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1 Introduction
When selling a house, homeowners face a fundamental trade-off between setting a relatively

low list price to quickly sell the property at a lower price, or choosing a higher list price and

waiting longer to potentially receive a better offer. While a low list price may reduce uncertainty

and costs associated with the sales process, it also increases the risk of missing higher bids.

Research shows that sellers who set relatively high list prices tend to achieve both a higher

sales price and a longer time-on-the-market (Genesove and Mayer, 2001). This suggests that the

choice of list price is closely related to the seller’s time preference (Cohen et al., 2020).

In this paper, we show that seller behaviour can be characterised by a discount rate that can

be computed as a function of parameters estimated from data. Using data on list prices, sales

times, and sales prices, we calculate housing market discount rates. Because sales times are

on average about five months and rarely exceed three years, we interpret these as short-run

discount rates.

We start by setting up a parsimonious model of selling a house through bargaining between

the seller and one prospective buyer, referred to as a ‘buyers’ market’ (Zorn and Sackley, 1991).

In this model, the markup plays a key role, capturing the difference between the chosen list

price and the expected list price in the neighbourhood at the time of listing (Guren, 2018). In

conventional bargaining situations, buyers are unlikely to bid above the list price. We can

determine the implied discount rate by analysing the relationship between the elasticity of sales

prices and the markup, the elasticity of sales times and the markup, and the expected sales time.

It is important to note that the discount rate we identify is considered as a ‘gross’ discount rate

as it takes into account not only the pure rate of time preference, but also factors such as listing

costs and the seller’s aversion to risk and potential losses.

Next, we expand our analysis to include scenarios where bidding wars occur and homes sell

for prices above the listed price. Our data reveal that the frequency of bidding wars has been

increasing, with as many as 80% of all sales in the Netherlands in 2021 involving bidding wars.1

When multiple buyers compete for a property, this is referred to as a ‘seller’s market’ (Zorn and

Sackley, 1991). Our extension of the list price-setting theory aligns with previous research in

Albrecht et al. (2016) and Han and Strange (2016). We posit that the likelihood of a bidding

war is influenced by the chosen markup. A bidding war premium suggests that sellers may

benefit from setting a lower list price in order to spur competition and potentially earn higher

revenues. However, if a bidding war does not take place, the seller may receive a lower sales

1Han and Strange (2014) also document the increasing frequency of bidding wars and sales prices exceeding list
prices in North America.
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price. Our research demonstrates that in the presence of bidding wars, the discount rate can

still be determined using data on sales prices, time-on-the-market, and list prices.

We estimate the empirical parameters necessary to compute the gross discount rate using a

unique dataset on housing transactions, including withdrawals, occurring between 1985 and

2021 from the Netherlands. To account for the endogeneity of the markup (as it is correlated

with the unobserved quality of a home), we adopt a similar approach as previous research

Guren (2018).2 This includes controlling for a variety of time-varying housing attributes and

property fixed effects to capture observed and unobserved housing quality, as well as including

neighbourhood-by-quarter or street-by-quarter fixed effects to account for changes in unob-

served neighbourhood quality. Additionally, to further address concerns about endogeneity, we

use an instrument proposed by Guren (2018), which is the price appreciation in the neighbour-

hood since the seller has moved into the property. This is based on the idea that due to sellers’

aversion to absolute losses and fewer liquidity constraints, the list price will be set lower when

sellers have experienced more price growth (see Genesove and Mayer, 1997, 2001).

The paper presents the following findings. Our research shows that conventional bargaining

results in high discount rates ranging from 15% to 50%, which is consistent with previous

experimental studies that used hypothetical money rewards as a measure (see Frederick et al.,

2002). Additionally, we find that the gross discount rates in the presence of bidding wars

fall within the same range. These estimated short-term discount rates are significantly higher

compared to long-term discount rates based on housing market data (Giglio et al., 2015; Bracke

et al., 2018; Gautier and Van Vuuren, 2019; Koster and Pinchbeck, 2022). Additionally, there is

considerable heterogeneity in the implied gross discount rate through the choice of the markup.

For example, we find that sellers who have already moved before putting their property on the

market have considerably higher discount rates (nearly 8 percentage points) which highlights

the importance of seller ‘desperation’. Furthermore, we find that sellers with a bachelor’s

degree or higher have discount rates that are around 4 percentage points lower than those with

only primary education, although this effect becomes somewhat smaller when other household

characteristics are also considered.

How to interpret these discount rates? The findings of our study unequivocally suggest that

sellers tend to set list prices that are too low in order to quickly sell their properties, which results

in the undervaluation of future financial flows. The high implied discount rates we observe

may be attributed to several factors, including loss aversion (Genesove and Mayer, 2001),

2If not all relevant housing attributes are controlled for, a higher markup will be associated with a higher sales
price and a shorter sales time. Hence, the elasticities of sales times and prices with respect to the markup will be
biased downwards.
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liquidity constraints (Genesove and Mayer, 1997), and listing costs associated with inspections

(Guren, 2018; Ngai and Sheedy, 2020). Furthermore, we argue that the stress associated with the

unfamiliar and uncertain process of selling a property. in which a large share of one’s wealth is

at stake, is likely to strongly contribute to the high discount rates that are significantly higher

than market-based interest rates.

Related literature. Our paper contributes to several strands of literature. First, our paper

adds to a literature estimating (gross) discount rates in housing markets. The use of data on

housing transactions offers a unique advantage in identifying discount rates, as participation

rates are high (with more than 55% of properties in the Netherlands being owner-occupied) and

the high-stakes nature of the transaction means that individuals are likely to pay attention to

trade-offs between money and time. Previous research has found that long-run discount rates

in the housing market are between 2% and 5% (Do and Sirmans, 1994; Palmon and Smith, 1998;

Giglio et al., 2015; Bracke et al., 2018; Gautier and Van Vuuren, 2019; Koster and Pinchbeck,

2022). However, our paper differs in that it focuses on estimating short-run discount rates in

the housing market, rather than long-run rates.

Our paper draws on a second strand of literature concerning list price-setting and time prefer-

ences. The models used in this literature generally assume that the seller aims to maximize a

target function, typically the expected present value of the sales price, which is a product of the

expected discount factor and the expected price.3 Several studies assume values for discount

rates (see e.g. Arnold, 1999, who chooses a value between 11 and 25%). Others implicitly

estimate discount rates. Carrillo (2012), for example, develops an equilibrium search model

for the housing market, but allows for idiosyncratic variation in gross discount rates, which

are estimated to be between 10% and 33%.4 The study by Carrillo (2012) thus suggests that the

(idiosyncratic) discount rates relevant for home seller behaviour are considerably higher than

the long-term discount rates estimated using data on leaseholds (see Giglio et al., 2015; Bracke

et al., 2018). Similarly, Guren (2018) finds high implicit discount rates, assuming an annual rate

of 5% while estimating monthly search costs to be 2.1% of the housing value, equivalent to a

gross annual discount rate of approximately 30%. Additionally, the results of Genesove and

3An exception is the recent paper by Andersen et al. (2022) where the time-on-the-market does not play a role in
the seller’s utility function.

4Carrillo (2012) distinguishes between the median discount rate – which is fixed a priori – and ‘seller motivation’.
Together they form the individual-specific discount rate. To be more specific, he models the discount rate of the
sellers who are active on the market as a logistic transformation of a normally distributed random variable that
is estimated to have a mean of 8.58 and a standard deviation 1.125. For the median seller, this gives an annual
discount factor that equals 0.93. The logistic transformation changes the symmetric normal distribution into a highly
asymmetric distribution of discount factors that equals 0.89, on average. There is considerable variation in this
variable. In 20% of the cases, it is smaller than 0.84, implying a discount rate of about 20%, in 10% of the cases it is
smaller than 0.75, implying a discount rate of at least 33%.
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Mayer (1997) imply an annualized return of over 20%, even though they do not provide specific

numbers.5 In contrast to those papers, our paper makes time preferences explicit and at the

same time imposes relatively mild assumptions on seller’s behaviour. Our gross discount rates

include sellers’ motivation to sell and listing costs.

The third literature to which our paper contributes is that on bidding wars. We build on

previous research by Horowitz (1992), who first identified that some houses sold for prices

exceeding the list price, a phenomenon that cannot be explained by traditional theories (see

Chen and Rosenthal, 1996; Arnold, 1999; Carrillo, 2012). Han and Strange (2014) later observed

a significant increase in the frequency of sales prices exceeding list prices after 2000. They also

document that during the subsequent housing market downturn, the percentage of homes

sold above the list price did not return to its pre-peak levels. One possible explanation for this

is that real estate agents were more successful in creating situations where multiple buyers

could submit offers, even in a weaker market. The recent literature on bidding wars suggests

that the simultaneous presence of multiple bidders can drive up the sales price to exceed the

list price. This idea was formalized by Albrecht et al. (2016) in their housing market search

model, in which they proposed that when prospective buyers arrive at a house at the same

time, the sales process becomes a second-price auction in which the reservation prices of the

competing bidders provide relevant lower bounds for the price. Empirical studies, such as

Han and Strange (2016), have shown that in situations where two or more bidders are present,

the sales price typically exceeds the list price. We take a somewhat different approach by using a

stock-flow matching approach (see e.g. Coles and Muthoo, 1998) in which a house can be sold

immediately to searchers present in the market at the time the house is posted, or later through

conventional bargaining with newly arriving searchers. In this way, we address both buyers’

markets with conventional bargaining and sellers’ markets with bidding wars. Our theory

also considers the role of list prices in these different market situations, and how it affects the

optimal pricing strategy for sellers.

The paper unfolds as follows. Section 2 discusses the theoretical framework to derive the gross

discount rate derivation, followed by a discussion in Section 3 on the data. Section 4 presents

the econometric framework to identify the effects of interest and Section 5 shows the results.

Section 6 concludes.

5They do not provide numbers but relate that for low equity sellers 10 weeks extra on the market yields a 4%
higher price, which implies an annualised return of more than 20% (Genesove and Mayer, 1997, p. 267).
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2 Theoretical framework

2.1 Buyers’ markets: conventional bargaining

In this section, we will develop a model describing the choice of list prices, which is in line with

those used in the existing literature. We will not construct an explicit model of the bargaining

process but use a ‘reduced-form’ specification that states that the expected sales price is a

function of the list price. At the core of our model is the expected present value of the sales price,

for which we use the conventional exponential discounting formula with a constant discount

rate. As indicated above, this parameter characterises optimal list price-setting behaviour and

our estimation results allow us to recover it for individual home sellers.

The model we propose is standard in the literature on list pricing and it can be embedded in a

more general framework of intertemporal utility maximisation. We consider a homeowner who

attempts to maximise the expected discounted revenues of selling her property through bilateral

bargaining, which is specified as the integral over time of instantaneous utilities discounted

by the household’s rate of time preference. The intertemporal budget constraint specifies that

the difference between the integrals over time of income and expenditure discounted by the

interest rate must be equal to the household’s wealth. Hence:

R =

∫ ∞
0

f(t, P `)e−rtP (P `)dt. (1)

In this equation f(t, P `) is the density function of time t at which the house is sold and P =

P (P `) the sales price. r is the seller’s rate of time preference, or rate of discount. The expected

sales time T is:

T (P `) =

∫ ∞
0

f(t, P `)tdt, (2)

which is an increasing function of the list price.

A useful context for this set-up are models of intertemporal utility-maximizing behaviour. In

Appendix A.1 we write down a simple model of lifetime utility-maximizing behaviour subject

to an intertemporal budget constraint. In this model, the expected contribution of selling the

house to wealth is indicated by our target function (1).

The density function f(·) and the expected sales price P may depend on the characteristics of

the house and on the circumstances prevailing at the local housing market at the time of the sale,

while the discount rate r may differ among sellers. For notational simplicity this heterogeneity

is not made explicit in the equations, but it will be taken into account in the empirical work

reported below.
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In line with the extant literature, in (1) we assume that conditional on the list price, the expected

sales price is independent of the time at which the sale occurs.6 We can therefore write the

expected present value of the revenues as the product of the expected sales price and the

expected value of the discount factor:

R =

∫ ∞
0

f(t, P `)e−rtdtP (P `). (3)

At least since Horowitz (1992), the list price has been regarded as a signal of the seller’s

reservation price. It is, therefore, natural to assume that a higher list price implies that only the

searchers with the strongest interest in the house will pay a visit. This increases expected sale

times, while at the same time increases the expected sales price. We, therefore, assume the sales

time as well as the sales price to be increasing in the list price.

A constant arrival rate of bidders considerably simplifies the analysis and implies an exponential

distribution of the sales time t:7

f(t) = θe−θt. (4)

The arrival rate θ is a decreasing function of the list price. Substitution and integration gives:

R =
θ(P `)

θ(P `) + r
P,

=
1

1 + r/θ(P `)
P,

=
1

1 + rT
P,

(5)

where T = T (P `) denotes the expected sales time, which is given by 1/θ(P `).8

The first-order condition for optimal list price-setting (∂ logR/∂ logP ` = 0) is:9

∂ logP

∂ logP `
− rT

1 + rT

∂ log T

∂ logP `
= 0. (6)

6Also in line with the literature is the absence of costs incurred by the seller in selling the house. It is easy to
check that subtraction of such (discounted) costs from the expected returns will not affect the implied discount rate
unless they depend on the list price, which appears unlikely. Indeed, for a seller, search costs are small as almost all
houses on sale are advertised on the website Funda.nl, which is not expensive. Other than providing clear pictures
and a promotional text, there is not much sellers can do to attract more prospective buyers. In other words, while
search costs are high for prospective buyers, they are likely negligible for sellers (see Koster and Van Ommeren,
2020).

7We consider that elapsed time-on-the-market may have a direct impact on sales prices in Appendix C.5.
8We obtain exactly the same expression if we instead adopt a discrete time framework and assume a given

probability that a potential buyer visits the house in each period as e.g. in Horowitz (1992).
9Note that ∂ logR/∂ logP ` = 0 and ∂ logR/∂P ` = 0 are equivalent. To show this, it suffices to observe that

∂ logP ` = (1/P `)∂P `. Substitution then gives P `∂ logR/∂P ` = 0. This is true if (i) either ∂ logR/∂P ` = 0, or (ii)
P ` = 0. However, the latter possibility is excluded by the fact that we use the log of P `.
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In Appendix A.3 it is shown that the second-order condition is satisfied when the elasticity of

the sales time with respect to the list price exceeds 1 + rT , which holds for empirically relevant

values.

If the elasticities of the sales price and the sales time with respect to the list price are both

positive, as is expected, we need a positive value of the discount rate to validate this condition.

