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1 Introduction

Since the 1970s all major advanced economies have shared a similar experience: a decline
of productivity growth rates. This decline has become even more pronounced well before
the onset of the financial crisis of 2008/09. Some commentators have already concluded
that the world’s economic growth potential might suffer from a case of secular stagnation
(Gordon, 2015; Summers, 2014). However, the deceleration has not proceeded completely
synchronously across countries. This heterogeneity not only casts some doubts regarding this
explanation, but also provides analysts with the opportunity to scrutinize it more deeply.

Germany is a particularly interesting case, as its economic performance provides an im-
pression of ambivalence. On the one hand, it even realized declining unemployment during
the Eurozone crisis and experienced a protracted economic expansion with increasing em-
ployment afterwards. Many German industrial companies are viable competitors in world
markets, carried by their engineering competencies and their fast pace of developing and
adopting new technologies, epitomized in the expression “Industry 4.0”. On the other hand,
potential growth and in particular productivity growth have remained quite modest despite
considerable investments into information and communication technology (ICT) capital.

In this paper, we examine this productivity paradox. Specifically, we study three promi-
nent explanations using state of the art empirical methods both regarding data construction
and empirical identification procedures.

A first potential explanation is that slower productivity progress in the U.S., commonly
known as the global frontier of technology and knowledge (Cette et al., 2016), triggers reduced
productivity growth. Starting around 1995, the U.S., unlike other countries, experienced an
acceleration in productivity growth. In the following decade, the U.S. economy realized a
burst of innovation and massive reallocation of production factors related to the production
and use of ICT. However, since the mid-2000s, U.S. productivity growth has once again
fallen back behind the figures of other countries.1

To study the spillover effects on productivity growth in Germany and other major Euro-
pean countries, we construct novel quarterly time series for utilization-adjusted total factor
productivity (TFP). The construction of such purified TFP measures is inspired by a series
provided by Fernald (2014) for the U.S., which gained much attention in the literature. For
other countries, however, such data does not exist. Given the presumably high demand for
1Among the explanations for this development in the U.S. are financial constraints in the wake of the Great
Recession (Anzoategui et al., 2019; Fort et al., 2013), a return to normal productivity growth after ICT had
provided an exceptional boost to productivity around the millennium (Fernald, 2015; Gordon, 2012), an
increasing productivity gap within industries (Andrews et al., 2015) coming along with declining business
dynamism (Decker et al., 2016) as well as problems with measuring productivity properly (Byrne et al.,
2016; Syverson, 2017).
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purified TFP measures, our paper thus provides a methodological contribution.2 To control
for capacity utilization, we rely on estimates presented by Comin et al. (2020) for major Eu-
ropean countries. Identifying exogenous U.S. technological progress using an SVAR model
with Fernald’s and our own purified TFP measures, we find that the sluggish productivity
trend in the U.S. exerted negligible effects on productivity growth in Germany, France, and
Italy. Only for the United Kingdom, we identify positive spillover effects. Consequently, it
is sensible to analyze German productivity data and their domestic sources separately from
U.S. developments.

Therefore, as a second potential explanation, we analyze the effects of the strong Ger-
man labor performance on aggregate productivity. Employment increased from 39.3 million
people in 2005, the year with the highest recorded unemployment rate in German post-war
history, to 45.3 million in 2019. Some studies even talk about the “German labor market
miracle” (Burda, 2016). New jobs were mainly created in the services sectors, where labor
productivity growth is notably lower than in the manufacturing sector. We conduct a disag-
gregated analysis at the sector level to account for this composition effect precipitated by the
structural shifts (de Avillez, 2012). Our results suggest that a sizeable part of the slowdown
in German productivity growth is a side effect of the labor market performance since the
year 2005. The integration of almost six million workers into the labor market attenuated
productivity growth.

In a third analysis, we study the effects of digitization on the German economy. Higher
investment in ICT can raise productivity growth via many channels. Most directly, it creates
aggregate productivity gains by raising productivity growth in the industries that produce
ICT goods. A higher ICT-capital intensity can lift growth in productivity also indirectly
by fostering complementary innovations, such as business organization, or by enabling new
business ideas. In this case, firms take advantage of an improved ability to manage informa-
tion and communications (Bloom et al., 2012). In addition, reallocation movements towards
higher-productivity establishments can raise productivity, as shown by Foster et al. (2006)
for the U.S. retail sector.

We focus on the question as to how technological progress originating from producers of
ICT goods and services is transmitted to other sectors of the economy using a novel identifi-
cation procedure based on the relative price of ICT goods and services in a structural VAR
model with medium-run restrictions. This identification approach to detect technological
progress in the ICT producing sector constitutes a further methodological contribution.
2The quarterly purified TFP measure and the Solow residual for Germany, France, Italy, and the United
Kingdom described in this paper are available at the authors’ websites (https://sites.google.com/view/
steffen-elstner/ptfp-data).
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According to our results, technological progress originating from the ICT-producing sec-
tor had significantly positive effects on both GDP and employment. This result corroborates
the common intuition that digitization is a driving force of economic prosperity. The net
effect on labor productivity growth is modest, however, as the positive effects on output and
labor input almost cancel each other out. Thus, technology shocks in the ICT-producing sec-
tor apparently act like investment-specific technology shocks. Fisher (2006), Justiniano et al.
(2011), and Altig et al. (2011) find similar results for the U.S. Moreover, for the years after
2012, only limited productivity growth originated in the ICT-producing sectors. The de-
cline in the intensity in these impulses also contributes to the explanation of the decelerated
German productivity growth.

We structure our analysis as follows. In Section 2, we introduce our productivity mea-
sures. In particular, we explain the construction of our quarterly series of purified TFP.
Section 3 presents econometric results regarding the link between U.S. and German pro-
ductivity growth. Section 4 analyzes the effects of the recent process of tertiarization in
the German labor market. Section 5 studies the importance of information technologies on
German productivity growth. Section 6 concludes.

2 Measuring technology improvements

Productivity can be measured in various ways. The relative usefulness different productivity
measures possess for particular research questions depends on data availability and on the
credibility of the necessary assumptions underlying their construction. In the remainder of
this paper, we thus focus on total factor productivity (TFP) as an economy-wide measure
and on labor productivity when we conduct disaggregated analyses at the industry level. In
this section, we compare these measures. In particular, we expound the construction of our
quarterly utilization-adjusted TFP growth series for major European countries.

2.1 Labor productivity and the Solow residual

The easiest way to study productivity developments is to consider labor productivity. As
a single factor productivity measure, output is divided by the number of hours worked
or employment. Other input factors such as human capital or physical capital are not
considered. Increases in these variables result in a higher growth rate of labor productivity
which does not directly reflect improvements in technology. It is therefore an incomplete
measure for technological progress.
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Nonetheless, due to the low data requirements, it is easy to perform studies at a disag-
gregated level using labor productivity. In such analyses, data for the input factor capital
or other variables are often not available. Furthermore, the weights for the corresponding
industries are simply the shares of these industries in total hours or total employment. Fig-
ure 1 shows hourly labor productivity as cumulative values for Germany, France, Italy, and
the United Kingdom. It is obvious, that the growth of labor productivity has declined in
all countries. The productivity slowdown is especially pronounced in Italy and the United
Kingdom.

In contrast to labor productivity, the computation of TFP depends on several assump-
tions. In a growth accounting framework, it is conventionally measured by the Solow residual
which is defined as that part of output growth which is not explained by the growth of the
considered input factors. The literature discusses several shortcomings of the Solow residual
as a measure for technological progress. First, the Solow residual depends on the specifica-
tion of the production function including other assumptions on the economy (e.g., markups
or structural change).

Second, while several input factors like employment or hours worked are often available
quarterly, at least at the aggregate level, this is not the case for capital stock or capital
services. To estimate this input factor, assumptions are necessary, e.g., on the rate of de-
preciation. This complicates studies at the disaggregate level to a large extent. Particularly
for studies at a quarterly frequency, one needs to find a balance between using a simple
productivity measure or using a Solow residual which is constructed on the basis of only
moderately plausible identification assumptions.

