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Abstract

How much consumption is “sustainable”? We view sustainability as a requirement that

welfare should not be expected to decline over time. We impose this requirement as a constraint

on the consumption-savings-investment problem, and study its implications for saving, risky

investment, and the social rate of time preference. The constraint does not distort portfolio

choice, but it imposes an upper bound on the sustainable rate of time preference and the

sustainable consumption-wealth ratio, which we show must lie between the riskless interest rate

and the expected return on optimally invested wealth (and if risky wealth evolves according

to a geometric Brownian motion, it must lie exactly halfway between the two). For plausible

parameter values, the sustainable consumption-wealth ratio is considerably higher than both

the riskless interest rate and the consumption-wealth ratio permitted by the Ramsey rule of

zero social time preference.
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Do ethical considerations restrict the rate at which society consumes, or its preference for the

present over the future? Economists have answered this question in different ways.

One view is that preferences, social or individual, must be taken as given. If society discounts

the future at a high rate, strongly preferring present consumption over future consumption, that

preference must be respected; and if it leads to high consumption today, declining over time, that

outcome must be accepted.

An alternative view, famously expressed by Ramsey (1928), is that at least for long-term dis-

counting over the lifetimes of multiple generations, society should not discount the future at all

because to do so is unethically to privilege the generation alive today over those yet unborn. Re-

cently, this view has found powerful expression in the Stern Review (Stern, 2006), which argues

for aggressive action to combat climate change in large part on the basis of a social rate of time

preference close to zero.

A third view is that social choices over consumption and saving should be subjected to an

external “sustainability” constraint. Sustainability was defined by the World Commission on En-

vironment and Development (1987) as a consumption plan that “meets the needs of the present

without compromising the ability of future generations to meet their own needs.” Economists in-

cluding Pezzey (1992), Solow (1993), Howarth (1995), Arrow et al. (2004), Asheim (2007), and

Llavador et al. (2015) have formalized this as a requirement that social value—the expected dis-

counted value of utility from the present to the infinite future—should not decline over time. In

the words of Solow (1993),

A sustainable national economy is one that allows every future generation the option of

being as well off as its predecessors. The duty imposed by sustainability is to bequeath

to posterity not any particular thing . . . but rather to endow them with whatever it takes

to achieve a standard of living at least as good as our own and to look after their next

generation similarly.

The concept of sustainability as a constraint, rather than an objective, is consistent with the

moral philosophy of Rawls (1999).1 It can be understood as a prior principle that an ethical society

should impose on itself because it would be agreed to by an individual who does not know into

1Rawls (1999, §6) writes, “In justice as fairness, on the other hand, persons accept in advance a principle of equal
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which of a sequence of generations they will be born. Since the time of birth is “morally arbitrary”,

it should not influence expected utility.

As Arrow et al. (2004) discuss, in a deterministic economy with a single form of capital that

has a constant riskless rate of return the sustainability constraint requires that the social rate of

time preference does not exceed the exogenous riskless interest rate. When the constraint binds,

the constrained rate of time preference equals the riskless interest rate, implying that society con-

sumes the riskless return generated by its wealth and leaves the capital stock unchanged. Wealth,

consumption, the utility and marginal utility of current consumption, and social value are then

all constant over time. Sustainable consumption is only feasible when the riskless interest rate is

positive, and then the constrained social rate of time preference is also positive. The sustainability

constraint responds to the availability of an investment opportunity with a positive rate of return by

allowing a greater rate of time preference and higher current consumption than would be required

by Ramsey.2

In this paper we extend the concept of sustainability to allow for risk. In a risky economy, with

an uncertain return on capital, it is not possible to guarantee that social value remains constant

over time. Instead, we impose a weaker sustainability constraint that social value—expected utility,

which is itself a random variable because it is a function of current wealth—should not be expected

to decline over time. This constraint, which has also been suggested though not formally analyzed

by Howarth (1995), acknowledges the reality that social welfare is subject to random shocks, some of

which cannot be controlled. In the deterministic case, our constraint reduces to the one considered

by Arrow et al. (2004).

We study a continuous-time model with two forms of capital, one safe and one risky, so that

liberty and they do this without knowledge of their more particular ends. They implicitly agree, therefore, to conform
their conceptions of the good to what the principles of justice require, or at least not to press claims which directly
violate them. . . . The principles of right, and so of justice, put limits on which satisfactions have value; they impose
restrictions on what are reasonable conceptions of one’s good. In drawing up plans and deciding on aspirations men
are to take these constraints into account.”

2By adjusting the rate of time preference to the available rate of return, the sustainability constraint responds
to a famous critique of Ramsey made by Koopmans (1960, 1967). Koopmans (1967) summarized his argument by
writing: “The moral is, in my opinion, that one cannot adopt ethical principles without regard to . . . the anticipated
technological possibilities. Any proposed optimality criterion needs to be subjected to a mathematical screening, to
determine whether it does indeed bear on the problem at hand, under the circumstances assumed. More specifically,
too much weight given to generations far in the future turns out to be self-defeating. It does nobody any good. How
much weight is too much has to be determined in each case.”
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society faces an asset allocation problem as well as a consumption-savings decision. While we use

the terminology of financial economics—referring, for example, to assets, wealth, consumption, and

saving—we emphasize that these financial concepts should be thought of in broad terms. The risky

asset, for example, could represent the Earth itself, while consumption should be understood as

a catch-all for, among other things, the rate at which society consumes, rather than sustains, the

biosphere. In these terms, the consumption-savings decision we consider is intended as a modelling

metaphor that encompasses questions of resource depletion, environmental degradation, and so on.

Having said that, we should be clear that our framework does not address certain important aspects

of sustainability, notably issues related to the economics of exhaustible resources (as studied in a

deterministic setting by Dasgupta and Heal (1974), Solow (1974), and Hartwick (1977)).

We assume that the two assets have i.i.d. returns, with a flexible specification for the risky

return that is driven both by a Brownian motion and by a Poisson jump process. The assumption

of i.i.d. returns is consistent with an endogenous growth or Ak model of capital accumulation

with constant returns. It implies that there is a unique consumption-wealth ratio at which the

sustainability constraint is binding.3 We assume that society has a standard time-separable power

utility function defined over aggregate consumption, and we impose the sustainability constraint

on this. We also consider an important special case where the safe asset is in zero net supply, so

risk is inescapable for society and the risk premium on the risky asset must adjust to ensure a risky

portfolio share equal to one.

Our main results are as follows.

First, when the sustainability constraint binds, the sustainable consumption-wealth ratio does

not depend on the rate of time preference of an unconstrained representative individual in our

economy.4

Second, the constraint binds whenever individuals’ time preference rate exceeds the sustainable

consumption-wealth ratio. In this case, we show that sustainability can justify defining a “social

3In a model with diminishing returns to capital, by contrast, any constant savings rate can be sustainable although
different savings rates imply different levels of steady-state consumption.