Note that since rT/(1 + rT ) is between 0 and 1, the elasticity of the sales time with respect to the

list price must be larger than the elasticity of the sales price. Optimal list price-setting implies

that the discount rate can be computed as:

r =
εP
P `

T
(
εT
P ` − εPP `

) . (7)

In this equation we use the symbol ε to denote the elasticities of price and time on the market

(indicated by a superscript) with respect to the list price (indicated by a subscript). An attractive

feature of this expression is that the elasticities on the right-hand side can be estimated, while

the expected sales time can be obtained from the data. This makes the equation suitable for

empirically investigating the discount rates used by home sellers. With sales times considerably

smaller than one year, equation (7) then indicates that high elasticities of the sales time with

respect to the list prices are necessary to make seller behaviour compatible with a discount rate

of the same order of magnitude as, say, the mortgage interest rate.

Our estimation of the discount rate does not intend to capture pure time preference. Our idea is

that the discount rate that we estimate provides a summary measure of the strategy used by the

seller. Time preference is one of the considerations of this seller, but there are others, which is

the reason why we refer to the rate in (7) as a ‘gross’ discount rate. For instance, Genesove and

Mayer (2001) show that many sellers are loss averse and that this implies posting a high list

price and accepting the implied longer sales time in order to realise at least the price they paid

themselves. Hence the desire to realise at least their reference price affects the trade-off such

sellers are willing to make between the sales time and the revenues, and this is reflected in the

discount rate we find. We could, alternatively, have assumed a discount rate of, say, 5% and

interpret any difference with the rate we measure as ‘seller motivation’ as Carrillo (2012) and

others have done. However, we prefer to avoid making a priori assumptions of the value of

the rate of time preference and start by measuring the gross discount rate, while looking for

plausible interpretations afterwards.

The advantage of our approach is that we characterise seller behaviour with a single parameter.

The drawback is that our approach does not immediately reveal what is behind this parameter.
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In this sense, we adopt a partial equilibrium approach rather than, for instance, the structural

model of reference-dependence in Andersen et al. (2022). Their model allows them to investigate

this aspect of seller behaviour in great detail, but they do not pay much attention to the longer

time on the market that may be the result of reference dependence.

In keeping with the existing literature on discount rates, we first focus on obtaining an estimate

of the average discount rate. However, the discount rate is based on the expected sales time

T . To the extent the expectations on T differ between home sellers due to higher or lower

markups, this may lead to heterogeneity in the implied discount rate. We will therefore provide

an heterogeneity analysis where we relate demographic characteristics to the choice of markup,

which in turn affects the implied discount rates.

List prices and markups. So far, the choice variable of the seller is the list price P `. However,

in the extant literature, one has primarily focused on ‘markups’, which are deviations of list

prices from the prevailing list prices in the neighbourhood of otherwise identical properties.

Let us therefore decompose the list price into an expected sales price E[logP `] and a markup.

Following Guren (2018), we then define the markup as the percent deviation from the expected

list price: m = logP ` − E[logP `].

The seller observes the expected sales price from recent listings on the local housing market

and takes it as given, while the markup is the true choice variable. The first-order condition is

∂R/∂m = 0, which is equivalent to:10

∂ logP

∂m
− rT

1 + rT

∂ log T

∂m
= 0. (8)

Optimal list price-setting then implies that the discount rate can be computed as:

r =
εPm

T
(
εTm − εPm

) . (9)

Note that this equation is equivalent to (7). This is the formula we will use in the empirical

work. We have slightly abused the notation for elasticities by denoting ∂ logP/∂m as εPm and

similar for the elasticity of the sales time. Because using the markup or the list price as the

choice variable is equivalent, in what follows we focus on the markup.

10To verify this, note first that maximization of R with respect to m is equivalent to maximization of logR with
respect to m since ∂ logR/∂m = (1/R)(∂R/∂m). Hence we can write the first-order condition as ∂ logP/∂m −
(rT/(1 + rT )(∂ log T/∂m = 0). Second, ∂ logP/∂m = (∂ logP/∂P `)(∂P `/∂m) which is equal to (∂ logP/∂ logP `)
since ∂P `/∂m = P `, while a similar derivation holds for ∂ log T/∂m.
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2.2 Seller’s markets: bidding wars

As discussed above, in recent years the sales prices of many houses exceeded the list price (Leib

et al., 2020). This particularly occurs when the housing market is booming, but there is also an

underlying upward trend, irrespective of price fluctuations. We include this feature into the

model by assuming that there is a probability π that a house will be sold in a ‘bidding war’;

otherwise it will be sold via conventional bargaining. The probability of a bidding war depends

on the list price: we assume that a higher list price decreases the probability of a bidding war,

whereas the sales price when a bidding war occurs is increasing in the list price.

Albrecht et al. (2016) assume that bidders arrive at houses for sale with a constant arrival rate,

while there is also a constant probability that two or more bidders arrive. This means that the

probability of a bidding war is independent of the elapsed time-on-the-market. Our data indeed

indicate that bidding wars usually occur shortly after a house is posted for sale. To capture this

empirical fact, we adopt a stock-flow matching framework (see e.g. Coles and Muthoo 1998;

Taylor 1999 for the labour market, and Smith et al. 2022 for the housing market), in which a

house for sale can be either matched immediately with searchers already present in the market

or with newly arriving searchers later on.11 As in the previous subsection, we will not construct

a fully-fledged bargaining model but concentrate on reduced-form equations that can be linked

to the empirical work reported later.

Formally, we assume that a house is sold either in a bidding war occurring immediately after

it has been posted or through bilateral bargaining afterwards. For bilateral bargaining, the

model of the previous subsection is still valid. Bidding wars occur with a probability π that is

decreasing in the list price P `, so π = π(P `). The expected revenues are, therefore:

RB = πPB + (1− π)R. (10)

In this equation PB = PB(P `) is the expected sales price if a bidding war occurs when the list

price is P `, and R = R(P `) the expected revenues when the house is sold through conventional

bargaining as in (5).

11Our setup is similar to Coles and Muthoo (1998), who study a stock-flow market equilibrium in which sales
either take place immediately via competitive bidding – if searchers in the existing pool are interested – or after
some time via bilateral bargaining with a searcher who arrives later. The authors show, among other things, that
the option to sell the house later through conventional bargaining imposes a lower bound on the price the seller is
willing to accept in the initial auction. However, Coles and Muthoo (1998) do not consider the role of the list price,
which is key in the current paper.
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Optimal list price-setting requires:

∂π

∂m

[
PB −R

]
+ π

(
∂PB

∂m
− ∂R

∂m

)
+
∂R

∂m
= 0, (11)

The second-order condition for the optimal list price is discussed in Appendix A.4. The

expression in square brackets in (11) is the bidding war premium. Since the seller of a house

always has the option to wait and sell the house through conventional bargaining, the bidding

war premium must be non-negative. The expression in parentheses is the first derivative of the

bidding war premium. Its sign is determined by the relative impact of a higher list price on

the revenues from selling in a bidding war versus selling in conventional bilateral bargaining.

In both cases the reservation prices of bidders that are attracted to the house are important. It

seems reasonable to consider these reservation prices as random draws from a given distribution

that is equal for all searchers. Bidding wars have some similarity with auctions and the sales

price may be the second-highest reservation price of the competing bidders, provided it exceeds

or is not far below the list price.

To find the discount rate implied by the first-order condition in the presence of bidding wars,

we rewrite (11):

[ ∂π
∂m

PB + π
∂PB

∂m

]
︸ ︷︷ ︸

X

+
1

1 + rT

[
− ∂π

∂m
P + (1− π)

∂P

∂m

]
︸ ︷︷ ︸

Y

−

rT

(1 + rT )2

[
(1− π)P

∂ log T

∂m

]
︸ ︷︷ ︸

Z

= 0,

(12)

This is a quadratic equation in r that can be solved as:

r1 = −
2X + Y − Z +

√
(Y − Z)2 − 4XZ

2XT

r2 = −
2X + Y − Z −

√
(Y − Z)2 − 4XZ

2XT

(13)

where X , Y and Z are the first, second and third expressions in square brackets in (12) respec-

tively. It is easy to verify that Y and Z are both positive. The first derivative of the left-hand

side of (12) with respect to r is negative if 0 < rT < 1. Since the expected sales time is smaller

than 1 year, the implication is that there can be only one interest rate between 0 and 100% that is

consistent with the first-order condition. We therefore can disregard r2 because it always leads

to a negative implied discount rate r.
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3 Data and descriptives

3.1 Data

3.1.1 Listings data.

Our analysis is based upon several datasets. The dataset that is central to our analysis is from

the NVM (Dutch Association of Real Estate Agents) and contains listings of properties, including

withdrawals. It contains about 75% of all housing transactions for 35 years; between 1985 and

2021. For 4, 188, 576 transactions, we know the sales price (if it has been sold), the first list price,

the final list price, the time-on-the-market, the exact location, and a wide range of housing

attributes such as size (in m2), house type, and construction year. We exclude transactions with

sales prices that are above e10 million or below e10, 000 or a m2 price below e250 or above

e5, 000. Furthermore, we exclude homes smaller than 25m2 or larger than 750m2. We also drop

a few properties that have a negative time-on-the-market and exclude observations for which

the sales to list price ratio is below 0.5 or above 2. These selections comprise less than 5% of our

data and do not impact our results.

Interestingly and uniquely, our dataset also provides information on retracted listings, which

are listings that do not lead to a sale. This applies to 11% of the listings so this is a non-negligible

share. To calculate the time-on-the-market we merge each withdrawal to subsequent sale of the

property. We then add the time-on-the-market of the different retracted listings, and take the

list price of the first retraction.12

In our analysis, we focus on repeated sales, so properties that are sold at least twice. It appears

that 28% of the transactions in the full sample refer to properties that are sold at least twice.

This share is somewhat low because we only focus on properties that do not change type, and

have differences in size over the years that are less than 20% of the mean size of the property.

Further, one key variable of interest is whether a bidding war has occurred. Following Han and

Strange (2014), we then define a dummy to be equal to one when the sales price exceeds the

final list price.

We will include neighbourhood-by-quarter fixed effects in most specifications. Neighbour-

hoods are defined by Statistics Netherlands and are small; on average the number of

households is 822, while the median is just 290 households.

12One may also calculate the time-on-the-market as the elapsed time between the first listing and the eventual
sale. Although we think this will overestimate time-on-the-market, we will show robustness of our results to this
alternative way of calculating time-on-the-market.
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3.1.2 Demographic data.

We enrich the listings data by obtaining data from Statistics Netherlands, which entails

the universe of people and households in the Netherlands between 1995 and 2021. Hence, our

regressions will be based on matched listings from 1995-2021. Based on address identifiers from

GBA-Adresobject, we obtain information on sellers’ characteristics from GBA-persoon and

GBA-huishoudens, such as household size and type, the average age of adults, the share

of people that are non-western immigrants, and the average age of adults in the household.

Furthermore, for about 60% of the data, we obtain information on the highest acquired level of

education from Hoogsteopltab.

More importantly, for the instrument, to be introduced later, we calculate price appreciation

since the seller moved into the property until it is listed. To calculate how long someone lived

in the property, we obtain the date of entry from GBA-Adresobject. We further use the date

of moving out to determine whether the household moved before it listed the property on the

market.

3.1.3 Land registry.

For some ancillary analyses, we match housing transactions from the NVM to the universe of

housing transactions in the Kadaster, i.e. the Land Registry. The Land Registry data are

inferior to the NVM data because the former data provide no information on list prices and sales

time, but the data do provide information on the seller type. More specifically, for a subset

of the transactions we know whether the seller was a owner-occupier, a private landlord, or

housing corporation.

3.2 Price appreciation and markup

For our instrument, to be discussed later, we use the full span of the data (1985-2021) to calculate

price appreciation in each neighbourhood, following Guren (2018). More specifically, we

calculate the predicted sales price using data on properties i located in neighbourhood n in

month t, by regressing logPijt = x′ijtβ + µi + µjt + εijt, where xijt are time-varying housing

characteristics, µi are property fixed effects, µjt are neighbourhood-by-year fixed effects and

εijt is a random error. Our interest is in the estimate of µjt, which is the relative price level in a

neighbourhood in year t. We calculate price appreciation as

zijt = µjt − µjt̃, (14)

where t̃ denotes the month of the previous sale.13

13To achieve cleaner identification, Guren (2018) considers to exclude certain groups from the data (such as
investors and properties with a large negative appreciation.) We consider to exclude similar groups in Appendix
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To calculate markups, we use list prices and estimate logP `ijt = x′ijtβ
` + µ`i + µ`jt + ε`ijt, where t

now denotes quarters. The markup is then given by

mijt = logP `ijt − E[logP `ijt], (15)

where the expected list price is given by E[logP `ijt] = x′ijtβ̂
` + µ̂`i + µ̂`jt.

3.3 Descriptives

Table 1 reports the key descriptive statistics. For the full statistics we refer to Appendix B.1.

PANEL A focuses on the full sample. The average sales price is about e250 thousand.

On average, the sales price is about 5% lower than the list price. Furthermore, the average

time-on-the-market is almost 5 months. In line with Han and Strange (2016), we also observe

that for a reasonable share of the transactions (9.1%), the list price is exactly equal to the sales

price. It appears that 14.2% of the transactions are sold above the list price. We re-emphasise

that we use this variable as a proxy for the occurrence of a bidding war, following Albrecht

et al. (2016) and Han and Strange (2014). We show later that the share of bidding wars may be

considerably higher in certain years. We also report characteristics of the seller, which seem to

consists of a representative sample of the Dutch population, with an average age of 47 and a

share of the population that has a bachelor’s degree or higher of 37.5%

In PANEL B of Table 1 we focus on the repeat-sales sample, which appears to be in many ways

comparable to the full sample. For example, the share of properties that have been sold above

the list price is very similar (14.6%). Still, the average sales price is about 15% lower because

somewhat cheaper and smaller flats are overrepresented in the repeat-sales sample.14

In Figure 1 we plot trends for four important housing market indicators for the period 1995-2019.

In Figure 1a we show the development of sales prices since 1995. It is striking that after 2012,

houses quickly became much more expensive when the housing market recovered from the

economic crisis. The average house price in 2021 exceeded e400 thousand

In Figure 1b we look at the sales time. The time-on-the-market peaked just after 2012 when

prices declined. Surprisingly, increases in prices do not always imply reductions in time-on-the-

market. For example, between 1999 and 2005, sales price increases were not associated with

shorter sales times. On the other hand, after 2012 prices and sales times moved in the opposite

direction.

C.4. Because the results do not change much we not exclude these observations in the baseline specifications.
14We have made sure that our results are not driven by repeat-sales observations. The results, where we include

local area (postcode) instead of property fixed effects, are available upon request.
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TABLE 1 – DESCRIPTIVE STATISTICS FOR THE NVM DATA

(1) (2) (3) (4) (5)
PANEL A: Full sample mean sd 5th perc. median 95th perc.

