic application. Sections 5 discusses the model and connects our results to the related

literature. Section 6 concludes. Omitted proofs can be found in the appendix.

2 Model

2.1 Coordination

We consider symmetric (2 × 2) coordination games. There are two actions, s1 and s2. Payoffs

are given by
s1 s2

s1 u11, u11 u12, u21
s2 u21, u12 u22, u22

where u11 > u21, u22 > u12, and u11 ≥ u22. Thus, both (s1, s1) and (s2, s2) are strict Nash equilibria

and the equilibrium in which both players choose s1 is (weakly) Pareto dominant. All payoff

parameters are common knowledge.

As is well-known, the best-response correspondence can be summarized by the parameter

ρ ∶=
u22 − u12

u11 − u21 + u22 − u12
.

Action s1 is a best response for a player if and only if it assigns probability at least ρ to the

other player choosing s1. That is, (s1, s1) is ρ-dominant in the sense of Morris et al. (1995) (also

see Selten, 1995). We therefore refer to ρ as the dominance parameter. It is obviously closely

related to risk dominance: (s1, s1) is risk dominant if ρ < 1
2 , and (s2, s2) is risk dominant if ρ > 1

2 .

2.2 Introspection

As coordination games have multiple equilibria, players face considerable strategic uncertainty,

that is, uncertainty about the other player’s action. As observed by Schelling (1960), when

a player is uncertain about another player’s action, “[the] objective is to make contact with

8Examples of behavioral parameters that are estimated from the data include the cursedness parameter in

Eyster and Rabin (2005), the rationality parameter in quantal response equilibrium (McKelvey and Palfrey,

1995), or the fraction of level-k players in level-k models (Crawford et al., 2013).

7



the other player through some imaginative process of introspection” (p. 96). To reach such

a “meeting of the minds,” players can use theory of mind (Apperly, 2012). Theory of mind

is a central concept in psychology and refers to the cognitive ability to take another person’s

perspective. Following Kets and Sandroni (2021), we model this perspective-taking process as

follows: Each player has an impulse to choose an action. Each player’s first instinct is to follow

his impulse. But, through introspection, players realize that the other player also has an impulse.

This may lead them to adjust their response. This process continues to higher levels until no

player wishes to adjust his choice.

To formally model this introspective process we need to model players’ beliefs. We do so

using type spaces, as is standard; to emphasize that our type spaces encode not just beliefs

but also players’ impulses, we refer to them as introspective type spaces. That is, each player

j ∈ {1,2} has an introspective type tj ∈ T ∶= [0,1], drawn from a common prior on T × T with

distribution function F (t1, t2). Each introspective type tj ∈ T is associated with an impulse

Ij(tj) ∈ {s1, s2}. The functions Ij(⋅) that map types into impulses are common knowledge.

Players know their own impulse (i.e., the impulse functions are measurable) but not the other

player’s impulse. A player’s first instinct is to follow his impulse. This defines his level-0 strategy

σ0
j (i.e., σ0

j (tj) = Ij(tj)). For any k > 0, the level-k strategy σkj for each player j is a best response

to the level-(k − 1) strategy σk−1
−j of the other players.9 A player’s behavior is given by the limit

σj ∶= limk→∞ σkj of the introspective process. If these limiting strategies exist, then σ = (σj)j is

an introspective equilibrium.10

Introspective equilibrium thus models situations where an iterative perspective-taking process

allows players to reach consistent expectations (i.e., the introspective process converges). This

makes the model suitable for describing situations where initial beliefs may not be consistent (i.e.,

σ0 ≠ σ) but where the social context (e.g., shared culture, salient action labels) can help players

reach consistent expectations. Introspective equilibrium is thus a good model for situations where

the assumption from Nash or correlated equilibrium that players’ initial expectations are correct

(i.e., σ0 = σ) is perhaps too strong, yet the social context guides players’ initial expectations in

a way that allows them to reach consistent expectations.

9If there are multiple best responses, an action is chosen using a fixed tie-breaking rule. The choice of

tie-breaking rule does not affect our results.
10As the terminology suggests, the introspective process bears some resemblance to level-k and cognitive

hierarchy models (see Nagel (1995), Stahl and Wilson (1995), Costa-Gomes et al. (2001), and Camerer et al.

(2004) for early references, and see Crawford et al. (2013) for a survey). The key distinction is that introspective

equilibrium uses impulses to model the effects of non-economic factors. Another difference is that introspective

equilibrium does not presume that players are boundedly rational. This is to emphasize that results are not

driven by bounded rationality. However, this is not critical: Our results are robust to relaxing the assumption

that k →∞.
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The introspective type space models players’ impulses as well as their beliefs about the other

player’s impulses, their beliefs about the other’s beliefs, and so on. Since such beliefs are typically

difficult to measure, we focus on comparative statics that hold across a large class of introspective

type spaces. We consider any introspective type space that satisfies the following conditions:

(SYM) Players are ex ante identical. That is, players have the same impulse function (i.e.,

I1 = I2) and the cumulative distribution function F induced by the common prior is

symmetric (i.e., F (y, z) = F (z, y)).

(MON-I) Impulses are monotone in type: There is a threshold τ 0 ∈ (0,1) such that for each

player j, a introspective type t has an impulse to choose s1 (i.e., Ij(t) = s1) if and only if

t ≥ τ 0.

(MON-B) Beliefs are monotone in type: The conditional probability F (τ ∣ t) that the other

player has an introspective type at most τ (given the player’s type t) is strictly decreasing

in t.

(REG) The common prior F (⋅) has a continuous density f with full support on the interior of

T × T and the limits limt↓0F (t ∣ t) and limt↑1F (t ∣ t) exist.

Assumptions (MON-I) and (MON-B) ensure that the game is a monotone supermodular game

(Vives, 2005; Van Zandt and Vives, 2007). They imply that high types think it likely that the

other player has a high type and thinks that the other player has a high type, and so on. In

particular, players with an impulse to choose action s thinks it is likely that the other player

has an impulse to choose s. For example, if an action label is salient to a player, then he would

typically expect it to be salient to the other player as well. Assumption (SYM) captures the

idea that players have symmetric roles (i.e., are ex ante identical), and Assumption (REG) is a

technical regularity condition.11 In the remainder of the paper, we will assume (SYM)–(REG);

an introspective type space can then be summarized by its distribution function F (⋅) and the

threshold τ 0. We thus write T = (F, τ 0) for an introspective type space.

For some of our results, we require an additional assumption. Let the rank belief of an

introspective type t in an introspective type space (F, τ 0) be the probability F (t ∣ t) that the

type assigns to the other player having a lower type than itself (i.e., t−j ≤ t) (e.g., Morris et al.,

2016). Then, an introspective type space (F, τ 0) induces non-monotone rank beliefs if it satisfies

the following condition:

(NMRB) There exists t < τ 0 such that F (t ∣ t) > F (τ 0 ∣ τ 0) or there exists t > τ 0 such that

F (t ∣ t) < F (τ 0 ∣ τ 0) (or both).

11For example, all conditional distributions are well-defined; see, e.g., Grimmett and Stirzaker (2020).
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F (t | t)

t τ τ0 t 1 t

(a)

τ k

t τ τ 0 t τ k−1

(b)

Figure 1: (a) The rank belief function F (t ∣ t) for an introspective type spaces that induces non-monotone rank

beliefs; (b) The corresponding best response function for dominance parameter ρ̃.

As its name suggest, this condition ensures that the rank belief function F (⋅ ∣ ⋅) is non-monotone

(by Lemma 3 in the appendix). Figure 1(a) illustrates the condition for an example type space.

Assumption (NMRB) is more novel and therefore less well understood than the other conditions.

We therefore first illustrate its implications and properties in the context of concrete applications

(Sections 3.2.1 and 3.2.2) before discussing it in more abstract terms in Section 5.

2.3 Preliminary results

Before presenting the main results, we briefly summarize the basic properties of introspective

equilibrium.12

Proposition 1. [Introspective Equilibrium]

(a) Every introspective equilibrium induces a correlated equilibrium.

(b) Every coordination game has an introspective equilibrium, and it is essentially unique.13

(c) The introspective equilibrium is in monotone strategies: there is a threshold τ ∈ T such that,

in introspective equilibrium, any introspective type t < τ chooses s2 and any introspective

type t > τ chooses s1.

(c1) If s1 is a best response for type τ 0 at level 1 (i.e., F (τ 0 ∣ τ 0) ≤ 1 − ρ), then the

equilibrium threshold is the largest τ ≤ τ 0 such that F (τ ∣ τ) = 1 − ρ if such a τ exists,

and τ = 0 otherwise.

12Parts (a), (b), and (d) were proven in Kets and Sandroni (2021), albeit for a slightly different class of

introspective type spaces.
13By “essentially unique,” we mean that introspective equilibrium uniquely determines behavior for all but a

measure-0 set of types.
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(c2) If s2 is a best response for type τ 0 at level 1 (i.e., F (τ 0 ∣ τ 0) ≥ 1−ρ) then the equilibrium

threshold is the smallest τ ≥ τ 0 such that F (τ ∣ τ) = 1 − ρ if such a τ exists, and τ = 1

otherwise.

(d) Introspective equilibrium is monotone in payoffs: For any introspective type space, the

probability that a player chooses action s in introspective equilibrium (weakly) increases

with the payoffs to that action (holding other payoffs fixed).

(e) There is miscoordination (i.e., τ ∈ (0,1)) for an open set (ρ, ρ) of dominance parameters

if and only if the introspective type space induces non-monotone rank beliefs (i.e., satisfies

(NMRB)).

The proof can be found in the appendix. Proposition 1 establishes that introspective equilib-

rium satisfies the minimal properties that any good theory of coordination should have. By the

characterization of correlated equilibrium of Aumann (1987), part (a) implies that introspective

equilibrium is consistent with common knowledge of rationality. So, introspective equilibrium

is consistent with standard rationality assumptions despite its psychological foundations. How-

ever, since correlated equilibria need not be Nash equilibria, introspective equilibrium allows

for non-Nash behavior. This will be critical for characterizing the costs of miscoordination.

Parts (b)–(c) show that introspective equilibrium makes sharp predictions and is fully charac-

terized by a simple threshold. Thus, when players face identical decision problems (i.e., players

have a coordination motive and payoffs are symmetric) and expect others to have similar beliefs

(by (MON-B) and (MON-I)), the social context (e.g., shared culture) can help players reach con-

sistent expectations.14 The uniqueness result will allow us to derive testable hypotheses on how

the value depends on the economic environment (i.e., payoff parameters). Part (d) shows that

introspective equilibrium has intuitive properties: when the payoffs to an action increase, players

are more likely to choose that action, consistent with experimental evidence (e.g., Straub, 1995;

Schmidt et al., 2003). Part (e) shows that introspective equilibrium allows for miscoordination:

If an introspective type space induces non-monotone rank beliefs, then for some values of the

dominance parameter, players choose both actions with positive probability (i.e., τ ∈ (0,1)).

Proposition 1 also serves distinguishes introspective equilibrium from other solution concepts :

no other solution concept that we are aware of satisfies all the properties listed in Proposition 1.

For example, Nash and correlated equilibrium do not yield a unique prediction for coordination

games (i.e., fail (b)), while concepts that select a unique equilibrium (such as global games) do

not allow for miscoordination (and thus fail an analogue of (e)). And while mixed Nash allows

14However, when players face different decision problems (as, e.g., in zero sum games or battle of the sexes), it

is less clear that introspection leads to consistent expectations, at least without a richer theory of mind.
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for miscoordination, its comparative statics are the opposite of (d): mixed Nash equilibrium

predicts that players are less likely to choose an action when its payoffs increase.

To see the intuition behind Proposition 1(b)–(c), suppose that action s1 is a strict best

response for τ 0 at level 1, that is,

F (τ 0 ∣ τ 0)u12 + (1 − F (τ 0 ∣ τ 0))u11 > F (τ 0 ∣ τ 0)u22 + (1 − F (τ 0 ∣ τ 0))u21,

or, equivalently, F (τ 0 ∣ τ 0) < 1 − ρ. By (MON-B), there is a unique τ 1 < τ 0 such that, at level 1,

each type chooses s1 if t > τ 1 and chooses s2 if t < τ 1 (i.e., τ 1 solves F (τ 0 ∣ τ 1) = 1 − ρ or τ 1 = 0).

By a simple inductive argument, for each k > 0, there is a (unique) level-k threshold τ k such that

types t < τ k choose s2 at level k, and types t > τ k choose s1 (i.e., τ k solves F (τ k−1 ∣ τ k) = 1 − ρ

or τ k = 0). Moreover, the thresholds are decreasing in k (i.e., τ k ≤ τ k−1). Intuitively, a player

chooses s1 at level k if he thinks it likely that the other player has an impulse to choose s1

(and thus chooses s1 at level 0) or that the other player thinks it is likely that the other has

an impulse to choose s1 (and thus chooses s1 at level 1), and so on, up to level k − 1. By the

monotone convergence theorem, the sequence {τ k}k converges to a unique threshold τ < τ 0,

where τ satisfies F (τ ∣ τ) = 1−ρ or τ = 0; an analogous argument applies when F (τ 0 ∣ τ 0) ≥ 1−ρ.

Thus, an introspective equilibrium exists, and it uniquely determines behavior for every t ≠ τ .

To see the intuition behind Proposition 1(e), consider the best-response function in Fig-

ure 1(b). The best-response function maps the level-(k − 1) threshold τ k−1 into the level-k

threshold τ k for the dominance parameter ρ̃ in Figure 1(a). By (MON-B), the best-response

function is increasing, and by the above argument, we have τ k < τ k−1 whenever τ k−1 ∈ (τ, t). So,

the best-response function lies below the diagonal for t ∈ (τ, τ 0). By an analogous argument,

the best-response function lies above the diagonal whenever τ k−1 ∈ (t, τ). So, the best-response

function intersects the diagonal from above at τ , and τ is a stable (attracting) fixed point. Con-

dition (NMRB) ensures that such a stable interior fixed point exists (i.e., there is τ < τ 0 with

F (τ ∣ τ) = 1 − ρ̃). The intuition behind parts (a) and (d) is less central to our main results and

is therefore omitted.

As this discussion suggests, introspective equilibrium depends on both economic and non-

economic factors (i.e., τ depends on ρ as well as T ). To emphasize this dependence on the

introspective type space, we will henceforth refer to u = (u11, u12, u21, u22) as the game form and

to a pair G ∶= (u,T ) consisting of a game form and an introspective type space as a game (except

that we sometimes use the term “coordination game” rather than the more tedious “coordination

game form”). Despite this dependence on non-economic factors, our approach allows for testable

comparative statics on the value, as we show next.15

15This is not the case for Nash or correlated equilibrium, as this requires some form of selection.
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3 Main results

This section presents the main results. We characterize how the value changes with payoff

parameters. The value of a game is the ex ante expected payoff for a player in introspective

equilibrium.16 Formally, given a game form u = (u11, u12, u21, u22) and introspective type space

T = (F, τ 0), the value of the game G = (u,T ) is

V (u;T ) ∶= ∫
T×T

u(σ1(t1), σ2(t2))dF (t1, t2),

where u(σ1(t1), σ2(t2)) ∈ {u11, u12, u21, u22} is the (ex-post) payoff that the player receives in

introspective equilibrium (σ1, σ2) when he has introspective type t1 and the other player has

type t2. By Proposition 1, the value is well-defined.17 Because the value depends on all payoff

parameters (i.e., u11, u12, u21, u22), we consider different types of payoff changes. Section 3.1

focuses on the comparative statics of the value as a function of the dominance parameter ρ which

characterizes equilibrium behavior. Section 3.2 complements this by providing comparative

statics on the value for different applications.

3.1 Benchmark theoretical result

This section provides testable comparative statics on the value as a function of the dominance

parameter. This is a useful starting point, since the dominance parameter fully characterizes

the best response correspondence, and thus the comparative statics of introspective equilibrium

(as well as other solution concepts determined by the best response correspondence, such as

Nash and correlated equilibrium). To state the result, we need some more definitions. Given an

introspective type space T = (F, τ 0), define

1 − ρ = sup{F (t ∣ t)∶ t ∈ [0, τ 0]};

1 − ρ = inf{F (t ∣ t)∶ t ∈ [τ 0,1]};

see Figure 2 for an illustration. The appendix shows that 0 < ρ ≤ ρ < 1, and that ρ < ρ if and

only if T induces non-monotone rank beliefs. We have the following characterization:

16Our ex ante definition seems well suited for assessing the welfare implications of policies (as in our appli-

cations). In other settings, it may be more appropriate to consider an interim notion, for example, when a

player decides whether or not to participate in a game (possibly at a cost) and has some information on the

non-economic factors that may guide his and other players’ behavior.
17As coordination games have a unique introspective equilibrium (Proposition 1(b)), the expected equilibrium

payoff for each player is well-defined. Moreover, as the introspective equilibrium is symmetric (Proposition 1(c)),

the value is the same for both players.
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Figure 2: The rank belief function F (t ∣ t) from Figure 1 with bounds ρ, ρ.

Theorem 1. [The Value of a Coordination Game] For extreme values of the dominance

parameter ρ, the value is determined by Nash equilibrium, but not otherwise. That is, for any

introspective type space T = (F, τ 0) and game form u with dominance parameter ρ,

(a) If ρ < ρ, both players choose s1 (i.e., τ = 0) and the value is equal to the payoff in the

corresponding Nash equilibrium (i.e., V (u;T ) = u11).

(b) If ρ > ρ, both players choose s2 (i.e., τ = 1) and the value is equal to the payoff in the

corresponding Nash equilibrium (i.e., V (u;T ) = u22).

