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Abstract

In a model inspired by neuroscience, we show that constrained optimal perception

encodes lottery rewards using an S-shaped encoding function and over-samples low-

probability events. The implications of this perception strategy for behavior depend

on the decision-maker’s understanding of the risk. The strategy does not distort choice

in the limit as perception frictions vanish when the decision-maker fully understands

the decision problem. If, however, the decision-maker underrates the complexity of

the decision problem, then risk attitudes reflect properties of the perception strategy

even for vanishing perception frictions. The model explains adaptive risk attitudes

and probability weighting as in prospect theory and, additionally, predicts that risk

attitudes are strengthened by time pressure and attenuated by anticipation of large

risks.
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1 Introduction

Although economists usually take preferences as exogenous and fixed, there is compelling

evidence that these change with the context. For choices over gambles, we know at least

since Kahneman and Tversky (1979) that risk attitudes are not fixed: the steep part of the S-

shaped utility function in prospect theory adapts to the status quo. Rabin’s (2000) paradox

provides another challenge for stable risk attitudes: choices over small and large risks are

best represented by distinct Bernoulli utility functions. Risk attitudes are further modulated

by external factors such as time pressure or framing (e.g., Kahneman, 2011). An additional

well-known anomaly involves the overweighting of small objective probability events relative

to more likely events (Kahneman and Tversky, 1979). In this paper, we explain endogenous

risk attitudes and probability weighting as the joint consequence of constrained optimal

perception of lotteries, combined with a possible misspecification of the structure of the risk.

Our decision-maker (DM) employs a noisy non-linear encoding function that maps re-

wards to their mental representations and samples many such representations of rewards

on all lottery arms. She optimizes the perception strategy – the encoding function and the

sampling frequencies of all arms – for a given distribution of decision problems. The model

explains adaptive S-shaped encoding of rewards and over-sampling of small-probability events

as jointly optimal.

The implications of the perception strategy for behavior are subtle. As the perception

data become rich and approximate full information, behavior becomes risk-neutral whenever

the DM understands the structure of the risk she faces, and hence learns about it in a cor-

rectly specified model. However, the perception strategy induces non-trivial risk attitudes

akin to those from prospect theory when the DM applies a simplifying model to the encoun-

tered risk. The model also makes comparative-statics predictions about the impact of the

lottery stakes, time pressure and framing for behavior.

Our procedural-choice model is inspired by the literature on optimal coding from neu-

roscience. A risk-neutral DM chooses between a lottery and a safe option. She knows the

probabilities of the lottery arms, observes the value of the safe option but faces a friction in

processing of the lottery rewards. She learns about the reward vector by sampling signals

(from her own memory, experience of others, etc.). Each signal is a reward of a respective

lottery arm encoded via a non-linear encoding function with a finite range, then perturbed

by additive Gaussian noise. After she has observed the perception data, the DM forms a

maximum-likelihood or Bayesian estimate of the value of the lottery given her own per-

ception strategy, and then makes the a posteriori optimal choice. We characterize the ex

ante optimal perception strategy, and derive the implications of any perception strategy for
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behavior.

Choice over the perception strategies is a specific form of an attention-allocation problem.

Our DM is akin to an engineer who measures a physical input by reading off the position

of a needle on a meter. She can choose the measurement function that maps the physical

input to the needle position. Since she reads the needle position with noise, she can increase

the precision of her measurement for a specific range of inputs by making the measurement

function steep in this range. Further, our DM can allocate attention to a specific lottery arm

by sampling it frequently.

We analyze the limit of rich perception data motivated by tractability and by the fact that

biases that survive this limit can explain behavioral phenomena in decision problems with

stakes large relative to the perception frictions. We first prove that the expected loss from

misperception, relative to the choice under complete information, is approximately the mean

squared error in perception of the lottery value, integrated over all decision problems in which

the lottery value ties with the safe option. The conditioning on ties arises endogenously. The

accuracy of perception has instrumental value for choice, and choice is trivial except where

the values of two options are nearly equal, given information is nearly complete.

We then show for unimodal symmetric reward densities that an S-shaped encoding func-

tion and over-sampling of small-probability lottery arms jointly minimize the mean squared

error over ties. The DM chooses the encoding function to be steep near the modal rewards

and flatter towards the tails of the reward distribution. She thus perceives the reward values

typical for her environment relatively precisely at the expense of precision at the tail rewards.

Conditioning on ties induces a statistical association between tail rewards and small-

probability arms, because tail rewards from large probability arms typically result in non-

marginal decision problems. The DM with an S-shaped encoding function therefore struggles

to estimate the rewards from the low-probability arms in relatively many marginal decision

problems, since these are tail rewards relatively often. It is optimal to compensate for

this by allocating disproportionate attention to unlikely arms by over-sampling them. To

illustrate, consider the decision whether to take a flight. The DM may (optimally) struggle to

comprehend the consequences of a low-probability aviation accident, and hence her attention

allocated to this extreme contingency is optimally large relative to its probability.

We then turn to the behavioral consequences of the perception strategy. To illustrate

the main idea, consider again the engineer who observes the needle position on her meter

and knows that the position is a non-linear function of the measured input. Assume that

the needle trembles due to the stochasticity of the input and the engineer observes the

distribution of the needle position. If she correctly understands that the input is stochastic,

then she inverts each observed needle position to obtain the corresponding input value,
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thus learning the true input distribution. But what if the engineer incorrectly anticipates a

deterministic input and attributes the tremble of the needle to zero-mean measurement noise?

Such an engineer must conclude that the deterministic input corresponds to the average

needle position. Her input estimate is the certainty equivalent of the input distribution

under a Bernoulli utility function equal to the meter’s non-linear measurement function.

Our results on the behavioral implications of the perception strategy are analogous to the

plight of the misspecified engineer. For simplicity, consider a DM who incorrectly anticipates

a riskless lottery that pays the same reward on all its arms. Like the engineer who incorrectly

anticipates a deterministic input, this DM estimates a single reward value, the perturbed

encoding of which supposedly generates her perception data. When the noise of the encoding

is additive Gaussian, then the maximum-likelihood estimate of the encoded value of this

single reward is the average of all the observed signals. As the sample size diverges, the

estimate converges to a convex combination of the encoded values of the arms’ true rewards,

where the weight on each arm is its sampling frequency. Hence, the DM’s estimate of the

lottery value converges to the certainty equivalent of the lottery evaluated with a Bernoulli

utility function equal to the encoding function and subjective probabilities equal to the

sampling frequencies.

This result holds irrespective of whether the perception strategy was chosen optimally or

not. Combined with our previous insights on optimal perception, it provides an explanation

for the adaptive risk attitudes of prospect theory. We emphasize that these risk attitudes

predict behavior but do not reflect preferences in a welfare sense. The DM displays non-

degenerate risk attitudes as a consequence of her misspecification bias. Had she anticipated

a risky lottery and employed the correctly specified model, she would asymptotically learn

the true lottery and make risk-neutral choices.

We provide two extensions that bridge the gap between the extreme cases of a correctly

specified DM who anticipates all possible risk and a misspecified DM who anticipates no

risk at all. In our first approach, the DM is aware that she may face risk but uses a coarse

partitional model of the true state space, much like Savage’s (1954) decision-maker employing

a small-world model of the grand world. The finest partition corresponds to the correctly

specified DM, while the coarsest partition corresponds to the DM who anticipates no risk.

There are various reasons why a DM might employ a coarse model. She might have

evolved in a simple environment and the complexity of the environment might have increased,

making previously payoff-irrelevant contingencies relevant, without the DM adapting to the

change. She might also have been framed to believe that the decision problem involves less

risk than it does. Alternatively, she might not be aware that she is omitting an explanatory

variable from her econometric model of the reward.
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We find that in the limit of nearly complete information, the coarse DM makes risk-

neutral choices whenever she faces risk that is measurable with respect to her partition.

But, whenever she faces a lottery that is not measurable with respect to her partition, she

makes a biased choice even as her perception data become rich. She treats the lottery as if

she had risk-attitudes implied by her encoding function towards those elements of the risk

that she does not comprehend, and is risk-neutral with respect to those elements of the risk

that she does comprehend.

In his discussion of small-world models, Savage (1954) makes normative arguments for

why the coarse representation of the complex grand world should assign subjective values to

the elements of the state space partition that are correct averages of the true rewards within

each element. Our approach departs from Savage in that we explicitly model the process

of learning about rewards. We argue that the DM is unlikely to learn the correct average

rewards for each element of her partition. If she learns within the small-world model, then,

instead of the average reward, her estimate converges to the certainty equivalent under her

encoding function and subjective probabilities equal to her sampling frequencies.

In our second approach, the DM anticipates some risk but finds large risks unlikely.

We formalize this by taking a joint limit in which perception data become rich and the

prior reward distribution gradually concentrates on the set of riskless lotteries. We find

risk attitudes akin to those of the DM who does not anticipate risk at all. We then study

comparative statics of these risk attitudes by varying the relative speed at which the two

limits are taken. Within the parametrization we examine, choice becomes risk-neutral when

the DM anticipates large risk a priori. In the context of Rabin’s (2000) paradox, this implies

that framing a decision problem as one which features high risk attenuates the DM’s risk

preferences. On the contrary, the DM becomes risk-neutral when she collects enough data.

Thus, the model predicts that risk attitudes are induced under time pressure, mirroring the

observation of Kahneman (2011) that prospect theory applies to fast instinctive decisions

rather than to slow deliberative choices.

Our work derives ultimately from psychophysics, a field that originated in Fechner’s

(1860) study of stochastic perceptual comparisons based on Weber’s data. We rely on the

modeling framework of Thurstone (1927) who hypothesized that perception is a Gaussian

perturbation of an encoded stimulus.1 A large literature in brain sciences and psychology

views perception as information processing via a limited channel and studies the optimal

encoding of stimuli for a given channel capacity (see Attneave (1954) and Barlow (1961) for

early contributions). Laughlin (1981) derives and tests the hypothesis that optimal neural

1See Woodford (2020) for a review of psychophysics from an economic perspective.
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encoding under an information-theoretic objective encodes random stimuli with neural ac-

tivities proportional to their cumulative distribution values. This implies S-shaped encoding

for unimodal stimulus densities.

Kahneman and Tversky (1979) rely on analogies to the adaptation of sensory perception

to rationalize their S-shaped value function. Within economics, S-shaped perception of

rewards has also been derived as the constrained optimal encoding of rewards that are

perceived with noise (see, among others, Friedman (1989), Robson (2001), Rayo and Becker

(2007) and Netzer (2009)). These models mostly study choices over riskless prizes and thus,

unlike the S-shaped value function from prospect theory, the derived encoding functions are

not directly relevant to choices over gambles. Indeed, encoding functions are often interpreted

as hedonic anticipatory utilities rather than as Bernoulli utilities in this literature.