Sales price (in e) 249,217 185,223 83,949 202,000 565,000
List price (in e) 261,296 199,674 87,580 212,500 595,000
Years on the market 0.403 0.716 0.0192 0.156 1.558
Sold above list price 0.142 0.349 0 0 1
Markup 0 0.0466 -0.0737 0 0.0736
Price appreciation since purchase 0.272 0.345 -0.129 0.187 0.966
Size of property (in m2) 122.8 56.05 61 115 210
Apartment 0.126 0.331 0 0 1
Maintenance state is good 0.855 0.352 0 1 1
Construction year <1945 0.241 0.428 0 0 1
Moved before listing 0.192 0.394 0 0 1
Household size 2.203 1.854 1 2 4
Household – single without kids 0.318 0.466 0 0 1
Non-western foreigner 0.0411 0.177 0 0 0.333
Age 46.55 18.26 24.67 41 83
Education – bachelor’s degree 0.375 0.457 0 0 1

(1) (2) (3) (4) (5)
PANEL B: Repeated-sales sample mean sd 5th perc. median 95th perc.

Sales price (in e) 208,531 131,743 82,000 178,000 428,000
List price (in e) 216,058 137,388 85,764 185,000 439,000
Years on the market 0.367 0.651 0.0192 0.145 1.394
Sold above list price 0.146 0.353 0 0 1
Markup 0 0.0459 -0.0727 0 0.0728
Price appreciation since purchase 0.218 0.286 -0.131 0.156 0.768
Size of property (in m2) 105.8 38.23 57 101 165
Apartment 0.155 0.362 0 0 1
Maintenance state is good 0.902 0.297 0 1 1
Construction year <1945 0.215 0.411 0 0 1
Moved before listing 0.141 0.348 0 0 1
Household size 2.188 1.365 1 2 4
Household – single without kids 0.318 0.466 0 0 1
Non-western foreigner 0.0447 0.184 0 0 0.500
Age 40.93 15.22 24.50 36 75
Education – bachelor’s degree 0.400 0.461 0 0 1

Note: The number of observations is 2,848,857 for the full sample and 808,241 for the repeated-sales
sample. For confidentiality reasons, we cannot report minimum and maximum values. Descriptive
statistics for the full set of variables are reported in Tables B1 and B2 in Appendix B.1.

In Figure 1c we show that until 2015, bidding above the list price was a rare phenomenon. Since

2016 we witness an unparalleled share of transactions sold above the list price: in 2021 this is

about 80%. Note that the share of bidding wars is also unprecedentedly high in comparison

with housing markets in the U.S. in ‘boom’ periods.15 In line with this observation, in Figure 1d

we plot the ratio of the sales price to the list price. For the most part, this is well below 1 and

around 0.95, suggesting that conventional bargaining, where one seller and one prospective

15The increasing frequency of bidding wars may be facilitated by the emergence of websites (most notably:
Funda.nl) on which essentially all houses for sale in a given area are advertised. Prospective buyers regularly visit
such websites and notice houses of potential interest soon after they are posted. In tight markets, this can easily
result in two or more interested parties visiting a given house, which may result in a bidding war.
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(A) SALES PRICES (B) TIME-ON-THE-MARKET

(C) SHARE SOLD ABOVE LIST PRICE (D) RATIO SALES TO LIST PRICE

FIGURE 1 – TRENDS IN VARIABLES OF INTEREST
Notes: The dark red line refers to all observations, whether the light red line refers observations in the repeat-sales sample.

buyer bargain over the price is the default. However, in recent years, the ratio of sales prices to

list prices exceeds one.

4 Econometric framework

4.1 Buyers’ markets: conventional bargaining

The main equation to be estimated – equation (7) – shows that the discount rate of a seller

occupying a property i is determined by two elasticities and the expected sales time.16 We need

to estimate (i) the elasticity of the sales price with respect to the markup (∂ logPijt/∂mijt), (ii)

the elasticity of sales time with respect to the markup (∂ log Tijt/∂mijt) and (iii) the expected

sales time Tijt = T (mijt).

4.1.1 The effect of the markup on time-on-the-market and sales prices

We assume the elasticities of interest are determined by the following relationship between the

sales price and the markup:

{log Tijt, logPijt} = αmijt + x′ijtβ + µi + µjt + εijt, (16)

16Our notation does not distinguish between the seller and the house sold. We refer to both with the same
subscript i.

16



where Tijt denotes the sales time of property i in neighbourhood j in year t, while Pijt denotes

the sale price. mijt is the markup as defined in (15). Further, xijt are housing controls that

change over time, µi are property fixed effects, µjt are neighbourhood×quarter fixed effects,

and εijt denotes the error term.

The main issue in identifying the causal effect of the markup on the time-on-the-market or sales

price is that properties with a shorter time-on-the-market or higher sales price are likely more

attractive in unobserved characteristics (see Guren, 2018). To mitigate this issue, we include a

vector of housing characteristics xijt, capturing for example house size, insulation quality and

the listed building status. However, it is unlikely that xijt will capture all attributes related to

housing quality. We therefore will also include property fixed effects µi. This is a very effective

way to control for all time-invariant housing (and location) attributes, such as construction

year, architectural quality, etc. One still may argue that α may not capture a causal effect of

the markup because properties that have higher markups are more likely to have become

more attractive (e.g. due to extensions). We therefore will control for neighbourhood×quarter

fixed effects µjt. Note that because we include both fixed effects for each property and each

neighbourhood-by-quarter combination, we only use variation between houses that were sold

in the same neighbourhood in the same quarter and then compare the change over time in the

markup and time-on-the-market/sales prices.

4.1.2 An instrumental variables strategy.

One may still be concerned that detailed fixed effects may not completely address endogeneity

issues. We, therefore, follow the instrumental variables strategy adopted by Guren (2018). As

an instrument for markups, we calculate the amount of appreciation zijt in the house price since

the time the seller has moved in the property. This implies that we compare different sellers at

the same moment, but they bought their property at different times. Hence, as appreciation

since the moment of purchase may be different between different sellers, their marginal utility

of cash on hand may be different. The instrument takes advantage of two sources of variation in

the marginal utility in cash at hand that are independent of unobserved quality. The first source

is liquidity constraints that may be different. When the total price appreciation is low, it is more

likely that sellers can extract less equity and each euro is required to invest in the next property.

Hence, the marginal utility is high. Sellers that can extract more equity from the property have

less binding down-payment constraints, have a lower marginal utility of cash on hand, and

therefore set lower markups (Genesove and Mayer, 1997; Anenberg, 2011; Andersen et al., 2022).

The second source of variation in the marginal utility is due to loss aversion, which has been

shown to be very important in the housing market (Genesove and Mayer, 2001; Engelhardt,

2003; Anenberg, 2011; Andersen et al., 2022). If house prices have decreased since the moment
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of buying, the seller is more likely to set a high markup to sell above her initial purchase price.

4.1.3 Non-linearity in the markup.

Another issue stipulated by Guren (2018) is that the effect of the markup is likely non-linear

because of concave demand. In other words, properties with a too high markup may not be

frequented by prospective buyers because they do not consider the property to be attractive.

On the other hand, when the markup is low, this may not attract much more prospective

buyers than if the markup would have been somewhat higher. We note that we can find the

probability that a house sells within a particular time interval from our model, which assumes

an exponential distribution of the sales time with a parameter θ. That parameter equals the

inverse of the expected sales time, which we estimate as a function of the markup, and therefore

of the list price. This function turns out to be flat at a value close to 1 for small markups, then

becomes concave and it ultimately flattens of for very high markups, when the probability

of a sale within the chosen period is already low. The latter, non-concave part of the curve is

an implication of the non-negativeness of the probability that a house sells within the chosen

period.

Hence, our implied demand curve is concave for the empirically relevant range of markups. It

is nevertheless possible that our log-linear equations underestimate the amount of concavity

that is present in the data. To investigate this, we add a quadratic term for markups. We also do

this in the sales price equation, because it is also possible that the impact of a higher list price

on the sales price gets smaller when the markup is increased. We therefore estimate:

{log Tijt, logPijt} = α1mijt + α2m
2
ijt + x′ijtβ + µi + µjt + f(ξ̂ijt) + εijt. (17)

Because the endogenous variable is non-linear, we cannot use a standard two-stage least squares

approach. Instead, use use a control function approach in which first-stage errors, denoted by

ξ̂ijt are inserted as a second-order polynomial in the second stage (Blundell and Powell, 2003).

4.1.4 Heterogeneity in the markup

Initially, we will focus on measuring the average gross discount rate, assuming that the expected

time-on-the-market equals the average time-on-the-market. However, given that we have data

on the characteristics of the seller, we can see how sellers with different characteristics choose

different markups, which in turn will lead to differences in the discount rate. In principle,

seller characteristics are suitable instruments for the markup, as they affect the markup through

differential time preferences, but should not affect sales prices directly. We think the exclusion

restriction is satisfied because prospective buyers typically do not know the characteristics of
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the seller as the real estate agent handles the sale. Our adjusted first-stage then entails:

mijt = γ1zijt + γ2z
2
ijt + δhijt + x′ijtζ + λi + λjt + ξijt, (18)

where zijt captures price appreciation, while hijt is a a range of household characteristics, such

as the education level, age and household composition. We then control for housing quality,

captured by xijt and the fixed effects λi an λjt. Like in the above, we will insert the first-stage

error ξijt as a control function in (17). Based on the estimated parameters γ̂1, γ̂2, and δ̂ we can

predict the markup, which in turn will be used to calculate the household-specific expected

time-on-the-market and the implied discount rates.

4.2 Sellers’ markets: bidding wars

In sellers’ markets where bidding wars are important, we need to estimate additional semi-

elasticities. That is, we need to know the response of the bidding war probability once the

markup is higher. Moreover, we aim to estimate the effects of bidding wars on sales prices and

time-on-the-market.

Following Han and Strange (2014), our proxy for bidding wars, denoted by bijt, is a dummy

variable that equals one when the property is sold above the last list price observed. To

understand how the markup affects bidding wars, we estimate:

bijt = ζmijt + x′ijtη + υi + υjt + χijt, (19)

where ζ and η are parameters to be estimated, υi are fixed effects for each property and υjt are

neighbourhood×quarter fixed effects. χijt captures the unexplained part of the variation in

bidding wars, which is assumed to be uncorrelated to the markup mijt. Following the previous

specifications, we instrument for mijt with the price appreciation since the seller moved in the

property. A higher price appreciation is expected to lead to lead to lower markups.

The price and time-on-the-market equations are then given by:

{log Tijt, logPijt} = α0bijt + α1mijt + x′ijtβ + µi + µjt + εijt, (20)

where β0 is an additional parameter to be estimated.17

An issue in the above equation may be that the bidding war dummy may also be endogenous:

properties that are sold via a bidding war may have a higher unobserved quality, leading to a

17For convenience, we initially assume that α̂P
B = α̂P , so that the markup has the same effect on sales prices

in bidding wars as without bidding wars. We will provide evidence that α̂P
B and α̂P are actually statistically

significantly different from each other, but this will not materially influence the implied discount rate.
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shorter time-on-the-market and a higher sales price. We, therefore, need to find an instrument

that is uncorrelated to unobserved quality and should not directly influence time-on-the-market

or prices. Leib et al. (2020) provide evidence that rounded (rather than precise) list prices attract

higher offers, but only in sellers’ markets. The idea is that rounded list prices attract more potential

buyers, which increases the chances on a bidding war. We will use a dummy indicating whether

the list price is set according to notches at Funda.nl, which is by far the largest online platform

providing an overview of properties on sale in the Netherlands. When selecting the list price in

the search criteria, prospective buyers select prices within certain ranges (rather than typing

the exact list prices themselves). We use these notches to indicate ‘rounded’ list prices.18 By

controlling for property and neighbourhood-by-quarter fixed effects, we expect that rounded

list prices are not correlated to the unobserved quality and do not impact sales prices and

time-on-the-market other than via increasing the probability of a bidding war.

5 Results

5.1 Buyers’ markets: conventional bargaining

5.1.1 Baseline results

In Table 2 we report the baseline results of the effects of the markup on sales prices (PANEL A),

time-on-the-market (PANEL B). Based on the estimated elasticities, we recover gross discount

rates (PANEL C).

In column (1) we include property fixed effects and quarter fixed effects. The results indicate

that a 10% increase in the markup is associated with a 6.8% increase in the sales price. Similarly,

a 10% increase in the markup is associated with a 38.4% increase in the time-on-the-market.

Unsurprisingly, choosing a higher markup leads to a higher sales price, but unintentionally also

implies that the time-on-the-market is longer. These estimates lead to very high discount rate of

52%. Column (2) improves on the identification by including neighbourhood-by-quarter fixed

effects, which should further control for unobserved quality of houses and time-varying trends

in small neighbourhoods. The coefficients are not materially influenced so the gross discount

rate is in the same ballpark.

To the extent unobserved quality is correlated to the markup in the previous specification, we

would expect to see a somewhat lower effect of the markup on sales prices, but a higher effect

of the markup on time-on-the-market. This is exactly what we find in column (3) where we

include street-by-year fixed effects: the effect of the markup on sales prices is reduced by about

18Funda.nl uses the following notches: e50,000, e75,000, e100,000, e125,000, e150,000, e175,000, e200,000,
e225,000, e250,000, e275,000, e300,000, e325,000, e350,000, e375,000, e400,000, e450,000, e500,000, e550,000,
e600,000, e650,000, e700,000, e750,000, e800,000, e900,000, e1,000,000, e1,250,000, e1,500,000, and e2,000,000.
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TABLE 2 – RESULTS WITH CONVENTIONAL BARGAINING

Property + N’hood +Street× Instrument: Instruments:

f.e. ×quarter f.e. ×quarter f.e. Price appreciation + Seller demographics

PANEL A: Sales prices (log) (1) (2) (3) (4) (5) (6)

Markup 0.6785*** 0.7022*** 0.6290*** 0.8112*** 0.8122*** 0.8821***
(0.0040) (0.0035) (0.0110) (0.0584) (0.0825) (0.0761)

(Markup)2 -0.3499 -0.4735
(0.2317) (0.3519)

Housing controls X X X X X X
First-stage residuals X X
Property fixed effects X X X X X X
Quarter fixed effects X
Neighbourhood×quarter fixed effects X X X X
Street×quarter fixed effects X

Number of observations 570,039 415,660 53,249 52,589 52,589 30,888
R2 0.9788 0.9951 0.9964
Kleibergen-Paap F-statistic 99.29 99.29 15.77

PANEL B: Time-on-the-market (log) (1) (2) (3) (4) (5) (6)

Markup 3.8427*** 3.7292*** 4.2592*** 7.8356*** 7.8528*** 8.9764***
(0.0350) (0.0426) (0.1488) (1.0740) (1.5104) (1.2940)

(Markup)2 4.6854 9.4220**
(2.9166) (3.9738)

Housing controls X X X X X X
First-stage residuals X X
Property fixed effects X X X X X X
Quarter fixed effects X
Neighbourhood×quarter fixed effects X X X X
Street×quarter fixed effects X

Number of observations 570,039 415,660 53,249 52,589 52,589 30,888
R2 0.5911 0.7853 0.8500
Kleibergen-Paap F-statistic 99.29 99.29 15.77

PANEL C: Implied discount rates (1) (2) (3) (4) (5) (6)

Gross discount rate, r 0.5212*** 0.5638*** 0.4212*** 0.2807*** 0.2804*** 0.2649***
(0.0069) (0.0086) (0.0193) (0.0485) (0.0692) (0.0525)

[0.5078, 0.5347] [0.5469, 0.5808] [0.3833, 0.4590] [0.1857, 0.3757] [0.1448, 0.4159] [0.1620, 0.3678]

Notes: Bold indicates instrumented. In columns (4)-(6) we instrument list price by price appreciation since the seller moved in the
property. In column (6) we also use seller demographics as additional instruments. In columns (5) and (6) we adopt a control-function
approach in which we insert the first-stage errors as a control function in the second stage. Standard errors are clustered at the property
level and in parentheses, while 95% confidence bands are in brackets. Standard errors are cluster-bootstrapped (250 replications) in
columns (5) and (6). *** p < 0.01, ** p < 0.05, * p < 0.10.

