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1. Introduction
The long and persistent decline of real interest rates in developed economies is one

of the central macroeconomic trends of recent decades. This decline in interest

rates has coincided with low productivity growth, rising market power, and declining

business dynamism. Productivity growth has fallen, except for a temporary burst in

the late 1990s and early 2000s (Fernald et al., 2017). Markups, market concentration,

and productivity gaps between leaders and laggards have been increasing (Hall,

2018; Autor et al., 2020; Andrews et al., 2016).1 An ongoing scholarly effort aims to

understand the linkages among these trends.2 In a recent contribution, Liu, Mian

and Sufi (2020) develop a Schumpeterian model in which low interest rates reduce

productivity growth by entrenching low-R&D market leaders. However, the effects of

interest rates on productivity growth, market power, and innovation remain far from

well understood.

Our paper evaluates whether low interest rates can explain the trends of low

productivity growth and declining business dynamism. We study a parsimonious

Schumpeterian model. Firms in each industry compete in the product market and

invest in R&D to improve productivity. To begin, we show how the effects of lower

interest rates on growth and market power depend on the nature of creative destruc-

tion. Much of the literature assumes that innovation by market laggards is sometimes

radical or creative, allowing the laggard to immediately catch up to the leading tech-

nology (Aghion et al., 2001; Acemoglu and Cao, 2015). Other research assumes that

laggards innovate only by incrementally refining their existing technologies (Harris

and Vickers, 1987; Liu et al., 2020). These alternative views about creative destruction

have very different macroeconomic implications.

In Liu et al. (2020), laggards can innovate only incrementally, making leadership

1Akcigit and Ates (2021) review the literature on declining dynamism.
2Potential explanations include the rising importance of intangible or organizational capital

(Aghion et al., 2019b; De Ridder, 2019), anti-competitive practices that reduce knowledge diffusion
(Akcigit and Ates, 2019), declining innovativeness of market laggards (Olmstead-Rumsey, 2020), and
low population growth (Peters and Walsh, 2020).
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persistent. A lower interest rate increases the value of being a persistent market

leader and therefore creates a costly R&D race in competitive industries. Because

achieving leadership requires winning this costly R&D race, a lower interest rate

discourages laggards, allowing leaders to remain entrenched despite innovating little.

As a result, starting from a low interest rate, further declines in the interest rate lead

to lower growth. At the other extreme, in Acemoglu and Akcigit’s (2012) quick catch-

up model, laggard innovation is always radical (rather than incremental), making

leadership less persistent. In their model, a lower interest rate increases productivity

growth by reducing the required return on R&D.3

Because the effects of low interest rates on growth and competition depend on

the nature of creative destruction, we structurally estimate a Schumpeterian model

that encompasses these alternatives. Our model nests laggard innovation that is

always incremental or always radical, as well as intermediate cases. We also nest a

range of assumptions about patent policy, which also shapes creative destruction.

We identify our model’s parameters using salient moments characterizing market

power, innovation, and firm dynamics. Our estimated model provides a good fit to

the US data on reallocation and the cross section of markups, profit volatility, R&D,

and innovation output.4 These moments are informative about the nature of creative

destruction.

To evaluate whether low interest rates can explain recent trends in innovation

and market power, our central exercise studies the aggregate implications of a lower

household discount rate in the estimated model.5 Our parameter estimates imply

a meaningful chance that innovating laggards quickly catch-up to leaders. Corre-

spondingly, as the discount rate falls, productivity growth rises and market power

declines; the interest rate falls less than one-for-one with the discount rate. These

3Radical innovation by laggards can be considered a type of “advantage of backwardness” (Ger-
schenkron, 1962). Acemoglu et al. (2020) studies the origins of incremental and radical innovation.

4When we extend the model to include entry, the model fits well the employment share of firms of
different ages and the Foster et al. (2001) growth decomposition.

5Changes in the discount rate represent factors such as demographics and risk appetite that are
not modeled and affect the demand for claims on firm profits.
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results suggest that recent key macroeconomic trends of low productivity growth

and rising markups are explained by factors other than low interest rates.6

Unpacking the mechanism with the innovation multiplier. A lower discount

rate affects productivity growth through three channels. First, it contributes to higher

innovation and growth by reducing the required return on R&D (“valuation channel”).

Second, these valuation-driven increases in innovation induce strategic interactions

among firms that can affect aggregate productivity growth (“strategic channel”).7

Third, valuation-driven increases in innovation affect the distribution of leader-

laggard productivity gaps, which impacts aggregate productivity growth because

R&D is highest in competitive industries (“composition channel”). Depending on the

nature of creative destruction, strategic interactions among firms and composition

effects can amplify, dampen, or even overturn the boost to R&D through the valuation

channel.

To characterize and quantitatively evaluate these channels, we introduce an

innovation multiplier that maps the cross section of valuation-driven increases in

firm innovation into the general equilibrium effect on aggregate growth. Based solely

on the direct effect of valuation-driven increases in innovation, a 1 percentage point

decline in the discount rate would increase annual growth by 15 basis points. We

find that the strategic channel subtracts 6 basis points of growth. The composition

channel adds 1 basis point. Thus, the strategic and composition channels on balance

dampen, but do not overturn, the valuation effect of lower interest rates on growth.

Robustness and entry. To assess the robustness of our benchmark model’s re-

sults, we introduce firm entry, inelastic labor supply, and imperfect substitution

across each industry’s varieties. We also introduce alternative assumptions about

the elasticity of innovation to R&D, and alternative targeted values for key moments

including the distribution of markups. We re-estimate the model after each of these

6Aside from low interest rates, potential explanations for low aggregate productivity growth and
rising markups that have been proposed in the literature are detailed in footnote 2.

7Section 5 explains these strategic interactions in detail. For example, we show how valuation-
driven increases in laggard innovation can generate higher leader innovation (through an “escape
competition” effect) or lower leader innovation (through a “trickle down” effect).
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modifications. Our results are robust. All of the re-estimated models feature some

radical innovation for the laggard or entrant, with growth increasing as the discount

rate declines. Our results are also robust to incorporating optimal patent policy and

financial frictions, as discussed next.

Patent policy. Patent policy is another key aspect of creative destruction that

shapes the relation of growth, competition, and the interest rate. We therefore

ask: How should patent policy be optimally adjusted when there is a persistent

change in the interest rate? And, if patent policy is adjusted optimally, what are

the implications for the relation of interest rates, productivity growth, and market

power? In our estimated model, the social planner faces a trade-off: Weaker patent

protection reduces markups and production distortions, but also reduces innovation

and productivity growth. As the discount rate falls, this trade-off changes in a way that

leads the social planner to strengthen patent protection: Growth, but not production

distortions, becomes much more sensitive to the patent expiry rate.8 As a result, if

the social planner adjusts patent policy optimally, the growth-interest rate relation

remains negative and slightly steepens.

To understand how these results depend on the nature of creative destruction, we

also study an economy with purely gradual laggard advancement. In this sclerotic

economy, at low interest rates, laggards are discouraged and leaders innovate only

enough to counteract patent expiry. As a result, at low interest rates, this economy of-

fers a free lunch to the social planner: Weakening patent protection reduces markup

distortions and increases growth, by forcing leaders to innovate more to maintain

their advantage. Moreover, as the interest rate declines, the planner prefers to weaken

patent protection (the opposite of what obtains in our estimated benchmark model),

to counter the growth-reducing, anti-competitive effects of a low interest rate. In this

economy, if patent policy is held constant, then, as the interest rate approaches very

low levels, growth declines. Remarkably, if the social planner adjusts patent policy

8This result holds whether the social planner focuses only on steady-state welfare or also takes
into account transition dynamics.
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optimally, then growth rises even as the interest rate approaches very low levels.

Credit access. Financial frictions are another factor that can affect the relation

of interest rates, productivity growth, and market power. We therefore introduce

a limited commitment constraint that can restrict R&D. As expected, the financial

constraint does not bind for leaders with large technology advantages, which have

low desired R&D and high pledgeable assets. However, the constraint can bind

for leaders in competitive industries (which, absent the constraint, choose high

R&D but have lower pledgeable profits than leaders with large advantages) and for

laggards. Again, the consequences for aggregate productivity growth depend on the

nature of creative destruction. In our estimated benchmark model, tighter credit

access reduces productivity growth, by constraining the R&D of leaders with small

technology advantages; these leaders contribute importantly to aggregate growth.

However, in the economy with only incremental laggard advancement, when the

discount rate is low, tighter credit access can increase growth, because constraints

on leaders with small technology advantages increase the share of high-R&D, low-

market-power industries. Moreover, when access to credit is very restricted, it is

no longer the case that growth declines as the interest rate falls to very low levels,

because lower discount rates relax the financial constraint by increasing the value of

pledgeable profits.

Related literature. Low interest rates and low productivity growth pose chal-

lenges to monetary and fiscal policy. The literature on “secular stagnation” empha-

sizes how a decline in aggregate consumption demand is exacerbated by leverage

and the zero lower bound (Hansen, 1939; Eggertsson and Krugman, 2012; Summers,

2014). Such negative effects of lower aggregate demand would be further amplified if

lower demand triggers a decline in productivity growth through its effects on firms’

strategic R&D races, as in Liu et al. (2020). However, we find in our estimated model

that lower aggregate consumption demand boosts growth, dampening the trans-

mission of lower aggregate demand to the interest rate. Benigno and Fornaro (2017)

shows that lower demand can reduce innovation and productivity growth if the zero
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lower bound creates a stagnation trap. Our paper also contributes to the literature

on misallocation (Hsieh and Klenow, 2009; Peters, 2020), by studying optimal patent

policy in a low interest rate environment.

The paper is organized as follows. Section 2 presents the model. Section 3 studies

how the nature of creative destruction affects growth and the interest rate. Section 4

describes the model estimation and presents the main results. Section 5 unpacks

the economic mechanism by introducing the innovation multiplier. Sections 6 and 7

study how the relation of growth, market power, and the interest rate depends on

patent policy and credit access. Section 8 concludes. The Internet Appendix pro-

vides additional material, including extensions of the model, proofs, and robustness

exercises.

2. Model

2.1 Preferences and final goods

The economy admits a representative household with utility function∫ ∞
t=0

e−ρt
(

ln(C(t))− L(t)
)
dt, (1)

where C(t) is consumption of the final good, L(t) is labor, and ρ > 0 is the discount

rate.

A continuum of intermediate-goods industries is indexed by j ∈ [0, 1]. Each

industry includes two firms. The final good is produced using intermediate goods

according to the production function, lnY (t) =
∫ 1

0
ln[y1(j, t)

κ−1
κ + y2(j, t)

κ−1
κ ]

κ
κ−1dj,

where yi(j, t) is the quantity produced by firm i ∈ {1, 2} in industry j. The production

function is a Cobb-Douglas aggregator across industries with a constant elasticity of

substitution κ > 1 between the two varieties within each industry. The final good is

the numeraire and sold in a perfectly competitive market.

2.2 Intermediate goods market

Each firm uses a linear production technology. At time t, firm i in industry j produces

yi(j, t) = qi(j, t)li(j, t), where qi(j, t) is the firm’s labor productivity and li(j, t) is labor
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hired at wagew(t).We next drop the time t and industry j indexes to characterize equi-

librium in the intermediate goods market, taking each firm’s productivity as given.

Firms compete in prices, à la Bertrand. Firm i sets price pi. Cobb-Douglas aggrega-

tion implies that sales are equal across industries. Firm i solves Πi = maxpi(pi − w
qi

)yi,

subject to: p1
p2

= (y1
y2

)−
1
κ and Y = p1y1 + p2y2.

When it causes no confusion, we denote the leader by i and the laggard by −i.

Equilibrium gross markups are ψi = κ+ν1−κ

κ−1
and ψ−i = κν1−κ+1

(κ−1)ν1−κ
, where the relative

price ν ≡ pi
p−i

is defined implicitly by νκ = q−i
qi

κνκ−1+1
κ+νκ−1 . The equilibrium profits and

labor demand are

πz = 1− κ

κ− 1
ψ−1
z lz =

πz
ψz − 1

1

ω
, (2)

for z ∈ {i,−i} and where πz = Πz
Y

and ω = w
Y

are scaled profits and wages, respectively.

The leader’s markup ψi and profit πi are weakly increasing in the leader’s relative

productivity qi
q−i
. The laggard’s markup ψ−i and profit π−i are weakly increasing in

the laggard’s relative productivity q−i
qi

. In industries with neck-and-neck competition

(qi = q−i), each firm earns a profit πi = π−i = 1
κ+1

and the markup is ψi = ψ−i = κ+1
κ−1

.

When within-industry varieties are perfect substitutes, limit pricing obtains and only

the leader produces, with leader markup ψi = qi
q−i

and profit πi = 1− ψ−1
i .

Productivity ladder. Firms in each industry are ordered on a quality ladder. Each

rung represents a proportional productivity improvement of scale λ > 1. The number

of rungs separating leader and laggard is s ∈ {0, 1, ..., s̄} ≡ S+. We assume that the

maximum possible technology gap between leader and laggard within an industry is

s̄. The technology position of a firm at time t is denoted by σ ∈ {−s̄, . . . , s̄} ≡ S. In an

industry with gap s > 0, the leader has technology position σ = s and the laggard’s

position is σ = −s. A firm with position σ = 0 is tied.

An innovating leader advances one rung and its productivity increases by a factor

λ.An innovating laggard can advance incrementally or radically. With probability (1−

φ), an innovating laggard advances one rung—a slow catch-up innovation (Acemoglu

and Akcigit, 2012). With probability φ, an innovating laggard obtains a quick catch-
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up innovation, closing the gap completely.9 The expected number of rungs that

an innovating laggard advances, 1 + φ(s − 1), is strictly increasing in the industry

gap if the catch-up speed φ is strictly positive. Thus, an innovation catch-up speed

greater than zero embeds an “advantage of backwardness” (Gerschenkron, 1962). A

firm in position σ innovates at rate xσ by hiring G(xσ;B) = [xσ/B]
1
γ workers as R&D

scientists. B > 0 is an R&D cost scaling parameter and γ > 0 captures the convexity

of R&D costs in the arrival rate.

Patent expiry also allows a laggard to partly or completely catch up with its com-

petitor. Patent expiry occurs at rate η ≥ 0. With probability (1 − ζ), patent expiry

shrinks the gap by one rung. With probability ζ, patent expiry collapses the gap to

zero.

2.3 Equilibrium

We focus on Markov perfect equilibria. We characterize the balanced growth path

(BGP) in which output grows at a constant rate g with a stationary distribution of

technology gaps. All growing variables are scaled by Y (t). The scaled value function

of a firm in position σ is vσ(t) ≡ Vσ(t)
Y (t)

, where Vσ(t) is the firm’s discounted expected

net profits. Scaled operating profits for a firm in position σ are πσ, from (2).

Household and firm maximization. Under preferences (1), household maxi-

mization implies the Euler equation
.

C

C
=

.

Y

Y
= g = r − ρ (3)

and scaled wage ω = 1.

Denote the innovation strategy of a firm’s competitor by {xcσ}σ∈S, where xcσ is

the innovation rate of a competitor in technology position σ. Each firm chooses its

innovation strategy to maximize discounted expected future profits, taking as given

its competitor’s innovation strategy and the wage rate. The firm trades off R&D costs

against the future discounted profits from an innovation. Operating profits are taxed

9Internet Appendix Section A.2 extends the model to include the possibilities of the laggard ad-
vancing an intermediate number of rungs or even leapfrogging the leader.
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at rate τ .

For a leader (i.e., a firm with σ > 0), using the Euler equation, the steady state

value function satisfies

ρvσ = max
xσ

(1− τ)πσ︸ ︷︷ ︸
Operating profits

−G(xσ)ω︸ ︷︷ ︸
R&D costs

+ xσ∆vσ︸ ︷︷ ︸
Own innovation

+

xc−σ(φv0 + (1− φ)vσ−1 − vσ)︸ ︷︷ ︸
Competitor innovation

+ η(ζv0 + (1− ζ)vσ−1 − vσ)︸ ︷︷ ︸
Patent expiry

. (4)

The leader value function has three main parts. First, firms earn after-tax operating

profits (1− τ)πσ. Second, firms incur R&D costs and, if successful in R&D, earn the

expected capital gain from own innovation, ∆vσ, with ∆vσ = vσ+1 − vσ for σ ≥ 0.

Third, leader firms can experience capital losses from a competitor innovation or

patent expiry. Competitor innovation, with arrival rate xc−σ, reduces the leader’s

technology position to zero (with probability φ) or by one rung (with probability

1 − φ). Patent expiry, with arrival rate η, also reduces the leader firm’s technology

position by at least one step.

Similarly, the value function for a laggard (i.e., a firm with σ < 0) is

ρvσ = max
xσ

(1− τ)πσ︸ ︷︷ ︸
Operating profits

−G(xσ)ω︸ ︷︷ ︸
R&D costs

+ xσ∆vσ︸ ︷︷ ︸
Own

innovation

+

xc−σ(vσ−1 − vσ)︸ ︷︷ ︸
Competitor innovation

+ η(ζv0 + (1− ζ)vσ+1 − vσ)︸ ︷︷ ︸
Patent expiry

. (5)

For a firm in technology position σ < 0, the capital gain from a successful innovation

is ∆vσ = φv0 +(1−φ)vσ+1−vσ. Equation (5) also holds for tied firms if one substitutes

η = 0.

