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ABSTRACT 

We consider multi-agent multi-firm contracting when agents benchmark their wages to those of 

their peers, using weights that vary within and across firms. When a single principal commits to a 

public contract, optimal contracts hedge relative wage risk without sacrificing efficiency.  But 

compensation benchmarking undoes performance benchmarking, causing wages to load positively 

on peer output, and asymmetries in peer effects can be exploited to enhance profits. With multiple 

principals a “rat race” emerges: agents are more productive, with effort that can exceed the first-

best, but higher wages reduce profits and undermine efficiency. Wage transparency and disclosure 

requirements exacerbate these effects.  
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Contract and incentive theory has provided powerful insight into the optimal design of 

compensation schemes.  Chief among them, for instance, is the idea that contracts should provide 

higher compensation when output suggests that the agent was more likely to have engaged in 

desired behavior.  In particular, Holmstrom’s (1992) Informativeness Principle states that any 

measure of performance that reveals information about the agent’s effort should be included in the 

compensation contract.  A prime example is the use of Relative Performance Evaluation (RPE), in 

which the agent’s performance is measured relative to her peers in order to filter out common risk 

factors.  In other words, optimal contracts should not “pay for luck” due to aggregate shocks, but 

only pay for indicators of individual performance. Yet despite this clear benefit, such performance 

benchmarking is observed less frequently than theory would predict.1   

 But while principals should care about relative performance, agents may also care about 

their relative wage.  In this paper, we consider such preferences and explore their consequences. 

Specifically, we suppose agents have a “keeping up with the Joneses” component to their utility 

in which they compare their wage to a weighted average of the wages of their peers.  We allow for 

a general network of peer relationships, where the strength of comparison may vary both within 

and across firms based on proximity, salience, or other factors. We characterize optimal contracts 

in this setting and show that many standard contracting results are overturned – agents may be 

rewarded for peer performance, and, despite seemingly weaker incentives, equilibrium effort may 

exceed the first best.  

 In particular, we show that when peer effects are strong enough, compensation 

benchmarking undoes performance benchmarking, leading to wage contracts that positively load 

on peer (or team) output. But although these contracts appear inefficient, we show that this effect 

on its own does not diminish incentives nor reduce welfare. Moreover, despite what appear to be 

“low power” incentives, when there are multiple principals, or if contracts are privately negotiated, 

a “rat race” ensues that leads to higher wages and effort that may even exceed the first best.  And 

although rat-race effects increase productivity, wages rise even more, causing a decline in profits. 

Measures that increase external wage transparency (such as public disclosure requirements) are 

 
1 For empirical evidence of “pay for luck” in the context of CEO compensation, see for example Murphy (1985), 
Coughlan and Schmidt (1985), Antle and Smith (1986), Gibbons and Murphy (1990), Janakiraman, Lambert, and 
Larker (1992), Garen (1994), Aggarwal and Samwick (1999a,b), Murphy (1999), Frydman and Jenter (2010), and 
Jenter and Kanaan (2015). 
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likely to exacerbate these rat-race effects. Finally, if peer-effects are asymmetric, principals can 

exploit the asymmetry by reallocating effort to “less visible” agents.  Though this reallocation 

inefficiently distorts production, incentive costs fall and, surprisingly, profits and welfare rise 

relative to when agents’ preferences lack peer-effects.    

 Our model includes many agents who take hidden effort to produce output that is subject 

to both common and idiosyncratic shocks.  Agents receive a compensation contract which specifies 

their wage as a function of their own output as well as the output of others. Agents are risk averse 

and have preferences that are increasing in both their own wage as well as the difference between 

their own wage and a weighted average benchmark of their peers’ wages.  We allow these weights 

to depend on a general peer-network structure so that, for example, agents may put more weight 

on close colleagues versus peers elsewhere in the firm (or in other firms). We then consider the 

sensitivity of the optimal contract to both the strength of agents’ relative wage concerns, as well 

as the peer-network structure, and evaluate implications for welfare. 

 We begin in Section II by introducing a standard CARA-normal principal-agent model and 

analyzing the RPE benchmark in a multi-agent setting without peer effects. We show that, as 

expected, compensation in the optimal contract is based on a measure of the agent’s relative 

performance; that is, compensation is positively related to the agent’s own output and negatively 

related to the output of others, in proportions that depend on the correlation between agents’ output. 

A key prediction of RPE is therefore that the incentive component of wages should be negatively 

correlated. Additional standard predictions are that equilibrium effort is reduced relative to the first 

best (to limit agents’ risk) and that the optimal contract for each agent is independent of the 

contracts of others (and therefore, independent of how they are determined, whether they are 

disclosed or not, etc.).  

 In Section III, we consider optimal contracts with peer network effects.  Because agents 

care about their compensation relative to their peers, the incentives for each agent will depend on 

both their own contract and the contracts offered to all other agents.  Principals independently 

choose contracts for agents on their teams, which are composed of one or many agents.  We assume 

(for now) that agents see the full set of contracts offered by their principal to their team before 

deciding to accept or reject their own contract.   
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 As an initial baseline, we first consider a setting in which peer weights are symmetric 

(determined, for example, by a distance metric) and there is a single principal.  We then 

demonstrate an important welfare equivalence result: the optimal contracts for a single principal 

will fully hedge peer effects and lead to the same productivity, profitability, and welfare as the 

RPE benchmark.  Observed contracts, however, will have markedly different sensitivities than 

those predicted by RPE. In particular, to limit relative wage risk, contracts may positively load on 

peer output (contradicting RPE), implying that empirically observed deviations from RPE need 

not be inefficient.   

 Next, we consider the case with multiple principles independently setting contracts for 

distinct teams.  In this case, there is an important “rat-race” externality across teams, as principals 

do not account for the impact of raising wages on their team on the welfare of agents on other 

teams.  As a result, equilibrium wages and productivity are higher, but profitability and welfare 

are lower, than in the RPE or single principal benchmark.  We show that the rat-race inefficiency 

increases with the number of principals, the strength of peer effects, and the importance of external 

(non-teammate) peers.  In fact, the rat-race effect can be so extreme that equilibrium effort exceeds 

the first best, in stark contrast to standard agency models. 

 We then explore in greater detail the consequences of peer effects for wage correlations.  

We show that wage correlations are the same in both the single and multi-principal case and are 

therefore solely related to peer effects and independent of welfare.  We show that the wage 

sensitivity to peer-performance increases monotonically with the strength of peer-effects, leading 

to positive wage correlation, consistent with empirical evidence on wage compression within 

firms.2 We characterize specific cases, and show that wage contracts load more positively on 

“nearby” versus more distant peers.  Thus, for example, if agents care more about peers within 

their own firm or team, we find that optimal wage contracts will always have a positive exposure 

to the relative performance of their team.3  

 
2 For example, Silva (2016) and Gartenburg and Wulf (2017) document wage convergence in multidivisional firms, 
which is heightened by geographic or social proximity. Shue (2013) shows similar wage convergence across 
executives who were former classmates. While inequity aversion is a possible explanation for wage compression (see 
Englmaier and Wambach (2010) and Koszegi (2014)), our analysis demonstrates that peer effects are sufficient.  
3 Ibert, Kaniel, Van Niuwerburgh, and Vestman (2018) find that fund managers elasticity of pay to fund family 
revenue, excluding revenue managed by the given manager, is comparable to that of manager revenue. 
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 In Section IV, we allow for peer relationships to be asymmetric.  In that case, some agents 

may be “more visible” than others in the sense that their wage is more salient to their peers.  In 

that case, the principal can exploit this asymmetry and use the departure from RPE to increase 

profits.  Specifically, it is optimal to reallocate effort, and therefore compensation, to less visible 

agents. Although this reallocation is technologically inefficient, it lowers the principal’s expected 

cost of providing incentives sufficiently to raise total output and profits. 

 In Section V, we consider the consequences of alternative disclosure environments.  In the 

standard RPE framework, wage and contract disclosure has no effect.  Here, on the other hand, 

disclosure interacts with peer effects.  For example, we show that if the principal can privately 

negotiate individual wage contracts, the ability to do so exacerbates the rat-race effect, raising 

equilibrium wages and lowering profits.  Indeed, a single principal that cannot commit not to 

renegotiate may have worse outcomes than if all contracts were negotiated by independent 

principals. 

 We also consider the effect of greater wage transparency across teams or firms.  Wage 

transparency is likely to make peer comparisons more salient, and thereby exacerbate the rat-race 

externalities across teams; as a result, we expect average wages to rise and their correlation to 

increase.  We also show that when incentive contracts are disclosed externally, there is an 

additional incentive to increase the contract loading on external peers, but equilibrium effort is 

distorted downward (potentially below second best). 

I. Related Literature 

 The key premise of our paper is that some agents have Keeping up with the Joneses (KUJ)-

type preferences in which they care about their relative wage with respect to their network of peers. 

Our objective is to understand the implications for contracting of such preferences. Evidence 

supporting the presence of KUJ / relative wage-based preferences has accumulated from multiple 

disciplines and research designs. Early evidence was derived mostly from survey questions 

regarding happiness and satisfaction (for example: Luttmer 2005, Ferrer-i-Carbonell 2005).4 More 

recently, researchers have utilized natural and laboratory experiments, as well as FMRI evidence 

supporting the underlying neuropsychological foundations, to bolster support for such preferences 

 
4 See Heffetz and Frank (2011) for a review. 
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(see for example Kuhn et.al. (2011), Card et.al. (2012), Miglietta (2014), Fliessbach et.al. (2007), 

and Dohmen et al. (2011)).  In providing evidence for relative wage preferences the literature has 

considered a variety of different peer groups: co-workers (Clark and Oswald (1996)); neighbors 

(Luttmer (2005), and Kuhn et.al. (2011)); household members (Clark (1996)); siblings (Neumark 

and Postlewaite (1998)); caste members in India (Carlsson, Gupta, and Johansson-Stenman 

(2009)); and division managers within the same firm (Duchin, Goldberg, and Sosyura (2017)). 

 In the context of executive compensation, Bouwman (2013) finds that CEO pay is 

correlated with that of geographically-close CEOs, even if in differing industries or roles (e.g. 

sports stars), with stronger effects for connected CEOs (inferred from rolodex connections). After 

carefully controlling for a host of potentially confounding effects, she concludes that KUJ 

preferences is the most plausible explanation.5 Shue (2013) demonstrates wage convergence 

across executives who were former HBS classmates, and shows the effect is stronger for section 

mates. Our modeling framework contributes to the literature by allowing for a flexible structure of 

peer preferences, with differential sensitivities to peers for a given agent and across agents. These 

heterogeneous peer effects implicitly aggregate a wide variety of factors differentially impacting 

the sensitivity to different agents: the size and complexity of their firms, commonality of 

backgrounds, geographical proximity, social interactions, person specific psychological traits, etc. 

 While Keeping/Catching up with the Joneses and habit formation preferences have been 

used in asset pricing applications starting with Abel (1990), they have received much less attention 

in explaining behavior in the corporate finance domain. Ederer and Patacconi (2010) introduce 

status considerations into a tournament setting analyzing implications for the provision of 

incentives.  Goel and Thakor (2010) use envy-based preferences for managers to explain merger 

waves.6 Dur and Glazer (2008) consider the optimal contract, with contractible effort, for an 

employee that is envious of his employer. Goel and Thakor (2005) consider within firm capital 

allocation decisions of division managers where each manager derives direct utility from wages, 

and in addition envies both the wages of other managers and their capital allocation as well. Their 

 
5 Bouwman (2013) rules out three key competing hypothesis. First, that geography may introduce commonalities in 
the performance-relevant characteristics of CEOs that firms in a given area emphasize in their selection of CEOs.  
Second, that firms may follow “leading” firms in the vicinity in setting CEO pay. Third, local labor market competition 
for CEOs. 
6 While closely related, envy refers to a disutility from having a lower wage than one’s peer, whereas keeping up with 
the Joneses preferences also include a benefit from having a higher wage. 
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analysis focuses on induced capital distortions, ignoring the moral hazard and contracting 

considerations which are the focus of our analysis.   

 The central theme of our analysis is to underscore contracting implications of peer-

dependent preferences.  We contribute to the literature by showing that these preferences reverse 

central results from standard contract theory: Compensation can load positively rather than 

negatively on outputs of other agents; effort levels are too high rather than too low and can even 

exceed first best;7 disclosure of contracts may reduce efficiency, instead of being neutral or better; 

and when peer effects are asymmetric, the principal’s profits can be higher than when agents have 

standard preferences that do not depend on peers.  

 There is extensive empirical literature that has for the most part rejected the RPE 

hypothesis that CEO compensation should depend on relative performance, and so be negatively 

related to the performance of peers. Much of the evidence documents a positive relation, in direct 

contrast to the standard RPE prediction.8 A few have noted that KUJ preferences can provide a 

resolution for these findings within the agency model, as these preferences lead to optimal 

contracts with a reduced magnitude of RPE and, when strong enough, even a positive dependence 

of pay on external performance measures (Fershtman, Hvide, and Weiss (2003), Itho (2004), 

Miglietta (2014), Bartling (2011), Liu and Sun (2016)). Bartling and von Siemens (2010) consider 

the impact of envy on contracts in a general moral hazard model when a principal hires two agents 

that are envious of each other. They argue that with risk-averse agents and without limited liability, 

envy can only increase the costs of providing incentives. The scope of their analysis is limited by 

the fact that they do not derive explicit optimal contracts. Bartling (2011) derives optimal contracts 

in a mean-variance framework with one principle and two agents, but emphasizes the case in which 

agents are inequity averse.  In contrast to these papers, we consider a multi-agent, multi-principal 

framework within an arbitrary network of peer relationships and derive the implications for both 

optimal contracts and welfare. We show general conditions that allow a single principle to attain 

the second best, implying no loss in efficiency, and characterize the extent to which RPE 

 
7 The predicted link between peer effects and effort is consistent with evidence in Ghazala, and Iriberri (2010), which 
utilizes a natural experiment to show that adding to a students’ report cards their average grade over all subjects, as 
well as the class average over all subjects and students led to an increase of 5% in students’ grades. 
8 Examples include: Antle and Smith (1986), Barro and Barro (1990), Jensen and Murphy (1990), Janakiraman, 
Lambert and Lacker (1992), Hall and Liebman (1998), Joh (1999), Aggarwal and Samwick (1999a,b), Bertrand and 
Mullainathan (2001), and Garvey and Milbourn (2003).  
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predictions are reversed. Moreover, we demonstrate how the principle can exploit any asymmetry 

in agents’ visibility within the network to raise profits and increase efficiency.    