(c) If ρ ∈ (ρ, ρ), players choose each action with positive probability (i.e., τ ∈ (0,1)), and,

generically, the value is not equal to the expected payoff of any of the Nash equilibria. In

fact, the value is given by

V (u;T ) = u11 + (u21 + u12 − 2u11)F (τ) +
u11 − u21

1 − ρ
F (τ, τ). (1)

Theorem 1 has two important but distinct uses. The first use of Theorem 1 is to fully

characterize the comparative statics of the value for a given introspective type space. Given

any introspective type space T , a researcher can determine the relevant properties of the type

space (e.g., ρ, ρ, τ) and directly calculate the value of any game G = (u,T ). Appendix A builds

on this and decomposes the comparative statics effects on the value into a direct payoff effect

and an indirect strategic effect. These results are useful for environments where the type space

is known or relatively easy to measure. The second use of Theorem 1 is perhaps even more

important: Theorem 1 provides testable comparative statics on the value as a function of ρ that

hold across type spaces. Even if an analyst does not know the introspective type space, he can

still be assured that there are thresholds ρ, ρ for the dominance parameters that delineate the

different regimes for the comparative statics. So, if a data set contains games with sufficient

variation in the dominance factor ρ, then Theorem 1 predicts that when one of the actions is

relatively attractive in terms of payoffs (i.e., ρ < ρ or ρ > ρ), the value is equal to the payoff in
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the corresponding pure Nash equilibrium; when the payoff structure provides little guidance (i.e.,

ρ ∈ (ρ, ρ)), the value is not consistent with the (expected) payoff in Nash equilibrium (pure or

mixed). Because this prediction holds regardless of the introspective type space, it can be tested

even if non-economic factors (i.e., T ) cannot be observed.

The intuition behind Theorem 1 is that behavior is determined by the interplay of economic

and non-economic factors. For extreme values of the dominance parameter, behavior is driven

by payoff considerations and the value is given by the Nash payoff (u11 for ρ < ρ, u22 for ρ > ρ).

In contrast, for intermediate values of the dominance parameter, a player’s decision may depend

on non-economic factors: In that case, a player chooses action s1 if he thinks it is sufficiently

likely that the other player has an impulse to choose s1 (i.e., assigns high probability to t−j < τ 0)

or thinks that the other player thinks it is likely that the other has an impulse to choose s1

(i.e., t−j < τ 1), and so on; otherwise, the player chooses s2. Thus, non-economic factors prevail

and some introspective types choose s1 while others choose s2 (i.e., τ ∈ (0,1)). In this case, the

value is not equal to one of the Nash payoffs. So, a key determinant of the value is the relative

strength of economic and non-economic factors.

We can interpret Theorem 1 in terms of the coordination problems that players face. Recall

that there is miscoordination if players fail to coordinate on one of the pure Nash equilibria, and

say that there is coordination failure if they coordinate on the Pareto-dominated Nash equilib-

rium. When non-economic factors dominate (ρ ∈ (ρ, ρ)), behavior in introspective equilibrium

is not consistent with Nash equilibrium and there is miscoordination. On the other hand, when

economic factors dominate (ρ < ρ or ρ > ρ), introspective equilibrium selects a pure Nash equi-

librium and there is no miscoordination. However, there can be coordination failure. This is the

case if action s1 is risky (ρ > ρ) but players coordinating on s1 is Pareto optimal (u11 > u22). As

a result, the value can be non-monotonic in the dominance parameter (Figure 3) even though

behavior is monotone in payoffs (Proposition 1). When a type space induces non-monotone

rank beliefs (i.e., satisfies (NMRB)), then there is miscoordination for an open set of payoff

parameters (i.e., ρ > ρ). Given the empirical relevance of miscoordination, we will henceforth

assume (NMRB).

Theorem 1 also highlights another key point: While equilibrium behavior is fully characterized

by the “summary statistic” ρ (Proposition 1), the value depends on payoff parameters beyond ρ.

To see this, note that if all parameters are increased by the same amount, then equilibrium

behavior stays the same (as ρ does not change); yet the value increases. Doing comparative

statics on the value therefore requires a richer and more complex analysis than comparative

statics on behavior. For example, to address the key question of whether miscoordination is more

costly than coordination failure, a researcher needs to know the value under miscoordination.

But, as Eq. (1) shows, the value under miscoordination depends on all four payoff parameters

15



(i.e., u11, u22, u21, u12). So, two games G = (u,T ), G′ = (u′,T ) may have a different value even

if they have the same dominance parameter (i.e., ρ(u) = ρ(u′)). A further complication is

that the value under miscoordination (in (1)) depends on the introspective type space, both

directly (through the distribution F (⋅)) and indirectly (through the equilibrium threshold τ).

Section 3.2 shows that it is nevertheless possible to derive testable comparative statics on the

value in important economic environments.

3.2 Applications

3.2.1 Examples Gw and G̃x

This section derives novel comparative statics for the game forms Gw and G̃x discussed in the

introduction. For some of these results, we make the additional assumption that no action

is strongly salient in the sense that if the payoff structure provides no guidance (i.e., ρ = 1
2),

then there is miscoordination (i.e., 1
2 ∈ (ρ, ρ)).18 The following result shows that the model can

capture predictions (p1) and (p2) in the introduction:

Proposition 2. [The Value of Gw]

(p1) For w > 1 sufficiently large, the value of Gw equals w. That is, for every introspective type

space T , there is w such that V ((w,0,0,1);T ) = w whenever w > w.

(p2) If w = 1 and no action is strongly salient, then the value of the game Gw is strictly between 1
2

and 1. That is, for every introspective type space T with 1
2 ∈ (ρ, ρ), V ((1,0,0,1);T ) ∈ (1

2 ,1).

Part (p1) yields the intuitive prediction that for w sufficiently large, the value of Gw equals w.

Part (p2) shows the novel insight that for w = 1, the value lies strictly between that for the mixed

Nash equilibrium (viz., 1
2) and pure Nash equilibrium (viz., 1). This prediction is consistent with

experimental evidence that subjects’ payoff in the game Gw with w = 1 generally exceeds that in

the mixed Nash equilibrium yet is less than that in pure Nash equilibrium (Mehta et al., 1994).

The contrast between (p1) and (p2) reflect our earlier finding that a key determinant of the

value is the relative strength of economic and economic factors: If w is sufficiently large, economic

factors dominate, and the value is given by the Nash payoff w. On the other hand, if w = 1, non-

economic factors dominate, and the value is not consistent with Nash equilibrium. These findings

are consistent with the emerging experimental literature on payoff-irrelevant signals (Duffy and

Fisher, 2005). Consistent with our predictions, the evidence suggests that the outcome subjects

coordinate on depends on the relative strength of economic and non-economic factors in a way

that cannot be explained by Nash equilibrium or its standard refinements. In particular, the

18For an interpretation of this condition, see the discussion of the social salience type space below.
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effects of non-economic factors are most pronounced when the payoff structure provides little

guidance (as in Gw with w = 1) (Arifovic and Jiang, 2019), and in such cases, subjects fail to

coordinate on one of the Nash equilibria (Fehr et al., 2019). On the other hand, if one of the

actions stands out in terms of payoffs (as in Gw when w is sufficiently large), non-economic

factors such as nudges have little effect on behavior (Bicchieri and Mercier, 2014; Bicchieri and

Dimant, 2019).

We next consider G̃x.

Proposition 3. [The Value of G̃x] If no action is strongly salient, then for w > 1 suffi-

ciently large, the value of G̃x is lower when x is close to w − 1 > 0 than when x = 0. That

is, for every introspective type space T with 1
2 ∈ (ρ, ρ), there is w∗ such that for w > w∗,

lim supx↑w−1 V ((w,−c,0,1 + x);T ) < V ((w,−c,0,1);T ).

Proposition 3 implies that players can be worse off if the payoffs to an unplayed equilibrium

increase: In G̃x, if the payoff u11 = w is sufficiently high and x is close to 0, then all players

coordinate on the Pareto-dominant Nash equilibrium (s1, s1). As the payoff u22 = 1 + x in

the (initially unplayed) Nash equilibrium (s2, s2) approaches w, miscoordination ensues. This

reflects a tension between a direct payoff effect and an indirect strategic effect. The direct payoff

effect is that for higher values of x, players who coordinate on s2 receive a higher payoff. This

has a positive effect on the value. The indirect strategic effect says that if action s2 is more

attractive in terms of payoffs (i.e., x close to w − 1 > 0), there can be more miscoordination.

This has a negative effect on the value. Proposition 3 shows that the indirect strategic effect

dominates if w is sufficiently large: while all payoff parameters unm are (weakly) higher when

x is close to w − 1 than when x = 0, the value is strictly lower. Thus, the value can be non-

monotonic in payoffs, even though equilibrium behavior changes with payoffs in a monotone way

(Proposition 1). While it is well-known that the interaction between the payoff and strategic

effect can lead to non-monotonicities in the value (e.g., Morris and Shin, 2003, p. 73), the novel

insight is that this can be driven by the cost of miscoordination.

Social salience We discuss which kind of economic situations are adequately modeled by a

type space that induces the effects in Propositions 2–3. A natural environment that fits the

experiments discussed above is one where players’ impulses are sensitive to social cues: Suppose

either action may be “socially salient,” in the sense that if an action is socially salient, then

players are likely to have an impulse to choose that action. That is, suppose action s1 is socially

salient (denoted θ = s1) with probability p ∈ (0,1), while s2 is socially salient with probability

1−p (denoted θ = s2). Conditional on action s being socially salient, each player j has an impulse

to choose s with probability qj ≥
1
2 . Thus, in some social contexts players are likely to have an
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impulse to choose action s1 (i.e., θ = s1) while in other contexts, they are likely to have an

impulse to choose s2 (i.e., θ = s2). The parameter qj measures how sensitive player j is to social

cues. For example, if qj is close to 1, then player j is almost perfectly attuned to social cues; if qj
is close to 1

2 , he is fairly insensitive to social cues. In experiments, higher-order beliefs consistent

with this introspective type space can be generated directly with a correlating device with this

structure (Fehr et al., 2019), or more indirectly using salient action labels (Mehta et al., 1994)

or random public announcements (Duffy and Fisher, 2005; Arifovic and Jiang, 2019).

If the parameters qj are drawn from a continuous density g(⋅) with full support on (1
2 ,1)

(independently across players) and if we identify the type of a player with impulse Ij and

“sensitivity” qj with its posterior belief t = t(Ij, qj) that s1 is socially salient, then we obtain an

introspective type space that satisfies our assumptions under mild assumptions; see Appendix B.1

for details.19 Moreover, more “extreme” types are more sensitive to social cues, in that the

sensitivity q(t) of a type t increases in ∣τ 0−t∣, with q(τ 0) = 1
2 and q(1) = q(0) = 1. Figure 2 presents

the rank belief function for this type space (for specific choices of p and g(⋅)). Because the rank

belief function F (t ∣ t) in Figure 2 is decreasing near t = τ 0, this type space satisfies (NMRB). To

see the intuition why players’ rank belief F (t ∣ t) decreases for t close to τ 0, note that an increase

in t has two effects. First, higher types think it is more likely that s1 is socially salient. Because

it is less likely that the other player has a low type conditional on s1 being socially salient, this

has a negative impact on F (t ∣ t). Second, as a player’s type t increases, there are simply more

types t′ ≤ t. This has a positive effect on F (t ∣ t). “Extreme” types (i.e., t close to 0 or 1) are

quite confident which action is socially salient (as q(t) is close to 1). This means that the first

effect is small, so F (t ∣ t) is increasing in t. On the other hand, “intermediate” types (i.e., t close

to τ 0) become considerably more confident that s1 is socially salient when t increases (as q(t)

is close to 1
2). Hence, the first effect dominates and F (t ∣ t) is decreasing in t (under the mild

assumption that g(1
2) is sufficiently small; see Appendix B.1). This introspective type space

also has the natural interpretation that no action is strongly salient precisely when no action is

highly likely to be socially salient (i.e., p sufficiently close to 1
2).

This introspective type space is well-suited for modeling environments where the salience of

an action depends on the social context (i.e., p ∈ (0,1)) and on idiosyncratic factors (i.e., qj < 1

with positive probability). This fits well with many experimental designs (e.g., Mehta et al.,

1994; Duffy and Fisher, 2005; Fehr et al., 2019; Arifovic and Jiang, 2019) as well as situations

where a shared culture leads players to have consistent expectations.20 For these settings, our

theory predicts that players can coordinate on an action profile even if the constituent actions

19The limiting case where g(⋅) converges to a point mass at some common q corresponds to the simple para-

metric model in Kets and Sandroni (2019, 2021).
20This introspective type space is is less well-suited for modeling settings where there are systematic differences

in how people respond to social cues (as qj is assumed to be at least 1
2
).
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are not salient to them: A player may choose an action that is not salient to him if he thinks it

likely that it is salient to the other player or that the other player thinks it is salient to the other

player, and so on. However, because people are not always perfectly attuned to social cues (i.e.,

qj < 1 with positive probability), there can be miscoordination if the payoff structure provides

little guidance. Thus, increasing the payoffs to one of the actions can make players worse off if

it creates miscoordination (Proposition 3) even if miscoordination is less costly than presumed

under mixed Nash equilibrium (Proposition 2). As various experimental designs are well suited

for implementing the social salience type space, these predictions can readily be tested.

3.2.2 Stimulating investment

This section considers a setting where a policy-maker can subsidize investment. We assume that

investment is Pareto optimal, i.e., we identify action s1 with investing and action s2 with not

investing. We study the effects of investment subsidies that are large enough to generate some

investment but may not be sufficient to generate full investment (cf. Morris and Yildiz, 2019). In

the language of our model, the investment subsidy eliminates coordination failure but may create

miscoordination. Players who invest receive a subsidy s regardless of whether the other player

invests. Formally, both u11 and u12 are increased by the same amount s ≥ 0. The following result

shows that while introducing an investment subsidy (weakly) increases the payoffs associated

with each action profile, it may lead to a reduction in the value if miscoordination is more costly

than coordination failure:

Theorem 2. [The Value of Investment Subsidies] Fix an introspective type space with a

positive probability of investment at ρ (i.e., τ < 1). Then, the value of a game with coordination

failure in introspective equilibrium (ρ > ρ) strictly decreases with the investment subsidy s as it

induces miscoordination (i.e., the dominance parameter falls to ρ) if and only if the off-diagonal
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payoffs are sufficiently small and ρ is not too high: There is ρ∗ ∈ (ρ,1) such that for all u11 and

u22 with u11 ≥ u22 and for all ρ > ρ, there exist u∗12 and u∗21 such that the following holds: for any

game form u = (u11, u12, u21, u22) with dominance parameter ρ, as the subsidy s increases, the

value falls below u22 at ρ if and only if ρ < ρ∗, u12 < u∗12, and u21 < u∗21.

Proof. Fix an introspective type space T with τ < 1 and let (p11, p12, p21, p22) be the probability

distribution over action profiles in introspective equilibrium for T when the dominance parameter

is ρ. It will be convenient to define

ρ∗ = ρ +
p21

p11 + p21
.

Note that ρ∗ depends only on T . Clearly, by (REG), ρ∗ > ρ. We also have that ρ∗ < 1. To see

this, note that ρ∗ < 1 if and only if p21 < (1 − ρ) (p11 + p21). But this follows from the proof of

Theorem 1 (using that p21 = p12).

For s ≥ 0, define us ∶= (u11 + s, u12 + s, u21, u22) and suppose that there is coordination failure

in introspective equilibrium when s = 0, i.e., ρ ∶= ρ(u0) > ρ. As s increases, the dominance

parameter decreases. Let s be the investment subsidy for which the dominance parameter

attains the value ρ. Then,

ρ =
u22 − u12

u11 − u21 + u22 − u12
and ρ =

u22 − u12 − s

u11 − u21 + u22 − u12
. (2)

The difference in value between the games with investment subsidy s (with miscoordination)

and without an investment subsidy (i.e., s = 0) (with coordination failure) is

∆ = p22 u22 + p12 (u12 + s) + p21 u21 + p11 (u11 + s) − u22.

Using (2) and that p21 = p12, we can rewrite this as follows:

∆ = (u11 − u22) (p11 + p21) − p21 (u11 − u21 + u22 − u12) + (p11 + p21), s

= (u11 − u22) (p11 + p21) −
u22 − u12

ρ
(p21 + (ρ − ρ) (p11 + p21)) .

Using the definition of ρ∗ and that p12 + p11 > 0, we find that ∆ < 0 if and only if

u11 − u22 <
u22 − u12

ρ
(ρ∗ − ρ).

As the left-hand side is non-negative, ∆ < 0 only if ρ < ρ∗. In that case, ∆ < 0 is equivalent to

u22 − u12
ρ

=
u11 − u21

1 − ρ
>

1

ρ∗ − ρ
(u11 − u22),
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where the equality follows from (2). ◻

Theorem 2 shows that introducing an investment subsidies may reduce welfare, even if there

are no costs to the subsidy, the subsidy directly increases all players’ payoffs when they invest

and the subsidy does not decrease the payoffs of any player in any play of the game. Intuitively,

while an investment subsidy has only positive direct effects, it can have a negative strategic

effect in that it may create miscoordination even as it eliminates coordination failure. The net

strategic effect is negative if miscoordination is more costly than coordination failure. Moreover,

the negative strategic effect can dominate the positive direct effect. This is the case whenever

two conditions are met: (1) the off-diagonal payoffs are low (i.e., u21 < u∗21 and u12 < u∗12); and

(2) the risk of investing (in the absence of investment subsidies) is not too high (i.e., ρ < ρ∗).