For a firm in any position σ, profit maximization implies

xσ = G′−1(
∆vσ
ω

). (6)

Because G is twice differentiable and strictly convex, the firm innovation rate xσ is

increasing in the capital gain from innovation and decreasing in the cost of R&D

measured by the scaled wage ω.
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Market clearing and aggregate growth. Let µs denote the share of industries

with technology gap s. The steady-state industry distribution {µs}s∈S+ is obtained by

equating outflows and inflows for each gap s. For s > 0,

(xs + x−s + η)µs︸ ︷︷ ︸
Outflow from gap s

= µs+1((1− φ)x−(s+1) + (1− ζ)η) + µs−1xs−1(1 + 1s=1)︸ ︷︷ ︸
Inflow to gap s

. (7)

For an industry with a positive gap s, outflows occur because of leader or laggard

innovation or patent expiry. Inflows to gap s occur when there is an incremental

laggard innovation or incremental patent expiry in an industry with gap s + 1. An

additional source of inflows to gap s is a leader innovation in an industry with gap

s− 1. The indicator function for s = 1, or 1s=1, is used to take into account that a tied

industry shifts to a one-rung gap when either of the two tied firms innovates.

The stationary distribution of gaps is determined by (7), which applies for s > 0,

together with the normalization
∑

s∈S+ µs = 1. For completeness, the outflow-inflow

identity for tied industries is

2x0µ0︸ ︷︷ ︸
Outflows

= µ1(x−1 + η) +
∑

σ∈(2,...,s̄)

µσ(φx−σ + ζη).

︸ ︷︷ ︸
Inflows

(8)

Outflows from neck-and-neck competition occur when either of the two firms inno-

vates. Inflows to neck-and-neck competition occur due to any innovation or patent

expiry in industries with a one-rung gap and due to quick catch-up innovation or

patent expiry in industries with a gap of more than one rung.

Aggregate growth, g, is

g = lnλ
∑
s∈S+

µs(1 + 1s=0)xs = lnλ
s̄∑
s=1

µs
[
(φs+ 1− φ)x−s + (ζs+ 1− ζ)η

]
. (9)

Growth equals tied and leader firms’ productivity gains, which accrue through in-

novation. Equivalently, growth equals laggards’ productivity gains, which accrue

though innovation and patent expiry. Laggard innovations do not directly advance

the productivity of technologies in use. However, in a BGP, laggard advances must

equal leader advances, highlighting the connection between creative destruction
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and growth.

The aggregate demand for labor is

L =
∑
s∈S+

µs [G(xs) +G(x−s) + li,s + l−i,s] , (10)

where li,s(l−i,s), given by (2), is the demand for production labor of a leader (laggard)

in an industry with gap s. In an industry with gap s, the demand for R&D workers is

G(xs) +G(x−s).

Definition. A balanced growth path equilibrium is, for every t, the tuple Υ ≡

(g, {µs}s∈S+ , {xσ}σ∈S) and (pj,z, yj,z)j∈[0,1],z∈{i,−i} such that (i) prices and quantities of

intermediate goods (pj,z, yj,z) satisfy the intermediate goods production function

and the profit-maximization conditions (2); (ii) ∀σ, xσ is a best response to {xcι}ι∈S;

(iii) ∀σ, xcσ = xσ (symmetry); (iv) growth is determined by (9); (v) the distribution of

technology gaps {µs}s∈S+ is stationary; and (vi) labor and goods markets clear, with

aggregate labor given by (10).

3. Growth-interest rate relation: A first pass
This section studies the relation of growth and the interest rate in four models with

starkly different assumptions about creative destruction. In Acemoglu and Akcigit

(2012) and Akcigit and Ates (2019), there is at least some chance of quick catch-up

through innovation or patent expiry.10 In Liu et al. (2020), innovation and patent

expiry are both “pure” slow catch-up (φ = 0, ζ = 0).

In the Acemoglu and Akcigit (2012) and Akcigit and Ates (2019) models, growth

rises monotonically as the discount rate falls, with the slope varying notably across

models (Figure 1, left panel). In the Liu et al. (2020) model, growth has an inverted-

U relation with the discount rate (black lines in the middle and right panels).11

Correspondingly, there is a growth “speed limit”—a maximum growth rate such that

further declines in the interest rate reduce growth. However, introducing a 5% chance

10See Figure 1 for details. Internet Appendix A extends our model to nest Akcigit and Ates (2019),
which includes entry. Regarding entry, see also Section 4.5.

11As detailed in Internet Appendix B, the middle and right panels of Figure 1 incorporate a modifi-
cation to the microfoundation for profits, as in the quantitative model of Liu et al. (2020).
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Figure 1: Growth and the discount rate under alternative assumptions about creative destruction.
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Left panel: The quick catch-up innovation (solid line, φ = 1, η = 0) and slow catch-up innovation
(dashed line, φ = 0, ζ = 1, η = 0.02) models are from Acemoglu and Akcigit (2012). The slow catch-up
innovation with entry (dotted line, φ = 0.0423, ζ = 1, η = 0.0109) model is from Akcigit and Ates
(2019). Middle and right panels: The growth “speed limit” (solid black line, φ = ζ = 0, η = 0.039)
model is from Liu et al. (2020). The other speed limit models are identical except with regard to the
innovation catch-up speed, φ, or the patent expiry rate, η. Internet Appendix B lists the full set of
parameter values for each model.

of quick catch-up through laggard innovation, the inverted-U relation effectively

disappears (middle panel, dotted red line). With a 25% chance of quick catch-up,

as the discount rate goes to zero, growth rises sharply. When there is no chance of

quick catch-up innovation, laggard firms become discouraged as the discount rate

falls, because leadership can only be achieved through a prolonged period of high

R&D and many successive innovations. However, with a small chance of quick catch-

up innovation, laggard firms increase R&D as the discount rate falls, rather than

becoming discouraged. Invigorated laggards force the leaders to increase their R&D

to maintain their advantage, boosting growth along the intensive margin. Moreover,

when a laggard achieves a quick catch-up, its industry returns to the vigorous R&D

race characterizing competitive industries, boosting growth along the extensive

margin.

Patent policy is another key aspect of creative destruction that shapes the relation
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of growth, competition, and the interest rate. Like an increase in innovation catch-up

speed, a higher patent expiry rate in the Liu et al. (2020) model also implies that

laggards do not become discouraged as the discount rate falls; with a higher patent

expiry rate, fewer laggard innovations are required (in expectation) to close the gap

with the leader. Thus, if the patent expiry rate is raised from 4% to 8%, the relation of

growth and the interest rate becomes monotonically negative. To explore this further,

section 6 studies how the growth-interest rate relation changes if the social planner

optimally adjusts patent policy as the discount rate changes.

These results point to the importance of the nature of creative destruction for

the relation between growth and the interest rate. Our model nests innovation that

is purely quick (φ = 1), slow (φ = 0), or in between (0 < φ < 1). We similarly

nest alternative assumptions about the rate and speed of patent expiry. In the next

section, we estimate the model parameters by matching cross-sectional moments

informative about the nature of creative destruction.

4. Quantitative analysis
Tighter restrictions on creative destruction are expected to generate higher markups,

reduced reallocation, and lower profit volatility. Extremely tight restrictions on

creative destruction are also expected to imply market leaders need very little R&D

to maintain their advantage over discouraged laggards. We therefore identify our

model’s parameters using using salient moments characterizing reallocation and the

cross section of markups, innovation output, profit volatility, and R&D.

4.1 Parameters and moment conditions

We set the discount rate to 2% and the corporate tax rate to 20%. In our benchmark

model, the two varieties within each industry are perfect substitutes. We externally

calibrate (γ, η, ζ). The R&D curvature parameter γ is 0.5, as in Peters (2020) and

many others and consistent with empirical estimates discussed in Acemoglu et

al. (2018). We assume full patent protection η = 0, as in Acemoglu and Akcigit’s

13



Table 1: Parameters and Moments.

Parameter estimates Moments used in estimation
Parameter Value Description Model Data

φ 0.283 Productivity growth 1.03% 1.03%
λ 1.018 Markups
B 2.463 Mean 19.42% 19.40%

50th percentile 13.12% 13.64%
90th percentile 41.81% 42.62%

Innovation output
Mean 5.90% 6.75%
50th percentile 0.00% 0.00%
90th percentile 18.17% 19.49%

Profit volatility
All firms 39.30% 45.09%
Top profit quintile 16.25% 21.89%

R&D to sales
All firms 5.50% 5.35%
Top profit quintile 3.59% 2.52%

FHK within 89.85% 90.77%

The parameters (φ, λ,B) minimize the criterion (12). FHK within is the adjusted within moment,
described in Section 4.1.

(2012) benchmark model.12 Full patent protection implies that the patent expiry

speed ζ does not affect the equilibrium. We estimate (φ, λ, B). Section 4.4 provides

robustness. The targeted moments, listed in Table 1, are:

Productivity growth, markups, and innovation output. We target productivity

growth equal to average total factor productivity growth for 1960–2019, from Fernald

et al. (2017). We target the mean, median, and 90th percentile of the industry-

level distribution of net markups, from Hall (2018), and the firm-level distribution

of annual innovation output, from Kogan et al. (2017), defined as the sum of the

economic value of all patents earned (based on stock market reaction to patent

grants), normalized by firm value.

Growth decomposition. Foster et al. (2001) decompose productivity growth into

12Section 4.4 extends the set of estimated parameters to include the patent parameters η and ζ.
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five components using the identity

∆Θt =
∑
i∈Ct

ξit−1∆θit︸ ︷︷ ︸
within

+
∑
i∈Ct

(θit−1 −Θt−1)∆ξit︸ ︷︷ ︸
between

+
∑
i∈Ct

∆θit∆ξit︸ ︷︷ ︸
cross

+
∑
i∈Nt

ξit(θit −Θt−1)︸ ︷︷ ︸
entry

+
∑
i∈Xt

ξit−1(Θt−1 − θit−1)︸ ︷︷ ︸
exit

, (11)

where Ct is the set of continuing firms, Nt of entering firms, and Xt of exiting firms in

industry j between t− 1 and t. In addition, θit = ln(yit
lit

) is the log productivity of firm

i at time t, ξit = pityit∑
i pityit

is the revenue share of firm i at time t, and Θit =
∑

i ξitθit. As

we have not yet introduced entry, we target the adjusted within share, defined as

within divided by the sum of within, between, and cross, obtained from Foster et al.

(2008). The adjusted within statistic is the share of continuing firms’ productivity

growth accounted for by those firms’ productivity improvements holding market

shares constant (i.e., absent reallocation).13

Profit volatility and R&D to sales. We calculate profit volatility and R&D intensity

using COMPUSTAT data. (Internet Appendix C discusses the data in detail.) Operat-

ing profits are sales (SALE) minus cost of goods sold (COGS). We target unconditional

profit volatility (the standard deviation of all firms’ profit growth rates between year

y and y + 1) as well as profit volatility for the top quintile of firms ranked by profits in

the base year y. We similarly target R&D to sales unconditionally and for firms in the

highest profit quintile.

We identify the parameters (φ, λ,B) using the simulated method of moments. We

obtain some model moments directly from the solution for the balanced growth

path equilibrium Υ. For the remaining moments, we compute model values using a

simulation of N = 50, 000 industries for T = 12 years.14 We compare moments in the

13In Section 4.5 we introduce entry and re-estimate the model to match the unadjusted within
component as well as the entry component, with the remaining components as untargeted moments.

14Our simulation method builds on Lentz and Mortensen (2008), Akcigit and Kerr (2018) and
Acemoglu et al. (2018).
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Figure 2: Innovation output and markup distribution.
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Data on markups and innovation output are from Hall (2018) and Kogan et al. (2017).

model and the data, choosing the parameters that minimize the criterion

min
14∑
m=1

weightm

(
|model(m)− data(m)|

1
2
|model(m)|+ 1

2
|data(m)|

)
. (12)

We give aggregate growth and the average markup a weight five times the weight of

the other moments.15 Section 4.4 discusses robustness to alternative values for the

targeted growth rate and markup distribution.

4.2 Identification

The estimated innovation catch-up speed parameter φ indicates a 30% chance that

an innovating laggard closes the technology gap completely (Table 1). Each rung on

the ladder represents a proportional productivity improvement that is fairly small,

1.8%, or ln(λ).

There is a very good fit between the model-implied moments and the data (Table

1). The model replicates well the entire distribution of markups and innovation

output (Figure 2).

15Because median innovation output is zero, the normalized absolute error for this moment in
the expression (12) is undefined whenever the model value is equal to zero. In this case, we set the
normalized absolute error for this moment equal to zero.
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Table 2: Sensitivity Matrix.

Change in ...

Moments φ λ B Initial level
Productivity growth -1.43% 7.19% 5.83% 1.03
Markups

Mean -7.99% 4.71% -0.93% 19.42
50th percentile -9.14% 4.69% -0.93% 13.12
90th percentile -7.86% 4.63% -1.00% 41.81

Innovation output
Mean 1.20% 1.62% 3.67% 5.90
90th percentile 4.80% 0.96% 7.97% 18.17

FHK within -0.35% -0.15% -0.29% 89.85
Profit volatility

All firms 1.78% 1.53% 3.63% 39.30
Top profit quintile 2.56% 0.67% 2.87% 16.25

R&D to sales
All firms -3.29% 4.36% 1.59% 5.50
Top profit quintile -2.13% 2.70% 1.72% 3.59

This table reports the effect on the targeted moments of a 5% increase in the catch-up speed φ,
productivity increase (λ− 1), and R&D cost scaling parameter B. Higher B corresponds to lower R&D
costs. The 50th percentile of the innovation output distribution is omitted because it is equal to zero
for parameter values close to the estimated parameter values.

Table 2 contains a “sensitivity matrix” that reports the change in the targeted

moments for a 5% increase in each structural parameter (Peters, 2020). An increase

in catch-up speed φ reduces markups and increases profit volatility. Lower markups

arise because a higher catch-up speed increases creative destruction mechanically

and encourages laggard R&D. Profit volatility rises because quick catch-up innovation

by laggards sharply reduces leader profits. An increased catch-up speed also raises

average innovation output, with more high-value innovations by laggards. The

adjusted within term falls, as more turnover in market shares implies a larger role for

reallocation in the productivity growth decomposition.

As shown in Figure 3, growth and R&D intensity vary non-monotonically with

φ. As φ increases locally from its estimated value, leaders face a higher risk that

their future profits from an innovation will be wiped out by quick catch-up laggard

innovation, reducing the expected value of leader innovations and thereby inducing
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Figure 3: Mapping from parameters to moments.
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The figure shows how selected moments vary with catch-up speed φ (left panels), innovation step
size λ (middle panels), and R&D cost scaling parameter B (right panels), holding other parameters
constant. All moments are shown in percent.

lower leader R&D. However, if φ decreases to a very low level, growth falls to a low

level, as low-R&D leaders become entrenched.

Increasing the productivity step size λ leads to higher growth and markups, both

mechanically (higher λ implies a greater increase in productivity and markup from

rising one rung on the ladder) and through an endogenous increase in R&D. In-

creasing λ also leads to higher innovation output, slightly higher reallocation (or,

equivalently, a slightly lower within term), and higher profit volatility. Increasing λ

has an effect on markups of the opposite sign as increasing φ. Increasing λ also has

an effect on growth and top-quintile R&D of the opposite sign as increasing φ locally

to its estimated value. However, increasing λ has effects on innovation output and

reallocation of the same sign as increasing φ, and varying λ has very little effect on

top-quintile profit volatility.
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Table 3: Innovation catch-up speed φ and the markup distribution.

Hall (2018)
estimates (Data) Calibrated model

Model with severe
restrictions on

creative destruction
(φ = 0.05)

Mass of industries
below 15% 53.80 55.20 6.14

Mass of industries
above 40% 11.50 11.30 82.60

A higher value for the R&D cost parameterB corresponds to lower costs of achiev-

ing a given innovation rate. Increasing B increases growth, innovation output, R&D

to sales, and profit volatility, as expected. Increasing B reduces the R&D cost for all

firms, whether leader, laggard, or tied. The resulting increases in R&D for laggards

would lead to smaller markups, but are roughly offset by the increases in R&D for

leaders, which would lead to higher markups. Increasing B has effects on growth

and R&D to sales of the opposite sign as increasing φ locally. However, increasing B

has a relatively small effect on markups and has effects on innovation output, the

within term, and profit volatility of the same sign as increasing φ.

Table 3 illustrates how the catch-up speed parameter φ affects the distribution of

markups. From Hall (2018), 54% of industries have an average markup below 15%,

while 12% have an average markup above 40%. The estimated model, with φ = 0.283,

matches these distributional moments closely. In contrast, if we set φ = 0.05, the

markup distribution acquires a right tail that is counterfactually large, with 83% of

industries having markups above 40%.

4.3 Equilibrium properties

Figure 4, left panel, shows the innovation strategy as a function of a firm’s technology

position, for three different values of the discount rate. R&D is highest for tied

firms, due to escape competition effects. A tied firm is spurred to innovate because,

if successful, the firm begins to earn operating profits and reduces its R&D costs.

As a leader’s productivity advantage grows, the leader reduces R&D further. If a
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Figure 4: Firm innovation strategy and the distribution of technology gaps.
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leader has attained an advantage of at least a few steps, the leader faces a partly

discouraged laggard and, absent a quick catch-up laggard innovation, the leader

can expand its advantage even while reducing its R&D expenses. As a laggard falls

behind, its innovation rate declines because the number of incremental innovations

needed to close the technology gap rises. However, laggards, no matter how far

behind, maintain an annual innovation rate of at least 20% per year. Because of the

possibility of quick catch-up, even far-behind laggards do not give up completely on

R&D.