 In addition to providing a more comprehensive welfare comparison, our analysis considers 

a market-wide equilibrium with multiple principals, employing potentially multiple agents, within 

a general network structure of potential peer relationships.  This setting allows us to additionally 

analyze contracting externalities and rat-race effects across principals.  Finally, we investigate the 

impact of the disclosure environment, both inside the firm and across firms, on contracts and 

efficiency.  For example, we predict that compensation disclosure mandates will increase rat-race 

incentives and raise wages, consistent with the findings in Park, Nelson, and Huson (2001), Perry, 

and Zenner (2001), Schmidt (2012), Gipper (2021) and Mas (2019). 

II. A Model of Peer-Contracting 

A. Peers and Preferences 

 We consider a setting with a set  of 2N = ≥  identical agents.  We make the standard 

assumption that the utility of each agent i  is increasing in his own wage, iw , and decreasing in his 

hidden choice of effort, ia .  We depart from the usual principal-agent framework, however, by 

assuming that agents also care about their wage relative to that of their peers.  We model this 

preference by assuming agent i  benchmarks his own wage against a weighted average of the wages 

of his peers,  

  i ij j
j

w w−
∈

≡ µ∑


with 0ijµ ≥ , 1iiµ < , and 1ij
j∈

µ =∑


. (1) 

The weights ijµ  capture peer network effects in which agents may care more about the wages of 

some peers versus others. We typically let 0iiµ = , so that the benchmark only includes the wages 

of others.9  For simplicity, we generally assume the set of peers is irreducible (i.e. for any pair 

( , )i j  there is a sequence connecting them with positive weights), though we will relax this 

assumption in some special cases.   

 
9 We allow 0iiµ >  for generality (for example if agents compare their wage to an aggregate index; see also footnote 

10) but restrict 1iiµ <  to ensure some weight is put on peers. 
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 Each agent i  derives utility from both his absolute wage, iw , and his relative wage, 

.i iw w−−   We convert the agent’s gain from his relative wage to consumption units according to  

  ( )ˆ ˆ ˆ(1 )i i ii i iv ww w ww − −≡ δ − = −+ δ+ δ ,  with ˆ [0, )δ∈ ∞ .  (2) 

Here δ̂  captures the strength of agents’ relative wage concerns, with ˆ 0δ =  corresponding to the 

standard model without peer effects ( i iv w= ), whereas peer effects dominate as δ̂  becomes large.10 

Implicit in this formulation is the standard assumption that agents care about their relative realized 

wage, rather than their ex-ante expected wage, consistent with the idea that these preferences arise, 

for example, from a preference for social status (which is linked to actual wealth or consumption). 

 Next, to avoid wealth effects and for tractability, we assume agents have CARA utility 

( ) exp( )i iu c c= − −λ , where ic  is the “adjusted consumption” level 

  ( )i i ic v a≡ −Ψ , (3) 

and Ψ  measures the cost of effort, which we assume for simplicity is quadratic: 21
2( )a kaΨ = . 

 This specification of the agent’s utility incorporates several properties that are both natural 

and important given our goal of comparing welfare and contract design for different levels of 

relative wage concerns δ̂ .  First, using CARA utility and keeping iv  linear in wages implies that 

we are not changing the concavity of the utility function. Hence, the agent’s risk aversion, which 

determines the magnitude of the agency friction, is independent of δ̂ . Second, because the total 

weight on wages sums to 1, the utility gain from increasing all wages equally does not depend on 

δ̂ .  These features are necessary for us to make meaningful welfare comparisons across settings 

with  differing levels of peer sensitivity.11  Our specification of peer effects in (2) is fully general 

given these requirements. 

 
10 While many of our results apply even if ˆ 0δ <  (altruistic agents), we do not analyze that case here.  Note also that 

0iiµ >  is equivalent to reducing the weight agent i places on others to ( )ˆ ˆ 1i ii= −δ δ µ . Thus, by adjusting iiµ , our 

formulation allows us to consider settings in which agents have heterogeneous peer sensitivities in the range ˆ(0, ).δ  
11 For example, if we had defined iv  so that the sum of the weights on all wages decreased (or increased) with δ̂ , 
then the aggregate cost of compensating agents to attain a given level of utility would necessarily increase (decrease), 
leading to an exogenous impact on the aggregate welfare that is attainable. 
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 So far, we have not specified how the peer weights in (1) are determined. We will describe 

specific cases in applications later.  Typically, we will interpret the weights as a measure of 

closeness or distance; e.g., agents are likely to care more about their wage in relation to peers in 

the same office, firm, or industry.  Consistent with this interpretation, we will for now restrict the 

weights to be pairwise symmetric (we will relax this assumption in Section IV):  

  ij jiµ = µ  for all ,i j . (4) 

 Finally, purely for notational convenience and without loss of generality, we renormalize 

our peer sensitivity parameter to the unit interval as follows, 

  
ˆ

[0,
1

1)ˆ
δ

δ ∈
+

≡
δ

. (5) 

This specification will simplify many of our analytical results, and so for the remainder of the 

paper we will refer to δ  as the agent’s peer sensitivity, with 0δ =  (no peer effects) or 1δ =  (peer 

effects dominate) as corresponding to the two extremes cases. 

B. Production and Wages 

   The production technology has additive shocks, so that the output iq  of agent i  is equal 

to a known constant 0 0q >  plus effort plus noise:12 

  0i i iq q a≡ + +  . (6) 

The random shocks i  are joint normal with mean zero and variance 2σ , and have a pairwise 

correlation of [0,1)ρ∈ .   

 Given the production technology and preferences, we define the first-best effort level fba  

to maximize net output, ( )i ia a−Ψ , which is solved by 1fba k −≡ .13 Effort choices are hidden, 

however, and therefore appropriate compensation contracts are needed to motivate the agent.  Even 

absent relative wage concerns, the correlation between output shocks implies that optimal contracts 

 
12 We can think of 0q  as corresponding to some component of output that is not subject to moral hazard. We assume 
it is large enough such that hiring an agent is strictly profitable. 
13 Here we have defined the first best in terms of productive efficiency. We will see in Section IV that with asymmetric 
peer effects, distortions from productive efficiency may be optimal even absent agency concerns.  



11 
 

will depend on both own output and peer output. We restrict attention to linear compensation 

contracts iy  of the form:14  

  0 0
i

i i ii i
j

ij ijw y y q y qq q y
−∈

= + =+ ⋅∑


 (7) 

where \{ }i i− =   is the set of i ’s peers, 0iy  determines the constant component of the wage, 

iiy  is the sensitivity of the wage to i ’s own output, and ijy  is the sensitivity of i ’s wage to the 

output of peer j .15  Of particular interest is the contract’s “relative sensitivity” to peer output, 

which we define by:  

  
i

ij
i

ij i

y
y

−∈

φ ≡ ∑


. (8) 

 To evaluate payoffs, note that with normally distributed shocks, linear contracts, and 

CARA utility, agents will have mean-variance preferences.  Therefore, given normally distributed 

consumption c , we can evaluate the agent’s utility in terms of the corresponding certainty 

equivalent consumption level  

  [ ]( )1 1
2( ) [ ] ( ).u E u c E c Var c− = − λ  (9) 

 Finally, each agent has an outside option with certainty equivalent 0c , which we can 

interpret as the agent choosing to leave the firm/industry (thus having a new set of peers).16  We 

view this outside option as determining participation, whilst once on the job, peer comparisons 

determine incentives. 

C. Teams 

 The contract for each agent is set by a risk neutral principal. Each principal manages a 

distinct set of agents, which we refer to as a team. Teams may correspond to different firms, or 

 
14 Goukasian and Wan (2010) demonstrate optimality of linear contracts with one principal and two peers in a 
continuous time context as in Holmstrom and Milgrom (1987).  Similar results are likely to hold in our more general 
framework, but we have not pursued that here. 
15 It is not essential that 0q  in (7) is the same as the constant component in (6), but because the constant in (7) is 
arbitrary (as long as it is nonzero), we use the same term for notational convenience. 
16 Said another way, we interpret the outside option as “leaving” the peer set  , thereby ruling out peer effects from 
within the firm altering the attractiveness of the outside option.  
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different divisions or groups within a firm. The set of teams is a partition of the set   of agents.  

The objective of the principal for team I ⊆   is to offer a set of contracts to maximize the team’s 

expected output net of wages paid: 

  ( )iI ii I
E q w

∈
 − π ≡ ∑ . (10) 

The principal must respect each agent’s incentive compatibility constraint, which given (9) can be 

written as 

  arg max [ ]i ia E c∈ , (11) 

as well as the participation constraint, 

  1
02[ ] ( )i iE c Var c c− λ ≥ . (12) 

We assume 0c  is low enough (relative to 0q ) so that hiring the agent is profitable for the principal. 

 The maximum team size is the total population; in this case one principal manages all peers 

(e.g. workers within a single firm). At the other extreme, each agent may have his own principal 

(for example, CEOs with distinct boards). In general, an agent will have peers both within and 

outside his team.  We refer to agents on the same team as agent i  as teammates or “internal” peers, 

given by the set iI− , whereas agents on different teams are “external” peers, denoted by I− .  We 

denote the total number of peers and the number of people on a team by 

  1in N−≡ = −  and [1, ]IN I N≡ ∈ . (13) 

D. Contracting 

 We assume each principal chooses contracts for their team taking as given the contracts 

offered and actions taken by all other teams. That is, the contracts proposed by the principal for 

team I are visible to all members of the team, but not to principals or agents outside the team. (We 

will consider other disclosure assumptions in Section V.) The timing of the contracting problem 

faced by team I is shown in Figure 1.17 

 
17 Note that this timing presumes that contract details are visible within a team, but only ex-post output and wages are 
visible across teams.  Wages and output are likely to be more easily observed even externally due to standard reporting 
requirements as well as consumption and investment effects.  That said, we explore the consequences of alternative 
information structures in Section V. 
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Figure 1: The Contracting Game for a Single Principal 

The principal-agent problem for team I (taking all other contracts and actions as given). 

 

 Figure 2 depicts the different channels that may affect the agent’s utility.  The solid blue 

lines correspond to the standard principal-agent problem in which agents’ output is uncorrelated.  

In that setting, the optimal wage contract depends only on the agent’s own output.  When there are 

multiple agents with correlated output shocks a new information channel is introduced, depicted 

by the dashed green lines.  In this case, the principal can use the information in the output of others 

to filter out any common component of the agent’s productivity shock, and relative performance 

evaluation (RPE) becomes optimal.  

 Finally, the dotted orange lines represent the new channels introduced when peer effects 

cause agents to also care about their relative wage. Each agent is now exposed to both the risk and 

the level of their wage differential with their peers.  This interaction introduces two new aspects 

to the optimal contract.  First, the principal may adjust the contract to hedge the agent against peer 

wage risk.  Second, the principal may distort the agent’s effort in order to affect the level of the 

average peer wage.    

 

Principal I
posts 

contracts

Agents i∈I
accept or 

reject

Agents i∈I
choose 
effort

All outputs 
and payoffs 

realized
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Figure 2:  Alternative Channels by which Effort and Output Impact Utility 

Standard principal-agent model is shown in solid blue. The information channel for relative performance evaluation 
is shown in dashed green.  The dotted orange channel represents relative wage concerns.  

 

E. The RPE Benchmark 

 As an important benchmark, before we consider peer effects we first solve for the optimal 

contract in the benchmark case without peer effects and obtain the standard prediction that optimal 

contracts should utilize relative performance evaluation (RPE): each agent’s wage should have a 

negative sensitivity to the output of his peers.  

 Consider the standard setting with 0δ =  so that peer effects are absent.  In that case, the 

contracting problem for agent i  does not depend on the wage contracts of other agents.  The only 

interdependence between agents arises from the positive correlation between agents’ shocks. As a 

result, it is optimal for the principal to reduce the agent’s risk by “filtering out” the common 

component of output when assessing the agent’s performance.   

 In particular, the contract can reward the agent for his performance relative to a benchmark 

of output based on the performance of his peers.  The efficient benchmark will minimize the 

agent’s exposure to the common risk factor.  This benchmark is the multiple θ  of the average peer 

performance 1
i

i jn j
q q

−
− ∈
= ∑ 

 that minimizes the residual variance: 

  [ )1
1,)( ( )arg min 0,
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i i

i
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i
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q
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Given this benchmark, the residual uncertainty is given by 
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  ( )2 2 0)( 1iiVar qq −σ ≡ θ −ρ− = θ σ > . (15) 

The volatility σ  of the optimal signal available to the principal determines the magnitude of the 

agency problem, as it is costly for the agent to bear this risk.  Together the parameters ( , )θ σ  

summarize the information externalities in our model.   

LEMMA 1 (RELATIVE PERFORMANCE EVALUATION).  Absent relative-wage concerns ( 0)δ = , the 

optimal contract for each agent maximizes expected output net of the cost of effort and risk-

bearing, subject to incentive compatibility:  

  1
2max ( ) ( ) . .

i
i i i i iiy

a a Var c s t a ky
⋅

− Ψ − λ = . (16) 

Optimal contracts and actions are given by 

  *
2

1
1ii k

y =
+ λσ

, * *1
ij iiny y= − θ , and * * */ fb

i ii iia y k y a= = . (17) 

The constant term *
0iy  is set so that the expected wage is [ ] *1

20 +=i iE w c a , and the expected profit 

per agent is *
2

* 1
0 0π −= +i iq ac . 

PROOF: See Appendix.    

 

 The intuition for this result is as follows.  Equation (16) states that the optimal contract 

maximizes the expected output net of the cost of effort and risk-bearing. The wage parameter iiy  

determines the agent’s incentives for effort, and so the (IC) constraint (11) implies that effort solves  

  max ( )
ia ii i iy a a−Ψ , (18) 

which is equivalent to /i iia y k= .  Finally, the sensitivity to peer output ijy  is used to minimize 

the agent’s exposure to systematic risk, and 1iiy <  reduces his exposure to project specific risk. 