4This is consistent with the view of Rawls (1999, §45), who writes: “Of course, a present or near future advantage
may be counted more heavily on account of its greater certainty or probability . . . But none of these things justifies
our preferring a lesser present to a greater future good simply because of its nearer temporal position . . . The just
savings principle for society must not, then, be affected by pure time preference, since as before the different temporal
position of persons and generations does not in itself justify treating them differently.”
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rate of time preference” that is less than individuals’ time preference rates. A social planner who

optimizes using this social rate of time preference will choose to set the consumption-wealth ratio

at the sustainable level.

Third, the sustainable consumption-wealth ratio exceeds the riskless interest rate but is less

than the expected return on optimally invested wealth. In the absence of jumps, the sustainable

consumption-wealth ratio lies exactly at the midpoint between these two rates of return; equiva-

lently, it is the riskless interest rate plus one-half the squared Sharpe ratio on the risky asset divided

by risk aversion. In the presence of jumps, the solution is defined implicitly but is straightforward

to calculate numerically.

Fourth, the sustainable consumption-wealth ratio is higher than the consumption-wealth ratio

required by the Ramsey zero-time-preference rule by a factor of risk aversion divided by risk aversion

minus one. The difference is therefore small for very high levels of risk aversion, but substantial for

moderate levels of risk aversion normally considered plausible.

Fifth, the sustainability constraint does not distort portfolio choice, which is always the same

whether or not the constraint binds. In the absence of jumps, the portfolio rule is the classic one

derived by Merton (1969, 1971).

The risky model we consider is different in two fundamental ways from the riskless model con-

sidered by the previous literature. First, in the presence of risk a zero drift for social value does not

imply zero drifts for consumption, wealth, or the marginal utility of consumption. We show that

consumption, wealth, and marginal utility all have positive drifts in the constrained equilibrium.

Intuitively, this is because risky investment causes the distribution of consumption and wealth to

spread out over time, imposing more risk on later generations. To prevent risk from reducing the

welfare of later generations relative to earlier ones, later generations must be compensated by higher

average levels of consumption and wealth. This implies that our sustainability constraint is differ-

ent from the zero drifts in consumption and wealth, or log consumption and log wealth, imposed

by Campbell and Sigalov (2022). The Campbell and Sigalov constraints generally distort portfolio

choice, whereas our sustainability constraint does not.

Second, the sustainable rate of time preference is not the same as the sustainable discount

rate that society should apply to riskless investment projects. That discount rate is given by the

riskless interest rate in the sustainable equilibrium, which is lower than the sustainable rate of time
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preference when the economy is exposed to risk. As a salient example, investments to mitigate

climate change should be discounted at low rates if the investments are riskless and the sustainable

equilibrium has a low riskless interest rate. They should be discounted at even lower rates if

climate investments pay off in bad states of the world—that is, if they are analogous to insurance

policies—an important point emphasized by Weitzman (2009) and Gollier (2021).

Our main analysis defines utility over aggregate consumption, in effect treating each genera-

tion equally regardless of population. This is only equivalent to treating each individual equally if

population is constant over time. Population growth creates notoriously difficult issues for intertem-

poral ethics (Parfit 1984, Dasgupta 2001), particularly when population is itself a choice variable.

However we show that if population growth is exogenous and constant, then we can modify the

sustainability constraint to prevent the expected utility of an individual from declining over time.

This is equivalent to subtracting the rate of population growth from all rates of return, and therefore

from the sustainable consumption-wealth ratio and the sustainable rate of time preference.

The literature on discounting and sustainability is enormous, and we do not attempt a complete

review here. Dasgupta (2008, 2021) and Zeckhauser and Viscusi (2008) provide recent surveys.

Within the literature on climate change, there has been debate between those such as Cline (1992)

and Stern (2006, 2016) who argue for a very low social rate of time preference, and Nordhaus

(1994) who uses a higher rate of time preference. Our analysis implies that a substantial rate of

time preference can be consistent with the ethical criterion of sustainability in a risky world.

The organization of the paper is as follows. Section 2 sets up our unconstrained continuous-time

model with portfolio choice over a safe and a risky asset. Section 3 introduces the sustainabil-

ity constraint and solves the constrained model. This section also briefly considers the effect of

population growth. Section 4 imposes the equilibrium condition that the risky asset share equals

one. Section 5 compares the sustainable consumption-wealth ratio with the consumption-wealth

ratio implied by the Ramsey rule of a zero social rate of time preference. Section 6 concludes. An

appendix presents details of key derivations.
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1 Unconstrained Consumption and Portfolio Choice

We consider a representative investor faced with two assets, one riskless and one risky. The investor

chooses society’s aggregate consumption, Ct, and risky portfolio share, α, to maximize the expected

discounted value of a power utility function,

U0 = E0

∫ ∞
0

e−ρt
C1−γ
t

1− γ
dt. (1)

We take as given this representation of utility derived from aggregate consumption. It can be

derived from individual utility of individual consumption under assumptions that permit aggregation

across consumers. For example, we could assume that individuals have a constant probability of

death following Blanchard (1985), that they have power utility defined over their own consumption,

that they are unable to annuitize their wealth, and that the wealth of those who die is allocated to

an equal number of newly born individuals. In this case utility at each point of time is both the

welfare of the generation born at that moment and the welfare of all agents alive at that time. This

microfoundation for equation (1) assumes a constant population; we consider a case with population

growth in Section 2.4.

We assume that the rate of time preference ρ > 0. If individuals have a constant probability of

death and do not care about their descendants, then as Blanchard (1985) shows, ρ is the sum of

the pure individual rate of time preference and the probability of death. In a more general model

with intergenerational altruism, ρ will also be affected by (and declining in) the degree of altruism.

We assume that the coefficient of relative risk aversion γ > 1. In Appendix B we show that

all the results extend in the expected way to the log utility case, γ = 1. It would also be easy to

handle the case 0 < γ < 1, but as this case requires occasional sign flips in our logic below, we rule

it out to streamline the exposition.

The riskless asset has gross return Rf . It will generally be convenient to think in terms of the

log riskless rate, rf = logRf .

We require assumptions about the return on wealth that is invested rather than consumed. As

sustainability is inherently a long-run issue, we abstract away from high frequency variation in mean,

volatility, and so on by modelling returns as i.i.d. It will also be convenient to work in continuous
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time for tractability. We therefore model log asset values as Lévy processes. We specialize slightly,

within this class of processes, by ruling out the possibility that infinitely many jumps occur in a

finite time interval. This allows us to specify the risky asset value using a combination of a Brownian

motion and a Poisson process.

In our most general formulation, we assume that the risky asset has constant expected excess

return µ = log(ER/Rf ) > 0, Brownian volatility σ, and is exposed to jumps arriving according to

a Poisson counting process Nt with constant arrival rate ω; we assume that µ, σ, and ω are each

constant. We write Wt for wealth at time t and θ = Ct/Wt for the consumption-wealth ratio. Under

our assumptions, θ is also constant. Thus

dC

C
=
dW

W
=

[
rf + α (µ+ ωEL)︸ ︷︷ ︸

µ̂

−θ
]
dt+ ασ dZ − αLdN, (2)

where we suppress time subscripts on random variables for simplicity.