With a decrease in the discount rate from 2% to 0.25%, innovation rates increase

for all firms, including laggards. Because innovating laggards obtain a mix of slow

and quick catch-up gains in productivity, the higher laggard innovation rate induces

a pro-competitive shift in the distribution of technology gaps (Figure 4, right panel).

Growth therefore increases from 1.03% to 1.19%, reflecting an intensive margin effect

(higher innovation rates conditional on a firm’s position) and an extensive margin

effect (a greater share of industries in high R&D, competitive industries). With a

lower interest rate, there is a decline in the average productivity gap between leader

and laggard.

Figure 5 displays the two key relations that determine growth and the interest
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Figure 5: Growth, markups, and the interest rate.
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rate. The blue line, or innovation schedule, captures profit maximization by firms. In

the estimated model, productivity growth rises monotonically and approximately

linearly as the interest rate falls. The dashed lines in Figure 5 represent the Euler

equation, or the household savings side of the economy, for different values of the

household discount rate ρ. Conditional on a discount rate, the equilibrium growth

and interest rate are determined so that, given that interest rate, firms’ innovation

decisions lead to output growth of g, while households increase their consumption

at the same rate. As the discount rate declines, equilibrium growth increases and the

interest rate falls. The interest rate declines less than one-for-one with the household

discount rate, because growth increases.

A decline in the discount rate leads to a more competitive distribution of tech-

nology gaps, as shown in Figure 4. As a result, the average markup declines as the

interest rate falls (Figure 5, right panel). Market concentration also declines modestly

and the profit share falls.16

16As in Akcigit and Ates (2019), sales concentration measures such as the Herfindahl-Hirschman
index depend on the share of tied industries, where sales are equalized due to Bertrand competition,
and the share of non-tied industries, where perfect substitution across the two varieties implies that
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Thus, in our estimated Schumpeterian model, which fits well the firm- and

industry-level micro data, the aggregate implications of a lower interest rate are

at odds with important recent macroeconomic trends. Productivity growth has ex-

perienced a protracted bust, amid rising markups, increasing concentration, larger

productivity gaps between leaders and laggards, and a rising profit share. Thus, our

results cast doubt on low interest rates as an explanation of these trends.

4.4 Robustness

Internet Appendix D reports in detail a number of exercises undertaken to gauge

the robustness of these results. A first set of exercises alters an assumption about an

exogenously set parameter and re-estimates the other parameters. Our results are

not substantially affected by the choices of innovation curvature parameter γ, the

elasticity of intertemporal substitution (EIS, heretofore assumed to be one), and the

elasticity of substitution, κ, among each industry’s varieties. In each exercise, the

growth-interest rate relation remains negative.

Our benchmark model assumes full patent protection, or η = 0, as in Acemoglu

and Akcigit (2012). We extend the set of three estimated parameters to include the

patent expiry rate η and the patent catch-up speed ζ. The estimated patent expiry

rate is zero, to three decimal places. In a separate exercise, we assume a patent expiry

rate of 3% and re-estimate the model. We also re-estimate the model assuming

inelastic labor supply. In addition, we study robustness with respect to values of the

underlying moments. We set the annual growth rate target to 0.75% and re-estimate

the model. We also estimate the model targeting markups much higher than in

our benchmark estimation. We target net markups with a mean of 60%, a median

of 30%, and a 90th percentile of 150%.17 Finally, following most of the literature,

innovations in our benchmark model advance the laggard only one rung or close

the gap completely. We extend the model to include the possibilities of the laggard

only the leader produces. Internet Appendix Section G shows the relation of the profit share and the
interest rate.

17These markup targets are from De Loecker et al. (2020), for 2016.
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advancing an intermediate number of rungs or even leapfrogging the leader (Akcigit

et al., 2018; Acemoglu and Cao, 2015).

Across all of these exercises, the estimated catch-up speed φ is between 0.16 and

0.82. Thus, the result that the catch-up speed is meaningfully above zero, with at

least some advantage of backwardness, is robust to a wide set of choices regarding

exogenously set parameters, moment values, and the elasticity of labor supply. Across

all of these exercises, growth rises as the discount rate falls, while the average markup

declines or is little changed.

4.5 Entry

Entrants are an important source of creative destruction. We extend the model to

include entry and re-estimate it to match a set of moments enlarged to identify the

entry parameters.

At every time t, a mass one of potential entrants choose an entry innovation rate

xE and hireG(xE;BE) R&D workers. BE is an R&D cost scaling parameter, which may

differ from the scaling parameter for incumbent firms. Upon a successful innovation,

the entrant’s industry is drawn stochastically from the set of all industries j ∈ [0, 1].

The entrant displaces the industry’s follower (or one of the two incumbents, with

equal probability, if the entrant joins a neck-and-neck industry). With probability 1−

φE , an entrant begins life one step ahead of the firm that it displaces. With probability

φE, an entrant begins life in position lE ∈ {0, ..., s̄}, a leapfrogging parameter.18 If a

potential entrant does not innovate, we assume, as in Akcigit and Ates (2019), that

the entrant disappears and is replaced by a new potential entrant. R&D efforts by

potential entrants are undirected in the sense of Klette and Kortum (2004) and Akcigit

and Kerr (2018). Because entrants do not know ex ante the industry they will join,

incumbent leaders cannot strategically “escape” the risk of entry—no matter an

incumbent’s lead, the probability of entry is xE.19

18Acemoglu and Cao (2015) discusses empirical research emphasizing the radical nature of entrant
innovation.

19The details of the model with entry are presented in the Internet Appendix.
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We jointly estimate the innovation parameters (φ, λ,B,BE, φE, lE). To help iden-

tify the entry parameters, we target additional moments in the estimation: the share

of productivity growth accounted for by entrants in the growth decomposition (11)

and the employment shares of firms less than 6 years old and less than 11 years

old. These moments are emphasized by Acemoglu et al. (2018) and Garcia-Macia et

al. (2019), among others. Employment shares by firm age are from the US Census

Business Dynamics Statics, taking an average of values for the earliest and most

recent years with publicly available age data (1987 and 2014).

Table 4 shows that the model matches well the aggregate growth rate, average

markup, and the new entry moments. The Internet Appendix shows that the quality

of fit is high as well for the remaining moments. Entrant innovation is more radical

than laggard innovation, in that entrants can leapfrog the leader by one rung (lE = 1)

and have a higher chance of a quick catch-up innovation (almost 50%, relative to

20% for laggards). Figure 6 shows that the model matches well the Foster et al. (2001)

growth decomposition. Internet Appendix Section D.4 shows that growth rises and

the average markup declines as the interest rate falls.

Recent work by Akcigit and Ates (2019) and Olmstead-Rumsey (2020) emphasizes

that, since the 2000s, productivity growth and business dynamism have been espe-

cially low. Examples of reduced dynamism include a lower employment share of

young firms (Decker et al., 2014) and lower patent quality for small firms (Olmstead-

Rumsey, 2020). Therefore, as a final robustness exercise, we re-estimate the model,

targeting moment values for 2004 onward, as in Olmstead-Rumsey (2020). As de-

tailed in Appendix D, targeted productivity growth is only 0.56% and the targeted

average markup is 44%. When we re-estimate the model with entry, laggard inno-

vation generates almost pure slow catch-up (φ = 0.07), the R&D productivity of

laggards and entrants falls (i.e., lower B and BE), and the estimated entrant catch-up

speed is little changed, compared with the estimation using the longer sample period

(Table 4). Thus, this economy, estimated on post-2004 data, has elements of sclerosis.

However, innovating entrants still have a high chance of quickly catching-up. As a
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result, as the discount rate falls, productivity growth rises and the average markup

falls.

Table 4: Estimation with Entry.

Moments
Model

With Entry Data

Productivity growth 1.03% 1.03%

Mean markup 19.42% 19.40%

FHK decomposition (Entry) 20.53% 23.90%

Employment share,≤ 10 years 29.33% 26.20%

Employment share,≤ 5 years 17.77% 15.70%

Parameters

φ 0.188

λ 1.019

B 2.317

φE 0.479

BE 0.678

lE 1.000

Figure 6: FHK decomposition.
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5. The innovation multiplier
A lower discount rate is expected to increase growth by raising the valuation of the

profits from innovation. However, Schumpeterian models feature an important role

for strategic interactions among firms. In addition, an economy’s competitiveness

affects growth, because more competitive industries generally feature higher innova-

tion rates, as firms seek to escape competition. This section develops—and applies

to our estimated model—an analytical framework to evaluate the valuation, strategic,

and composition channels that determine how a lower discount rate affects growth,

competition, and innovation.

We consider a change in the discount rate dρ and begin with the valuation channel.

Let ∂x = [∂x−s̄ . . . ∂xs̄]
′ define the effect of a lower discount rate on the cross section

of firm innovation when each firm holds its competitor’s strategy constant.20 The

20Specifically, consider the system of equations given by (4)–(5), taking as given the competitor’s
strategy {xcσ}σ∈S . We obtain ∂xσ

∂ρ using the implicit function theorem and define ∂xσ ≡ ∂xσ
∂ρ dρ, where

dρ is a change in the discount factor.
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theorem below introduces an innovation multiplier that maps this valuation-driven

change in firm innovation into the general equilibrium (GE) effect on growth, the

distribution of technology gaps, and firm innovation strategies.

Theorem 1 (The Innovation Multiplier). Consider a change in the discount rate ρ.

There exists a general equilibrium multiplier matrix M such that the effect of this

change on the BGP, Υ ≡ (g, {µs}s∈S+ , {xσ}σ∈S)′, to a first order, is

dΥ = M ∂x, (13)

where ∂x is the valuation-driven change in firm innovation.

See Internet Appendix E for a proof.

Each row of the matrix M maps the cross section ∂x into the GE effect on a

particular element of the equilibrium vector Υ. For instance, the row corresponding

to growth, denoted Mg, is a (row) vector of length 2s̄ + 1 that maps ∂x, a column

vector of the same length, into the GE effect on growth. Similarly, Mxσ and Mµσ define

two rows of M mapping ∂x into the GE changes in the innovation rates, xσ, and the

distribution of industries, µσ, respectively. From Theorem 1, we can decompose the

GE effect on growth as follows:

dg = Mg∂x =

[
lnλ

∑
σ∈S+(1 + 1σ=0)

(
µσeσ︸︷︷︸
Direct
effect

+µσ(Mxσ − eσ)︸ ︷︷ ︸
Strategic
channel

+ Mµσxσ︸ ︷︷ ︸
Composition

channel

)]
∂x︸︷︷︸

Valuation-driven
change in

innovation

,

(14)

where 1σ=0 is an indicator function for σ = 0 and eσ is a row vector of length (2s̄+ 1),

with a 1 in position (s̄ + 1 + σ) and zeros elsewhere. In (14), the growth multiplier

Mg is the term in square brackets and it is formed by three components. The first

is the direct effect : Leader and tied firm innovations (but not laggards’) contribute

directly to the productivity of technologies in use. Absent strategic and composition

effects, a valuation-driven change ∂xσ, (σ ∈ S+) in the innovation rate of a tied or

leader firm increases aggregate productivity growth by (1 + 1σ=0)µσ lnλ, or the mass

of firms in position σ times the log innovation step size.
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The second component is the strategic channel: The GE innovation rate of any tied

or leader firm is affected (through strategic interactions) by the entire cross section

of valuation-driven changes in innovation, according to dxσ = Mxσ∂x. Finally, the

last term is the composition channel: The GE effect on the mass of industries with

technology gap σ ∈ S+ is affected by the entire cross section of valuation-driven

increases in innovation, according to dµσ = Mµσ∂x. These changes in the technology

gap distribution affect growth because innovation is higher in more competitive

industries.

The left panel of Figure 7 shows ∂x, the cross section of valuation-driven changes

in firm innovation. Holding constant the competitor’s strategy, a decline in the

discount rate implies an increase in innovation for all firms, in every technology

position.21 The growth multiplier Mg maps this cross section of valuation-driven

changes in firm innovation into the GE change in growth. For our benchmark esti-

mated model, the growth multiplier Mg is shown by the thick black line in the middle

panel. Valuation-driven increases in laggards’ innovation in uncompetitive industries

contribute negatively to growth, while increases in laggards’ innovation in competi-

tive industries contribute positively.22 These results are remarkable because, absent

strategic and composition effects, laggard innovations have no effect on growth. The

GE effect of laggard innovation on growth, whether positive or negative, arises mostly

through strategic interactions, as shown by the bottom panel. Valuation-driven

increases in tied and leader firm innovation contribute positively to growth, mostly

because of their direct effect on growth (right panel of Figure 7).

The right panel shows the direct, strategic, and composition components of the

growth multiplier. Valuation-driven increases in laggard innovation in uncompeti-

21As shown in Internet Appendix F, the sign of this valuation-driven change in firm innovation, in
principle, could be negative if an innovation from a certain technology position leads to back-loaded
losses through increased R&D expenditures. The uniformly positive valuation-driven effect of a lower
discount rate on innovation is therefore dependent on the model estimation.

22To interpret the magnitude of the growth multiplier’s elements, note that if laggards in competitive
industries (with s ≤ 10) increase their annual innovation rate by 5 percentage points in response to a
lower discount rate when taking as given their competitors’ strategy, then the effect on annual growth
would be 0.05×Mg

∑
σ∈{−10,..,−1} e

′
σ = 0.0005, or 5 basis points.
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Figure 7: Growth multiplier.
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The left panel shows ∂x, the cross section of valuation-driven changes in innovation from a 100 bps
decline in the discount rate. The middle panel shows the growth multiplier Mg that maps the cross
section of valuation-driven increases in innovation ∂x into the GE effect on growth. The right panel
shows the components of the growth multiplier, as defined in Equation (14).

tive industries have a negative effect on growth through a trickle-down effect. For

example, a leader that is currently 4 steps ahead has less to gain from innovation,

the greater the innovation rates of laggards 5 or more steps behind, with whom the

leader would compete if the leader were to innovate. Valuation-driven increases

in laggard innovation in competitive industries have a negative effect on growth

through an escape-competition effect. If a laggard 4 or fewer steps behind increases

its innovation, then leaders that are 4 steps ahead are spurred to innovate to escape

competition.23

Valuation-driven increases in leader and tied firm innovation have a negative

effect on aggregate growth through the composition channel (blue dotted line, right

panel of Figure 7). Conversely, valuation-driven increases in laggard innovation gen-

erally have a positive effect on aggregate growth through the composition channel.

23The trickle-down and escape-competition effects are unpacked further in Section E of the Internet
Appendix.
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These composition effects have the expected signs: higher leader innovation con-

tributes to a less competitive economy, by enlarging technology gaps, while higher

laggard innovation contributes to a less competitive economy.

Next, we quantify the valuation, strategic, and composition channels through

which a lower discount rate affects growth. From (14), with only the valuation chan-

nel (i.e., absent strategic and composition effects), a 100 basis point decline in the

discount rate increases aggregate productivity by [lnλ
∑

σ∈S+(1 + 1σ=0)µσeσ]∂x, or

15 basis points. However, in general equilibrium, the boost to aggregate growth

is only 10 basis points. Overall, the strategic and composition channels dampen,

but do not overturn, the boost to growth from the valuation channel. On balance,

the strategic channel decreases growth by−[lnλ
∑

σ∈S+(1 + 1σ=0)(µσ(Mxσ − eσ))]∂x,

or 6 basis points. The composition channel increases growth by [lnλ
∑

σ∈S+(1 +

1σ=0)(Mµσxσ)]∂x, or 1 basis point, because of the pro-competitive shift induced by a

lower discount rate.

Generality of the multiplier. Our multiplier methodology can be used to study

the GE effects of a broad range of policies. For example, consider the effect ∂x

on the cross section of firm innovation from a change in the patent expiry rate,

holding constant the competitor’s strategy.24 The proof of Theorem 1 in the Internet

Appendix shows that the exact same multiplier that maps the valuation effect on firm

innovation of a change in ρ into the GE change in growth also maps the valuation

effect on firm innovation of a change in η into the GE change in growth.

6. Optimal patent policy, interest rates, and growth
Patent policy is another key aspect of creative destruction that shapes the relation

of growth, competition, and the interest rate. We therefore ask: How should patent

policy be optimally adjusted when there is a persistent change in the interest rate?

24This notion of a “valuation effect” arising from changes in patent expiry is linked to firms dis-
counting expected profits from innovation taking into account the patent expiry rate. Specifically,
the valuation effect on the cross section of firm innovation of a change in the patent expiry rate is
∂xσ ≡ ∂xσ

∂η dη, where dη is the change in the patent expiry rate and ∂xσ
∂η is obtained by the implicit

function theorem from (4)–(5).
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And, if patent policy is adjusted optimally, what are the implications for the relation

of interest rates, productivity growth, and market power? This section addresses

these questions; in Section 6.1, we focus on the steady state. Section 6.2 incorporates

transition dynamics.

6.1 Steady-state welfare

Welfare at time t = 0 is: W(0) =
∫∞
t=0

e−ρt(lnC(t)− L(t))dt. Along a BGP, the represen-

tative household’s consumption is: C(t) = Y (t) = Y (0)egt. Correspondingly,

W(0) =
ln(Y (0))− L

ρ
+

g

ρ2
. (15)

We define the quality indexQ(t) ≡ exp(
∫ 1

0
ln qi(j; t)dj),where qi(j, t) is the productivity

of the leader firm in industry j (or the tied firms in tied industries). When the two

varieties in each industry are perfect substitutes, the ratio of output Y (t) to the quality

index Q(t) is declining in the average net markup:

ln

(
Y (0)

Q(0)︸ ︷︷ ︸
Ratio of

output to
potential

)
= −

s̄∑
s=0

µs lnψs︸ ︷︷ ︸
Average net markup

. (16)

Markups generate a wedge between actual output Y (t) and the quality index Q(t).