 LEMMA 1 provides the standard contracting result that effort is attenuated relative to the 

first best ( * * fb fb
i iia y a a<= ) because of the cost of imposing risk on the agent.  Effort decreases 

with the cost of effort ( k ), the agent’s risk aversion (λ ), and the residual risk (σ ). It also predicts 
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that the relative sensitivity of the agent’s wage to peer output versus his own output will correspond 

to the optimal benchmark in (14): 

  
*

*
*

i

ij
i

iij

y
y

−∈

θφ ≡ = −∑


. (19) 

 Equation (19) forms the basis for standard tests of RPE in the empirical literature, which 

generally conclude that compensation tends to be much less negatively correlated with peer 

performance than is predicted by an optimal contracting framework.  Indeed, many studies often 

find the opposite sign – pay is positively related to aggregate performance.  A key goal of this 

paper is to understand how the optimal performance benchmark changes when agents have relative 

wage concerns, and how this change affects wages, productivity, and profits.  

 Remark. In the subsequent analysis, it will sometimes be useful to consider comparative 

statics in the size of the peer population, n , while keeping the fundamentals of the agency problem 

unchanged.  To do so, we can vary n  while holding fixed ( , )θ σ , which determine the information 

externalities, and let ( , )ρ σ  adjust with n  according to (14) and (15).  As shown in LEMMA 1, in 

the RPE setting the optimal actions ia , relative contract sensitivities iφ , and profits Iπ  (and thus 

total welfare), are all independent of n  given ( , )θ σ .  

III. Peer-Contracting Equilibrium 

 Now we consider the case in which agents have peer-dependent preferences ( 0δ > ).  Due 

to relative wage concerns, the agent is exposed to the output of all other agents both directly 

through his own contract as well as indirectly through his concern for other’s wages. As illustrated 

in Figure 2, and using (1), (2), (5), and (7), given a set of contracts with parameters ijy , agent i ’s 

total exposure to output jq  is given by18 

  ( )ˆ
1

ij ik kji k
ij ij ij ik kjk

j

y yc y y y
q

− δ µ∂
β

δ
=≡ δ µ =

∂
+

−
− ∑∑ . (20) 

 
18 We write kΣ  as a shorthand for the summation is over all agents k ∈ . 



17 
 

 As equation (20) shows, agent i  has both a direct exposure (through his own contract) and 

an indirect exposure (through his concern for others’ wages) to j ’s output, and hence there is now 

an interaction between the contracts offered to different agents.  For example, the (IC) constraint 

(11) becomes 

  max ( )
ia ii i ia aβ −Ψ   ⇒  /i iia k= β . (21) 

Therefore, the agent’s effort choice depends upon the contracts given to all agents.  Similarly, the 

agent’s risk is given by  

  ( )2
2 2( ) (1 )i ij ijj j

Var c  = −ρ β +ρ β σ  ∑ ∑  , (22) 

which again is a function of all contracts offered.   

 In the remainder of this section, we evaluate the consequences of this interdependency on 

equilibrium contracts.  As we will see, we can restate the contracting problem for the principal in 

terms of the exposures β  in place of y , and then solve for the contract parameters that induce 

these exposures.  First, we evaluate the consequences for efficiency, and show that a single 

principal can design contracts that hedge peer effects without sacrificing efficiency.  When there 

are multiple principals, however, competition between them leads to a rat-race effect in which 

agents work harder than in the RPE benchmark – and potentially harder than first best -- but firm 

profits and welfare are lower.  We also look at the optimal wage sensitivities and correlations.  

There we show that, independent of welfare, peer effects lead to wage compression and, when 

sufficiently strong, cause wages to load positively on peer output.    

A. Efficiency: The Single Team Case 

 It is useful to begin by considering the case with a single team, or principal ( I =  ).  In 

that case the principal has full control of all contracts, and there is no issue of coordination.  We 

can also view the single team case as the outcome a social planner would achieve given the same 

information constraints. 

 The following result demonstrates that we can restate the contracting problem for the 

principal in terms of the implied exposures β  in place of direct contract sensitivities y .  More 
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strikingly, despite the presence of peer effects, real outcomes and welfare are identical to the RPE 

setting. 

PROPOSITION I (SINGLE PRINCIPAL: WELFARE EQUIVALENCE). Suppose agents have relative 

wage concerns ( 0)δ ≥  and there is a single principal ( )I =  . Then the principal will choose 

exposures β  to solve (16) as in the RPE case, and hence effort, expected output and profits are 

equal to the RPE outcome and independent of δ . The optimal contracts Sy  are a transformation 

of the RPE contracts *y  given by 

  1 *Sy y−= ∆ , (23) 

where * ( 1),S N Ny y × +∈  are matrices with each row i  representing the contract for agent i , and 

with [ ]1
1

∆ ≡ δµ
δ

−
−

Ι  where I  is the N N×  identity matrix and µ  is the matrix of weights ijµ .   

PROOF: See Appendix.    

 

 The key intuition behind PROPOSITION I is that a single principal can effectively undo the 

peer effects in preferences via the wage contracts that are offered.  Specifically, note that we can 

rewrite (20) in matrix form as yβ = ∆ , and hence we can invert this relationship in (23) to obtain 

the RPE exposures. As a result, effort and efficiency are unaffected by the strength δ  of peer 

effects.  Observed contracts and wages, however, will be affected by δ  according to (23).  Indeed, 

in this case the principal offers a wage that combines the RPE wage with a hedge position that 

insures against peer effects:   

COROLLARY A (OPTIMAL WAGES).  Let *w  be the wages paid with RPE contracts and let Sw  be 

the optimal wages with a single team.  Then the optimal single team contract hedges the agents’ 

peer exposures: 

  * * *( ) (1 )S S S
i i i i i iw w w w w w− −= − − +δ = −δ δ , (24) 

and *S S
i i i

i i i
w w w−= =∑ ∑ ∑ . 

PROOF: See Appendix.    
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 As the result shows, because the hedge positions aggregate to zero ( * 0S
i ii

w w−− =∑ ), they 

can be implemented by the single principal at no cost.19 The result implies that we can decompose 

optimal contracts into the RPE contract plus a hedging contract. For a concrete example, we 

calculate below the optimal contract parameters in the case of equal weights. 

EXAMPLE: EQUAL WEIGHTS.  Suppose 1/ij nµ =  for all i j≠ .  Then 

 * 1S
ii ii

ny y
n

 + θ
δ 



+


= − 

 δ 
, and * * *S

ij ii ij ii
ny yy y

n n n
 δ δ + θ 
 δ

 − θ
= = +   + + δ    

. (25) 

PROOF: See Appendix.    

 

 We will explore further the qualitative impacts of peer effects on optimal contracts in 

Section C, but first we consider the efficiency implications of having multiple teams. 

B. Inefficiency: Multi-Team Rat Race 

 When there is more than one principal or team ( )I ≠  , each principal must choose the 

contract for agents on her team while taking the contracts and actions of agents on other teams as 

given.  In this case, two important externalities arise relative to the single principal case.   

 First, if the principal raises the incentives, and thereby the expected wage, of an agent on 

her team, she must also raise the wages of others on her team to compensate for the higher expected 

level and volatility of the peer benchmark. But if her agents also have external peers on other 

teams, her impact on the peer benchmark is dampened, lowering the total cost of compensation for 

the principal.  As a result, a principal whose agents put weight on external peers is willing to 

increase incentives relative to the single principal case. 

 Second, by changing incentives and therefore the expected output of her own team, 

principal I  can influence the realized wages of agents on other teams whose contracts put weight 

on the output of team I .  Then, by acting to lower the expected wage of other teams, the principal 

 
19While we do not pursue it here, we can also solve for Sw  iteratively as the fixed point of the mapping defined by 
(24). 
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can raise the relative wage of agents on her own team.  This negative externality provides an 

additional incentive to distort contracts.20  

 These externalities imply that we should expect lower aggregate welfare in the multi-team 

setting. To evaluate their quantitative effect, we first consider the optimal contract for an individual 

team taking the contracts and action choices of other teams as given.  To simplify the analysis and 

notation, we impose an additional restriction that all agents on team I  put the same total weight 

µI  on the wages of their teammates, and thus put total weight 1−µI  on non-teammates:   

  
∈
µ = µ∑ ik Ik I

 for all ∈i I . (26) 

  

LEMMA 2 (TEAM CONTRACT).  Given the contracts and actions of other teams, the optimal multi-

team contract M
iy  for agent i  on team I  has rescaled exposures *(1 )β = +αj i

M
i ijy  and effort 

*(1 )M
i i ia a= +α  relative to the RPE outcome, where the scaling factor is given by 

  ˆ
ˆ ,

1
1i I jiij

i I j I

y
∈ ∈/

δ
α ≡ µ

 
−

−
− µ

δ 
∑ . (27) 

PROOF: See Appendix.    

 

 The proof of LEMMA 2 relies on the ability of the principal for team I  to implement any 

set of exposures ( )ij i I∈
β  for her team members with an appropriate set ( )ij i I

y
∈

 of contracts that 

will depend on the contracts chosen by all other teams.  As a result, it is optimal for the principal 

to choose the relative exposures for agent i , /ij ikβ β ,  to minimize risk as in the RPE case. 

 The effort choice, however, is distorted relative to the RPE or single principal setting due 

to the cross-team externalities described previously.  This distortion is given by the factor iα  

defined in (27).  Note that if there are no peer effects ( 0δ = ) or no external peers ( 1Iµ = , and 

therefore 0ijµ =  for j I∈/ ), then 0iα =  and we achieve the same efficiency as the RPE 

 
20 In this case, the direction of the distortion is ambiguous, as it depends on the sign of the parameters of external team 
contracts (to be determined in equilibrium in PROPOSITION II). 
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benchmark.  But if 0δ >  and 1Iµ < , the principal’s effective cost of compensation is reduced, 

which raises the optimal effort choice.  Second, if 0jiy ≠ , the principal can change agent j ’s 

expected wage by distorting agent i ’s effort.  Then, by lowering j ’s expected wage, the principal 

lowers the cost of compensating any agent î I∈  with ˆ 0ijµ > .  The definition of iα  aggregates 

these effects.   

 While LEMMA 2 reveals the potential for effort to be distorted when there are multiple 

teams, the direction of the distortion is still unclear as it depends upon the equilibrium contracts 

used by all teams.  That is, the above result provides the optimal response for one team given the 

contracts of others.  In equilibrium, all teams choose optimal responses to each other.  We evaluate 

this equilibrium next and demonstrate that, in fact, the distortion leads to higher effort than the 

second-best setting, and, for δ  close to 1, it will even exceed the first-best effort level. 

 For tractability, we make additional symmetry assumptions to compute the equilibrium.  

First, each team has the same size: 

  ˆI IN N=  for all teams ˆ,I I . (28) 

Second, agents place the same weight on peers who are external to their team: 

  1 µ
µ = µ

−
=

−
I

ij
I

e N N
, for all i I∈  and j I∈/ . (29) 

 Note that we allow the internal weights within teams to be different, though the total 

internal weight Iµ  remains constant.  These conditions are sufficient to imply that the equilibrium 

effort distortions will be symmetric (even though contracts need not be).  Our next result 

characterizes this outcome and demonstrates a rat-race effect in which the effort of each agent is 

distorted upward, reducing overall efficiency. 

PROPOSITION II (SYMMETRIC TEAM EQUILIBRIUM: RAT RACE).  In the multi-team equilibrium, 

optimal contracts { }
0>

M
ij j

y  and actions M
ia are scaled versions of the single-team contract, 

  (1 )= +αM S
ij ijy y   and  *(1 )+= αM

i ia a , (30) 

where the scaling factor for all teams is 
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( )

11 1
111

1
SI

I e
I

N y
+ =


α ≥

µ
δ −

µ
−

− 
− δ 

. (31) 

The contract weights Sy  follow from (23), with the weight on external peers given by 

   
( ) ( )1

1*
1 1
1

n
N

eS
e ii

e

y
N

y
δµ θ θ δ

=
δ + δµ

− − −
<

−
. (32) 

If 0δ >  and 1Iµ < , then 0α > .  Expected wages and profits per agent are given by 

  ( )2*1
0 2 1 + =  + αM

i iw aE c  and * 21
2

*π = π − αM
i i ia . (33) 

PROOF: See Appendix.    

 

 PROPOSITION II establishes that when principals compete with each other, they neglect the 

peer externality on other teams and thus provide inefficiently high-powered incentives, with 

contract terms and effort scaled by the factor (1 )+α .  Agent’s work harder, but the increase in the 

expected wage that is required more than offsets the increase in productivity; hence expected 

profits are lower than in the RPE or single-team benchmark.  The next result demonstrates that 

these distortions increase with the strength of external peer-effects – due to a higher number or 

higher weight on external peers – and can cause effort to exceed even the first-best level. 

PROPOSITION III (RAT-RACE MONOTONICITY).  For a given population N  with multiple teams 

and positive external weights 0eµ > , the rat-race distortion α  increases with the number of teams 

/ IN N , the weight on external peers eµ , and the strength δ  of peer effects. As 1δ→  and peer 

effects dominate, equilibrium effort increases and ultimately exceeds the first best:  

  *(1 )
1

M fbIN Na a a = + α → θ − . (34) 

PROOF: See Appendix.    
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 The following result provides a simple characterization of the magnitude of the rat-race 

effect when the number of teams grows large, and shows that the strength of the effect increases 

with both δ  and the total weight 1 I−µ  put on external peers: 

COROLLARY B (MANY TEAMS).  If we increase the number of teams while holding ( , )µI IN  fixed, 

then as →∞N  the rat-race distortion converges to 

  ( )
1

1 I
δ

α→
−

−µ
δ

.   (35) 

When N  is large, α  increases with N  if and only if 
( ) .
1 I
δ − θ

> µ
δ − θ

 

PROOF: See Appendix.    