Jumps are captured by the third term on the right-hand side of equation (2). When a jump

occurs, an agent who is fully invested in the risky asset loses a fraction L of her capital. We assume

that L is a random variable that is drawn in i.i.d. fashion each time a jump occurs. We also assume

(with one eye on the equilibrium we study below, in which α = 1) that L is strictly less than 1,

so that someone who invests fully in the risky asset is not bankrupted. We can allow L to take

negative values; these represent good news for the risky asset. We write µ̂ = µ + ωEL to denote

the expected excess return in the absence of jumps.

It turns out that almost all of our qualitative conclusions apply whether or not there are jumps,

so in the body of the paper we will simplify the exposition by ruling out jumps. In that case,

equation (2) specializes to

dC

C
=
dW

W
= (rf + αµ− θ) dt+ ασ dZ . (3)

We handle jumps in the Appendix: Appendix A.1 generalizes the results in Section 1, and Appendix

A.2 generalizes those in Section 2. We will highlight points at which jumps make a difference as they

occur (most notably in Section 3, where we explicitly allow for jumps in the body of the paper).
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As the coefficients in equation (3) are constants, it follows in the usual way that

Ct = C0 exp

{(
rf + αµ− 1

2
α2σ2 − θ

)
t+ ασZt

}
, (4)

and hence that

E0C
1−γ
t = W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ− 1

2
γα2σ2 − θ

)
t

}
. (5)

where we have used the fact that C0 = θW0.

The objective function (1) can therefore be evaluated explicitly, as

U0 =
W 1−γ

0

1− γ
θ1−γ

ρ− (1− γ)
(
rf + αµ− 1

2
γα2σ2 − θ

) . (6)

The unconstrained optimal investment and consumption choices are identified by maximizing

utility with respect to α and θ. Maximizing with respect to θ, we find that the optimal consumption-

wealth ratio is

θunc =
ρ+ (γ − 1)

(
rf + αµ− 1

2
γα2σ2

)
γ

. (7)

We assume that θunc is positive when α and θ are chosen optimally. This condition implies that

the denominator of (6) is positive, and hence that the integral in the definition of expected utility

converges.

Maximizing with respect to α, the optimal risky portfolio share is given by the classic Merton

formula

α =
µ

γσ2
. (8)

Using (8) to eliminate µ in (7), we can also write

θunc =
ρ+ (γ − 1)

(
rf + 1

2
γα2σ2

)
γ

. (9)
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2 A Sustainability Constraint

Equation (6) shows that expected utility at time t, Ut, is proportional to W 1−γ
t /(1− γ). Expected

utility is itself a random variable, because it is a function of current wealth. To understand how

expected utility evolves over time, we multiply by 1 − γ (which is negative under our maintained

assumption that γ > 1) and work with a rescaled variable Xt = W 1−γ
t . This follows the process

dX

X
= (1− γ)

(
rf + αµ− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ . (10)

If the consumption-wealth ratio, θ, is sufficiently large then the drift of X (by which we mean, heuris-

tically, 1
dt

E dX
X

) is positive, and hence expected utility has negative drift: the optimal consumption-

investment decision induces declining expected utility over time, on average.

We formalize the notion of sustainability, following Rawls (1999), by imagining representatives

of each generation agreeing on a time-invariant consumption-investment policy that gives each

generation the same expected utility. This implies that at time t the representative agent will

solve the consumption-investment problem studied above, subject to the extra constraint that the

drift of expected utility—or, equivalently, the drift term in equation (10)—should be zero. If the

representative agent is thought of as the currently living generation in an infinite dynasty, then the

constraint is appropriate if she does not want her descendants to expect a lower quality of life than

she does.5

The sustainability constraint therefore implies—writing θcon for the case in which the constraint

binds—that

θcon = rf + αµ− 1

2
γα2σ2 . (11)

Similarly, we write θunc for the case in which the constraint does not bind, so that the optimal

choice is given by equation (9). The optimal consumption-wealth ratio is independent of ρ if the

constraint binds; this is not true of the unconstrained case.

5One might imagine imposing other types of constraint. We could, for example, allow for a type of risk aversion
over future expected utility by requiring that some concave function of future expected utility should have non-
decreasing expectation. This is analytically intractable in the constant relative risk aversion (power) case, however;
and indeed it is infeasible in the limit as risk aversion over future expected utility approaches infinity, as it would
require expected utility—and hence wealth itself—to be non-decreasing, which is not possible unless society can
entirely eliminate risk.
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If the constraint binds, we can use it to eliminate θ from the objective function (6), giving

Ucon,0 =
W 1−γ

0

1− γ

(
rf + αµ− 1

2
γα2σ2

)1−γ
ρ

. (12)

Conveniently, the optimal investment choice is unaffected by the presence of the sustainability

constraint. Maximizing equation (12) with respect to α, we find the same first-order condition

as before, equation (8). (As a corollary, the sustainable strategy is Pareto-efficient because it is

identical to the unconstrained-optimal strategy for some choice of ρ.)

Intuitively, it is not optimal to distort portfolio choice in the presence of a sustainability con-

straint because doing so affects expected utility in the same way in all periods. Distorting the

portfolio choice decision away from the unconstrained optimum therefore does not relax the con-

straint; nor (by definition) does it directly benefit the objective function. By contrast, in papers

such as Dybvig (1995) or Campbell and Sigalov (2022) that feature constraints on consumption

as opposed to welfare, it may be optimal to distort portfolio choice relative to the unconstrained

optimum in order to relax the constraint.

We can use the Merton formula (8) to eliminate µ from equation (11), giving

θcon = rf +
1

2
γα2σ2. (13)

Hence the constrained consumption-wealth ratio θcon exceeds the riskfree interest rate rf in a risky

economy. Equation (13) can be rewritten, again using condition (8), as

θcon =
1

2
× rf +

1

2
× [(1− α) rf + α (rf + µ)]︸ ︷︷ ︸

expected return on optimally invested wealth

. (14)

This shows that the constrained consumption-wealth ratio lies exactly halfway between the riskless

return and the expected return on optimally invested wealth. (This finding does depend, to some

extent, on the specialness of geometric Brownian motion: we show in the Appendix that in the

presence of jumps the constrained consumption-wealth ratio must lie somewhere between the riskless

return and the expected return on wealth, with the precise location determined by the arrival rate

and distribution of jump sizes.)
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Alternatively, we can use (8) to substitute α out of equation (11), giving

θcon = rf +
1

2

µ2

γσ2
. (15)

This exhibits the maximum sustainable consumption-wealth ratio as the riskless interest rate plus

one half the squared Sharpe ratio of the risky asset, divided by risk aversion. This can be much

larger than the riskless interest rate: for example, if the riskless rate is 2%, the Sharpe ratio of the

risky asset is 0.4, and risk aversion is 2, then the constrained consumption-wealth ratio is 6%. The

constrained consumption-wealth ratio only approaches the riskless rate, its value in a deterministic

model, as risk aversion becomes extremely high.