11%, while the effect on time-on-the-market is approximately 14% higher. These estimates lead

to a gross discount rate of 42%.

To the extent one is concerned that detailed fixed effects do not capture unobserved housing

quality fully, we apply an instrumental variables strategy using the price appreciation in the
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neighbourhood since the last sale. We first include property and neighbourhood-by-quarter

fixed effects in column (4). The first-stage results reported in Appendix C.1 indeed indicate that

a higher appreciation is associated with a lower markup. Going back to Table 2, one may see

that the instrument is sufficiently strong as the Kleibergen-Paap F-statistic is almost 100. We

find that the impact of the markup on sales prices is somewhat stronger; the estimated elasticity

implies that a 10 percentage point increase in the markup is associated with a 8.1% increase in

sales prices. The effect on time-on-the-market is considerably higher: the coefficient implies

that a 10% increase in the markup increases the time-on-the-market by 78%. Given the stronger

estimated elasticity of time-on-the-market with respect to the markup, the gross discount rate is

reduced to 28%.

In column (5), we consider the non-linear effects of the markup on prices and time-on-the-

market to see if we find evidence for concave demand (Guren, 2018). As indicated before, we use

a control function approach where first-stage errors are inserted as a second-order polynomial

in the second stage. Although our framework already implied concavity, we indeed find weak

evidence for a non-linear effect of markups. However, the coefficients have the expected signs

but are not statistically significant. For sales prices, we find that the marginal impact of markup

decreases once the markup is set higher, in line with the idea that when the markup is very high,

prospective buyers will not be interested. Similarly, we find that a higher markup increases

time-on-the-market at an increasing rate. The gross discount rate for the average markup in our

sample is 28%, which is very close to the previous estimates.

Column (6) focuses on a subsample of the listings for which we have detailed characteristics

on sellers, such as the level of education, age, and household size. In principle, seller’s charac-

teristics are valid instruments for the markup, as they affect the markup through differential

time preferences, but should not affect sales prices directly. This is particularly so because

prospective buyers typically do not know who is the seller because the real estate agent deals

with inspections. In Appendix B.1 we display the first-stage results. We show that sellers

that already have moved before listing their property set higher markups. Also sellers with a

higher level of education and elderly people choose higher markups. Going back to Table 2

we show that using seller characteristics as additional instruments does not materially change

the results. The average implied gross discount rate is 26%. However, the quadratic term for

time-on-the-market is now twice as high and statistically significant at the 5% level.

5.1.2 Heterogeneity in gross discount rate

To investigate how the discount rate relates to the markup, in Figure 2 we plot the gross discount

rates for different levels of the markup. We use the coefficients as estimated in column (4) (i.e., a
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(A) SPECIFICATION BASED ON ESTIMATES IN COLUMN (4), TABLE 2

(B) SPECIFICATION BASED ON ESTIMATES IN COLUMN (5), TABLE 2

(C) SPECIFICATION BASED ON ESTIMATES IN COLUMN (6), TABLE 2
FIGURE 2 – IMPLIED DISCOUNT RATES FOR DIFFERENT MARKUPS
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FIGURE 3 – THE DISTRIBUTION OF GROSS DISCOUNT RATES

linear specification) and columns (5) and (6) (i.e., the non-linear specifications). We find that

for negative markups, discount rates are very high, while discount rates become progressively

smaller once the markup is set higher. This is particularly so for the non-linear specifications

(see Figures 2b and 2c). The general pattern makes sense: more impatient people will choose

relatively low markups to sell the home quickly. For high markups (exceeding 10%), we find

implied discount rates that are close to prevailing market interest rates.

To further investigate heterogeneity we calculate the implied gross discount rates using the

first-stage in equation (18), corresponding to the specification listed in column (6). We use the

variation in the markup between sellers with different characteristics to obtain a distribution

of discount rates, which we report in Figure 3. We show that gross discount rates range from

12% to 50%, which is in line with the confidence bands estimated in column (6). Hence, there

is sizeable heterogeneity. To examine how different seller’s characteristics are associated with

gross discount rates, we regress gross discount rates on those characteristics and show the

results in Table 3.19

In column (1) we only include price appreciation and whether the sellers already have moved

out before the listing. We find that sellers that have experienced more price appreciation since

the previous purchase have somewhat higher implied discount rates because they choose lower

markups. For example, discount rates are 24% at the 5th percentile of the price appreciation

distribution, while 29% at the 95th percentile. Interestingly, sellers that already have moved out

before they put their property on the market have considerably higher discount rates (almost 8

19To obtain standard errors, we use the following bootstrap procedure. We first estimate the first stage that
includes seller’s characteristics (see equation (18) and column (2), Table C1, in Appendix B.1). Second, given the
seller’s characteristics we obtain the markup for each seller. Third, using the specification in column (6), Table 2, we
calculate the seller-specific gross discount rate. Fourth, we regress the estimated gross discount rates on household
characteristics. We repeat these steps 250 times for randomly drawn samples of properties with replacement.
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TABLE 3 – HETEROGENEOUS DISCOUNT RATES
(Dependent variable: the implied gross discount rate)

Baseline Education Baseline+education All

(1) (2) (3) (4)

Price appreciation since purchase 0.1150*** 0.1160*** 0.1193***
(0.0227) (0.0228) (0.0232)

(Price appreciation since purchase)2 -0.0723*** -0.0740*** -0.0819***
(0.0196) (0.0197) (0.0205)

Moved before listing 0.0798*** 0.0786*** 0.0752***
(0.0149) (0.0147) (0.0138)

Education – secondary -0.0260 -0.0225 -0.0171
(0.0161) (0.0159) (0.0158)

Education – vocational -0.0383** -0.0324** -0.0240
(0.0169) (0.0165) (0.0161)

Education – bachelor’s degree -0.0409** -0.0348** -0.0233
(0.0165) (0.0161) (0.0158)

Western foreigner 0.0146
(0.0133)

Non-western foreigner 0.0218*
(0.0127)

Male 0.0043
(0.0051)

Age 26-40 -0.0220***
(0.0076)

Age 41-55 0.0052
(0.0103)

Age 56-70 0.0236
(0.0203)

Age >70 -0.1361***
(0.0486)

Household size -0.0079
(0.0061)

Household – single with kids 0.0269*
(0.0155)

Household – couple without kids -0.0115
(0.0083)

Household – couple with kids -0.0070
(0.0171)

Household other 0.0156
(0.0217)

Constant 0.2495*** 0.3085*** 0.2796*** 0.3022***
(0.0767) (0.0731) (0.0757) (0.0769)

Number of observations 30,768 30,768 30,768 30,768
R2 0.960 0.948 0.960 0.965

Notes: Bootstrapped standard errors (250 replications) are clustered at the property level and in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

percentage points).

Column (2) investigates differences between sellers with different education levels. Because

sellers with higher levels of education set higher markups, their discount rates are considerably

lower. For example, compared to people with primary education, a seller with a bachelor’s

degree or higher has a discount rate that is about 4 percentage points lower. In column (3) we
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add both price appreciation and the level of education leading to similar results.

Column (4) in Table 3 adds many more household characteristics, showing that the effect of

education becomes somewhat smaller. Younger as well as elderly people have lower discount

rates, which is intuitive as they have a lower opportunity cost of time. Further, we find

suggestive evidence that foreign-born sellers have a higher gross discount rate (about 1.5-2.2

percentage points).

5.1.3 Interpretation of the gross discount rate

The estimates reported above are generally between 15-50%, which strongly suggests that sellers

are impatient and undervalue future money flows.

Although the discount rates we find are an order of magnitude higher than market-based

interest rates, they are not much higher than the idiosyncratic discount rates reported by

Carrillo (2013), who attributes them to seller motivation, and Genesove and Mayer (1997), who

compute a discount rate of 20% for sellers that are presumably more patient than on average.

Nevertheless, the high values we find raise questions about the interpretation of our findings

in terms of target function (1), if it is interpreted as the change in the intertemporal budget

constraint of the home seller.

In Appendix A.2 we discuss several possible micro-foundations of this target function in a

model of intertemporal utility maximization. We start with a simple version that supports the

interpretation of (1) as the change in the intertemporal budget constraint. As noted, the discount

rates we find are too high to be easily compatible with such a model. We then show that the

presence of a mortgage on the house offered for sale cannot explain our high discount rates

we find, but would imply a lower discount rate if sellers are impatient (see Appendix A.2.1).

Intuitively, the reason is that for impatient sellers, the presence of a mortgage that has a lower

interest rate than their rate of time preferences makes it less problematic that the house is sold

later.

If household consumption is restricted by a borrowing constraint that is binding up to the

point the house is sold (for instance because temporarily two mortgages are present), we

must look directly at the change in utility associated with selling the house to derive the

seller’s target function. In Appendix A.2.2 we consider the simple case in which instantaneous

utility is constant over time and shifts to a higher level at the time of selling the house, due

to consumption possibilities that are constrained until the house is sold. Then, we show that

borrowing constraints do not necessarily imply high discount rates. However, strong borrowing

constraints are likely to imply a strong desire to sell the house quickly, even at the cost of lower

revenues, which suggests a higher discount rate. This is confirmed in our empirical results for
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seller who have already left the house, that were discussed above. Related to this finding, the

discount rate may also capture ‘seller motivation’. Some sellers may have a necessity to move

to another location, leaving the house behind, and, hence, gain a low utility flow during the

sales time. A young professional, for example, may need to move to another city due to a job

relocation. Other sellers may stay in the house and have a relatively high utility flow during the

sale time. In principle, the discount rate should include the average seller motivation, but in

the empirical section we will allow discount rates to be heterogeneous across different types of

sellers.

Further, seller search or listing costs will be reflected in the discount rate that we find. High

costs of keeping the house available for sale and being prepared for visits of prospective buyers

naturally lead to a stronger desire to sell quickly. In Appendix A.2.3 we present a formal model

with three types of seller costs: (i) a fixed cost C0 at the start (making the house available for

sale) (ii) a flow cost c as long it is on the market and (iii) a share of the CS of the sales price. We

derive an adapted expression for the rate of discount:

r =
εP
P ` − εTP `

(
cT (P `)

(1−CS)P (P `)

)
T (P `)

(
εT
P ` − εPP `

) . (21)

The second term in the numerator is negative and it shows that ignoring search costs will lead to

an upward bias in the computed rate of discount. Alternatively, the equation can be interpreted

as suggesting that the rate of discount we compute on the basis of (7) includes the impact of

search costs.

The additional term in the numerator is the product of the elasticity of the sales time with

respect to the list price and the ratio of the expected total variable search cost to the net sales

price. The expected sales time is about five months. We have no direct information about the

variable search cost c. Guren (2018) assumes monthly costs of 2.1% of the value of the house.

Combined with an expected sales time of five months and an elasticity εTP` around 6, as we

find in our empirical work, this would suggest a value of the second term on the numerator of

approximately 0.6. Since we find a price elasticity εP
P ` of approximately 0.9, this would suggest

that two thirds of the value of the discount rate we compute is attributable to search costs.

However, monthly search costs in the order of 2% of the value of the house appear to be

unrealistically high in the Dutch context. In the Netherlands, the cost for making use of the

listing website Funda.nl is fixed, while real estate agents charge a commission of around 1%

of the sales price (which are both part of CS). Most of the examples of listing costs discussed by

(Guren, 2018) to motivate the search cost of 2.1% are thus excluded from the flow cost variable c.
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The main remaining source of flow costs c is to keep the house available for inspection visits of

prospective buyers. These appear unlikely to exceed more than a few hundred euros per month.

The only attempt to estimate the flow cost c of selling a house reported in the literature that we

are aware of is that in Ngai and Sheedy (2020), who approach them as the opportunity costs

of the time spent on inspections. They use an average number of 10 visits per house sale and

a cost of one day’s income per visit.20 Their estimate is 2.5% of the value of the house as ‘the

hypothetical cost of spending a whole year searching’ (Ngai and Sheedy, 2020, p. 2518). Since

the average time on the market in our data is less than half a year, this suggests a value of cT of

approximately 1.25% of the value of the house. All in all, this suggests that 10-15% of the value

of the discount rate that we estimate is due to listing costs. This is non-negligible, but does not

qualitatively change our conclusion that home seller are on average very impatient.

We think that there is one remaining explanation that may rationalise why gross discount rates

are a magnitude higher than the prevailing market interest rates. We refer to this explanation as

‘seller stress’. The presence of stress is likely because a large share of the seller’s wealth is at

stake in an unfamiliar process with uncertain outcomes. Such stress may imply a substantial loss

of instantaneous utility that cannot be compensated by adjusted consumption of other goods

and makes it desirable to close the sales process as soon as possible. In Appendix A.2.4 we

develop a simple model that motivates that it may cause higher discount rates. The model that

is relevant in this case differs from that with a borrowing constraint because the loss in utility

due to stress is not necessarily related to the size of the revenues (as is the loss in consumption

possibilities). Moreover, the loss in instantaneous utility may increase over time if anxiousness

increases with the elapsed time on the market. We show in Appendix A.2.4 that both factors

lead to a higher value of the discount rate implied by (7).

In sum, we think that listing costs and stress are likely to be simultaneously present, and our

impression is that the latter may particularly contribute to the high estimated gross discount

rates. We recognise and have provided empirical evidence, that other aspects play a role as well

and cannot always be clearly distinguished from each other. Household who have already left

the house may feel more stressed than other, many of them have double mortgage payments,

and keeping the house in good condition for inspection by prospective buyers may be more

costly, while they may at the same time be trying to realise a sales price that is at least equal to

the amount they paid for the house themselves. Our approach, covering all these considerations

simultaneously, delivers a discount rate that is an order of magnitude higher than interest rates.