The intuition behind condition (1) is that miscoordination is particularly costly when the payoffs

u12, u21 players receive under miscoordination are low. This is illustrated in Figure 3: the value

under miscoordination (ρ ∈ (ρ, ρ)) lies below the value under coordination failure (ρ > ρ) for low

values of off-diagonal payoffs but not otherwise. Condition (2) says that introducing an invest-

ment subsidy can be particularly detrimental to welfare if investing is relatively attractive in

terms of payoffs (though not sufficiently attractive to induce positive investment). In particular,

if ρ is close to ρ, then investment subsidies can reduce welfare. Intuitively, when investing is

relatively attractive in terms of payoffs, a small investment subsidy suffices to induce (partial)

investment. But since the subsidy is only small, it cannot offset the cost of miscoordination

even though the subsidy offers some insurance to a player against the risk of miscoordination

(since he receives the subsidy regardless of whether the other player invests). So, introducing

an investment subsidy reduces the value even as it stimulates investment if miscoordination is

more costly than coordination failure (i.e., u21 < u∗21, u12 < u
∗

12, and ρ < ρ∗). Thus, for a policy to

improve welfare, it is not sufficient that it changes behavior in the desired direction, it must also

ensure that the costs of miscoordination are not too high. These insights are robust: Appendix C

shows that the same result obtains for an alternative policy to promote investment.

Animal spirits We discuss the kind of situations that can be modeled by a type space that

induces the effects in Theorem 2. A natural environment that fits the present context is one

where impulses may be driven by “animal spirits,” that is, large shocks to public sentiment

that affect individual impulses. To model this, we follow Morris and Yildiz (2019) and assume

that each player’s type is the sum of a “common shock” η that affects both players, and an

idiosyncratic term εj that varies across players, i.e., t̃j = η + εj. While in Morris and Yildiz’s

work, types reflect payoff-relevant information, types can alternatively encode players’ impulses
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Figure 4: Introspective equilibria for the “animal spirits” type space: (a) without an investment subsidy; (b)

with an investment subsidy.

and beliefs about others’ impulses.21 Under this interpretation, the common shock η reflects a

shift in public sentiment while εj captures individual heterogeneity (with some types being more

bullish or bearish than others). We are interested in the case where animal spirits are potentially

important, i.e., where the shift η in public sentiment can be large. Following Morris and Yildiz,

we therefore assume that the common shock η is drawn from a fat-tailed distribution (e.g.,

t-distribution) while the distribution of the idiosyncratic terms εj has thin tails (e.g., normal

distribution). As detailed in Appendix B.2, our framework can accommodate this if we map

each type t̃j ∈ R into a type tj ∈ [0,1] = T in a way that preserves beliefs, and then associate

each tj ∈ T with an impulse Ij(tj) (cf. (MON-I)).

Figure 4 illustrates the rank belief function for the resulting introspective type space. Unlike

in the social salience type space (Figure 2), the rank belief function is now decreasing for extreme

types (i.e., t close to 0 or 1). Following Morris and Yildiz (2019, pp. 2831–2832), we can

interpret this as follows. Suppose that there is limited individual heterogeneity (i.e., εj is drawn

from the standard normal distribution) and that players are uncertain whether animal spirits

are important, i.e., η is normally distributed but with unknown variance. Taking the reciprocal

of the variance to be χ2-distributed, this gives a t-distribution for the distribution of η. Under

these assumptions, an increase in a player’s type has two effects. First, when a player’s type

increases, he attributes some of the increase to idiosyncratic factors. This gives a reversion to

the mean effect : The player’s expectation of the common shock will be further from his own

type as his type increases. This has a positive effect on the rank belief. Second, there is a

learning effect : Extreme types think it is likely that the variance in public sentiment is higher.

This has a negative effect on the rank belief. For extreme types, the learning effect dominates

the reversion to the mean effect, while for intermediate types, the reverse is true. This gives the

shape in Figure 4.

Our model predicts that investment may fail to take off when players have an impulse to

21In this sense, our model is related to the literature on sunspots (e.g., Cass and Shell, 1983). However, because

sunspot models typically feature multiple equilibria, they do not allow for testable comparative statics on welfare.
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invest only if they expect public sentiment to be strongly in favor of investing (i.e., τ 0 close to 1).

This is the case illustrated in Figure 4. Panel (a) shows the case without investment subsidies

(with equilibrium threshold t0 and dominance parameter ρ0), and panel (b) shows the case with

an investment subsidy in place (with equilibrium threshold ts and dominance parameter ρs).

Without an investment subsidy (panel (a)), not investing is the unique best response for τ 0

(i.e., F (τ 0 ∣ τ 0) > 1 − ρ0); so, by our earlier argument, the probability that players invest in

introspective equilibrium is lower than if they had followed their impulse (i.e., ts > τ 0). In this

case, investing is so unattractive in terms of payoffs (i.e., ρ0 > ρ) that there is no investment in

introspective equilibrium (i.e., τ = 1). So, without any subsidies, there is coordination failure.

With an investment subsidy (panel (b)), investing is the unique best response for τ 0 (i.e.,

F (τ 0 ∣ τ 0) < 1−ρs). Moreover, as the introspective process continues, more types decide to invest

(i.e., τ k < τ k−1): Types that are not too optimistic about public sentiment invest if they think it

likely that other types are optimistic, or that other types think that other types are optimistic,

and so on. However, while types close to τ 0 are optimistic that there has been a large shift in

public sentiment (i.e., F (t ∣ t) is decreasing for t near τ 0), types become less and less confident of

this as t decreases. Because investment is not too attractive in terms of payoffs in this example

(i.e., ρs < ρ), investment fails to take off fully (i.e., ts > 0) even as some types invest (ts < 1). So,

there is miscoordination. Theorem 2 predicts introducing an investment subsidy makes players

worse off if this induces miscoordination (as is the case here) and the investment subsidy is too

small to compensate for the low payoffs players receive when they miscoordinate (i.e., ρ < ρ∗,

u21 < u∗21, u12 < u
∗

12).
22

3.2.3 Collusion

We next apply the model to study tacit collusion. We consider a simple model of price competi-

tion with product differentiation (Ross, 1992). There are two firms that produce a good. In each

period t̃ = 0,1, . . ., firms set their prices simultaneously. The goods are imperfect substitutes:

The inverse demand function for firm i ∈ {1,2} in any given period t̃ is

pi = a − bqi − cq−i,

where a > 0 and b > c > 0 are constants, pi ≥ 0 is firm i’s price, and qi, q−i ≥ 0 are the demand for

firm i’s and the other firm’s products, respectively. Hence, r ∶= c
b ∈ (0,1) measures the degree of

substitutability: In the limit r → 1, the products are perfect substitutes; and in the limit r → 0,

the demand for each product is independent of the other’s. For simplicity, the marginal cost

22A key difference between our belief-based approach with the payoff-based approach in Morris and Yildiz

(2019) is that their approach does not select a unique (Bayesian) equilibrium. Their work therefore does not

deliver testable comparative statics.
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of each firm is taken to be 0. The collusive price p∗ is the price that, when charged by both

firms, maximizes joint profits; and the cheating price pc is the price that maximizes a firm’s

profits if the other firm charges the collusive price. Let π∗ be the “collusive” profit, i.e., a firm’s

(one-period) profit when both firms charge p∗; let πN be the Bertrand-Nash profit, i.e., a firm’s

profit when both charge the Bertrand-Nash price pN ; let πc be the “cheating” profit, i.e., a firm’s

profit when it charges pc while the other firm charges p∗; and let πv be the “victim” profit, i.e.,

a firm’s profit when it charges p∗ while the other firm charges pc. In the appendix, we show that

πc > π∗ > πN > πv, i.e., the (one-shot) price competition game has the structure of a prisoner’s

dilemma. We also calculate the “mutual cheating” profit πm, i.e., the profit a firm earns when

both charge pc, and show that π∗ > πm > πN .

Firms have a common discount factor δ ∈ (0,1) and their payoff is their expected discounted

sum of profits. Following Spagnolo (2003), we assume that each firm chooses between a collusive

(grim-trigger) strategy and a cheating strategy.23 Under the collusive strategy (denoted by σ∗),

in each period t̃ ≥ 0, a firm chooses the collusive price p∗ provided that both firms have chosen

the collusive price in all past periods t̃′ < t̃; otherwise, it charges the Bertrand-Nash price pN

of the one-shot game. Under the cheating strategy (denoted by σc), a firm chooses the cheating

price pc in every period t̃ ≥ 0 as long as both firms have chosen the collusive price in all past

periods; otherwise, it charges the Bertrand-Nash price pN . Then, the firm’s payoffs (expected

discounted sum of profits) under various strategy combinations are given by

σ∗ σc

σ∗ π∗ (1 − δ)πv + δπN

σc (1 − δ)πc + δπN (1 − δ)πm + δπN

where we have listed only the row player’s payoff for expositional simplicity. To rule out trivi-

alities, we assume that the discount factor δ is sufficiently high for both players choosing σ∗ to

be a (strict) subgame perfect equilibrium, i.e., we require that δ > (πc − π∗)/(πc − πN).

If we identify s1 with σ∗ and s2 with σc, we can view this as a coordination game. Coor-

dination failure then means that no firm tries to collude; and miscoordination means that one

firm tries to establish cooperation (i.e., chooses σ∗) but collusion breaks down because the other

firm cheats (i.e., chooses σc). As firms become more patient (i.e., δ increases), collusion becomes

more attractive in terms of payoffs (i.e., ρ = ρ(δ) decreases). The following result shows that

firms tend to be better off if an increase in the discount factor allows them to avoid coordination

failure even if that comes at the expense of miscoordination:

23Also see Blonski et al. (2011) and Dal Bó and Fréchette (2011). See Kets and Sandroni (2021) for micro-

foundations for this approach in the context of introspective equilibrium.
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Theorem 3. [The Value of Collusion] Fix an introspective type space and parameters a, b, c.

Let δ, δ′ ∈ ( (πc − π∗)/(πc − πN),1 ) be such that there is coordination failure in introspective

equilibrium when the discount factor is δ (i.e, ρ(δ) > ρ) but not when the discount factor is δ′

(i.e., ρ(δ′) < ρ). Then, if δ′ − δ is either sufficiently small or sufficiently large, the value of the

game with discount factor δ′ is strictly larger than the value of the game with discount factor δ

(with coordination failure).

Proof. We start by deriving general conditions under which the cost of miscoordination exceeds

the cost of coordination failure (for any game form u).

Lemma 1. Fix an introspective type space and let ρ, ρ′ be such that ρ < ρ′ < ρ < ρ, i.e., there is

coordination failure in introspective equilibrium for the game with dominance parameter ρ and

there is miscoordination for the game with dominance parameter ρ′. Let (u11, u12, u21, u22) be

the payoffs such that the dominance parameter is ρ > ρ, and (u′11, u
′

12, u
′

21, u
′

22) the payoffs such

that the dominance parameter is ρ′. Also, let p′11, p
′

12, p
′

21, p
′

22 be the probabilities with which each

action profile is played in introspective equilibrium when the dominance parameter is ρ′. Then,

the difference ∆ in value between the games with dominance parameters ρ′ (with miscoordination)

and ρ (with coordination failure) satisfies

∆ > (p′11 + p
′

12)(u
′

21 − u
′

22) − (u22 − u
′

22). (3)

Proof. From
ρ′

1 − ρ′
=
u′22 − u

′

12

u′11 − u
′

21

it follows that

ρ′(u′11 − u
′

22) = u
′

22 − u
′

12 + ρ
′(u′12 + u

′

21 − 2u′22). (4)

Using the fact that p′12 = p
′

21 and p′11+p
′

12+p
′

21+p
′

22 = 1, the difference in value between the games

with dominance parameters ρ′ (with miscoordination) and ρ (with coordination failure) is

∆ = p′11 u
′

11 + p12 u
′

12 + p
′

21 u
′

21 + p
′

22 u
′

22 − u22

= p′11 (u
′

11 − u
′

22) + p
′

12 (u
′

12 + u
′

21 − 2u′22) − (u22 − u
′

22).

Using (4) we obtain

∆ =
p′11
ρ′

(u′22 − u
′

12) + (p′11 + p
′

12)(u
′

12 + u
′

21 − 2u′22) − (u22 − u
′

22), (5)

This, together with the fact that p′11 > ρ
′ (p′11 + p

′

12) (proof of Theorem 1) then gives (3). ◻

We can now prove Theorem 3. The appendix shows that πc > π∗ > πm > πN > πv. Since

δ, δ′ > (πc −π∗)/(πc −πN), we have u11 −u21 > 0; and since πm > πv, we have u22 −u12 > 0. Hence,
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if we write ρ and ρ′ for the dominance parameters for the games with discount factors δ and δ′,

respectively, then ρ, ρ′ ∈ (0,1). If δ′ − δ is sufficiently large, then ρ′ < ρ (i.e., all players play the

collusive strategy σ∗ in introspective equilibrium). The result then follows immediately from the

fact that π∗ > πm, πN . So suppose ρ′ ∈ [ρ, ρ) (i.e., δ′ − δ is not large). Then, (3) gives

∆ > (p′11 + p
′

12)(1 − δ
′)(πc − πm) − (δ′ − δ)(πm − πN).

Since the first term on the right is positive, it follows that ∆ > 0 for all δ < δ′ sufficiently close

to δ′. ◻

Theorem 3 shows that firms have a strong incentive to avoid coordination failure. Clearly,

firms are better off if they both collude than if neither colludes (i.e., u11 > u22). More surprisingly,

perhaps, is that firms may be better off even if there is miscoordination provided that the

change in discount factor is not too large. That is, even conditions are such that collusion is

not guaranteed (i.e., ρ > ρ), firms are better off if there is some collusion (i.e., ρ ∈ (ρ, ρ)) than if

there is no collusion at all (i.e., ρ > ρ). The intuition is that if the change in discount factor is

not too large, then the positive indirect effect (a positive probability of collusion) outweighs the

negative direct effect (a reduction in payoff u22 when no player colludes).

One important implication of Theorem 3 is that industry bodies have an incentive to lobby for

changes that effectively increase the discount factor. Examples include increasing the frequency

of interaction to improve the ease of detection (Stigler, 1964).24 These predictions are in line

with empirical evidence. For example, the US government’s practice to buy vaccines in bulk

helps to undo collusion by reducing the frequency of interaction (Scherer, 1980). As another

example, an increase in price transparency in the Danish concrete industry made it easier for

firms to detect defections and led to more collusion (Albæk et al., 1997). Relatedly, some trade

associations frequently publish information on past prices, which can facilitate collusion (Kühn,

2001). Another implication of Theorem 3 is that focusing regulators’ resources exclusively on

detecting explicit collusion (as advocated by, e.g., Motta, 2004, p. 190) may allow many cases of

collusion to go undetected. That is, even if the conditions for collusion are less than ideal and

24We follow Ivaldi et al. (2003). To see how changing the frequency of interaction affects the (effective)

discount factor, suppose that goods are sold every T periods . Then, δ should be replaced by δT throughout in

the calculations (e.g., u22 = (1 − δ
T
)πm

+ δTπN . Since δT < δ, reducing the frequency of interactions effectively

lowers the discount factor. To see the effects of the ease of detection, suppose a firm cheating on a tacit agreement

can earn profits for two periods before being detected and punished. Then, if both firms cheat, both receive

u22 = (1 − δ) (π
m
(1 + δ) + πN

(δ2 + δ3 + . . .) = (1 − δ2)πm
+ δ2πN .

Similarly, u12 = (1− δ
2
)πv

+ δ2πN and u21 = (1− δ
2
)πc

+ δ2πN . Thus, making it harder to detect collusion reduces

the effective discount factor.
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there is a positive probability that firms may fail to collude (i.e., ρ > ρ and thus p11 < 1), they

may just be successful at initiating collusion (i.e., p11 > 0).25 In Appendix D, we show that these

conclusions do not hinge on the particulars of our model of collusion: similar results obtain for

other commonly-used models.

Comparative statics on the value can thus give insight into the question of whether parties

have an incentive to influence their environment. These results cannot be obtained with com-

parative statics on equilibrium behavior (which merely shows whether collusion can be sustained

in equilibrium, not whether parties would want to). This suggests that regulators need to pay

careful attention not just to whether policy changes make collusion viable in equilibrium but

also to how these changes affect the value.

4 Dynamic application

This section studies whether the welfare effects we have identified thus far have long-term con-

sequences, for example whether miscoordination can persist in the long run or whether policies

that reduce the value have long-term detrimental welfare implications.

We have in mind situations where the social context may be influenced by past behavior

(perhaps with noise). For example, an action can be salient due to historical precedent. To

model this, we assume that there is a continuum of players and in each period t̃ = 0,1,2, . . ., all

players are matched in pairs (at random) to play a game Gt̃ = (u,Tt̃). Thus, the game form u is

fixed across periods but the social context (i.e., Tt̃) may evolve over time. At each time t̃, each

pair of players plays the introspective equilibrium of Gt̃ (after their types have been realized).26

At any time t̃, the social context is modeled by the introspective type space Tt̃ = (F, τ 0
t̃
), so the

share of matches involving types t1, t2 ∈ T is f(t1, t2).27 The key assumption is that players’

25Arguably, by restricting to two firms and to two strategies per firm, our model may understate the difficulties

of collusion. Our model is thus mostly applicable to relatively simple situations where there is a clear focal

collusive price, such as those studied by Carlton et al. (1997) and Knittel and Stango (2004). In other cases,

identifying the appropriate collusive strategies may take time (e.g., Byrne and De Roos, 2019). In such cases,

Theorem 3 suggests the striking conjecture that experimenting with strategies to identify appropriate collusive

actions (which may create miscoordination) may carry little, if any, cost, relative to the baseline without collusion

(coordination failure), implying that tacit collusion can be an important threat even in these more complex

settings.
26Thus, players do not take into account that their actions today may influence the social context tomorrow.