Third, even when input factors are measured correctly and the production function re-
sembles reality, the Solow residual captures many other things besides technological change.
For example, it picks up cyclical effects. When output is temporarily weak in a recession,
firms typically do not reduce the number of workers or machines to the same extent. Instead,
they employ them less intensively, e.g., by reducing the number of shifts. Consequently, the
Solow residual captures such effects which are unrelated to technology. Therefore, it under-
estimates (overestimates) technological progress if factor utilization decreases (increases).
This creates an important bias in the Solow residual as a technology measure. We address
this bias and construct a quarterly TFP measure adjusted for such factor utilization for four
European countries in Section 2.2.

We use this purified TFP (PTFP) measure in Section 3 to study spillover effects of U.S.
technology on major European countries. In our disaggregated analyses at the industry level
in Sections 4 and 5, we rely on labor productivity instead. In these analyses, we assess the
necessary identification assumptions to compute industrial TFP or PTFP measures as being
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Figure 1: Productivity developments in major European countries

Notes: This figure compares our quarterly measure for purified TFP for the major European countries with
the Solow residual and labor productivity. It shows the log-levels of the considered variables (annual average
of 2008 = 100). Full lines are our quarterly PTFP measures. The blue dashed lines display our quarterly
series for the Solow residual. Labor productivity is measured as output per hour worked and shown with
dotted lines. Shaded regions reflect recessions as dated by the German Council of Economic Experts (GCEE)
for Germany, the Conference Board for France and the United Kingdom, and the Economic Cycle Research
Institute (ECRI) for Italy.
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too demanding. Moreover, when we focus on the effects of structural shifts in the German
economy, we consider long-term averages. In these cases, changes in factor utilization are
less of a concern. Finally, the industry-specific weights for labor productivity are easy to
compute.

2.2 Quarterly purified TFP measures for European countries

In this section, we describe the construction of our quarterly PTFP measures for Germany,
France, Italy and the United Kingdom. Our analysis is inspired by Fernald (2014) who
provides a quarterly PTFP measure for the U.S. economy. His measure is heavily cited in
the literature addressing the effects of anticipated and unanticipated U.S. technology gains.3

To the best of our knowledge, no such quarterly PTFP measures exist for European countries.
According to Fernald (2014) PTFP growth is computed as follows:

∆ln PTFP t = ∆ln TFP t + ∆ln ut, (1)

where TFPt defines the usual Solow residual, PTFP t denotes purified TFP , and ut denotes
factor utilization. To derive the latter, Fernald (2014) resorts to annual estimates by Basu
et al. (2006) and Basu et al. (2013) and applies them to quarterly data. These studies rely
on hours-per-worker growth as a proxy for factor utilization.

We construct our PTFP measure by proceeding in two steps that we explain in more
detail below. First, we determine quarterly time series for the Solow residual. To this end,
we interpolate the annual Solow residuals provided by the EU-Klems database using self-
constructed quarterly TFP measures. The advantage of this approach is that we end up
with a time series that delivers the same annual growth rates as the original EU-Klems
data. Second, we draw on the estimates provided by Comin et al. (2020) to determine
an aggregate measure of factor utilization. These estimates are based on a survey-based
utilization proxy in three broad sectors: durable manufacturing, non-durable manufacturing
and non-manufacturing.4

To construct our quarterly measures of TFP, we first extend the individual annual time
series of the EU-Klems database to obtain a sample running from 1991 to 2019. To do so,
we regress the annual growth rates of the EU-Klems TFP data on estimates of TFP growth
3Fernald frequently updates the adjusted TFP series based on new data and, less frequently, implements
methodological changes. A summary of the literature regarding U.S. technology shocks is provided by
Ramey (2016).

4See Comin et al. (2020) for details on the (preliminary) data and the instrumental variable estimation
procedure.
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from the Penn World Table which starts earlier and ends later (Feenstra et al., 2015).5 In a
second step, we construct quarterly auxiliary TFP measures using the production elasticities
of the Penn World Tables.6 Furthermore, we use quarterly real GDP data from the OECD
and construct quarterly series for hours worked using data from Eurostat and the data by
Ohanian and Raffo (2012) who provide internationally consistent series for hours worked. To
construct a series for the capital stock on a quarterly basis, we use investment data published
by the OECD and apply the perpetual inventory approach outlined in Imbs (1999).

Assuming a Cobb-Douglas production function, we are able to determine the auxiliary
TFP-series. The annual averages of this auxiliary TFP series are highly correlated with the
main EU-Klems TFP series. In a final step, we use the Chow-Lin interpolation method to
translate the annual TFP data from EU-Klems in quarterly time series. We interpolate the
data in levels and obtain a quarterly estimate for ∆ln TFPt.

To proxy the change in factor utilization, we refer to Comin et al. (2020) and rely on a
weighted change in industrial capacity utilization:

∆ln ut =
n∑

i=0
γiβ̂i ∆ln cui,t (2)

where cui,t denotes capacity utilization in industry i discussed further below, γi is the indus-
try weight (Domar weight)7, and β̂i is the elasticity of gross output on capacity utilization in
industry i. The estimated elasticities are provided by Comin et al. (2020) for all four Euro-
pean countries. They report them for the three sectors durable manufacturing, non-durable
manufacturing and non-manufacturing.8

For capacity utilization, we use quarterly time series based on survey data for different
industries, provided by Eurostat. We assign these industries to the three sectors so that we
can rely on the estimates by Comin et al. (2020).9 While detailed data for the manufacturing
sectors is available over the whole sample period starting in 1991Q1, this is not the case for
the services sector and for construction. The time series for capacity utilization in the
services sector start in 2010 or 2011 for the four countries. Therefore, we have to backcast
this series for the remaining sample. Our approach differs from that proposed by Comin et al.
(2020) who only rely on capacity utilization in the manufacturing sector in their backcasting
procedure. In addition to this variable, we also use information from the business situation
5Data and the sample periods per country are reported in Appendix A.
6We use the time series average for the considered period.
7The Domar weight is the ratio of the industry’s gross output divided by gross value added of the total
economy. See footnote 11 in Fernald (2014). To avoid sudden shifts in the weighting but to allow for
structural shifts, we rely on five-years rolling windows.

8See Table B2 in the Appendix.
9In Table B1 in the Appendix, we report how industries are assigned to sectors.
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Table 1: Correlations of our quarterly series with estimates by Comin et al. (2020)

Germany France Italy United Kingdom

Factor utilization
Baseline 0.96 0.75 0.93 0.83

Alternative 0.96 0.79 0.90 0.91
Purified TFP

Baseline 0.76 0.40 0.53 0.67
Alternative 0.87 0.90 0.94 0.90

Notes: This tables presents correlations between the annual percentage changes of our series
for factor utilization and purified TFP with the respective results by Comin et al. (2020). As
an alternative to our baseline procedure, we backcast the time series for capacity utilization in
the services and construction sector with the contemporaneous level of manufacturing capacity
utilization.

of firms in the services sector as suggested by Göttert and Wollmershäuser (2021). These
balances are available from the year 2000 onwards.

Specifically, for the period starting in the year 2000, we regress the level of capacity
utilization in the services sector on the balance of the business situation and the level of
capacity utilization in manufacturing. The regression includes contemporaneous values and
the four lags of the latter two variables. We do not consider insignificant variables in the
regression. For the remaining years in the 1990s, the regression includes only capacity
utilization in the manufacturing sector.

For the construction sector, we use utilization data provided by the institutes Insee
and IFO for France and Germany respectively. For Italy and the United Kingdom, we
simply translate the balance of business situation in the construction sector into a measure
of capacity utilization using the empirical relationships between both variables observed in
France and Germany.

To facilitate the comparison between our approach and the results by Comin et al. (2020),
we also present findings of an alternative specification. Here we backcast capacity utilization
in the services and in the construction sectors solely on the basis of the contemporaneous
level of manufacturing capacity utilization.