 

 Finally, in the extreme case of single-agent teams, we have the following characterization, 

(which, by PROPOSITION III, provides an upper bound on the rat-race effect for any given 

population size): 

EXAMPLE: SINGLE-AGENT TEAMS.  If 1IN =  and 1
e nµ = , the rat-race factor is 

  
*

1 11
1 1

S
e

iiy
n

y
α

δ+ δ δ
δ +

+ = =
−  − θ

−  
 

δ
+ δ

. (36)    

 While our prior results have focused on symmetrically sized teams, we can also apply 

LEMMA 2 to evaluate equilibria when teams are asymmetric. The following result considers the 

case with two teams of differing size.  Because each principal does not take into account the effect 

of its wage contracts on the other team, the rat-race externality is largest for the smaller team.  As 

a result, agents on the smaller team will work harder, but despite having higher productivity, its 

per capita expected profits are lower. 
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PROPOSITION IV (ASYMMETRIC TEAM SIZE).  Suppose there are two teams I  and J  of size 

1 I JN N< < , with symmetric external weights 1/ij e Nµ = µ <  for i I∈  and j J∈ .  Then for 

(0,0.8)δ∈ , the rat-race effect is larger for the smaller team, i jα > α , and its expected profits 

are lower. 

PROOF: See Appendix.    

 

The intuition for this result is that the rat-race externality is strongest when the size of the 

team is small.  If the size of the team is very large (close to N ) then the rat-race externality is 

weak.  Moreover, if 0.5δ >  and S
ey  is also large, it is possible that 0Jα < ; in that case the principal 

of the large team reduces effort so as not to indirectly benefit external agents and raise her own 

cost of compensation.  Finally, for δ  very close to 1, the rat-race distortion can become so large 

that at least one team becomes unprofitable (see (33)).21  

C. Peer Sensitivity and Wage Compression 

 The prior results have examined the welfare consequences of peer effects.  In this section 

we consider their effects on observed contracts and wages. A key insight behind PROPOSITION I 

and PROPOSITION II is that each principal can effectively undo the peer effects in preferences via 

the wage contracts that are offered.  By hedging the peer preferences via the contract, the principal 

can provide a relative exposure iβ  to agent i  that exposes him to the same level of risk σ  per 

incremental unit of output as in the RPE contract.  While the level of output is impacted by the rat-

race effect, optimal risk sharing is maintained. 

 But while the implied total exposures match the RPE outcome, the observed contracts iy  

will be affected by the strength δ  of relative wage concerns.  As δ  increases and peer effects 

become more dominant, contracts will be distorted more and more in order to hedge agents against 

relative wage shocks.  In this section we explore the consequences of these distortions and their 

implications for wage sensitivity and correlation. 

 
21  In that case, we may expect principals to exit and their agents to join existing teams, creating an endogenous 
restriction on the number and size of teams that can participate in an industry before the rat-race effect makes it 
unprofitable. While we do not pursue it here, such dynamics could provide insight into equilibrium market structure. 
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 Recall from PROPOSITION II that when there are multiple teams the only change to the 

optimal contract loadings is a rescaling by the rat-race factor (1 )+α .  Hence, relative contract 

sensitivities are unchanged.  This result allows us to analyze the impact of peer-effects on optimal 

contracts in both settings together: 

PROPOSITION V (CONTRACT SENSITIVITIES).  In the single team setting of PROPOSITION I, 

contract loadings Sy  are compressed relative to the RPE setting: 

  *1* *S S
ii ii ij ij n iiy y yy y≥ ≥ ≥ = − θ , (37) 

where the inequalities are strict if 0δ > . With either single or multiple teams (as in PROPOSITION 

II), agent i ’s wage sensitivity to peer output is the same, and depends on 1
ii
−∆  according to 

  
( ) 111

1 1
1i

S
ijM S

i i i S
ii ij n ni

y
y

−

−
∈

θ
φ φ = φ ≡

−
= = −

+ −θ ∆ θ∑


. (38) 

When there are no peer effects ( 0δ = ), iφ = −θ . But as δ  increases, iφ  strictly increases, and as 

1δ→ , 

  1
S
ij
S
ii

y
y

→  for all j , and therefore i nφ → . (39) 

PROOF: See Appendix.    

  

 PROPOSITION V demonstrates that peer effects compress the contract loadings and increase 

the relative importance of peer output in the wage determination. Equation (38) shows that the 

overall peer sensitivity is characterized by the diagonal term 1
ii
−∆  of the inverted peer-weighting 

matrix.  Most strikingly, as 1δ→  and peer effects dominate, the principal will optimally adjust 

contracts to have equal weight on each agent’s output.  In other words, agents will be compensated 

based on aggregate output only, and wages will become perfectly correlated ( M M M
i i jw w w−= = ).22  

 
22 In the single principal case, this result is immediate from COROLLARY A.  In the case of multiple teams, wages are 
rescaled due to rat race effects. 
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By doing so, “relative wage risk” is eliminated. Below we illustrate these results in the case of 

equal weights: 

EXAMPLE: EQUAL WEIGHTS.  Suppose 1/ij nµ =  for all i j≠ .  Then 

  
)(1

( )
) (1

φ =
−

δ − θ
δ + δ − θi n

n . (40) 

 Figure 3 shows the impact of peer effects on wage volatility and correlation in the case 

with uniform weights.  Note that as δ  increases, wage volatility decreases and wage correlation 

increases and converges to 1.23  

 
Figure 3: Wage Volatility and Dispersion 

Wage volatility (expressed relative to (1 )+ α σ ) declines, and wage correlation increases (converging to 1), with the 

strength δ  of peer effects. (Uniform weights, 50%θ = , * 75%iiy = ). 

 

 In our example with equal weights, wage contracts will load positively on peer output when 

δ > θ , in stark contrast to the RPE prediction.  The next result demonstrates that this simple 

 
23 Englmaier and Wambach (2010) demonstrate that wage compression results if agents are inequity averse, and thus 
suffer a disutility if their payoff exceeds that of others.  Here, even though agents gain from being ahead of their peers, 
it is still optimal to reduce wage variation.  Note also that wage correlation becomes positive at an even lower level of 
δ  than is required for 0φ >  due to the positive correlation in output shocks across agents. 
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condition holds more generally if the set of peers is large and the weights are diffuse: the hedging 

effect dominates the RPE effect once δ  exceeds θ . 

COROLLARY C (DIFFUSE WEIGHTS).  Suppose the weights on individual agents become diffuse 

as the population becomes large: 0
max

µ →  as N →∞ .  Then  

  
1i
δ − θ

φ →
−δ

 as N →∞ . (41) 

PROOF: See Appendix.    

 

 It is important to emphasize that despite this significant wage compression, in the single-

team case effort levels are maintained and the principal’s expected profit is unchanged. Hence, 

even if contract sensitivities appear inefficient and “low powered” relative to the RPE prediction, 

such contracts may be optimal and efficient with peer-dependent preferences.  The inefficiencies 

that do arise in this framework are not due to failures of RPE, but are the result of rat-race 

externalities across teams which instead create excessive incentives and wage levels. 

D. Proximity Effects 

 Thus far we have only analyzed the overall peer sensitivity of contracts given by iφ .  In 

this section we utilize the general network structure of preferences embodied in µ to analyze the 

cross-sectional variation in this sensitivity and how it depends on the “closeness” of peers.  We 

first consider the distance to external peers, then consider team effects, and lastly look at indirect 

peer effects.   

 Recall that in our multi-team framework, the weight agents put on external peers – that is, 

peers on other teams – is given by eµ . We may interpret eµ  as a measure of the distance between 

teams.  For example, agents in different divisions of a firm may be more sensitive to the wages of 

peers in other divisions if they are co-located than if they are in different locations.  We can 

consider how the wage sensitivity to external peers varies with this distance. 

 In particular, consider the comparative static in which we change the distance between 

teams as measured by eµ .  Because the peer weights must sum to one, as we change eµ  we must 
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rescale the internal team weights correspondingly.  Specifically, consider a set of weights 0µ  in 

which teams have the equal size IN  and agents put no weight on external peers ( 0 0eµ = ).  Then 

we can construct new weights µ  with external weights 0eµ >  by rescaling internal team weights 

as follows:  

  ( )( )0 1ij ij e IN Nµ −= µ −µ  for all ,i j I∈ . (42) 

We can then interpret changing eµ  as changing the distance between teams, and make the 

following comparison of resulting contracts.  

COROLLARY D (DISTANCE EFFECTS).  Consider team weights µ  defined by (42).   As eµ  declines 

and teams become more distant, the contract sensitivity to external peers with a single or multiple 

principals ( S
ey  or M

ey ) also declines. 

PROOF: See Appendix.    

 

 Next consider internal team effects.  It is natural to assume that the wages of peers on the 

same team may be more salient than that of peers on different teams.  To analyze the implications 

of this proximity effect, consider a setting of uniform internal weights and external weights.   

Specifically, in addition to (28) and (29), we assume agents put the same weight on each teammate, 

and this weight exceeds the weight put on external peers: 

  ˆ t eiiµ = µ ≥ µ  for all ˆ
ii I−∈  . (43) 

The following result demonstrates that in this case, optimal contracts can be written as a linear 

function of just three output measures: own output, team output, and aggregate output.  Moreover, 

the weight on team output will always be non-negative. 

PROPOSITION VI (TEAM EFFECTS).  Suppose agents have uniform internal and external weights 

with 1/µ ≥ ≥ µt en . Let 1
I ii I

q I q−

∈
≡ ∑  be the average output of agents on team I .  Then 

equilibrium contracts can be written in terms of own output, team output, and aggregate ouput:  

 0i Own i ITeam Aggw Y Y q Y q qY+= + +  , with 0TeamY ≥ . (44) 
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The sensitivity to team output is strictly positive unless 1/µ = µ =e t n  or 0δ = . 

PROOF: See Appendix for a complete characterization and additional comparative statics.    

 

 PROPOSITION VI shows that when agents care more about the wages of their teammates, 

then we should always see a positive loading on team output.  The intuition for this result is that 

because the weight on aggregate output controls for both RPE effects and the relative wealth risk 

from external peers, the weight on team output only reflects the hedging of the incremental relative 

wealth risk coming from teammates. 

  Another notion of distance we can consider is when peers are connected only indirectly.  

Specifically, suppose agents i  and k  do not consider themselves peers ( 0)ik kiµ = µ = .  But 

suppose i  and j  are peers, as are j  and k  ( 0)ij jkµ µ > . Because the optimal contract for agent j  

will hedge against agent k ’s wage, agent i  will be indirectly exposed to k ’s wage through his 

concern for agent j ’s.  Thus, we should expect contracts to reflect these peer relationship 

“chains.”24 

 To illustrate this effect, we consider next a case in which agents are arranged in a circle 

and care only about their nearest neighbors; that is 1
2ijµ =  if and only if { }1,i j n− ∈ . In this case, 

although peer relationships are strictly local, all agents are connected through a peer chain, with 

the distance between them determining the length of the chain. The next result demonstrates that, 

due to this indirect peer effect, the optimal contract sensitivity to every agent is distorted above 

the RPE case, with the distortion decreasing with distance to that agent.  Again, the contract is 

distorted even for non-neighboring agents is due to the chain of influence that arises through the 

network of peer relationships. Finally, as long as peer-effects are non-zero, the weight on all agents 

within any finite neighborhood will be positive if the population is sufficiently large.  

 
24 Technically, this chain effect can be seen from (23) by the fact that ( )1 2 21−∆ = − δ δµ + δ µ +…+  I , with the 
powers of µ  capturing chains of the corresponding length. 
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PROPOSITION VII (PEER CHAINS).  Consider a circular network of peers in which each agent puts 

equal weight on their two nearest neighbors.  Then the contract sensitivity S
ijy  is strictly decreasing 

function of the distance between i  and j , and exceeds the RPE benchmark even for the most 

distant agents.  Moreover, for any fixed pair ( , )i j  and any 0δ > , 0S
ijy >  for n  sufficiently large. 

PROOF: See Appendix for a complete characterization and additional comparative statics.    

 

IV. Asymmetric Visibility and Efficiency Gains 

 Our prior results demonstrate that profits either stay the same (with a single principal) or 

decline (with multiple principals) with the strength peer effects when peer relationships are 

symmetric. In this section we relax the symmetry requirement and show that when some peers are 

“more visible” than others, the principal can exploit this asymmetry and increase profits. 

 Specifically, define the “visibility” ˆ iµ  of agent i  as the collective weight put on that agent 

by others. Under our current pairwise symmetry assumption (4) we have: 

  1ˆ i jij
µ ≡ µ =∑  for all j . (45) 

That is, each agent has equal visibility.  To see the importance of this assumption, consider the 

following exercise.  Suppose we would like to raise agent i ’s certainty equivalent wage by $1, 

while holding all other agents’ utility constant. To do so, we need to raise iw  by (1 )− δ .25  But 

then, to compensate agent j  for the direct peer effect, we need to raise jw  by (1 )jiδµ − δ  for each 

agent j . Of course, we must then raise kw  by 2 (1 )kj jiδ µ µ − δ  to compensate each agent k  for the 

“second-order” peer effect, and so on. Let iω  be the total cost of these adjustments. Then we have 

  ( ) 2 2 11i jijij j
I −ω ≡ − δ + δµ + δ µ +… = ∆  ∑ ∑ . (46) 

 
25 Recall from (2) and (4) that ˆ ( ) / (1 ) / (1 )i i i i i iv w w w w w

− −
= + δ − = − δ − δ − δ . 
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This total compensation cost iω  is equivalent to the Katz-centrality of agent i  in the peer 

network.26 As the following result shows, total compensation costs are equal for all agents if and 

only if all agents have equal visibility. 

LEMMA 3 (VISIBILITY, CENTRALITY, AND COMPENSATION COST).  The Katz-centrality iω  of 

each agent, given by (46), represents the total cost of raising agent i ’s utility while leaving others 

unchanged. For any stochastic peer matrix µ , even if non-symmetric, the average cost of 

compensation, 1
N i iω∑ , is equal to 1. But 1iω =  for all i  if and only if agents have equal visibility 

so that (45) holds. 

PROOF: See Appendix.    

