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individual firm’s willingness to pay for a marginal unit of spectrum.
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Abstract

We develop a model of competition in prices and infrastructure investment among
mobile network operators. Market shares and service quality (download speeds) are si-
multaneously determined, for demand affects the network load (and consequently speed)
just as delivered speed affects consumer demand. While consolidation typically has ad-
verse impacts on consumer surplus, economies of scale, which we derive from physical
principles, push in the other direction. Estimating the model with detailed French con-
sumer and infrastructure data, we find that consumer surplus is maximized at six firms,
and that the optimal number of firms is higher for lower-income consumers. Total sur-
plus, meanwhile, is maximized at three firms. We also find that the marginal social value
of allocating additional spectrum to mobile telecommunications is roughly nine times an
individual firm’s willingness to pay.

Keywords: Market structure, scale efficiency, antitrust policy, infrastructure, endoge-
nous quality, queuing, mobile telecommunications.

JEL Classification: D21, D22, L13, L40.

∗This research has benefited from the support of Orange, the FIT IN initiative through the TSE-Parternship
research foundation, and the Agence Nationale de la Recherche grant ANR-17-EURE-0010. It has also
benefited from the support of NYU IT High Performance Computing resources, services, and staff exper-
tise. We thank Richard Chen, Stéphane Ciriani, Chris Conlon, Ying Fan, Fraida Fund, Mohamed Karray,
Michael Knox, Paul LaFontaine, Marc Lebourges, Julienne Liang, Alessandro Lizzeri, Chitra Marti, Thomas
Marzetta, Shivendra Panwar, Nancy Rose, Maher Said, David Salant, Jan Philip Schain, Alan Sorenson,
Patrick Sun, Dan Waldinger, Aleks Yankelevich, and Ali Yurukoglu for insightful comments, discussions, and
suggestions. The usual disclaimer applies. All estimation and simulation code (in Python) can be found at
https://github.com/jonathantelliott/mobile-telecommunications.

†Johns Hopkins University, jonathan.elliott@jhu.edu
‡IFC-World Bank Group, ghoungbonon@ifc.org, gvivienh@gmail.com
§Toulouse School of Economics, marc.ivaldi@tse-fr.eu
¶New York University, ptscott@stern.nyu.edu

1



1 Introduction

In the mobile telecommunications industry, market structure is shaped by antitrust policy
and the regulation of radio frequencies. Recently mobile network operators in many countries
have sought to merge, and the regulatory response has been mixed.1 Meanwhile, spectrum
auctions have raised the equivalent of hundreds of billion of dollars, as frequencies previously
used for purposes such as broadcast television and satellite services were allocated to terrestrial
mobile services. In recent discussions regarding both antitrust and spectrum allocation policy,
quality of service as well as prices have been a prominent concern.2 This highlights the
importance of understanding how changes in industry structure, particularly the number of
network operators and the allocation of spectrum among them, map to changes in equilibrium
outcomes.

In this paper, we develop a structural model of the mobile telecommunications industry to
capture the impact of changes in industry structure on equilibrium outcomes such as prices,
investment, quality of service (download speeds), and welfare. The model allows us to assess
the trade-off between market power and economies of scale, both in the traditional sense,
where consolidation may result in higher or lower prices (Williamson, 1968), and in the sense
of understanding how consolidation affects quality of service. Additionally, our framework
allows us to quantify the impact of changes in the allocation of spectrum among firms.

Our structural model comprises firms, consumers, and data transmission. Firms (mobile
network operators) choose the prices of their mobile service plans and their level of investment
in infrastructure, which consumers rely on for data consumption. Consumers choose a mobile
phone plan and how much data to consume using that plan, with download speeds affecting the
utility of mobile data consumption. Our model of data transmission describes how download
speeds emerge from firm’s and consumers’ decisions.

Download speeds, arguably the crucial measure of quality of service in this context, are
difficult to model for two reasons. First, due to congestion, download speeds depend on

1Approved mergers include T-Mobile/Orange (UK, 2010), Hutchinson/VimpelCom (Italy, 2016), Sprint/T-
Mobile (USA, 2020), and Teléfonica/Virgin (UK, 2020). Blocked mergers include AT&T/T-Mobile (USA,
2011), TeliaSonera/Telenor (Denmark, 2015), and Teléfonica/Hutchinson (UK, 2016). Anecdotally, network
operators in some countries (e.g., France) have recently avoided proposing four-to-three mergers due to an
expectation that they would be blocked by antitrust authorities.

2For instance, the Sprint/T-Mobile merger was allowed based on the finding “that quality benefits and dy-
namic competition serve as countervailing forces to the static analysis that substantially address its predicted
harmful price effects” (Federal Communications Commission, 2019). Genakos, Valletti and Verboven (2018)
study how concentration in mobile telecommunications is related to both prices and investment in infras-
tructure. Turning to spectrum allocation, the Federal Communications Commission’s “National Broadband
Plan” describes the potential consequences of insufficient spectrum allocation to mobile telecommunications:
“higher prices, poor service quality, an inability for the U.S. to compete internationally, depressed demand
and, ultimately, a drag on innovation” (Federal Communications Commission, 2010).
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consumers’ data consumption decisions as well as firms’ investments. Second, even ignoring
congestion, there isn’t a simple mapping from firm’s investments to data transmission rates,
as data transmission depends, among other things, on spectrum operated and the distance
over which data is transmitted. We model download speeds based on engineering models of
data transmission that capture how data is transmitted across space and how network load
is handled (in particular, Błaszczyszyn, Jovanovicy and Karray, 2014).3 These engineering
relationships imply two types of economies of scale that have important economic implications,
which we call economies of density and economies of pooling.