2.1 Comparing the constrained and unconstrained solutions

The optimal sustainable consumption-wealth ratio, θsus, is given by whichever of θcon and θunc is

smaller. If the unconstrained case features a lower consumption-wealth ratio, then it certainly

satisfies the constraint and delivers higher utility. If not, the unconstrained case does not satisfy

the constraint, so that θcon is the best we can do. Thus

θsus = min {θunc, θcon} . (16)

Equivalently, θcon is the highest possible sustainable consumption-wealth ratio.

It follows from equations (9) and (13) that

θunc =
1

γ
ρ+

(
1− 1

γ

)
θcon. (17)

This equation also applies in the presence of jumps.

Equations (16) and (17) have several interesting implications. First, the sustainability constraint

binds if and only if ρ > θcon (or, equivalently, if and only if ρ > θunc). Related to this, we can show

that in the absence of a sustainability constraint,

E0Xt = X0e
(ρ−θunc)t . (18)
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If impatience is sufficiently high that ρ > θunc, then Xt = W 1−γ
t is expected to grow without limit

in an unconstrained equilibrium and expected utility is expected to decline without limit.6 The

sustainability constraint, which rules out declining expected utility, binds in this circumstance.

Second, equation (17) shows that the moderating influence of ρ makes θunc less sensitive than

θcon to changes in other parameters of the model, holding ρ fixed.

Third, equation (17) implies that the behavior of an extremely risk-averse individual is little

affected by the presence or absence of a sustainability constraint, as θunc ≈ θcon if γ is large. This

reflects the fact that highly concave utility leads an agent to choose a flat consumption path that

is close to sustainable, regardless of the level of ρ.

Fourth, equations (16) and (17) show that θsus and θunc can easily be calculated from knowledge

of θcon, so we can focus our analysis on the determinants of θcon.

Finally, we can use this analysis to analyse how and why the social discount rate used in, say, the

Stern Review (2016), might differ from the discount rate ρ that enters an individual’s utility function.

The Stern Review emphasizes the importance of the discount rate in making welfare comparisons

across generations separated by long tracts of time, eventually settling on a social discount rate of

zero. Weitzman’s (2007) review of the Review describes this as “a decidedly minority paternalistic

view” and worries that “For most economists, a major problem . . . is that people are not observed

to behave as if they are operating with [the social discount rate] δ ≈ 0”.

In our setting, individuals unconstrained by sustainability will use the discount rate ρ > 0 in

calculations. Might sustainability justify a lower social discount rate suitable for use in a Stern

Review -like exercise?7

To answer this question, define the social discount rate ρ̂ via the equation

θunc (ρ̂) = θsus . (19)

With this definition, ρ̂ is the hypothetical discount rate that should be used by a social planner

6Expected wealth will decline toward zero if ρ is sufficiently large; but if ρ is sufficiently close to θcon then wealth
has positive drift despite the negative drift in expected utility.

7Weitzman (2007) points out that model uncertainty provides another justification.
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who wants to impose sustainability. From equation (16), this is equivalent to defining

θunc (ρ̂) = min {θunc (ρ) , θcon} . (20)

If the sustainability constraint is not binding, so that θunc (ρ) ≤ θcon, then we can set ρ̂ = ρ. If

the constraint does bind, then we must ensure that θunc (ρ̂) = θcon. By equation (17), this requires

that ρ̂ = θcon. As the constraint binds precisely when ρ > θcon, we can summarize all this by saying

that the hypothetical social planner should set

ρ̂ = min {ρ, θcon} . (21)

If the sustainable consumption-wealth ratio is lower than the unconstrained time discount rate ρ,

this represents an alternative justification for using a social discount rate lower than an individual’s

discount rate, ρ; nonetheless, it suggests a higher social discount rate than does the Ramsey rule,

which sets ρ̂ equal to zero. We return to this issue in Section 4.

2.2 Sustainable drifts in wealth and marginal utility

A binding sustainability constraint implies zero drift in expected utility, but this does not imply

a zero drift in wealth. Instead wealth drifts upwards over time under our assumption that γ > 1,

because
dW

W
=

1

2
γα2σ2 dt+ ασ dZ , (22)

and 1
2
γα2σ2 is positive. Indeed, as we are assuming that γ > 1, we have the stronger result that log

wealth drifts upwards over time under a binding sustainability constraint:

d logW =
1

2
(γ − 1)α2σ2 dt+ ασ dZ . (23)

These facts illustrate the distinction between our sustainability constraint and the arithmetic and

geometric constraints considered by Campbell and Sigalov (2022), which impose zero drift in wealth

or in log wealth, respectively. Their constraints distort portfolio choice, unlike the sustainability

constraint we consider.
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A binding sustainability constraint also does not imply zero drift in marginal utility. The process

for marginal utility, M = W−γ, is

dM

M
=

1

2
γα2σ2 dt− γασ dZ , (24)

so the drift is positive. (This is also true in the presence of jumps, so long as γ > 1. Note further

that the drift in marginal utility equals the drift in wealth in the Brownian case, but differs from it

in the general case with jumps.)

The positive drift in marginal utility in the constrained economy is another way to understand

the result that the constrained consumption-wealth ratio exceeds the riskfree interest rate. The first-

order condition for optimal investment in a riskless asset implies that discounted marginal utility

drifts downward at the riskfree interest rate, and hence that the drift in undiscounted marginal

utility is the constrained social rate of time preference (equivalently, the constrained consumption-

wealth ratio) less the riskfree interest rate. That is, we have

E
dM

M
= θcon − rf . (25)

Our solutions have this property, as can be verified by comparing the right hand sides of equations

(13) and (24).

With power utility, the driftless variable X = W 1−γ is the product of marginal utility and

wealth: X = MW . At first sight it might seem surprising that X has no drift while both M and

W have positive drift. But we must also take into account comovement in M and W , whose effect

is visible in the product rule:
dX

X
=
dM

M
+
dW

W
+
dM

M

dW

W
. (26)

The product is
dM

M

dW

W
= −γα2σ2 dt , (27)

and the fact that this quantity is negative makes it possible for X = MW to be driftless even

though M and W each have positive drift:

E
dX

X
= E

dM

M
+ E

dW

W
+ E

(
dM

M

dW

W

)
= 0 . (28)
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Table 1: Numerical examples in the Brownian case

Baseline calibration sets rf = 1%, µ = 8%, σ = 20%.

γ θcon α E dW
W E d logW E dW−γ

W−γ

1 0.09 2 0.08 0 0.08
2 0.05 1 0.04 0.02 0.04
5 0.026 0.4 0.016 0.0128 0.016
10 0.018 0.2 0.008 0.0072 0.008

We conclude by noting one other implication of the upwards drift in log wealth visible in equa-

tion (23). Although the sustainability constraint requires that the average future value of expected

utility Ut is the same as expected utility today, as one looks into the far-distant future expected

utility is overwhelmingly likely to be higher than its current value. This counterintuitive fact, which

echoes the result of Martin (2012), follows from the fact that logWt has positive drift, so that ex-

pected utility at time t approaches its upper bound of zero almost surely as t approaches infinity.