The upper part of Table 1 summarizes the correlations between the annual percentage
changes of our final quarterly series of factor utilization ∆ln ut, and the results by Comin
et al. (2020). When using our preferred backcast procedure as our baseline, the correlations
are already quite high in particular for Germany (0.96) and Italy (0.93). The correlations
even increase when we resort to the capacity utilization for the manufacturing sector also
for services and construction (alternative specification).10

10The remaining differences stem from the fact that we use five-year rolling windows for industry weights to
consider structural shifts and data for the whole economy whereas Comin et al. (2020) focus on the market
economy.
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Combining the quarterly estimates for ∆ln TFPt and ∆ln ut, we obtain the PTFP
measures. The lower part of Table 1 shows the correlations between these final series. For
our preferred backcast procedure, the correlations are still high for Germany (0.76) and
the United Kingdom (0.67). For France and Italy, the relationships between both PTFP
measures are robustly positive but far from perfect. The reason lies in the backcast procedure.
Using the approach by Comin et al. (2020), we obtain correlations of 0.9 or above for almost
all countries. However, we think that our backcast procedure is better suited for quarterly
data as it is plausible to assume that the services sector to some extent lags behind the
development in the manufacturing sector. Furthermore, the approach of Comin et al. (2020)
defines a special case of our procedure as we also allow for contemporaneous effects. In the
remainder of the paper, we nonetheless present results for both quarterly series.

Figure 1 relates these quarterly measures for PTFP to the Solow residual and labor
productivity for Germany, France, Italy, and the United Kingdom. The PTFP series show
a lower volatility than the unadjusted Solow residual. A comparison of the two measures
during the financial crisis of 2008/09 shows that the purified TFP measure decreases less
strongly in particular in Germany, Italy, and the United Kingdom. This reflects that factor
utilization was adjusted significantly during the crisis.

3 Explanation 1: U.S. productivity slowdown

3.1 Motivation: The U.S. as the technology frontier

The contemporaneous deceleration of productivity growth among advanced countries in the
last decades, in particular since the mid-2000s, raises the question as to whether there are
common forces behind that development. The U.S. is commonly considered as the global
frontier of technology and knowledge (Cette et al., 2016; Growiec, 2012). A comparison of
TFP levels between major advanced countries also indicates the productivity lead of the U.S.
economy in various economic sectors (Elstner and Rujin, 2019). Thus, it seems plausible that
a trend towards a lower intensity of technological innovations in the U.S. causes declines in
productivity growth in other industrial countries.

This idea motivates our first analysis. In particular, we want to explore whether the recent
slowdown in U.S. productivity growth that started in the mid-2000s caused a deceleration in
productivity growth in major European countries. To answer that question, we try to figure
out whether U.S. technology spills over to other industrial countries in general. Therefore, we
need to identify exogenous changes in U.S. technology (henceforth denoted as U.S. technology
shocks) and analyze their impact on our measures of PTFP. The challenge of the analysis is to
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single out (exogenous) changes in U.S. total factor productivity that are neither contaminated
by U.S. non-technological factors, e.g., demand shocks, nor by technology gains originating
from other major countries.

3.2 Empirical model: A structural time-series analysis

To study spillover effects of U.S. technology shocks, we estimate country-specific SVAR
models for each of the four European countries. They contain three variables in first log-
differences: U.S. PTFP constructed by Fernald (2014), our PTFP measure for the country
under consideration, and a weighted PTFP measure of the four European countries to proxy
developments in the rest of the world (ROW PTFP).11 For the weighting, we resort to
five-year rolling windows of the countries’ shares in world GDP based on purchasing power
parities provided by the IMF. We use seasonally adjusted quarterly data covering a sample
period running from 1991q1 to 2019q4. In addition, we include a constant and four lags.

We estimate this model using seemingly unrelated regressions (SUR): the estimation
equations of U.S. PTFP and ROW PTFP do not contain the lags of the country-specific
PTFP measure. On the one hand, this allows for controlling for European technology
spillovers which affect U.S. technology. On the other hand, this specification ensures that
the sequences of U.S. technology shocks are the same for all countries under consideration.

The advantage of using PTFP measures is that non-technological changes in productivity
are ruled out by construction. Accordingly, by using the PTFP measure of Fernald (2014), we
assume that we have already controlled for non-technology factors in U.S. technology growth.
However, we still need to separate U.S.-specific (idiosyncratic) technology components from
global (common) elements. We do so, by applying the medium-run identification procedure
proposed by Uhlig (2004a,b). The resulting series of U.S. technology shocks contains those
changes that explain the largest share of fluctuations in U.S. PTFP over a certain time span.
In our baseline estimations, we consider a forecast horizon running from three to ten years.12

We explain this procedure in detail in Appendix C.13

11We use a broader measure for the Solow residual and labor productivity including additional countries in
a robustness check (see Figure D1 in the Appendix).

12As we estimate the SVARs in first log-differences, we use cumulated impulse responses to determine the
forecast error variance which is necessary for the medium-run identification.

13In our opinion, a Cholesky identification which implies a zero-impact restriction of ROW PTFP on U.S.
PTFP is problematic. This assumption rules out that technology gains in the major European countries
affect the U.S. technology level in the same period. Nonetheless, when considering this identification, our
main statements still hold (see Figure D3 in the Appendix).
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3.3 Results: Negligible pass-through of U.S. technology changes

Figure 2 shows the dynamic reactions of technology following an exogeneous change in U.S.
technology in the four European countries Germany, France, Italy, and the United Kingdom.
We normalize the technology impulse to reflect an increase of PTFP in the U.S. by one
percent after 20 quarters. For the European countries, we show the responses using the two
PTFP measures that we described in Section 2. To account for conditional heteroscedasticity
in the data, we construct our confidence bands using the recursive design wild bootstrap
procedure proposed by Gonçalves and Kilian (2004).

Apart from the United Kingdom, we find rather small productivity spillover effects of U.S.
technology shocks. In our baseline estimations, the effects are positive but not significantly
different from zero for Germany and France. For Italy, the point estimate is negative, but
insignificant. In contrast to this, for the United Kingdom, we find positive spillover effects
resulting in a permanent increase of PTFP by 0.2 percent. These effects are statistically
significant at a 10-percent confidence level. Overall, this corroborates the findings by Elstner
and Rujin (2019) who stress the negligible pass-through of U.S. technology shocks to other
industrial countries.

As an alternative PTFP measure, we draw on our second series, in which we backcast
the time series for services and construction on the basis of the contemporaneous level of
manufacturing capacity utilization (see Table 1). Our main statements also hold for this
measure. The point estimates are almost zero over the whole period for Italy and France.
We find a higher, albeit insignificant reaction of approximately 0.2 percent after 20 quarters
for Germany. The positive spillover effect for the United Kingdom becomes even more
pronounced. In this specification, productivity increases permanently by 0.4 percent.

To check the robustness of our results, we perform further analyses. Instead of estimating
the responses of PTFP, we use two other measures for productivity: the unadjusted Solow
residual as well as labor productivity (see Figure D2 in the Appendix). In addition, we
include more lags (8 instead of 4) and use different forecast horizons for our medium-run
identification procedure (see Figure D3 in the Appendix). Additionally, we consider broader
measures to control for productivity changes in the rest of the world by including a weighted
Solow residual or labor productivity for 13 advanced countries into our SVAR models (see
Figure D1 in the Appendix). Irrespective of the concrete specification chosen, we only find
insignificant or small spillover effects for Germany, France, and Italy as well as positive effects
for the United Kingdom.

Our results are closely related to the findings of Imbs (1999) and Huo et al. (2020). Both
studies estimate PTFPs based on different utilization variables and show that these mea-
sures are uncorrelated across countries. They thus conclude that international technological
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Figure 2: The effects of U.S. technology shocks on PTFP in European countries

Notes: The figure shows the accumulated responses of purified TFP (PTFP) in major European countries
after an exogenous increase in U.S. TFP (technology shock). The U.S. technology shock amounts to a one
percent increase in U.S. PTFP after 20 quarters. Full lines are point estimates using our baseline PTFP
measure, dashed lines are point estimates using our alternative PTFP measure. The SVAR models contain
U.S. PTFP, the PTFP measure for the country under consideration and ROW PTFP. We estimate our SVAR
model with quarterly data beginning with the first quarter of 1991 and ending in the fourth quarter of 2019.
All variables are expressed in log-differences and the SVAR model includes four lags and a constant. Blue
shaded areas: 68%, 90%, and 95% confidence bands are constructed using a recursive design wild bootstrap,
see Gonçalves and Kilian (2004).
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propagation does not generate much output comovement. In contrast to our work, these
studies determine their empirical results on the basis of a correlation analysis.