We refer to the quality index as potential output because it is the output that obtains

if all firms have a zero net markup.25

Expressions (15) and (16) capture the core trade-off in designing patent policy:

Generally, reducing patent protection reduces markups and production distortions

but also reduces R&D and growth (Nordhaus, 1969).

Figure 8, left panel, illustrates the problem of a social planner choosing the patent

expiry rate to maximize welfare. Each black line traces out how growth and the ratio

of output-to-potential (less the disutility of labor) vary with the patent expiry rate η,

conditional on a discount rate. The green diamonds show outcomes at the estimated

value of η. The red lines are iso-welfare lines, showing combinations of growth and

25The Internet Appendix provides a proof of (16) and also characterizes output to potential output
when varieties are imperfect substitutes.
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Figure 8: Optimal patent expiry rate.
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Black lines trace out the frontier, as the patent expiry rate changes, of growth and output-to-potential
ln Y (0)

Q(0) less the disutility of labor. Iso-welfare lines (in red) show combinations of growth and output-
to-potential that provide the same level of welfare. The green diamonds show growth and output-to-
potential conditional on the patent expiry rate equal to its estimated value.

output-to-potential that deliver the same total welfare. The slope of the iso-welfare

curve is−ρ, capturing that growth becomes relatively more important to the social

planner as the discount rate falls.

In the benchmark economy, the social planner faces the Nordhaus trade-off: as

patent protection is strengthened, growth rises but output-to-potential falls (i.e.,

market power rises). With the discount rate at its calibrated value of 2%, the estimated

patent expiry rate η = 0 is in fact the optimal expiry rate; welfare is maximized at

this corner solution. If the patent expiry rate η were set (suboptimally) to 5%, the

consumption-equivalent welfare loss would be 4.5%.

Next, we consider optimal patent policy at a higher discount rate. With ρ equal to

5%, the optimal patent expiry rate is positive and the estimated patent expiry rate is
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too low. For a discount rate of 5%, outcomes under the optimal patent expiry rate

are shown by the tangency of the growth and output-to-potential frontier with the

iso-welfare line.

Thus, as the discount rate falls, the social planner prefers to strengthen patent

protection (i.e., the optimal patent expiry rate declines). As the discount rate falls, the

Nordhaus trade-off changes in a way that leads the planner to strengthen protection:

Equilibrium growth becomes more sensitive to the patent expiry rate, but there is

little change in the mapping from the patent expiry rate to equilibrium production

distortions. That is, as the discount rate falls, the black frontier in the left panel of

Figure 8 steepens, such that, even holding constant the slope of the iso-welfare curve,

the social planner would choose higher growth at the expense of higher markups. A

second reason that the social planner strengthens protections is the rotation of the

iso-welfare line: Growth is more important for welfare as the discount rate falls.

To understand how these results depend on the nature of creative destruction,

we also study an economy with purely gradual laggard advancement. Figure 8, right

panel, shows the frontier of growth and output-to-potential in this speed-limit econ-

omy, in which creative destruction is severely restricted by assumption (Section

3). In this economy, when patent protection is very weak, the Norhaus trade-off is

present. However, for patent expiry rates near the calibrated rate in Liu et al. (2020),

the trade-off disappears: Weakening patent protection increases output-to-potential

(as expected) and growth. In this sclerotic economy, laggards are discouraged and

leaders innovate only enough to counteract patent expiry; weakening patent protec-

tion forces leaders to innovate more to maintain their advantage. This “free lunch”

for the social planner generates economically important welfare gains: by raising

the expiry rate optimally, the social planner increases growth by 11 basis points,

with output-to-potential rising 2 percentage points and a consumption-equivalent

welfare gain of 8.5%. The free-lunch gains in growth and output-to-potential are

even larger at lower discount rates.

In the benchmark economy (top panels of Figure 9), the optimal expiry rate is
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Figure 9: Optimal patent expiry rate and its implications for growth and markups.
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Solid blue lines pertain to the estimated patent expiry rate. Dashed red lines pertain to the optimal
expiry rate conditional on the discount rate ρ.

weakly decreasing as the discount rate falls. In the speed-limit economy (bottom

panels), the opposite pattern obtains at very low discount rates: the optimal expiry

rate rises as the discount rate falls, to counter the growth-reducing anti-competitive

effects of a lower discount rate. In the speed-limit economy, with a constant patent

expiry rate, such anti-competitive effects give rise to an inverted-U relation between

growth and the discount rate. Remarkably, with optimal patent policy, the growth

speed limit disappears (bottom middle panel). Varying the expiry rate optimally

also implies that, at low discount rates, further declines in the discount rate decrease

markups. These results underscore that the nature of creative destruction, including

assumptions about patent policy, are crucial for the relation of growth, markups, and

the interest rate.
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6.2 Transition dynamics

Next, we study an economy initially on the BGP for a discount rate of 2%. At time

t = 0, the discount rate falls to 0.25%, permanently. First, we assume that patent

policy is unchanged, with a zero expiry rate. Second, we allow the social planner to

adjust the patent expiry rate in response to the decline in the discount rate, taking

into account the transition dynamics.

The solid line in Figure 10 shows the transition dynamics in the benchmark

economy. When the discount rate falls at t = 0, the growth of the quality index Q(t)

immediately jumps from 1.03% to 1.16% and then rises gradually to the new BGP

rate, 1.19%. On impact, the increase in quality-index growth is entirely along the

intensive margin. The innovation strategy (mapping a firm’s technology position to

its innovation rate) shifts immediately to the innovation strategy of the new BGP.26 In

contrast, the distribution of technology gaps is unchanged on impact and evolves

over time to a new, more competitive distribution of gaps. As the economy becomes

more competitive, markups decline and become less dispersed, reducing production

distortions and causing consumption growth to initially overshoot growth of the

quality index.

Next, we assume that at time t = 0, concurrently with the decline in the discount

rate, the social planner can make a one-time permanent change to the patent expiry

rate. The planner solves

max
η

∫ ∞
t=0

exp(−ρt)
(

ln(C(t; η))− L(t; η)

)
dt, (17)

where the discount rate ρ in (17) is the new discount rate of the household 25 basis

points beginning in period 0, and {C(t; η), L(t; η)}t∈[0,∞) is the equilibrium path of

aggregate consumption and labor conditional on the discount rate ρ and the patent

expiry rate η.27 To illustrate the planner’s problem, if the planner were to increase the

26See Internet Appendix Section A for a proof, and for the definition of the dynamic general equilib-
rium.

27The initial conditions of the economy are the distribution of technology gaps and the initial
quality index Q(0). We set the initial distribution of technology gaps equal to the distribution in the
initial BGP (before the decline in the discount rate). The initial quality index Q(0) is a normalization,
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Figure 10: Transition dynamics under alternative patent policies.
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patent expiry rate to a suboptimal 5%, the transition dynamics shown by the dashed

line in Figure 10 would obtain. For this exercise (ρ falling from 2% to 0.25%), taking

into account the transition dynamics, the optimal patent expiry rate is zero, as was

also the case when the planner maximized steady-state welfare. However, taking

transition dynamics into account does matter, for example, for a similar exercise

where the discount rate rises from 2% to 5%. In such an exercise, the optimal patent

expiry rate is 4.5% when the planner focuses on steady-state welfare only, and lower,

2.2%, when the planner takes into account transition dynamics.

7. Financial Frictions
Restrictions on credit access might be expected to limit creative destruction and

hence foster conditions for an inverted-U relation between growth and the interest

which shifts multiplicatively the entire consumption path but does not affect the patent policy chosen
by the planner.
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rate. To investigate this possibility, we introduce a limited commitment constraint.

We assume that firms finance their R&D wage bill (on an intra-period basis) and that

this financing is limited to a share α of firm value (Aghion et al., 2019a; Jermann and

Quadrini, 2012).28 Specifically,

ωG(xσ) ≤ αvσ (18)

implying that the innovation rate for a firm in position σ is

xσ = min

{
G′−1

(
∆vσ
ω

)
, G−1

(
αvσ
ω

)}
. (19)

With full pledgeability (α = 1), the BGP is unaffected (solid red lines in Figure 11).

However, firm value derives from intangible technological knowledge that might

not be pledgeable at all. To assess robustness, we re-estimate the model conditional

on α = 0.1 and obtain a good fit (Internet Appendix D). Note that the constraint

α = 0.1 is not very restrictive, in that it only limits annual R&D expenses to less

than 10% of the expected discounted value of all future firm profits. The top row

of Figure 11 shows key equilibrium features under the estimated parameter values

if α = 0.1 (dashed blue lines). As the discount rate declines, growth rises and the

average markup falls.

At a 2% discount rate, the constraint binds for tied firms and leaders in com-

petitive industries, but not for far-ahead leaders which have high firm values and

low desired innovation rates (top left panel). Laggards are also not constrained

because their desired innovation expenditures are low, even relative to firm value.

With leaders in competitive industries innovating less, growth is lower than under

full pledgeability. The average markup is also lower than under full pledgeability,

because the constraint inhibits leaders in competitive industries from innovating

to accumulate market power. If credit access is reduced further (dotted green lines),

growth and markups fall further.

In the speed-limit economy, reduced credit access also limits the accumulation

28The limited commitment constraint arises if, in the event of default, firms can renege and make a
take-it-or-leave-it offer to creditors, which can only seize a fraction of the firm’s value.
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Figure 11: Credit access.
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Lower values of the limited-commitment parameter α correspond to reduced credit access.

of market power. With only gradual laggard advancement, reduced credit access

constrains the innovation of leaders and laggards in competitive industries, making

patent expiry a relatively more potent force and contributing to a more competitive

economy. Reduced credit access therefore supports growth through a composition

effect. At low interest rates, this pro-growth composition effect is sufficiently large

that reduced credit availability increases growth. Moreover, when credit access is

severely restricted, the speed limit vanishes completely: Starting from a low interest

rate, a further decline in interest rate no longer fosters the accumulation of market

power that is necessary for the growth speed-limit to obtain.
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8. Conclusion
Recent decades have seen low productivity growth amid rising market power and

falling business dynamism. Our paper evaluates the persistent decline in the real

interest rate as a potential explanation for these trends. If innovation and patent

expiry advance market laggards only incrementally, and if there is no entry, then

starting from a low interest rate, a further decline in the interest rate can trigger

strategic interactions among firms that reduce growth and competition. However,

if market laggards or entrants have some chance of innovating radically, a lower

interest rate boosts all firms’ innovation rates and growth increases. Thus, the effect

of lower interest rates on productivity growth and competition depend crucially on

the nature of creative destruction.

With this motivation, we estimate the model using micro data on markups, R&D,

innovation output, profit volatility, reallocation, and, in the model with entry, employ-

ment share by firm age. The data favor a parametrization with laggards or entrants

having at least some chance of more-than-incremental innovation. Correspond-

ingly, as the interest rate declines, productivity growth rises and markups decline.

Our results are robust to incorporating entry, optimal patent policy, and financial

frictions. Overall, these findings suggest that recent key macroeconomic trends of

low productivity growth and rising markups are explained by factors other than low

interest rates.

38



References
Acemoglu, Daron and Dan Cao, “Innovation by entrants and incumbents,” Journal of Eco-

nomic Theory, 2015, 157, 255–294.

and Ufuk Akcigit, “Intellectual property rights policy, competition and innovation,” Journal
of the European Economic Association, 2012, 10 (1), 1–42.

, , and Murat Alp Celik, “Radical and Incremental Innovation: The Roles of Firms,
Managers and Innovators,” Technical Report, MIT, mimeo. 2020.

, , Harun Alp, Nicholas Bloom, and William Kerr, “Innovation, Reallocation, and Growth,”
American Economic Review, November 2018, 108 (11), 3450–91.

Aghion, Philippe and Peter Howitt, “A Model of Growth through Creative Destruction,” Econo-
metrica, March 1992, 60 (2), 323–351.

, Antonin Bergeaud, Gilbert Cette, Remy Lecat, and Hélène Maghin, “Coase Lecture - The
Inverted-U Relationship Between Credit Access and Productivity Growth,” Economica,
2019, 86 (341), 1–31.

, , Timo Boppart, Peter J Klenow, and Huiyu Li, “A Theory of Falling Growth and Rising
Rents,” Working Paper 26448, National Bureau of Economic Research November 2019.

, Christopher Harris, Peter Howitt, and John Vickers, “Competition, Imitation and Growth
with Step-by-Step Innovation,” Review of Economic Studies, 7 2001, 68 (3), 467–492.

Akcigit, Ufuk and Sina T. Ates, “What Happened to U.S. Business Dynamism?,” Working Paper
25756, NBER April 2019.

and , “Ten Facts on Declining Business Dynamism and Lessons from Endogenous
Growth Theory,” American Economic Journal: Macroeconomics, January 2021, 13 (1), 257–
98.

and William R. Kerr, “Growth through Heterogeneous Innovations,” Journal of Political
Economy, 2018, 126 (4), 1374–1443.

, Douglas Hanley, and Nicolas Serrano-Velarde, “Back to Basics: Basic Research Spillovers,
Innovation Policy and Growth,” Review of Economic Studies, forthcoming, 2020.

, Sina T Ates, and Giammario Impullitti, “Innovation and Trade Policy in a Globalized
World,” Working Paper 24543, NBER April 2018.

Andrews, Dan, Chiara Criscuolo, and Peter N. Gal, “The Best versus the Rest: The Global
Productivity Slowdown, Divergence across Firms and the Role of Public Policy,” OECD
Productivity Working Papers 5, OECD Publishing December 2016.

Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John van Reenen,
“The Fall of the Labor Share and the Rise of Superstar Firms*,” The Quarterly Journal of
Economics, 2 2020.

39



Benigno, Gianluca and Luca Fornaro, “Stagnation Traps,” The Review of Economic Studies, 11
2017, 85 (3), 1425–1470.

Decker, Ryan, John Haltiwanger, Ron Jarmin, and Javier Miranda, “The Role of Entrepreneur-
ship in US Job Creation and Economic Dynamism,” Journal of Economic Perspectives,
September 2014, 28 (3), 3–24.

Eggertsson, Gauti B. and Paul Krugman, “Debt, Deleveraging, and the Liquidity Trap: A
Fisher-Minsky-Koo Approach,” The Quarterly Journal of Economics, 07 2012, 127 (3), 1469–
1513.

Fernald, John G., Robert E. Hall, James H. Stock, and Mark W. Watson, “The Disappointing
Recovery of Output after 2009,” Brookings Papers on Economic Activity, 2017, 48 (1 (Spring),
1–81.

Foster, Lucia, John Haltiwanger, and Chad Syverson, “Reallocation, Firm Turnover, and
Efficiency: Selection on Productivity or Profitability?,” American Economic Review, March
2008, 98 (1), 394–425.

, , and C.J. Krizan, “Aggregate Productivity Growth: Lessons from Microeconomic Evi-
dence,” in “New Developments in Productivity Analysis,” NBER, 2001, pp. 303–372.

Garcia-Macia, Daniel, Chang-Tai Hsieh, and Peter J. Klenow, “How Destructive Is Innova-
tion?,” Econometrica, September 2019, 87 (5), 1507–1541.

Gerschenkron, Alexander, Economic Backwardness in Historical Perspective, The Belknap
Press of Harvard University Press, 1962.

Hall, Robert E, “New Evidence on the Markup of Prices over Marginal Costs and the Role of
Mega-Firms in the US Economy,” Working Paper 24574, NBER May 2018.

Hansen, Alvin H., American Economic Review, March 1939, 29, 1–15.

Harris, Christopher and John Vickers, “Racing with Uncertainty,” The Review of Economic
Studies, 1987, 54 (1), 1–21.

Hsieh, Chang-Tai and Peter J. Klenow, “Misallocation and Manufacturing TFP in China and
India*,” The Quarterly Journal of Economics, 11 2009, 124 (4), 1403–1448.

Jermann, Urban and Vincenzo Quadrini, “Macroeconomic Effects of Financial Shocks,”
American Economic Review, February 2012, 102 (1), 238–71.

Klette, Tor Jakob and Samuel Kortum, “Innovating Firms and Aggregate Innovation,” Journal
of Political Economy, 2004, 112 (5), 986–1018.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman, “Technological Inno-
vation, Resource Allocation, and Growth,” Quarterly Journal of Economics, 03 2017, 132 (2),
665–712.

Lentz, Rasmus and Dale T. Mortensen, “An Empirical Model of Growth Through Product
Innovation,” Econometrica, 2008, 76 (6), 1317–1373.

40



Liu, Ernest, Atif Mian, and Amir Sufi, “Low interest rates, market power, and productivity
growth,” Econometrica, 2020. Forthcoming.

Loecker, Jan De, Jan Eeckhout, and Gabriel Unger, “The Rise of Market Power and the
Macroeconomic Implications*,” The Quarterly Journal of Economics, 2020.

Nordhaus, W.D., Invention Growth, and Welfare: A Theoretical Treatment of Technological
Change, MIT Press, 1969.

Olmstead-Rumsey, Jane, “Market Concentration and the Productivity Slowdown,” Working
Paper, Northwestern University 2020.