  

Thus, equal visibility implies that the effective cost of compensation is also equalized across all 

agents.  It is straightforward to show that our welfare results in Section A only rely on this result, 

and not on the stronger pairwise symmetry assumption in (4).27 

 Now suppose we relax (45), so that some agents are less visible than others.  Then, from 

LEMMA 3, while the average compensation cost is unchanged, individual compensation costs will 

differ.  The principal will optimally exploit this asymmetry, providing higher incentives and wages 

to less-central agents in order to lower compensation costs. Thus, with asymmetric visibility there 

will be a tension between compensation efficiency and production efficiency (which, given 

symmetric convex effort costs, would allocate effort equally).  The optimal tradeoff is 

characterized in the following result.28 

 
26 Katz-centrality is generally defined recursively as (1 )i ji jj

ω = − δ + δµ ω∑ , where δ  is referred to as the network 

attenuation factor and (1 )− δ  is the base level importance of each node in the network. Eigenvector centrality (or 
Bonacich-centrality) is a parameter-free version of Katz-centrality obtained by taking the limit as 1δ → . See Katz 
(1953) and Newman (2018). 
27 See for example the proof of PROPOSITION I, which only uses symmetry to establish that 1−′∆ = ′µ = ′1 1 1 ; that is, 
we only require that the matrix µ  is doubly stochastic. 
28 The fact that this variation in compensation costs results in higher profits follows from the standard result that profits 
are convex in input prices.  Note also that this gain from distorting production applies even absent agency costs (e.g. 
with 0σ = ). 
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PROPOSITION VIII (ASYMMETRIC VISIBILITY AND EFFICIENCY GAINS).  Suppose that we relax 

the pairwise symmetry assumption (4) and agents have asymmetric visibility. If 0δ > , then 

although the relative contract sensitivities satisfy (38) as before, a single principal can distort 

effort to achieve higher expected profits than in the RPE case ( 0δ = ). In equilibrium, the principal 

allocates effort (and earns profits) according to the inverse of each agent’s Katz-centrality: 

  1 *A
i i ia a−= ω   and  ( ) ( )1 * * 1 *1

0 0 22
1 1A

i i i i i iq a c a− −π π= + −= + ω − ω . (47) 

The principal’s average gain per agent is thus proportional to ( )1 1 1 0
i iN

−ω − >∑ . 

PROOF: See Appendix.    

 

 The proposition shows that with asymmetric visibility, the principal can lower the total 

cost of compensation by shifting incentives (and hence wages) to less-central agents. To illustrate 

the relationship between the preference weights ( , )µ δ  and the principal’s expected profit, Figure 

4 shows the average gain per agent for a range of randomly generated models.  Here, we have 

measured the asymmetry in µ  according to the heterogeneity in the agents’ visibility µ̂ .  As the 

figure shows, the principal’s expected profit increases with this variation (standard deviation of 

ˆ jµ ) as well as with the intensity δ  of the peer effects.  The latter effect, monotonicity with respect 

to δ  for a given µ , appears to hold quite generally across all numerical examples. 
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Figure 4: Benefit to Principal from Agent Heterogeneity 

The average benefit per agent to the principal 11
1−ω −∑ jjN

   as function of standard deviation of ˆ
jµ  . Simulating 

40,000 random stochastic matrixes µ  for 10=N . Blue (orange) dots are for ( )0.3 0.5 .δ = δ =     

 

 To further elucidate the source of increased profits to the principal, we next consider a 

specific natural example of asymmetry in which there are two types of agents: 

• Independent Agents: 1jjµ = , 0jkµ =  for k j≠ ; thus their effective δ  is zero.  

These agents care only about their own wage, and do not care about the wages of 

their peers.29 

• Peer-Dependent Agents: 0δ > , 0mmµ = , 1/mk nµ =  for k m≠ .  These agents 

benchmark their wage to the average of their peers. 

Note that in this example, because peer-dependent agents care about independent agents, but not 

vice versa, independent agents are more visible and central.  The following proposition shows that 

as a result, independent agents will be given lower equilibrium incentives and wages.  We also 

show that the principal’s profit increases with the heterogeneity of the population.  

 
29 Note that to make this example particularly stark, we also relax the requirement in (1) that 1jjµ < .   
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PROPOSITION IX (MIXED POPULATION).  Consider a single principal with independent agents (

j J∈ ) and peer-dependent agents ( Jm −∈ ). Then independent agents receive a standard RPE 

contract with A
jφ = −θ .  Peer-dependent agents work harder than independent agents, with 

   
11 1

1

A
m n
A
j

a
a

+ δ
= ≡ ψ >

−δ
, (48) 

and furthermore, 

  ( )111 21 1ii

J J
N N N

− −  
ω = + − + ψ


ψ −


∑ , (49) 

so that the principal’s profit per agent increases with an increase in population heterogeneity: 

that is, with an increase in δ , or shifting the proportion of independent agents closer to 50%.  

PROOF: See Appendix.    

 

 Note that for 1
2J N=  , the principal’s gain per agent decreases in N  with the limit 

  ( ) ( )
2

11 1
4 1iiN

− δ
ω −

− δ
→∑  as .N →∞   (50) 

Thus, the average gain per agent does not completely dissipate even when N  is very large. 

 The ability of the single principal to internalize the impact of peer effects across contracts 

allows the principal to capitalize fully on any asymmetry of visibility across agents. With multiple 

principals, there will be competing effects of any asymmetric visibility within teams,30 which will 

increase profits, and the rat-race effect across teams, which will decrease profits. 

V. Disclosure Effects 

 In the standard RPE contracting framework without peer effects, agent’s incentives are 

independent of each other’s contracts.  As a result, the timing and visibility of contracts and wages 

 
30 Specifically, with equal external weights, what matters is the within-team centrality ( ) 1

I II

−
ω = ′ ∆1 , which will be 

equal if and only if agents have equal within team visibility II′µ1 . 
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are not consequential.  With peer effects, however, these details will matter.  We show in this 

section that if principals can privately negotiate contracts with individual agents on their team, 

then additional rat-race effects emerge within teams.  In addition, the public disclosure of wage 

contracts across teams may increase their salience, strengthening peer effects, while also creating 

incentives for principals to distort their own team’s contracts to affect the productivity of other 

teams.  

A. Private Negotiation 

 Thus far we have assumed that each principal discloses to her team the incentive contracts 

to be used within the firm.  This assumption implies that the principal cannot privately negotiate 

(or renegotiate) these contracts with individual agents. If instead individual contracts terms can be 

set or altered in a way that is hidden from other team members, then in equilibrium we should 

require that contracts be “renegotiation-proof” with respect to any principal-agent pair.  That is, in 

equilibrium, there should be no alternative contract the principal could offer to a single agent which 

the agent would accept and would raise the principal’s expected profit, while holding other 

contracts and effort as given.  

 When privately negotiating, the principal and agent will ignore the impact of their wage 

choice on the utility of other agents, as well as try to lower the wage of others through the 

performance benchmark, just as in the setting of multiple teams discussed earlier.   Moreover, there 

is now an added benefit to the principal: changing the agent’s effort in a way that lowers the wage 

of other agents within the same team contributes directly to the principal’s profits. 

 Though there is an incentive to renegotiate, the opportunity to do so must hurt the principal 

ex-ante.  In equilibrium, other agents within the team will anticipate the renegotiated contract and 

seek commensurate terms.  In other words, because the renegotiation-proof contract could always 

be proposed in an environment with disclosure, allowing hidden renegotiation only constrains the 

principal. But while each principal is individually worse off with hidden contracting, the 

equilibrium consequence of renegotiation is less clear, as constraining contracts in this way might 

reduce some of the “rat-race” inefficiency that arises with multiple teams.   

 The following result characterizes the optimal contract when contracts are privately 

negotiated: 
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LEMMA 4 (PRIVATE NEGOTIATION CONTRACT).  Given the contracts and actions of other agents, 

principal I  has an incentive to renegotiate privately with agent i  unless agent i  has exposure 
*(1 )R R

i i iyβ = +α   where the scaling factor R
iα  is given by 

  ˆ
ˆ

111
1 1

i

R ii
i ij ji ii

j i i Iii

y y
−= ∈/

   −   
− δµ δ

+α ≡ − µ
− − δ δµ 

∑ ∑ . (51) 

PROOF: See Appendix.    

  

 In the case of a single-person team, private renegotiation within a team should have no 

effect, and thus  (51) coincides with our earlier calculation in LEMMA 2 (see (27) , noting ii Iµ = µ  

and iI− = ∅  when 1IN = ). But with multi-person teams, new effects emerge.  To understand (51) 

better, it is useful to consider the case with 0iiµ = .31   Then, 

  ˆ
ˆ

11 1
1

i

R
i ij ji ii

j i i I

y y
−= ∈/

+ α ≡ −δ µ − δ

   −    
∑ ∑ . (52) 

As in (27), the term ij jij i
y

=/
µ∑  captures the effect on agent i  from altering other agents’ expected 

wage, but now this term includes i ’s own teammates (as this own-team effect is no longer 

internalized by the principal).  The new term ˆˆ i iii I
y

−∈∑  captures the effect on the principal’s 

expected wage bill from altering the expected wages of other agents on team I .  To evaluate the 

equilibrium impact of renegotiation, we again consider the symmetric case, and keep 0iiµ =  for 

simplicity. 

PROPOSITION X (PRIVATE NEGOTIATION EQUILIBRIUM).  In the symmetric multi-team 

equilibrium with equal external weights and 0iiµ =  for all i , private renegotiation exacerbates 

the rat-race effect, with a strictly higher scaling factor  

  
( ) ( )*

1 1 1
1

R
S

ii I ey N N y
+ α ≡ > α

δ
+

− + −δ θ − −
, (53) 

 
31  Recall that 0iiµ >  is equivalent to adjusting δ  for agent i , see footnote 10. 
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as long as 1IN > .32 Moreover, distortions persist ( 0Rα > ) even absent peer effects ( 0δ = ). 

PROOF: See Appendix.    

 

 Thus, private negotiation amplifies the rat-race effects that we identified in Section III. 

Additionally, the rat race occurs even without peer effects, since the principal has an incentive to 

renegotiate privately with RPE contracts (providing higher incentives to one agent lowers the 

expected wage paid to teammates).   

 Note also from (53) that private renegotiation implies a positive rat-race effect even in the 

case of a single principal ( IN N= ), 

  ( ) ( )* * *

1 1 11
1 1 1

R

ii ii iiyy y
+ α =

δ δ θ θ
= >

− + − − − −δ
, (54) 

Therefore, with private negotiation, rat-race effects always appear (even without peer effects) and 

peer effects always amplify the rat race (even with a single principal).  

B. Wage Transparency and Public Disclosure  

 Recent regulation has increased disclosure requirements regarding executive 

compensation.  The SEC now requires compensation disclosures for the CEO, CFO, and the three 

additional most highly compensated officers the firm, as well as compensation peer groups.33 Their 

visibility has been further enhanced by “Say on Pay” rules that require periodic shareholder 

approval of compensation schemes. Websites such as Glassdoor collect and provide data on 

salaries for a broad range of managerial positions within firms. Compensation disclosure 

requirements for public employees have also increased as a result of transparency and 

accountability measures.  For example, individual faculty member salaries for all faculty at the 

University of California can be looked up online. 

 
32 As a benchmark, with equal weights ( 1 /ij nµ = ) we can write ( )( ) 1

1 11R S

I eN y
−

+ α +δ + δ= − − , which matches 

(36) for single agent teams ( 1IN = ). 
33 Jochem, Ormazabal, and Rajamani (2021) document the network structure of these peer groups and show that they 
have become significantly more clustered and reciprocal (i.e., symmetrically linked) over time. 
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 In the context of our model, we interpret greater wage transparency and disclosure as 

leading to an increase in the salience of peer compensation.34  As a result, individuals are likely to 

put higher weight on their relative versus absolute wage (an increase in δ ), as well as put higher 

weight on more distant peers (an increase in µe ).  These effects may be due to the agent’s own 

visibility of others’ wages, or the fact that agents believe that others can more easily make such 

comparisons.35 

 Under this interpretation, the results of Section III allow for the following empirical 

implications of increased disclosure: 

COROLLARY E (WAGE TRANSPARENCY).  In the symmetric team setting of PROPOSITION II, 

suppose an increase in transparency or disclosure leads to an increase in δ .  This change will 

lead to an 

• Increase in rat-race effects (α ): higher wages and productivity, lower profits, 

• Increase in the wage contract exposure to external peers ( ey ), 

• Increase in the sensitivity to peer output (φ ), 

• Increase in wage correlation (with the average wage) and a decrease in wage dispersion 

(standard deviation as a fraction of the expected wage). 

The same results apply for an increase in µe , where in the case of the wage correlation and peer 

sensitivity, we additionally assume uniform internal weights. 

PROOF: See Appendix.    

 

 In the context of CEO compensation, our results suggest that SEC rules that have increased 

compensation disclosures and saliency should lead to higher expected compensation. Consistent 

with this prediction, Jochem Ormazabal, and Rajamani (2021) document a significant increase in 

 
34 Card et.al. (2012) provide field-based confirmation of relative pay comparisons by randomized manipulation of 
revelation of information on coworkers’ salaries for University of California employees.  
35 For example, we can think of the weights µ ij  as based in part on the probability that others are able to see and 
compare agent i and j’s wages, and this comparison may impact agent i’s social status. 
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average pay together with a 40% decline in wage dispersion (both in aggregate and within industry-

size groups) since 2006.36  

C. External Contract Disclosure 

 We have assumed thus far that agents can only observe the realized wages of external peers 

after making their effort decisions.  In this section we consider an additional effect that arises if 

contracts are disclosed externally across teams before effort is determined. Specifically, we 

modify the timing in Figure 1 so that prior to choosing effort, each agent can observe the wage 

contracts of agents on other teams. 