This seems reasonable for the current (large population) setting. We could alternatively assume that each period

represents a generation, with limited externalities across generations.
27The assumption that the distribution function F (⋅) remains fixed is obviously restrictive. However, how the

distribution function evolves over time likely depend on the specifics of the type space in a way that is difficult

to generalize.
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impulses at time t̃ are shaped by some combination of their original impulses and the most

recent population play. That is, the level-0 threshold τ 0
t̃

at time t̃ lies between the original

level-0 threshold τ 00 and the equilibrium threshold τt̃−1 at time t̃ − 1, with some noise ε > 0:

τ 0
t̃
>min{τ 00 , τt̃−1} − ε;

τ 0
t̃
<max{τ 00 , τt̃−1} + ε.

(6)

The assumption that the original impulses (i.e., τ 00 ) may influence current impulses (i.e, τ 0
t̃
)

captures the idea that there are factors extraneous to the game that have persistent effects on

the social context.28 The noise ε captures the idea that there can be slight shocks to the social

context.29 For example, past experiences are not always perfectly transmitted over time. We are

agnostic about the extent to which players’ current impulses are driven by their original impulses

or past population play; we only require that they depend on some combination of these. That

is, we allow for any dynamic {τ 0
t̃
}t̃ that satisfies (6) (for given ε).30

The following result shows that introspective equilibrium can be viewed as the steady state

of any such dynamic process:

Proposition 4. [Introspective Equilibrium as a Steady State] If the noise is sufficiently

small, then the introspective equilibrium remains largely unchanged over time: For every χ > 0,

there is ε̄ > 0 such that for every ε ∈ (0, ε̄), for every pair of periods t̃, t̃′, the equilibrium thresholds

τt̃, τt̃′ are within χ of each other, i.e., ∣τt̃ − τt̃′ ∣ < χ.

Proposition 4 shows that introspective equilibrium can be viewed as the steady state of a

process where the introspective process is not only shaped by but also shapes the social context.

Proposition 4 implies that when players’ impulses may be driven by past population play, then

they will continue to behave similarly. Thus, in this sense, introspective equilibrium is rich

enough to accommodate environments where the social context is partly shaped by people’s

behavior. Moreover, in such cases, introspective equilibrium reflects stable patterns of behavior.

Intuitively, each introspective equilibrium has a “basin of attraction,” such that as long as

the level-0 threshold falls into that basin, the introspective equilibrium and the value remain

unchanged. For example, in Figure 1(b), the basin of attraction for the introspective equilibrium

τ ∈ (0,1) with miscoordination is [τ, t): for any τ 0 ∈ [τ, t), the introspective process converges

to the introspective equilibrium τ . Because the basin of attraction contains both the level-0

threshold and the equilibrium threshold, any introspective process that begins between these

28We could alternatively assume that the level-0 threshold τ0
t̃

at time t̃ lies between the thresholds τ0
t̃−1

and

τt̃−1 at time t̃ − 1 (with some noise ε > 0). Proposition 4 extends to that case, with slight modifications.
29This is not critical. Proposition 4 below also holds if there is no noise.
30For example, we take {τ0

t̃
}t̃ to be a deterministic process for expositional simplicity, but since our results

hold for any such process, they extend to the case where {τ0
t̃
}t̃ is random.
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Figure 5: Introspective equilibria for the “animal spirits” type space with and without investment (with respective

dominance parameters ρs and ρ0): (a) when players have an impulse to invest only if they expect public sentiment

to favor investment; (b) when players have an impulse to invest unless they expect public sentiment to be strongly

against investing.

two thresholds converges to the same equilibrium threshold τ . Proposition 4 shows that this

insight extends to the case where there can be shocks to the social context.

We apply Proposition 4 to our investment example in Section 3.2.2. Proposition 4 suggests

that there can be path dependence in this environment. That is, depending on the initial social

context (i.e., T0), a society may settle into different stable patterns of behavior. This is illustrated

by Figure 5. Figure 5(a) shows the introspective equilibria with and without an investment

subsidy (with respective thresholds ts, t0) under the assumption in Section 3.2.2 that players

have an impulse to invest only if they expect public sentiment to strongly favor investment (i.e.,

τ 0 close to 1). In this case, there is no or little investment in equilibrium even with subsidies in

place (i.e., t0 = 1, ts close to 1). Figure 5(b) shows the introspective equilibria t′s, t
′

0 for the same

payoff parameters under the alternative assumption that players have an impulse to invest unless

they expect public sentiment to be strongly against investing (i.e., τ 0 close to 0). In this case,

there are high levels of investment in equilibrium even in the absence of subsidies (i.e., t′s = 1, t′0
close to 1). Thus, the initial social context can have persistent effects: Societies where players

initially have no inclination to invest (Figure 5(a)) can get locked into a low-investment state for

a very long time (i.e., τt̃ close to 1 for t̃ ≥ 0) (Proposition 4). In particular, investment subsidies

need not lead to a virtuous cycle even though investment decisions are strategic complements

(i.e., τt̃ close to 1 for all t̃). In fact, if investment is low, this is a sign that the social context does

not favor investment (i.e., τ 0
t̃

close to 1); and if that is the case, a subsidy is likely to be ineffective

at promoting full investment (i.e., τt̃ close to 1), unless the subsidy is very large. Moreover, low

but nonzero levels of investment can be costlier than no investment at all (Theorem 2). Thus,

policies that do not account for the effects of the social context or that ignore the possibility of

miscoordination can have long-term detrimental effects on welfare.

While intuitive, these results are difficult to obtain with other approaches. Other approaches

that deliver persistence or study shocks to public sentiment – whether belief-based (e.g., Cass and

Shell, 1983; Diamond, 1982; Cooper and John, 1988) or payoff-based (Morris and Yildiz, 2019,
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Sec. IV) – typically feature multiple equilibria. This makes it difficult to derive welfare implica-

tions or to make testable predictions. For example, some equilibria need not feature persistence

or may not respond to shocks in public sentiment. And while the belief-based approach of An-

geletos and La’O (2013) can generate boom-bust cycles, it delivers unique predictions only when

there are significant information frictions. While information frictions can be important when

there are frequent shocks, friction-based models seem less suitable for explaining the long-term

persistence that we focus on here.

5 Discussion and related literature

5.1 Non-monotone rank beliefs

Our analysis reveals that miscoordination can have important welfare implications. For example,

introducing subsidies that benefit everyone in the absence of strategic effects may reduce welfare

if miscoordination is more costly than coordination failure. As we noted, miscoordination can

arise in environments that induce non-monotone rank beliefs (i.e., satisfy (NMRB)) but not in

other settings (generically). Thus, restricting attention to type spaces that fail (NMRB), as

much of the literature has done so far, risks overlooking important welfare effects by allowing

for coordination failure but ignoring miscoordination.

We have given two examples (Sections 3.2.1 and 3.2.2) of introspective type spaces that sat-

isfy (NMRB). As these examples demonstrate, assumption (NMRB) covers a wide variety of set-

tings. The examples differ not only in their assumptions on the underlying social context (social

cues, animal spirits), but also in the rank beliefs they generate (Figure 2 vs. Figure 4). It is there-

fore difficult to draw any firm conclusions on what type of environments induce non-monotone

rank beliefs. For example, while both examples involve some form of aggregate uncertainty

(social salience in Section 3.2.1, animal spirits in Section 3.2.2), aggregate uncertainty is not

sufficient to induce non-monotone rank beliefs. For example, the type spaces considered in the

global games literature also feature aggregate uncertainty but do not induce non-monotone rank

beliefs.31 The question of which type of economic environments naturally induce non-monotone

rank beliefs is a fascinating one that we leave for future research.

5.2 Point predictions

Throughout much of the paper, we have focused on providing testable comparative statics. How-

ever, it is also worth asking whether it is possible to provide testable point predictions, that is,

31The global games literature requires that it is (almost) common certainty that types have (approximately)

uniform rank beliefs (i.e., F (t ∣ t) is arbitrarily close to 1
2

for all t) (Morris et al., 2016).
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predictions that hold across introspective type spaces for given payoff parameters. That is, if an

analyst has no information on players’ impulses or beliefs beyond those in Section 2.2, can he

make any predictions about players’ behavior or the value for a given game form u?

Since the class of introspective type spaces consistent with our assumptions is quite general

(cf. Section 5.1), requiring that predictions hold for all type spaces in this class is a stringent

criterion. However, as illustrated by our results for the stylized game form Gw (Proposition 2),

it is possible to make some progress on this question: For example, even if an analyst does

not know the introspective type space, he knows that the value of Gw with w = 1 lies strictly

between 1
2 and 1. Rather than focusing on specific game forms as in Proposition 2, here we take a

more abstract approach and focus on the question of what restrictions introspective equilibrium

imposes in general games.

A first observation is that, because any introspective equilibrium induces a correlated equi-

librium (Proposition 1), introspective equilibrium rules out any behavior that is not consistent

with correlated equilibrium. This immediately implies that players’ behavior is positively corre-

lated in the sense that µ11 µ22 ≥ µ12 µ21, where µnm is the probability of action profile (sn, sm)

in equilibrium (Calvó-Armengol, 2006).

We can say more, though: The following result shows that introspective equilibrium imposes

restrictions on behavior over and above restrictions imposed by correlated equilibrium.32

Proposition 5. For any coordination game u, the set of correlated equilibria induced by an

introspective equilibrium has Lebesgue measure 0 in the set of all correlated equilibria.

Proposition 5 shows that the set of introspective equilibria is small (in the standard measure-

theoretic sense) relative to the set of all correlated equilibria. Intuitively, any introspective equi-

librium is symmetric (Proposition 1) and strict (for generic u), while there are many asymmetric

or non-strict correlated equilibria.33,34

32Proposition 5 relies on the assumptions we have made on the type space. Without any restrictions on the type

space, it follows from a version of the revelation principle that any correlated equilibrium can be an introspective

equilibrium: Given any correlated equilibrium of a game form u, simply choose (F, τ0) such that the action

distribution induced by σ0 coincides with that of the correlated equilibrium. This issue is of course not unique to

introspective equilibrium. Battigalli and Siniscalchi (2003) show that a similar conundrum arises for Bayes-Nash

equilibrium: If no restrictions are imposed on players’ beliefs, then any rationalizable action can be played (also

see Battigalli et al., 2011). In a similar vein, Bergin and Lipman (1996) show that if no restrictions are placed

on mistake probabilities, then evolutionary dynamics cannot rule out any strict Nash equilibrium.
33Proposition 5 relies on (SYM). However, we conjecture that a similar result obtains if we allow for more

general forms of symmetries that reflect the relationships between social roles (cf. Crawford and Haller, 1990).
34As an example of the type of behavior that introspective equilibrium rules out, note that the action distri-

bution (µ11, µ22, µ12, µ21) = (1/3,1/3,1/3,0) is a correlated equilibrium of Gw for w = 1. However, since it is not

symmetric or strict, it is not consistent with introspective equilibrium. It is not the case that any symmetric
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To provide a full characterization of all action distributions consistent with introspective

equilibrium for a given game form (by taking the union over all type spaces) seems challeng-

ing. For example, while the set of (symmetric, strict) correlated equilibria is convex, the set

of introspective equilibria need not be.35 The key difficulty is that while equilibrium incentives

are described by players’ rank beliefs F (τ ∣ τ), players’ behavior is given by the joint distribu-

tion F (t, t′). So, characterizing the set of all action distributions that can arise in introspective

equilibrium (for any introspective type space) requires translating conditions on conditional prob-

abilities (viz., (MON-B)) and rank beliefs (viz., (NMRB)) to restrictions on joint distributions.36

Without further restrictions on type spaces, it can thus be difficult to derive strong testable point

predictions. Since reasonable restrictions on players’ beliefs may vary by application, obtaining

testable point predictions requires a better understanding what type of restrictions on beliefs

are reasonable in different settings. Recently developed experimental protocols (e.g., Agranov

et al., 2015) may aid with that.

5.3 Payoff-sensitive impulses

Thus far, we have assumed that economic and social factors can be perfectly separated in that

economic factors are captured by the game form u while sociocultural factors are modeled by

the introspective type space T . While the assumption that impulses are driven entirely by social

factors might not be unreasonable for decisions that have a strong cultural, moral, or ideological

component, in other settings this assumption might perhaps be too strong. However, we can

relax this assumption at least to some extent. Fix a game G = (u,T ), where T = (F, τ 0). Suppose

there is a change in payoffs, i.e., the game form is now ũ. A natural assumption is that when an

action becomes more attractive in terms of payoffs, then players are more likely to choose it, i.e.,

the level-0 threshold increases with the dominance parameter.37 That is, following the change

in payoffs, the game is now G̃ = (ũ, T̃ ), with T̃ = (F, τ̃ 0) such that τ̃ 0 < τ 0 if ρ(ũ) < ρ(u) and

τ̃ 0 ≥ τ 0 otherwise. The following result shows that as long as the change in impulse distribution

is not too large, it does not affect the introspective equilibrium or the value:

action distribution is a correlated equilibrium; for example, (µ11, µ22, µ12, µ21) = (0,0,1/2,1/2) is symmetric, but

it is not a correlated equilibrium for any coordination game with two strict Nash equilibria.
35To see this, note that even if a subset of joint distributions form a convex set (as is the case for correlated

equilibrium), the corresponding rank beliefs need not.
36In this respect, it is harder to obtain testable point predictions for introspective equilibrium than for solution

concepts that predict uncorrelated play, as for these concepts, it is sufficient to consider a single feature of the

distribution, the marginal. This is because for concepts that predict uncorrelated play, the rank belief F (τ ∣ τ)

reduces to the marginal distribution F (τ) and the joint distribution is simply the product of marginals.
37This captures a wide variety of payoff effects. For example, this can model situations where players are more

likely to have an impulse to choose an action with the highest minimum or maximum payoff.
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Corollary 1. Let G = (u,T ) and G̃ = (ũ, T̃ ) be as defined above. Then, if ∣τ 0 − τ̃ 0∣ is not too

large, the introspective equilibrium (resp. value) of G̃ coincides with the introspective equilibrium

(resp. value) of the game G̃′ = (ũ,T ) with the original type space.

The proof is a straightforward adaptation of the proof of Proposition 4, so we refer to this

result as a corollary. As before, the intuition is that as long as the level-0 threshold remains in

the “basin of attraction” of the original introspective equilibrium, then this will not affect the

introspective equilibrium or the value. As the example in Figure 1(b) illustrates, the introspective

equilibrium and value remain unchanged even if the change ∣τ 0− τ̃ 0∣ in level-0 thresholds is quite

substantial (unless the original level-0 threshold is close to the boundary of a basin of attraction).

So, in this sense, our results are robust to relaxing the assumption that impulses are independent

of payoffs, for any game that satisfies our assumptions in Section 2.

For specific applications, it may be possible to extend this robustness result. In particular,

for a particular class of introspective type spaces, there could be intuitive ways in which the

distribution function F (⋅) changes with payoffs. For example, in the social salience type space,

an action may be more likely to be socially salient when its payoffs increase. While such sub-

stantive changes to the type space may change some of the more quantitative predictions (e.g.,

ρ, ρ, the exact equilibrium threshold τ), our more qualitative insights – and thus our testable

implications – largely extend. Intuitively, belief changes that are aligned with payoff changes

reinforce each other in monotone supermodular games like ours. That makes our predictions

robust to changes in beliefs that align with payoff changes like the ones considered here.

5.4 Relation to adaptive dynamics

This section discusses the methodological connection between the introspective process and the

adaptive processes studied in the literature on evolution and learning in games. The introspective

process is most closely related to the (myopic) best response dynamic (or: Cournot tatônnement).

The best response dynamic assumes that in each time period t̃, each player j chooses a best

response to the opponent’s action in period t̃−1, much like players at level k choose a best response

to the opponent’s level-(k − 1) strategy in our model. The key difference is that introspective

players form beliefs about others by considering their own mental state, while under the best

response dynamic agents do not rely on their mental state to form beliefs about others. More

precisely, introspective players form beliefs by conditioning on their (private) type: The action

of a type t at level k is a best response to the type’s posterior belief µk−1
−j (⋅ ∣ t) about the other

player’s action at level k − 1 (where µk−1
−j (s2 ∣ t) = F (τ k−1 ∣ t)). By contrast, under the best

response dynamic, players do not condition their beliefs on any private information. This may

appear to be a small difference, but the consequences are profound. For example, for our class
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of games, the standard best response dynamic either does not converge or it converges to one of

the pure Nash equilibria.38 By contrast, the introspective process always converges and allows

for miscoordination (i.e., miscoordination can be attracting; Proposition 1). In fact, even if we

consider stronger notions of stability, miscoordination remains stable. In particular, refinements

based on asymptotic stability do not eliminate miscoordination. To formalize this claim, fix a

game G = (u,T ), where T = (F, τ 0), and let τ be the equilibrium threshold for the introspective

equilibrium. That is, τ is the limit of the level-k thresholds τ k as k → ∞. For every t ∈ T and

ε > 0, let Bε(t) ∶= {t′ ∈ T ∶ ∣t − t′∣ < ε} be the ε-ball around t. Then, introspective equilibrium is

asymptotically stable if it is both attracting and Lyapunov stable, i.e., the equilibrium threshold

τ satisfies the following conditions:

(ATTR) There is ε > 0 such that for any τ̃ 0 ∈ Bε(τ), the introspective process {τ̃ k}k starting

at τ̃ 0 converges to τ , i.e., limk→∞ τ̃ k = τ ; and

(LYAP) For every η > 0, there is δ > 0 such that if τ̃ 0 ∈ Bδ(τ), then the introspective process

{τ̃ k}k starting at τ̃ 0 remains in Bη(τ), i.e., τ̃ k ∈ Bη(τ) for all k ≥ 0.

The following result shows that introspective equilibrium is asymptotically stable for generic

payoff parameters:

Proposition 6. [Asymptotic Stability] Introspective equilibrium is generically asymptotically

stable in coordination games.