Peters, Michael, “Heterogeneous Markups, Growth, and Endogenous Misallocation,” Econo-
metrica, 2020, 88 (5), 2037–2073.

and Conor Walsh, “Population Growth and Firm Dynamics,” Technical Report, Yale Uni-
versity working paper 2020.
De Ridder

De Ridder, M., “Market Power and Innovation in the Intangible Economy,” Technical Report
1931, Faculty of Economics, University of Cambridge March 2019.

Summers, Lawrence H., “U.S. Economic Prospects: Secular Stagnation, Hysteresis, and the
Zero Lower Bound,” Business Economics, 2014, 49 (2), 65–73.

41



Internet Appendix for

“Interest Rates, Innovation, and Creative Destruction”

Craig A. Chikis, Jonathan Goldberg, and David López-Salido
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A. Generalized exposition of the model
This section develops a model nesting the assumptions used throughout the main text.

This general model is then used for the proofs.

A.1 Intermediate goods market

This part of the Appendix proves the claims in Section 2 of the main text. We begin

with κ <∞, or imperfect substitution across each industry’s two varieties. The effective

demand elasticity facing firm z ∈ {i,−i} is εz ≡ −d ln yz
d ln pz

= κ(1 − δz) + δz, where δz is the

market share of firm z. The gross markup for firm z is therefore ψz = εz/(εz − 1). With

linear production technology, the marginal cost for firm z is w
qz

. The demand equation
pi
p−i

= ( yi
y−i

)−
1
κ , implies that the ratio of the leader’s market share to the laggard’s market

share is δi
δ−i

= ν1−κ, where ν ≡ pi
p−i

is the ratio of the leader’s price to the laggard’s price.

Combining the equations for the effective demand elasticity, the gross markup, the

marginal cost, and relative market shares, one obtains that the ratio of the leader’s price

to the laggard’s price, ν ≡ pi
p−i

, satisfies ν = qi
q−i

(κ+ν1−κ

κ+νκ−1 ). From the equation for the relative

market shares and the identity that the market shares sum to 1 (i.e., δi + δ−i = 1), one

obtains δi = ν1−κ

1+ν1−κ
. Substituting for δi in the equation for gross markup, one obtains the

gross markup as a function of the relative price, ψi = κ+ν1−κ

κ−1
. The expression for ψ−i is

derived analogously, by substituting for δ−i in the equation for gross markup.

The leaders profit’s can be written Πi = (pi − w
qi

)yi, or Πi = (1 − w
piqi

)piyi. From the

definition of market share and using the fact that industry sales are equal to Y in each

industry, we have piyi = δiY. Substituting this expression into the equation for profits

and using the definition of gross markup (ψi = pi
w
qi

), one obtains πi = ν1−κ

κ+ν1−κ
. The labor

demand li = (κ−1)ν1−κ

(κ+ν1−κ)(1+ν1−κ)
. Using the definition of the markup, ψi, it follows, after

some simple algebra, that the labor demand and the profit functions for firm i can

be expressed as expression (2). The expression for π−i is derived analogously, using

Π−i = (1− w
p−iq−i

)p−iy−i.. For the laggards, the expressions for labor demand and gross

markup are l−i = (κ−1)ν1−κ

(κ+ν1−κ)(1+κν1−κ)
and ψ−i = 1+κν1−κ

(κ−1)ν1−κ
, respectively. Similarly, and after

some algebra, it is easy to manipulate these expressions to obtain the labor demand and

profits of the laggards included in expression (2).
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Scaled operating profits for a firm in position σ are πσ, obtained from (2) and qi
q−i

= λ|σ|,

implying

πσ =



ν1−κ|σ|

κ+ν1−κ|σ|
if σ > 0

1
κν1−κ|σ| +1

if σ < 0

1
κ+1

if σ = 0.

(IA.1)

Finally, with perfect substitution across each industry’s two varieties, limit pricing obtains,

with πσ = 1− λ−σ for σ ∈ S+ and πσ = 0 otherwise. Correspondingly, lσ = 1
ωλs

for s ∈ S+

and lσ = 0 otherwise. Gross markups are ψσ = λσ for s ∈ S+ and ψσ = 0 otherwise.

A.2 Advancement functions

We present an advancement on the quality (productivity) ladder in a way that can embed

a rich set of assumptions about the nature of technological progress—and hence it is a

flexible way of capturing different elements of creative destruction.

For an incumbent in position σ that obtains an innovation, let Fσ,σ̂ represent the

probability distribution over its new position, σ̂. Thus, an innovating firm with produc-

tivity q(t) obtains a new productivity q(t+ ∆t) = λσ̂−σq(t). Modeling advancement using

the Fσ,σ̂ function allows us to nest models with innovations that advance at least one

rung and as many as s̄ − σ rungs, with a strictly positive probability of advancing an

intermediate number of rungs, as in Akcigit and Kerr (2018), Akcigit et al. (2018), and

Olmstead-Rumsey (2020). We refer to such models as “multiple innovation step size”

models.

However, except for exercises with multiple innovation step sizes in Internet Appendix

Section IA.II (discussed in Section 4.4 of the main text), all models in our paper can be

nested using

Fσ,σ̂(φ, l) =


1− φ if σ < l − 1 and σ̂ = σ + 1

φ if σ < l − 1 and σ̂ = l

1 if σ ≥ l − 1 and σ̂ = σ + 1,

(IA.2)

and Fσ,σ̂ = 0 otherwise. The advancement function Fσ,σ̂ has two parameters: the leapfrog

parameter l and the catch-up speed φ. The leapfrog parameter l ∈ {0, ..., s̄} is the maxi-
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Figure IA.1: Quality ladder.

Quick catch-up (φ = φE = 1) Slow catch-up (φ = φE = 0)

Intermediate catch-up (φ, φE ∈ (0, 1))

Entrant

Leader

Laggard

1 2 3 1 2 3

1 2 3

q

q

q

lE ≥ 0

Exit

Entry

Top left panel (QUICK CATCH UP): An innovating leader advances one rung (Line 1). An innovating laggard
advances to a tied or leadership position depending on the leapfrogging parameter l (Line 2). An entrant
arrives lE steps ahead of the leader, displacing the laggard (Line 3). Top right panel (SLOW CATCH UP):
Leader innovation is the same as with quick catch up (Line 1). An innovating laggard advances one rung
(Line 2). An entrant arrives one step ahead of the exiting laggard (Line 3). Bottom panel: In the intermediate
case between these extremes, an innovating laggard advances a stochastic number of rungs (Line 2). An
entrant arrives a stochastic number of steps ahead of the displaced laggard (Line 3).

mum technology position that a laggard can potentially obtain upon innovation. If l = 0,

at most, an innovating laggard catches up to, but does not surpass, the productivity of

the leader. If l > 0, an innovating laggard might surpass the leader on the quality ladder.

A higher value of φ implies a greater probability of an innovating laggard jumping all the

way to position l. Figure IA.1 illustrates advancement on the quality ladder under these

assumptions.

Similarly, for a firm in position σ, conditional on a patent expiry, let σ̂ is F p
σ,σ̂ define

the probability distribution over its new position, σ̂. The patent expiry assumption in

our paper is captured by F p
σ,σ̂(ζ) = Fσ,σ̂(ζ, 0). The next section introduces entry. We keep

the symmetry and define that an entrant replacing an incumbent firm with position σ

begins its life in a random technology position σ̂ with probability FE
σ,σ̂ = Fσ,σ̂(φE, lE).
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A.3 Entry

This section of the Internet Appendix extends the main text’s benchmark model to include

two types of entry: directed and undirected. With directed entry, the potential entrant

making its R&D decision already knows which industry it will enter upon a successful

innovation. With undirected entry, the potential entrant does not know ex-ante which

industry it will enter. We include directed entry to nest the Akcigit and Ates (2019) model

of Section 3 and Internet Appendix Section B. We include undirected entry to nest the

extended version of the benchmark model in Section 4.5 of the main text.

Let {µs(t)}s∈S+ denote the share of industries with a technology gap s at time t. With

directed entry, at every time t and for each s ∈ S, a mass µs(t) of potential entrants

choose an entry rate xE,s and hire G(xE,s;BE,s) R&D workers. Under undirected entry, at

every time t, a mass 1 of potential entrants choose an entry rate xE and hire G(xE;BE)

R&D workers. A successful undirected entrant begins life in an industry with gap s

with probability µs. Conditional on entering an industry with gap s, an entrant occupies

position ŝ with probability FE
−s,ŝ.

A directed potential entrant innovating for an industry with gap s has an expected

capital gain from entry ∆vE,s(t) =
∑s̄

ŝ=−s+1 F
E
−s,ŝvŝ(t). For an undirected potential entrant,

the expected capital gain from entry is

∆vE(t) =
s̄∑
s=0

µs(t)

( s̄∑
ŝ=−s+1

FE
−s,ŝvŝ(t)

)
. (IA.3)

The entrant trades off R&D costs against the increased likelihood of successfully entering

an industry. We introduce an R&D subsidy τR&D to enable us to nest Akcigit and Ates

(2019). The directed entrant solves:

max
xE,s(t)

−(1− τR&D)G(xE,s(t))ω + xE,s(t)∆vE,s(t), (IA.4)

while, similarly, the undirected entrant solves:

max
xE(t)
−(1− τR&D)G(xE(t))ω + xE(t)∆vE(t). (IA.5)
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A.4 Equilibrium

For a firm in position σ at time t, the (unscaled) discounted expected value of profits

satisfies the Hamilton–Jacobi–Bellman equation

ρVσ(t)−V̇σ(t) = max
xσ(t)

(1−τ)πσY (t)−(1−τR&D)G(xσ(t))w(t)+xσ(t)
σ̄∑

σ̂=s+1

(Fσ,σ̂Vσ̂(t)−Vσ(t))+

xc−σ(t)
σ−1∑
σ̂=−s̄

(F−σ,−σ̂Vσ̂(t)− Vσ(t)) + xE,|σ|(t)
σ−1∑
σ̂=−s̄

((1σ>0 +
1

2
1σ=0)FE

−σ,−σ̂Vσ̂(t)− Vσ(t))+

ησ

s̄∑
σ̂=−s̄

(F p
σ,σ̂Vσ̂(t)− Vσ(t)),

where V̇σ(t) is the derivative of Vσ(t) with respect to time. Here, ησ = 0 for σ = 0 (reflecting

no patent expiry in tied industries) and ησ = η otherwise. xE,|σ| is the entry rate of the

directed entrant in industry |σ|,with xE,|σ| = xE in the case of directed entry and xE,|σ| = 0

in the case of no entry. Dividing by Y (t) and using the Euler equation (3), one obtains

r(t)vσ(t)−v̇σ(t) = max
xσ(t)

(1−τ)πσ(t)−(1−τR&D)G(xσ(t))ω(t)+xσ(t)
σ̄∑

σ̂=s+1

Fσ,σ̂vσ̂(t)−vσ(t)+

xc−σ(t)
σ−1∑
σ̂=−s̄

(F−σ,−σ̂vσ̂(t)− vσ(t)) + xE(t)
σ−1∑
σ̂=−s̄

((1σ>0 +
1

2
1σ=0)FE

−σ,−σ̂vσ̂(t)− vσ(t))+

ησ

s̄∑
σ̂=−s̄

(F p
σ,σ̂vσ̂(t)− vσ(t)). (IA.6)

Imposing that v̇σ(t) = 0 along the BGP equilibrium and using the Euler equation (3), one

obtains (4)–(5).

Firms’ first order conditions. For a firm in technology position σ ∈ S, define the

capital gain from a successful innovation ∆vσ:

∆vσ(t) =
σ̄∑

σ̂=σ+1

Fσ,σ̂vσ̂(t)− vσ(t) (IA.7)

For an incumbent firm in position σ ∈ S

xσ(t) = G′−1(
1

1− τR&D

∆vs(t)

ω(t)
). (IA.8)

The directed entrant’s first-order condition is

xE,s(t) = G′−1
E (

1

1− τR&D

∆vE,s(t)

ω(t)
). (IA.9)
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Similarly, the undirected entrant’s first-order condition is

xE(t) = G′−1
E (

1

1− τR&D

∆vE(t)

ω(t)
). (IA.10)

Outflow-inflow equations. The share of industries with each gap s ∈ S+\{0} satisfies

(xs + x−s(1− F−s,s) + xE(1− FE
−s,s) + ηs)µs = µ̇s(t)+∑

σ∈S+\s

µσ

(
xσFσ,s + x−σ(F−σ,s + F−σ,−s) + xE(FE

−σ,s + FE
−σ,−s) + ησF

p
σ,s

)
, (IA.11)

and, for s = 0,

(2x0 + xE)µ0 = µ̇0 +
∑

σ∈S+\0

µσ

(
xσFσ,0 + x−σF−σ,0 + ησF

p
σ,0 + xEF

E
−σ,0

)
. (IA.12)

Growth of the quality index. The quality index is Q(t) = exp(
∫ 1

0
ln qi(j; t)), where

qi(j; t) is the productivity of the leader in industry j at time t, or the the productivity of

each firm in industry j at time t if firms are tied. In the model without leapfrogging l = 0

and, if there is entry, lE = 0, growth of the quality index is

g(t) = lnλ
∑
s∈S+

µs(t)(1 + 1s=0)xs(t). (IA.13)

With leapfrogging by laggards l > 0 or entrants l > 0, growth of the quality index is

g(t) =
s̄∑
s=0

µs(t)gs(t), (IA.14)

where gs(t) is the expected growth rate of the frontier technology in an industry with gap

s, or

gs = (lnλ)

( s̄∑
ŝ=1

(xE,sF
E
−s,ŝ + x−sF−s,ŝ)ŝ+ xs

s̄∑
ŝ=s+1

Fs,ŝ(ŝ− s)
)

(IA.15)

To explain (IA.14)–(IA.15), in an industry with gap s > 0, there are two potential sources of

frontier-advancing innovation. The first is leapfrogging by the entrant or the incumbent

laggard. The arrival rate of entrants in each industry is xE,s. Conditional on entry, the

frontier advances ŝ > 0 steps if the entrant leapfrogs the incumbent leader to achieve

position ŝ. Conditional on entry into an industry with technological gap s, the probability

of the entrant achieving position ŝ is FE
−s,ŝ. The arrival rate of laggard innovation in an

industry with gap s is x−s. Similarly to the case with entry, the innovating laggard can

advance the technological frontier by ŝ > 0 steps if it leapfrogs the incumbent leader to
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achieve position ŝ. Conditional on a laggard innovation in an industry with gap s, the

probability of advancing to position ŝ is F−s,ŝ. The second source of frontier-advancing

innovation is coming from the leader in each industry. A leader innovation arrives at rate

xs in an industry with gap s and advances the leader to position ŝ with probability Fs,ŝ,

thereby pushing forward the frontier by ŝ− s steps.

To obtain (IA.13)–(IA.15) in the case of imperfect substitution across within-industry

varieties (κ < ∞), substitute yz = qzlz, for z ∈ {i,−i}, into the final-good production

function lnY (t) =
∫ 1

0
ln[yi(j; t)

κ−1
κ + y−i(j; t)

κ−1
κ ]

κ
κ−1dj. Further, substitute for li and l−i

from Section A.1. Substituting q−i = λ−s(j;t), with some algebra, one obtains:

ln
Y (t)

Q(t)
=

∫ 1

0

ln

(
κ− 1

1 + νκ−1
s(j;t)

[
(κ+ ν1−κ

s(j;t))
1−κ
κ + (λs(κν1−κ

s(j;t) + 1))
1−κ
κ

] κ
κ−1

)
dj. (IA.16)

Along a BGP, the distribution of industry gaps is stationary, and hence the right hand side

of (IA.16) is constant. Therefore along a BGP, Y (t) grows at the same rate as Q(t), with

g ≡ lim
∆t→0

lnQ(t+ ∆t)− lnQ(t)

∆t
. (IA.17)

During an interval of length ∆t, for s ≥ 1, in the fraction µs of industries with gap s ≥ 1,

(i) leaders innovate at rate xs(t)∆t+ o(∆t); (ii) laggards innovate at rate x−s(t)∆t+ o(∆t);

(iii) potential entrants innovate at rate xE,s + o(∆t) (with directed entry) or xE + o(∆t)

(with undirected entry); and (iv) these innovations increase the productivity of the leader

technology as described above, with each rung advanced increasing productivity by a

factor λ. Thus, lim∆t→0
lnQ(t+∆t)−lnQ(t)

∆t
is given by (IA.14)–(IA.15).

For the case of perfect substitution across within-industry varieties, (IA.14)–(IA.15) is

obtained similarly using (16).

Representative household’s first order conditions and labor supply. The represen-

tative household maximizes the utility function (1) subject to the budget constraint,

C(t) +
.

A(t) = w(t)L(t) + r(t)A(t) + T (t),

where w(t) is the wage rate, r(t) is the real interest rate, and T (t) denotes lump-sum taxes

paid by consumers to the government. The households are the shareholders of the firms

and households’ total assets A(t) are the sum of the firms’ asset values:
∫
F VFdf , with F

denoting the set of firms in the economy. The first order condition for consumption
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implies the standard Euler equation (3) and, combined with the first order condition for

labor supply, implies

w(t)

C(t)
= 1.

Accordingly, in equilibrium, the scaled real wage ω is equal to one.