Neuroscience studies encoding adaptations under various optimization objectives such

as maximization of mutual information between the stimulus and its perception, maximiza-

tion of Fisher information, or minimization of the mean squared error of perception (see

e.g. Bethge, Rotermund, and Pawelzik (2002) and Wang, Stocker, and Lee (2016)). Eco-

nomics can help here by providing microfoundations for the most appropriate optimization

objective for perceptions related to choice. Netzer (2009) studies maximization of the ex-

pected chosen reward, an objective rooted in the instrumental approach of economics to

information. Schaffner et al. (2021) report that the optimal encoding function as in Netzer

provides a better fit to neural data than do encodings derived under competing objectives.

In a model that differs in details concerning the perception friction, we extend Netzer’s

instrumental approach to choices over gambles, finding a connection to one of the above

reduced-form objectives. That is, in the limit with rich perception data, maximization of

the expected chosen reward is equivalent to the minimization of the mean squared error in

the perceived lottery value, where the expectation is over all marginal comparisons in the

statistical environment. We show that this conditioning on marginal comparisons implies

optimal oversampling of low-probability contingencies; an effect that would not arise under

reduced-form objectives that maximize unconditional measures of precision.2

Three recent papers study risk attitudes stemming from reward encoding in the presence

of non-vanishing encoding noise. Khaw, Li, and Woodford (2018) show theoretically and

verify experimentally that logarithmic stochastic encoding which is then optimally decoded

2Herold and Netzer (2015) derive probability weighting as the optimal correction for an exogenous dis-
tortive S-shaped value function, and Steiner and Stewart (2016) find probability weighting to be an optimal
correction for naive noisy information processing. The present paper derives both S-shaped encoding and
small-probability over-sampling in a joint optimization. Robson et al. (2021) is a dynamic version of Robson
(2001) and Netzer (2009), that captures low-rationality, real-time adaptation of an hedonic utility function
used to make ultimately deterministic choices.
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generates risk attitudes in an effect akin to reversion to the mean. Frydman and Jin (2019)

and Juechems et al. (2021) allow for endogenous encoding of the lottery reward and show

both theoretically and experimentally that this encoding adapts to the distribution of the

decision problems and this adaptation affects choice.

In contrast to these papers, we focus on the limit of vanishing encoding noise. The limit

facilitates tractability and allows us to jointly optimize encoding and sampling for general

lotteries. Our focus on vanishing noise also uncovers a novel connection between encoding

and behavior. While the impact of encoding on behavior vanishes when the decoding model

is well-specified (as in the two papers cited above), the encoding implications for behavior

remain substantial if misspecified decoding oversimplifies the structure of the risk.

Salant and Rubinstein (2008) and Bernheim and Rangel (2009) provide a revealed-

preference theory of the behavioral and welfare implications of frames – payoff-irrelevant

aspects of decision problems. We provide an account of how a specific frame – anticipa-

tion of the risk structure – affects choice and welfare. As in Kahneman, Wakker, and Sarin

(1997), our model implies a distinction between decision and welfare utilities. In the case

of the misspecified DM, the gap between the decision utility that she anticipates the lottery

to pay and welfare utility – the true expected lottery reward – may be large. Our model

facilitates an analysis of systematic mistakes in decision making as outlined in Koszegi and

Rabin (2008) and, for the case of framing effects, Benkert and Netzer (2018).

We apply the statistical results of Berk (1966) and White (1982) on asymptotic outcomes

of misspecified Bayesian and maximum-likelihood decoding of perception data, respectively.

The recent concept of Berk-Nash equilibrium in Esponda and Pouzo (2016) is defined as a

fixed point of misspecified learning. This has motivated a renewed interest in misspecifica-

tion across economics. Heidhues, Kőszegi, and Strack (2018) characterize a vicious circle of

overconfident learning, Molavi (2019) studies the macroeconomic consequences of misspec-

ification, Frick, Iijima, and Ishii (2021) rank the short- and long-run costs of various forms

of misspecification and Eliaz and Spiegler (2020) focus on political-economy consequences of

misspecification. We study the interplay of encoding and misspecified decoding of rewards.

2 Decision Process

The DM chooses between a safe option of value s and a lottery with arms i = 1, . . . , I, I ≥ 1,

where each arm i has a positive probability pi and pays reward ri ∈ [r, r] where r < r are

arbitrary bounds. For the sake of simplicity, we fix the vector of arm probabilities and let

the DM observe it frictionlessly. The lottery rewards and the safe option value are generated

randomly. The DM observes the exact value of the safe option but faces frictions in the
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perception of the lottery rewards. We let r = (ri)i ∈ [r, r]I denote the vector of the rewards,

and since the vector of probabilities is fixed, we identify r with (pi; ri)i and refer to it as to

a lottery. The pair (r, s) is the decision problem.

The goal of the DM is to choose the lottery if and only if its expected value r =
∑

i piri

exceeds s. This risk-neutrality with respect to rewards is an implicit assumption on the

units of measurement in which the rewards are expressed. For instance, the rewards might

be an appropriate concave function of monetary prizes if the DM chooses among monetary

lotteries and money has diminishing returns.

The DM estimates the unknown lottery r from a sequence of n signals, where each signal

is a monotone transformation of one of the arm rewards perturbed with additive noise:

she observes signals xk = (m̂k, ik), k = 1, . . . , n. We refer to the first component, m̂k, as

to the perturbed message. The second component, ik, indicates the arm the message m̂k

pertains to. Each perturbed message is generated by encoding the reward rik of arm ik into

unperturbed message m (rik) and by perturbing it to m̂k = m (rik) + ε̂k where the noise term

ε̂k is independent and identically distributed (iid) standard normal. Each sampled arm ik is

one of the lottery arms i = 1, . . . , I, iid across k with positive probabilities πi. The function

m : [r, r] −→ [m,m] is strictly increasing and continuously differentiable; we refer to it as

to the encoding function. We dub the πi as sampling frequencies and refer to (m(·), (πi)i) as

the perception strategy. The size of the sample, n, is exogenous.

After she has observed the n signals, the DM forms an estimate qn of the lottery’s value

and chooses the lottery if and only if qn > s. We consider both maximum-likelihood (ML)

and Bayesian estimators, qn = qML
n or qn = qBn . In the first case, the DM is endowed with a

compact set A ⊆ [r, r]I of lotteries she anticipates and concludes that she has encountered

the lottery

qML
n ∈ arg max

r′∈A

n∏
k=1

ϕ
(
m̂k −m

(
r′ik
))
,

that maximizes the likelihood of the observed signals, where ϕ is the standard normal density.

Finally, she sets qML
n =

∑
i piq

ML
in .3 In the second case, the DM is endowed with a prior belief

over the lottery r and sets qBn = E [
∑

i piri | (xk)nk=1] as the posterior expected lottery value.

Both these specifications will lead to same conclusions as n diverges since the impact of the

DM’s prior becomes negligible in this limit.

We study decision-makers who employ simplifying models of risk in the spirit of the small

world of Savage (1954). The DM anticipates, rightly or wrongly, distinctions among some

of the lottery arms to be payoff-irrelevant. Let P be a partition of the set of all the lottery

3The maximum-likelihood estimate exists since A is compact. It is unique for the specifications of A
below.
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arms {1, . . . , I}. The DM anticipates that ri = rj for all pairs of arms i, j ∈ J that belong

to a same element J of the partition P . That is, she anticipates lotteries from a set

AP =
{

r ∈ [r, r]I : ri = ri′ for all i, i′, J such that i, i′ ∈ J , J ∈ P
}
. (1)

For instance, if P = {{1, . . . , I}} is the coarsest partition, then the DM anticipates only

degenerate lotteries that pay a same reward at all their arms. We refer to such lotteries as

riskless and call other lotteries risky. If, on the other extreme, P = {{1}, . . . , {I}} is the

finest partition, then the DM anticipates that any reward vector is possible and AP = [r, r]I .

3 Optimal Perception in a Small World

The perception strategy needs to adapt to the prevailing statistical circumstances if it is to

allocate attention efficiently. An increase of the sampling frequency of an arm increases the

DM’s attention to its reward, but reduces attention to the rewards on other arms. Similarly,

making the encoding function steep in a neighborhood of a reward value reduces noise in

this neighborhood but entails increased noise elsewhere.

We denote the partition P the DM employs during the adaptation stage by J . That

is, the DM anticipates lotteries from AJ where each element of the partition J specifies a

set of lottery arms that the DM deems as payoff-equivalent: ri = rj for all arms i, j ∈ J ,

J ∈ J . Since the distinction between arms in each J is redundant, we treat J as an index

of an arm, refer to the rewards at arms i ∈ J simply as rJ and model the whole lottery

r = (rJ)J∈J as having |J | arms, each with probability pJ =
∑

i∈J pi. A perception strategy

for the small world consists of the increasing encoding function m(·) and interior sampling

frequencies (πJ)J ∈ ∆(J ). In Section 4, we will allow for the possibility that the DM’s

small-world model is, in fact, a misspecified model of the grand world; for instance because

the world became more complex after adaptation but before choice.

The DM optimizes her perception strategy ex ante for a given distribution of the decision

problems. Specifically, the rewards rJ , J ∈ J , are iid with a continuous density h and the

safe option s is drawn from a continuous density hs independently of the lottery rewards;

both densities have supports [r, r].4 We characterize the expected loss for general perception

strategies for diverging n in the next subsection and then solve for the loss minimizing

strategy in Subsection 3.2.

4Since s may have a distinct density from that of rJ , the safe option may be, for instance, the value of
an alternative lottery with each of its rewards drawn from h.
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3.1 Objective

We take the number n of the sampled signals to be large and abstract in this section from

uncertainty over the number of the perturbed messages sampled for each arm and from

divisibility issues. That is, we suppose the number of the messages sampled for each arm

J ∈ J is precisely πJn. We let mJ,n be the average of the perturbed messages sampled for

arm J . Then, mJ,n −m(rJ) is normally distributed with mean 0 and variance 1/(nπJ), for

each given value of rJ . Since the signal errors are Gaussian, the vector of average perturbed

messages, mn = (mJ,n)J , is a sufficient statistic for the lottery rewards.

For z ∈ {B,ML}, let qzn be the Bayesian and ML estimator of the lottery value and let

Lz(n) = E
[
max{r, s} − 1qzn>sr − 1qzn≤ss

]
be its ex ante expected loss relative to choice under complete information; the expectation

is over r, s and qzn.

Proposition 1. Assume the encoding function m is continuously differentiable, the reward

density h is continuous, and the density of the safe option hs is continuously differentiable.

Then, the Bayesian and ML estimators generate the same asymptotic loss

lim
n→∞

nLz(n) =
1

2
E

[
hs(r)

∑
J∈J

p2J
πJ m′2(rJ)

]
for z ∈ {B,ML}. (2)

See proof in Appendix A. The difference between the Bayesian and ML estimators asymp-

totically vanishes because the prior information has negligible impact on the Bayesian DM

who receives many signals. The limit loss characterization in (2) has an intuitive inter-

pretation. It is the mean squared error nE(qzn − r)2 in the perception of the lottery value

(rescaled by n) integrated over all decision problems in which the true lottery value r ties

with s. The conditioning on the tie arises because the likelihood of large perception errors

quickly vanishes with increasing n and small perception errors distort choice only in the

decision problems in which an approximate tie, r ≈ s, arises. In the limit, the set of decision

problems in which perception errors have nontrivial behavioral consequences approaches the

set of problems with exact ties.