In summary, these results suggest that the sluggish U.S. productivity development since
the mid-2000s had only small effects on German productivity growth. In the further analysis,
it is thus reasonable to abstract from possible spillover effects that might originate from U.S.
productivity shocks. Therefore, we focus on two potential domestic explanations: structural
shifts on the labor market and the impact of digitization.

4 Explanation 2: Structural shift towards services

4.1 Motivation: Employment increase by over 15 percent

Since our analyses suggest that the slowdown in U.S. productivity growth had only limited
effects on German productivity, other explanations are needed for the deceleration of Ger-
many productivity growth. The German economy evolved quite differently from the U.S.,
and other large European countries such as France, Italy or Spain. A particularly remarkable
facet of this development was the strong performance of the labor market in the years dur-
ing and after the Great Recession. Starting around 2005, Germany experienced a protracted
transition to a new structural labor market equilibrium, with higher employment, especially
in the services sector, and lower unemployment rates.

From 2005 to 2019, German employment increased by almost six million workers, i.e., by
over 15 percent. During this time period, total hours worked only increased by 11.2 percent,
since many of the new jobs were part-time jobs. Burda (2016) and Burda and Seele (2020)
conclude that the large German labor market reforms that phased in over the period of 2003
to 2005 play a major role in explaining the labor market trend since the mid-2000s.14 They
even talk about the “German labor market miracle”.

Figure 3a displays the sectoral composition of this massive employment growth. New
jobs were mainly created in the services sectors, not in the highly productive manufacturing
sectors; employment growth was strongest in the sectors trade, transportation and accommo-
14These labor market reforms (“Hartz reforms”) were an important part of a comprehensive reform package
dubbed “Agenda 2010” that also comprised reforms in the tax system and the social security systems. The
Hartz reforms consisted of four packages, see Burda and Hunt (2011) or Jacobi and Kluve (2007) for details.
The package “Hartz I” deregulated the temporary working agencies, “Hartz II” increased the incentives of
the unemployed to become self-employed. The aim of “Hartz III” was to improve the matching efficiency
on the labor market by restructuring the Federal Employment Agency. Finally, the major reform package
“Hartz IV” attempted to strengthen the incentives of unemployed workers to search for a job. Among
others, Krause and Uhlig (2012), Krebs and Scheffel (2013), Launov and Wälde (2016), Gadatsch et al.
(2016), Hartung et al. (2018), Carrillo-Tudela et al. (2021), and Hochmuth et al. (2021) analyze different
packages of these reforms, partially with dissenting conclusions.
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Figure 3: Development of employment and labor productivity in selected economic sectors

Notes: The left panel shows the accumulated change of employment compared to 2005. For selected economic
sectors, the right panel depicts the change in employment between 2005 and 2019 on the left axis, and the
difference to the average productivity level in 2005 on the right axis. Labor productivity is defined as real
gross value added per worker. We use data from Destatis.

dation, health and social work, administrative as well as support services. Thus, jobs were
created disproportionately often in labor-intensive and less productive services sectors (see
Figure 3b). We analyze whether the decelerated productivity growth of the last decade could
reflect this structural shift towards the services sectors. By keeping sectoral compositions
constant, we calculate a counterfactual development of labor productivity.

4.2 Empirical model: A counterfactual path of productivity ex-
pansion

It will be prohibitively difficult to construct a counterfactual capturing the development of
sector-specific productivity in the hypothetical absence of the German labor market miracle.
Yet, by means of a disaggregated analysis at the sector level, we can at least account for the
composition effect exerted by the associated structural shifts (de Avillez, 2012). Specifically,
we construct a counterfactual aggregate productivity development by taking the develop-
ments within individual sectors (“within sector-specific effects”) at face value and holding
the sectoral composition constant. The difference between the actual and the constructed
counterfactual development then captures the effect of the employment shifts between sec-
tors (“reallocation effect”). Arguably, it is the development net of the reallocation effect
which should be in the focus of our considerations regarding productivity growth.
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In our analysis, we consider 20 sub-sectors for which we have data until the year 2019.
The counterfactual development of total labor productivity over time is constructed with
reference to a benchmark year 0 as follows:

(
LP total

t −LP total
0

LP total
0

)
=

20∑
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t −LP i
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LP total
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)
ni
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reallocation effect

(3)

with LP total
t denoting aggregate labor productivity at time t and LP i

t representing the labor
productivity of sub-sector i at time t. Finally, ni

t is the relative proportion of the labor force
or hours worked in sub-sector i.

4.3 Results: Composition effect explains a large part of produc-
tivity slowdown

Table 2 reports detailed growth contributions to labor productivity for the two periods 1995
to 2005 and 2005 to 2019, respectively. We construct the productivity figures per person
employed and per hour. Given our focus on Germany, it seems wise to exclude the first
years after German reunification that witnessed a strong catchup process in East Germany.
Therefore, we exclude the years before 1995. The implementation of the largest labor market
reforms that Germany experienced after its reunification (“Hartz reforms”) was finished in
the year 2005. This is the reason why we split our sample in this year.

Apparently, the reallocation effect has not been responsible for the majority of produc-
tivity advances that were realized since 1995. Rather, the productivity gains over the past
25 years have largely resulted from developments within the individual sectors. Yet, the
reallocation effect affects our assessment of the deceleration of productivity growth, since
it first provided a slightly positive contribution to labor productivity in the period from
1995 to 2005, as employment increasingly shifted to the productive economic sectors. There-
after, its contribution was rather negative, due to the structural shift towards the relatively
unproductive services sectors.

Specifically, the growth contributions arising from the reallocation effect are negative
for the years between 2005 and 2019. Compared to the previous 10 years, this negative
reallocation effect has caused the annual increase in macroeconomic productivity (person
concept) to decline by around 0.4 percentage points since the year 2005. This result is the
same whether we construct the productivity figures per hour or per person employed. The
analysis of the within sector-specific effects shows that in comparison to the period 1995
to 2005, between 2005 and 2019 the combined growth contributions of the less productive
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Table 2: Growth contributions to aggregate labor productivity (in percentage points)

Share Per person employed Per hour
(in percent) 1995-2005 2005-2019 1995-2005 2005-2019

Within sector-specific growth contributions

Manufacturing 22.2 0.6 0.3 0.7 0.3
Services sector 70.1 0.2 0.4 0.8 0.6
including:
Wholesale and retail trade, transport 16.3 0.3 0.1 0.5 0.2
and storage, accommodation
Information and communication 4.6 0.2 0.2 0.2 0.2
Professional, scientific 6.5 -0.2 -0.1 -0.1 -0.1
and technical activities
Administrative and support 4.3 -0.1 0.0 0.0 0.0
service activities
Human health and social work activities 6.6 0.0 0.0 0.1 0.0

Reallocation effect 0.1 -0.2 0.2 -0.2
Development of labor productivity (in percent)
Actual development 1.1 0.5 1.7 0.7
Development without structural shifts 1.0 0.7 1.6 0.9

Notes: The calculations of the within sector-specific growth contributions and the reallocation effects are
based on Equation 3. The development without structural shifts shows the development of aggregate labor
productivity without the reallocation effect. The share of the corresponding sector in total gross value
added refers to the year 2005. Please note the difference at the aggregate level between gross domestic
product and gross value added. We use data from Destatis.

sectors trade, transportation and accommodation, health and social work, administrative
and support services have annually shaved off 0.2 percentage points of productivity growth
per person employed.

These results indicate that the annual decline in the growth rate of productivity per
person employed, from 1.1 percent during the period 1995 to 2005 to only 0.5 percent since
2005, can largely be explained by the composition effect resulting from the structural shifts
in the labor market. A similar conclusion emerges in the analysis of hourly productivity.
The productivity gain generated by the manufacturing sector has declined considerably by
0.4 percentage points since the year 2005. And yet, some of the deceleration still remains to
be explained.
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5 Explanation 3: Low productivity effects of ICT

5.1 Motivation: Weak transmission of technological progress to
other sectors

Our results from Section 4 suggest that a large part of the slowdown in German productivity
growth reflects a composition effect, induced by the labor market integration of almost six
million workers. The perceived widespread digitization of the German economy, caused
by large technology gains in ICT, apparently did not offset these dampening influences on
productivity growth. In order to move towards a resolution of this remaining productivity
paradox, we analyze the effects of digitization on productivity growth in more detail. It
turns out that, to understand this sluggish reaction to digitization, we need to address both
elements of labor productivity separately, economic output and employment. Additionally,
we distinguish between the ICT-producing sector and the rest of the economy.