Equilibrium definition. A dynamic general equilibrium is a sequence

{g(t), ω(t), L(t), {µs(t)}s∈S+ , {xσ(t)}σ∈S, {xE,s(t)}s∈S+ , {pj(t), yj(t)}j∈[0,1]}t∈[0,∞) (IA.18)

such that (i) the sequence of prices and quantities {pj(t), yj(t)}j∈[0,1],t∈[0,∞) satisfy the

intermediate goods production function and the profit-maximization conditions (2); (ii)

∀σ, xσ(t) is a best response to {xcσ(t)}σ∈S ; (iii) ∀σ, xcσ = xσ (symmetry); (iv) labor and goods

markets clear; (v) the distribution of technology gaps {µs(t)}s∈S+ satisfies (IA.11)–(IA.12);

(vi) growth is determined by (IA.14)-(IA.15); and (vii) xE,s(t) = 0,∀s ∈ S+, if there is no

entry, {xE,s}s∈S+ satisfies (IA.9) if there is directed entry, and xE,s = xE,∀s ∈ S+ satisfies

(IA.10) if there is undirected entry. With perfectly elastic labor supply ω(t) = 1 and L(t) is

given by (10). With inelastic labor supply, L(t) = 1 and ω(t) satisfies (10).

Balanced growth path (BGP) definition. A BGP equilibrium is a dynamic general

equilibrium with: constant growth g, scaled wage ω, aggregate labor L, incumbent

innovation rates {xσ}σ∈S , directed-entrant innovation rates {xE,s}s∈S+ if there is directed

entry, and an undirected-entrant innovation rate xE if there is undirected entry; and a

stationary distribution of technology gaps {µs}s∈S+ .

Denote a BGP by the vector (g, ω, L, {µs}s∈S+ , {xs}s∈S)′, augmented by {xE,s}s∈S in the

case of directed entry and by xE in the case of undirected entry, satisfying the growth

equation (9) (one equation), labor market clearing (10) (one equation) with ω = 1 (one

equation) in the case of perfectly elastic labor supply or L = 1 (one equation) in the case

of inelastic labor supply, incumbent first-order conditions (2s̄+ 1 equations of the form

(IA.8)), directed-entrant first-order conditions (2s̄+1 equations of the form (IA.9)) if there

is directed entry, and the undirected-entrant first-order condition (IA.10) (one equation)

if there is undirected entry, the outflow-inflow condition (IA.11) for s ∈ {1, ..., s̄} with

µ̇s = 0 (s̄ equations), and the normalization of industry weights (
∑

s∈S µs = 1, one

equation). Thus, a BGP has 3s̄+ 5 elements if there is no entry, with an equal number of
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equations characterizing the BGP; 4s̄+ 6 elements if there is directed entry, with an equal

number of equations characterizing the BGP; and, similarly, 3s̄+ 6 elements if there is

undirected entry.

Equilibrium dynamics. Here we present a key result for obtaining the transition

dynamics in Section 6.2 of the main text.

Lemma. Suppose that there is no entry or that entry is directed. Then, the time-t

innovation rate of a firm in position σ ∈ S is equal to the BGP innovation rate of a firm in

position σ. That is, xσ(t) = xσ,∀σ ∈ S,∀t ∈ [0,∞). The time-t value function {vσ(t)}σ∈S
is equal to the BGP value function, with vσ(t) = vσ. With directed entry, the time-t entry

rate is equal to the BGP entry rate, with xE,s(t) = xE,s,∀s ∈ S+.

Proof. Conjecture that vσ(t) is equal to the BGP value function. Then xσ(t) satisfying

(IA.8) is the BGP xσ. Moreover, vσ(t) = vσ and v̇ = 0 satisfy (IA.6). Finally, xE,s = xE

satisfies (IA.9).

A.5 Computing consumption-equivalent welfare gains

Consider two patent expiry rates, ηA and ηB. Denote steady state welfare under each

patent expiry rate by WA(0) and WB(0), respectively. Steady-state welfare is obtained

from (15) and (16).

Welfare comparisons across steady states. Following Acemoglu and Akcigit (2012),

Acemoglu et al. (2018), and Akcigit et al. (2020), Section 6 of the main text compares

welfare across steady states. As in Acemoglu and Akcigit (2012), we make comparisons

across steady states conditional on an exogenous initial quality index Q(0). Comparing

across steady states, the consumption-equivalent welfare gain of switching from policies

B to policies A is denoted by χ, where WA(0) = 1
ρ

ln(1 + χ) + WB(0).

Welfare comparisons taking into account transition dynamics. Section 6.2, in con-

trast, studies welfare and optimal policy taking into account transition dynamics. For a

given initial distribution of technology gaps {µs(0)}s∈S+ and initial quality index Q(0), we

calculate ex-ante welfare W (0) as

W (0) =

∫ T

t=0

exp(−ρt)
(

ln(C(t))− L(t)

)
+ exp(−ρT )W(T ), (IA.19)

where {C(t), L(t)}t∈[0,T ) is the path of aggregate consumption and labor induced by the
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patent policy η and other model parameters, W(T) is steady state welfare, and T is

sufficiently large such that the economy has converged to the steady state at time T .

An assumption of an alternative initial quality index Q̃(0) 6= Q(0) implies an alternative

time-0 welfare W̃ (0) = 1
ρ
(ln(Q̃(0))− ln(Q(0))) +W (0). Thus, the choice of initial quality

indexQ(0) does not affect comparisons of welfare for different policies; this result applies

whether one is comparing steady state welfare or taking into account transition dynamics.

Denote time-0 welfare under each patent expiry rate byWA(0) andWB(0), respectively.

Taking into account transition dynamics, the consumption-equivalent welfare gain of

switching from policies B to policies A is denoted by χ, whereWA(0) = 1
ρ

ln(1+χ)+WB(0).

A.6 Extension: Elasticity of intertemporal substitution.

The benchmark model’s assumption of log preferences can be modified to allow the EIS

to differ from 1. Assume the household maximizes∫ ∞
t=0

e−ρt
C(t)1− 1

ϕ − 1

1− 1
ϕ

dt. (IA.20)

where ϕ > 0 is the EIS and 1
ϕ

is the coefficient of relative risk aversion. The Euler equation

becomes g = ϕ(r − ρ). Substituting into the firm value function, one obtains, for σ ∈ S,

(ϕρ+ (1− ϕ)r)vσ(t)− v̇σ(t) = max
xσ(t)

(1− τ)πσ − (1− τR&D)G(xσ(t))ω(t)

+ xσ(t)
σ̄∑

σ̂=s+1

(Fσ,σ̂vσ̂(t)− vσ(t))+

xc−σ(t)
σ−1∑
σ̂=−s̄

(F−σ,−σ̂vσ̂(t)− vσ(t)) + xE(t)
σ−1∑
σ̂=−s̄

((1σ>0 +
1

2
1σ=0)FE

−σ,−σ̂vσ̂(t)− vσ(t))+

ησ

s̄∑
σ̂=−s̄

(F p
σ,σ̂vσ̂(t)− vσ(t)). (IA.21)

With elastic labor supply, we obtain the BGP for given ρ by searching for an interest

rate r such that innovation rates satisfy (IA.21) and the Euler equation is satisfied. With

inelastic labor supply, we obtain the BGP by searching for (r, ω) pair such that (IA.21), the

Euler equation, and labor market clearing is satisfied.
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A.7 Model solution and estimation

Model solution (for given parameters). Following Acemoglu and Akcigit (2012), we solve

for the value functions {vσ}σ∈S for given parameters from (4)-(5) using value function

iteration and uniformization. For the parameterizations in the main text and Internet

Appendix, we verified that increasing s̄ does not alter the equilibrium properties.

Model estimation (finding parameters that minimize the SMM criterion). For our

benchmark model, to find parameters that minimize the SMM criterion, we use the

DIviding RECTangles (DIRECT) algorithm (Jones, Perttunen and Stuckmann, 1993). DI-

RECT is a global, deterministic search algorithm based on systematically dividing the

parameter space into smaller and smaller hyperrectangles. For models with entry, due

to the higher number of estimated parameters, we use the Multi-Level Single-Linkage

(MLSL) algorithm (Kan and Timmer, 1987; Kucherenko and Sytsko, 2005). MLSL is a

global algorithm that performs a sequence of local optimizations from random starting

points. For the local optimizations within MLSL, we used the Constrained Optimization

BY Linear Approximations (COBYLA) algorithm (Powell, 1994). We used code for these

algorithms from NLOpt Version 2.6.2 (Johnson, 2021).

B. Models from Figure 1
Our model nests the models studied in Section 3, using the parameter values listed in

Table IA.I. Our analysis of Liu et al.’s (2020) quantitative model also incorporates an

additional assumption in their paper regarding the microfoundation for profits.29

The R&D scale parameters B and BE , the discount rate ρ, and the patent expiry rate η

are annualized. That is, to solve these models at a monthly frequency, one would divide

the reported parameter (e.g., B and η) by 12. All other parameters are invariant to the

frequency at which one solves the model.

29In their quantitative analysis, Liu et al. (2020) use Bertrand competition but modify the microfounda-
tion for profits by assuming that in an industry with gap s, the production cost of the follower is λmin{s,1}

times the cost of the leader. Under this assumption, a larger gap s implies a laggard must advance more
rungs to catch-up with the leader, but the laggard’s cost disadvantage is the same for all gaps s ≥ 1. We
incorporate this assumption in the right panel of Figure 1 of the main text.
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Model φ λ B γ η φE BE lE

Acemoglu and Akcigit (2012) Quick catch-up 1.00 1.05 1.20 0.35 0.00

Acemoglu and Akcigit (2012) Slow catch-up 0.00 1.05 1.20 0.35 0.02

Liu et al. (2020) 0.00 1.21 0.36 0.50 0.04

Akcigit and Ates (2019) post-1980s 0.04 1.04 0.72 0.35 0.01 0.04 3.03 0.00

Table IA.I: Parameters for the models in Section 3.

C. Data appendix
Markup distribution. We target moments characterizing the distribution of markups.

We obtain data values from Hall (2018), who estimates the distribution of Lerner indexes.

The Lerner index is defined as the ratio of price minus marginal cost to price. To obtain

markup moments, we make many draws from the distribution of Lerner indexes in Hall

(2018) and convert each Lerner index draw to a markup. The mean, median, and 90th

percentile of the Lerner index in Hall (2018) are 15%, 12%, and 30%. These untargeted

moments in our model are 15%, 12%, and 29%, indicating a very good fit.

Innovation output, profit volatility, and R&D to sales. Three types of moments are

calculated at least in part using COMPUSTAT data: innovation output, profit volatility,

and R&D to sales. The data frequency is annual (except for the use of quarterly data to

calculate the number of quarters with positive profits). To focus on innovative firms, data

moments are calculated for firm-years with positive R&D. (All firms have positive R&D in

the model, due to the Inada-type condition thatG′(0) = 0.) In line with Kogan et al. (2017):

we omit financial firms (SIC codes 6000 to 6799) and utilities (SIC codes 4900 to 4949);

we restrict attention to firm-year observations with nonmissing values for book assets

and SIC codes; and we winsorize at the 1% level using yearly breakpoints. Specifically,

we winsorize innovation output, profit growth (used to calculate profit volatility), and

R&D to sales, using yearly data, in the model and in the data. All COMPUSTAT-related

statistics are calculated for the same sample period as the productivity growth target,

1960–2019.

Following Bloom, Schankerman and van Reenen (2013) and De Ridder (2019), R&D
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is the Compustat variable XRD. Innovation output is the sum of the economic value

of all patents earned (based on stock market reaction to patent grants), normalized by

firm value. The economic value of patents is obtained from the website of Dimitris

Papanikolaou based on Kogan, Papanikolaou, Seru and Stoffman (2017).30 As in their

paper, firm value in the data is the book value of firm assets AT. Firm value in the model

is the discounted expected value of firm profits, vσ. The innovation output distribution is

similar when using firms’ enterprise value in COMPUSTAT as a measure of firm value.

Enterprise value is the sum of a firm’s equity market capitalization, preferred stock

outstanding, and the book value of debt. For R&D to sales, we calculate, in the model

and the data, the median ratio of R&D to sales, for all firms and for firms in the top

quintile of firms ranked by profits. To reduce outliers, we restrict attention, in calculating

profit-volatility moments (i.e., for all firms or a subset of firms, the standard deviation of

profit growth between year y and y + 1) in the model and in the data, to firms with two

quarters of positive operating profits in the base year y.

Internet Appendix D conducts four robustness exercises related to the data construc-

tion: (i) changing the targeted value of the growth rate; (ii) targeting much higher values

of the mean, median, and 90th percentile markup, using estimates from De Loecker et al.

(2020) for 2016; (iii) including firm-years with zero R&D when calculating COMPUSTAT-

related moments; and (iv) eliminating the two-quarter-positive-profits restriction when

calculating profit volatility.

D. Robustness
This Internet Appendix presents a number of robustness exercises, which are summarized

Section 4.4 of the main text. Section D.1 reports the results of exercises in which an

exogenously set parameter is altered and the model is re-estimated. Section D.2 describes

exercises related to patent policy. Section D.3 reports the results of exercises in which

target values for key moments are changed. Section D.4 discusses the results from

estimating an extended version of the model with entry. Section D.5 studies an extended

version of the model in which the laggard or entrant can advance an intermediate number

30See https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data
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of rungs or even leapfrog the leader. Section D.6 gauges robustness with respect to how

moment target values are calculated in the model and data.

D.1 Varying an exogenously set parameter and re-estimating.

A first set of exercises alters an assumption about an exogenously set parameter and

re-estimates the other parameters. In the benchmark model, the innovation elasticity

parameter γ = 0.5, as in Akcigit and Kerr (2018), Liu et al. (2020), Peters (2020), and De

Ridder (2019). The first column of Table IA.II shows the results from re-estimating the

model conditional on γ = 0.33, as in Acemoglu and Akcigit (2012) and Akcigit and Ates

(2019). The second column shows the results from re-estimating the model conditional

on γ = 0.66. The model fit is quite good for both alternative values of γ. Fitting the data

with lower values of γ requires lower values of the catch-up speed φ and higher R&D

costs (i.e., lower values of the R&D cost scaling parameterB). Overall, the growth-interest

rate relation and the average markup-interest rate relation are only modestly affected

when altering γ and re-estimating the model (Figure IA.2, top panels). With lower γ,

the growth-interest rate relation is a bit flatter, as is the average markup-interest rate

relation. Next, we re-estimate the model when varying κ, the elasticity of substitution

across the two varieties in each industry. Much of the literature, including Acemoglu

and Akcigit (2012), Akcigit and Ates (2019), Aghion and Howitt (1992), and Acemoglu

et al. (2018), assumes perfect substitution across varieties (“κ = ∞”). With imperfect

substitution across varieties, both firms in each industry produce, as shown in Section

2.2 of the main text. For these exercises, we calculate the industry markup as the revenue-

weighted average markup.31 The third to fifth columns of Table IA.II show the results

for κ ∈ {12, 24, 36}. (The quantitative model of Liu et al. (2020) assumes κ = 12.) Re-

estimating the model with imperfect substitution across varieties, the model fit is good

except that profit volatility is too low, unconditionally and for the top profit quintile.

Imperfect substitution across varieties implies that, conditional on the innovation step

size λ, profits πσ are generally less sensitive to a firm’s technology position σ, as shown in

31The revenue-weighted average firm markup is generally higher than the equal-weighted average firm
markup. For example, for the model estimated with κ = 24, the mean revenue-weighted markup is 19.4%;
the mean equal-weighted markup is 14.0%. The revenue-weighted and equal-weighted averages converge
as κ approaches 1.
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Figure IA.3. Altering the value of κ implies little change in the estimated value of φ. Figure

IA.2, second row of panels, shows that the growth-interest rate relation is little changed

when varying κ. For each value of κ, the average markup declines or is little changed as

the interest rate falls.

Section A.6 of the Internet Appendix extends the model to include EIS not equal to

one. In our next exercises, we assume alternative values for the EIS ϕ ∈ {0.25, 0.5, 1.5}

and re-estimate the remaining parameters. The results are reported in the sixth to eighth

columns of Table IA.II. The quality-of-fit is good for each EIS value and the estimated

values of (B, φ, λ) are little affected by varying the EIS. The growth-interest rate relation

is negative in each case, and steeper when the EIS is higher. The net markup-interest rate

relation varies little across these EIS exercises.

We also re-estimate the model assuming a discount factor of ρ = 1.5%, rather than

ρ = 2% as in the benchmark model in the main text. The results are, overall, little changed.

The final exercise reported in Table IA.II and Figure IA.2 assumes inelastic labor supply,

as in much of the literature, including Aghion and Howitt (1992), Acemoglu and Akcigit

(2012), Akcigit and Ates (2019), Acemoglu et al. (2018), and Akcigit and Kerr (2018). The

model with inelastic labor supply is presented in Internet Appendix Section A. With a

discount rate of 2%, the market-clearing scaled wage is ω = 0.936, implying a pure-profits

share of 6.4%. The scaled wage is close to its value with perfectly elastic labor supply (i.e.,

ω = 1) and therefore the estimated parameter values are quite similar when assuming

perfectly elastic or perfectly inelastic labor supply. Moreover, with inelastic labor supply,

the scaled wage varies little as the discount rate changes, implying that the relation of

growth, the average markup, and the interest rate is little affected by assuming inelastic

labor supply.

D.2 Robustness and patent policy

The benchmark model in the main text assumes that the patent expiry rate is zero, as

in the benchmark model of Acemoglu and Akcigit (2012). Table IA.III reports results

from two exercises to gauge the robustness of our results with respect to this assumption.