Combined with Proposition 1, Proposition 6 implies that miscoordination is asymptotically

stable whenever the payoff structure of the game provides little guidance (i.e., ρ intermedi-

ate) and (NMRB) holds.39 Intuitively, introspective equilibria, including interior equilibria with

miscoordination, have an open neighborhood (basin of attraction) such that, following a pertur-

bation, the introspective process remains in that neighborhood and converges back to original

equilibrium. Standard adaptive dynamics cannot capture this: under the best response dynamic

and a wide variety of other dynamics, miscoordination is not asymptotically stable (Echenique

and Edlin, 2004).

38An example where the best response dynamic does not converge is the following: At t = 1, one player assigns

probability 1 to action s1 while the other player assigns probability 1 to action s2 (i.e., µ0
j(s

1
) = µ0

−j(s
2
) = 1).

One way to ensure convergence is to assume that the best response dynamic starts from an “extremal” strategy

profile (Vives, 1990, Thm. 5.1). However, this approach rules out miscoordination. Our approach of imposing

restrictions on the introspective type space (while allowing the level-0 strategies to be “non-extremal”) ensures

that the introspective process converges yet allows for miscoordination.
39Miscoordination is not asymptotically stable (or even attracting) when (NMRB) does not hold.

When (NMRB) does not hold, then there is miscoordination in introspective equilibrium only in the knife-edge

case that F (τ0 ∣ τ0) = 1 − ρ (Proposition 1(c) and Theorem 1).
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Miscoordination can be stable in richer adaptive models, but the predictions of these models

are otherwise fundamentally different than the ones we obtain. This is the case, for example,

for models that feature incomplete information about payoffs (but maintain the assumption

that players do not use their private information to form beliefs about the other player).40 In

these models, mixed Nash equilibrium can be asymptotically stable (Sandholm, 2007).41 Thus,

miscoordination can be asymptotically stable in payoff-based extensions of standard dynamics.

However, because mixed Nash equilibrium predicts that players choose an action less when its

payoffs improve, these models do not always deliver intuitive comparative statics even for stable

outcomes. By contrast, both the stable and (nongeneric) unstable outcomes of introspective

equilibrium deliver intuitive comparative statics (Proposition 1(d)).42 Other adaptive models

that predict miscoordination are silent on which outcome is selected (e.g., Foster and Vohra,

1997; Fudenberg and Levine, 1999; Hart and Mas-Colell, 2000; Hart, 2005; Metzger, 2018). These

models therefore cannot address the key question of how strategic behavior and the value change

when payoffs are varied. So, introspective equilibrium is the only approach that both provides

intuitive comparative statics (on behavior and the value) and predicts that miscoordination can

be stable.

We can also go a step further and analyze the introspective process as an adaptive process.

That is, rather than assuming that the levels in the introspective process are merely constructs

in a player’s mind, as we have done so far, we could alternatively assume that the process takes

place over time. One way to model this is to view each introspective type as an agent, and the

distribution f(⋅) as a local interaction network that governs the interactions between agents.43

A novel question that arises in this context under what conditions an action can spread to the

entire population (cf. Morris, 2000). An immediate implication of Theorem 1 is that contagion

is likely to occur when the payoff structure makes one of the actions more attractive than the

other (i.e., ρ close to 0 or 1). A novel and more subtle prediction is that if agents with a high

label (i.e., t large) assign a lower weight than agents with a low label (i.e., t small) to agents

having a lower label than themselves (i.e., (NMRB) is satisfied), then it may be more difficult to

40That is, expected payoffs are calculated using unconditional beliefs (i.e., not conditioned on the player’s

payoff type). This could be (though need not be) because payoff types are independent.
41However, whether this is the case depends on the class of perturbations being considered (Ellison and Fu-

denberg, 2000; Echenique and Edlin, 2004; Sandholm, 2007).
42This may seem to conflict with the observation that mixed Nash equilibrium can be consistent with in-

trospective equilibrium (namely, if F (τ0 ∣ τ0) = 1 − ρ). However, if mixed Nash equilibrium is consistent with

introspective equilibrium, it must be at an isolated value of ρ. Hence, its comparative statics properties do not

affect the comparative statics of introspective equilibrium. A similar comment applies to potential other unstable

introspective equilibria.
43For papers that consider the links with local interaction games, see Mailath et al. (1997), Morris (1997, 2000),

and Kets (2011); see Cripps (1991) and Lenzo and Sarver (2006) for a discussion in the context of evolution.
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get contagion (i.e., τ ∈ (0,1)). Which natural properties of networks ensure that this condition

holds is a tantalizing question we leave for future research.

5.5 Related literature

This section summarizes related work not discussed elsewhere in the paper. The idea that

strategic uncertainty can give rise to both miscoordination and coordination failure has a long

history in experimental economics (e.g., Van Huyck et al., 1990, pp. 235–236). There is also

ample evidence that social factors are a central determinant of behavior in games with multiple

equilibria (Bacharach and Bernasconi, 1997) and that there can be a nontrivial interaction

between payoff considerations and non-economic factors (Crawford et al., 2008). We connect

these ideas by developing a theoretical model that delivers testable hypotheses on how the

relative strength of economic and non-economic factors affects the value, by how they influence

the scope for miscoordination and coordination failure.

The predictions we obtain are intuitive yet difficult to obtain using other approaches. Nash

and correlated equilibrium cannot capture the intuition that there can be a qualitative change

in behavior even when the equilibrium set remains the same (as in Gw and G̃x when w or x is

changed). Equilibrium refinements often emphasize the risk of coordination failure but ignore

miscoordination. This includes risk dominance (Harsanyi and Selten, 1988), the global games se-

lection (Carlsson and van Damme, 1993; Morris and Shin, 2003), and learning-based refinements

(Kandori et al., 1993; Young, 1993).44,45 On the other hand, mixed Nash equilibrium predicts

miscoordination but cannot account for coordination failure. And while some behavioral models,

such as level-k models (Crawford et al., 2013) and quantal response equilibrium (McKelvey and

Palfrey, 1995) can model both miscoordination and coordination failure, which of the two arises

depends on the assumptions on players’ rationality: if players are fully rational (as they are in

our framework), these models allow for coordination failure but cannot capture miscoordina-

tion; and if players are boundedly rational, they allow for miscoordination but cannot capture

coordination failure. Thus, these models are silent on how the scope for miscoordination and

coordination failure varies with payoff parameters when the assumptions on players’ rationality

are held fixed, as in our model.

44Other prominent evolutionary models select the efficient equilibrium (Robson and Vega-Redondo, 1995) or

select different equilibria depending on the economic environment (Binmore and Samuelson, 1997), features of

the learning process (Crawford, 1995), or on initial conditions (Samuelson, 2002). Also see Section 5.4 for a

discussion of the relation with adaptive dynamics beyond the question of equilibrium selection.
45There are also equilibrium refinements that select the efficient outcome, such as payoff dominance (Harsanyi

and Selten, 1988) or refinements that require predictions to be robust to perturbing the assumption that the

extensive form is common knowledge (Penta and Zuazo-Garin, 2021).
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The idea that social factors can be an important determinant of coordination has motivated

a literature that shows how players can exploit salient action labels (e.g., Bacharach, 1993;

Sugden, 1995) or precedent (Crawford and Haller, 1990) to improve coordination. However, this

literature largely abstracts away from coordination failure. Another important distinguishing

feature of our approach relative to this literature is that while the existing literature takes great

care in modeling how particular non-economic factors influence behavior, our approach is largely

“detail-free” in that it is agnostic as to which particular social factors drive behavior. Instead,

we impose general assumptions on the introspective type space (i.e., (SYM)–(REG)) and show

that our results for any type space that satisfies those assumptions. While this means we lose

some of the richness of more detailed models, it has the advantage that it allows us to derive

testable hypotheses that are independent of the details of the relevant non-economic factors.

Our work is also very different from the literature that posits that social factors can act as an

equilibrium selection device. This prominent approach, which goes back to the seminal work of

Schelling (1960), can help explain why societies that are essentially identical in all payoff-relevant

effects may behave very differently.46 However, because these models have multiple equilibria,

they do not deliver testable comparative statics on the value. By contrast, our approach delivers

testable hypotheses on how the value changes with economic primitives and delivers new policy

implications.

6 Conclusions

This paper develops a novel theory of the value of coordination games. Relative to the existing

literature, which focuses on comparative statics on equilibrium behavior, this theory delivers

testable comparative statics on welfare (i.e., the value). While equilibrium behavior is monotone

in payoffs, welfare need not be. As a result, policies that change behavior in the desired direction

can reduce welfare. Likewise, policies that do not have any apparent downside in that they

increase everyone’s payoffs may make everyone worse off. These novel effects arise because

policies generally have both direct payoff effects and indirect strategic effects: A policy that

increases the payoffs to one of the actions (leaving other payoffs unchanged) has a positive direct

payoff effect (everyone gets a (weakly) higher payoff assuming behavior remains unchanged) but

can have negative indirect strategic effects (i.e., the policy changes how the game is played, in a

way that reduces welfare). This tradeoff does not feature in comparative statics on equilibrium

behavior but is critical for the current results. Moreover, because the theory provides a full

characterization of when negative strategic effects dominate positive direct effects, the theory

46This approach has been applied widely in economics, see, e.g., Kreps (1990) on corporate culture, Greif

(1994) on economic history, Ray (2004) on development, and Cass and Shell (1983) on sunspots.
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also demonstrates how policies can be designed to avoid detrimental welfare effects. While

we focus primarily on static settings, our results indicate that the effects we identify can be

persistent. Thus, policies that ignore the key tradeoff between direct payoff effects and indirect

strategic effects can have long-term detrimental welfare implications.

Our analysis also demonstrates that comparative statics on the value requires a more com-

plex analyses than comparative statics on equilibrium behavior: While it suffices to consider a

single “summary statistic” ρ of the payoffs to do comparative statics on equilibrium behavior,

comparative statics on the value requires considering all payoff parameters. As the applications

in Section 3.2 illustrate, this delivers a much richer picture: Changes in payoff parameters that

lead to the same change in the summary statistic ρ can have different effects on the value. While

the applications in Section 3.2 obviously do not exhaust the economic settings where compar-

ative statics on the value can provide new insights,47 they showcase the breadth of economic

results that can be obtained. Moreover, the techniques developed there can be used to derive

testable implications for other applications of interest.

A key feature of our approach is that behavior is driven by both economic and non-economic

factors (e.g., salience, shared culture, animal spirits). Non-economic factors matter because they

shape people’s instinctive responses to a game. For example, a player may have an impulse to

choose an action that has a salient label. However, players need not act on instinct: Before taking

an action, they take the other player’s perspective, and this may lead them to adjust their initial

response. This approach is well-suited to model any setting where the payoff structure of the

game does not fully pin down behavior and there is scope for the social context to influence play.

As we show, the social context can help players reach consistent expectations when players face

the same decision problem and have a shared understanding of the social context. An important

question for future research is how the theory can be augmented to account for asymmetries in

payoffs or social expectations, and how this affect the value of a game.

Appendix A The value under miscoordination

This appendix characterizes the value in the regime with miscoordination. Consider a coordi-

nation game with payoffs u = (u11, u12, u21, u22) and fix an introspective type space T = (F, τ 0).

Recall that, by Proposition 1, the introspective equilibrium is characterized by an equilibrium

threshold τ ∈ [0,1], which depends on the payoffs only through the dominance parameter

ρ = ρ(u) associated with u. If the equilibrium threshold τ is differentiable with respect to

47For example, simply considering how the value changes with each of the 4 payoff parameters unm does not

exhaust the possibilities as in many economic applications, a change in policy or economic primitives affect

multiple payoff parameters simultaneously (e.g., Sections 3.2.2–3.2.3).
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ρ, then the change in value with payoffs is given by

∇uV (u;T ) =
∂V

∂τ

∂τ

∂ρ
∇uρ + p(τ), (7)

where ∇uφ denotes the gradient of a function φ with respect to the payoffs u, and p(τ) =

(p11(τ), p12(τ), p21(τ), p22(τ)) gives the probabilities pnm(τ) that each action profile (sn, sm) is

played in introspective equilibrium.48 To see this, note that the total effect on the value of a

change in payoffs can be decomposed into a direct payoff effect and indirect strategic effects.

The direct effect is straightforward: If the payoff unm to action profile (sn, sm) is increased

(keeping other payoffs fixed), then, conditional on players choosing (s, s′), each player receives a

higher payoff. Hence, the change in value due to the direct effect of a change in unm is just the

probability pnm(τ) that players choose (sn, sm) in introspective equilibrium. This is the second

term in (7). There are also indirect effects which arise because the equilibrium threshold τ

changes with ρ (Proposition 1). These indirect effects are given by the first term in (7).

While the direct effect is always positive, the indirect effects may have either sign, as we

show next. If there is no miscoordination in introspective equilibrium (ρ < ρ or ρ > ρ), then the

equilibrium threshold does not change with ρ (Theorem 1), so there are no strategic effects (i.e.,

∇uV (u;T ) = p(τ)). So, suppose there is miscoordination in introspective equilibrium (ρ ∈ (ρ, ρ)

and τ ≠ 0,1). By Theorem 1 (Eq. (1)), we have

V (u;T ) = u11 + (u21 + u12 − 2u11)F (τ) +
u11 − u21

1 − ρ
F (τ, τ).

Note that by symmetry,

F (τ, τ) = 2∫
τ

0
F (t ∣ t)f(t) dt.

Hence, using that F (τ ∣ τ) = 1 − ρ, the partial derivative of the value with respect to τ is given

by
∂V

∂τ
= (u21 + u12 − 2u11)f(τ) + 2(u11 − u21)f(τ) = (u12 − u21)f(τ).

We conclude that

∇uV (u;T ) = (u12 − u21)f(τ)
∂τ

∂ρ
∇uρ + p(τ).

As F (τ ∣ τ) = 1 − ρ, we have

∂τ

∂ρ
= (−

dF (τ ∣ τ)

dτ
)

−1

,

48This is with some abuse of notation; strictly speaking, the vectors u and p are column vectors, not row

vectors.
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provided that F (t ∣ t) is differentiable at t = τ . Hence, the comparative statics of the value under

miscoordination is given by

∇uV (u;T ) = (u12 − u21)f(τ) (−
dF (τ ∣ τ)

dτ
)

−1

∇uρ + p(τ).

The sign of the indirect effects thus depends on how ρ changes with payoffs (e.g., ρ increases

with u22 but decreases with u11) and the relative magnitude of u12 and u21.

Appendix B Example type spaces

This appendix shows that the social salience type space (Section 3.2.1) and the “animal spirits”

type space (Section 3.2.2) satisfy our conditions.

B.1 Social salience

This section formally defines the introspective type space in Section 3.2.1 and shows that it

satisfies conditions (SYM)–(REG). We also characterize the conditions under which the type

space satisfies (NMRB).

The idea is that an action may be “socially salient” in the sense that players are likely to

have an impulse to choose that action. More precisely, there is a (latent) state θ ∈ {s1, s2}

representing which action is “socially salient,” where the probability that action s1 is socially

salient (θ = s1) is p ∈ (0,1). Conditional on θ = sn, each player j has an impulse to choose action

sn with probability qj ∈ (1
2 ,1), where the parameter qj is a measure of how sensitive player j is to

social cues and is drawn from a continuous density g(⋅) with full support on [12 ,1) independently

across players.

We define an introspective type space as follows: We identify the type of a player with

impulse Ij and parameter qj with its posterior belief tj = tj(Ij, qj) that θ = s1. More precisely,

depending on whether Ij = s1 or Ij = s2, the introspective type of the player is given by

tj(s
1, qj) = P(θ = s1 ∣ Ij = s

1, qj) =
p qj

p qj + p̂ q̂j
,

tj(s
2, qj) = P(θ = s1 ∣ Ij = s

2, qj) =
p q̂j

p q̂j + p̂ qj
;

where we have introduced the notation x̂ ∶= 1 − x for a given variable x. We denote this intro-

spective type space by T ∗; note that it is parameterized by p and g(⋅).

This introspective type space satisfies the conditions in Section 2 for any p and g(⋅):
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Proposition 7. The introspective type space T ∗ satisfies conditions (SYM), (MON-I), (MON-

B), and (REG).

Proof. A first observation is that for given qj,

P(Ij = s1, θ = s1 ∣ qj) = p qj, P(Ij = s2, θ = s1 ∣ qj) = p q̂j,

P(Ij = s2, θ = s2 ∣ qj) = p̂ qj, P(Ij = s1, θ = s2 ∣ qj) = p̂ q̂j,

Clearly, condition (SYM) is satisfied. We next show that condition (MON-I) holds. It is easy

to verify that for Ij = s2, the type is strictly decreasing in qj and takes values between 0 and p,

while for Ij = s1, the type is strictly increasing in qj and takes values between p and 1. Every

introspective type tj ≠ p is therefore associated with a unique pair (Ij, qj); moreover, types tj > p

have an impulse to choose s1, while types tj < p have an impulse to choose s2. Hence, the

introspective type space satisfies (MON-I) with threshold τ 0 = p.

We next show that condition (MON-B) holds. Consider a player with introspective type t

and corresponding parameter q. By inverting the relations above between a player’s type and

the parameter q, we find that the parameter q = q(t) that corresponds to type t is

q(t) =

⎧⎪⎪
⎨
⎪⎪⎩

r(t) t ∈ [0, p);

r̂(t) t ∈ [p,1];
(8)

where

r(t) = p t̂ (p t̂ + p̂ t)−1.

We use this to calculate the density of introspective types in terms of the density g(q). We need

to take into account that the relation between the parameter q and the type t is not one-to-one:

An introspective type t < p is associated (uniquely) with the pair (Ij = s2, qj = q(t)) and a

type t > p is associated with the pair (Ij = s1, qj = q(t)). So, the density f(t) of t < p is thus

g(q(t))∣q′(t)∣ times the conditional probability that Ij = s2 given that qj = q(t), and analogously

for introspective types t > p (where q′(t) is the derivative of q(t) with respect to t). If we define

I(t) = s2 for t < p and I(t) = s1 for t ≥ p, then, for all t ∈ [0,1],

P(Ij = I(t) ∣ qj = q(t)) = pr̂(t) + p̂r(t).