To understand the relevance of the squared error for loss, fix the true and perceived

lottery values to be r and qzn, respectively. The perception error distorts choice and causes

loss if and only if the safe option s attains a value between r and qzn. When n is large, and

hence the error is small, this occurs with approximate probability hs(r)|qzn− r|. Conditional

on the choice being distorted like this, the expected loss is approximately |qzn − r|/2 since s
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is approximately uniformly distributed between r and qzn. Hence the overall loss over all s is

approximately hs(r) (qzn − r)
2 /2.

The mean squared error of the perceived lottery value depends on the realization r∗ of the

lottery rewards and on the perception strategy. Consider the maximum-likelihood estimator

(MLE); the Bayesian estimator differs only by a negligible term. The MLE of the reward rJ

is5

qML
J,n = m−1 (mJ,n) (3)

and since mJ,n ∼ N (m(r∗J), 1/ (πJn)), the mean squared error of qML
J,n is approximately

1
πJm′2(r

∗
J )n

. The expected loss for the given lottery r∗ is then approximately

hs(r
∗)

2n

∑
J∈J

p2J
πJm′2 (r∗J)

,

which is the half of the mean squared error of the perceived lottery value multiplied by the

likelihood hs(r
∗) that s ties with r∗. The overall loss integrates these contributions over all

lotteries.

Motivated by the limit loss characterization from (2) we define the information-processing

problem as follows.

min
m′(·)>0,(πJ )J>0

E

[∑
J∈J

p2J
πJm′2(rJ)

| r = s

]
(4)

s.t.:

∫ r

r

m′(r̃)dr̃ ≤ m−m (5)

∑
J∈J

πJ = 1. (6)

The objective in (4) equals the asymptotic loss characterized in (2), up to a factor that

is independent of the perception strategy.6 We let the DM control the derivative m′(·)
and restrict it to be positive – this restricts the encoding function to be increasing and

differentiable. Constraint (5) is implied by the finite range of the encoding function – the

encoding function cannot be steep everywhere. Constraint (6) together with the restriction

to positive sampling frequencies requires (πJ)J to be a probability distribution over J ∈ J ;

the DM must also treat sampling frequencies as a scarce resource. When the lottery has one

5Equation (3) holds if mJ,n ∈ [m,m]. If mJ,n < m or mJ,n > m, then the MLE of rJ is r or r, respectively.
Note, that P (mJ,n ∈ [m,m])→ 1 as n diverges for all rJ ∈ (r, r).

6This factor is two divided by the ex ante likelihood of tie.

11



arm then optimization over the sampling frequencies is trivial.

3.2 Optimization

Reward density f(x) is unimodal and symmetric around the mode rm = (r + r)/2 if it

is strictly decreasing on (rm, r] and f (rm + x) = f (rm − x) for all x.7 We say that the

perception strategy (m(·), (πJ)J) is optimal if (m′(·), (πJ)J) solves the information-processing

problem.

Proposition 2. There is a unique optimal perception strategy. If the densities h and hs are

continuous, unimodal and symmetric around rm, then

1. the optimal encoding function is S-shaped: It is convex below and concave above rm,

and

2. the DM over-samples the low-probability arms: For any two arms J , J ′ such that

pJ < pJ ′,
πJ
pJ
>

πJ′
pJ′

. In particular, when the lottery has two arms, then πJ > pJ for the

arm with probability pJ < 1/2 and vice versa for the high-probability arm.

Since we have allowed the DM to condition her perception strategy on the partition J
and the arm probabilities (pJ)J , the optimal encoding function depends on these. Both

claims of the proposition extend to a setting in which the DM has incomplete information

about the partition and the probabilities when she chooses the encoding function, and she

optimizes the sampling frequencies at the interim stage after she observes the partition and

the probabilities. See the extension in Appendix B.3.

The proof of Proposition 2 in Appendix B follows from the first-order conditions. The

outline is as follows. Let

hJ (r̃) = h(r̃)
E[hs(r)|rJ = r̃]

E[hs(r)]

be the density of the reward rJ at the arm J conditional on a tie between the lottery value

and the safe option, r = s (the expectations are over r). The first-order condition for the

slope m′(r̃) of the encoding function is

2
∑
J∈J

p2J
πJm′3(r̃)

hJ (r̃) = λ (7)

for each reward value r̃, where λ is the shadow price of the constraint (5). The left-hand side

of (7) is the marginal benefit of the increase in the slope m′(r̃) at the reward value r̃. Such

7We assume symmetry of the reward density because unimodality is preserved by summation for sym-
metric densities but not in general.
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an increase reduces the DM’s mean squared error in her perception of the lottery value if

the reward rJ attains the value r̃ at one of the arms J ∈ J . This marginal reduction affects

her choice if the value of the lottery r ties with s. Each summand on the left-hand side is

proportional to the marginal reduction of the MSE in the perception of the lottery value

multiplied by the likelihood that rJ = r̃ and that r = s. The constraint (5) implies that, at

the optimum, the marginal benefit of a slope increase is equal across all reward values r̃.

We show in the Appendix B.1 that the density of the reward conditional on a tie is, for

each arm, unimodal with the same mode as the unconditional reward density. The first-order

condition (7) then implies that the optimal slope is proportional to a monotone transforma-

tion of a sum of unimodal functions that all have their maxima at the unconditional reward

mode,

m′(r̃) ∝

(∑
J∈J

p2J
πJ
hJ (r̃)

) 1
3

, (8)

establishing Claim 1 of the Proposition.

Let us now turn to Claim 2. We show in the Appendix B.2 using an argument based on

diminishing returns to sampling that the DM wishes to over-sample arms about which she

expects to be poorly informed. When optimizing at the ex ante stage, the DM conditions

on the event of tie because a marginal change of the sampling frequency affects choice only

at ties. Conditional on a tie, the density of reward rJ at each arm J is concentrated towards

the unconditional modal reward since these modal rewards lead to ties relatively often.

This effect is, however, heterogenous across arms. The condition
∑

J pJrJ = s is relatively

uninformative about the low-probability rewards and hence the posterior distributions of

these are relatively spread-out at ties; see Appendix B.1. Recall that the DM measures

reward rJ relatively poorly if the slope m′ (rJ) is low. Because m is relatively flat at tail

rewards, the DM at the ex ante stage optimally compensates for the expected errors in

measurement at ties by over-sampling the low-probability arms.8

Optimal over-sampling arises from our microfoundation of the optimization objective (4).

Had the DM minimized the unconditional mean squared error, the effect would not arise

because, unconditionally, all rewards are identically distributed. By taking the instrumen-

tal perspective that focuses on the payoff consequences of the perception errors in choice

problems, we obtain an objective that conditions on ties and induces over-sampling as the

optimal adaptation.

Proposition 2 generalizes Netzer (2009). When |J | = 1, then our DM chooses between

two riskless rewards, r and s. Both Netzer and we find that when r and s are independently

8This argument relies on rewards at all arms being encoded with the same encoding function.
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drawn from a same density h, then the slope of the optimal encoding function is proportional

to h2/3(r). To see this in our framework, note that the reward density conditional on a tie

is proportional to h2(r) for |J | = 1 and the result then follows from (8).9

Asymptotically, the perception strategy has no implications for distorted behavior in the

absence of further frictions because choice approaches that under complete information as

the number of signals diverges. In the next section, we allow for the possibility that the DM’s

small-world model is misspecified: some of the lottery arms that she deems to be payoff-

equivalent may differ in their rewards. We find that the DM who applies a simplified model

of risk to perception data exhibits risk attitudes dictated by properties of the perception

strategy.

4 Behavior

The implications of the perception strategy for behavior depend on the DM’s degree of

understanding of the risk. Consider a vivid example from Savage (1954). The DM is con-

templating the purchase of a convertible car for price s. The payoff from the purchase

depends on the random weather; it is r1 if the car is driven in sunny conditions and r2 for

rainy conditions. The upcoming weather is unknown, making the purchase a binary lottery.

Let the probabilities of either weather type be one half.

The DM learns the values of r1 and r2 by sampling n signals. For each k = 1, . . . , n, she

observes the weather ik ∈ {1, 2} and a message m̂k = m (rik) + ε̂k where m is the encoding

function and the ε̂k are iid standard normal. The sampling frequency of each weather type

is one half, thus matching the actual probabilities. Each signal might derive from the DM’s

own experience with a convertible, or the experience of her peers, etc.

Consider two varieties of DM – fine and coarse – who differ in their anticipation of the risk

structure. The fine DM knows that the weather is payoff-relevant and hence anticipates that

the purchase will lead to one of two possibly distinct reward values (r1, r2). The coarse DM

employs a small-world model: she anticipates, as in Savage’s example, that the convertible

will lead to “definite and sure enjoyments”, so she anticipates a degenerate lottery (r, r).

Their distinct models of risk lead the two DMs to distinct conclusions even when they

employ the same perception strategy and observe identical data. The fine DM asymptotically

learns m(ri) for i = 1, 2 from the empirical distribution of the perturbed messages, inverts

the encoding function and learns the true reward pair. Her estimate of the expected reward

9The perception friction assumed in Netzer differs from that assumed here in technical details. Netzer
studies the limit of increasingly fine partitions of the reward space, whereas we take the limit of vanishing
additive encoding noise.
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thus converges to the true expected reward and she makes the risk-neutral choice. See the

left-hand graph in Figure 1.

The coarse DM observes the same empirical signal distribution but, since she omits

the weather from her model of risk, she seeks a single message which best accounts for

all the observed signals. For Gaussian additive errors, the single message that maximizes

the likelihood of the observed data is the empirical average message which almost surely

converges to (m (r1) +m (r2)) /2. Hence, the DM’s asymptotic estimate of the reward from

driving the convertible is the certainty equivalent of the risky reward under the Bernoulli

utility u(·) = m(·) and equal probabilities. See the right-hand graph in Figure 1.

There are various paths that could have led the fine and the coarse DMs to their respective

decision procedures. They could have evolved in a simple environment in which all the

lotteries were measurable with respect to the coarsest partition J = {{1, 2}} of the set of

arms {1, 2}. As outlined in the previous section, they both then optimized their encoding

functions in this environment. Afterwards, their environments became more complex so they

currently encounter risky lotteries with r1 6= r2. The fine DM has refined her anticipation and

understands that she may now encounter a risky lottery. In contrast, the coarse DM has not

made such an adjustment and continues to anticipate riskless lotteries only. Or, both DMs

evolved in a risky environment with partition J = {{1}, {2}} and optimized their encoding

functions for risky binary lotteries. Afterwards, the coarse DM was (incorrectly) assured

that her next lottery will be riskless, while the fine DM was not told this. Alternatively,

both DM’s know they may encounter a risky lottery but the coarse DM has chosen the coarse

estimation procedure due to its simplicity. The coarse procedure consists of applying the

inverse encoding function to the average of all perturbed messages whereas the procedure

of the fine DM requires applying the coarse procedure to each arm separately and then

computing the lottery value.