The first column reports an exercise in which we assume the annual patent expiry rate

is 3% and re-estimate the remaining parameters, including the patent expiry catch-up
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Figure IA.2: Growth, average markup, and the interest rate, in robustness exercises that vary an exoge-
nously set parameter and then re-estimate the model. The parameters altered in these exercises are the
R&D cost curvature parameters γ , the elasticity of substitution across varieties within each industry κ, the
elasticity of intertemporal substitution ϕ, and the discount rate ρ. We also estimate a model with perfectly
inelastic labor supply.
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Figure IA.3: Profit πσ as a function of firm technology position σ, for different elasticities of substitution
across within-industry varieties.

speed ζ. The estimated innovation catch-up speed φ declines somewhat relative to the

benchmark model. The growth-interest rate relation is negative and slightly steeper

than in the benchmark model (Figure IA.4, left panel). The average markup-interest rate

relation is positive and slightly shallower than in the benchmark model (right panel).

Next, we extend the set of three estimated parameters to include the patent expiry rate η

and the expiry catch-up speed ζ. The estimated patent expiry rate is zero, to thee decimal

places.
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Figure IA.4: Growth, average markup, and the interest rate, in robustness exercises related to patent
policy.
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Moments η = 0.03
η

estimated Target
Productivity Growth 1.03% 1.03% 1.03%
Markup

Mean 19.35% 19.42% 19.40%
50th percentile 13.18% 13.12% 13.64%
90th percentile 41.78% 41.81% 42.62%

Innovation output
Mean 5.38% 5.90% 6.75%
50th percentile 0.00% 0.00% 0.00%
90th percentile 17.05% 18.17% 19.49%

FHK within 90.20% 89.85% 90.77%
Profit volatility

All firms 39.68% 39.30% 45.09%
Top profit quintile 15.91% 16.25% 21.89%

R&D to sales
All firms 5.59% 5.50% 5.35%
Top profit quintile 3.67% 3.59% 2.52%

Parameters
φ 0.228 0.283
λ 1.016 1.018
B 2.761 2.463
η 0.030 0.000
ζ 0.378 1.000

Table IA.III: Robustness: Patent policy. The first column reports the results of an exercise in which the
annual patent expiry rate is set to 3% and then the model parameters, including the patent expiry catch-
up speed ζ, are re-estimated. The second columns reports the results of an exercise in which all five
parameters shown (φ, λ,B, η, ζ) are estimated jointly. The final column gives the targeted values of the
moments. In this table, FHK within is the adjusted within moment, described in Section 4.1 of the main
text.
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Figure IA.5: Growth, average markup, and the interest rate, in robustness exercises varying the values
of targeted moments.

D.3 Varying targeted moment values.

Next, we study robustness with respect to values of the underlying moments. We set the

annual growth rate g to 0.75% and re-estimate the model. We repeat this exercise with g

equal to 1.10%. We also estimate the model targeting markups much higher than in our

benchmark estimation. We target net markups with a mean of 60%, a median of 25%,

and a 90th percentile of 150%. These markup targets are from De Loecker et al. (2020), for

2016. The results are reported in Table IA.IV and Figure IA.5. A higher growth target is met

primarily by increasing the innovation step size λ and reducing R&D costs (i.e, increasing

B). For the high-markups estimation, the growth rate and average markup target are

achieved, but moments related to innovation output, profit volatility, and R&D to sales

are matched notably worse than when the model is estimated using markup targets from

Hall (2018). The estimated innovation catch-up speed φ declines, as expected. Targeting

a higher growth rate shifts the growth-interest rate relation upward (by construction)

with little change in the slope. When high markups are targeted, the growth-interest rate

relation remains negative and the average markup-interest rate relation remains positive,

with both are steeper relative to these relations in the benchmark model.

D.4 Entry

Section 4.5 of the main text discusses results from estimating a version of the model with

undirected entry. Here we present additional detail regarding those results. Table IA.V

lists values of all targeted moments in the model and in the data. Figure IA.6 shows that,

62



High g Low g High markup
Moments Model Target Model Target Model Target
Productivity Growth 1.10% 1.10% 0.75% 0.75% 1.03% 1.03%
Markup

Mean 19.14% 19.40% 19.16% 19.40% 59.97% 60.00%
50th percentile 12.91% 13.64% 12.99% 13.64% 41.75% 25.00%
90th percentile 41.16% 42.62% 41.45% 42.62% 130.65% 150.00%

Innovation output
Mean 6.09% 6.75% 4.88% 6.75% 3.03% 6.75%
50th percentile 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
90th percentile 18.52% 19.49% 13.39% 19.49% 5.78% 19.49%

FHK within 89.52% 90.77% 90.76% 90.77% 93.47% 90.77%
Profit volatility

All firms 40.65% 45.09% 32.78% 45.09% 22.04% 45.09%
Top profit quintile 16.94% 21.89% 14.06% 21.89% 9.45% 21.89%

R&D to sales
All firms 5.57% 5.35% 5.02% 5.35% 7.51% 5.35%
Top profit quintile 3.66% 2.52% 3.27% 2.52% 3.14% 2.52%

Parameters
φ 0.296 0.272 0.172
λ 1.019 1.016 1.027
B 2.486 2.102 1.449

Table IA.IV: Robustness: Values of Targeted Moments. The first two columns show model and target
moments when the target growth rate g is 1.10%. The third and fourth columns present the same exercise,
but with a target growth rate of 0.75%. The final two columns present an exercise in which the markup
distribution is shifted significantly to the right. In this table, FHK within is the adjusted within moment,
described in Section 4.1 of the main text.

63



Moments Model Target
Productivity Growth 1.03% 1.03%
Markup

Mean 19.42% 19.40%
50th percentile 13.15% 13.64%
90th percentile 41.37% 42.62%

Innovation output
Mean 7.15% 6.75%
50th percentile 0.00% 0.00%
90th percentile 15.48% 19.49%

FHK within 81.12% 66.93%
Profit volatility

All firms 41.06% 45.09%
Top profit quintile 16.66% 21.89%

R&D to sales
All firms 5.24% 5.35%
Top profit quintile 3.47% 2.52%

FHK entry 20.53% 23.93%
Employ share,≤ 10 years 29.33% 26.20%
Employ share,≤ 5 years 17.77% 15.70%
Parameters
φ 0.188
λ 1.019
B 2.317
l 0.000
φE 0.479
BE 0.678
lE 1.000

Table IA.V: Robustness: Entry. This table reports results from estimating the model with undirected entry
from Section A.3 of the Internet Appendix.

with entry, the growth-interest rate relation remains negatively sloped and the average

markup-interest rate relation remains positively sloped.

D.5 Intermediate step sizes.

Innovations in our benchmark model advance the laggard only one rung or close the

gap completely. We next extend the model to include the possibilities of the laggard

advancing an intermediate number of rungs or even leapfrogging the leader.

Together with the leapfrogging parameter l, a second parameter φM captures the

speed at which an innovating laggard moves ahead. A higher value of φM implies a

greater probability of an innovating laggard jumping all the way to position l. Note

that φM ∈ (−∞,∞) is distinct from the catch-up speed parameter φ, as we will explain

next. For φM ∈ (−∞,∞), the advancement function Fσ,σ̂ is defined as follows. A firm
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Figure IA.6: Growth, average markup, and the interest rate, when the model is extended to include
entry.

in position σ < l (that is, a laggard firm or a leader firm less than l steps ahead) has a

probability of advancing to position σ̂

Fσ,σ̂(φM , l) =

f0

∑σ+1
σ̃=−s̄ exp(φM σ̃) if σ̂ = σ + 1

f0 exp(φM σ̂) if σ̂ > σ + 1 and σ̂ ≤ l,

(IA.22)

and Fσ,σ̂ = 0 otherwise. The constant f0 ensures that
∑

σ̂∈{−s̄,...,s̄} Fσ,σ̂ = 1, ∀σ. We assume

that leaders at or beyond position l advance (only) one step at a time. That is, for σ ≥ l,

Fσ,σ+1 = 1. This setup provides enough flexibility to capture a range of assumptions

about leader innovation, including the common assumption that leader innovation is

incremental (l = 0).

Our specification of the advancement function F nests several approaches in the

literature. The “quick catch-up” setup of Aghion et al. (2001), with laggards catching up

with a single innovation but unable to leapfrog, corresponds to the case of φM =∞ and

l = 0.32 We nest two additional quick catch-up settings: leapfrogging as in Acemoglu

and Akcigit (2012) is obtained under φM =∞ and l = 1; and “radical” innovation as in

Acemoglu and Cao (2015) corresponds to φM = ∞ and l > 1. With φM = −∞, we nest

the “slow catch-up” assumption of Acemoglu and Akcigit (2012) and Liu et al. (2020), in

which an innovating firm advances only one step at a time. With φM ∈ (−∞,∞), the step

size is stochastic as in Akcigit and Kerr (2018). We accommodate a range of intermediate

32Formally, we define Fσ,σ̂(−∞, l), with Fσ,σ̂(−∞, l) = 1 if and only if σ̂ = σ + 1. We similarly define
Fσ,σ̂(∞, l), with Fσ,σ̂(∞, l) = 1 if and only if σ̂ = σ + l. Note that Fσ,σ̂(φM , l) converges uniformly to
Fσ,σ̂(−∞, l) as φM → −∞ and similarly Fσ,σ̂(φM , l) converges uniformly to Fσ,σ̂(∞, l) as φM →∞.
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Figure IA.7: Growth, average markup, and the interest rate, in the multi-step models.

catch-up speeds, with φM = 0 corresponding to a uniform probability of landing on

each step between σ + 2 and l. We approximate the setup of Akcigit et al. (2018) with

φM ∈ (0,∞) and l = s̄.

Table IA.VI reports the results of two exercises in this multi-step setting. We estimate

the model conditional on full patent protection (first column) and conditional on a patent

expiry rate of 3% (second column). Because the estimated values of φM are positive, the

estimated model features a form of “advantage of backwardness”: an innovating laggard

in position σ is more likely to advance to σ̂ + 1 than to σ̂, for σ̂ > σ. In the estimation

with a 3% patent expiry rate, another aspect of the estimated model that fosters creative

destruction is leapfrogging (l = 2). Overall, the model fit is fairly good, but not as good

as with the simpler functional form assumption for laggard advancement in the main

text (i.e., (IA.2) with l = 0, which is used in the main text estimations). Figure IA.7 shows

that, in both of the multi-step estimated models, as the interest rate falls, growth rises

monotonically and the average markup falls or is little changed.

D.6 Robustness and moment construction

This section reports robustness exercises related to how certain moments are calculated

in the model and in the data. As described in the data appendix (Internet Appendix

C), we calculate moments related to innovation output, profit volatility, and R&D to

sales for firm-years with positive R&D. This restriction only affects the calculation of the

targeted values in the data. (In the model, all firms have positive R&D because of the

Inada-type condition that G′(0) = 0.) The first two columns of Table IA.VII report the
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Moments Multi-step (with η = 0) Multi-step (with η = 0.03) Target
Productivity Growth 1.03% 1.06% 1.03%
Markup

Mean 19.40% 19.35% 19.40%
50th percentile 12.71% 13.77% 13.64%
90th percentile 36.40% 37.69% 42.62%

Innovation output
Mean 3.63% 3.10% 6.75%
50th percentile 0.00% 0.00% 0.00%
90th percentile 12.33% 10.88% 19.49%

FHK within 85.76% 85.28% 90.77%
Profit volatility

All firms 32.34% 33.36% 45.09%
Top profit quintile 17.07% 16.17% 21.89%

R&D to sales
All firms 5.08% 5.33% 5.35%
Top profit quintile 2.28% 2.49% 2.52%

Parameters
φM 0.604 0.050
λ 1.054 1.038
B 0.877 1.183
η 0.000 0.030
ζ − 1.477
l 0.000 2.000

Table IA.VI: Robustness: Alternative advancement functions. This table reports results from estimating
the model under an extension in which an innovating laggard in technology position σ has a positive
probability of advancing to any position σ̂ ∈ {σ + 1, ..., l}. In this table, FHK within is the adjusted within
moment, described in Section 4.1 of the main text.
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Figure IA.8: Growth, average markup, and the interest rate, in robustness exercises related to moment
construction.

results of estimating the model when dropping the restriction to firm-years with positive

R&D. Without the positive R&D restriction, the targeted innovation-output distribution

shifts markedly inward, the targeted profit volatility profit volatility increases somewhat

for high-profit firms, and, as expected, targeted R&D to sales declines. Re-estimating

the model to fit these targets, the speed of catch-up rises to φ = 0.82, the step size

increases to lnλ = 6.3%, and R&D costs are shifted upward (i.e., the R&D cost parameter

B falls, corresponding to higher R&D costs). The third and fourth columns of Table

IA.VII present an exercise in which we calculate data target values when dropping the

restriction, in the construction of model and data moments, that only firms with positive

profits for two quarters in the “base year” are included when calculating profit volatility.

This exercise increases only slightly the target values for the profit volatility moments,

with target values for all other moments unchanged. The estimated parameters change

little; unconditional profit volatility is somewhat too high relative to the data, because of

outliers that have very high profit growth in the simulation due to having only one or two

months of positive profits in the base year.

D.7 Robustness and financial frictions

Section 7 of the main text extends the model to include a limited commitment problem à

la Aghion et al. (2019a). As described there, we set the limited commitment parameter

α = 0.1 and re-estimate the model. The results are shown in Table IA.VIII. (See Section 7

of the main text for a detailed analysis of how the limited commitment problem affects

firms’ innovation decisions and the distribution of technology gaps.) As shown in Figure
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No pos. R&D No 2 qtr. profit
Moments Model Target Model Target
Productivity Growth 1.02% 1.03% 1.03% 1.03%
Markup

Mean 19.43% 19.40% 19.42% 19.40%
50th percentile 10.49% 13.64% 13.11% 13.64%
90th percentile 40.33% 42.62% 41.80% 42.62%

Innovation output
Mean 3.40% 3.38% 5.89% 6.75%
50th percentile 0.00% 0.00% 0.00% 0.00%
90th percentile 7.94% 7.90% 18.18% 19.50%

FHK within 81.22% 90.77% 89.81% 90.77%
Profit volatility

All firms 33.89% 50.21% 58.76% 48.57%
Top profit quintile 17.24% 25.48% 16.25% 20.28%

R&D to sales
All firms 4.52% 3.58% 5.50% 5.35%
Top profit quintile 2.79% 1.89% 3.59% 2.52%

Parameters
φ 0.817 0.284
λ 1.063 1.018
B 0.720 2.459

Table IA.VII: Robustness: Alternative approaches to calculating data moments. This table reports the
results of two exercises in which we alter choices made in calculating data moments and then re-estimate
the model. In the first exercise, we calculate data target values when dropping the restriction to firm-year
observations with positive R&D. This exercise, reported in the first two columns, thereby alters the target
values for innovation output, profit volatility, and R&D to sales moments. In the second exercise, we
calculate data target values when dropping the restriction, in the construction of model and data moments,
that only firms with positive profits for two quarters in the “base year” are included when calculating profit
volatility. This exercise, reported in the last two columns, alters only the profit volatility moments. In this
table, FHK within is the adjusted within moment, described in Section 4.1 of the main text.
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Moments α = 0.1 Targets
Productivity Growth 1.03% 1.03%
Markup

Mean 19.40% 19.40%
50th percentile 12.85% 13.64%
90th percentile 42.97% 42.62%

Innovation output
Mean 5.57% 6.75%
50th percentile 0.00% 0.00%
90th percentile 19.37% 19.49%

FHK within 90.04% 90.77%
Profit volatility

All firms 41.17% 45.09%
Top profit quintile 16.18% 21.89%

R&D to sales
All firms 5.97% 5.35%
Top profit quintile 3.84% 2.52%

Parameters
φ 0.261
λ 1.019
B 2.315

Table IA.VIII: Robustness: Financial frictions. This table reports the results from re-estimating the model
with limited commitment parameter α = 0.1. Section 7 extends the model to include limited commitment.
In this table, FHK within is the adjusted within moment, described in Section 4.1 of the main text.

IA.9, in this re-estimated model, the growth-interest rate relation is negatively sloped.

The the average markup is U-shaped with respect to the interest rate, with the average

markup remaining within a range of 19 to 23% for a wide range of interest rates.

D.8 Robustness and time period used for moment targets

Recent work by Akcigit and Ates (2019) and Olmstead-Rumsey (2020) emphasizes that,

since the 2000s, productivity growth and business dynamism have been especially low.

We therefore undertake exercises in which we target moment values calculated for 2004

onward. Our first exercise has no firm entry, as in the benchmark model of the main text.

Because the evidence of reduced business dynamism includes lower employment shares

of young firms (Decker et al. (2014)), we conduct a second exercise where we estimate

the model with firm entry.

Our target values are calculated identically to the targets in the main text, except that:

we use a sample period of 2004–2019 for productivity growth (Fernald et al. (2017)) and

R&D to sales; the markup distribution is for 2015, from Hall (2018); and the employment

share by firm age is for 2014. The resulting target values are shown in Table IA.IX. The
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Figure IA.9: Growth, average markup, and the interest rate, in a robustness exercise including a limited
commitment constraint.
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Figure IA.10: Growth, average markup, and the interest rate, in robustness exercises using a different
sample period.

economy as depicted by these data moments have some elements of sclerosis: annual

growth is only 0.56%, despite little change in R&D to sales, and the 90th percentile markup

is 97%. The employment share of young firms is also lower than in the benchmark

analysis.