Hence, the probability density of the introspective type of a player is given by

f(t) = (pr̂(t) + p̂r(t)) g(q(t)) ∣q′(t)∣ = pp̂ (pt̂ + p̂t)−1 g(q(t)) ∣q′(t)∣
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for all t ∈ [0,1]. Similarly, the joint probability density49 of types t and u for the two players is

given by

f(t, u) = (pr̂(t)r̂(u) + p̂r(t)r(u)) g(q(t)) g(q(u)) ∣q′(t)∣ ∣q′(u)∣,

where t, u ∈ [0,1]. Note that f(t) and f(t, u) are well-defined at t = p and u = p, since limt↓p q′(t) =

limt↑p −q′(t) = 1/(4p(1 − p)). Dividing the joint density by f(t) yields

f(u ∣ t) = (tr̂(u) + t̂r(u)) g(q(u)) ∣q′(u)∣.

By integrating with respect to u we obtain

F (τ ∣ t) = ∫
1

q(τ)
(tq̂ + t̂q)g(q)dq

for τ ∈ [0, p), while for τ ∈ [p,1],

1 − F (τ ∣ t) = ∫
1

q(τ)
(tq + t̂q̂)g(q)dq.

In particular, observe that for all τ ∈ (0,1) the derivative of F (τ ∣ t) with respect to t is given by

d

dt
F (τ ∣ t) = −∫

1

q(τ)
(q − q̂)g(q)dq = −∫

1

q(τ)
(2q − 1)g(q)dq.

Since the density g has full support on [12 ,1), it follows that the introspective type space satisfies

(MON-B).

We next show that condition (REG) is satisfied. As a first step, we rewrite the expressions

for the rank belief function as

F (t ∣ t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∫

1

q(t)
(q − t(2q − 1))g(q)dq t ∈ [0, p);

1 − ∫
1

q(t)
((1 − q) + t(2q − 1))g(q)dq t ∈ [p,1].

(9)

Since limt↓0 q(t) = limt↑1 q(t) = 1, it follows that limt↓0F (t ∣ t) = 0 and limt↑1F (t ∣ t) = 1. To-

gether with the expression for f(t, u) above, this shows that the introspective type space satisfies

(REG). ◻

We next characterize the conditions under which the introspective type space T ∗ satis-

fies (NMRB):

49This is with some abuse of notation as we are using the same symbol f with different meanings; however, it

should be clear from the arguments of the function whether we mean the density of a single (introspective) type,

the joint density of two types, or the conditional density of one type given another type.
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Proposition 8. The introspective type space T ∗ = T ∗(p, g) satisfies condition (NMRB) if and

only if g(1
2) < 8p(1 − p)E(2q − 1).

Proof. Recall that condition (NMRB) says that there is t < τ 0 such that F (t ∣ t) > F (τ 0 ∣ τ 0),

or there is t > τ 0 such that F (t ∣ t) < F (τ 0 ∣ τ 0) (or both). We show that the rank belief function

F (⋅ ∣ ⋅) for T ∗ is differentiable. Then, (NMRB) holds if and only if the derivative of the rank

belief function is negative at τ 0 = p. We first calculate the derivative of the rank belief function.

Using that r(t) = q(t) for t < p and r(t) = 1 − q(t) for t > p, we see that for all t ≠ p,

d

dt
F (t ∣ t) = −r(t) g(q(t)) r′(t) + t(2q(t) − 1) g(q(t)) q′(t) − ∫

1

q(t)
(2q − 1)g(q)dq.

In particular, since limt→p q(t) =
1
2 and limt↑p r′(t) = limt↓p r′(t) = −1/(4p(1 − p)), it follows that

F (t ∣ t) is also differentiable at t = p = τ 0, and

d

dt
F (t ∣ t)∣

t=p
=

g(1
2)

8p (1 − p)
−E(2q − 1).

Hence, T ∗ satisfies (NMRB) whenever g(1
2) < 8p (1 − p)E(2q − 1). ◻

Thus, under the assumption in Section 3.2.1 that qj >
1
2 (with probability 1, Assumption (NMRB)

holds.

Finally, a sufficient condition under which no action is strongly salient in T ∗ is that p = 1
2 :

Proposition 9. Suppose T ∗ satisfies (NMRB). Then no action is strongly salient whenever

p = 1
2 .

Proof. Recall that τ 0 = 1
2 for p = 1

2 . By (NMRB), the interval (ρ, ρ) is nonempty, and by (9),

F (1
2 ∣ 1

2) =
1
2 . ◻

By continuity, introspective type spaces for which p is sufficiently close to 1
2 also satisfy the

condition that no action is strongly salient.

The introspective type space T ∗ was used to generate Figures 1–3, where we have taken

p = 1
2 and g(⋅) is the truncated normal distribution with mean 7/8 and variance 1/64. By

Propositions 7–9, this introspective type space satisfies (SYM)–(REG) and (NMRB), and has

the property that no action is strongly salient.

B.2 Animal spirits

This section shows that the animal spirits type space, which is derived from the type space in

Morris and Yildiz (2019), is a special case of our framework. That is, under the assumptions in

Morris and Yildiz (2019), the introspective type space in Section 3.2.2 satisfies (SYM)–(REG)

as well as (NMRB).
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We follow the exposition Morris and Yildiz (2019, Sec. I). Each player’s type is the sum of a

common shock η that affects both players, and an idiosyncratic noise term εj that varies across

players. That is, the type for player j is

t̃j = η + εj,

where εj and η are drawn independently across players from distributions F̃ and G̃, respectively.

The distributions F̃ and G̃ are assumed to have positive continuous densities f̃ and g̃ everywhere

on R. The densities f̃ and g̃ are taken to be symmetric around zero, i.e., f̃(ε) = f̃(−ε) and

g̃(η) = g̃(−η). Moreover, both densities are weakly decreasing on (0,∞). By symmetry both

the idiosyncratic and the common shock have zero mean. The distribution of idiosyncratic

shocks is taken to be log-concave (i.e., log f̃ is concave). The distribution of common shocks has

regularly-varying tails, that is, for all η, η′ ∈ (0,∞),

lim
λ→∞

g̃(λη)

g̃(λη′)
∈ (0,∞).

Together, f̃ and g̃ define a joint distribution Fshocks(t̃1, t̃2) on (−∞,+∞)×(−∞,+∞) with corre-

sponding joint density fshocks(t̃1, t̃2).

Because the densities f̃ and g̃ have full support on R, we need to apply a (continuous

order-preserving) transformation t̃↦ t from (−∞,∞) to (0,1) to ensure that each player’s type

lies between 0 and 1, as in our model. The particular choice of transformation is immaterial;

however, given that the distribution of common shocks has fat tails, some care must be taken

that the resulting density on [0,1] is integrable. Given an appropriate transformation, we take

the set of introspective types to be T = [0,1], as before, with the joint distribution F (t1, t2)

derived from the original densities f̃ and g̃ by applying the transformation. In particular, if the

transformation maps t̃1 and t̃2 into t1 and t2, respectively, then f(t1, t2) = fshocks(t̃1, t̃2). Because

the transformation is continuous, f is a continuous density; by construction, it has full support

on the interior of T × T . Pick some τ 0 ∈ (0,1) = T ○ and define the function I ∶ T → {s1, s2} by

I(t) = s2 if t < τ 0 and I(t) = s1 for t ≥ τ 0.

Clearly, this introspective type space satisfies (SYM) and (MON-I). It is also not hard to

check that it satisfies (MON-B) (by the log concavity of f̃). By Lemma 1 in Morris and Yildiz

(2019), the introspective type space satisfies (REG); moreover, if τ 0 is sufficiently close to 0 or

1, it satisfies (NMRB) (cf. Figure 4).

This type space was used to generate Figures 4–5, using the following specifications: The

common shock η has a Student’s-t distribution with parameter n = 4 while the idiosyncratic

shocks have a standard normal distribution.50 For the transformation, it will be (numerically)

50The choice of n is partly governed by the choice of transformation from (−∞,∞) to (0,1): For our choice
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convenient to define a mapping from [0,1] to [−∞,∞] and then use its inverse to calculate the

rank belief functions. We use the following mapping: We first use t ↦ 2t − 1 to map the type

in T = [0,1] to a type in [−1,1], and then apply the map t ↦ t(1 − ∣t∣α)−1 to map the type to

[−∞,∞], where the parameter α controls the shape of the transformation; we use α = 1/4. To

avoid numerical problems, we use a slight modification of this transformation where extreme

types (beyond a cutoff R) are mapped into ±(1 + (αR)−1); we use R = 200.

Appendix C Investment

This appendix shows that our results in Section 3.2.2 continue to hold if the investment subsidy

is replaced by an investment “bonus” that players receive when they successfully invest. That is,

we consider an increase in the payoff u11 that players receive if they both invest. The following

result characterizes the conditions miscoordination is more costly than coordination failure in

the sense that the value decreases as we move from the regime with coordination failure to the

regime with miscoordination (i.e., as ρ falls to ρ).

Theorem 4. [Investment Bonus] Fix an introspective type space with a positive probability

of investment at ρ (i.e., τ < 1). Then, the value of a game with coordination failure in in-

trospective equilibrium (ρ > ρ) strictly decreases with the investment payoff u11 as it induces

miscoordination (i.e., the dominance parameter falls to ρ) if and only if the off-diagonal payoffs

are sufficiently small and ρ is not too high: There is ρc ∈ (ρ,1) such that for all u11 and u22 with

u11 ≥ u22 and ρ > ρ, there exist u∗12 and u∗21 such that the following holds: for any game form

u = (u11, u12, u21, u22) with dominance parameter ρ, as u11 increases, the value falls below u22 at

ρ if and only if ρ < ρc, u12 < u∗12, and u21 < u∗21.

Proof. Let (p11, p12, p21, p22) be the probability distribution over action profiles in introspective

equilibrium for the given introspective type space when the dominance parameter is ρ. Recall the

definition of ρc in the proof of Theorem 2; as noted there, ρc ∈ (ρ,1). Let u = (u11, u12, u21, u22)

be a game with coordination failure in introspective equilibrium, i.e., ρ = ρ(u) > ρ. As u11
increases, the dominance parameter decreases. Let u11 be the investment payoff for which the

dominance parameter attains the value ρ. Then,

1 − ρ

ρ
=
u11 − u21
u22 − u12

and
1 − ρ

ρ
=
u11 − u21
u22 − u12

. (10)

of transformation (described below), we need n > 3 to prevent the joint distribution of types from blowing up in

the corners (0,0) and (1,1) of T × T .
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The difference in value between the games with investment payoffs u11 (with coordination failure)

and u11 (with miscoordination) is

∆ = p11 u11 + p12 u12 + p21 u21 + p22 u22 − u22

= p11 (u11 − u21) − (p11 + p12)(u11 − u21) + (p11 + p12)(u11 − u22)

− p12 (u22 − u12),

where we have used p12 = p21 and p11 + p12 + p21 + p22 = 1. Applying (10) to the factors u11 − u21
and u11 − u21 (and reordering terms) gives

∆ = (p11 + p12)(u11 − u22) − (
p11 + p12

ρ
−
p11
ρ

)(u22 − u12).

Hence, ∆ < 0 if and only if

u11 − u22
u22 − u12

<
1

ρ
−

p11
ρ (p11 + p12)

=
ρc − ρ

ρρc
.

As the left-hand side is non-negative, ∆ < 0 only if ρ < ρc. In that case, ∆ < 0 is equivalent to

u22 − u12
ρ

=
u11 − u21

1 − ρ
>

ρc

ρc − ρ
(u11 − u22),

where the equality follows from (10). ◻

Appendix D Collusion

We consider two other commonly-used models of collusion. In addition, because models of

collusion have the structure of a social dilemma, we also study the classic repeated prisoner’s

dilemma. The results demonstrate that our results in Section 3.2.3 are robust.

D.1 Tourists and natives

This appendix studies the effects of a change in the competitiveness of the market as measured

by the fraction of consumers who buy from the firm with the lowest price. We consider a

simple model of price insensitive “tourists” and best-price shopping “natives”, or, closer to most

applications, loyal buyers and switchers (Salop and Stiglitz, 1977). There are two firms, labeled

by i ∈ {1,2}. In each period t̃ = 0,1, . . ., firms choose a price p ∈ {H,L}, with H > L > 0 and

a mass of consumers (of measure 1) decides which firm to buy from. A fraction ms ∈ (0,1) of

consumers are switchers : they buy from the firm with the lowest price. In addition, each firm
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i has a mass m` ∈ (0, 12) of loyal buyers (i.e., ms + 2m` = 1). Firms’ marginal cost is equal to 0,

and we normalize by setting L = 1. Then, the payoffs in the one-shot game are given by

H L

H (m` +
1
2ms)H, (m` +

1
2ms)H m`H,m` +ms

L m` +ms,m`H m` +
1
2ms,m` +

1
2ms

As in Section 3.2.3, we assume that the one-shot game has the structure of a prisoner’s

dilemma (i.e., the low price L is a strictly dominant strategy for both firms). This is the case if

and only if H < 2(1 −m`). Thus, in the absence of repetition, firms compete for the market.

For the repeated game, we again consider a collusive strategy and a cheating strategy. Under

the collusive strategy, the firm chooses the high price H in every period as long as both firms

chose the high price in all past periods; otherwise, it charges the low price L. Under the

cheating strategy, the firm chooses the low price L in every period. Again, we identify the

collusive strategy with s1 and the cheating strategy with s2. Then, using that m` +
1
2ms =

1
2 and

m` +ms = 1 −m`, the payoffs in the repeated game are given by

s1 s2

s1 1
2H (1 − δ)m`H + 1

2δ

s2 (1 − δ)(1 −m`) +
1
2δ

1
2

where we have listed only the row player’s payoffs. We again assume that collusion can be

sustained as a subgame perfect equilibrium, i.e., δ > (2(1 − m`) − H)/(1 − 2m`). Then, the

repeated game can be viewed as a coordination game, and coordination failure corresponds to

both firms choosing the low price while miscoordination corresponds to one firm choosing the

collusive strategy and the other firm choosing the cheating strategy.

The following result shows that, starting from a game with coordination failure, any change

in payoff parameters that makes collusion less risky (i.e., decreases ρ) leads to a strict increase

in the value even if it induces miscoordination:

Theorem 5. [Collusion: Tourists & Natives] Fix an introspective type space and a game

form such that there is coordination failure in introspective equilibrium. Then any change in

payoff parameters that makes the dominance parameter smaller than ρ strictly increases the

value of the game.

Proof. As in Section 3.2.3, we consider a change of payoff parameters such that the dominance

parameter decreases from ρ > ρ to ρ′ < ρ. Since u11 > u22, the result clearly holds if the change

in payoff parameters is such that firms choose the high price in introspective equilibrium (i.e.,

ρ′ < ρ). So suppose ρ′ ∈ (ρ, ρ), and let δ and δ′ be the discount factors in the game with
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dominance parameters ρ and ρ′, respectively. Similarly, let m` and m′

` be the fraction of loyal

buyers for a firm in the game with dominance parameters ρ and ρ′, respectively. Then, the

inequality (3) in Lemma 1 gives

∆ > (p′11 + p
′

12)(1 − δ
′)(1

2 −m
′

`).

The result then follows by noting that the right-hand side is positive. ◻

Examples of changes in the dominance parameter that make collusion less risky include an an

increase in the fraction m` of loyal buyers, an increase in the discount factor δ, and an increase

in the high price H. Theorem 5 shows that any of these changes make firms better off.

D.2 Homogeneous goods

This appendix studies the limiting case where the two firms produce identical goods (i.e., b = c).

To avoid problems with the nonexistence of a pure Nash equilibrium, we assume that firms can

undercut each other only by a fixed amount ε > 0 (taken to be small, i.e., ε < 1
3a). The model

is otherwise the same as in Section 3.2.3: In the repeated game, the collusive strategy σ∗ is to

choose the monopoly price p∗ in every period as long as both firms chose the monopoly price in

all past periods; and to choose the competitive price pN = 0 otherwise. The cheating strategy

σ∗ is to choose pc ∶= p∗ − ε in every period as long as both firms chose the monopoly price in all

past periods, and to choose the competitive price pN = 0 otherwise. We normalize and set b = 1.

We also define η ∶= 2ε. Then, if we again identify the collusive and the cheating strategy with s1

and s2, the payoffs in the repeated game are given by

s1 s2

s1 1
8a

2 0

s2 (1 − δ) 1
4(a

2 − η2) (1 − δ) 1
8(a

2 − η2)

where we have listed only the row player’s payoffs. We again assume that collusion can be

sustained as a subgame perfect equilibrium, i.e., δ > (a2 − 2η2)/(2a2 − 2η2). As before, the

repeated game can be viewed as a coordination game, and coordination failure corresponds to

both firms choosing the cheating strategy while miscoordination corresponds to one firm choosing

the collusive strategy and the other firm choosing the cheating strategy.

The following result considers the effects of an increase in the discount factor δ.

Theorem 6. [Collusion: Homogeneous Goods] Fix an introspective type space and let δ, δ′ ∈

( (a2 − 2 η2)/(2a2 − 2 η2),1 ) be such that there is coordination failure in introspective equilibrium

when the discount factor is δ (i.e, ρ(δ) > ρ) but not when the discount factor is δ′ (i.e., ρ(δ′) < ρ).
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Then, if δ′−δ is either sufficiently small or sufficiently large, the value of the game with discount

factor δ′ is strictly larger than the value of the game with discount factor δ (with coordination

failure)

Proof. Define ρ ∶= ρ(δ) and ρ′ ∶= ρ(δ′) to be the dominance parameters for the games with

discount factors δ and δ′, respectively. Again, the result clearly holds if δ′ is much smaller than

δ so that firms choose the collusive strategy in introspective equilibrium (i.e., ρ′ < ρ). So suppose

ρ′ ∈ (ρ, ρ) Substituting the payoffs into (5) in Lemma 1 gives

8∆ =
p′11
ρ′

(1 − δ′)(a2 − η2) − (δ′ − δ)(a2 − η2).