The invariance of expected utility to the horizon is achieved due to the presence of a vanishingly

small number of paths in which expected utility in the future is arbitrarily low.

2.3 Numerical examples

In this section we present some numerical examples to illustrate the properties we have discussed.

Table 1 reports numerical results for a Brownian model without jumps, in which the riskless interest

rate rf equals 1%, the risk premium µ equals 8%, and the standard deviation of the risky asset

σ equals 20%, implying a Sharpe ratio of 0.4. The four rows of the table consider risk aversion

coefficients γ of 1, 2, 5, and 10. The columns report the constrained consumption-wealth ratio θcon,

the risky portfolio share α , and the corresponding drifts in wealth, log wealth, and marginal utility.

In a Brownian model, the risky portfolio share is inversely proportional to risk aversion. Given

our assumed parameters an investor with log utility (γ = 1) sets α = 2, levering the risky asset two

for one. The constrained consumption-wealth ratio is 9% and the corresponding expected growth

rate of wealth is 8%. However, the expected growth rate of log wealth is zero since this is the growth

rate of utility for a log investor so the sustainability constraint sets it to zero. The expected growth
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Table 2: Numerical examples with jumps

Baseline calibration sets rf = 2%, µ = 4%, σ = 10%, ω = 4%, L = 0.4, γ = 2.

γ rf µ σ ω L θcon α E dW
W E d logW E dW−γ

W−γ

Baseline 2 0.02 0.04 0.10 0.02 0.40 0.045 1.11 0.019 0.010 0.025
High γ 5 0.031 0.49 0.009 0.007 0.011
Low γ 1 0.065 1.83 0.028 0 0.045
High rf 0.04 0.065 1.11 0.019 0.010 0.025
Low rf 0 0.025 1.11 0.019 0.010 0.025
High µ 0.08 0.10 1.56 0.045 0.026 0.080
Low µ 0.02 0.027 0.66 0.006 0.003 0.007
High σ 0.15 0.035 0.72 0.014 0.007 0.015
Low σ 0.06 0.055 1.36 0.019 0.011 0.035
High ω 0.04 0.040 0.88 0.016 0.008 0.020
Low ω 0 0.060 2.00 0.040 0.020 0.040
High L 0.60 0.037 0.72 0.012 0.007 0.017
Low L 0.20 0.056 1.73 0.034 0.017 0.036
Negative L −0.40 0.054 1.74 0.036 0.017 0.034

rate of marginal utility is the difference between the constrained consumption-wealth ratio and the

riskfree rate, or 8%, and in the Brownian model it also equals the expected growth rate of wealth,

as we noted earlier.

As risk aversion increases, the constrained consumption-wealth ratio and the risky portfolio

share both decline. For example, when γ = 2 the constrained consumption-wealth ratio is 5% and

the risky portfolio share α = 1. However, the constrained consumption-wealth ratio declines slowly

and is still 1.8%, almost twice the riskless interest rate, when γ = 10. The expected growth rates

of wealth and marginal utility also decline with risk aversion, but the expected growth rate of log

wealth is hump-shaped in risk aversion, first increasing and then ultimately declining towards zero.

Table 2 reports numerical results for the more general model studied in the Appendix, which

allows for jumps. Here, in the benchmark case the riskless interest rate rf equals 2%, the risk

premium µ equals 4%, and the Brownian standard deviation of the risky asset σ equals 10%. In

addition a jump of size L = 40% occurs with a probability ω of 4% per period. The benchmark

case sets γ = 2, in which case the optimal constrained consumption-wealth ratio is 4.5% and the

16



risky portfolio share α = 1.11. These values are fairly close to those in the Brownian case reported

in Table 1, indicating that the calibration with jumps is broadly comparable in its overall level of

risk.

The remaining rows of the table consider variations of the benchmark model with higher

and lower risk aversion, then higher and lower riskfree rates, risk premium, Brownian volatility,

jump probability, and jump size. The results are intuitive and in all cases imply a sustainable

consumption-wealth ratio well above the riskfree interest rate, or equivalently a substantial positive

expected growth rate of marginal utility.

2.4 Sustainability with population growth

The analysis so far has imposed sustainability on a social welfare function defined over aggregate

consumption. This is equivalent to sustainability of individual utility only if the population is con-

stant. In this section we modify our analysis to make individual utility sustainable given exogenous,

constant population growth at rate g.

If there is population growth, then wealth at time t is shared between more people. Normalizing

the initial population size to 1, the wealth of an average individual at time t is Wte
−gt, where

g > 0 is the population growth rate. To ensure that such an average individual’s expected utility is

nondecreasing, we require that X̃t has nonpositive drift, where X̃t = eg(γ−1)tXt.

This condition also ensures nondecreasing expected utility for any class of individuals who have

a constant share of the wealth of society. For example, a Blanchard (1985) model with population

growth implies that a newborn person has lower wealth than the average currently living person,

because more people are born than die at each instant; however, with a constant population growth

rate the wealth share of newborn individuals is constant over time. Thus, the constraint that X̃t

has nonpositive drift ensures that the expected utility of newborn individuals does not decline over

time.

Noting that

dX̃

X̃
= g(γ − 1) dt+

dX

X
= (1− γ)

(
rf + αµ− θ − 1

2
γα2σ2 − g

)
dt+ (1− γ)ασdZ , (29)
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the condition that X̃t has nonpositive drift modifies the sustainability constraint (11) to

θ ≤ rf + αµ− 1

2
γα2σ2 − g. (30)

Equation (30) subtracts the population growth rate g from the previous formula for the sustain-

able consumption-wealth ratio. Sustainability of individual utility is a more demanding requirement

in the presence of population growth. However, for realistic population growth rates the central mes-

sage of the paper remains unchanged: in the presence of risk, the sustainable consumption-wealth

ratio exceeds the riskfree interest rate.

3 Sustainability Without a Riskless Asset

We might alternatively deal with the risky share, α, by requiring that it should equal one in

equilibrium. In this case we are implicitly normalizing the risky asset return to equal the return

on society’s invested wealth, and are considering a situation where society cannot eliminate risk no

matter how much it might wish to do so. In such an equilibrium, the riskless interest rate adjusts

to make society content to bear the inescapable risk of its invested wealth.

Setting α = 1 in equation (8), the risk premium satisfies the familiar equation

µ = γσ2 . (31)

Setting α = 1 in equation (13),

θcon = rf +
1

2
γσ2 . (32)

These two equations imply, as in equation (14), that the sustainable consumption-wealth ratio has

a simple relationship to observable rates of return: it is the average of the interest rate, rf , and the

expected return on wealth, rf + µ:

θcon =
1

2
rf +

1

2
(rf + µ) . (33)

As noted in the discussion following equation (14), the neatness of this result is special to the

18



Brownian motion setting, but in the presence of jumps we can derive bounds on the sustainable

consumption-wealth ratio. Depending on the nature of the jumps, either the upper or lower bound

can be arbitrarily close to being tight.