The re-estimations point to lower R&D productivity for incumbents (i.e, lower B)

and entrants (i.e, lower BE in the model with entry), relative to the models estimated

using a longer sample period (see Tables 1 and 4 of the main text). Laggard and entrant

innovation are less likely to be radical (φ and φE decline). However, in each model,

innovating laggards or entrants still have a meaningful chance of quickly catching-up. As

a result, as the discount rate falls, productivity growth declines and the average markup

rises, as shown in Figure IA.10.
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Moments No entry Target Entry Target
Productivity Growth 0.58% 0.58% 0.58% 0.58%
Markup

Mean 44.20% 44.20% 43.63% 44.20%
90th percentile 97.04% 83.77% 89.35% 83.77%

FHK entry 0.00% − 22.66% 23.93%
R&D to sales

Top profit quintile 2.63% 3.04% 2.62% 3.04%
Employ share,≤ 10 years − − 14.50% 19.12%
Employ share,≤ 5 years − − 8.19% 10.82%
Parameters
φ 0.176 0.073
λ 1.019 1.018
B 1.352 1.385
η 0.000 0.000
ζ − −
φE − 0.167
BE − 0.518
l 0.000 0.000
lE − 5.000

Table IA.IX: Robustness: Changing the sample period. This table reports the results of exercises in which
the sample period in the data is 2004–2019, a period with low productivity growth and high markups,
relative to prior decades. In this table, for the model without entry (first two columns), FHK within is the
“adjusted” within moment described in Section 4.1 of the main text; for the model with entry (last two
columns), FHK within is the unadjusted within moment.

E. Innovation multiplier

E.1 Proof of Theorem 1

We first prove Theorem 1 under the assumptions of elastic labor supply and no entry.

Theorem 1 in the main text is stated under these assumptions, and these assumptions

hold in all exercises discussed in the main text except for some robustness exercises.

However, as shown subsequently, Theorem 1 is readily extended to include inelastic

labor supply and entry. Suppose that labor supply is perfectly elastic. As in the main

text, denote Υ = (g, {µs}s∈S+ , {xσ}σ∈S). Υ contains all the elements of the BGP, as defined

in Internet Appendix A, except for ω and L. We exclude ω because ω = 1 with perfectly

elastic labor supply. We exclude L, for convenience, because L enters only one of the

equations characterizing the BGP, specifically, the aggregate labor demand equation (10).

Let H denote the stack of the equations characterizing Υ. (These equations include all

equations characterizing the BGP described in Internet Appendix A.4, except for labor
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market clearing and ω = 1). This stack is a set ofK = 3s̄+3 possibly non-linear equations,

with the k-th equation of the form h(Υ; k) = 0.

In a neighborhood of ρ, if HΥ is invertible, the implicit function theorem implies

dΥ = −H−1
Υ Hρdρ. (IA.23)

HΥ is a K × K matrix with element (k1, k2) corresponding to ∂h(Υ;k1)
∂Υk2

, where Υk2 is the

k2-th element of Υ. In our quantitative analyses, we always find that HΥ is invertible. Hρ

is a K × 1 matrix. Element k of Hρ is ∂h(Υ;k)
∂ρ

.

Consider (IA.8), written as G′−1( 1
1−τR&D

∆vσ
ω

) − xσ = 0 for σ ∈ S. The corresponding

element of Hρ is ∂xs
∂ρ

. All other elements of H are 0, because ρ does not enter into other

equations in H. Therefore, (13) holds, with M = −H−1
Υ M1 where M1 is a matrix that maps

{xσ}σ∈S into Υ.

Extensions of Theorem 1. To extend Theorem 1 to apply to the case of inelastic labor

supply, augment Υ to include ω and augment H to include (10). The remainder of the

proof is unchanged, because the new element of Hρ (corresponding to (10)) is equal to

zero. To extend Theorem 1 to apply to models with entry, augment Υ to include {xE,s}s∈S
in the case of directed entry and xE in the case of undirected entry. Similarly, augment H

to include entrant first order conditions (of the form (IA.9) in the case of directed entry

and (IA.10) in the case of undirected entry). The row of Hρ corresponding to (IA.10),

G′−1
E (∆vE

ω
)−xE = 0, is ∂xE

∂ρ
. The row ofHρ corresponding to (IA.10),G′−1

E (
∆vE,s
ω

)−xE,s = 0,

is ∂xE
∂ρ

. Thus, the valuation-driven change in firm innovation becomes ∂x = [∂x−s̄ . . .

∂xs̄xE,−s̄ . . . ∂xE,s̄]
′ in the case of directed entry, and ∂x = [∂x−s̄ . . . ∂xs̄xE]′ in the case of

undirected entry. Here, the valuation-driven change in the directed entrant’s innovation

is ∂xE,σ =
∂xE,σ
∂ρ

dρ, where ∂xE,σ
∂ρ

is obtained from (IA.4). Similarly, the valuation-driven

change in the undirected entrant’s innovation is ∂xE = ∂xE
∂ρ
dρ,where ∂xE

∂ρ
is obtained from

(IA.5).
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∂xc1
− ∂v0
∂xc1

)
0 0 0 0 0 −1


(IA.24)

Obtaining theHΥ matrix. To computeHΥ, one needs values for {∂vσ
∂ρ
}σ∈S and { ∂vι

∂xcσ
}(ι,σ)∈S×S.

In the case of no entry, the valuation terms {∂vs
∂ρ
}s∈S are obtained as the solution to the

following system of 2s̄+ 1 equations, which are linear in model parameters and {vσ}σ∈S.

For any σ ∈ S, taking the partial derivative of the value function (IA.8) with respect to ρ,

vσ + ρ
∂vσ
∂ρ

= xσ
∂∆vσ
∂ρ

+ xc−σ

σ−1∑
ŝ=−s̄

(F−σ,−σ̂
∂[vσ̂ − vσ]

∂ρ
)

+ η
σ−1∑
σ̂=0

(F p
σ,σ̂

∂[vσ̂ − vσ]

∂ρ
). (IA.25)

The strategic terms { ∂vι
∂xcσ
}(ι,σ)∈S×S are the solution to

ρ
∂vι
∂xcσ

= xs
∂∆vι
∂xcσ

+ xc−ι

ι−1∑
ι̂=−s̄

(F−ι,−ι̂
∂[vι̂ − vι]
∂xcσ

)

+ η
ι−1∑
ι̂=0

(F p
ι,ι̂

∂[vι̂ − vι]
∂xcσ

) + 1−ι=σ(
ι−1∑
ι̂=−s̄

(F−ι,−ι̂vι̂ − vι)). (IA.26)

E.2 Multiplier magnitudes

To interpret the magnitude of the elements of the growth multiplier (Figure 7), note that if

laggards in competitive industries (with s ≤ 10) increase their annual innovation rate by

5 percentage points in response to a lower discount rate when taking as given their com-

petitors’ strategy, then the effect on annual growth would be 0.05×Mg

∑
σ∈{−10,..,−1} e

′
σ =

0.0005, or 5 basis points. (Recall, eσ is a row vector of length (2s̄+ 1), with a 1 in position

s̄+ 1 + σ.). In contrast, if laggard firms in uncompetitive industries (with s > 10) have a

valuation-driven increase in innovation of 5 percentage points, then the effect on annual

growth would be 0.05 ×Mg

∑
σ∈{−10,..,−1} e

′
σ, equal to -5 basis points. Because laggard

innovation has no direct effect on aggregate growth, these results show the powerful
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escape-competition and trickle-down effects in the model.

E.3 Unpacking the strategic interactions.

To shed light on the strategic channel, Figure IA.11, top panel, shows the multiplier Mxι

for a firm in position ι = 4, or how the cross section of valuation-driven increases in

innovation rates {xσ}σ∈S translate into the GE effect on the innovation of a firm 4 steps

ahead of its competitor. The spike at σ = 4 reflects that valuation-driven increases in the

innovation rate of a firm 4 steps ahead directly contribute to the GE increase in this firm’s

innovation rate (as shown by the solid green line in the bottom panel). The large positive

spike at σ = −4 reflects that valuation-driven increases in the innovation rate of a firm

4 steps spur its competitor to increase innovation to escape competition (as shown by

the dotted blue line in the bottom panel).33 Negative values for farther-behind laggards

reflect, in contrast, a strategic trickle-down effect: A leader currently 4 steps ahead has

less to gain from innovation, the greater the innovation rates of laggards 5 or more steps

behind, with whom the leader would compete if the leader were to innovate.

F. Unpacking the valuation-driven change in firm innova-

tion, ∂x
This section unpacks—qualitatively and quantitatively—the determinants of the valuation-

driven change in firm innovation, ∂x = [∂x−s̄ . . . ∂xs̄]
′, the effect of a lower discount rate

on the cross section of firm innovation when each firm holds its competitor’s strategy con-

stant.34 The valuation-driven change in firm innovation captures the “standard” channel

by which a lower discount rate affects innovation by reducing the required return on

R&D.

Using the first order condition (6) from the main text, the valuation-driven change

in the innovation rate of a firm in position σ due to a discount rate change dρ is, to first

33Specifically, the strategic component of Mxι is defined as ∂xι
∂xcσ

, which isolates the strategic channel
through which a firm in position ι responds to its competitor’s innovation rate when in position σ. The
strategic term ∂xι

∂xcσ
is obtained using implicit differentiation of the system of equations (4)–(5), taking the

discount rate ρ as given.
34Specifically, ∂xσ ≡ ∂xσ

∂ρ dρ, where dρ is a change in the discount factor and ∂xσ
∂ρ is obtained using the

implicit function theorem for the system of equations (4)–(5), as discussed in detail in Internet Appendix
Section E
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Figure IA.11: Strategic interactions. The top panel shows the multiplier Mx4 mapping the cross section of
valuation-driven increases in innovation ∂x into the GE effect on the innovation rate of leader firms 4 steps
ahead of their competitors. The solid green line in the bottom panel shows the direct effect: valuation-
driven increases in innovation for firms 4 steps ahead contribute directly to the GE change in innovation
for these firms. The dotted blue line shows the strategic component of Mx4

, as described in footnote 33.

order,

∂xσ =
∂xσ
∂ρ

dρ = (−cσ ×Dσ ×∆vσ)dρ, (IA.27)

where cσ = ((1 − τR&D)G′′(xσ)ω)−1 > 0 is a curvature term capturing how the marginal

cost of innovation changes with the innovation rate, Dσ ≡ −∂∆vσ
∂ρ

1
∆vσ

is the duration of

profits from innovation, and ∆vσ is the capital gain from innovation, described in (IA.7).

The curvature term is positive because R&D costs are convex semi-elasticity of the

value of an asset with respect to the discount rate. This term is increasing in the innova-

tion rate, xσ if and only if γ ≤ 0.5. In the benchmark model, γ = 0.5, implying that the

curvature term is invariant across σ.

The duration of expected profits from innovation, Dσ, is connected to, but distinct

from, the widely cited metric of the duration of firm profits, or, Dσ ≡ −∂vσ
∂ρ

1
vσ
. We turn

now to the mapping between these two definitions of duration.
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Non-recursive value function and the duration of profits from innovation. Using

the recursive Hamilton–Jacobi–Bellman equations (4)–(??), the non-recursive value func-

tion along a BGP equilibrium is:

vs(t)(t) =

∫ ∞
t

e−ρ(z−t)Es(t),tΠN
ς(z)dz, (IA.28)

where Es(t),t is the expectation operator over a firm’s position ς(z) at time z > t conditional

on having position s(t) at time t. Net operating profits conditional on having position

ς(z) are given by ΠN
ς(z).

35 The capital gain from innovation can therefore be written non-

recursively as

∆vs(t) =

∫ ∞
t

e−ρ(z−t)
( s̄∑
ŝ=s+1

Fs(t),ŝEŝ,t − Es(t),t
)

ΠN
ς(z)︸ ︷︷ ︸

Expected profit at time z > t from innovation

dz. (IA.29)

Using expressions (IA.28) and (IA.29), we obtain the following relation:

Dσ =
1

∆vσ

( s̄∑
ŝ=s+1

Fσ,ŝvŝDŝ − vσDσ

)
. (IA.30)

Duration a concept from asset pricing is the (negative) semi-elasticity of the value of

an asset with respect to the discount rate: the percent change in the asset’s value from a

marginal decline in the discount rate. (a formal definition of the expected profits from

innovation is provided at the end of this section of the Internet Appendix.) Duration is

measured in time units and captures the amount of time that elapses before an asset

holder receives the asset’s cash flows.

Discussion. Holding constant the competitor’s innovation rate, the sign and magni-

tude of the effect of a lower discount rate on an individual firm’s R&D depends on the

time pattern of the expected profits from innovation, as shown by expressions (IA.28)

and (IA.29). With respect to the sign, if the expected profits from innovation are weakly

positive at all horizons z > t, then their duration must be positive. That is, holding

factors external to the firm constant, a lower discount rate is associated with higher R&D.

However, if the expected profits from innovation are negative at some future dates z > t,

then the discount-rate valuation effect can in principle be negative even as the capital

35Define ΠN
ς(z) : (S ∪ ∅) → R as the net operating profit of a firm in position ς(z), with ΠN

ς(z) = (1 −
τ)Lς(z)1ς(z)>0− (1− τR&D)G(xς(z)) for ς(z) ∈ S and ΠN

ς(z) = 0 if ς(z) = ∅,with ∅ connoting that a firm has
been displaced by entry prior to time z.
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gain from innovation is positive. This outcome can obtain when an innovation leads

to positive profits shortly after the innovation, followed by losses later. With a negative

duration of profits from innovation, an individual firm facing a lower discount rate would

decrease R&D.

Valuation effect on firm innovation, ∂x, in the benchmark model. In the estimated

model, holding constant the competitor’s strategy, a decline in the discount rate implies

a rise in innovation for all firms, in every technology position (grey dashed line in the

top-left panel of Figure IA.12). The sign of this valuation-driven effect on firm innovation,

in principle, could be negative if an innovation from a certain technology position leads

to back-loaded losses through increased R&D expenditures. In the estimated model, for

some positions σ, an innovation does lead to losses, due to an endogenous increase in

R&D and therefore R&D costs, but these losses are front-loaded, occurring immediately

after an innovation. Thus, the uniformly positive valuation-driven effect of a lower

discount rate on innovation is therefore a result of the model calibration. A 100 basis

point decline in the discount rate leads to valuation-driven increase in the innovation

rate of far-behind laggards of 11 percentage points per year; for tied firms, the valuation-

driven increase is almost 30 percentage points per year, while for far-ahead leaders

(σ ∈ {20, ..., 30}), the increase is 5 percentage points.

The large magnitude of valuation-driven increases in innovation in tied industries

reflects two forces. First, tied firms’ capital gain from innovation is high: An innovating

tied firm starts to earn operating profits and, as its lead increases further, reduces its R&D

expenditures (bottom left panel of Figure IA.12). Second, tied firms’ duration of profits

from innovation is higher than leaders’ because tied firms’ profits from innovation are

relatively backloaded. After innovating, a tied firm initially incurs high R&D expenses,

to try to build a lead sufficient to discourage its competitor. Thus, for tied firms, the

expected profits from innovation accrue steadily over a long period (bottom right panel

of Figure IA.12, dashed line). In contrast, an innovating leader even a couple of steps

ahead immediately sees an increase in net profits, but this increase is small, reflecting the

concavity of leaders’ operating profits in their technology advantage and a small decline

in R&D expenses. These leaders’ advantage is eroded over time by laggard innovations
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Figure IA.12: Effects on firm innovation of a lower discount rate. The grey dashed line in the top left
panel shows the effect of a 100 bps decline in the discount rate, holding all other factors constant (∂x). The
solid line shows the general equilibrium effect (dx = Mx∂x). The capital gain from innovation (bottom
left) and the duration of profits from innovation (top right) are key determinants of ∂x (equation (IA.27)).
The bottom right panel shows the time pattern of the expected profits from innovation.

and patent expiries, making these leaders’ profits from innovation relatively front-loaded

(dotted line). Compared with nearly tied leaders (in competitive sectors), further-ahead

leaders (in less competitive sectors) therefore have a lower capital gain from innovation

and a shorter duration of expected profits from innovation. Thus, the valuation-driven

increase in leaders’ innovation declines progressively with leaders’ technology advantage.

Laggards have much lower capital gains from innovation than tied firms but the

duration of their profits from innovation is very high. This high duration reflects that, for

laggards, an innovation is associated with immediately higher R&D expenditures and
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no change in operating profits. Thus, for laggards, an innovation on impact generates

expected losses followed by an increase in expected profits further in the future (bottom

right panel of Figure IA.12, solid line). As laggards fall behind from the tied state, their

capital gain from innovation initially declines quickly (faster than the duration of profits

from innovation rises). Thus, laggard innovation declines as an industry becomes less

competitive. However, because of the possibility of quick catch-up, the expected capital

gain remains strictly positive for all laggards, and consequently laggards do not become

completely discouraged even if far behind.

G. Additional results
Mapping from parameters to moments. Figure 3 of the main text shows how three

targeted moments vary with the estimated parameters (φ, λ,B). For completeness, Figure

IA.13 presents how the remaining targeted moments vary with these parameters.

Profit share. Section 4.3 states that the profit share falls as the interest rate declines,

as shown in Figure IA.14.
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Figure IA.13: Mapping from parameters to moments. The figure shows how selected moments vary with
catch-up speed φ (left panels), innovation step size λ (middle panels), and R&D cost scaling parameter B
(right panels), holding other parameters constant. All moments are shown in percent.
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Figure IA.14: Profit share and the interest rate, in the benchmark economy.
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