We are particularly interested as to how technological progress originating from the ICT-
producing sector is transmitted to other economic sectors of the economy. Higher investment
in ICT should raise productivity growth in the industries that produce ICT goods most
directly. This technological progress causes a decline in the relative price of ICT investment
goods and, thus, affects capital deepening in ICT-intensive industries, i.e., industries that
make greater use of ICT. This channel is often related to investment-specific technological
change, as Greenwood et al. (1997) and Fisher (2006) emphasize.

Studies using growth accounting frameworks to determine the contribution of ICT to pro-
ductivity growth show that in Germany, the ICT-producing and ICT-intensive economic sec-
tors contributed relatively little to aggregate labor productivity growth (Eicher and Roehn,
2007). By contrast, U.S. productivity growth in the second half of the 1990s was heavily con-
centrated in the ICT-producing manufacturing sector, as quality-adjusted computer prices
began to fall rapidly (Jorgenson, 2001). Stiroh (2002) shows with U.S. industry data that the
gains in productivity in the ICT-producing sectors were followed by significant productivity
surges in ICT-intensive sectors like wholesale and retail trade or business services effects at
the turn of the century.

To study how technological progress originating from producers of ICT goods and services
is transmitted to other sectors of the economy, we propose a novel approach for identifying
exogenous technological changes originating from ICT (ICT technology shocks) by combin-
ing a structural vector autoregressive (SVAR) model with medium-run restrictions and the
relative price of ICT goods and services. Thereby, from a methodological perspective, we
suggest a method that tries to provide evidence regarding the economic effects caused by
ICT-related technological progress.
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5.2 Empirical model: Two-step identification procedure

Model specification

To classify the ICT sector, we adopt the definition by the German Federal Statistical Of-
fice (Destatis, 2017) which follows the OECD definition for the ICT-producing sector by
combining manufacturing and services industries. It comprises manufacturing of computer,
electronic and optical products as well as the services sectors telecommunication and IT ser-
vices (computer programming, consultancy, related activities).15 We subsume the remaining
industries into a “non-ICT sector”.

To answer our research question, we first determine technological changes that have long-
run effects on labor productivity using a SVAR model. Second, we isolate ICT technology
shocks from other productivity advancements (neutral technology shocks). We distinguish
between both types of technology shocks by resorting to the relative price of produced value
added between the ICT and the non-ICT sector, Priceratio

t . ICT technology shocks exert
strong short run effects on Priceratio

t , while this is not the case for neutral technology shocks.
This assumption refers to the hedonic price measurement of Destatis, that tries to incorporate
ICT-related technology gains in the price deflators of the industries in the ICT sector.

Our approach is motivated by the literature studying the effects of investment-specific
technology shocks (Fisher, 2006). In contrast to Fisher (2006), we incorporate two labor
productivity measures in our analysis, one for the ICT sector, LP ICT

t , and one for the
non-ICT sector, LPnonICT

t . We further impose a different restriction regarding the horizon
of the price effects of ICT technology shocks in our baseline model. Our SVAR model
has five variables. We consider LP ICT

t , LPnonICT
t , Priceratio

t , hours per worker, and total
employment.16 We estimate our SVAR model with quarterly data beginning in the first
quarter of 1991 and ending in the fourth quarter of 2017.17

We additionally face the problem that some time series are only available at an annual
frequency. To construct the data set, it is necessary to determine quarterly time series for
gross value added, the price deflators and working hours for the ICT and non-ICT sector.
As Destatis only provides annual data for the individual economic sectors, we interpolate
15Due to data limitations, we are not able to incorporate the wholesale of ICT, software publishing and
the repair of computers and communication equipment in our measure. In the year 2015, our considered
ICT sector generated about 70 percent of the sales in the total ICT sector defined by Destatis (2017).
The remaining 30 percent are almost entirely due to the missing ICT wholesaling. Regarding investment
expenditures, our sector definition encompasses more than 97 percent of the total ICT sector.

16Our main findings do not change if we use total hours worked instead of hours per worker and total
employment.

17An earlier starting point of our sample would not be useful as Destatis has not conducted a hedonic price
adjustment for ICT goods prior to 1991 which is crucial for our identification. Our sample ends in 2017
as there is no further data available for the ICT sector.
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these annual time series by using the Chow-Lin interpolation procedure and higher frequency
indicators. Details are provided in Appendix E. All variables are expressed in log-differences
and the SVAR model includes four lags and a constant.

Identification of ICT technology shocks

To identify ICT technology shocks, εICT
t , we use an identification scheme that proceeds in

two steps. In a first step, we use medium-run restrictions to separate all types of technology
shocks from non-technology factors. In a second step, we extract only those technology
shocks stemming from the ICT sector from these shocks.

Step 1: Using our SVAR model with five variables, we identify all shocks related to tech-
nology. We use them as auxiliary shocks. To do so, we apply the medium-run identification
procedure proposed by Uhlig (2004a). Analogous to Section 3.2, we first select candidates
for “shocks” that account for the largest forecast error variance (FEV) of our target variables
over a specific forecast horizon.

We single out three auxiliary shocks uICT
t , unonICT

t , and uprice
t that maximize the FEV

of LP ICT
t , LPnonICT

t , and Priceratio
t , respectively. For uICT

t and unonICT
t , we consider a

medium-run forecast horizon running from 12 to 40 quarters, which is in line with Uhlig
(2004a). For the price ratio, we focus on a shorter forecast horizon running from 0 to 8
quarters because the hedonic price measurement by Destatis should capture adjustments in
the short run.18

Step 2: The resulting auxiliary shocks are still correlated with each other due to the
partial identification nature of medium-run restrictions. Therefore, we attach a second step
to extract only ICT-related technology shocks. Conceptually, this step can be split in two
parts. First, we obtain neutral technology shocks, εN

t , by regressing unonICT
t on uprice

t .
By construction, this residual is not the main driver of fluctuations in the relative price.
Second, we regress uICT

t on these neutral technology shocks εN
t . The residuals from this

second regression, εICT
t , are uncorrelated with neutral technology shocks. Therefore, we use

this shock series as exogenous ICT-related changes in the technology level of the ICT sector.
Technically, we consolidate both steps by applying two QR-decompositions to the three

eigenvectors that define the auxiliary shocks. Appendix F discusses more details on this
procedure.
18In a robustness check, we vary these horizons for productivities and the price level, see Figure G1 in the
Appendix.
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5.3 Results: Positive effects on GDP and employment cushion
productivity growth

Figures 4a and 4b depict the accumulated impulse response functions of labor productivity in
the non-ICT and the ICT sector after an ICT technology shock. The impulse response func-
tions suggest that such shock leads to a sizeable and permanent increase in labor productivity
in the ICT sector, whereas the reaction in the non-ICT sector is insignificant throughout.
According to the point estimates, the initial positive reaction of productivity in the non-ICT
sector even turns into the opposite after one year. At first glance, it therefore seems that
technological progress in the ICT sector has no effects on the remaining economy.19

Figures 4c and 4d display the historical contributions of the ICT technology shocks on
labor productivity growth in both sectors for the years 1995 to 2017. Two results stand out:
First, despite the fact that ICT technology shocks seem to play a crucial role in explaining the
movements in annual labor productivity growth in the ICT sector, we have not seen strong
positive effects in recent years. From a historical perspective, the strongest contributions
were observed in the years 1998 and 2007. As well, the actual growth rates do not suggest
that the ICT sector has experienced significant productivity gains in recent years. To some
extent, this observation challenges the popular impression that the pace of digitization has
accelerated recently (“digital revolution”). Second, the effects of ICT technology shocks on
the productivity growth rates in the non-ICT sector are limited. This is hardly surprising,
as the corresponding impulse response function was already insignificant.