To analyze this more general case, we adapt the methods of Martin (2013). It will be convenient

to write L = 1 − e−J where J is a random variable that can take positive or negative values, and

which has moment-generating function (MGF) m(x) = EeJx. (Large positive J is very bad news,

large negative J is very good news.) Setting α = 1 in equation (44) of the Appendix, we can

generalize the risk premium (31) to allow for jumps:

µ = γσ2 + ω {m(γ)−m(γ − 1)− [m(0)−m(−1)]} . (34)

Correspondingly, we can generalize the sustainable consumption-wealth ratio to allow for jumps by

setting α = 1 in equation (50) of the Appendix:

θcon = rf +
1

2
γσ2 + ω

[
m(γ)−m(γ − 1)− m(γ − 1)−m(0)

γ − 1

]
. (35)

The terms that appear inside the square brackets on the right hand side of equation (35) are

collectively positive because m(x) is convex. This fact supplies a lower bound on the maximum

sustainable consumption-wealth ratio, θcon, that is greater than the riskless rate.

To derive a bound in the opposite direction, we can use equation (34) to rewrite equation (35)

as

θcon = µ+ rf −
1

2
γσ2 − ω

[
m(γ − 1)−m(0)

γ − 1
− m(0)−m(−1)

1

]
. (36)

The terms in square brackets on the right hand side of equation (36) are also positive (by the con-

vexity of m(x) once again), so equation (36) supplies an upper bound on the maximum sustainable

consumption-wealth ratio that is lower than the return on the risky asset. To sum up, we have

rf +
1

2
γσ2 ≤ θcon ≤ µ+ rf −

1

2
γσ2. (37)

In the pure Brownian case, µ = γσ2 so the bounds (37) collapse to give equation (32) once

again. More generally, the sustainable consumption-wealth ratio must lie between the riskless

return and the expected return on wealth no matter what we assume about the nature of the jump
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size distribution or arrival rate. Moreover, the bounds (37) are best possible, in the sense that

different assumptions on the jump arrival rate and size distribution can drive θcon arbitrarily close

either to the upper or to the lower bound.

For example, we can choose the jump arrival rate and size distribution so that the terms in

square brackets in (36) are close to zero while the terms in square brackets in (35) are not; then

the upper bound is tight. This happens if the average slope of the MGF of J is much smaller in

magnitude between −1 and γ − 1 than it is between γ − 1 and γ, as can happen in the frightening

case with occasional bad news jumps. Conversely, it is possible to arrange for the terms in square

brackets in (35) to be close to zero, while those in (36) are not; then the lower bound is tight. This

happens if the average slope of the MGF of J is (negative, and) much larger in magnitude between

−1 and 0 than it is between 0 and γ, as can happen if there are occasional good news jumps.

3.1 Numerical examples without a riskless asset

We illustrate these properties numerically in two different ways. Figure 1 shows the constrained

consumption-wealth ratio and the upper and lower bounds given in equation (37) for a model with

risk aversion γ = 2, an expected return on the risky asset rf +µ = 6%, Brownian volatility σ = 10%,

a jump probability ω = 2%, and jumps of deterministic size L. The horizontal axis shows different

values for L, where positive values correspond to negative jumps (losses) in wealth, and negative

values correspond to positive jumps in wealth. In the left panel, the constrained consumption-

wealth ratio θcon is plotted along with the expected risky asset return rf + µ (constant at 6%) and

the riskfree interest rate rf . The constrained consumption-wealth ratio is halfway between the two

returns in the Brownian case; it is closer to the risky asset return in the bad-jump region where

L > 0, and closer to the riskfree interest rate in the good-jump region where L < 0. In the right

panel, the constrained consumption-wealth ratio is plotted along with the upper and lower bounds

from equation (37). The bounds are tight in the Brownian case, and widen out as the absolute

jump size increases.

Table 3 reports numerical results for variations of this model. Here, in the benchmark case the

jump size L = 0.4. The constrained consumption-wealth ratio equals 4.5% and the riskfree interest

rate is only 2.6%. The remaining rows of the table consider variations of the benchmark model

with higher and lower risk aversion, then higher and lower risky asset returns, Brownian volatility,
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Figure 1: θcon and the upper and lower bounds for various deterministic jump sizes L, with γ = 2,
σ = 0.1, ω = 0.02, µ + rf = 0.06. Jumps are bad news if L is positive and good news if L is
negative.

jump probability, and jump size. The results are intuitive and in all cases imply a sustainable

consumption-wealth ratio well above the riskfree interest rate, or equivalently a substantial positive

expected growth rate of marginal utility.

4 Sustainability and the Ramsey Rule

We have interpreted sustainability as requiring that expected utility should not be allowed to decline

over time. Following Rawls (1999), one can imagine representatives of each generation attempting

to agree (at time 0, behind the veil of ignorance) on a savings policy that gives each generation the

same expected utility. Put another way, these representatives maximize the expected utility of the

worst-off generation, following a “max-min” criterion. Equation (6) shows that this is equivalent to

ensuring that E0W
1−γ
t /(1− γ) is independent of t, or (as the consumption-wealth ratio is constant)

to ensuring that E0C
1−γ
t /(1− γ) is constant over time.

We can also consider the possibility that the representatives aim to maximize average utility

across generations. Given the discussion in the previous paragraph, this is equivalent to maximizing∫ ∞
t=0

E0
C1−γ
t

1− γ
dt = E0

∫ ∞
t=0

C1−γ
t

1− γ
dt .
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Table 3: Numerical examples without a riskless asset

Baseline calibration sets µ+ rf = 6%, σ = 10%, ω = 2%, L = 0.4, γ = 2 in equilibrium with α = 1.

γ µ+ rf σ ω L θcon rf µ E dW
W E d logW E dW−γ

W−γ

Baseline 2 0.06 0.10 0.02 0.40 0.045 0.026 0.034 0.015 0.008 0.019
High γ 5 0.009 −0.085 0.145 0.051 0.043 0.094
Low γ 1 0.053 0.045 0.015 0.007 0 0.008
High µ+ rf 0.10 0.085 0.066 0.034 0.015 0.008 0.019
Low µ+ rf 0.02 0.005 −0.014 0.034 0.015 0.008 0.019
High σ 0.15 0.032 0.001 0.059 0.028 0.014 0.031
Low σ 0.06 0.051 0.039 0.021 0.009 0.005 0.012
High ω 0.04 0.039 0.012 0.048 0.021 0.011 0.028
Low ω 0 0.050 0.040 0.020 0.010 0.005 0.010
High L 0.50 0.040 0.010 0.050 0.020 0.011 0.030
Low L 0.30 0.047 0.034 0.026 0.013 0.006 0.014
Negative L −0.40 0.048 0.036 0.024 0.012 0.006 0.012

This is the problem faced by an unconstrained agent with pure time preference rate ρ = 0. It

leads to the savings rule proposed by Ramsey (1928), who argued on ethical grounds that the rate

of pure time preference should be zero. Setting ρ = 0 in equation (9), we arrive at the Ramsey

consumption-wealth ratio

θRamsey =
γ − 1

γ

(
rf +

1

2
γα2σ2

)
.