 

 
Figure 5: Contracting Game with Ex Ante External Contract Disclosure 

  

 Ex ante external contract disclosure matters because the contract of agent i  on team I , 

once revealed, will influence the effort choice of agents on other teams ( j I∈/ ).  For example, an 

increase in ijy , the loading of i ’s contract on j ’s output, will reduce agent j ’s effort incentives, 

since higher jq  would have a more positive impact on i ’s wage, reducing j ’s utility.  Principal 

I  can take advantage of this effect by offering agent i  a contract with higher ijy , and then, 

anticipating that agent j  will reduce effort and earn a lower wage as a result, lower the expected 

wage paid to team I  (given the lower expected peer benchmark).37 

 This intuition has several important implications.  First, it suggests that each principal will 

no longer choose the implied sensitivities to minimize the agent’s residual risk.  Instead, the 

 
36 Further evidence that increased disclosure of executive compensation increases executive pay is provided in Park, 
Nelson, and Huson (2001), Perry, and Zenner (2001), Schmidt (2012), Gipper (2021) and Mas (2019).  Gipper (2021) 
also shows a reverse effect for the subset of firms for whom the JOBS Act of 2012 rolled back some disclosure 
requirements. 
37 In the prior equilibrium, agents’ incentives were determined by the anticipated contracts used by other teams. Public 
disclosure gives the principal the ability to change external expectations.    
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principal will raise the sensitivity to external peers in order to distort their effort downward.  But, 

because the agent is now exposed to additional external output risk, the contract will expose him 

to less output risk from his own team. Finally, because these distortions raise the cost of providing 

incentives, the optimal level of effort declines.   

 The following result confirms these effects.  For simplicity, we focus on the case with 

uniform internal and external weights, where those weights may differ from each other.  We show 

that in the optimal contract the agent’s effort (determined by D
iiβ ) is distorted downward, as is the 

agent’s implied exposure to the output of his teammates ( ˆβD
ii ), whereas the agent’s implied 

exposure to the output of agent’s on other teams ( D
ijβ ) is distorted upward, relative to the setting 

without public disclosure. 

 

PROPOSITION XI (EXTERNAL CONTRACT DISCLOSURE).  Suppose teams have the same size IN  

and agents have uniform internal and external peer weights: 0µ =ii , ˆµ = µtii  for ˆ
ii I−∈  and 

µ = µij e  for ∈/j I .  Then the equilibrium with external contract disclosure has uniform internal 

and external loadings: D
iiy , ˆ =

D
tiiy y  and = D

ij ey y  with exposures that are distorted from the multi-

team equilibrium: 

  ( ) *1D
ii I iiy< +β α    (lower effort incentives), 

  1
ˆ

D D
iiii nβ β< − θ   (lower internal exposure), and  (55) 

  1D D
ij iinβ β−> θ    (higher external exposure)  

where ( )( )11
1

D
I I I eN yδ

α −−
−δ

= µ .  Without ex ante external disclosure, 

Error! Reference source not found. holds with equality.   

PROOF: See Appendix.    
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Figure 6: Effort and Contract Sensitivity with Ex Ante External Contract Disclosure 

Ex ante disclosure increases contract sensitivity to external peers and decreases effort relative to case when contracts 
are not externally disclosed. (Parameters: *2, , 50%, 75%1= θ = == iiIN N y ).    

 Figure 6 shows the effect of external disclosure on both effort and contract sensitivity.  

Note that the effect of public disclosure increases with strength of peer effects δ .  Indeed, when 

δ  is sufficiently high, public disclosure can cause effort to collapse well below the second-best 

level, in contrast the settings without disclosure where it is always above the second-best. 

 Thus, external contract disclosure is likely to lead to even greater departures from “RPE” 

in observed contracts.  And although public disclosure lowers equilibrium productivity, because 

effort is inefficiently high due to the rat-race effect, this decrease in effort can raise profitability.   

VI. Conclusion 

 In this paper we have extended a standard moral hazard optimal contracting framework to 

a setting in which agents care about both their absolute wage, as well as how their wage compares 

to that of their peers.  We allow for a general network of peer relationships, both within and across 

firms.  Our results overturn standard predictions from contracting models.  We find that rat-race 

effects across teams raise equilibrium effort, and that compensation benchmarking offsets 

performance benchmarking, so that optimal contracts load more positively on peer output 

(including indirect peers) than the standard RPE model would imply.  When peer effects are 
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sufficiently strong, effort can exceed first best, while at the same time wages are driven primarily 

by aggregate (rather than individual) performance.  Finally, principals can exploit asymmetric peer 

effects within their teams and raise profits, relative to when agents’ preferences are devoid of peer 

effects, by inefficiently shifting effort to less visible agents.     

 We also considered the implications of different levels of disclosure and transparency.  On 

one hand, if private renegotiation is possible, a rat-race effect emerges even within teams which 

raises team effort and output and lowers profits.  On the other hand, external disclosure across 

teams is likely to increase the saliency of peer comparisons, exacerbating the rat-race effect across 

teams and increasing wage levels and correlations. 

 In addition to these broad predictions, our model makes more nuanced predictions 

regarding the relationship between contract sensitivities and the details of peer relationships.  We 

show that relative to RPE contracts, peer effects imply that contracts will be less sensitive to the 

agent’s own output and will have higher (more positive) sensitivity to peer output.  The contract 

loading on peers will be highest for peers who are “closer” in the network, such as teammates or 

neighbors. With data on social networks becoming more readily available to researchers, one could 

envision merging such data with data on compensation to empirically evaluate these predictions.   

 To highlight these effects, we have simplified other aspects of the principal-agent model.  

For example, in practice the correlation between agents’ output will also likely vary with some 

measure of distance.  In that case the contract loadings will depend on relative distance between 

peers in the social network versus the production matrix.  

 We have also simplified the model by maintaining a standard linear CARA-normal 

framework, both to facilitate tractability and precise quantitative conclusions as well as to allow 

comparisons to existing benchmarks. Future work could analyze how results might change under 

a different utility specification (such as CRRA), as well as different ways to embed KUJ 

preferences. For example, one could assume different risk aversions with respect to absolute and 

relative income and/or one could assume the two components are additively separable.  Future 

empirical or experimental work characterizing how KUJ preferences are most accurately 

represented could help guide researchers as to which specifications to consider.  Nonetheless, we 

believe the forces identified here will continue to arise: optimal contracts will contain a hedging 
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component, rat-race effects will emerge, principals may gain by distorting production toward less 

visible agents, and disclosure environments will matter.   

 In the multi-team context, we have also treated team and population size as exogenous.  It 

would be interesting to explore the consequences of peer effects on industry structure when entry 

and exit is endogenous.  For example, although we have assumed constant returns to scale in our 

model, larger teams are more efficient due to their ability to internalize rat-race effects and thereby 

prevent wages from escalating.  Conversely, rat-race effects may be an important barrier to entry 

for smaller entrants to an industry.  
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Appendix 

PROOF OF LEMMA 1: When 0δ = , the contracting problem for agent i  is independent of the wage 

contracts of other agents, except to the extent that other agents’ actions affect the expectation of 

the benchmark iq− . Because ( ) 01[ ( )]
i

i i ii i ij jj iE ac y y ay q a
−∈

= ⋅ + + Ψ−∑ 
, the agent will choose 

effort ia  to maximize ( )ii i iy a a−Ψ , and thus i iia y k= .  The principal will choose 0iy  so that the 

agent’s participation constraint binds; therefore 1
02[ ] ( )i iE c Var c c− λ = .  Because ( )i i ic v a≡ −ψ ,  

  
0

1
0 2[ ] [ ] ( ) ( )i i i iE v E w c a Var c

δ=

= = +Ψ + λ


. (A1) 

The principal therefore chooses ij iiy y  to minimize variance as in (14), so that the volatility of 

consumption is iiy σ .  Then, because i iia y k= , the principal chooses iiy  to trade off incentives 

for effort and the cost of risk-bearing in order to maximize 

  
1

0 02
2 2 21 1

0 02 2

[ ] ( ) ( )

,( )

π − = + −Ψ − λ −

= + − σ

=

−− λ
i i i i i i

ii ii ii

E q w q a a Var c c

q y yk k cy k
 (A2) 

which implies (16) and (17). The principal’s expected profit is 0
1
2

*
0 −π = +i iaq c . Finally, note that 

the constant term of the wage contract is set so that the participation constraint (A1) binds; hence, 

because *
0] ][ [= +=j i iq E q q aE  by symmetry, 

 ( ) ( )( )2* * 2 * 2 * * * *1 1
0 0 0 0 0

1
22 2 [( ) ] 1= −λ+ + σ + − += − θ∑i i ii i ij j j i iy cq kc a y y E q a k aa q . (A3) 

   

 

PROOF OF PROPOSITION I: Note first that the participation constraint for each agent must bind, as 

otherwise the principal could cut the fixed component of the wage, increasing profits and (due to 

peer effects) relaxing the participation constraint of other agents. Therefore, 

  
( ) ( )

1
0 2

2
2 21

0 2

( ) ( )

/ (1 ) ( ),

[ ] i i

ii ij ijj

i

ij

E a Var

k

v c c

c C

= +ψ



+ λ

= + β λ −ρ β +ρ β σ ≡ β  
ψ + ∑ ∑ 

 (A4) 
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where the function C  is the implied total cost borne by the agent given sensitivities β . Rewriting 

(A4) in column vector form by stacking the equation for each agent i , and using the fact that 

v w= ∆  and ∆  is invertible (it has a strictly dominant diagonal), we have 

  1 1 1[ ] [ ([ ]] )E wE Cv E w− − −= = =∆ ∆ ∆ ∆ β , (A5) 

where we write ( )C β  to be the column vector with row i  equal to ( )iC β .  Next let 1N×∈1   denote 

the column vector of ones. Then the principal’s objective becomes 

  
( )1[ ] [ ] ( ) [ ] ( )

( ) ,

i i
i

i i
i

E q w E q w E q C E q C

E q C

−

∈

∈

 
− = ′ − = ′ − ′∆ β = ′ − β 

 
 

= − β 
 

∑

∑

1 1 1 1




 (A6) 

where the penultimate step follows because µ  is doubly stochastic (µ =1 1  from (1) and from (4) 

µ  is symmetric, hence ′µ = ′1 1 )  and therefore ∆  and 1−∆  are doubly stochastic (∆  is a convex 

combination of I  and µ , which are both doubly stochastic, and 1 1− −= ∆ ∆ = ∆1 1 1 ), and hence 

1−′∆ ′=1 1 .  Because 0[ ]i iE q c a= +  also depends only on iiβ , the solution *β  to (A6) does not 

depend on δ , and so the solution matches the RPE case with 0δ = ; i.e., * *yβ = .  The optimal 

contract Sy  then follows from * Syβ = ∆ .     

 

PROOF OF COROLLARY A: From (23), * * S Sw q qy y w= = =∆ ∆  and given the definition of ∆ , we 

have 

  *(1 ) S S S S
iw w w w w−− δ = − δµ δ= − , (A7) 

which is equivalent to (24).  Pre-multiplying by ′1 , and using ′µ = ′1 1 , shows that the aggregate 

wages and the wage benchmarks are all identical.   

 

PROOF OF EXAMPLE: EQUAL WEIGHTS: With equal weights, 

 
1 11

1 1
n n+ δ δ

∆ = − ′
− δ − δ

I 11 , 
1

1
1 1

1
1 1

n

n n

− δ− δ
∆ + ′

+ δ +
=

δ
I 11 , and ( )* * 1 11ii n ny y  + − = θ θ ′I 11 , 



51 
 

and the result then follows from (23).    

 

PROOF OF LEMMA 2:  Let I∆  be the sub-matrix of ∆  formed from rows i I∈ , and J∆  be the 

matrix formed from rows \=J I ,  and let II∆  and IJ∆  select the corresponding rows and 

columns (including column 0).  Using similar notation to select the rows of β  and y , because 

yβ = ∆  we have 

  [ ] I
I I II IJ II I IJ J

J

y
y y y

y
 

β = ∆ = ∆ ∆
 

+= ∆ ∆  , (A8) 

which we can rearrange as, 

  II I I IJ Jy yβ −∆ = ∆ . (A9) 

Because II∆  is invertible (it has a strictly dominant diagonal), we can therefore solve for Iy  in 

terms of Iβ  and Jy  as follows: 

  ( ) [ ]1
I II I IJ Jy y− −= ∆ β ∆ . (A10) 

Equation (A10) shows that the principal for team I  can implement any set of exposures Iβ  with 

an appropriate set of contracts Iy .  Using the definitions w yq=  and q yq w vβ = ∆ = ∆ = , together 

with the binding participation constraint (A4), we have  

  
[ ] [ ] ( ) [ ] ( ) [ ]

( ) [ ]

1 1

1 ( )
I I II I IJ J II I IJ J

II I IJ J

E Ew q y yE y E q q v q

C wE

− −

−

∆ β ∆ = ∆



= = −

β

−

−

∆

∆=  ∆
 (A11) 

Because 0IJ∆ ≤ , (A11) reflects the fact that an increase in the wage of agent j I∈/  raises the cost 

of compensating agent i I∈ .  Because II∆  has constant row (and column) sums equal to 

1 ,
1

I−µ δ 
 − δ 

 the principal’s expected profit πI  is equal to 
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Finally, removing terms that do not depend on Iy , maximizing Iπ  is equivalent to maximizing  
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 (A12) 

Hence, principal I  will choose iβ  to maximize ( )1 ( )i i ia Cα − β+ .  From the incentive constraint 

/i iia k= β , iiβ  maximizes  

  (1 ) ( )ii ii Ck+α β − β . (A13) 

As in LEMMA 1, at the optimum 1M M
ij iinβ = − θβ  to minimize variance, but the agent’s sensitivity to 

his own output is distorted by the factor iα , with *(1 )M
ii iii yβ = +α .  The optimal contract for team 

I  then follows from (A10).  

 

PROOF OF PROPOSITION II: In a symmetric equilibrium, iα = α , and LEMMA 2 implies the 

principals choose sensitivities *(1 )M yβ = +α .  Because M Myβ = ∆ , 

  1 1 *(1 ) (1 )M M Sy y y− −= ∆ β = ∆ +α = +α . (A14) 
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Conditions (28) and (29) imply that 1 ( )I e IN Nµ = −µ −  and also that 1
ij e
−∆ = λ  is constant for 

agents on different teams.  Because 1−∆ ∆ = I ,38  

  10,
1 (1 )

e
e

eN N
δµ  λ = ∈ − δ − µ  

. (A15) 

Therefore, from 1 *Sy y−= ∆ ,  

  ( )( ) ( ) ( ) )1
*

1
1

1
1

,
1

1 
− −δµ θ θ δ

= λ θ λ ∈ θ λ
δ + δµ

−
− − = −

−
n

n

S
ee

e e en
ii e

y
y N

 . (A16) 

As an aside, note that 0S
ey >  iff  

  
( )1 1

δ θ
>

−δ µ − θen
. (A17) 

Finally, from (27), 

  ( )( )
ˆ ,

1 1 (11 )
1 1

M S
I e e I I e

i I j I

y N y
∈ ∈/

δ δ
α = µ − µ µ −


− = − + 

− δ
α

−δ 
∑ , (A18) 

and (31) follows by solving for 1+α .  Because / 1S
I e IN y N N< < , we have 0α > .  The expected 

wages and profit per agent follow because, by symmetry, [ ] [ ]= =i i iE w E v C , and  

  

1
0 02

* * 2 *2 21
0 02

* 1
2

*
2 * * 2
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.
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i i ii
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c

a

ar c

q a a y

y
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 (A19) 

Again, the constant component of the wage contract is set so that the agent’s participation 

constraint binds: 

 
38 We can write 

1 eA
δ

∆ = − µ ′
− δ

11  and 1

eB−∆ = + λ ′11  where both A  and B  are block diagonal with AB I= .  