This section takes the DM’s perception strategy as given; it could have been optimized

as in Section 3 or established by any different process. Subsection 4.1 extends the present

binary example to arbitrary lotteries and sampling frequencies. A further generalization in

Subsection 4.2 considers a DM who employs an arbitrary partitional model of risk; such a

DM has some but only partial awareness of the risk she faces. Subsection 4.3 focuses on a

DM who anticipates some risk but believes that large differences between rewards across the

lottery arms are a priori unlikely. If such a DM observes data generated by a risky lottery,

she underestimates the degree to which the arms’ rewards differ. As in the case of the DM

who anticipates no risk, this misjudgement generates non-trivial risk-attitudes.
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Figure 1: Asymptotic estimated lottery value q of the fine (left) and the coarse (right) DMs.

4.1 Surprising Risk

We characterize here the behavior of a DM who has not anticipated any risk. She anticipates

a lottery from the set

A =
{
r ∈ [r, r]I : ri = rj for all arms i, j

}
.

After she encounters a lottery, she observes data generated by her perception strategy, forms

the ML or Bayesian estimate of the encountered lottery from A and chooses the lottery if

and only if its estimated value exceeds s. The DM learns in a misspecified model – she may

encounter an unanticipated risky lottery.

To describe her behavior, we say that the DM’s choice is represented by a Bernoulli utility

u(·) and probabilities (ρi)
I
i=1 if in each decision problem (r, s) such that

I∑
i=1

ρiu (ri) > [<]u(s),

the probability that the DM chooses the lottery r converges to 1 [0] as n→∞.10

Proposition 3. Let the DM form the ML or Bayesian estimate of the lottery. When she

anticipates a riskless lottery, the DM’s choice is represented by a Bernoulli utility equal to the

encoding function, u(·) = m(·), and probabilities given by the sampling frequencies, ρi = πi

for i = 1, . . . , I.

10The probability is evaluated with respect to the stochastic signal sequence (m̂k, ik)
n
k=1.
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The proposition follows from the result on misspecified ML estimation by White (1982)

and from Berk (1966) for the Bayesian DM. These authors let an agent observe n iid signals

from a signal density and form the estimate from a set of hypothesized signal densities that

may fail to include the true density. They prove that the estimate almost surely converges to

the minimizer of the Kullback-Leibler divergence from the true signal density as n diverges

(if the minimizer is unique).

To apply White’s and Berk’s results in our setting, consider a DM who encounters a

lottery r. She observes the empirical distribution of approximately πin signals drawn iid

from N (m(ri), 1) for each arm i. Since the DM has anticipated a riskless lottery, she forms

an estimate of a single unperturbed message mn, a perturbation of which has generated

the observed data. White’s and Berk’s results imply that m∗ = limn→∞mn almost surely

minimizes the Kullback-Leibler divergence from the true signal density. For Gaussian errors,

this implies m∗ =
∑

i πim(ri) almost surely. Thus, the DM’s estimate of the lottery value

almost surely converges to the “certainty equivalent” m−1
(∑I

i=1 πim(ri)
)

. See Appendix

C, where we prove Proposition 4; Proposition 3 is then a special case.

The behavior of the DM who anticipates a riskless lottery is governed by the sampling

frequencies rather than by the true arm probabilities. Indeed, the DM believes the true prob-

abilities are payoff-irrelevant. In contrast, the sampling frequencies govern the proportions

of her data generated by each arm and hence her estimate of the encoded riskless reward she

thinks she has encountered.

Example (omitted-variable error): The DM chooses between a known safe payoff s and

a reward ρ(x,y) whose value depends on vectors of inputs x and y. For concreteness, we

refer to ρ as a production function; it is unknown to the DM. She employs a misspecified

model: she neglects the role of the input y, so believing that the reward is ρ̃(x) where ρ̃(·)
is a simplified production function she estimates from data. Given x, let the input y have

conditional probability g(y | x) in the DM’s environment. Thus, given the DM’s observation

of x, the true reward is a lottery in which each arm represents a particular value of y and is

assigned a reward ρ(x,y) and probability g(y | x).11 However, the DM believes the lottery

is riskless and estimates ρ̃(x) from signals m (ρ (x,yk)) + ε̂k, k = 1, . . . , n. The conditional

probability g̃(y | x) of observing the input yk = y depends on the DM’s sampling; if her

sampling is representative, then g̃ = g. By Proposition 3, when the number of the signals

diverges, this DM, who is unaware of the input y, chooses for each observed x as if she were

an expected-utility maximizer with Bernoulli utility u(·) = m(·) and probability g̃(y | x)

assigned to each value of y.

11To keep the number of the arms finite, assume that y has a finite support.
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4.2 Coarse Decision-Maker

Next, we study a DM who considers distinctions among some but not all lottery arms payoff-

relevant. She anticipates that all lottery arms in each element of the partition K of the set

{1, . . . , I} of all arms pay the same reward. That is, she anticipates encountering a lottery

from the set AK of the lotteries measurable with respect to K as defined in (1).

We say that the DM’s choice has a mixed representation with Bernoulli utility u(·),
probabilities (ρi)

I
i=1 and partition K if the probability that she chooses lottery r over the

safe option s converges to 1 [0] pointwise in each decision problem (r, s) such that∑
J∈K

ρJr
∗
J > [<] s,

where ρJ =
∑

i∈J ρi and r∗J is the certainty equivalent defined by

u (r∗J) =
∑
i∈J

ρi
ρJ
u (ri)

for each J ∈ K.

Let J(i) be the element of the partition K that contains the arm i. Let pJ =
∑

i∈J pi be

the overall true probability of the arms i ∈ J . Similarly, πJ =
∑

i∈J πi is the overall sampling

frequency for J .

Proposition 4. The choice of the coarse DM who forms the ML or Bayesian estimate has

a mixed representation with Bernoulli utility u(·) = m(·) and arm probabilities ρi = pJ(i)
πi
πJ(i)

for each arm i = 1, . . . , I.

See Appendix C for the proof. In the limit, the DM chooses as if she was treating the

lottery r as a compound lottery in which each element J of the partition K constitutes a sub-

lottery and these sub-lotteries have probabilities pJ . She behaves as if she first reduced each

sub-lottery to its certainty equivalent under the Bernoulli utility u(·) = m(·) and subjective

arm probabilities equal to the normalized sampling frequencies. After the reduction, she

evaluates the overall lottery in a risk-neutral manner using the true probabilities of each J .

Example (omitted-variable error continued): As before, the reward ρ(x,y) depends on

inputs x and y and the DM estimates the misspecified production function ρ̃(x). Unlike in

the previous version of this example, the DM does not observe x (or y) at the moment of

choice. Instead, she observes a signal z. Conditional on the observed value of z, the reward is

a lottery in which each arm represents a realization of (x,y) with associated reward ρ(x,y)

and probability g(x,y | z).
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Since the DM is unaware of y’s influence on the reward, she forms a coarse counterpart of

this lottery in which each arm represents a value of x, paying a reward ρ̃(x) with probability

g(x | z) =
∑

y g(x,y | z). For each value of x, the DM forms the estimate of the reward

ρ̃(x) given the data points m(ρ(x,yk)) + ε̂k, where yk is drawn from g̃(yk | x, z). Again,

g̃(y | x, z) captures sampling. If sampling is untargeted, then g̃ = g. After she forms the

MLE ρ̂n(x) for each value x, she assigns the expected value E [ρ̂n(x) | z] to the lottery where

the expectation is with respect to the conditional density g(x | z). By Proposition 4, for each

z, this DM values the reward as if she computed the certainty equivalent over ρ(x,y) | (x, z)

for each (x, z) under Bernoulli utility m(·) and subjective probabilities g̃(y | x, z), and

then computed the risk-neutral value of the reduced lottery under the objective probabilities

g(x | z). That is, this DM is risk-neutral with respect to the risk induced by stochastic x | z
that she comprehends but behaves as if she had non-trivial risk-attitudes with respect to the

risk induced by stochastic y | (x, z) that she does not comprehend.

The DM who encounters a lottery r ∈ AK that she has anticipated learns in a correctly

specified model. The asymptotic results for correctly specified learning of Wald (1949) for

ML estimation and of Le Cam (1953) for Bayesian estimation then imply that she correctly

learns the encountered lottery as the number of signals diverges. In this case, her perception

strategy is irrelevant for her limit choice since she accounts for the encoding and the sampling

frequencies when she interprets the perception data. The next corollary of Proposition 4

formalizes this in our framework.

Corollary 1. For each decision problem (r, s) such that r ∈ AK and
∑I

i=1 piri > [<] s, the

probability that the DM chooses the lottery converges to 1 [0].

Our predictions of the DM’s risk attitudes more generally depend on the combination of

the adaptation experienced, as in Section 3, and her misapprehension of the lottery at the

moment of choice. Recall that J denotes the partition that the DM has employed during

adaptation and partition K specifies the DM’s anticipation of lotteries at the moment of

choice; J and K may differ. The optimal encoding function is S-shaped regardless of the

adaptation partition J . Hence, we predict risk aversion (loving) for upper (lower) tail

rewards with respect to the unanticipated risk under K.

Consider the DM with the finest adaptation partition J = {{1}, . . . , {I}} who has

concluded at the moment of choice that she faces a riskless lottery, K = {{1, . . . , I}}. Then,

the results of Section 3 yield the optimal sampling frequencies for each arm i = 1 . . . , I and

Proposition 4 represents this DM’s choice with an expected-utility-theory (EUT) choice rule

under subjective beliefs equal to these sampling frequencies.

If, on the other hand, J = K = {{1, . . . , I}}, then the DM has adapted for riskless
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lotteries and anticipates a riskless lottery at the moment of decision. Her choice also has

an EUT representation with the subjective probability of each arm equal to its sampling

frequency. But in this case, the optimal-adaptation result does not predict the sampling

frequencies since this DM believed all arms were payoff-equivalent during adaptation. If the

sampling is representative, then the sampling frequencies coincide with the arms’ objective

probabilities. Any targeted sampling, for instance over-sampling salient contingencies, will

result in an EUT representation of choice that assigns disproportional subjective probabilities

to the over-sampled arms.12

4.3 Somewhat Surprising Risk

In the final version of the model, we analyze a DM who deems risk a priori possible but

unlikely. To do this, we formulate an example and study the limit in which the prior shrinks

to the set of riskless lotteries and the amount of perception data diverges. We find perception

distortions that are qualitatively similar to those from Subsection 4.1. Additionally, the

example makes predictions about the impact of framing and time pressure on risk-taking.

Risk attitudes are attenuated by the anticipation of high risk or by rich perception data.