20This is motivated by referring to data of Genesove and Han (2012) for the U.S. and from Hometrack for the
U.K.
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5.1.4 Robustness

We subject the estimates of discount rates to a range of robustness checks, which we discuss in

detail in Appendix C.2. First, we include (even) more detailed fixed effects leading to virtually

the same estimates, albeit less precise. Second, we show that gross discount rates are somewhat

lower if we use all housing transactions, rather than just repeated sales, and include local area

instead of property fixed effects. Third, we show that estimates are reasonably robust if we only

include data from before 2005, when bidding wars essentially did not occur, or when we use

adjusted list prices to calculate the markup. We further investigate temporal differences in the

coefficients but we only find suggestive evidence that discount rates have been higher in early

years and were the lowest between 2010 and 2018, while they have been increasing since.

In Appendix C.3 focuses on how to deal with listing retractions. First, we may simply exclude

them. Unexpectedly, this leads to a lower sensitivity of time-on-the-market towards higher

markups, implying higher gross discount rates. Conversely, if we use the total elapsed time

from the first listing to the eventual sale (including the time in which the house was not actually

offered for sale at the listing website Funda.nl), sales times are much more sensitivity to

higher markups implying lower discount rates. Both approaches imply somewhat unrealistic

assumptions on what the time-on-the-market is, but they provide useful bounds and show that

gross discount rates are likely somewhere in between 15% and 50%. We also show that discount

rates are similar if we include sales that are immediately sold and estimate Poisson regressions

in order to deal with a zero time-on-the-market.

In line with Guren (2018), in Appendix C.4 we exclude a couple of groups for which the

exclusion restriction is less likely to hold. We exclude transactions that are likely done by

investors, we exclude properties that experience a large negative price appreciations, and we

remove properties that have experienced extensions and improvements. The estimated discount

rates are robust.

Appendix C.5 studies whether a direct impact of sales time on sales prices may affect the

estimated discount rates. For example, if a property sits longer on the market, prospective

buyers may potentially incorrectly think that this property has a lower quality (Taylor, 1999).

We show that sales time has a small negative effect on sales prices, and – using the appropriately

adjusted formula for the implied discount rate – that this does not materially influence the

estimated discount rates.

All in all, these robustness checks confirm the finding of high gross discount rates.
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5.2 Sellers’ markets: bidding wars

5.2.1 Baseline results

In Table 4 we report the results when we allow for the a positive probability on bidding wars.

PANEL A focuses on the probability that a bidding war occurs. PANEL B and PANEL C of Table 4

investigate the impact of bidding wars and the markup on sales prices and time-on-the-market

respectively. Finally, in PANEL D we compute implied discount rates as per equation (13).

In column (1) we start with the baseline equation where we do not instrument for bidding wars

or the markup and only include property and neighbourhood-by-quarter fixed effects. We find

that lower markups trigger lower bidding wards. The coefficient indicates that a 10 percentage

point increase in the markup decreases the probability on a bidding war by 4.1 percentage

points so this effect is substantial. At the same time, we find evidence that bidding wars lead

to higher sales prices ((exp(0.0644) − 1) × 100% = 6.9%) and a shorter time-on-the-market

((exp(−0.4707)− 1× 100%) = 37.5%). However, because we do not address endogeneity issues

properly, the implied discount rate is still high (i.e., more than 60%). In column (2) we aim to

mitigate endogeneity concerns by including street×quarter fixed effects, which should further

control for unobserved location quality. The estimates are similar.

In column (3) we address the potential endogeneity of the bidding war dummy, by instrument-

ing for it with an indicator of whether the list price is rounded. In line with Leib et al. (2020),

in PANEL A it is shown that this has a positive effect on the probability of a bidding war: a

rounded list price increases the probability of a bidding war by 4.5 percentage points. Given

an average bidding war probability of 14.2%, this effect is substantial. When looking at the

Kleibergen-Paap F-statistic in PANELS B and C, this instrument is strong. However, because we

do not address the endogeneity of markups yet, the gross discount rate is still on the high side

(i.e., 65%).

Column (4) instead addresses the endogeneity of the markup by using price appreciation since

the seller moved as the instrument. We find that the markup has a strong negative effect on the

probability of a bidding war; however, the coefficient is imprecisely estimated: the coefficient

in PANEL A indicates that a 10 percentage point increase in the markup is associated with a

3.9 percentage point decrease in the bidding war probability. The coefficients regarding the

markup in PANELS B and C are similar to the results with conventional bargaining. Moreover,

the estimated implied discount rate of 33% is very close to the comparable specification with

conventional bargaining.

In column (5) we report the preferred specification where we instrument for both the bidding

war dummy as well as the markup. We find that higher markups decrease the probability on a
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TABLE 4 – RESULTS FOR PROBABILITY ON BIDDING WARS, PRICES AND TIME-ON-THE-MARKET

+ N’hood +Street× Instrument for Instrument for Instrument Varying markup

×quarter f.e. ×quarter f.e. bidding wars markup both effect

PANEL A: Sold above list price (1) (2) (3) (4) (5) (6)
Markup -0.4105*** -0.3938*** -0.4079*** -0.3899 -0.3713 -0.3713

(0.0109) (0.0359) (0.0109) (0.2626) (0.2630) (0.2630)
Rounded list price 0.0446*** 0.0535*** 0.0535***

(0.0027) (0.0076) (0.0076)

Housing controls X X X X X X
Property fixed effects X X X X X X
Street×quarter fixed effects X X
Neighbourhood×quarter fixed effects X X X X X

Number of observations 415,660 53,249 415,660 52,589 52,589 52,589
R2 0.8435 0.8964 0.8439
Kleibergen-Paap F-statistic 99.29 99.29 99.29

PANEL B: Sales prices (log) (1) (2) (3) (4) (5) (6)
Markup 0.7286*** 0.6504*** 0.7357*** 0.8396*** 0.8506*** 1.0337***

(0.0034) (0.0108) (0.0061) (0.0559) (0.0584) (0.0825)
Markup× -1.1008***

Sold above list price (0.3263)
Sold above list price 0.0644*** 0.0544*** 0.0817*** 0.0720*** 0.0987*** 0.0609***

(0.0006) (0.0019) (0.0122) (0.0024) (0.0279) (0.0043)

Housing controls X X X X X X
Property fixed effects X X X X X X
Street×quarter fixed effects X X
Neighbourhood×quarter fixed effects X X X X X

Number of observations 415,660 53,249 415,660 52,589 52,589 52,589
R2 0.9955 0.9966
Kleibergen-Paap F-statistic 271.2 98.39 16.33 8.990

PANEL C: Time-on-the-market (log) (1) (2) (3) (4) (5) (6)
Markup 3.5360*** 4.1241*** 3.4569*** 7.7049*** 7.6879*** 7.6879***

(0.0423) (0.1490) (0.0975) (1.0809) (1.1170) (1.1170)
Sold above list price -0.4707*** -0.3431*** -0.6632*** -0.3160*** -0.3275 -0.3275

(0.0103) (0.0362) (0.2140) (0.0462) (0.5218) (0.5218)

Housing controls X X X X X X
Property fixed effects X X X X X X
Street×quarter fixed effects X X
Neighbourhood×quarter fixed effects X X X X X

Number of observations 415,660 53,249 415,660 52,589 52,589 52,589
R2 0.7882 0.8509
Kleibergen-Paap F-statistic 271.2 98.39 16.33 16.33

PANEL D: Implied discount rates (1) (2) (3) (4) (5) (6)
Gross discount rate, r 0.6289*** 0.4690*** 0.6446*** 0.3254*** 0.3294*** 0.3331***

(0.0098) (0.0219) (0.0212) (0.0610) (0.0656) (0.0622)
[0.6096, 0.6481] [0.4260, 0.5119] [0.6030, 0.6863] [0.2058, 0.4450] [0.2008, 0.4580] [0.2112, 0.4550]

Notes: Bold indicates instrumented. In column (4) we instrument ‘sold above list price’ by a dummy indicating whether the list price
is rounded. In column (5) we instrument for the list price by price appreciation since the seller moved in the property. In column (6)
we instrument both ‘sold above list price’ and the log list price. Standard errors are clustered at the property level and in parentheses,
while 95% confidence bands are in brackets. *** p < 0.01, ** p < 0.05, * p < 0.10.
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bidding war, while rounded list prices increase chances. We further find a robust bidding war

premium: when a property is sold above the list price, the sales price is 10.5% higher. We do

not find statistically significant evidence that bidding wars reduce time-on-the-market, but this

mostly an issue of precision, as standard errors are quite large, while point estimates are very

robust across specifications. The coefficient implies that a bidding war reduces time-on-the-

market by 31%. The implied discount rate is again very similar and 34%.

Finally, column (6) in Table 4 allows the effect of markups on sales prices to vary between

properties that are sold via conventional bargaining and via bidding wars, so αPB 6= αP . In

PANEL B we show that the interaction effect is statistically significantly different from the

baseline effect. The magnitude of the point estimate is sizeable and suggest that the markup

does not directly affect the sales prices, only via the impact of changing the probability on a

bidding war. However, we run also into problems of weak instruments (the Kleibergen-Paap

F-statistic is about 8) and therefore standard errors are larger. More importantly, the implied

gross discount rate is essentially the same (i.e., 33.3%) and not statistically significantly different

from the previous specifications.

In sum, the results where we allow for the presence of bidding wars does not alter the conclusion

that gross discount rates are way above the market interest rates, suggesting that sellers are

impatient.

5.2.2 Do sellers provoke bidding wars?

Our theory suggests that the choice of markup interacts with the occurrence of bidding wars.

To investigate this we compare the markups chosen under conventional bargaining – when a

bidding war occurs with probability 0 – with that when bidding wars may occur.

The first-order condition in the model with bidding wars is given in (11), which we repeat here

in slightly different form:

∂π

∂m

[
PB −R

]
+ πPB

∂ logPB

∂m
+ (1− π)

∂R

∂m
= 0. (22)

Without bidding wars, the first order condition is ∂R/∂m = 0. Since the first two terms on

the left-hand side of (22) @@will only be exactly zero by coincidence, the presence of bidding

wars will induce sellers@@ to change their list prices, thereby affecting the probability of its

occurrence.

The first term on the left-hand side of (22) refers to the decrease in the probability of a bidding

war that results from a higher markup, while the second term refers to the increasing revenues

that will be realised if it occurs. @@Choosing a higher markup@@ than in the absence of bidding
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wars, and thereby decreasing the probability that a bidding war occurs, is in the interest of

sellers if the absolute value of second term is exceeds that of the first one, whereas in the

opposite situation sellers have an interest in provoking bidding wars by deliberately choosing

low markups.

To consider what our model suggests has happened in the Netherlands in recent years we

compute the value of the first wo terms on the left-hand side of (22) using the estimation results

reported in column (5) in Table 4. These suggest that ∂π/∂m = −0.3717, and that the sales price

is 9.9% higher in a bidding war. Using the discount rate of 33% and a sales time of 5 months if

no bidding war occurs, we find that the first term is equal to −0.081 times the sales price under

bilateral bargaining. The second term is equal to ∂PB/∂m = 0.8506 times the product of the

sales price and the probability of a bidding war. It follows from these results that the sum of the

first two terms will be positive if the probability on a bidding war occurs exceeds 9.6%. The

actual frequency of bidding wars was much higher in Amsterdam and many other places in the

Netherlands in the most recent years to which our data refer. Our model and estimation results

thus suggests that sellers should increase their list prices relative to the situation without bidding wars.

Hence, even with the very high discount rates that we find, the effect of a higher list price on

the expected bidding war premium exceeds that of the lower probability of a bidding war. It

seems therefore unlikely that the frequent occurrences of bidding war is explained by rational

home sellers deliberately choosing low markups.

6 Conclusions
In this paper, we argue that the trade-off between higher revenues and a fast realisation of the

sale is the key determinant of list price-setting behaviour. A feature that has been currently

overlooked in the literature is that one can characterise this trade-off by a gross discount rate

that is a function of variables observed in the data. We derive these discount rates in buyers’

markets (with conventional bargaining) and in sellers’ markets (with bidding wars).

This study exploits data on more than 1 million housing sales in the Netherlands with informa-

tion on list prices and time-on-the-market. We address endogeneity concerns by instrumenting

the endogenous markup by price appreciation since the seller purchased the property, following

Guren (2018). When considering bidding wars, we instrument for the probability of a bidding

war with a dummy indicating whether the list price is rounded, which in turn may attract more

prospective buyers because of the particular features of the listing website on which buyers

search.

We show that the implied short-run discount rates are in between 15% and 40%. These results
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are robust to various alternative specifications.

In particular, we find the elasticity of the markup – both in cases with and without a bidding

war – to be around 0.8, whereas the elasticity of the sales time with respect to the markup is

about 7. As the average realised sales time is around 5 months, this implies that it would be

attractive to increase the markup because the additional waiting time is well rewarded by the

higher revenues, unless the seller is very impatient.

It seems likely that the high gross discount rates we find are related to restrictions experienced

or perceived by the seller during the sales process. Temporary owners of two houses may

feel pressure to end this situation as soon as possible because their consumption budget (for

non-housing goods) is decreased by double mortgage payments. Even without this pressure,

the fact that a large part of one’s wealth is at stake in an unfamiliar and to a large extent

uncontrollable sales process may imply a considerable decrease in instantaneous utility that

becomes even more substantial when it lasts longer. The ‘stress’ associated with the selling

process, together with listing costs may explain why discount rates are high. However, it is

important to recognise that listing costs only account for a minor part (10-15%) of gross discount

rates.

We further show that list price-setting behaviour interacts with bidding wars (i.e. in sellers’

markets) in a non-trivial way. Choosing a higher markup decreases the probability of a bidding

war and its associated premium, but it also increases the revenues from selling the house. The

latter effect is more important when the baseline probability of a bidding war is already high

– for instance because of a large pool of prospective buyers present in the market – and may

dominate the former. According to our estimates, this happens when more than approximately

10% of the houses is sold for more than the list price. This makes it unlikely that the exceptionally

high share of bidding wars in the Netherlands in recent years is caused by sellers strategically

setting low markups to realise high sales prices by triggering a bidding war.
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Leib, M., Köbis, N., Francke, M., Shalvi, S. and Roskes., M. (2020), ‘Precision in a Seller’s Market: Round Asking

Prices Lead to Higher Counteroffers and Selling Prices.’, Management Science (In Press).

35



Levkovich, O., Rouwendal, J. and Van Ommeren, J. (2019), ‘The Impact of Highways on Population Redistribution:

The Role of Land Development Restrictions’, Journal of Economic Geography 19, 1–26.

Ngai, L. R. and Sheedy, K. D. (2020), ‘The decision to move house and aggregate housing-market dynamics’, Journal

of the European Economic Association 18, 2487–2531.

Palmon, O. and Smith, B. A. (1998), ‘A New Approach for Identifying the Parameters of a Tax Capitalization Model’,

Journal of Urban Economics 44(2), 299–316.

Smith, E., Xie, Z. and Fang, L. (2022), ‘The short and the long of it: Stock-flow matching in the us housing market’,

FRB Atlanta Working Paper .