Because 
1 1e eA N
δ δ

= ∆ + µ ′ = + µ
− δ − δ

1 1 11 1 1 1  and 1 1

e eA B N− −= = ∆ − λ = − λ1 1 1 11¢1 1 1 , the value of eλ  

follows from the fact that we must have ( ) 11 1
1 e eN N −δ

+ µ = − λ
− δ

 .  
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  ( ) ( )( ) ( )( )2
2* *

0 0
1 *

0 0 1 1 1 1= + − α−+ α α θ ++ +M
i i i iy c a kaq aq . 

  

 

PROOF OF PROPOSITION III: From (31), as 1δ→ , 11 S
I eN y

+α→ .  For 0eµ >  (equivalently, 

IN N<  and 1Iµ < ), from (A16), ( ) *1 1→ θ−S
e iiN yy .   Combining these results and using 

* * /iia y k= , we have 

  
( )

* 1(1
1

)
I

Na
kN

α →
−

+
θ

, (A20) 

which implies that effort will exceed the first-best level 1/ k  for δ  sufficiently close to 1. 

 To establish monotonicity in δ , from (31) it suffices to show 

   ( )1 0
1
1 SI

I e
I

N y
 −
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. (A21) 

Plugging in for S
ey  from (A16), taking the derivative, and simplifying we can show 
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 (A22) 

Because *0 , , , 1ii Iy≤ δ θ µ ≤ , the terms A , B , and C  are positive; we thus need to show that 

0B C− ≥ . Note that a lower bound on B  is obtained by setting 0θ =  and * 1iiy = , and an upper 

bound for C  is obtained by setting * 1iiyθ = = .  These substitutions, together with the fact that 

( ) 1I e IN N− µ = −µ ,  imply 
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( ) ( )( )( ) ( )
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1 1 1 1
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N N NN

− ≥ − −δ + δ − µ −δ + δ µ − δ µ −δµ

= − −δ + δ µ −δµ − δµ −δµ
 (A23) 

Dividing by (1 )I−δµ  maintains the sign, and yields 

  ( )( ) ( )1 1 1 0I eN N N N− −δ + δ − − µ > , (A24) 

where the final inequality holds given 1IN N< −  with more than one principal. 

 To show monotonicty in IN , we show  ( )1 1
1
1 SI

I e
I

N y
 µ

δ −
 − δµ

−
−  


 increases in IN  , where 

we of course need to keep in mind that Iµ  and S
ey  depend on IN  as well. Furthermore, it suffices 

to focus on 1
2IN N≤  since for IN N= , 0.α =  Taking the derivative with respect to IN  and  

multiplying by 

  ( ) ( )( ) ( )( )21 1 1 1 0e I e eN N N N−δµ − δ + − δµ − −δ + δ µ >   (A25) 

and simplifying yields   
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Note that the square bracket is positive.  Since 2 IN N≥ , ( )( ) ( )( )22 1 0I I eN N N N− −δ + − δµ ≥

and is decreasing in IN .  Hence, if ( ) ( )( )( )1 1 1 0e eN N− δµ −θ −δ + − δµ ≥ , we are done. 

Otherwise, a lower bound for the whole expression is obtained by setting * 1θ= ==ii INy , which 

after simplification yields 

  
( )( )( ) ( ) ( )( ) ( )( )

( )( ) ( )

21 1 1 1 2 1 1

11 1 1 0
1

e e

e

N N N N

N
N

 − − δ − δ + δ µ − −δ − −δ + − δµ 

  = − − δ − δ + δµ >  −  

  (A27) 
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 Finally, we show  ( )1 1
1
1 SI

I e
I

N y
 µ

δ −
 − δµ

−
−  


 decreases in eµ . Taking the derivative with 

respect to eµ , multiplying by  

  ( )( ) ( ) ( )( ) ( )1 2 21 1 1 1 0I I e eN N N N N N
−

 − − δ δ − −δ + − δµ −δ + δ  >µ   (A28) 

and simplifying yields 

  

( )( )
( ) ( ) ( )( )

( )( ) ( )( )( )

2

*
2 2 2

0

1 1

1 2 1 2

1 2 2 1 1 2

e

e e I

ii I
e I e

N N

N N N
y N N N N N

>

− − − δ + δ µ

 − δµ −δ + δµ −
 

+  − θ − δ + δ − −δ δµ + + − δ µ
 
 

+


  (A29) 

Because the first term is negative, if the square bracket term is negative as well we are done. We 

can maximize the above by setting 0θ =  and 1IN =  inside  [ ]⋅ , and * 1iiy =  and / 2IN N=  outside  

[ ]⋅ . Substituting and simplifying yields 

  
( ) ( ) ( )

( )( )( )

2 1
21 1 1

1 1 1 0

e e e e

e

N N N N

N N

 − − − δ + δ µ δ µ −δ + δ µ − δµ 
< − − −δ µ

+

+ δ −δ <
   (A30) 

  

 

PROOF OF COROLLARY B: The limiting case is immediate from (31) and 1S
e ny ≤  from (A16).  Also 

from (31), α  is increasing in N  iff S
ey  is decreasing. As N  increases, 0S

ey → , and the highest 

order term in N  of S
eN y∂

∂  is proportional to ( ) ( )( )2 1 1 0I IN − θ − δµ −δ −µ < .  Hence α  increases 

with N  for N  sufficiently large if 
( )1
1

I

I

−µ
θ < δ

−δµ
 (it can also be shown if this holds as an equality 

by checking the 1N − -order term).  Otherwise, the convergence is either decreasing or hump-

shaped.    

 



57 
 

PROOF OF PROPOSITION IV: From LEMMA 2, because 1I J eNµ + µ =  and, in equilibrium, 

(1 ) S
ji j ey y= +α , 

  

( )( )

( )

ˆ
ˆ ,

1
1 1

1 1

1

j

S
i I ji J e I J e j eij

i I j I

S S
J e I J e e I J e e j

A B

Ny N N y

N yN N N N y

∈ ∈/

α
 
− = −

δ δ
≡ µ − µ µ µ α

−δ −δ

δ δ
= µ µ µ α

δ

+ 
 

− −
− −δ

∑

 

 (A31) 

and symmetrically for jα . Thus,  

  
( )

0,
1 1 1

i j i j i j

i j e J I

A

A
B

N

A B

A N
B

α α −

=

α −α

− δ −

− = +

=
− −
µ

>
δ−

 (A32) 

where the final inequality follows because J IN N>  (by assumption) and 1B <  as we will show 

below.  Next note that 

  
( )

0,
1

i j i j i j

i jA

A B

B

A

A

α ++ = −

= >
+

α + α α

+  (A33) 

where the last inequality follows because iA  and jA  are both positive (which follows from 

1/S
ey N≤  from (A16)), and 1B > −  as we show next.  Together, (A32) and (A33) establish 

i jα > α , and the ranking of expected profits follows by the logic of (33). 

Finally, we need to confirm 1B < .  From (A16),  

  ( ) *1 1

1 (1 )
1

e
n

S e
e e e iiny y

N
 δµ

µ = µ θ θ −
−

δ 
+

− µ
, (A34) 

which is minimized by setting * 1iiyθ = =  and 1/e Nµ = ; hence, 

  ( )
( )
11 1

1 1
S

e e
N

N N N N N
y

N
− −δ δ  µ ≥ − =  − −  

. (A35) 
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Therefore 

  1
1 ( 1)

S I J
I J e e

NB
N

NyN N
N

δ
= µ ≥ −

−δ −
>δ − . (A36) 

Next note that (A34) is maximized by setting *0, 1,iiyθ = =  and 1/e Nµ = ; hence, 2
S

e ey
N
δ

µ ≤ . 

Therefore, 

  
22 1

4
2 1

1 1 1
S I J

I J e e
NB N N

N
Ny δδ δ

= µ ≤ < <
−δ −δ − δ

, (A37) 

where the last inequality holds for 2( 2 1) 0.828δ < − ≈ .   

 

PROOF OF PROPOSITION V: We can write *y  as  

  ( )* * 1 11ii n ny y  + θ − θ = ′I 11 , (A38) 

and because 1−∆ = ⇒ ∆ =1 1 1 1 , we have  

  ( ) ( )( )*11 * * 11 11 11 11 1S
i nj i nijii i ijn nij

y y y y− − − ∆ = θθ∆ ′ ∆ = + θ − = + θ −  . (A39) 

Next note that [ ]1
1

∆ ≡ δµ
δ

−
−

I  implies 

  ( ) ( )1 1 2 21 1− −  ∆ = −δ δµ∆ = −δ δµ + δ µ +… + +I I , (A40) 

and therefore 1−∆  is a symmetric stochastic matrix and, if 0δ > , strictly positive  (since µ  is 

irreducible). Equations (A39) and (A40) thus imply * 1[ ,1]S
ij ii ny y ∈ − θ , and S S

ii ijy y>  follows from 

1 1
ii ij
− −∆ > ∆ , which we establish below.  

For the overall peer sensitivity, ( )1 * * 111 n
n
n

S
iiy y y +−  = + θ∆ − θ= 1 1 1  implies 
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( )

( )
( )

( )

1

11 * 1

1

1

1

11

1(1 1 1
1

1 1
1

1)i

S S s
ij ij nS i

i S S
ii ii i

n
nj j

iini

iin

n

n

y

y

y y
y y

−∈

−−

−

++ θ − θ
= − = − =φ ≡

∆ θ∆

θ
θ ∆

−
+ θ −

−
−

+ − θ
=

∑ ∑

 (A41) 

Thus the behavior of S
iφ  is determined by i

ii
−∆ .  Specifically,  S

i n−θ < φ <  is equivalent to 

11 1ii N−> ∆ > .  Clearly 1 1ii
−∆ <  if 0δ >  (since from above, 1−∆  is stochastic and strictly positive).  

 To bound 1
ii
−∆  from below, we show next that the diagonal elements of 1−∆  are larger than 

the off-diagonal elements.  Suppose instead that there exists ĵ i≠  such that 1 1
ˆ max j ijij
− −∆ = ∆ . But 

then ( )1 1 1 1
ˆ ˆˆ

maxik k ikkj ijkij

− − − −δ ∆ µ δ ∆ µ ≤ δ ∆ ∆= <∑ , contradicting ( )1 11 I− −∆ δ += − δ∆ µ . Hence 

1 1m 1axii j ij N− −∆ = ∆ > . 

 In the limit when 1δ = , (A40) implies 1 1 1t− − −∆ == µ∆ µ ∆ .  Because µ  is ergodic and 

doubly stochastic, 1/t
ij Nµ →  as t →∞ , and therefore 1 1ij N−∆ → .  Thus, * (1 ) /S

ij iiy y N→ −θ . 

 Finally, from (A40), 

  

( ) ( )
( ) ( )

[ ]

( )

( )

( )
1 1

1 1 1 1

1 1

1 1 1 1 1

from m
1

1

fro
1

1 1
1

1

1
(1 )

II
− −= +−

∂ − − − −∂ ∂
∂δ ∂δ ∂δ

− −

− − − − −

∆ −δ δµ∆∆≡ δµ
−δ

 ∆ = −δ δµ∆ = − µ∆ δµ ∆ 

δµ µ∆

−
∆ ∆

+ − +

= − − −

  = − − −  − 
= ∆ ∆ ∆

δ δ δ − δ

I I

I I

I


 (A42) 

Because 1 1 1max minii j ij j ij
− − −= ∆ ∆>∆  for (0,1)δ∈ , we have 

  

( ) ( )
( )

21 1 1 1 1

1 1 1

1 1 1

max

0

ii ijii

ii j ij ij

ii

j

i

j

i

− − − − −

− −

=

−

− −

∆ ∆ ∆ = ∆ ∆

> ∆ ∆ ∆

− −

−

= −∆ ∆ =

∑
∑


 (A43) 

and thus 1 0ii
−∂

∂δ ∆ < .   
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PROOF OF COROLLARY C: From (A40), ( )1 11− −∆ − δ += δµ∆I  implies 1 1 ,1ii max
−  ∆ ∈ −δ −δ + δ µ 

.  Then from (38),  

  
( ) 1 11

1 11 1
11 n

S
i

iin
−

θ θ
φ

− −
= − −

−+
→

δθ ∆ θ−
,   (A44) 

and the result follows.  

 

PROOF OF COROLLARY D: From (32), 
( ) ( ) *

11 1
1

eS
e ii

e

n

N
yy

δµ θ θ δ
=

δ + δµ

− − −

−
 which is increasing in eµ . 

  Also, (1 )M M S
e ey y= + α , and Mα  is increasing in eµ  from PROPOSITION III.   

 

PROOF OF PROPOSITION VI:  Let 1I In N= − . With uniform internal and external weights, the 

symmetric matrix µ  can be diagonalized with three distinct eigenvalues: 

  

multiplicity 1 multiplicity 

1{ , , {1 , / }} ,

−

= µ − µ µ = −µ−
 

N N
IN NI I

n

a b I I e t I Ie e e N n . 