There is therefore a simple relationship between the sustainable consumption-wealth ratio (13) and

the Ramsey consumption-wealth ratio:

θRamsey =
γ − 1

γ
θcon . (38)

The same relationship continues to hold in the presence of jumps, as we show in the Appendix.

The two rules are similar at very high levels of risk aversion, but the Ramsey rule is substan-

tially more conservative at plausible values of γ, as illustrated in Table 4. Holding wealth fixed,

the Ramsey rule dictates 10% less consumption than our sustainable rule if γ = 10; 20% less con-

sumption if γ = 5, and 50% less consumption if γ = 2. In the log utility case γ = 1, the Ramsey

rule cannot be implemented at all, as it sets the consumption-wealth ratio equal to the rate of time
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Table 4: Sustainable consumption-wealth ratio versus Ramsey consumption-wealth ratio

Baseline Brownian calibration with rf = 1%, µ = 8%, σ = 20%.

Sustainable rule Ramsey rule

γ θcon E dW
W E d logW E dW−γ

W−γ γ θRamsey E dW
W E d logW E dW−γ

W−γ

1 0.09 0.08 0 0.08 1 0 0.17 0.09 −0.01
2 0.05 0.04 0.02 0.04 2 0.025 0.065 0.045 −0.01
5 0.026 0.016 0.0128 0.016 5 0.021 0.021 0.018 −0.01
10 0.018 0.008 0.0072 0.008 10 0.016 0.010 0.009 −0.01

preference—that is, to zero.

Unsurprisingly, Table 4 also shows that the Ramsey rule implies faster average growth of wealth

and log wealth, and lower growth of marginal utility, than the sustainable consumption rule. For all

levels of risk aversion, the Ramsey rule has marginal utility declining at the riskless interest rate,

assumed to be 1% in Table 4. Again the differences between the Ramsey and sustainable policies

are substantial for plausible levels of risk aversion.

5 Conclusion

We have argued, in the spirit of Koopmans (1960, 1967), that the implication of an ethical criterion—

sustainability—for social discounting and consumption decisions depends on the production tech-

nology available to society. Specifically, in a risky world with a binding sustainability constraint,

the sustainable social rate of time preference and consumption-wealth ratio, which equal one an-

other, are not equal to either the riskless interest rate or the risky return on invested wealth, but

lie in between these two. In the special case where invested wealth has only Brownian risk and no

jump risk, the sustainable social rate of time preference is the equal-weighted average of the riskless

interest rate and the risky return.

We have made this point in the context of a model in which the parameters governing the

distribution of returns are known. We have therefore ignored parameter uncertainty, a phenomenon

emphasized by Weitzman (2001). We have also ignored the possibility that returns may not be
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i.i.d., because expected returns or risks change over time. Models with non-i.i.d. returns in general

imply time-varying consumption growth and a term structure of discount rates. When consumption

growth is persistent, this term structure is generally downward-sloping for safe investments and

upward-sloping for risky ones as in the long-run risk model of Bansal and Yaron (2004). Gollier

(2002) emphasizes the potential importance of a downward-sloping term structure of discount rates

for social discounting. Our i.i.d. model has discount rates that are invariant to the horizon of an

investment.

Although we have emphasized the sustainable social rate of time preference, we conclude by

noting that this is not the same as the appropriate social discount rate that should be applied to

an investment project. That discount rate depends on the project’s risk. For a riskless project,

the appropriate discount rate is the riskless interest rate, which is lower than the sustainable social

rate of time preference in a risky world; and for a project that has the same risk as society’s

invested wealth, the appropriate discount rate is the expected risky return, which is higher than

the sustainable social rate of time preference. Some previous discussions of social discounting have

obscured these distinctions by ignoring the risk that society faces. Our analysis is deliberately

simple in order to achieve clarity about these issues.
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A Appendix

A.1 Unconstrained Consumption and Portfolio Choice

It follows by applying Itô’s formula for semimartingales to (2) that

d logC =

(
rf + αµ̂− 1

2
α2σ2 − θ

)
dt+ ασ dZ + log (1− αL) dN. (39)

See, for example, Proposition 8.19 of Cont and Tankov (2004). Heuristically, we can derive it by
writing

d logC =
1

C
dC − 1

2!

1

C2
(dC)2 +

1

3!

2

C3
(dC)3 − 1

4!

6

C4
(dC)4 + · · ·

and using the relationships dt dN = dZ dN = 0 and dNk = dN for all k > 0, in addition to the
standard properties of dZ and the fact that log (1 + x) = x − x2/2 + x3/3 − x4/4 + · · · if |x| < 1,
which holds when x = −αL because the agent will never risk bankruptcy.
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Integrating forwards, exponentiating, using C0 = θW0, and raising to the power 1− γ, we have

C1−γ
t = W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ̂− 1

2
α2σ2 − θ

)
t+ α(1− γ)σZt

} Nt∏
i=1

(1− αLi)1−γ . (40)

Writing L for a representative of the i.i.d. Li, we have

EC1−γ
t = W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ̂− 1

2
γα2σ2 − θ

)
t+ ωE

[
(1− αL)1−γ − 1

]
t

}
. (41)

This holds because Nt, Zt, and Li are independent. By the law of iterated expectations, the fact
that Nt is a Poisson random variable with parameter ωt, the i.i.d. nature of the Li, and the series
definition of the exponential function,

E
Nt∏
i=1

(1− αLi)1−γ = E

[
E

(
Nt∏
i=1

(1− αLi)1−γ
∣∣∣∣ Nt

)]

=
∞∑
n=0

e−ωt
(ωt)n

n!
E

n∏
i=1

(1− αLi)1−γ

=
∞∑
n=0

e−ωt
(ωt)n

n!

(
E
[
(1− αL)1−γ

])n
= exp

{
ωE
[
(1− αL)1−γ − 1

]
t
}
.

Hence the objective function can be evaluated explicitly, as

U0 =
W 1−γ

0

1− γ
θ1−γ

ρ− (1− γ)
(
rf + αµ̂− 1

2
γα2σ2 − θ

)
− ωE

[
(1− αL)1−γ − 1

] . (42)

The optimal investment and consumption choices are identified by maximizing (42) with respect
to α and θ. The optimal consumption-wealth ratio is

θunc =
ρ+ (γ − 1)

(
rf + αµ̂− 1

2
γα2σ2

)
− ωE

[
(1− αL)1−γ − 1

]
γ

. (43)

We assume that θunc is positive when α and θ are chosen optimally. It is easy to check that this
implies that the denominator of (42) is positive, and hence that the integral in the definition of
expected utility converges.
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The optimal risky portfolio share is defined implicitly by

µ̂− αγσ2 = ωE
[
L (1− αL)−γ

]
. (44)

Using (44) to eliminate µ̂ in (43), we can also write

θunc =
ρ+ (γ − 1)

(
rf + 1

2
γα2σ2

)
− ωE

[
(1− αγL) (1− αL)−γ − 1

]
γ

. (45)

A.2 A Sustainability Constraint

Equation (42) shows that expected utility at time t, Ut, is proportional to W 1−γ
t /(1− γ). As in the

main text, we multiply by 1 − γ (which is negative under our maintained assumption that γ > 1)
and work with a rescaled variable Xt = W 1−γ

t . This follows the process

dX

X
= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

[
(1− αL)1−γ − 1

]
dN . (46)

To see this, note that

dX

X
= (1− γ)

dW

W
+
γ(γ − 1)

2

(
dW

W

)2

− γ(γ − 1)(γ + 1)

6

(
dW

W

)3

+ · · ·

= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

+

[
(γ − 1)αL+

γ(γ − 1)

2
α2L2 +

γ(γ − 1)(γ + 1)

6
α3L3 + · · ·

]
dN

= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

[
(1− αL)1−γ − 1

]
dN .