Taylor, C. (1999), ‘Time-on-the-Market as a Sign of Quality’, The Review of Economic Studies 66(3), 555–578.

Zorn, T. S. and Sackley, W. H. (1991), ‘Buyers’ and Sellers’ Markets: A Simple Rational Expectations Search Model of

the Housing Market.’, The Journal of Real Estate Finance and Economics 4(3), 315–325.

36



Appendix A Theory

A.1 Intertemporal utility maximisation

The model of Section 2.1 is standard in the literature on list price-setting. It can be embedded

in a more general framework of intertemporal utility maximisation. To do so, assume that

consumers derive utility from housing and other consumption. Utility experienced at time τ is

u(cτ , hτ ) and consumers maximise the present value of expected lifetime utility U :

U = E

[∫ ∞
0

u(cτ , hτ )e−ρτdτ

]
. (A.1)

In this equation ρ is the household’s time preference. Assume that the household owns a house

in which they don’t live. That house therefore does not contribute to utility, but the revenues

from selling it affect the intertemporal budget constraint.

Consider the simple case in which the household has purchased and is the outright owner of

another house. Then the housing services offered by that house occur in the utility function

and there are no expenses related to the house in which it lives. The intertemporal budget

constraint, imposes that current wealth A plus the expected value of all future incomes y and

the present value of selling the house in which it doesn’t live must be equal to the present value

of all consumption expenditure. Let P denote the revenues of selling the house and t the time

at which it is sold. The intertemporal budget constraint can then be written as:∫ ∞
0

cτe
−rτ = A+

∫ ∞
0

yτe
−rτ + Pe−rt (A.2)

where r is the relevant rate of discount. It is in this household’s interest to maximise the

present value Pe−rt of the revenues of selling the house. Introducing uncertainty concerning

the realised sales time t implies that expected revenuesR, as formulated in equation (1), replaces

the last term in the above wealth equation. Target function (1) in Section 2.1 may therefore be

interpreted as the change in the intertemporal budget implied by the sale of the house. This

conclusion does not change if we allow the household to have financed the house in which it

currently lives by a mortgage loan, to change housing consumption in the future, or to rent

instead of own. What is important, as will be further discussed below, is that the house offered

for sale does only affect utility via the intertemporal budget constraint (A.2).

In this simple model, one expects the seller’s discount rate to be equal to the interest rate at

which she can transfer money over time.
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A.2 Why do home sellers undervalue future money flows?

In this Appendix, we consider some extensions of the model introduced in Section 2.1 to

investigate its sensitivity for alternative assumptions.

A.2.1 A mortgage associated with the house for sale

Let us now consider the case where a mortgage is associated with the house offered for sale.

We can still work with the intertemporal budget constraint, but now have to take into account

the mortgage payments M that continue up to the time the house is sold and the outstanding

amount of the mortgage at the time of sale L(t). If the house is sold at time t the associated

financial flows are:

−
∫ t

0
M(s)e−rsds+ e−rt(P − L(t)). (A.3)

The three most popular mortgage loan types in the Netherlands in the period to which our data

refer were (i) the annuity mortgage, (ii) an investment mortgage that uses life insurance to save

for repayment, and (iii) the interest-only mortgage. For all three types, mortgage payments

are constant over time when the interest rate is fixed, implying that the integral in the above

equation simplifies to (M/r)(1− e−rt). With an interest-only loan, which was by far the most

popular mortgage type until 2013, the amount to be repaid is independent of the sales time. For

this loan type, the mortgage payments are equal to µL where µ is the (net) mortgage interest

rate. For the interest-only mortgage, we find that the expected revenues of selling the house for

the intertemporal budget constraint are:

R =

∫ t

0
f(t)

[
− µL

r
(1− e−rt) + e−r(t)(P − L)

]
dt. (A.4)

It is readily verified that this simplifies to equation (1) if L = 0. The first-order condition now

implies:

r =
∂ logP/∂ logP ` − µT L

P (∂ log T/∂ logP `)

T
(

(1− L
P )(∂ log T/∂ logP `)− (∂ logP/∂ logP `)

) . (A.5)

which simplifies to (7) for L = 0, as expected. This equation implies that the discount rate is

increasing in the size of the mortgage loan L if the discount rate exceeds the mortgage interest

rate for L = 0 (r > µ) as we find empirically. Hence we will underestimate the actual discount

rate if a mortgage is present.

A.2.2 Borrowing restrictions

If a household experience borrowing constraints, smoothing consumption over time becomes

more difficult. There are now two binding constraints and the change in the intertemporal bud-

get constraint does not longer contain sufficient information for the change in the consumer’s
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optimum. For instance, with two mortgage loans and no possibility to take an additional

loan, a household can be forced to hand-to-mouth consumption of what remains of its income

after debt service until the house is sold, even if the intertemporal budget constraint would be

compatible with much higher levels of consumption during the period the house is unsold. In

such a case, we have to look at the realised values of the instantaneous utility function u(cτ , h).

We aim to get some relevant insights by considering the stylised situation in which utility is

constant before and after the sale of the house and jumps to a higher level, which is dependent

on the sales price at the moment of sale. The benefits of selling the house at time t are then equal

to the higher utility experienced by the household from the moment at which the house is sold:

∆U =

∫ ∞
t

(ua − ub)e−ρτdτ. (A.6)

In this equation ua denotes instantaneous utility after the sale and ub utility before the sale.

Again, we assume a constant hazard rate, that depends on the list price. @@Note that the

relevant discount rate is @@[HK: ‘the r of the budget constraint is a bit awkward:]@@ no longer

the r of the budget constraint, but the time preference ρ from the utility function.

From the first-order condition for optimal list price-setting, we can derive the following expres-

sion for the rate of discount, which turns out to be similar to (7):

ρ =
ω(∂ logP/∂ logP `)

T
(
∂ log T/∂ logP ` − ω(∂ logP/∂ logP `)

) . (A.7)

with:

ω =
∂ log(ua − ub)

∂ logP `
=

P

ua − ub
∂(ua − ub)

∂P
. (A.8)

More specifically ω differs only from r in that the elasticity of the sales price with respect to the

list price is now multiplied by the elasticity of the jump in utility at the time of selling the house

with respect to the sales price, captured by ω.

The difference in utility before and after the sale is determined by the increased consumption

possibilities associated with the net revenues of the sale. With a concave utility function it is not

difficult to verify that with a value of ω larger than 1, the discount rate implied by (7) is smaller

than the seller’s rate of time preference ρ while the reverse is the case for a value of ω that is

smaller than 1.

In the latter case, the relative impact of a higher sales price on utility is smaller than that on the

sales price and this induces the seller to attach less weight to the sales price than is suggested
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by (7). Following Carrillo (2012) we may depict the implied difference between the actual rate

of time preference and the one implied by (7) as ‘seller motivation’. The seller is more impatient

than appears to be justified by the monetary revenues from selling the house; and the reason

suggested by our model is that the increase in instantaneous utility associated with the sale is

inelastic with respect to the revenues.

We think it is instructive to consider an example. If preferences are Cobb-Douglas in housing

and other consumption, utility is u = kcβ wit k a constant reflecting housing consumption.

Assuming that the net revenues of selling the house, P −M , with M the outstanding amount of

the mortgage at the time of the sale, are completely used to reduce the mortgage on the seller’s

current house, we have ca = cb + µ(P −M) with µ the mortgage interest rate, implying:

ω = β
µP

ca

cβa

cβa − cβb
. (A.9)

Each of the three terms on the right-hand side of (A.9) can be smaller than 1, but none of them

is necessarily so. β can be interpreted as the product of the share of other consumption than

housing in total consumption multiplied by the inverse of the intertemporal rate of substitution.

Since the latter is usually estimated as being smaller than 1, β may be larger than 1. The product

of the interest rate and the price of the house – the interest to be paid with a loan-to-value ratio

equal to 1 – is probably, but not necessarily, smaller than non-housing consumption. Moreover,

the ratio of utility after the sale to the utility difference caused by the sale may also be larger

than 1. It seems therefore that borrowing constraints do not provide a very strong argument for

the high discount rates implied by (7).

A.2.3 Listing costs

We introduce three types of listing costs: (i) initial costs C0, associated with making the house

available for sale, (ii) flow costs c associated with keeping the house available for sale, which

we assume to be constant over time, and (iii) cost associated with selling the house, which we

assume to be a fraction Cs of the sales price. The target function (2) now becomes:

R = −C0 +

∫ ∞
0

f(t, P `)[

∫ t

0
ce−rudu+ e−rt(1− Cs)P (P `)]dt. (A.10)

Elaboration of this equation gives:

R = −C0 − c

r
+

∫ ∞
0

f(t, P `)e−rtP ∗(P `)dt. (A.11)
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with P ∗(P `) = (1 − Cs)P (P `) + c
r . With a constant arrival rate θ of prospective buyers, the

first-order condition becomes:

∂ logP

∂ logP `
− rT

1 + rT

∂ log T

∂ logP `

(
1 +

c

r(1− CS)P (P `)

)
= 0, (A.12)

which is similar to (6), with an additional term appearing on the right-hand side. The implied

equation for the rate of discount is:

r =
εP
P ` − εTP `

(
cT (P `)

(1−CS)P (P `)

)
T (P `)

(
εT
P ` − εPP `

) . (A.13)

In this equation we use the symbol ε to denote the elasticities of price and time on the market

(indicated by the superscript) with respect to the list price (indicated by a subscript). If c = 0

this is equal to (7). The additional term in the numerator is the product of the elasticity of the

time-on-the-market with respect to the list price and the ratio of the expected variable listing

cost to the net sales price.

A.2.4 Seller motivation: stress

The seller’s motivation to sell a house may be influenced by the stress selling a house may cause.

We consider two ways in which seller ‘stress’ can affect the target function. The first is that it can

cause impatience that differs from the usual time preference. Stress implies a desire to end the

process of selling the house as soon as possible. We model this by a multiplicative additional

discount function eαt. The second effect is that sellers’ utility goes down by an amount a as

long as the selling process continues. Using the same approach as for the analysis of borrowing

restrictions the target function now becomes:

∆U =

∫ ∞
t

[ua − (ub − a)]e−(ρ+α)τdτ. (A.14)

We now find that the left-hand side of (A.7) becomes equal to ρ+ α while ω on the right hand

side will be smaller (see equation (A.8)). Both changes imply that (7) returns a higher discount

rate. Hence, seller stress could be a reason why implied discount rates exceed conventional

values of time preference or prevailing market interest rates.

A.3 The second-order condition under bilateral bargaining

To verify the second-order condition we rewrite the target function as (5):

logR = − log(1 + rT ) + logP (A.15)
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The first derivative is:
∂ logR

∂ logP `
= − r

1 + rT

∂T

∂ logP `
+
∂ logP

∂ logP `
. (A.16)

and the second derivative:

∂2 logR

∂(logP `)2
=

r2

(1 + rT )2

( ∂T

∂ logP `

)2
− r

1 + rT

∂2T

∂(logP `)2
+

∂2 logP

∂(logP `)2
. (A.17)

The second-order condition is satisfied if this second derivative is negative. We assume that the

sales price is a concave function of the list price and that the sales time is a convex function of

the list price. A sufficient condition for the validity of the second-order condition is:

r2

(1 + rT )2

( ∂T

∂ logP `

)2
<

r

1 + rT

∂2T

∂(logP `)2
. (A.18)

Our empirical specification of the relationship between the sales time and list price is:

T = eν+γ logP
`

(A.19)

Using this, we find that the sufficient condition is equivalent to γ > 1 + rT , which is the case

for the empirically relevant values of γ, r and T

A.4 The second-order condition in the presence of bidding wars

To consider the second-order condition when bidding wars occur, we first rewrite (11) as:

∂π

∂ logP `
BWP + π

∂BWP
∂ logP `

+
∂R

∂ logP `
= 0, (A.20)

where BWP = PB −R denotes the bidding war premium. The second-order condition is:

∂2π

∂(logP `)2
BWP + 2

∂π

∂ logP `
∂BWP
∂ logP `

+ π
∂2BWP
∂(logP `)2

+
∂2R

∂(logP `)2
< 0. (A.21)

We know that R is a convex function of the list price, hence the last term is negative. We assume

that the bidding war premium is a concave function of the list price.21 The third term is then

also negative.

The probability of a bidding war is decreasing in the list price. This leaves us with the first two

terms. The probability of a bidding war is decreasing in the listed price, bounded below by zero.

21This is true if the expected sales price realised in a bidding war is a more concave function of the list price
than the expected sales price realised in bilateral bargaining. This seems plausible if reservation prices of bidders
are random draws from a given distribution and the sales price realised with a bidding war is the second-highest
reservation price of the bidders, while Nash bargaining determines the price with bilateral bargaining. This will
imply that bidding wars result in higher sales prices but if the list price gets higher, the difference becomes smaller.
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This makes it likely that it is a convex function of the list price, implying that the first term is

positive. The bidding war premium is decreasing in the list price, which tells us that the second

term is also positive. Hence what we find is that the target function is now the weighted sum of

the concave function giving the expected revenues from bilateral bargaining and a decreasing

convex function of the bidding war premium. The result can be a function that is still globally

concave, but it is also possible that for low list prices the function is convex and that it reaches a

minimum.

The sign of the expression on the left-hand side of (A.20) thus depends on the relative magni-

tudes of the various terms. We have checked the validity of the second-order condition based

on our empirical estimates.
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Appendix B Data

B.1 Other descriptive statistics

In Tables B1 and B2 we show the descriptive statistics for the full set of variables we have in our

data for, respectively, the full sample and the repeated-sales sample. The final list price is on

average about 2% lower than the first list price.

There is some variation in the time-on-the-market, dependent on how we measure it. Our

preferred measure adds the time-on-the-market of any previously retracted listings. Then,

the time-on-the-market is almost 21 weeks. If we just ignore previously retracted listings, the

time-on-the-market is on average 19 weeks. Alternatively, if we also count the time in between

TABLE B1 – FULL DESCRIPTIVE STATISTICS, FULL SAMPLE

(1) (2) (3) (4) (5)
mean sd 5th perc. median 95th perc.