After all, these results suggest that technological progress originating in the ICT sector
was rather small in the years after 2012. Furthermore, the transmission of productivity
advancements from the ICT sector to the non-ICT sector apparently tends to be quite
modest. These results might be an explanation for the productivity paradox.

But what are the reasons for these findings? Figure 5 provides a possible answer. It
displays the reactions of gross value added and employment of the total economy after an ICT
technology shock. The impulse response function for gross value added is determined by using
a subset SVAR in which we impose the restrictions that the respective variable is not included
in the equations of the initial SVAR model. Our results indicate that both production and
employment rise considerably after an ICT technology shock. Furthermore, the size of both
dynamic reactions is almost the same. As a result, the net effect on productivity is almost
zero.20
19For neutral technology shocks, we find permanent positive reactions for labor productivity in both sectors.
Results are available upon request.

20Elstner et al. (2020) analyze the effects of ICT related technological change at a more disaggregate level
using local projections. To determine ICT technology shocks, they use our identification method but a
different VAR model and time sample. They find similar results.
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Figure 4: Effects of an ICT technology shock

Notes: The upper two panels depict accumulated impulse response functions after an ICT technology shock
identified by using our two-step procedure. The lower two panels show historical decompositions. The SVAR
model contains labor productivity of the non-ICT sector and the ICT sector, the relative price of produced
value added between the ICT sector and the non-ICT sector, hours per worker and total employment. We
estimate the SVAR model with quarterly data beginning with the first quarter of 1991 and ending in the
fourth quarter of 2017. All variables are expressed in log-differences and the SVAR model includes four lags
and a constant. Blue shaded areas: 68%, 90%, and 95% confidence bands are constructed using a recursive
design wild bootstrap, see Gonçalves and Kilian (2004).
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Figure 5: Responses of macroeconomic variables to an ICT technology shock

Notes: This figure depicts the accumulated impulse response functions for several macroeconomic variables
after an ICT technology shock identified by using our two-step procedure. The SVAR model contains labor
productivity for the non-ICT sector and the ICT sector, the relative price of produced value added between
the ICT sector and the non-ICT sector, hours per worker and total employment. The impulse response
functions of employment in the non-ICT and ICT sector are determined by using a subset SVAR in which
we impose the restrictions that these variables are not included in the equations of the initial SVAR model.
We estimate our SVAR model with quarterly data beginning with the first quarter of 1991 and ending in the
fourth quarter of 2017. All variables are expressed in log-differences and the SVAR model includes four lags
and a constant. Blue shaded areas: 68%, 90%, and 95% confidence bands are constructed using a recursive
design wild bootstrap, see Gonçalves and Kilian (2004).
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This result is in line with theoretical and empirical predictions. Fisher (2006) and Altig
et al. (2011) find similar results for the U.S. Interestingly, theoretical DSGE models such as
Smets and Wouters (2007) predict similar outcomes. In these models, after an investment
specific technology shock labor input rises by almost the same amount as output. The
intuition behind this result is that the new investment goods lead to a higher labor demand
as the marginal product of labor increases. Moreover, a higher demand for more productive
investment goods raises the real interest rate which causes private households to consume
less and work more.

We check how much our conclusions depend on our identification assumptions. First, we
vary the forecast horizons used for our medium-run identification procedure (see Figure G1
in the Appendix). Second, we include additional variables in our SVAR model. Figure G2
in the Appendix shows the results. The findings are in line with our main results. To sum
up, they show that the digitization of the German economy seems to have strong positive
effects on German GDP and employment. However, it seems questionable whether the new
ICT goods exert a sizeable positive effect on productivity.

6 Conclusions

This paper addresses the question as to why the German economy has experienced a marked
slowdown in productivity growth in recent years, despite the general perception that in-
creasing digitization causes rapid technological change. The growth rate of productivity per
person employed decreased from 1.1 percent during the period 1995 to 2005 to only 0.5 per-
cent since 2005. A similar conclusion emerges in the analysis of hourly productivity. Our
analysis provides the following explanations:

(i) We find only small spillover effects from U.S. technology changes on German productiv-
ity growth. This suggests that the German situation seems to be special as compared
to other advanced countries.

(ii) A sizeable part of the slowdown in German productivity growth is a side effect of the
labor market performance since the year 2005. The integration of almost six million
people into the labor market caused an attenuating effect on productivity growth as
it induced a structural shift towards the services sector. Reallocation between more
productive and less productive sectors of the economy accounts for some 0.4 percentage
points of the annual productivity growth decline since the year 2005.

(iii) Technological progress originating in the ICT-producing sector has significant positive
effects on GDP and employment. The net effect on labor productivity, however, is
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modest. Consequently, increasing digitization leads to higher production and employ-
ment, but not to sizably higher productivity. For the years after 2012, technological
progress in the ICT-producing sectors seems to be low, which might be an additional
explanation for the German productivity paradox.

While our analysis provides several plausible answers to the German productivity paradox, it
raises further research questions. One possible question concerns the limited spillover effects
in labor productivity between the U.S. and German economy. A deeper look into industry
data could provide further insights regarding this point. Furthermore, we think that more
research with respect to the reasons for the permanent shift in the productivity level of the
highly export-oriented German manufacturing is needed. One explanation could lie in the
link between world trade, global value added and productivity growth.
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Appendix

A Data definitions and sources

Table A1: Variables used in Sections 2 and 3: Description and sources

Variable Description Source
Utilization-
adjusted quarterly
TFP series for the
U.S.

Quarterly data series for the U.S. business sector, adjusted
for variations in factor utilization, labor effort and capital’s
work-week; constant prices; seasonally adjusted; data
availability: 1947:1–2021:1; downloadable from
http://www.johnfernald.net/TFP

Fernald (2014)

TFP series
(EU-Klems)

Annual data series; constant prices; data availability:
Germany 1997–2015, France 1982–2015, Italy 1997–2014,
United Kingdom 1999–2015

EU-Klems
database

TFP series (PWT) Annual data series; constant prices; data availability:
1970–2019; used to extend the annual time series of the
EU-Klems database; downloadable from www.ggdc.net/pwt

Penn World
Tables, version
10.0, Feenstra
et al. (2015)

Hours worked
(Eurostat)

Quarterly data series; seasonally adjusted; data availability:
Germany and France 1991:1–2019:4, Italy and UK
1995:1–2019:4

Eurostat

Hours worked
(Ohanian/Raffo)

Quarterly data series; seasonally adjusted; data availability:
1960:1–2016:4 (for the U.K.: 1971:1-2016:4); used to extend
the annual time series from Eurostat; downloadable from
http://andrearaffo.com/araffo/Research.html

Ohanian and Raffo
(2012)

GDP Quarterly data series; constant prices; seasonally adjusted;
1970:1–2019:4

OECD-Economic
Outlook database

Value added Annual data series; nominal prices; data availability:
Germany, Italy and United Kingdom 1995-2017, France
1990-2017

OECD-Economic
Outlook database

Gross output Annual data series; nominal prices; data availability:
Germany, Italy and United Kingdom 1995-2017, France
1990-2017

OECD-Economic
Outlook database

Production
elasticities

Annual data series; data availability: 1970–2019;
downloadable from www.ggdc.net/pwt

Penn World
Tables, version
10.0, Feenstra
et al. (2015)

Gross fixed capital
formation
(investment)

Quarterly data series; constant prices; seasonally adjusted;
data availability: 1970:1–2019:1; used to construct a
quarterly series for the capital stock

OECD

Continued on next page
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Table A1 – Continued from previous page
Variable Description Source
Countries’ shares
in world GDP

Gross domestic product based on purchasing-power-parity
(PPP), share of world total; annual data series; data
availability: 1985–2020

IMF, World
Economic Outlook
Database, October
2020

Capacity
utilization

Survey data for industries; quarterly data series; seasonally
adjusted; data availability for the manufacturing sector:
Germany, France and Italy 1991:1–2019:4, UK 1994:3–2019:4,
for the services sector: Germany 2011:1–2020:4, France
2011:4–2019:4, Italy 2010:1–2019:4, UK 2011:3–2019:4, for
the construction sector: Germany and France 1991:1–2019:4

Eurostat

Business situation
of firms in the
services sector

Survey data for industries; quarterly data series; seasonally
adjusted; data availability: Germany 1995:2–2019:4, France
1991:1–2019:4, Italy 1998:1–2019:4, UK 1997:1–2019:4

Eurostat

Notes: All series were downloaded from the cited sources in March 2021 at the most recent vintage available
at that time.