It is straightforward to show that 1−∆  has the same structure with eigenvalues 

  1 11 , ,
1 1

 − −
= = 

δ δ
δ δ − − a be e

a b , 

and thus has corresponding external, internal, and diagonal elements: 

  1 1− −
∆ =e

a
N

, 1 1− − −
∆ = ∆ +t e

I

a b
N

, 1 1− −∆ = ∆ +ii t b . (A45) 

Equilibrium contracts are given by ( ) ( ) 1 *1 1 −= + α = +α ∆M S
iiy y y , with external, internal, and 

own exposures 

  ( ) 11 1
* 1 −= θ ∆ − θ+
S
x

xn n
ii

y
y

, for { , , }x e t ii∈ .  (A46) 
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Note that ( ) ( )/ / 0a b I I e I I I I I e I t eNe e N n Nn= µ − µ +µ µ µ− = − =µ µ ≥− .  Therefore,  a b≥  and 

hence 1 1
t e
− −∆ ≥ ∆ .  Then from (A46), S S

t ey y≥  and this inequality is strict unless t eµ = µ  or 0δ = .  

The result in (44) then follows from ( ) ( )1 S S
Team I t eY N y y= +α − .  Similar logic implies 0OwnY > . 

Because ( )
( )

1 11
1 1

− δ δµ
∆

−−
= = =

− µ−δ δ + δ
a e

e
a eN

e
e N

a
N

, we have 

  
( ) ( ) *

11 1
1

δµ θ θ δ

δ

− −

δ

−

−
=

+ µ
eS

e i
n

i
e

y y
N

 , 

which is increasing in µe . Because the rat-race factor α  is also increasing in µe  from 

PROPOSITION III, M
ey  is also increasing in µe .   

Note that  

 ( )
( )

( )
( )

1
2 2

1 11 1 1 1 11
1 1

−∂
∂

− −       
∆ = − ′ + − ′ = − ′ + ′       

− −       e

I
ii a b

I I I Ia b

na b e e
N N N N N Ne eµ

δ δ δ δ

δ δ
, 

and because 1≤ ≤b ae e ,  ′ = −ae N , and ( ) /′ = −b I Ie N N n ,  

  ( )
( ) ( )

1
2 2

1 11 1 0
1 1

−∂
∂µ

  
 ∆ = δ − δ − − ≤  − δ − δ  

e ii
I b a

N
N e e

, 

with equality if and only if 1/µ =e n .  Hence (38) implies φi  is increasing in µe . 

When 0µ =e , then 1µ = = =I ae a  and so 1 0−∆ =e  and 1= − θe ny . Because 0α =  and 

( )
( )

( )
( )

1

1

1
11

1 1
1−

δδ− δ
∆ =

δ δ

+−
= = =

− ++ δ
I

I

b
t

I I b

n

InIN
eb

e nNN
, the optimal contract has team weights   

  * δ θ
= =  δ 

−
+

In
M S n
t t ii

I

y y y
n

.   

 
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PROOF OF PROPOSITION VII: Let ( , )d i j  be the distance between i  and j  on the circle. Then we 

can check that  

  
( , ) ( , )

1 1
1 1

d i j N d i j

ij N

z z
z

−
−  − +
=  −δ 

δ
+ 

∆   where 2

1 1 1 (0,1)z ∈
δ

−=
δ

− . (A47) 

Therefore, 1 0−∆ >ij  is decreasing in ( , )d i j , and thus  

 ( )( ) ( )1 * 1 * * * 1 *1 1 1 11 1S
ij ik ij ik ii ii iik jn n n nk ij ik iy y y y y y−

=
− −∆ ∆ θ θ= = − + + = − + ∆ +θ θ∑ ∑ 1  

is decreasing in ( , )d i j  and exceeds the RPE benchmark *1
in iy− θ .  Note also that 0S

ijy >  iff  

  1
ij n
−

θ
>

θ
∆

+
, 

which holds for sufficiently large n  since 1 ( , )1 0
1

d i j
ij z− − δ

∆ → >
+ δ

 as n →∞ . Moreover, if we 

define 0
Nd  as the maximum distance for which the wage sensitivity is positive, then 0

Nd  grows at 

rate ln( )N . 

For the total sensitivity, using (38) we have ( ) 111 1

1 11 1
1i

iiiin n
−−

− −
= − −

+ −
θ θ

φ →
∆θ ∆ θ

.  Then since 

  1 1 1 1
1 1 1

N

ii N

z
z

− δ δ
∆

δ
 − + −

=  →+  δ +−
 as N →∞ , 

we have 

  lim 0iN→∞
φ >  iff  11

1 δ
−

−
δ

<
+

θ . (A48) 

 

 

PROOF OF LEMMA 3:  Note first that [ ] [ ]1 1 ˆ
1 1

′∆ = ′ − δµ = ′ − δµ
−δ −δ

1I1 1 ; therefore µ̂ = ′1  if and 

only if ′∆ = ′1 1 . Next, 1−′∆ = ′⇔ ′∆ = ′1 1 1 1 , and so µ̂ = ′1  if and only if ω = ′1 . Moreover, 
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because 1 N−ω = ′∆ = ′ =11 1 1 1 , so that the average iω  equals 1. Finally, because v w= ∆ , the total 

wage bill to provide v  is equal to 1w v v−′ = ′∆ = ω1 1 .    

 

PROOF OF PROPOSITION VIII: Recall from (A5) that the principal maximizes 

  1[ ] [ ] (( ) )i i i i ii i
E q w E q w E q C E Cq−   − = ′ − = ′ − ′∆ β = −ω β   ∑ ∑1 1 1 , (A49) 

from which the optimal effort level follows. By LEMMA 3,  µ̂ ≠ ′1  implies ω ≠ ′1 , and hence by 

Jensen’s inequality, 11 1iiN
−ω >∑ .  The principal’s total expected payoff is  

  ( ) ( )0
1 1
2 2

* 1 * *
0 0 0( ) −− + ω > − + = π∑i j i ij

N aNaq c q c N ,  

which improves upon the RPE payoff.    

 

PROOF OF PROPOSITION IX: In this setting, we can represent ∆  in block format as 

, ,

,0

N J J N J N J

J J N J

− − −

− 
∆ =  ∆ ∆ 

I
 with 

  
,

1
1N J J N J Jn− −

δ
δ

∆
−

= − ′1 1 , and 
( ),

1

,
1
1

1
1N J N J

n
N J JNJ J NN n− − −− − −∆

δ+ δ
= −

−
′

− δδ
1 1I . 

Computing the inverse yields  
, ,

,1
1 1

0

N J J N J N J

J J N J

− − −

−−
− −

 
∆ =  ∆ ∆ 

I
 with 

  
( ),

1 1
1 1 /N J J N J Jn J n− −

− δ ′
−

∆
− δ

= 1 1 , and   

  
( )

( )
( )( ),

1
,1 1

11
/

1
1 11 1N J N J N J N JN J N J

n nn J n− −

−
− − −−

− δ
∆

δ
= +

+ δ +
−δ ′

− −δ δ
1I 1  . 

Finally, by direct calculation, the effective cost for each agent type is 

 ( )
( ) ( )

1
1

1 1j

n J n
n J n J

+ − δ + δ
ω = + =

−δ + δ − δ + δ
 and 
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 ( )
( )

( ) ( )
1 1 1

1 1 1 1 
(1 ) )

1
1 1 1(1m j j

n n n

n J n
n J n J

−δ
+ω

+ − δ −δ −δ − δ
=

+
= = ω < ω

−δ + δ −δ + δ+ δ δ + δ
. 

Letting 
1

1
1

1+ δ
ψ = >

−δ
n , from PROPOSITION VIII we have 

1

1

A
m m
A
j j

a
a

−

−

ω
= ≡ ψ
ω

, and 

 

( )( ) ( )( )
( )

( ) ( )

( )

1

1

1

1 1 1

1

1 1 1

1

1

1 1 .

1

1

2

− −

− − − −

−

ω = ω + − ω = ω + −

 

ψ

 − δ + δ
ψ + δ 

 ψ + −

=

ψ ψ ψ 
 

ψ +ψ

+ −  
  

 = + − 
 
 = + −


− 


∑ j j m jj
J N J J N J

N N N
J J
N N

J

n

N

J

N
J

N

n

J
N

J

 

    

 

PROOF OF LEMMA 4: Following the proof of LEMMA 2, holding the contracts and actions of all 

other agents ij J N∈ =  fixed,  

 

[ ] [ ] ( ) [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

[ ]

1 ( )

1 ( )
1

1 1 11 ( )
1 1 1

1
1

i i

i i

i i

i

i i ii iJ Ji i iJ JJ J

iJ Ji i iJ JJ J
ii

iJ Ji iJ JJ J
ii ii ii

iJ Ji
ii

E q E q y E y E

E q y E y E

y CE q y E

w C q q

y E q

C q q

q

−  − ∆ β ∆ ∆ 
 − δ

 β ∆ ∆   − δµ 
      − δ − δ − δ

= + ∆ β + ∆       − δµ −δµ −

= −

δµ  

=

  
 δ

= − µ

−



−

−

−

δµ 

− − −

[ ]1 1( )
1 1 iJ JJ J

ii i
i

i

qyC E
   − δ − δ

− β + ∆   − δµ −δµ   

 

In addition, by changing [ ]iE q , the principal also changes the expected wage to agent î  by îiy .  

Therefore, letting ˆ
iI I= , the principal will choose iβ  to maximize 

 [ ] ( ) [ ]ˆ
1 11 ( ) 1 ( )

1 1
1

1
R

iJ Ji iIi
ii ii i

i
i

i i iy Cy E q CE q
     δ − δ − δ  − µ ′ − β = +α − β       − δµ −δµ −δ 

−
µ   

, 

for  
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  ˆ
ˆ

11
1

1
1

i

R ii
i ij ji ii

j i i Iii

y y
= ∈/

   −   
− δµ δ

+α ≡ − µ
− − δ δµ 

∑ ∑ , (A50) 

which is solved by *(1 )R R
i i iyβ = +α .    

 

PROOF OF PROPOSITION X: Using (51) with symmetric Rα , 
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where the final step follows because 
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To show that Rα > α , note from (A15) and (A16) that 
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Therefore, 
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and the inequality is strict as long as 1>IN  so that 0µ >I . The formula for Rα  with equal weights 

on all agents follows from (25). 

Finally, for the case 0δ = , note from (32) that *1S
e iiny y= − θ  and so for 1IN > , 
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    

 

PROOF OF COROLLARY E: The rat-race results follow from PROPOSITION III.  The effects on ey  

follow because, from (A16),  
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δµ θ θ δ
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which is monotone in both δ  and µe .  The result on peer sensitivity follows from PROPOSITION V 

and the results for eµ  follow from the characterization in the proof of PROPOSITION VI, and the 

fact that from (A45) and (A46), 

  ( ) ( )sgn sgn 0∂
∂µ − ′ − ′= <

e

S S
t e bayy  . 
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Finally, for the wage correlation and dispersion, let qC  be the ×N N  covariance matrix for the 

output q .  Normalize 2 1σ = . Then  

 (1 )= ρ ′ + −ρqC 11 I . 

Consider first the single principal case.  Because 1 *−= = ∆w yq y q , and because both 1−∆  and *y  

are symmetric, the covariance matrix for wages is given by 

 1 * * 1− −∆= = ∆w q qyy yyC C C . 

Because ( )* * 1 11= − θ ′ + + θii n ny y 11 I , we have 

 ( ) ( )( ) ( )2* 1 11 1 11 1 1w ii n n ny − − + θ − ρ − θ ′ + + θ ∆ ∆ =C 11 . 

Because 1−∆ =1 1 , then wC 1  does not depend on δ .  As a result, ( , )iCov w w  and ( )Var w  don’t 

depend on δ .  So the correlation of each wage with the average wage only depends on the variance 

of each wage.  Thus, it is sufficient to show that 1 1

ii

− − ∆ ∆  , and hence the variance of each agent’s 

wage, declines with δ . 

Because µ  is symmetric, it can be diagonalized as U Uµµ = Λ ′  where µΛ  is the diagonal matrix 

of eigenvalues of µ , which we denote by ( )jµλ  for 1, ,j N= … .  Because µ  is stochastic, 

( ) 1jµλ ≤ .   

Finally, we have 
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The result therefore follows from 
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 2

1 ( ) 1 ( )
0

1 (1 )
j jµ µ

δ

− δλ − λ 
∂ = ≥ − δ − δ 

. 

In the case of multiple principals, wages are rescaled by the rat-race factor.  This rescaling will not 

change the correlation of individual wages with the average wage, nor the dispersion (variance) as 

a fraction of the expected wage.  

 

PROOF OF PROPOSITION XI:  Following the steps of the proof of LEMMA 2 up to (A12), but now 

retaining the terms that depend on Jq , we see that maximizing Iπ  is equivalent to maximizing  
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where  ( )( 1) 2 )(= µ + − −+e jj I t I eNy y N y N y .  Recall that /i iia k= β , and hence we can 

equivalently maximize 

  ( )( )1 ( )
i I ii i II j jjJ

Ck
∈ ∈

α β γ β+ − −β∑ ∑ , (A51) 

where ( ) ( )( )) 1
1 1

1 ( 1I I I I e e I I eyN NN N yδ δ
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−

δ
− − =  and 

1I IN yδ
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− δ
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y yc
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−δ µ∂
β ≡

∂ δ
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−
∑  and 

  ( ) ( )2
2 21

0 2( ) / (1 )ii i ijj ji jC c k  β ≡ + β λ −ρ+ β +ρ β σ
ψ ∑ ∑  . (A52) 

Taking the first-order condition of (A51) with respect to βii  we have: 

  21 ( ) (1 )∂β
∂  + = + + α β = β λσ −ρ β ρ β∑iiI i ii ii ijj

Ck k   (A53) 

Next, the first-order condition with respect to ˆβii  yields 
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Finally, the first-order condition with respect to ijy  implies 
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which is equivalent to 
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Summing (A55) and (A56), 
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Finally, from (A53), 
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and so, 

   ( ) ( )* * *1 1D
ii I ii ii I iiy y yβ < +α−α= + ν  (A59) 

Note that without public disclosure, 0∂β
∂ =jj

ijy , so that the last term in (A56) is zero.  Hence the 

solution is the same as with 0ν = , which matches the result of LEMMA 2.  Note also, in 

equilibrium, the sensitivities for each agent should be consistent with the contract parameters; that 

is β = ∆y : 
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 (A60) 

We thus have six linear equations we can solve to determine the six unknowns ( , )D Dyβ .      

 