The result then follows by noting that p′11 > 0 and a > η. ◻

D.3 Prisoner’s dilemma

This appendix studies the classic prisoner’s dilemma. In each period t̃ = 0,1, . . ., players can

either cooperate (play c) or defect (play d). The payoffs in the one-shot game are given by

c d

c C,C S,T

d T,S D,D

where T > C > D > S. In the repeated game, players choose between a cooperative strategy

and always defect. Under the cooperative (grim trigger) strategy, the player cooperates in every

period as long as both players cooperated in all past periods; otherwise, he defects. Under always

defect, the player defects in every period. Again, we identify the cooperative strategy with s1

and always defect with s2. Then, the payoffs in the repeated game are given by

s1 s2

s1 C (1 − δ)S + δD

s2 (1 − δ)T + δD D

where have listed only the row player’s payoffs. We again assume that cooperation can be

sustained as a strict subgame perfect equilibrium, i.e., δ > (T − C)/(T − D). We can then

view the repeated game as a coordination game, where coordination failure corresponds to both

players choosing to always defect while miscoordination corresponds to one player trying to

initiate cooperation (i.e., choosing s1) and the other player choosing to always defect. It will

be convenient to write (δ,C,S, T,D) for the game form u and to denote the corresponding

dominance parameter by ρ(δ,C,S, T,D).
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We consider the effect of two types of changes: An increase in the discount factor δ and a

decrease in the payoff D when cooperation breaks down. Both types of changes make cooperation

less risky (i.e., ρ decreases with δ and increases with D). Hence, if we start from a game with

coordination failure, both these changes can induce miscoordination. The following result shows

that, again, players are better off when there is miscoordination than if there is coordination

failure:

Theorem 7. [Prisoner’s Dilemma] Fix an introspective type space and a game form u =

(δ,C,S, T,D) with δ ∈ ( (T −C)/(T −D),1 ), and let δ′ ∈ (δ,1) and D′ <D.

(a) Suppose that there is coordination failure in introspective equilibrium when the discount

factor is δ but not when it is δ′ (i.e., ρ(δ,C,S, T,D) > ρ and ρ(δ′,C,S, T,D) < ρ). Then,

the value of the game with the discount factor δ′ is strictly higher than that of the game

with the discount factor δ.

(b) Suppose that there is coordination failure in introspective equilibrium when the defection

payoff is D but not when it is D′ (i.e., ρ(δ,C,S, T,D) > ρ and ρ(δ,C,S, T,D′) < ρ). Then

the value of the game when the defection payoff is D′ is strictly higher than when the

defection payoff is D whenever D −D′ is sufficiently small or sufficiently large.

Proof. It will be convenient to combine the proofs of (a) and (b) by considering the game forms

u = (δ,C,S, T,D) and u′ = (δ′,C,S, T,D′). Then, with some abuse of notation, we can take

δ′ > δ and D′ = D for proving (a), and δ′ = δ and D′ < D for proving (b). Write ρ and ρ′ for the

dominance parameters associated with u and u′, respectively. As before, if the change in payoff

parameters is sufficiently large (i.e., ρ′ < ρ), the result follows from the fact that u11 > u22. So

suppose ρ′ ∈ (ρ, ρ). Then, we can again apply Lemma 1. In this case, (3) gives

∆ > (p′11 + p
′

12)(1 − δ
′)(T −D′) − (D −D′).

So, if δ′ > δ and D′ = D, we have ∆ > 0, proving (a); and if δ′ = δ and D′ < D, then ∆ > 0

provided D is sufficiently close to D′, proving (b). ◻

Appendix E Omitted proofs

E.1 Proof of Proposition 1

(a) We start by showing that every introspective equilibrium is a correlated equilibrium. We

prove the result for general finite games and also do not require Assumptions (SYM)–(REG).
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Let G = ⟨N,{Sj}j∈N ,{uj}j∈N⟩ be a finite game, where N is the (finite) player set and for each

player j ∈ N , Sj is the (finite) set of actions and uj ∶ Sj × S−j → R is the payoff function. Fix an

introspective type space, that is, a set Tj of introspective types and an impulse function Ij for

each player j ∈ N as well as a common prior on the set ∏j Tj of type profiles. We require that

for each player j ∈ N , the type set Tj is a closed subset of the real line and that the impulse

function Ij is measurable with respect to the σ-algebra B(Tj) on Tj induced by the Borel σ-

algebra on R. For each player j ∈ N , let Σj be the set of (pure) strategies, i.e., measurable

functions σj ∶ Tj → Sj. For simplicity, we write σ−j(t−j) for (σi(ti))i≠j. It will also be convenient

to represent the common prior by its cumulative distribution function F (⋅).

The first step is to show that the level-k strategies are, in fact, strategies:

Lemma 2. Let j ∈ N . Then, for every k, σkj is measurable.

Proof. For k = 0, the result follows from the assumption that the impulse functions are mea-

surable. We prove the result for k > 0 by showing the following claim: for every player j ∈ N ,

tie-breaking rule ψj, and profile σ−j ∈ Σ−j for the other player, the tie-breaking rule yields a

strategy σj ∈ Σj such that for every tj ∈ Tj, σj(tj) is a best response to σ−j. Given that the

level-0 strategies are measurable for all players, it then follows that for each player j ∈ N , σ1
j is

measurable. Iterating this argument gives that σkj is measurable for all j ∈ N and k = 0,1, . . .

It remains to prove the claim. Fix a player j ∈ N and a strategy profile σ−j ∈ Σ−j. Then, for

sj ∈ Sj, the function mapping introspective type tj ∈ Tj into its interim expected payoff

Vj(sj, σ−j; tj) ∶= ∫
T−j
uj(sj, σ−j(t−j))dF (t−j ∣ tj)

is measurable (e.g., Aliprantis and Border, 2006, Thm. 15.13). Let ϕj(⋅, σ−j) ∶ Tj ↠ Sj be the

best-response correspondence (given σ−j), i.e., ϕj(tj, σ−j) is the set of actions that maximize

the interim expected payoff Vj(⋅, σ−j; tj) for tj. By the Measurable Maximum Theorem (e.g.,

Aliprantis and Border, 2006, Thm. 18.19), ϕj(⋅, σ−j) is measurable. That is, for every collection

Cj of subsets of Sj,

{tj ∈ Tj ∶ ϕj(tj, σ−j) ∈ Cj} ∈ B(Tj).

Since Sj is finite, it now follows immediately that for every subset Bj ⊂ Sj of actions,

{tj ∈ Tj ∶ ϕj(tj, σ−j) = Bj} ∈ B(Tj).

Fix a tie-breaking rule, i.e., a function ψj that maps each nonempty subset Bj ⊂ Sj into an

element sj of Bj. Then, ψj ○ ϕj(⋅, σ−j) ∶ Tj → Sj is measurable. This proves the claim.

Hence, for every player j ∈ N , tie-breaking rule ψj, and k > 0, σkj , defined by σkj (tj) =

ψj(ϕj(tj, σk−1−j )) for tj ∈ Tj, is measurable. ◻
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Because the (pointwise) limit of a sequence of measurable functions is measurable, we have

that, for each player j, the limit limk→∞ σkj of the level-k strategies is measurable. Hence, if

σ = (σj)j∈N is an introspective equilibrium, then for each player j ∈ N , σj is a strategy.

It remains to show that if σ = (σj)j∈N is an introspective equilibrium, then for each player

j ∈ N and tj ∈ Tj,

∫ uj(σj(tj), σ−j(t−j))dF (t−j ∣ tj) ≥ ∫ uj(sj, σ−j(t−j))dF (t−j ∣ tj) (11)

for sj ∈ Sj. By Lemma 2, the integrals in (11) are well-defined. Fix j ∈ N and tj ∈ Tj. By a

standard integration to the limit result,

lim
k→∞
∫ uj(σ

k
j (tj), σ

k−1
−j (t−j))dF (t−j ∣ tj) = ∫ uj(σj(tj), σ−j(t−j))dF (t−j ∣ tj);

likewise, for every sj ∈ Sj,

lim
k→∞
∫ uj(sj, σ

k−1
−j (t−j))dF (t−j ∣ tj) = ∫ uj(sj, σ−j(t−j))dF (t−j ∣ tj).

(Again, the integrals are well-defined.) The result then follows from a standard continuity

argument.

(b)–(c) Say that a strategy σj is a switching strategy with threshold t∗ ∈ T if introspective

types t ∈ T with t < t∗ choose s2 (i.e., σj(t) = s2), and introspective types t ∈ T with t > t∗

choose s1 (i.e., σj(t) = s1). (The introspective type t∗ may choose either action.) At level 0,

types follow their impulse. By (MON-I) and (SYM), the level-0 strategy σ0
j for each player j is

a switching strategy with (common) threshold τ 0. Suppose that, at level 1, type τ 0 has a strict

best response to choose s1, i.e.,

(1 − F (τ 0 ∣ τ 0))u11 + F (τ 0 ∣ τ 0)u12 > (1 − F (τ 0 ∣ τ 0))u21 + F (τ 0 ∣ τ 0)u22,

or, equivalently, F (τ 0 ∣ τ 0) < 1 − ρ. Let τ 1 be the largest introspective type τ 1 ≤ τ 0 such that

F (τ 0 ∣ τ 1) ≥ 1 − ρ if such a type exists; otherwise let τ 1 = 0 (i.e., all types choose s1). Then,

the level-1 strategy is a switching strategy with threshold τ 1: By (MON-B) and (SYM), action

s1 is a strict best response for introspective types t > τ 1 against the belief that the other player

follows the level-0 strategy, and action s2 is a strict best response for introspective types t < τ 1.

Moreover, F (t ∣ t) < 1 − ρ for all t ∈ [τ 1, τ 0], as, by (REG), F (τ ∣ t) is strictly increasing in τ .

For k > 1, suppose, inductively, that for each player, the level-(k − 1) strategy is a switching

strategy with threshold τ k−1, and that, furthermore, F (t ∣ t) < 1 − ρ for all t ∈ [τ k−1, τ 0]. Define

τ k to be the largest introspective type τ k ≤ τ k−1 such that F (τ k−1 ∣ τ k) ≥ 1 − ρ if such a type
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exists, or set τ k = 0 otherwise. Then, by a similar argument as before, the level-k strategy is a

switching strategy with threshold τ k, and F (t ∣ t) < 1 − ρ for all t ∈ [τ k, τ 0].

The sequence τ 0, τ 1, . . . of level-k thresholds, being a monotone sequence in a compact space,

converges to some equilibrium threshold τ ∈ T . Moreover, this equilibrium threshold is the largest

τ ≤ τ 0 such that F (τ ∣ τ) ≥ 1 − ρ if such a type exists, or τ = 0 otherwise. A similar argument

shows that if action s2 is a strict best response to the switching strategy with threshold τ 0, the

equilibrium threshold τ = limk→∞ τ k is the smallest τ ≥ τ 0 such that F (τ ∣ τ) ≤ 1 − ρ if such

a type exists, and τ = 1 otherwise. Finally, if type τ 0 is indifferent between s1 and s2, i.e.,

F (τ 0 ∣ τ 0) = 1 − ρ, then, by (MON-B), F (τ 0 ∣ t) < 1 − ρ for t > τ 0 and F (τ 0 ∣ t) > 1 − ρ for

t < τ 0. Hence, the equilibrium threshold τ is just τ 0. So, in introspective equilibrium, each

player follows a switching strategy with threshold τ . The equilibrium is essentially unique: it

pins down the behavior for all introspective types t ≠ τ , and this set has probability 1.

(d) Note that the dominance parameter decreases (resp. increases) when the payoffs to action

s1 (resp. action s2) are increased (holding other payoff parameters fixed). Hence, it suffices

to consider how the equilibrium threshold varies with the dominance parameter. Fix an intro-

spective type space and dominance parameters ρ, ρ̃ such that ρ̃ > ρ. Denote the games with

dominance parameters ρ and ρ̃ by G and G̃, respectively, and let τ and τ̃ be the respective

equilibrium thresholds.

First suppose that s1 is a strict best response for the level-0 threshold type in game G, but

not in G̃, that is, 1− ρ̃ ≤ F (τ 0 ∣ τ 0) < 1−ρ. Then, by the proof of part (b), it follows immediately

that τ < τ 0 ≤ τ̃ .

Next, suppose that s1 is a best response for the level-0 threshold type in G̃ (and hence also

in G), that is, F (τ 0 ∣ τ 0) < 1 − ρ̃ < 1 − ρ. Then, by the proof of part (b), either τ = 0 ≤ τ̃ or

otherwise

τ = sup{t ≤ τ 0∶F (t ∣ t) ≥ 1 − ρ} ≤ sup{t ≤ τ 0∶F (t ∣ t) ≥ 1 − ρ̃} = τ̃ .

By a similar argument, if s1 is not a best response for the level-0 threshold type in G (and hence

s2 is a best response in G̃), then the proof of part (b) shows that either τ̃ = 1 ≥ τ or

τ̃ = inf{t ≥ τ 0∶F (t ∣ t) ≤ 1 − ρ} ≥ inf{t ≤ τ 0∶F (t ∣ t) ≤ 1 − ρ̃} = τ.

So in either case, τ ≤ τ̃ .

(e) To prove the necessity of (NMRB), suppose that for some ρ0 ∈ (0,1), F (t ∣ t) ≤ 1 − ρ0 for

all t < τ 0 and F (t ∣ t) ≥ 1 − ρ0 for all t > τ 0. Then, by the argument above, τ = 0 for ρ < ρ0 and

τ = 1 for ρ > ρ0. The sufficiency of the condition follows from the proof of Theorem 1 below. ◻
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E.2 Proof of Theorem 1

Fix a type space T = (F, τ 0). Recall the definition of ρ and ρ, and let

τ = sup{t ∈ [0, τ 0]∶F (t ∣ t) ≥ 1 − ρ};

τ = inf{t ∈ [τ 0,1]∶F (t ∣ t) ≤ 1 − ρ};

be the introspective types “closest” to τ 0 whose rank beliefs attain the relevant values; see Figure

2 for an illustration. We start with a few auxiliary results:

Lemma 3. limt↓0F (t ∣ t) ≤ 1/2 and limt↑1F (t ∣ t) ≥ 1/2.

Proof. Suppose, by contradiction, that limt↓0F (t ∣ t) > 1/2. This implies that there exist α > 1/2

and δ > 0 such that F (t ∣ t) ≥ α for all t ∈ (0, δ). Because

F (t ∣ t) =
∫
t

0 f(x, t)dx

∫
1

0 f(x, t)dx
,

we have that for t ∈ (0, δ),

∫

t

0
f(x, t)dx ≥ α∫

1

0
f(x, t)dx

and therefore

∫

δ

0
∫

t

0
f(x, t)dxdt ≥ α∫

δ

0
∫

1

0
f(x, t)dxdt ≥ α∫

δ

0
∫

δ

0
f(x, t)dxdt.

But by (SYM),

∫

δ

0
∫

δ

0
f(x, t)dxdt = 2∫

δ

0
∫

t

0
f(x, t)dxdt.

Hence, α ≤ 1/2, contradicting our assumptions. The proof that limt↑1F (t ∣ t) ≥ 1/2 is similar and

thus omitted. ◻

Lemma 4. For any introspective type space, < 0ρ ≤ ρ < 1, where we have a strict inequality if

and only if the type space induces non-monotone rank beliefs. Moreover, we cannot have both

τ = 0 and τ = 1, i.e., at least one of these types must lie in the interior of T .

Proof. We start with the first claim. It is immediate from the definitions that ρ ≤ ρ and that

(NMRB) implies that ρ < ρ. To show the converse, consider a type space such that ρ < ρ. Then,

there is t < τ 0 such that F (t ∣ t) > F (τ 0 ∣ τ 0) or there is t > τ 0 such that F (t ∣ t) < F (τ 0 ∣ τ 0)

(or both). But this is just (NMRB). To conclude our proof of the first claim, it remains to show

that ρ > 0 and ρ < 1. By (REG), F (t ∣ t) is continuous on [0,1] (and thus has a maximum on
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[0, τ 0] and a minimum on [τ 0,1]) and F (t ∣ t) ∈ (0,1) for t ∈ (0,1). It thus remains to show

that sup{F (t ∣ t) ∶ t ∈ [0, τ 0]} < 1 and inf{F (t ∣ t) ∶ t ∈ [τ 0,1]} > 0. The claim now follows from

Lemma 3.

We next prove the second claim.By Lemma 3 and the definition τ = sup{t ∈ [0, τ 0] ∶ F (t ∣

t) ≥ 1 − ρ} it follows that τ = 0 implies F (t ∣ t) < 1
2 for all t ∈ (0, τ 0]. Similarly, τ = 1 implies

F (t ∣ t) > 1
2 for all t ∈ [τ 0,1). Since F (t ∣ t) is continuous on [0,1], it follows that we cannot have

both τ = 0 and τ = 1. ◻

We are now ready to prove Theorem 1. By the proof of Proposition 1(b)–(c), the equilibrium

threshold is τ = 0 for ρ < ρ and τ = 1 for ρ > ρ, proving (a) and (b).