The DM of this subsection is Bayesian. Her prior density indexed by n is

%n(r) = %0n exp
(
− n

2∆
σ2(r)

)
(9)

with support [r, r]I , where σ2(r) =
∑I

i=1 pi(ri − r)2 is the variance of the arm rewards and

r =
∑

i piri is the true lottery value as usual; %0n is the normalization factor. This prior is

mostly concentrated on low-risk lotteries. For any fixed n, ∆ parameterizes the level of a

priori anticipated risk. As n increases, risky lotteries become a priori unlikely, approximating

then the anticipation of the DM from Subsection 4.1.

The index n has two roles. As n increases, then, in addition to risk becoming a priori

unlikely, the DM observes more data. She observes, for each arm i, a sequence of aπin

messages equal to m (ri) perturbed with iid additive standard normal noise, where the (πi)
I
i=1

continue to denote the sampling frequencies.13 The parameter a > 0 captures attention span;

the larger a is, the more signals the DM observes for each fixed n. The DM chooses the

lottery r over the safe option s if and only if the Bayesian posterior expected lottery value

exceeds s.

12Starmer and Sugden (1993) report that a payoff-irrelevant split of an event increases the weight that
lab subjects assign to this event. This effect arises for our coarse DM if splitting a contingency leads to its
having a larger overall sampling frequency.

13We again abstract from uncertainty about the number of the messages sampled for each arm and from
divisibility issues.
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To formulate the next result, we define a function q∗ : [r, r]I −→ [r, r]I :

q∗(r) = arg min
r′∈[r,r]I

{
σ2(r′)

∆
+

I∑
i=1

aπi (m (r′i)−m(ri))
2

}
. (10)

We impose the regularity condition that the minimizer is unique.

We refer to the posterior expectation E [r |mn] ∈ [r, r]I that the DM forms given the

vector of the average perturbed messages mn as the Bayesian estimate of the lottery and show

that it converges to q∗(r). As n diverges, the average of the perturbed messages generated

by an arm converges almost surely to the unperturbed message for this arm. Thus, the

posterior log-likelihood of each lottery r′ is approximately −n
2

times the objective in (10)

within a constant factor. As n diverges, the posterior converges almost surely to an atom

on the minimizer q∗(r). The asymptotic estimate of the lottery is a compromise lottery that

is not too risky and does not generate messages too far from the true messages. The next

result formalizes this intuition.

Proposition 5. Suppose the DM has encountered lottery r. The Bayesian estimate of the

lottery converges to q∗(r) in probability as n→∞.

See Appendix D for the proofs for this subsection.

Let q∗(r) =
∑I

i=1 piq
∗
i (r) be the value of the lottery q∗(r). Proposition 5 implies:

Corollary 2. Consider a decision problem (r, s) such that q∗(r) > [<] s. Then, the proba-

bility that the DM chooses the lottery [the safe option] approaches 1 as n→∞.

To focus on the effect of the curvature of the encoding function, we set the sampling

frequencies equal to the actual probabilities and compare the asymptotic estimated lottery

value q∗(r) with the true value r of the lottery r.14

Proposition 6. Let the encoding function m be twice differentiable. Let πi = pi, and r be a

fixed lottery. The value of its Bayesian estimate almost surely converges to

r +
1

2

m′′(r)

m′(r)
· 1 + 4z(r)

(1 + z(r))2
· σ2(r) + o(σ2(r)), (11)

as n → ∞, where z(r) = a∆m′2(r). The factor 1+4z(r)
(1+z(r))2

attains values in (0, 4/3] and

approaches 1 and 0 as a∆→ 0 and a∆→∞, respectively.

14We say that function f(r) is o(g(r)) if f(rk)/g(rk) → 0 for any sequence rk such that σ(rk) → 0.
Specifically, a function is o(σ2) if it is negligible relative to σ2 for lotteries with small σ. The expression o(·)
stands for “term of smaller order than”.

21



To interpret the result, recall that the risk premium of an expected-utility maximizer

with Bernoulli utility u for the lottery r with small risk is approximately 1
2
u′′(r)
u′(r)

σ2(r). The

risk premium of our DM is the same for u(·) = m(·), up to a negligible term, but scaled by

the positive factor 1+4z(r)
(1+z(r))2

. The DM’s bias in the valuation of the lottery relative to r arises

because the DM deems risk a priori unlikely and therefore concludes that her perceived

data are generated by a lottery with a smaller reward variance than the true variance.

The underestimation of the variance leads to a mismatch to the perception data and this

mismatch is offset by a bias in the estimated mean of the lottery.

The dependence of the risk premium on the parameters ∆ and a sheds light on two

apparent instabilities of risk preferences pointed out by Rabin (2000) and Kahneman (2011).

Kahnemann distinguishes between fast and slow modes of decision-making, where the fast

mode favours the risk-attitudes found in prospect theory whereas the slow mode favours

risk-neutrality.15 If the amount of perception data collected by the DM increases with the

time available for the decision, then time pressure is captured in our example by a low value

of parameter a. In accord with Kahnemann, we find encoding-based risk attitudes when

a → 0. When our DM, who has anticipated little risk, encounters a risky lottery under

time pressure, the relatively few data points that she has collected are best explained by

an a priori likely low-risk lottery. Which such low-risk lottery is the best fit to the DM’s

data depends on the encoding function, thus the curvature of m determines the DM’s risk

attitudes. At the other extreme, in the absence of time pressure, when a → ∞, the DM

collects enough data for her prior to be irrelevant. She then learns the lottery and makes

the risk-neutral choice.

Rabin (2000) points out that the risk-averse choices observed for small risks imply im-

plausibly high risk aversion for large risks under a stable Bernoulli utility function. In our

model, however, risk attitudes depend on the level of a priori anticipated risk. The an-

ticipation of low risk – ∆ → 0 here – induces risk attitudes since it makes risky lotteries

surprising and this leads to distortion of the posteriors when a risky lottery is encountered.

If, however, the DM is framed to anticipate high-risk lotteries – if our parameter ∆ → ∞
– then the DM’s risk attitudes are attenuated. Risky lotteries become unsurprising and the

DM’s posterior expectation approaches the lottery’s true expected value.

15Kirchler et al. (2017) show experimentally that time pressure increases risk aversion for gains and risk
loving for losses. Relatedly, Porcelli and Delgado (2009) and Cahĺıková and Cingl (2017) find that stress
accentuates risk attitudes in lab choices. But see also Kocher, Pahlke, and Trautmann (2013) who do not
find an increase of risk aversion due to time pressure in their design.

22



5 Summary

We develop a model inspired by neuroscience of constrained optimal perception of gambles,

in which psychophysical adaptation affects choices. The impact of the perceptual strategy

vanishes for rich perception data if the DM encounters a lottery that she has anticipated,

but perception-induced risk attitudes arise for risk that the DM has not anticipated. In the

latter case, we provide a unified explanation for various well-documented patterns in risky

choice: adaptive risk attitudes, an S-shaped reward valuation, probability weighting, and

the role of stakes and time pressure.

The model makes several novel predictions about the effect of framing. For example,

explaining the structure of risk to the DM may attenuate her risk attitudes. Further, if the

DM conceptualizes a risky lottery as riskless, then manipulation of her sampling frequencies

has a strong impact on choice. For instance, a seller offering a risky prospect can make it

more attractive if the presentation of the prospect leads to over-sampling of the upside risk.

Conversely, the seller of an insurance contract can make the contract more attractive if he

prevents the DM from sampling a lot of perceptual data, for instance by putting her under

time pressure.
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A Asymptotic Loss Characterization

Let 0 < h ≤ h < +∞ and 0 < m′ ≤ m′ < +∞ be bounds on the functions h and m′. These

bounds exist since the two functions are continuous on a compact interval.

Lemma 1. Suppose that the encoding function is continuously differentiable and the reward

density h is continuous. Let r∗J ∈ (r, r) be a realization of the reward, and qBJ,n = E[rJ | mJ,n]

and qML
J,n = m−1(mJ,n) its Bayesian and ML estimators. Then,

(i)
√
n
(
qBJ,n − qML

J,n

)
→ 0 as n→∞ (a.s),
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(ii) nVar[rJ | mJ,n]→ 1
πJm′2(r

∗
J )

as n→∞ (a.s),

(iii) The mean squared error of the ML estimate (rescaled by n) is uniformly bounded:

nE
[ (
rJ − qML

J,n

)2 | mJ,n

]
≤ h

h
· m′
m′3

1
πJ

.

Proof. Consider sufficiently large n so that mJ,n ∈ [m,m]. We introduce rescaled er-

ror ε̂J,n :=
√
πJn(rJ − qJ,n) and derive its conditional density given mJ,n. Since mJ,n ∼

N (m (r∗J) , 1/(πJn)), the pdf of rJ | mJ,n is proportional to

h(r̃)ϕ
(√

πJn
(
m(r̃)−mJ,n

))
for any r̃ ∈ [r, r] and 0 otherwise; recall ϕ is the standard normal density. Thus, the pdf of

ε̂J,n conditioned on mJ,n = m(qML
J,n ) is

hJ,n(ε̃) = h0J,n · h
(
qML
J,n + ε̃√

πJn

)
ϕ

(
√
πJn

(
m
(
qML
J,n + ε̃√

πJn

)
−m(qML

J,n )

))

for any ε̃ ∈
[√
πJn(r − qML

J,n ),
√
πJn(r − qML

J,n )
]

and 0 otherwise; h0J,n is the normalization

factor. It follows that hJ,n(ε̃)/h0J,n is dominated by the integrable function h · ϕ(m′ · ε̃).
Since

∣∣qML
J,n − r∗J

∣∣ = |m−1 (mJ,n)− r∗J | ≤ 1
m′
|mJ,n −m(r∗J)| andmJ,n ∼ N (m (r∗J) , 1/(πJn)),

we have that qML
J,n → r∗J (a.s.). Using this, the Mean Value Theorem, and continuity of m′,

we get
√
πJn

(
m
(
qML
J,n + ε̃√

πJn

)
−m(qML

J,n )

)
→ m′(r∗J) ε̃ as n→∞ a.s.,

and thus, using the continuity of h, for any ε̃,

hJ,n(ε̃)

h0J,n
→ h(r∗J) ϕ

(
m′(r∗J) ε̃

)
as n→∞ (a.s).

Next, we characterize the limit of the normalization factors. By the Dominated Conver-

gence Theorem,∫
R

hJ,n(ε̃)

h0J,n
dε̃→ 1

h0J
as n→∞ (a.s.), where h0J :=

[∫
R
h(r∗J) ϕ

(
m′(r∗J) ε̃

)
dε̃

]−1
.

Since
∫
R hJ,n(ε̃) dε̃ = 1 for all n, it follows that h0J,n → h0J > 0 (a.s.). In particular, h0J,n is

bounded. Then, the posterior errors ε̂J,n | mJ,n converge in distribution to N
(
0, 1/m′2(r∗J)

)
(a.s.).