Table A2: Variables used in Section 5: Description and sources

Variable Description Source
Gross value added
ICT manufacturing

Annual time series for ICT manufacturing is converted into a
quarterly data series using the real production index for the
manufacture of computer, electronic and optical products
(c.e.o. products), Chow-Lin procedure, the annual correlation
between both time series is 0.89; constant prices; seasonally
and working day adjusted; period 1991:1–2017:4

Federal Statistical
Office (Destatis)

Deflator ICT
manufacturing

Deflator gross value added corresponds to nominal gross
value added divided by real gross value added; annual time
series for ICT manufacturing is converted into a quarterly
series using the producer price index of c.e.o. products,
Chow-Lin procedure, the annual correlation between both
time series is 0.69; seasonally adjusted; period 1991:1–2017:4

Destatis

Hours worked ICT
manufacturing

Quarterly data series is constructed using the hours worked
series for the total manufacturing, Chow-Lin procedure, the
annual correlation between both time series is 0.95;
seasonally adjusted; period 1991:1–2017:4

Destatis

Employment ICT
manufacturing

Quarterly data series is constructed using the employment
series for the total manufacturing, Chow-Lin procedure, the
annual correlation between both time series is 0.95;
seasonally and working day adjusted; period 1991:1–2017:4

Destatis

Continued on next page
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Table A2 – Continued from previous page
Variable Description Source
Gross value added
ICT services

Annual time series for the two ICT sub-sectors are converted
into a quarterly data series using the real gross value added
time series for the total German information and
communication sector (ICT sector), Chow-Lin procedure, the
annual correlations between both time series are 0.76
(telecommunication) and 0.83 (IT services); constant prices;
seasonally and working day adjusted; period 1991:1–2017:4

Destatis

Nominal gross
value added ICT
services

Quarterly data series are constructed using the nominal gross
value added time series for the total IC sector, Chow-Lin
procedure, the correlations between these time series are 0.79
(telecommunication) and 0.75 (IT services); constant prices;
seasonally and working day adjusted; period 1991:1–2017:4

Destatis

Hours worked ICT
services

Quarterly data series are constructed using the hours worked
series for the total IC sector, Chow-Lin procedure, the annual
correlations between these time series are 0.69
(telecommunication) and 0.74 (IT services); constant prices;
seasonally and working day adjusted; period 1991:1–2017:4

Destatis

Employment ICT
services

Quarterly data series are constructed using the employment
series for the total IC sector, Chow-Lin procedure, the annual
correlations between these time series are 0.53
(telecommunication) and 0.85 (IT services); constant prices;
seasonally and working day adjusted; period 1991:1–2017:4

Destatis

Gross value added
total ICT sector

Growth rate is computed using the sum of the weighted
quarterly growth rates of real gross value added of the ICT
manufacturing and the ICT services, the corresponding
weights are the proportions in nominal gross value added of
all three ICT sectors of the previous quarter; period
1991:1–2017:4

Destatis

Private
consumption

Final consumption expenditures of households; constant
prices; seasonally and working day adjusted; period
1991:1–2017:4

Destatis

Equipment
investment

Gross fixed capital formation: machinery and equipment;
constant prices; seasonally and working day adjusted; period
1991:1–2017:4

Destatis

Terms of trade Ratio between export and import deflator; seasonally and
working day adjusted; period 1991:1–2017:4

Destatis

Notes: ICT manufacturing corresponds to manufacture of computer, electronic and optical products. ICT
service sector includes the two service sectors telecommunication and IT services (computer programming,
consultancy and related activities). All series were downloaded from the cited sources in May 2020 at the
most recent vintage available at that time.
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B Assignment of industries to sectors and utilization adjustment
coefficients

Table B1: Composition of the three broad sectors

Industry sub-sectors NACE Codes
Nun-durable manufacturing

Food products, beverages, tobacco products C10–12
Textiles, wearing apparel, leather and related products C13–15
Products of wood, cork, and paper; printing and reproduction C16–18
Chemicals and chemical products; pharmaceuticals C20–21
Rubber, plastic, and other non-metallic mineral products C22–23

Durable manufacturing
Basic metals; fabricated metal products C24–25
Computer, electronic and optical products; electrical equipment C26–27
Machinery and equipment C28
Motor vehicles, trailers and semi-trailers; other transport equipment C29–30
Furniture; other manufacturing; repair and installation of machinery and equipment C31–33

Non-manufacturing
Electricity, gas and water supply D,E
Construction F
Wholesale and retail trade; repair of motor vehicles and motorcycles G
Transportation and storage H
Accommodation and food service activities I
Information and communication J
Financial and insurance activities K
Professional, scientific and technical activities; administrative and support service
activities

M,N

Arts, entertainment and recreation; other service activities R,S

Notes: The table lists the industry sub-sectors and NACE Codes that form the three broad sectors for
which Comin et al. (2020) provides estimates which we use to determine an aggregate measure of capacity
utilization in Section 2.2.
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Table B2: Estimates for utilization adjustment coefficients by Comin et al. (2020)

Germany France Italy United Kingdom

Elasticities β̂
Non-durable manufacturing 0.562 0.070 0.400 0.119
Durable manufacturing 0.392 0.255 0.337 0.228
Non-manufacturing 0.122 0.203 0.201 0.376

Notes: This tables presents the elasticities β̂i for the three broad sectors used in Equation 2. The
estimates for utilization adjustment coefficients are extracted from Comin et al. (2020), Table 7 (“Uti-
lization adjustment regressions (survey-based utilization proxy)”.

C Identification of U.S. technology shocks
In this Appendix, we explain in more detail the identification of exogenous U.S. technology
changes that we use in Section 3.2. We apply the medium-run identification procedure
proposed by Uhlig (2004a,b). This procedure extracts the structural shock that accounts
for the largest forecast error variance share of fluctuations in U.S. PTFP over a certain time
span.

In reduced form, the moving average representation of Yt – which is a k × 1 vector of
endogenous variables at time t where we order U.S. purified TFP first – is given by:

Yt =C (L)ut. (C1)

The vector of prediction errors is denoted by ut with a covariance matrix of ∑u. The
vector of structural shocks εt can be represented as a linear combination of prediction errors
ut = Aεt. To derive εt, the impact matrix A must satisfy ∑

u = AA′. Because of the
symmetry of ∑u the solution is not unique. By conducting a Cholesky decomposition of∑

u, we obtain a matrix Ã. This allows us to condense the entire space of acceptable impact
matrices to A = ÃQ, where Q is a k × k orthonormal matrix (QQ′ = I). The resulting
structural moving average representation of Yt is:

Yt =C (L) ÃQεt. (C2)

The goal of the identification approach by Uhlig (2004a) is to select the structural shock
that accounts for the largest forecast error variance share of some target variable yi,t in Yt

over a forecast horizon h = h ≤ h. Following Uhlig (2004a), we set the starting point h of
this forecast horizon to 12 quarters, and the ending point h to 40 quarters.