To prove (c), we first show that the value is generically not equal to the expected payoff in

one of the Nash equilibria. Recall that (NMRB) implies that ρ < ρ. Moreover, for ρ ∈ (ρ, ρ),

the equilibrium threshold τ lies strictly between τ and τ . To see that behavior in introspective

equilibrium is not consistent with Nash equilibrium if ρ ∈ (ρ, ρ), first note that introspective

equilibrium is not consistent with pure Nash equilibrium, as players choose both actions with

strictly positive probability (by (REG)). To prove that behavior is not consistent with mixed

Nash equilibrium, note that in any (strictly) mixed Nash equilibrium, the probability p11 + p22
that players coordinate on one of the strict Nash equilibria equals ρ2 + (1 − ρ)2 = 1 − 2ρ(1 − ρ).

Fix ρ ∈ (ρ, ρ) and let τ be the corresponding equilibrium threshold. Denote by pnm(τ) the

probability that players play according to the action profile (sn, sm) in introspective equilibrium.

Since F (τ ∣ τ) = 1 − ρ (proof of Proposition 1), we have

p11(τ) =∫
1

τ
(1 − F (τ ∣ t))dF (t) > ρ (1 − F (τ)) = ρ (p11(τ) + p12(τ));

p22(τ) =∫
τ

0
F (τ ∣ t)dF (t) > (1 − ρ)F (τ) = (1 − ρ) (p22(τ) + p21(τ));

where the inequalities follow from (MON-B) and (REG). Hence, ρp22(τ) > (1−ρ)p21(τ) and thus

ρ (p22(τ)+p21(τ)) > p21(τ). Likewise, (1−ρ)p11(τ) > ρp12(τ) and thus (1−ρ)(p11(τ)+p12(τ)) >

p12(τ). We thus have

1 =p11(τ) + p12(τ) + p21(τ) + p22(τ)

>(
1

1 − ρ
+

1

ρ
)
p12(τ) + p21(τ)

2

=
1

2ρ (1 − ρ)
(p12(τ) + p21(τ)),

where we have used that p12(τ) = p21(τ). Hence, p12(τ) + p21(τ) < 2ρ (1 − ρ), or, equivalently,

p11(τ) + p22(τ) > 1 − 2ρ(1 − ρ). (12)

55



We thus conclude that behavior in introspective equilibrium is not consistent with mixed Nash

equilibrium. To show that the value in introspective equilibrium is not equal to the expected

payoff in mixed Nash equilibria for generic payoff parameters (i.e., for a set of payoff parameters

with Lebesgue measure 1), note that there exist αρ > 0 (dependent on ρ) such that p12(τ) =

p21(τ) = ρ(1 − ρ)(1 − αρ). Then, there is βρ (which could be positive or negative) such that

p11(τ) = ρ2+ρ(1−ρ)(αρ−βρ) and p22(τ) = (1−ρ)2+ρ(1−ρ)(αρ+βρ). So, the difference between

the expected payoff VMNE in mixed Nash equilibrium and the value V is

VMNE − V = ρ(1 − ρ)(αρu12 + αρu21 − (αρ − βρ)u11 − (αρ + βρ)u22).

Hence, we have that VMNE = V if and only if

αρ(u11 − u21 + u22 − u12) = βρ(u11 − u22).

Fixing u11 − u21 and u22 − u12 fixes u11 − u21 + u22 − u12 and ρ (and thus αρ and βρ), but does

not pin down u11 −u22. We thus conclude that the value in introspective equilibrium is equal to

the expected payoff in mixed Nash equilibrium only for a set of payoff parameters of Lebesgue

measure 0.

It remains to derive (1). Note that the value of a game can be expressed as

V = V (u;T ) = p11(τ)u11 + p12(τ)u12 + p21(τ)u21 + p22(τ)u22,

where pnm(τ) is the probability that the action profile (sn, sm) is played in introspective equilib-

rium. Since in introspective equilibrium, an introspective type t chooses s1 if t > τ and chooses

s2 if t < τ , we have
p22(τ) = F (τ, τ),

p12(τ) = p21(τ) = F (τ) − F (τ, τ),

p11(τ) = 1 − 2F (τ) + F (τ, τ),

where F (t) is the (marginal) distribution function of a player’s type. Hence, we can rewrite the

value of the game as

V = u11 + (u21 + u12 − 2u11)F (τ) + (u11 + u22 − u21 − u12)F (τ, τ)

= u11 + (u21 + u12 − 2u11)F (τ) +
u11 − u21

1 − ρ
F (τ, τ).

This proves (1). ◻

Remark E.1. The proof of Theorem 1 can be simplified if we strengthen (REG) to require that

the density f(⋅) has full support on the whole of T × T (not just its interior): with this stronger
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assumption, it follows directly that F (t ∣ t) goes to 0 and to 1 as t approaches 0 and 1, respectively

(which is obviously stronger than Lemma 3). A disadvantage of adopting a stronger version of

(REG) is that it rules out some potentially interesting introspective type spaces such as versions

of the social salience type space (Section 3.2.1) with g(1) = 0 or the animal spirits type space

(Section 3.2.2).

E.3 Proof of Proposition 2

Part (p1) follows directly from Theorem 1 by noting that ρ = 1/(w + 1). To prove (p2), fix an

introspective type space T with 1
2 ∈ (ρ, ρ). Since 1 − ρ = 1

2 , players choose both actions with

positive probability in introspective equilibrium (i.e., τ ∈ (0,1)). The value is given by

V = p11(τ) + p22(τ) = 1 − 2F (τ) + 2F (τ, τ).

As τ ∈ (0,1), by (REG), F (τ, τ) < F (τ) and thus V < 1. That the value is strictly greater than
1
2 follows directly from the fact that V = p11(τ) + p22(τ) > 1 − 2ρ(1 − ρ) = 1

2 (by Eq. (12)). ◻

E.4 Proof of Proposition 3

Let T be an introspective type space with 1
2 ∈ (ρ, ρ). For w > 0 and x ∈ [0,w − 1), write ρ(w,x)

for the dominance parameter of G̃x. Then, there is w such that for w > w, ρ(w,0) < ρ and thus,

by Theorem 1, V ((w,−c,0,1);T ) = w. Moreover, for any w, limx↑w−1 ρ(w,x) = (w + c)/(2w + c).

So, as 1
2 ∈ (ρ, ρ), there is w′ such that for w > w′, limx↑w−1 ρ(w,x) ∈ (ρ, ρ). The result then follows

by choosing w∗ = max{w,w′}. ◻

E.5 Proof of Theorem 3 (cntd)

We start by calculating the per-period profits. First note that the inverse demand functions

pi = 1 − qi − r q−i (0 < r < 1) (13)

and

p̃i = a − b q̃i − c q̃−i (a > 0, b > c > 0) (14)

are equivalent in the sense that the transformations p̃i = api, q̃i =
a
b qi, r =

c
b provide a one-to-one

correspondence between the solutions of (13) and (14). So, it suffices to consider (13). Solving

for qi gives

qi =
1 − r − (pi − rp−i)

1 − r2
.
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Hence,

πi = piqi =
1 − r − (pi − rp−i)

1 − r2
pi.

The Bertrand-Nash price maximizes a firm’s profit given the other firm’s price. Hence, pN =
1−r
2 + r

2p
N , which yields pN = 1−r

2−r and

πN = (
1 − r

2 − r
)
2 1

1 − r2
.

The collusive price p∗ maximizes (1−r)(1−p
∗
)

1−r2 p∗. Hence, p∗ = 1
2 , and the corresponding profit is

π∗ =
1

4 (1 + r)
.

The other profit terms depend on whether the constraint q−i ≥ 0 is binding. The constraint is

not binding if r <
√

3 − 1, and binds if r ≥
√

3 − 1. First suppose the constraint is not binding,

i.e., r <
√

3 − 1. The cheating price pc maximizes (1 − 1
2r − p

c)pc. Hence, pc = 1
2 −

r
4 and the

corresponding profit is

πc =
1 − r + r2

4

4 (1 − r2)
.

It follows that qv = 1−r−r2/2
2 (1−r2) . Hence,

πv =
1 − r − r2

2

4 (1 − r2)
.

Finally,

πm =
(1 − r)(1 − pc)

1 − r2
pc =

(1 − r) (1 − r2

4 )

4 (1 − r2)
.

It will be convenient to define ψ ∶= 4 (1 − r2)π. Thus,

ψc = 1 − r + r2

4 ; ψ∗ = 1 − r;

ψm = (1 − r) (1 − r2

4 ); ψv = 1 − r − r2

2 ;

ψN =
(1 − r)2

1 − r + r2

4

.

Clearly, ψc > ψ∗ > ψm. Moreover,

ψm

ψN
=

1 − r + r3

4 (1 − r
4)

1 − r
> 1;

ψN

ψv
=

(1 − r)2

(1 − r)2 − r2

4 (1 − r − r2

2 )
> 1.
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Hence, ψc > ψ∗ > ψm > ψN > ψv and thus πc > π∗ > πm > πN > πv.

Next suppose that the constraint binds, i.e., r ≥
√

3 − 1. We thus have qv = 0. This yields

pc = 1 − 1
2r and thus

πc =
(2 − 1

r) (
1
r − r)

4 (1 − r2)
; πm =

(1 − r) (2 − 1
r)

1
r

4 (1 − r2)
; πv = 0.

Using the notation ψ ∶= 4 (1 − r2)π again, we have

ψc = (2 − 1
r) (1 +

1
r) (1 − r); ψm = 1

r (2 −
1
r) (1 − r); ψv = 0.

Let x ∶= 1
r , so 1 < x ≤ 1

2 (
√

3 + 1). Then, (2 − x) (1 + x) ≥ (2 − 1
2 (

√
3 + 1))(1 + 1

2 (
√

3 + 1)) = 3
2 .

Hence, ψc > ψ∗ = 1 − r. Also, x (2 − x) < 1, and thus ψ∗ > ψm. Moreover, ψm > ψN if and

only if (2 − 1
r) (

1
r −

1
2) > 1−r

1−r/2 , which is equivalent to (2 − x) (x − 1
2) > x−1

x−1/2 = 1 − 1
2x−1 . Since

(2 − x) (x − 1
2) ≥ (2 − 1) (1 − 1

2) =
1
2 while 1 − 1

2x−1 ≤ 1 − 1
√

3
< 1

2 , we have ψm > ψN . It follows that

πc > π∗ > πm > πN > πv.

We next derive the payoffs for the repeated game. If firm i chooses strategy σi ∈ {σ∗, σc} and

the other firm chooses strategy σ−i ∈ {σ∗, σc}, then, if the common discount factor is δ ∈ (0,1),

the (normalized) expected discounted sum of profits for firm i is

(1 − δ)
∞

∑
t̃=0

δt̃E(σi,σ−i)[πt̃i],

where πt̃i is firm i’s profit in period t̃ and E(σi,σ−i)[⋅] is the expectation operator induced by the

strategy profile (σi, σ−i). This yields the payoff matrix in the main text. By the assumption that

δ > (πc − π∗)/(πc − πN)) and given that πm > πv, this is a coordination game, i.e., ρ ∈ (0,1). ◻

E.6 Proof of Proposition 4

Fix a game form u (with corresponding dominance parameter ρ) and fix the introspective type

space T0 = (F, τ 00 ) at time 0. We assume that F (τ 00 ∣ τ 00 ) ≠ 1− ρ and that the rank belief function

does not attain a local extremum at the equilibrium threshold τ 0 at time 0, i.e., F (τ 0 ∣ τ 0) is not

a local maximum or minimum. Since there are at most countably many values for ρ such that

F (τ 00 ∣ τ 00 ) = 1− ρ or that 1− ρ is the value that F (t ∣ t) attains at a local extremum, proving the

claim for this case establishes that the claim holds for generic u.

Fix a dynamic {τ 0
t̃
}t̃ satisfying (6). Notice that this is a deterministic process (as there is a

continuum of players). For t̃ ≥ 0, let τt̃ be the introspective equilibrium for Gt = (u,Tt), where

Tt = (F, τ 0
t̃
). By the triangle inequality, it suffices to prove the following: For every χ > 0, there

is ε̄χ > 0 such that for every ε ∈ (0, ε̄χ) and for every period t̃, we have ∣τt̃ − τ0∣ < χ. That is, for
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ε ∈ (0, ε̄χ), the introspective equilibrium in period t̃ is within χ the introspective equilibrium at

time 0 (uniformly in t̃). In fact, we show a stronger result: There is ε̄ > 0 such that for every

ε ∈ (0, ε̄) and for every period t̃, we have τt̃ = τ0. Thus, if the noise is sufficiently small, players

play according to the same introspective equilibrium in every period.

To show this, note that, by assumption, F (τ 00 ∣ τ 00 ) ≠ 1 − ρ. So, τ0 ≠ τ 00 . Also, note that

by (REG), the rank belief function F (t ∣ t) is continuous in t. We prove the result for the case

that τ 00 > τ0; the proof for the case that τ 00 < τ0 is similar and thus omitted. By the proof of

Proposition 6 (showing that introspective equilibrium satisfies (ATTR)), there is ε̄′ > 0 such

that for any ε ∈ (0, ε̄1), for any τ 0
t̃
∈ (τ0 − ε, τ 00 ] ∩ T , the introspective process {τ k

t̃
}k converges to

τ0. The proof then follows if we show that there is ε̄′′ > 0 such that for all ε ∈ (0, ε̄′′), for any

τ 0
t̃
∈ [τ0, τ 00 +ε)∩T , the introspective process {τ k

t̃
}k converges to τ0 (and set ε̄ = min{ε̄′, ε̄′′}). But

this follows from the continuity of F (t ∣ t) and the fact that F (τ 00 ∣ τ 00 ) < 1 − ρ. ◻

E.7 Proof of Proposition 5

By Proposition 1, introspective equilibrium is a symmetric correlated equilibrium, i.e., µ12 =

µ21. By Proposition 1 in Calvó-Armengol (2006), the set CE(ρ) of correlated equilibria of a

coordination game with dominance parameter ρ is a polytope in R4 with 5 vertices (all distinct)

given by

µ1 =(1,0,0,0);

µ2 =(0,1,0,0);

µ3 =(ρ2, (1 − ρ)2, ρ(1 − ρ), ρ(1 − ρ));

µ4 =(
ρ2

1 − ρ(1 − ρ)
,

(1 − ρ)2

1 − ρ(1 − ρ)
,
ρ(1 − ρ)

1 − ρ(1 − ρ)
,0) ;

µ5 =(
ρ2

1 − ρ(1 − ρ)
,

(1 − ρ)2

1 − ρ(1 − ρ)
,0,

ρ(1 − ρ)

1 − ρ(1 − ρ)
) ;

where µ1 and µ2 are the action distributions corresponding to the pure Nash equilibria, and

µ3 corresponds to the mixed Nash equilibrium. Hence, the set of correlated equilibria CE(ρ)

is a full-dimensional subset of the three-dimensional simplex. The set of symmetric correlated

equilibria is a two-dimensional subset of CE(ρ). Hence, the set of symmetric correlated equilibria

has Lebesgue measure 0 in the set of correlated equilibria. Moreover, introspective equilibrium is

a strict correlated, except perhaps when one of the following holds: (1) F (τ 0 ∣ τ 0) = 1− ρ; or (2)

F (τ ∣ τ) is a local extremum. By the proof of Proposition 6, these cases are non-generic. We can

thus conclude that the set of correlated equilibria induced by an introspective equilibrium is a

subset of a set that has Lebesgue measure 0 in the set of all correlated equilibria, and generically

a strict subset thereof. Hence, it has Lebesgue measure 0. ◻
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E.8 Proof of Proposition 6

We show that introspective equilibrium satisfies (ATTR) and (LYAP) except when F (τ 0 ∣ τ 0) =

1 − ρ or F (τ ∣ τ) is a local extremum. Since there are at most countably many values for ρ such

that F (τ 0 ∣ τ 0) = 1 − ρ or that 1 − ρ is the value that F (t ∣ t) attains at a local extremum, this

establishes that introspective equilibrium is asymptotically stable for generic u. So suppose that

F (τ 0 ∣ τ 0) ≠ 1−ρ and that F (τ ∣ τ) is not a local maximum or minimum. We start with (ATTR).

First suppose τ = 0; the proof for τ = 1 is similar and thus omitted. Since F (τ ∣ τ) ≠ 1−ρ, we have

τ ≠ τ 0 and thus τ 0 > 0. Then, for any level-0 threshold τ̃ 0 ∈ Bτ0(τ), the introspective process

converges to τ (by the proof of Proposition 1); so, the claim holds with ε = τ 0. Next suppose

τ ∈ (0,1). We will construct a nonempty open interval (τmin, τmax) such that, starting from any

level-0 threshold τ̃ 0 ∈ (τmin, τmax), the introspective process converges to τ ; this shows that the

claim holds with ε ∶= τmax−τmin > 0. We prove the result for the case where F (τ 0 ∣ τ 0) < 1−ρ; the

proof for the result when F (τ 0 ∣ τ 0) > 1 − ρ is similar and thus omitted. Again, τ 0 > τ , and the

level-k thresholds {τ k} form a decreasing sequence that converges to τ ; so, we can set τmax = τ 0,

where we note that τmax > τ . We next construct τmin < τ . By the proof of Proposition 1, there is

t ∈ [0, τ] such that F (t ∣ t) is a local maximum. Moreover, since F (τ ∣ τ) is not a local extremum,

τ∗ ∶= sup{t ∈ [0, τ] ∶ F (t ∣ t) is a local maximum}

is strictly smaller than τ . By the proof of Proposition 1, F (τ∗ ∣ τ∗) > 1 − ρ, and, by a similar

argument as before, any introspective process starting at τ̃ 0 ∈ (τ∗, τ] converges to τ . Hence, we

can set τmin = τ∗.

The proof that introspective equilibrium satisfies (LYAP) now follows immediately. Fix η > 0,

and let ε > 0 be as constructed in the proof of property (ATTR). By the argument above, for any

τ̃ 0 ∈ Bε(τ), the introspective process {τ̃ k}k starting at τ̃ 0 has the property that ∣τ − τ̃ k∣ decreases

with k. Hence, the claim holds for δ = min{η, ε}. ◻
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