Applying the Dominated Convergence Theorem to the functions ε̃hJ,n(ε̃) and ε̃2hJ,n(ε̃),

we conclude that E[ε̂J,n | mJ,n]→ 0 and Var[ε̂J,n | mJ,n]→ 1/m′2(r∗J) as n→ 0 (a.s). Claims
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(i) and (ii) follow from deriving rJ from ε̂J,n =
√
πJn(rJ − qML

J,n ).

For Claim (iii), recall that hJ,n(ε̃)/h0J,n is dominated by the integrable function h ·ϕ(m′ · ε̃)
that equals, up to a multiplicative constant, the pdf of N (0, 1/m′2). Consider a random

variable ε̂′J,n with pdf proportional to hJ,n(ε̃)/h0J,n on the domain of ε̂J,n, and h ϕ(m′ · ε̃)
outside of the domain. We can establish the following upper bound on the normalization

constant h′0J,n of the pdf of the variable ε̂′J,n,

h′0J,n ≤
[∫

R
h ϕ(m′ · ε̃) dε̃

]−1
=

h

h
· m

′

m′
·
[∫

R
h ϕ(m′ · ε̃) dε̃

]−1
.

Then,

nE
[ (
rJ − qML

J,n

)2 | mJ,n

]
≤ 1

πJ
E
[
ε̂′ 2J,n | mJ,n

]
≤ 1

πJ
h′0J,n

∫
R
ε̃ 2 · h ϕ(m′ε̃) dε̃ =

h

h
· m

′

m′3
1

πJ
.

Corollary 3. Conditional on a realization of r∗ ∈ (r, r)|J |,

(i)
√
n
(
qBn − qML

n

)
→ 0 as n→∞ (a.s.),

(ii) nVar[r |mn]→
∑

J∈J
p2J

πJm′2(r
∗
J )

as n→∞ (a.s.).

(iii) nE
[ (
r − qML

n

)2 | mn

]
≤ h

h
· m′
m′3
·
∑

J∈J
p2J
πJ

.

For the following two lemmas, we abstract from the specific structure of the messages

mn, let the DM receive a vector of messages m = (mJ)J and then form the estimate q(m)

of r as a function of m. Let

` := max{r, s} − 1q>sr − 1q≤ss

denote the loss from using the estimate q.

We assume that the pdf hs is continuously differentiable, thus hs and h′s are bounded

from above; let hs and h
′
s be the respective bounds. We say that O(·) has uniform bound h

′
s

if | O(x)/x |≤ h
′
s for all x and any value of r and m.16

Lemma 2. The expected loss of the estimate q conditioned on m and r is

E[` | r,m] = 1
2
hs(q)(r − q)2 +O

(
(r − q)3

)
,

where the expectation is over s and O(·) has the uniform bound h
′
s.

16The term O(·) stands for the “term of the order of”.
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Proof. Consider a fixed realization of r and m. The loss is ` = |r − s| if the DM makes the

suboptimal choice, which happens if and only if s is between the true lottery value r and its

estimate q. Taking the expectation over the safe option yields (for both r < q and r > q)

E[` | r,m] =

∫ q

r

(s̃− r)hs(s̃) ds̃.

The lemma follows from the approximation hs(s̃) = hs(q) +O(s̃− q), in which O(·) has the

uniform bound h
′
s,∫ q

r

(s̃− r)hs(s̃) ds̃ = hs(q)

∫ q

r

(s̃− r) ds̃+

∫ q

r

(s̃− r)O(s̃− q) ds̃

=
1

2
hs(q)(r − q)2 +O

(
(r − q)3

)
.

Lemma 3. The expected loss of the estimate q conditioned on m is

E[` |m] = 1
2
hs(q)σ

2 +O(σ3), where σ2 := Var[r |m] +
(
qB − q

)2
,

where O(·) has the uniform bound h
′
s and qB = E[r |m].

Proof. This follows from Lemma 2 by taking the expectation over r:

E[` |m] = E
[

E[` | r,m] |m
]

= E
[
1
2
hs(q)(r − q)2 +O

(
(r − q)3

)
|m
]
,

where O(·) has the uniform bound h
′
s. Since | O

(
(r − q)3

)
|≤ h

′
s | r − q |3,∣∣∣∣E [O((r − q)3) |m]∣∣∣∣ ≤ E

[
h
′
s

(
(r − q)2

)3/2
|m
]
≤ h

′
s E
[
(r − q)2 |m

]3/2
,

where we have used Jensen’s inequality in the second step.

We conclude with

E
[
(r − q)2 |m

]
= E

[(
(r − qB) + (qB − q)

)2
|m
]

= E

[(
r − qB

)2
+ 2(r − qB)(qB − q) + (qB − q)2 |m

]
= Var[r |m] +

(
qB − q

)2
= σ2.
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Proof of Proposition 1. Let `zn = max{r, s} − 1qzn>sr − 1qzn≤ss be the loss of the estimator

qzn, z ∈ {B,ML}. For a given realization of the lottery r∗ with value r∗, we prove that the

expected loss conditioned on mn satisfies

nE[`zn |mn]→ 1
2
hs(r

∗)
∑
J∈J

p2J
πJm′2(r∗J)

as n→∞ (a.s.), (12)

where the expectation is over s and qzn is a function of mn.

Lemma 3 applied to mn and qzn implies

nE[`zn |mn] = 1
2
hs(q

z
n)nσ2

n(z) + nO(σ3
n(z)), where σ2

n(z) := Var[r |mn] +
(
qBn − qzn

)2
. (13)

Corollary 3 implies that n
(
qBn − qzn

)2 → 0 (a.s.) (this holds trivially for the Bayesian

estimator). Further, Claim (ii) of Corollary 3 implies

nσ2
n(z)→

∑
J∈J

p2J
πJm′2(r∗J)

as n→∞ (a.s.).

Thus, σn(z)→ 0 as n→∞ (a.s.); and so | nO(σ3
n(z)) |≤ nh

′
s σ

3
n(z) = h

′
s ·nσ2

n(z) ·σn(z)→ 0

as n→∞ (a.s.). Substituting back into (13) and taking into account that qzn → r∗ as n→∞
(a.s.), we obtain (12).

The proposition follows from taking expectation over r and applying the Dominated

Convergence Theorem. In particular, (13) implies that nE[`zn |mn] has integrable bound:

∣∣nE[`zn |mn]
∣∣ ≤ 1

2
hs · nσ2

n(ML) + h
′
s · nσ2

n(ML) · σn(ML) ≤ 1
2
hsΣ + h

′
sΣ ·max{Σ, 1},

where Σ = h
h
· m′
m′3
·
∑

J∈J
p2J
πJ

is the uniform bound from Claim (iii) of Corollary 3.

B Optimal Perception

B.1 Notes on Unimodal Symmetric Random Variables

We use the results of this subsection in the proof of Proposition 2.

Definition 1. A continuous random variable is unimodal and symmetric around 0 if its

density function h(x) is strictly decreasing on the positive part of its domain and h(x) =

h(−x) for all x ∈ R.
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This property is preserved by summation: the sum of unimodal and symmetric random

variables is unimodal and symmetric, see e.g. Purkayastha (1998).

Definition 2 (Birnbaum (1948)). Let X and Y be two unimodal random variables symmetric

around 0. We say that X is more peaked than Y if P (|X| < α) > P (|Y | < α) (unless the

right-hand side is 1) for all α > 0.

Equivalently, for two unimodal symmetric random variables, X is more peaked than Y

whenever the cdf of X is greater than the cdf of Y at any α > 0 from the support of Y .

For the next two lemmas, let X0, X1, . . . , XI be independent real-valued continuous ran-

dom variables that are unimodal and symmetric around 0, where X1, . . . , XI are identically

distributed and the distribution of X0 may be distinct from that of Xi, i > 0. Denote

by h the pdf of each of the iid variables X1, . . . , XI . Let (p1, . . . , pI) ∈ ∆({1, . . . , I}), and

X :=
∑I

i=1 piXi.

Lemma 4. The random variable Xi | (X = X0), i = 1, . . . , I, is unimodal and symmetric

around 0.

Proof. Since unimodality together with symmetry is preserved by affine combinations, the

variable X−i := 1
pi

(X0 −
∑

k 6=i pkXk) is unimodal and symmetric around 0. Denote by h−i

the pdf of X−i. Then Xi | (X = X0) is identical to Xi | (Xi = X−i), and so its pdf is, up to

a normalization constant, h(xi)h−i(xi), which is unimodal and symmetric around 0, as those

properties are preserved when taking product of pdfs.

Lemma 5. The random variable Xi | (X = X0) is more peaked than Xj | (X = X0) if and

only if pi > pj.

Proof. Without loss of generality, assume {i, j} = {1, 2} (that is, either i = 1 and j = 2 or

i = 2 and j = 1). Define X−12 := X0 −
∑I

k=3 pkXk (if I = 2, then X−12 = X0) and let h−12

be its pdf. This is a unimodal random variable symmetric around 0. The random variable

Xi | (X = X0) is identical to Xi | (piXi + pjXj = X−12) and so its pdf equals

hi(xi) =

∫
R h−12(p1x1 + p2x2)h(x1)h(x2)dxj

E[h−12(p1X1 + p2X2)]
,

where the expectation, which is with respect to X1 and X2, is independent of i. Thus, for
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any α > 0,

P (|X1| < α | X = X0) =

∫∫
(−α,α)×R h−12(p1x1 + p2x2)h(x1)h(x2)dx1dx2

E[h−12(p1X1 + p2X2)]

P (|X2| < α | X = X0) =

∫∫
(−α,α)×R h−12(p1x2 + p2x1)h(x1)h(x2)dx1dx2

E[h−12(p1X1 + p2X2)]
,

where we used that P (|X1| < α | X = X0) and P (|X2| < α | X = X0) are both (up to

the same normalization constant) integrals of the same function (x1, x2) 7→ h−12(p1x1 +

p2x2)h(x1)h(x2), but the first is over the region [−α, α]×R, and the second is over R×[−α, α].

This is equivalent to integrating both over the same region but switching the roles of x1 and

x2. Then,

(P (|X1| < α | X = X0)− P (|X2| < α | X = X0)) · E[h−12(p1X1 + p2X2)] =∫∫
(−α,α)×R

(
h−12(p1x1 + p2x2)− h−12(p1x2 + p2x1)

)
h(x1)h(x2)dx1dx2 =

∫∫
(−α,α)×

(
R\(−α,α)

) (h−12(p1x1 + p2x2)− h−12(p1x2 + p2x1)
)
h(x1)h(x2)dx1dx2 =

2

∫∫
(−α,α)×[α,+∞)

(
h−12(p1x1 + p2x2)− h−12(p1x2 + p2x1)

)
h(x1)h(x2)dx1dx2,

where we used that both integrals cancel each other out on the region (−α, α) × (−α, α),

and that h and h−12 are symmetric around 0.