The forecasting equation of yi,t for h steps ahead can be written as:
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yi,t+h −Etyi,t+h = e′i

[
h−1∑
l=0

ClÃQεt+h−l

]
, (C3)

where ei is a column vector with one in the i-th position and zeros elsewhere. The maxi-
mization problem that determines the shock that explains most of the forecast error variance
of the i-th variable in Yt is:

q∗1 = arg maxq1e
′
i

 h∑
h=h

h−1∑
l=0

ClÃq1q
′
1Ã
′C ′l

ei s.t. q′1q1 = 1, (C4)

where q1 is a vector of unit length that represents a column of Q. This problem can be
expressed as Sq1 = λq1, where

S =
h∑

h=h

h−1∑
l=0

(
ClÃ

)′
(eie

′
i)
(
ClÃ

)
. (C5)

By solving for the eigenvector q1 with the maximal eigenvalue λ of the matrix S, we receive
the structural shock associated with the largest forecast error variance of yi,t over our forecast
horizon h= h≤ h.
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D International spillover effects: Robustness checks

Figure D1: Robustness check: Effects of U.S. technology shocks on PTFP measures in
European countries, broader measure for the rest of the world

Notes: The figure shows the accumulated responses of purified TFP (PTFP) in major European countries
after an exogenous increase in U.S. TFP (technology shock) for different measures for the rest of the world
(ROW). The U.S. technology shock amounts to a one percent increase in U.S. PTFP after 20 quarters.
Full lines are point estimates using our baseline SVAR model, dashed lines are point estimates from a
specification where we include a weighted Solow residual for the 13 countries Australia, Austria, Canada,
Germany, Finland, France, Ireland, Italy, Japan, South Korea, Sweden, and the United Kingdom instead of
the weighted PTFP measure for the four European countries, dotted blue lines are point estimates from a
specification where we include weighted labor productivity for these 13 countries. Blue shaded areas: 68%,
90%, and 95% confidence bands are constructed using a recursive design wild bootstrap, see Gonçalves and
Kilian (2004), and refer to the baseline specification.
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Figure D2: Robustness check: Effects of U.S. technology shocks on different productivity
measures in European countries

Notes: The figure shows the accumulated responses of different country-specific technology measures in
major European countries after an exogenous increase in U.S. TFP (technology shock). The U.S. technology
shock amounts to a one percent increase in U.S. PTFP after 20 quarters. Full lines are point estimates using
our baseline PTFP measure, dashed lines are point estimates using the Solow residual, dotted blue lines
are point estimates using hourly labor productivity. These measures are also used for the average European
productivity measure that enters the SVAR model. Blue shaded areas: 68%, 90%, and 95% confidence bands
are constructed using a recursive design wild bootstrap, see Gonçalves and Kilian (2004), and refer to the
baseline specification.
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Figure D3: Robustness check: Effects of U.S. technology shocks on PTFP measures in
European countries, model specifications

Notes: The figure shows the accumulated responses of purified TFP (PTFP) in major European countries
after an exogenous increase in U.S. TFP (technology shock) for different identification assumptions. The
U.S. technology shock amounts to a one percent increase in U.S. PTFP after 20 quarters. Full lines are point
estimates using our baseline SVAR model. Dashed lines are point estimates from an identification procedure
using a Cholesky decomposition. Dotted blue lines refer to a specification where we set the starting point
of the forecast horizon to 0 quarters, and the ending point to 4 quarters. Blue lines with circles are point
estimates from our baseline estimation with 8 instead of 4 lags. Blue shaded areas: 68%, 90%, and 95%
confidence bands are constructed using a recursive design wild bootstrap, see Gonçalves and Kilian (2004),
and refer to the baseline specification.
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E Determining quarterly time series for the ICT sector

To construct the data set in Section 5, we need to determine quarterly time series for gross
value added, the price deflators and working hours for the ICT and the non-ICT sector. To
this end, we interpolate the annual data provided by Destatis using the Chow-Lin interpo-
lation procedure and higher frequency indicators. As a prerequisite, these indicators have
to possess a high time-series correlation with our considered main series at an annual basis.
For the ICT manufacturing economic sector, we use the industrial production index and
the producer price index for manufacturing of computer, electronic and optical products as
indicators for real gross value added and the price deflator. As our measure of total hours
worked, we use total manufacturing hours. For both ICT services sectors, we use corre-
sponding time series of the total ICT sector as the respective indicator series for gross value
added (nominal and real) and hours worked.21

To gauge the validity of our constructed series, each panel of Figure E1 compares the
single indicator series with our main series, together with the correlation coefficient of the
time series. All indicator series are highly correlated with their respective main series, all
correlation coefficients exceed 0.7 at an annual level. For the total hours worked and gross
value added series for the manufacture of electronic and optical products, we even find
correlation coefficients of 0.9 or above. With these indicator series at hand, we determine
quarterly time series for real gross value added, the price deflators and working hours for all
three economic sectors that form the ICT sector using the Chow-Lin interpolation procedure.

In a next step, we use the quarterly time series of all these ICT-producing sectors to
construct the aggregate time series for the total ICT sector. We consider that the real gross
value time series has to be constructed as a chain index. It is then possible to determine the
corresponding data series for the non-ICT sector by using the aggregated time series for the
ICT sector and the quarterly time series for the total economy.
21Besides telecommunication and IT services, the total ICT services sector contains the industries publishing
activities, motion picture, video and television program production, sound recording, music publishing
activities as well as programming and broadcasting activities.
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Figure E1: Comparison between main- and indicator series used for Chow-Lin interpolation
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Notes: This figure presents the annual growth rates for the time period 1992 to 2017. The abbreviation
“Data proc. equip.” defines manufacturing of computer, electronic and optical products. For the ICT
manufacturing sector, we use the production index and producer price index for manufacturing of computer,
electronic and optical products as indicators for real gross value added and the deflator. For total hours
worked, we employ as indicator the hours series regarding total manufacturing. The abbreviation “IT
services” contains computer programming, consultancy and related activities. For both ICT services sectors,
we use corresponding time series of the total ICT sector as the respective indicator series for gross value
added (nominal and real) and hours worked. In each panel, we present for each time series of the respective
ICT industry the correlation coefficient with the corresponding indicator. The data source is Destatis.
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F QR-decompositions to extract the ICT technology shocks

In step 2 of our identification procedure in Section 5.2, we extract ICT-related technology
shocks. To do so, we apply two QR-decompositions to the three eigenvectors that define the
auxiliary shocks uICT

t , unonICT
t , and uprice

t . Conceptually, this is equivalent to estimating
two separate regressions as explained in Section 5.2.

Part 1: The first QR-decomposition is calculated from the eigenvectors that define
the shocks to the relative price and to the productivity of the non-ICT sector (uprice

t and
unonICT

t ). Ordering the eigenvector related to the relative price first, and the vector related
to productivity of the non-ICT sector second, the first eigenvector remains unchanged. The
resulting second vector is obtained by subtracting its projection over the first one. This is
equivalent to the first regression in step 2.

Part 2: The second QR-decomposition is calculated from the second column of the
orthogonal ‘Q part’ of the first QR-decomposition and the eigenvectors that define the shocks
to productivity of the ICT sector (uICT

t ). Ordering this ‘Q part’ first and the ICT-vector
second, the QR-decomposition is equivalent to the second regression in step 2. The second
column from the ‘Q part’ of the second QR-decomposition defines the restriction to calculate
the ICT technology shock.
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G Digitization and productivity: Robustness checks

Figure G1: Robustness check: Effects of an ICT technology shock, model specifications

Notes: The panels depict accumulated impulse response functions after an ICT technology shock identified
using our two-step procedure with varying identification assumptions regarding the forecast horizon for the
medium-run restrictions. Full lines are point estimates using our baseline model. Dashed lines are point
estimates from an identification procedure using a Cholesky decomposition for the relative price. Dotted
blue lines refer to a specification where we set the starting point of the forecast horizon to 12 quarters, and
the ending point to 40 quarters for the relative price. Blue lines with circles refer to a specification where
we set the starting and ending point of the forecast horizon to 80 quarters for the labor productivities in the
ICT and non-ICT sector. Blue shaded areas: 68%, 90%, and 95% confidence bands are constructed using a
recursive design wild bootstrap, see Gonçalves and Kilian (2004), and refer to the baseline specification.
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Figure G2: Robustness check: Effects of an ICT technology shock, larger SVAR model

Notes: The panels depict accumulated impulse response functions after an ICT technology shock identified
using our two-step procedure with including additional variables in our SVAR model. Full lines are point
estimates using our baseline SVAR model with five variables (labor productivity of the non-ICT sector and
the ICT sector, the relative price of produced value added between the ICT sector and the non-ICT sector,
hours per worker and total employment). Dashed lines are point estimates from a specification including
the terms of trade defined as the ratio of the export and the import deflator (ToT) as additional variable.
Dotted blue lines refer to a specification with consumption (C) and investment (I) as additional variables.
Blue lines with circles are point estimates from a specification with all three variables as additional variables
(ToT, C, and I). Blue shaded areas: 68%, 90%, and 95% confidence bands are constructed using a recursive
design wild bootstrap, see Gonçalves and Kilian (2004), and refer to the baseline specification.
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