Sales price (in e) 249,217 185,223 83,949 202,000 565,000
List price (in e) 261,296 199,674 87,580 212,500 595,000
Adjusted list price (in e) 256,215 193,515 86,218 209,000 580,000
Years on the market 0.403 0.716 0.0192 0.156 1.558
Years on the market (without retractions) 0.365 0.638 0.0192 0.148 1.374
Years on the market (long) long 0.525 1.275 0.0192 0.156 2.012
Sold above list price 0.142 0.349 0 0 1
Mark-up 3.33e-05 0.0466 -0.0737 1.67e-09 0.0736
Price appreciation since purchase 0.272 0.345 -0.129 0.187 0.966
Rounded list price 0.116 0.320 0 0 1
Size of property (in m2) 122.8 56.05 61 115 210
Apartment 0.126 0.331 0 0 1
Number of layers of insulation 2.122 1.738 0 2 5
Property has central heating 0.916 0.278 0 1 1
Property is (part of) listed building 0.00816 0.0899 0 0 0
Historic property 0.00782 0.0881 0 0 0
Maintenance score of the outside 0.754 0.119 0.500 0.750 1
Maintenance score of the inside 0.750 0.135 0.500 0.750 1
Construction year <1945 0.241 0.428 0 0 1
Moved before listing 0.192 0.394 0 0 1
Household size 2.203 1.854 1 2 4
Household – single without kids 0.318 0.466 0 0 1
Household – single with kids 0.0506 0.219 0 0 1
Household – couple without kids 0.340 0.474 0 0 1
Household – couple without kids 0.272 0.445 0 0 1
Household – other 0.0192 0.137 0 0 0
Male 0.497 0.441 0 0.500 1
Western-foreigner 0.0555 0.206 0 0 0.500
Non-western foreigner 0.0411 0.177 0 0 0.333
Age 46.55 18.26 24.67 41 83
Education – primary 0.0526 0.207 0 0 0.500
Education – secondary 0.288 0.418 0 0 1
Education – vocational 0.285 0.421 0 0 1
Education – bachelor’s degree 0.375 0.457 0 0 1

Note: The number of observations is 2,848,857 for the full sample. For confidentiality reasons, we cannot report
minimum and maximum values. To save space, we do not report 7 construction decade dummies.
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TABLE B2 – FULL DESCRIPTIVE STATISTICS, REPEATED SALES

(1) (2) (3) (4) (5)
mean sd 5th perc. median 95th perc.

Sales price (in e) 208,531 131,743 82,000 178,000 428,000
List price (in e) 216,058 137,388 85,764 185,000 439,000
Adjusted list price (in e) 212,843 134,256 85,084 182,500 429,000
Years on the market 0.367 0.651 0.0192 0.145 1.394
Years on the market (without retractions) 0.330 0.571 0.0192 0.137 1.210
Years on the market (long) long 0.487 1.192 0.0192 0.148 1.856
Sold above list price 0.146 0.353 0 0 1
Mark-up 0.000160 0.0459 -0.0727 1.04e-07 0.0728
Price appreciation since purchase 0.218 0.286 -0.131 0.156 0.768
Rounded list price 0.110 0.313 0 0 1
Size of property (in m2) 105.8 38.23 57 101 165
Apartment 0.155 0.362 0 0 1
Number of layers of insulation 2.066 1.693 0 1 5
Property has central heating 0.933 0.250 0 1 1
Property is (part of) listed building 0.00637 0.0795 0 0 0
Historic property 0.00579 0.0759 0 0 0
Maintenance score of the outside 0.761 0.0990 0.625 0.750 1
Maintenance score of the inside 0.763 0.114 0.500 0.750 1
Construction year <1945 0.215 0.411 0 0 1
Moved before listing 0.141 0.348 0 0 1
Household size 2.188 1.365 1 2 4
Household – single without kids 0.318 0.466 0 0 1
Household – single with kids 0.0485 0.215 0 0 0
Household – couple without kids 0.344 0.475 0 0 1
Household – couple without kids 0.277 0.447 0 0 1
Household – other 0.0129 0.113 0 0 0
Male 0.507 0.437 0 0.500 1
Western-foreigner 0.0561 0.205 0 0 0.500
Non-western foreigner 0.0447 0.184 0 0 0.500
Age 40.93 15.22 24.50 36 75
Education – primary 0.0438 0.188 0 0 0.500
Education – secondary 0.268 0.406 0 0 1
Education – vocational 0.288 0.421 0 0 1
Education – bachelor’s degree 0.400 0.461 0 0 1

Note: The number of observations is 808,241 for the repeated-sales sample. For confidentiality reasons, we cannot
report minimum and maximum values. To save space, we do not report 7 construction decade dummies.

retraction and listing again, the average time-on-the-market is 27 weeks, which is likely an

overestimate of the true time-on-the-market.

Price appreciation since the previous sale is generally positive. On average, prices since the

previous sale have increased by 27%, which is substantial. Our other instrument is the rounded

list price. In 12% of the cases, list prices are rounded to the notches reported on Funda.nl.

Interestingly, most sellers still live in the property when listing the property. Still, almost 20% of

the sellers have already moved out once listing the property.

For a subset of the data, we have information on the type of seller. Table B3 shows that home

sales are typically sold by owner-occupiers. For 84% of the sales, there is a singly owner-occupier
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TABLE B3 – DESCRIPTIVE STATISTICS, SELLER TYPE

(1) (2) (3) (4) (5)
PANEL A: Full sample mean sd 5th perc. median 95th perc.

Seller – owner-occupier 0.842 0.365 0 1 1
Seller – landlord 0.0343 0.182 0 0 0
Seller – housing corporation 0.00759 0.0868 0 0 0
Seller – unknown 0.116 0.320 0 0 1

(1) (2) (3) (4) (5)
PANEL B: Repeated-sales sample mean sd 5th perc. median 95th perc.

Seller – owner-occupier 0.859 0.348 0 1 1
Seller – landlord 0.0367 0.188 0 0 0
Seller – housing corporation 0.00525 0.0723 0 0 0
Seller – unknown 0.0993 0.299 0 0 1

Note: The number of observations is 1,252,721 for the full sample and 377,008 for the repeated-sales
sample. For confidentiality reasons, we cannot report minimum and maximum values.

that aims to sell the property. Given that for 12% of the sales, the seller is unknown, this share

likely exceeds 90%. Private landlords sell another 3.4%. Sales by housing corporations, owning

a large public housing stock comprising 40% of the total housing stock, are uncommon, as only

0.8% of the sales are by housing corporations.

B.2 Retracted listings

In Figure B1 below we show the share of retracted listings over the years. It is shown that

the share of retracted listings is on average 11%, but has been considerably higher during

the housing crisis of 2009-2012, when the share of retractions exceeded 25%. This is in line

with an increased time on the market observed in Figure 1. More specifically, the trend in

time-on-the-market is highly correlated to the share of retractions (ρ = 0.675). In recent times,

the share of retractions has essentially reduced to zero, as the increased demand pressure meant

that essentially all houses were sold, often very quickly.
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FIGURE B1 – RETRACTED LISTINGS
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Appendix C Other results

C.1 First-stage results

We report first-stage in Table C1. In column (1) we show that price appreciation since the

previous purchase generally has a negative effect on the markup. An increase from 0 to 25%

increase in price appreciation (about the average appreciation in the sample) changes the

markup by (0.25 × −0.0460) × 100% = −1.2 percentage points. An increase from 25 to 50%

implies an decrease in the markup of −0.8 percentage points. Column (2) adds a range of seller

characteristics as additional instruments. Interestingly, we find that if the seller already has

moved out before listing the property, the markup is 2.3 percentage points lower. Generally, we

find that households with higher levels of education set higher markups, although the effect is

not large (about 0.7 percentage points). Foreign-born people set lower markups. For example,

non-western foreigners set markups that are 0.7 percentage points lower. We also find that

elderly people set higher markups, which may be because they do not have a strong incentive

to move so their opportunity costs of waiting for the right bid are lower.

In columns (3) and (4) in Table C1 we add respectively street-by-quarter and even building-by-

quarter fixed effects (which corresponds to columns (1) and (2) in Table C3). We show that this

does not affect much the magnitude of the first-stage coefficients. However, the coefficients are

less precisely estimated, which is unsurprising given the much lower number of observations

in these more restrictive specifications.

In the first two columns of Table C2 we report the first-stage estimates for the dummy indicating

whether the property has been sold above the list price. As hypothesised, we find that rounded

list prices have a strong positive effect on the probability that a bidding war occurs. More

specifically, the probability increases by about 4.5-5.5 percentage points when using rounded

list prices, which is a substantial effect. Unsurprisingly, a higher markup is also associated with

a lower probability on a bidding war (see column (1))

In columns (3) and (4) the dependent variable is the markup. The coefficients related to price

appreciation are similar to previous specifications. Rounded list prices are associated with

slightly lower markups (i.e., −0.5 percentage points), which may mean that people round list

prices down to the nearest notch.

C.2 Robustness

Table C3 provides a range of robustness checks if we assume that there is conventional bar-

gaining between a seller and one prospective buyer. In column (1) we add street-by-quarter

fixed effects to further control for unobservable time-varying property and location attributes.
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TABLE C1 – CONVENTIONAL BARGAINING: FIRST-STAGE RESULTS
(Dependent variable: the markup)

N’hood× +Seller Street× Building×

quarter f.e. demographics quarter f.e. quarter f.e.

(1) (2) (3) (4)

Price appreciation since purchase -0.0460*** -0.0429*** -0.0513*** -0.0517**
(0.0043) (0.0058) (0.0114) (0.0201)

(Price appreciation since purchase)2 0.0203*** 0.0313*** 0.0253** 0.0099
(0.0044) (0.0065) (0.0103) (0.0182)

Moved before listing -0.0228***
(0.0023)

Education – secondary 0.0050
(0.0044)

Education – vocational 0.0073*
(0.0044)

Education – bachelor’s degree 0.0079*
(0.0043)

Western-foreigner -0.0047
(0.0040)

Non-western foreigner -0.0073*
(0.0037)

Male -0.0010
(0.0016)

Age 26-40 0.0079***
(0.0022)

Age 41-55 -0.0006
(0.0029)

Age 56-70 -0.0070
(0.0055)

Age >70 0.0557***
(0.0167)

Household size 0.0031*
(0.0019)

Household – single with kids -0.0092**
(0.0043)

Household – couple without kids 0.0037
(0.0024)

Household – couple without kids 0.0021
(0.0050)

Household – other -0.0053
(0.0068)

Housing controls X X X X
Property fixed effects X X X X
Neighbourhood×quarter fixed effects X X
Street×quarter fixed effects X
Building×quarter fixed effects X

Number of observations 52,589 30,888 5,496 1,676
R2 0.4524 0.5301 0.7431 0.8044

Notes: Standard errors are clustered at the property level and in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.10.
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TABLE C2 – BIDDING WARS: FIRST-STAGE RESULTS

Dependent variable: Dependent variable:

sold above list price the markup

(1) (2) (3) (4)

Price appreciation since purchase 0.0183 -0.0454*** -0.0460***
(0.0167) (0.0043) (0.0043)

(Price appreciation since purchase)2 -0.0093 0.0200*** 0.0203***
(0.0173) (0.0044) (0.0044)

Rounded list price 0.0446*** 0.0551*** -0.0048***
(0.0027) (0.0076) (0.0019)

Markup -0.4079***
(0.0109)

Sold above list price -0.0336***
(0.0021)

Housing controls X X X X
Property fixed effects X X X X
Neighbourhood×quarter fixed effects X X X X

Number of observations 415,660 52,615 52,589 52,589
R2 0.8439 0.8334 0.4613 0.4526

Notes: Standard errors are clustered at the property level and in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.10.

Although the standard error of the estimates goes up, the point estimate of the gross discount

rate is virtually identical to the baseline estimate, albeit statistically insignificant at conventional

levels.

Column (2) pushes the limits further by including building×quarter fixed effects. This implies

that we focus on transactions occurring in the same building in the same quarter, but with

different markups. This very restrictive specification leads to slightly lower estimates for the

effect of the markup on time-on-the-market and sales prices. In the former case, the estimate is

statistically insignificant, which is unsurprising given the low number of observations left. Still,

albeit imprecise, the gross discount rate is very close to our baseline estimate.

In column (3) we test whether focusing on repeat sales matters for the results. Hence, to

also include non-repeat sales we include postcode fixed effects. Postcodes contain about 15

properties so are very small. Somewhat surprisingly, we find that the impact of the markup on

time-on-the-market is about twice as strong. The implied discount rate is then 15%. The lower

discount rate is particularly caused by a higher elasticity of the time-on-the-market with respect

to the markup. However, one may argue that the price appreciation is less convincing without

property fixed effects.

Column (4) in Table C3 addresses the concern that people that have lived in the property for a

long time have higher price appreciation, but at the same time may be different from people that

move in quickly and may have very different time preferences so that our IV strategy identifies
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TABLE C3 – ROBUSTNESS WITH CONVENTIONAL BARGAINING

+Street× +Building× Postcode Years lived Adjusted 1985-

quarter f.e. quarter f.e. f.e. in the property list price 2005

PANEL A: Sales prices (log) (1) (2) (3) (4) (5) (6)

Markup 0.7641*** 0.5516*** 0.7382*** 0.6418*** 1.1240***
(0.1749) (0.2002) (0.0762) (0.0970) (0.2822)

Markup (adjusted) 0.3569***
(0.0320)

Years lived in the property -0.0012***
(0.0003)

(Years lived in the property)2 0.0000
(0.0000)

Housing controls X X X X X X
Property fixed effects X X X X X
Postcode fixed effects X
Street×quarter fixed effects X
Building×quarter fixed effects X
Neighbourhood×quarter fixed effects X X X X

Number of observations 5,496 1,676 113,824 46,665 52,589 7,588
Kleibergen-Paap F-statistic 14.35 10.40 213.5 29.43 259.2 5.483

PANEL B: Time-on-the-market (log) (1) (2) (3) (4) (5) (6)

Markup 7.1157** 6.2718 12.4670*** 6.1263*** 8.8703*
(3.5695) (4.9603) (0.9602) (1.7736) (4.9575)

Markup (adjusted) 4.8155***
(0.5580)

Years lived in the property 0.0025
(0.0058)

(Years lived in the property)2 0.0001
(0.0003)

First-stage errors No No No No No No
Housing controls Yes Yes Yes Yes Yes Yes
Property fixed effects Yes Yes Yes Yes Yes Yes
Street×half-year fixed effects No No No No Yes No
Neighbourhood×quarter fixed effects No No No Yes No No
Neighbourhood×half-year fixed effects Yes Yes Yes Yes No Yes

Number of observations 5,496 1,676 113,824 46,665 52,589 7,588
Kleibergen-Paap F-statistic 14.35 10.40 213.5 29.43 259.2 5.483

PANEL C: Implied discount rates (1) (2) (3) (4) (5) (6)

Gross discount rate, r 0.2924 0.2344 0.1530*** 0.2844*** 0.1946*** 0.3527
(0.1806) (0.2236) (0.0209) (0.1038) (0.0308) (0.2474)

[-0.0616 - 0.6464] [-0.2038 - 0.6726] [0.1119 - 0.1940] [0.0811 - 0.4878] [0.1342 - 0.2549] [-0.1323 - 0.8376]

Notes: Bold indicates instrumented. Standard errors are clustered at the property level and in parentheses, while 95% confidence bands are in
brackets. *** p < 0.01, ** p < 0.05, * p < 0.10.
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only a local (average) treatment effect. We see that this is not an issue as the direct impact of

years lived in the property is statistically insignificant for time-on-the-market, while it has a

slight negative effect on sales prices (about 0.1% per year). The gross discount rate is hardly

affected.