Suppose that p2 > p1, and consider any (x1, x2) ∈ (−α, α)× [α,+∞). It follows from the

identity

p1x1 + p2x2 = (p1x2 + p2x1) + (p2 − p1)(x2 − x1)

that

p1x1 + p2x2 > p1x2 + p2x1,

where the left-hand side (LHS) is always positive. The right-hand side (RHS) is either

positive or negative, but smaller in absolute value than the LHS. Indeed, if the RHS is

negative, then x1 < 0, and

|p1x2 + p2x1| = −p1x2 + p2|x1| = −p1|x1|+ p2x2 − (p1 + p2)(x2 − |x1|) < −p1|x1|+ p2x2.
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Thus,

|p1x1 + p2x2| > |p1x2 + p2x1|,

and due to the symmetry and unimodality of h−12,

h−12(p1x1 + p2x2) < h−12(p1x2 + p2x1),

unless both are zero. It follows that X2 | (X = X0) is more peaked than X1 | (X = X0), as

needed.

Lemma 6. Let the function f be continuous, symmetric around 0 and increasing on R+,

and let X1, X2 be unimodal continuous random variables that are symmetric around 0 and

have bounded support. Then E[f(X1)] < E[f(X2)] whenever X1 is more peaked than X2.

Proof. Denote by hi(x) and Hi(x) the pdf and cdf of Xi, i = 1, 2. Then,

1
2

E[f(Xi)] =

∫ ∞
0

f(x)hi(x)dx

=
[
f(x)(Hi(x)− 1)

]+∞
0
−
∫ ∞
0

(Hi(x)− 1)df(x)

= 1
2
f(0) +

∫ ∞
0

(1−Hi(x))df(x),

where we have used integration by parts for Stieltjes integral, see e.g. Ok (2011). If X1 is

more peaked than X2, then 1 − H1(x) < 1 − H2(x) unless both are zero for all x > 0. It

follows that E[f(X1)] < E[f(X2)].

B.2 Proof of Proposition 2

Proof of Proposition 2. The objective (4) of the information-processing problem is a func-

tional

L
(
m′(·), (πJ)J∈J

)
= E

[∑
J∈J

p2J
πJm′2(rJ)

| r = s

]
.

Since
p2J

πJm′2(rJ )
is convex with respect to (m′ (rJ) , πJ), the functional L is convex:

αL
(
m′1(·), (π1,J)J

)
+(1−α)L

(
m′2(·), (π2,J)J

)
> L

(
αm′1(·) + (1− α)m′2(·), (απ1,J + (1− α)π2,J)J

)
,

for each α ∈ (0, 1) and any two perception strategies. Thus, the first-order conditions are

sufficient for a global minimum of the information-processing problem.
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Since the objective (4) is strictly monotone in m′(·), the constraint (5) is binding at the

optimum. The Lagrangian of the constrained optimization problem (4)-(6) is

E

[∑
J∈J

p2J
πJm′2(rJ)

| r = s

]
+ λ

(∫ r

r

m′(r̃)dr̃ − (m−m)

)
+ µ

(∑
J∈J

πJ − 1

)
=

∑
J∈J

∫ r

r

p2J
πJm′2(r̃J)

hJ(r̃J)dr̃J + λ

(∫ r

r

m′(r̃)dr̃ − (m−m)

)
+ µ

(∑
J∈J

πJ − 1

)
,

where λ and µ are the Lagrange multipliers for (5) and (6), respectively. The first-order

condition (7) then follows by summing the derivatives w.r.t. m′(r̃), r̃ ∈ [r, r], of all the

integrands in the last inline expression. Expressing m′(r̃) from (7) gives (8). Statement 1 of

the proposition follows because by Lemma 4, each hJ is unimodal with the same mode as

the unconditional reward density h.

Additionally, m′ is symmetric around rm since each hJ is symmetric around rm. Further,

m′ is continous since each hJ is continuous: since hs is continuous on a compact interval,

it is uniformly continuous, and thus the function r̃ −→ E [hs(r) | rJ = r̃] is continuous; thus

hJ is continuous.

The first-order condition of the information-processing problem with respect to πJ is for

each J ∈ J , (
pJ
πJ

)2

E

[
1

m′2(rJ)
| r = s

]
= µ. (14)

Suppose pJ < pJ ′ . For Statement 2 it suffices to show that

E

[
1

m′2(rJ)
| r = s

]
> E

[
1

m′2(rJ ′)
| r = s

]
. (15)

This indeed holds since by Lemma 5, rJ ′ | (r = s) is more peaked than rJ | (r = s) and

the inequality (15) follows from Lemma 6 and from the fact that 1/m′2(r) is continuous and

symmetric around rm and increasing above rm.

B.3 Extension

We discuss here an extension of Proposition 2 to a setting in which the DM does not know the

payoff-relevant partition J and the probabilities p = (pJ)J∈J at the point of optimization

of the encoding function but believes that (J ,p) is drawn from a density g(J ,p). The

timing is as follows: first, the DM chooses the encoding function. Afterwards, J and p ∈
∆(J ) are realized, the DM observes these, and chooses sampling frequencies (πJ(J ,p))J∈J .
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Finally, the DM observes the safe option s and the sequence of perturbed messages generated

according to the chosen encoding function and the sampling frequencies, conditional on the

encountered reward vector r ∈ [r, r]|J |. As in Section 3, the rewards are iid from a symmetric

unimodal reward density h and independent of J and p. The safe option s is drawn from

a symmetric unimodal density hs. The information-processing problem for this setting is as

follows:

min
m′(·)>0,(πJ (·))J>0

E

[∑
J∈J

p2J
πJ(J ,p)m′2 (rJ)

|
∑
J∈J

pJrJ = s

]
(16)

s.t.:

∫ r

r

m′(r̃)dr̃ ≤ m−m

∑
J∈J

πJ(J ,p) = 1 for all J and p ∈ ∆(J ).

The expectation in (16) is with respect to J , p, (rJ)J∈J and s.

Proposition 2 extends to this setting. That is, its statement 1 holds for the optimal

encoding function: it is S-shaped. Statement 2 holds for the optimal sampling frequencies

(πJ(J ,p))J∈J for each realized (J ,p): low-probability arms are over-sampled.

To see that statement 1 extends, observe that m′(·) minimizes the Lagrangian

E

[
E

[∑
J∈J

p2J
πJ(J ,p)m′2 (rJ)

|
∑
J∈J

pJrJ = s;J ,p

]
|
∑
J∈J

pJrJ = s

]

+ λ

(∫ r

r

m′(r)dr − (m−m)

)
+ E

[
µ(J ,p)

(∑
J∈J

πJ(J ,p)− 1

)
|
∑
J∈J

pJrJ = s

]
,

where the outer expectation in the first line is over (J ,p) and the inner expectation is over r

and s; the whole expectation equals the objective in (16) by the law of iterated expectations.

The expectation in the second line is over (J ,p).

The same steps as in the proof of Proposition 2 imply that m′(r̃) satisfies for each r̃ the

analogue of condition (7):

2 E

[∑
J∈J

p2J
πJ(J ,p)m′3(r̃)

hJ (r̃;J ,p) |
∑
J∈J

pJrJ = s

]
= λ,

where hJ (rJ ;J ,p) is the density of rJ conditional on the tie between the lottery value∑
J ′∈J pJ ′rJ ′ and s for the given (J ,p). The expectation is over (J ,p).
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Therefore, the analogue of (8) holds:

m′ (r̃) ∝

(
E

[∑
J∈J

p2J
πJ(J ,p)

hJ (r̃;J ,p) |
∑
J∈J

pJrJ = s

]) 1
3

.

Since by Lemma 4, hJ (·;J ,p) is unimodal with maximum at the mode rm of the ex ante

reward density for all (J ,p), m′ is hump-shaped with maximum at rm and hence m is

S-shaped with its inflection point at rm.

The proof of Statement 2 of Proposition 2 extends for each realization of (J ,p) since the

analogue of the first-order condition (14) for πJ(J ; p) continues to hold for each (J ,p):

p2J
π2
J(J ,p)

E

[
1

m′2(rJ)
|
∑
J ′∈J

rJ ′ = s;J ,p

]
= µ(J ,p)

for each J ∈ J . Continuity, unimodality and symmetry of m′(·) are unaffected by the

studied extension. Thus, again, if pJ1 < pJ2 , then rJ2 |
(∑

J ′∈J pJ ′rJ ′ = s
)

is more peaked

than rJ1 |
(∑

J ′∈J pJ ′rJ ′ = s
)

and the result follows from Lemma 6.

C Proofs of Propositions 3 and 4

Proposition 3 follows from Proposition 4 for K = {{1, . . . , I}}.

Proof of Proposition 4. Let fr(x) be the signal density conditional on the encountered lottery

r. That is, for signal x = (m̂, i), fr(x) = πiϕ (m̂−m(ri)) where ϕ is the standard normal
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density. Kullback-Leibler divergence of the signal densities for any two lotteries r, r′ is

DKL (fr ‖ fr′) =

∫
R×{1,...,I}

fr(x) ln
fr(x)

fr′(x)
dx

=
I∑
i=1

∫
R
πiϕ (m̂−m (ri)) ln

πiϕ (m̂−m (ri))

πiϕ (m̂−m (r′i))
dm̂

=
I∑
i=1

πi

∫
R
ϕ (m̂−m (ri)) ln

ϕ (m̂−m (ri))

ϕ (m̂−m (r′i))
dm̂

=
I∑
i=1

πiDKL

(
ϕm(ri) ‖ ϕm(r′i)

)

=
1

2

I∑
i=1

πi (m (ri)−m (r′i))
2
.

where ϕm(m̂) = ϕ(m̂ − m) is the density of the perturbed message m̂ conditional on the

unperturbed message m. The last equality follows from the fact that the Kullback-Leibler di-

vergence of two Gaussian densities with means µ1, µ2 and variances equal to 1 is (µ1 − µ2)
2 /2,

e.g. Johnson and Orsak (1993).

Let

q = arg min
r′∈AK

DKL (fr ‖ fr′) = arg min
r′∈AK

I∑
i=1

πi (m (ri)−m (r′i))
2
.

This minimizer q = (qi)i is unique and satisfies for each arm i = 1, . . . , I,

m (qi) = arg min
m∈[m,m]

∑
j∈J(i)

πj (m (rj)−m)2

=
∑
j∈J(i)

πj
πJ(i)

m (rj) ,

where J(i) is the element of the partition K that contains i.

The estimated lottery value qzn, z ∈ {ML,B}, almost surely converges to
∑I

i=1 piqi. For

the ML estimate, this follows from White (1982) who proves that the MLE almost surely

converges to the minimizer of the Kullback-Leibler divergence (provided it is unique). For the

Bayesian estimate, the result follows from Berk (1966) who proves that the posterior belief

almost surely converges in probability to the atom on the minimizer of the Kullback-Leibler

divergence (again, provided the minimizer is unique).
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D Proofs for Subsection 4.3

We use the next lemma in the proof of Proposition 5.

Lemma 7. Let ψn(x) : [r, r]I −→ R be a sequence of continuous functions uniformly con-

verging to a function ψ(x) which has a unique minimizer x∗. Then, the random variable Xn

with pdf equal to αn exp(−nψn(x)), where αn is the normalization factor, converges to x∗ in

probability as n→∞.