The drift of dX/X (by which we mean, heuristically, 1
dt

E dX
X

) is therefore

(1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
+ ω E

[
(1− αL)1−γ − 1

]
, (47)

where we have used the fact that E dN = ω dt. If the consumption-wealth ratio, θ, is sufficiently large
then X has positive drift, and hence expected utility has negative drift: the optimal consumption-
investment decision induces declining expected utility over time, on average.
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The sustainability constraint therefore implies that the expression (47) equals zero, and hence—
writing θcon for the case in which the constraint binds—that

θcon = rf + αµ̂− 1

2
γα2σ2 + ω

E
[
(1− αL)1−γ − 1

]
1− γ

. (48)

Similarly, we write θunc for the case in which the constraint does not bind, so that the optimal
choice is given by equation (45). The optimal consumption-wealth ratio is independent of ρ if the
constraint binds; this is not true of the unconstrained case.

If the constraint binds, we can use it to eliminate θ from the objective function (42), giving

Ucon,0 =
W 1−γ

0

1− γ

(
rf + αµ̂− 1

2
γα2σ2 + ω

E[(1−αL)1−γ−1]
1−γ

)1−γ

ρ
. (49)

Conveniently, the optimal investment choice is unaffected by the presence of the sustainability
constraint. Maximizing equation (49) with respect to α, we find the same first-order condition as
before, equation (44).

We can use the condition (44) to eliminate µ̂ from equation (48), giving

θcon = rf +
1

2
γα2σ2 + ω

E
[
(1− αγL) (1− αL)−γ − 1

]
1− γ

. (50)

When risk and the risky portfolio share are positive, the second and third terms on the right hand
side of equation (50) are positive. Hence (50) shows that the constrained consumption-wealth ratio
θcon exceeds the riskfree interest rate rf in a risky economy. Conversely, it follows from conditions
(44) and (50) that θcon is less than the expected return on optimally invested wealth, rf + αµ.

Comparing equations (45) and (50), we see that (17) holds, as in the main text.

A binding sustainability constraint implies zero drift in expected utility, but this does not imply
a zero drift in wealth. Instead wealth drifts upwards over time under our assumption that γ > 1,
because

dW

W
=

{
1

2
γα2σ2 − ω

1− γ
E
[
(1− αL)1−γ − 1

]}
dt+ ασ dZ − αLdN, (51)
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so the drift is

E
dW

W
=

(
1

2
γα2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1 + αL(1− γ)

])
dt, (52)

and both terms in the brackets are positive.

We can also show the stronger result that log wealth drifts upwards over time under a binding
sustainability constraint. We have

E d logW =

(
1

2
(γ − 1)α2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1− (1− γ) log(1− αL)

])
dt , (53)

and again both terms in the brackets are positive.

The process for marginal utility, M = W−γ, is

dM

M
=

{
1

2
γα2σ2 +

ωγ

1− γ
E
[
(1− αL)1−γ − 1

]}
dt− γασ dZ +

[
(1− αL)−γ − 1

]
dN , (54)

so the drift is

E
dM

M
=

(
1

2
γα2σ2 +

ω

1− γ
{
γE
[
(1− αL)1−γ − 1

]
+ (1− γ)E

[
(1− αL)−γ − 1

]})
dt, (55)

which is positive when γ > 1. The drift in marginal utility equals the drift in wealth in the Brownian
case where L = 0, but differs from it in the general case with jumps.

As in the main text, we can check that

E
dM

M
= θcon − rf (56)

by comparing the right hand sides of equations (50) and (55).

In the presence of population growth, noting that

dX̃

X̃
= g(γ−1) dt+

dX

X
= (1−γ)

(
rf + αµ̂− θ − 1

2
γα2σ2 − g

)
dt+(1−γ)ασdZ+

[
(1− αL)1−γ − 1

]
dN ,

(57)

the condition that X̃t has nonpositive drift modifies the sustainability constraint (48) to

θ ≤ rf + αµ̂− 1

2
γα2σ2 + ω

E
[
(1− αL)1−γ − 1

]
1− γ

− g. (58)
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Equation (58) subtracts the population growth rate g from the previous formula for the sustain-
able consumption-wealth ratio.

Setting ρ = 0 in equation (45), we arrive at the Ramsey consumption-wealth ratio

θRamsey =
γ − 1

γ

{
rf +

1

2
γα2σ2 + ω

E
[
(1− αγL) (1− αL)−γ − 1

]
1− γ

}
.

Comparing this expression with the sustainable consumption-wealth ratio (50), we recover the
relationship (38) derived in the main text.

B The log utility case

With log utility, the investor’s objective function is

U = E

∫ ∞
0

e−ρt logCt dt , where ρ > 0.

It follows from equation (39) that

logCt = logC0 +

(
rf + αµ̂− 1

2
α2σ2 − θ

)
dt+ ασZt +

Nt∑
i=1

log (1− αLi) ,

and hence

E logCt = logC0 +

(
rf + αµ̂− 1

2
α2σ2 − θ

)
dt+ ωE [log (1− αL)] t.

Thus the objective function can be evaluated explicitly as

U =
logW0 + log θ

ρ
+
rf + αµ̂− 1

2
α2σ2 − θ + ωE [log (1− αL)]

ρ2
.

Maximizing with respect to θ and α we find the first-order conditions for an unconstrained optimum,

θ = ρ and µ̂− ασ2 = ωE
[
L (1− αL)−1

]
.

The objective function at time t is affine in logWt, so the sustainability condition requires that
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d logWt, or equivalently d logCt, is driftless, i.e. that

θ ≤ rf + αµ̂− 1

2
α2σ2 + ωE [log (1− αL)] .

We define the constrained solution as before, giving

θcon = rf + αµ̂− 1

2
α2σ2 + ωE [log (1− αL)] .

When the constraint binds, we have

U =
logW0 + log θ

ρ
,

so α is chosen to maximize the constrained consumption-wealth ratio. We end up with the same
first-order condition as in the unconstrained case. Thus the optimal investment choice is the same
in the constrained and unconstrained cases, as before. Equations (16) and (17) also hold as before.
Thus, all the results stated previously for risk aversion γ > 1 carry over to the log case where γ = 1.
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