In the main analyses, the markup is defined as the difference between expected list prices and

the first list price. Alternatively, in column (5), we consider to use the last list price before selling

the property. We do not prefer this approach because the final list price may have been adjusted

as a response to the time-on-the-market and (lack of) bids received by prospective buyers.

Hence, the final list price is likely endogenous. Still, it is shown that this leads to somewhat

lower coefficients, but to a very similar estimated of the gross discount rate. Hence, we think it

is safe to conclude that using final list price does not materially affect our conclusions.

One may argue that in the previous analyses we include sales in buyer’s markets (with con-

ventional bargaining) and seller’s markets (where bidding wars may take place). To be entirely

sure that bidding wars do not affect our estimates we only include sales that are listed between

1995 and 2005, which is way before bidding wars became an issue. Column (6) shows that

the coefficients capturing the impacts of the markup on time-on-the-market and sales prices

are slightly higher so that the implied gross discount rate is similar to our baseline estimate.

However, because we exclude so many observations, the discount rate is imprecisely estimated.

We further investigate temporal differences in the coefficients by re-estimating the baseline

specification in column (4) in Table 2, but now we let the coefficients vary over time. Unfor-

tunately, such an approach implies t endogenous variables, which would require too much

from the data and we do not obtain meaningful results. Hence, we make the simplifying

assumption that the first-stage has time-invariant coefficients (so γ1t = γ1 and γ12t = γ2, ∀t),

which in principle yields consistent outcomes but is considerably more efficient (see Levkovich

et al., 2019). We think this assumption is pretty innocuous: we just assume that sellers respond

similarly to previous price appreciation over time, without making assumptions on how buyers

respond to markups. We report the results in Figure C1. We find that the elasticities of the

sales price with respect to the markup bump around a bit (see Figure C1a), but are always

positive and are on average close to our baseline estimates. The same holds for the elasticities

of the time-on-the-market with respect to the markup in Figure C1b. Using these elasticities,

we seem to find weak evidence that implied gross discount rates have decreased somewhat

over the years. Particularly in early years the gross discount rates are imprecisely estimated so

we should refrain from drawing strong conclusions (see Figure C1c). Overall, we think that

assuming constant elasticities is defensible given that we do not find clear patterns in these
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TABLE C4 – CONVENTIONAL BARGAINING – MEASURING TIME-ON-THE-MARKET

Exclude Long Incl. zero Excl. zero

retractions sales time sales time sales time

PANEL A: Time-on-the-market (log) (1) (2) (3) (4)

Markup 3.0334*** 13.7468*** 8.1469*** 7.8453***
(0.9762) (1.3667) (1.7963) (1.6641)

First-stage errors X X
Housing controls X X X X
Property fixed effects X X X X
Neighbourhood×quarter fixed effects X X X X

Number of observations 5,496 1,676 113,824 46,665
Kleibergen-Paap F-statistic 14.35 10.40 213.5 29.43

PANEL B: Implied discount rates (1) (2) (3) (4)

Gross discount rate, r 0.9158** 0.1557*** 0.2527*** 0.2820***
(0.4133) (0.0203) (0.0690) (0.0745)

[0.1058, 1.7258] [0.1159, 0.1955] [0.1174, 0.3880] [0.1360, 0.4279]

Notes: Bold indicates instrumented. Column (3) and (4) are estimated obtained by PPML. We then insert
first-stage errors as a control function in the second stage. Standard errors are clustered at the property
level and in parentheses, while 95% confidence bands are in brackets. Standard errors are bootstrapped
in columns (3) and (4) (250 replications). *** p < 0.01, ** p < 0.05, * p < 0.10.

figures.

C.3 Robustness – measuring time-on-the-market

In the baseline analyses we include sales that have been retracted. The time-on-the-market used

there is the sum of the lengths of previous time intervals during which the house was offered

for sale on Funda.nl but not actually sold. In Table C4 we show robustness to alternative

assumptions.22

Alternatively, in column (1) we exclude retracted listings and only use the time intervals that

ended with sales. Unexpectedly, this leads to a lower sensitivity of time-on-the-market regarding

markups, implying higher gross discount rates. The gross discount rate is then 92%, which

overestimates the true discount rate. However, given the implied 95% confidence interval, our

baseline estimate falls well within this band.

By contrast, in column (2) we use the total elapsed time from the first retracted listing until

the eventual sale. Then, sales times are much more sensitive to higher markups, which in turn

implies lower discount rates. The gross discount rate is now 15.6%, which is about half of the

baseline estimate. Hence, we think this estimate serves as a useful lower bound estimate of the

discount rate given assumptions on how time-on-the-market is measured.

22We do not report results for sales prices, which are identical to the results reported in column (4), Table 2.
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(A) SALES PRICE

(B) TIME-ON-THE-MARKET

(C) IMPLIED GROSS DISCOUNT RATE

FIGURE C1 – HETEROGENEITY OVER TIME IN THE EFFECTS OF INTEREST
Notes: The vertical dotted lines denote 95% confidence bands, while the light red line refers to a trend line. To estimate the gross
implied discount rate in each year we use the average time-on-the-market to proxy for the expected time-on-the-market.
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In column (3) we consider to include sales that are immediately sold, i.e., have a zero time-on-

the-market. The reason to drop listings with a zero sales time is that these observations may

be mismeasured. The listing date was unknown in a few cases so realtors may have put in the

same sales date as the listings date. Still, when we include sales with a zero sales time, this

increases our number of observations by about 3.5%.

Because we cannot take the log of zero, we use Poisson-Pseudo Maximum Likelihood (PPML)

to obtain the parameters of interest. Because PPML is somewhat more sensitive to outliers,

we remove all listings that are more than two standard deviations away from the mean of

time-on-the-market or sales prices. We find a very similar estimate for the discount rate in

column (3) of Table C5.

We also obtain a similar gross discount rate in column (4) in Table C5 if we exclude zero time-

on-the-market sales, but still estimate the coefficients by PPML. Hence, the omission of zero

time-on-the-market sales does not materially affect our estimates.

C.4 Robustness – excluding IV groups

Here we subject the results with respect to conventional bargaining to a number of additional

robustness checks. As an instrument for the markup we use instruments in the spirit of

Guren (2018), who makes selections in the IV samples to achieve cleaner identification. In this

subsection we run similar checks. We display the results in Table C5. We compare our estimates

to the baseline estimate reported in column (4) in Table 2.

First, we exclude properties that are explicitly listed as; an investment target; for which tenants

are still renting the property; which are sold because of foreclosures; or which will not be

inhabited by the buyer. Hence, by these selections we essentially exclude large investors.

Because of the nature of the data (i.e. NVM focuses on standard real estate sales rather than

including sales of large investors), these selections comprise just over 1% of the sales. It is then

not surprising that the estimated discount rate is very close to the comparable specification in

column (6), Table 2.

Second, like Guren (2018), we drop observations with an unusually low depreciation of less than

−25% as these home buyers are likely to have needed unusual initial mortgages to move on to

the next property. We show that the effect of the markup on prices is somewhat stronger, while

the impact on time-on-the-market is somewhat smaller. Hence, the calculated gross discount

rate is somewhat higher (i.e., 42%) than the baseline estimate. Still, the estimate of 28% falls

well within the confidence band.

Third, we remove transactions for which a remodelling has taken place. More specifically, we
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TABLE C5 – CONVENTIONAL BARGAINING – EXCLUDING IV GROUPS

No Appreciation No Only owner- All

investors >−25% extensions occupiers selections

PANEL A: Sales prices (log) (1) (2) (3) (4) (5)

Markup 0.8238*** 0.8989*** 0.8909*** 0.8478*** 0.8634***
(0.0593) (0.0624) (0.0698) (0.1266) (0.1331)

Housing controls X X X X X
Property fixed effects X X X X X
Neighbourhood×quarter fixed effects X X X X X

Number of observations 51,954 51,404 44,157 6,751 4,934
Kleibergen-Paap F-statistic 95.75 85.95 71.42 17.35 16.31

PANEL B: Time-on-the-market (log) (1) (2) (3) (4) (5)

Markup 7.7166*** 6.0789*** 7.0330*** 8.6732*** 6.9025***
(1.0872) (1.1153) (1.2559) (2.4223) (2.4071)

Housing controls X X X X X
Property fixed effects X X X X X
Neighbourhood×quarter fixed effects X X X X X

Number of observations 51,954 51,404 44,157 6,751 4,934
Kleibergen-Paap F-statistic 95.75 85.95 71.42 17.35 16.31

PANEL C: Implied discount rates (1) (2) (3) (4) (5)

Gross discount rate, r 0.2905*** 0.4218*** 0.3526*** 0.2633*** 0.3475**
(0.0515) (0.0971) (0.0787) (0.0924) (0.1514)

[0.1896, 0.3913] [0.2315, 0.6121] [0.1983, 0.5068] [0.0822, 0.4445] [0.0507, 0.6443]

Notes: Bold indicates instrumented. As instrument, we use price appreciation since the seller moved in the property.
Standard errors are clustered at the property level and in parentheses, while 95% confidence bands are in brackets. ***
p < 0.01, ** p < 0.05, * p < 0.10.

exclude transactions for which the house size changes by more than 5 m2 – implying that we

remove extensions. This implies that we drop about 15% of the transactions. The effect of the

markup on sales prices is now somewhat higher, while the effect of the markup on time-on-

the-market is essentially the same. The estimate of the discount rate is therefore therefore a bit

higher, although it is not much different from the preferred estimate of the discount rate.

Fourth, using ancillary data from the Land Registry, we obtain information on whether the

seller was an owner-occupier, a private landlord or housing corporation. We then focus only on

sellers that are owner-occupiers. Because the Land Registry data are only available for a portion

of the data the number of observations drop by about 87%. Still, it is reassuring that this does

not change much our estimates, although the impact of the markup on sales times is somewhat

higher. A caveat is that with the low number of observations, the coefficient is not statistically

significantly higher than the baseline estimate. The gross discount rate is very similar to our
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baseline estimate.

In column (5) we apply all the above-mentioned selections to obtain a somewhat imprecise but

very similar estimate of the discount rate. Hence, sample selections that further strengthen the

validity of the instrument will not materially affect our results.

C.5 Robustness – time-on-the-market as a sign of quality

In line with Taylor (1999), one may argue that properties that sit longer on the market may be

viewed by prospective buyers as having a lower quality, although this may be incorrect. In this

case, the sales price may depend on the elapsed time on the market (which also depends on the

markup).

Let us consider to include this in our model of conventional bargaining. Please recall that the

the expected revenues of selling the house is given by:

R =

∫ ∞
0

f(t,m)e−rtP (m)dt. (C.1)

Consider the situation that the sales price is given by P (0,m)eλt, with λ < 0, implying that

properties that sit longer on the market have a lower expected sales price. Then:

R =

∫ ∞
0

f(t,m)e(λ−r)tP (0,m)dt. (C.2)

The discount rate is given by:

r =
∂ logP/∂m

T
(

(∂ log T/∂m)− (∂ logP/∂m)
) + λ. (C.3)

We can easily estimate the above relationship by expanding the sales price equation (16):

logPijt = αmijt + x′ijtβ + λTijt + µi + µjt + εijt. (C.4)

An issue is that Tijt may be endogenous and correlated to unobserved quality of homes so that

λ also capture that houses that sit on the market for longer have lower quality. We think this

is not much of an issue because this will bias the coefficient downwards (i.e. making it more

negative), and implying a lower discount rate. We show that the estimated discount rates will

actually be slightly higher than the baseline estimates. Moreover, with neighbourhood-by-year

fixed effects and instrumenting for the markup, we expect the issue of unobserved quality to be

limited.

We replicate the baseline results for conventional bargaining, but include sales time as an
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TABLE C6 – CONVENTIONAL BARGAINING – TIME ON THE MARKET AS A SIGN OF QUALITY

Property + N’hood +Street× Instruments: Instrument:

f.e. ×quarter f.e. ×quarter f.e. Price appreciation + Seller demographics

PANEL A: Sales prices (log) (1) (2) (3) (4) (5) (6)

Markup 0.7329*** 0.7463*** 0.6715*** 0.9032*** 0.9047*** 1.0058***
(0.0039) (0.0034) (0.0111) (0.0567) (0.0790) (0.0706)

(Markup)2 -0.3230 -0.3578
(0.2238) (0.3390)

Years on the market -0.0390*** -0.0336*** -0.0247*** -0.0424*** -0.0424*** -0.0433***
(0.0004) (0.0004) (0.0009) (0.0017) (0.0024) (0.0024)

Housing controls X X X X X X
First-stage residuals X X
Property fixed effects X X X X X X
Quarter fixed effects X
Neighbourhood×quarter fixed effects X X X X
Street×quarter fixed effects X

Number of observations 570,039 415,660 53,249 52,589 52,589 30,888
R2 0.9800 0.9956 0.9966
Kleibergen-Paap F-statistic 94 94 94

PANEL B: Implied discount rates (1) (2) (3) (4) (5) (6)

Gross discount rate, r 0.5801*** 0.6150*** 0.4580*** 0.3186*** 0.3184*** 0.3084***
(0.0077) (0.0096) (0.0211) (0.0546) (0.0784) (0.0600)

[0.5651, 0.5951] [0.5963, 0.6337] [0.4166, 0.4995] [0.2116, 0.4256] [0.1647, 0.4722] [0.1908, 0.4260]

Notes: Bold indicates instrumented. In columns (4)-(6) we instrument list price by price appreciation since the seller moved in the
property. In column (6) we also use seller demographics as additional instruments. In columns (5) and (6) we adopt a control-function
approach in which we insert the first-stage errors as a control function in the second stage. Standard errors are clustered at the property
level and in parentheses, while 95% confidence bands are in brackets. Standard errors are cluster-bootstrapped (250 replications) in
columns (5) and (6). *** p < 0.01, ** p < 0.05, * p < 0.10.

additional control in Table C6. We do not report the results for time-on-the-market, as these are

identical to those reported in Panel B in Table 2

In all specifications we find a consistent negative effect of years on the market on sales price.

One additional year in sales time is associated with a sales price decrease of 2.5-4.5%. Hence,

it seems that properties that sit long on the market are considered to be less attractive, as

hypothesised by Taylor (1999). The impact of the markup on sales prices is now somewhat

stronger than reported in Table 2. For example, the coefficient of the markup in column (4) is

0.903, while it was 0.811 in the baseline specification.

In Panel B of Table C6 we then investigate whether observed gross discount rates are similar

if we use the adjusted formula (C.3). Fortunately, the gross discount rates are not materially

different from the baseline estimates. For example, when instrumenting for the markup with

price appreciation in column (4) we find a discount rate of 32%, while it is 28% in the comparable

baseline specification. Column (6) shows a discount rate of 31%, which is only slightly higher
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than the 28% found earlier. Hence, allowing sales times to have a direct impact on sales prices

does not alter our conclusion that home sellers undervalue future money flows.
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