Proof. We need to prove that for every δ > 0, the probability P (Xn ∈ Bδ) → 1 as n → ∞,

where Bδ is the open Euclidean δ-ball centered at x∗. Fix δ > 0 and define

d = min
x∈[r,r]I\Bδ

{ψ(x)− ψ(x∗)} .

The minimum exists as ψ is continuous and the set [r, r]I \Bδ is closed. Additionally, d > 0

since x∗ is the unique minimizer of ψ on [r, r]I .

Because the convergence ψn → ψ is uniform, for any d′ > 0 there exists nd′ ∈ N such

that |ψn(x) − ψ(x)| < d′ for all x ∈ [r, r]I and n ≥ nd′ . Consider n ≥ nd/4. Because

ψn(x) ≥ ψ(x)− d
4
≥ ψ(x∗) + 3d

4
for x outside of the ball Bδ, the probability density of Xn is

at most αn exp
(
−nψ(x∗)− 3d

4
n
)
. This implies,

P (Xn /∈ Bδ) ≤ α̃n exp

(
−3d

4
n

)
(r − r)I , where α̃n := αn exp(−nψ(x∗)). (17)

We conclude by establishing an upper bound for α̃n. Given δ > 0, let δ′ > 0 be such that

ψ(x) ≤ ψ(x∗) + d/4 for all x ∈ Bδ′ ∩ [r, r]I . Existence of such δ′ follows from the continuity

of ψ. Then, ψn(x) ≤ ψ(x) + d
4
≤ ψ(x∗) + d

2
for all x ∈ Bδ′ ∩ [r, r]I and n > nd/4. Thus the

probability density of Xn is at least α̃n exp
(
−d

2
n
)

on this set. It follows that,

1 ≥ P (Xn ∈ Bδ′) ≥ α̃n exp

(
−d

2
n

)
b′,

where b′ > 0 is the volume of the set Bδ′ ∩ [r, r]I . Substituting the implied upper bound on

α̃n into (17) gives

P (Xn /∈ Bδ) ≤ exp

(
−d

4
n

)
(r − r)I

b′
.

Since the right-hand vanishes as n→∞, the claim follows.

Proof of Proposition 5. Let mn = (mi,n)Ii=1 be the vector of the averages of aπn perturbed

messages received for each arm i. Since the encoding errors are standard normal, mi,n | ri ∼
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N
(
m(ri),

1
aπin

)
. By Bayes’ Rule, the posterior density of each lottery r′ ∈ [r, r]I , is for given

mn, proportional to

%n (r′)
I∏
i=1

ϕ
((
mi,n −m(r′i)

)√
aπin

)
∝ exp

(
− nψ(r′; mn)

)
,

where ∝ denotes equality modulo normalization and

ψ(r′; m) :=
1

2

I∑
i=1

(
σ(r′)

∆
+ aπi

(
m(r′i)−mi

)2)
.

The first inline equality follows from the specification of the prior %n in (9).

Since mi,n → m(ri) (a.s.), ψ(r′; mn) converges to ψ
(
r′; (m(ri))i

)
, uniformly in r′. Addi-

tionally, ψ
(
r′; (m(ri))i

)
as a function of r′ has the unique minimizer q∗(r) by assumption.

Lemma 7 implies that the posterior formed given mn converges in probability to q∗(r).

Since the support of the rewards is bounded, convergence in probability implies convergence

in expected value, and thus the Bayesian estimate E [r |mn] converges to q∗(r).

Proof of Proposition 6. By Proposition 5, the Bayesian estimate of r converges to q∗(r).

We write q∗ = (q∗i )
I
i=1 as an abbreviation for q∗(r) and let q∗ =

∑
i piq

∗
i . The first-order

condition applied to the minimization in (10) implies,

(q∗i − q∗) + a∆
(
m (q∗i )−m(ri)

)
m′ (q∗i ) = 0, (18)

for all i = 1, . . . , I, where we have used that πi = pi and
∑I

i pi(q
∗
i − q∗) = q∗ − q∗ = 0. We

write σ2 for σ2(r) and σ∗2 :=
∑I

i=1 pi (q
∗
i − q∗) for the variance of q∗.

We will prove the following claims (see Footnote 14 for the definition of the o(·) conven-

tion.)

Claim 1: Any function that is o(ri − r) or o (q∗i − r) is also o(σ).

Claim 2: q∗ = r + o(σ).

Claim 3: σ∗2 = z(r)2

(1+z(r))2
σ2 + o(σ2).

Claim 4: q∗ = r + 1
2
m′′(r)
m′(r)

(
σ2 +

(
2
z(r)
− 1
)
σ∗2
)

+ o(σ2).

To prove Claim 1, we provide a bound on the distance of ri and r′i from r. It follows from

definition of σ2 that (ri − r)2 ≤ σ2/pi, and thus |ri − r| ≤ σ/
√
pi. Therefore, any function

that is o(ri − r) is also o(σ). Bounding |q∗i − r| is complicated by the fact that q∗ is defined

implicitly. We first establish a bound on |q∗ − r|. Define m′ and m′ to be the minimum

and the maximum of m′(·) on [r, r], respectively, and let z = a∆m′2, z = a∆m′2. We have

39



0 < m′ ≤ m′ < +∞ and 0 < z ≤ z < +∞ since m′(·) is continuous and strictly positive on

the closed interval [r, r].

For fixed values of r and q∗ define zi ∈ R by

a∆m′ (q∗i )
(
m (q∗i )−mi(ri)

)
= (q∗i − ri) zi

whenever q∗i 6= ri, and zi := a∆m′2(ri) otherwise. It follows from its definition that zi ≥ z

for all i. Then, equation (18) can be written as

0 = (q∗i − q∗) + (q∗i − ri)zi = (1 + zi)(q
∗
i − q∗)− (ri − q∗)zi,

and thus,

q∗i − q∗ = zi
1+zi

(ri − q∗) = zi
1+zi

(ri − r) + zi
1+zi

(r − q∗). (19)

Summing up the last equation weighted by pi over i gives

0 =
I∑
i=1

(
pi

zi
1+zi

(ri − r)
)

+ (r − q∗)
I∑
i=1

(
pi

zi
1+zi

)
,

in which 0 < z
1+z
≤ zi

1+zi
< 1. The triangle inequality implies

|q∗ − r| ≤ 1+z
z

I∑
i=1

pi|ri − r| ≤ 1+z
z
σ

I∑
i=1

√
pi ≤ 1+z

z
Iσ.

Returning to equation (19),

|q∗i − r| ≤ zi
1+zi
|ri − r|+ zi

1+zi
|r − q∗|+ |q∗ − r| < |ri − r|+ 2|r − q∗| ≤

(
p
−1/2
i + 21+z

z
I
)
σ.

We conclude that |q∗i −r| ≤
(
p
−1/2
i + 21+z

z
I
)
σ for any r ∈ [r, r]I , and thus any function that

is o(q∗i − r) is also o(σ). This establishes Claim 1.

We will prove the remaining claims by taking first- and second-order approximations of

the first-order condition (18) for σ > 0 small. Since m(·) is twice differentiable, the functions

m and m′ can be expressed using first-order Taylor approximations around r:

m(ri) = m(r) +m′(r)(ri − r) + o(σ),

m(q∗i ) = m(r) +m′(r)(q∗i − r) + o(σ),

m′(q∗i ) = m′(r) +m′′(r)(q∗i − r) + o(σ),
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where we used Claim 1 to replace o(ri− r) and o(q∗i − r) by o(σ). Equation (18) then implies

0 = (q∗i − q∗) + a∆
(
m′(r)

(
q∗i − ri

)
+ o(σ)

)(
m′(r) +m′′(r)

(
q∗i − r

)
+ o(σ)

)
= (q∗i − q∗) + a∆m′2(r)(q∗i − ri) + o(σ),

where we used that (q∗i − ri)(q∗i − r) = o(σ). The last inline equation can be written as

0 = (q∗i − q∗) + z(r)(q∗i − ri) + o(σ). (20)

Summing up these equations weighted by pi, we get 0 = z(r)(q∗− r) + o(σ). Thus |q∗− r| ≤
1
z
o(σ), as needed for Claim 2.

We rewrite (20) as

(
1 + z(r)

)
(q∗i − q∗) = z(r)(ri − r) + z(r)(r − q∗) + o(σ) = z(r)(ri − r) + o(σ),

where the second equality follows from Claim 2. Squaring both sides of the equation and

summing up the equations weighted by pi, we get

(1 + z(r))2σ∗2 = z2(r)σ2 + o(σ2),

where we used that z(r) ≤ z and thus z(r)(ri − r)o(σ) is o(σ2). Claim 3 follows.

To prove Claim 4, we use the second-order Taylor approximation of m(·) around r:

m(q∗i ) = m(r) +m′(r)(q∗i − r) + 1
2
m′′(r)(q∗i − r)2 + o(σ2)

m(ri) = m(r) +m′(r)(ri − r) + 1
2
m′′(r)(ri − r)2 + o(σ2).

This implies the second-order approximation of the equation (18),

0 = (q∗i − q∗) + a∆
(
m′(r)

(
q∗i − ri

)
+ 1

2
m′′(r)

(
(q∗i − r)2 − (ri − r)2

)
+ o(σ2)

)
·
(
m′(r) +m′′(r)

(
q∗i − r

)
+ o(σ)

)
,

which we rewrite as

0 = (q∗i−q∗)+z(r)
((
q∗i − ri

)
+ 1

2
m′′(r)
m′(r)

(
(q∗i − r)2 − (ri − r)2

))(
1 + m′′(r)

m′(r)

(
q∗i − r

))
+o(σ2).
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Summing up these equations weighted by pi and dividing by z(r), we arrive at

0 = (q∗ − r)− 1
2
m′′(r)
m′(r)

(
σ2 − σ∗2 + 2

I∑
i=1

pi
(
ri − q∗i

)(
q∗i − r

))
+ o(σ2). (21)

Expressing q∗i − ri from (20) allows us to write

I∑
i=1

pi
(
ri − q∗i

)(
q∗i − r

)
= 1

z(r)

I∑
i=1

pi
(
q∗i − r

)2
+ o(σ2) = 1

z(r)
σ∗2 + o(σ2),

where we used that r = q∗+o(σ) for the second equality. Substituting the last inline equation

back into (21) completes the proof of Claim 4.

Finally, substituting for σ∗2 from Claim 3 into the expression from Claim 4 gives

q∗ = r +
1

2

m′′(r)

m′(r)

(
1 +

(
2
z(r)
− 1
) z(r)2

(1 + z(r))2

)
σ2 + o(σ2)

= r +
1

2

m′′(r)

m′(r)

(
1 +

2z(r)− z(r)2

(1 + z(r))2

)
σ2 + o(σ2),

and using 1 + 2z(r)−z(r)2
(1+z(r))2

= 1+4z(r)
(1+z(r))2

, we obtain (11), concluding the proof.
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