Economies of density result from path loss: as electromagnetic waves carrying data travel,
they lose power. Therefore, a mobile network operator can serve a densely populated area
more efficiently (meaning either a higher download speed at a given cost or the same download
speed at a lower cost) than a sparsely populated area.4 With symmetric firms, the population
density served by each firm is inversely proportional to the number of firms. Consequently,
for a given level of total investment in the industry, mobile data services are higher quality
when the number of firms is small.5

Economies of pooling result from mobile network congestion. When many consumers request
data at the same time, data requests enter a queue. Longer queues result in slower download
speeds, and there are economies of scale in serving queues. For example, if two network op-
erators were to combine both their customer bases and owned spectrum, the combined firm
could more efficiently allocate network capacity among customers, thereby reducing conges-
tion, resulting in higher average download speeds. More generally, the allocation of resources
serving a stochastic demand process leads to economies of scale (Mulligan, 1983; De Vany,
1976; Carlton, 1978).

We estimate a model of demand for mobile plans and data consumption based on the French
market in 2015. Our estimation relies on a unique data set from the French mobile market,
with data on choices and consumption by nearly 15 million customers in October 2015 from
a single mobile network operator, Orange Mobile.6 We also incorporate measured download
speeds from Ookla, detailed (publicly available) data on mobile network infrastructure from
the radio frequency regulator (ANFR), and income distribution data from the French statis-

3Our study thus falls within the tradition of engineering production functions of Chenery (1949).
4For example, suppose that the number of base stations per person is held constant across different popula-

tion densities, so that less population-dense areas have lower geographic base station density. Because signals
in the sparsely populated areas will have to travel further on average, they will experience greater path loss,
and sparsely populated areas will have inferior service despite receiving the same level of investment per capita.

5Of course, the equilibrium level of investment (per firm and in total) may change with the number of
firms. Our model will allow for such changes endogenously, with firms choosing infrastructure investment
strategically.

6In accordance with data protection and privacy concerns, we were provided with commune-level statistics
rather than accessing the detailed consumer-level data directly.

3



tical office (INSEE). While we only observe consumers who subscribe to Orange Mobile, we
observe the prices and characteristics for all contracts available in the market, and we prove
that the estimation strategy of Berry, Levinsohn and Pakes (1995) can be employed in this
setting.7

While our model of the supply side is mostly derived from engineering models, we recover a
small number of cost parameters from firms’ first-order conditions. Intuitively, once we have
estimated demand, we can quantify marginal revenue. Then, firms’ pricing decisions provide
information about their costs per user served. Furthermore, firms’ infrastructure investment
decisions (in particular the choice of how densely to build base stations) provide information
about the costs of building base stations.

We use the estimated models of demand and supply to compute counterfactual equilibria under
different numbers of firms. Consolidation presents a trade-off for consumers: faster downloads
at the cost of higher prices. We find that consumer surplus is maximized at six firms, but
low-income consumers prefer a market with more firms than do high income consumers, who
have a higher willingness to pay for increased download speeds. Total surplus is maximized
at three firms.

We also explore the marginal social value of allocating more spectrum to the mobile telecom-
munications industry and compare this value with an individual firm’s willingness to pay for a
marginal unit of spectrum. We find that the marginal social value is about nine times greater
than an individual firm’s willingness to pay.8 This result highlights limitations with using the
results of spectrum auctions to guide high-level spectrum allocation decisions, such as how
to allocate spectrum among different sectors. While spectrum auctions may reveal network
operators’ willingness to pay, willingness to pay may be a gross underestimate of spectrum’s
social value in mobile telecommunications. Thus, when deciding how much spectrum to al-
locate to mobile telecommunications, a structural model like ours may prove invaluable to
regulators.9

Our model is also well suited to addressing questions of within-industry spectrum allocation.
Inspired by the entry of Free Mobile in 2012 in France, we consider two ways in which a
regulator might allocate more spectrum to mobile telecommunications: by giving it to a new
entrant (inducing entry), or distributing it among incumbents. We find that the former is
better for consumer surplus, but the latter is better for total surplus.

7Our model predicts shares for all products from all providers in the market, but we only require that the
model rationalize product-level market shares for Orange. For other firms, we impose firm-level demand shocks
and require the model to rationalize firm-level market shares. Chu (2010) uses a similar approach.

8Similarly, Rosston (2003) found social value to be more than ten times firm willingness to pay.
9Our model takes spectrum allocation as given. Thus, while our framework allow us to quantify the impact

of spectrum allocation on outcomes, we abstract away from concerns about the spectrum allocation mechanism,
e.g. Milgrom and Segal (2020) and Doraszelski et al. (2019).
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Related Literature While our analysis assesses the impact of market structure on prices
and quality of service, market structure in mobile telecommunications has broader potential
impacts: on product proliferation and the types of contracts offered (Seim and Viard, 2011;
Fan and Yang, 2020), on coordinated effects (Bourreau, Sun and Verboven, 2021), and on
incentives to engage in vertical restrictions (Sinkinson, 2020).

A few papers also study infrastructural investment decisions in mobile telecommunications.
Lin, Tang and Xiao (2022) analyze 4G technology investment under a hypothetical merger,
finding that the merger would reduce investment in this technology. Björkegren (2022) also
models endogenous investment in infrastructure, finding that adding a competitor increases
investment in rural areas. Björkegren’s setting is a less-developed country where geographic
coverage is the key product characteristic affected by network operators’ investments. In
contrast, ours is a developed country where we take full geographic coverage for granted, and
quality of service is the key product characteristic.

There is a limited empirical literature studying imperfectly competitive markets in which
firms optimally choose the quality of their products offered. In the seminal theory (Spence,
1975) and in well-studied empirical contexts such as cable television (Crawford and Shum,
2007; Chu, 2010; Crawford et al., 2018; Crawford, Shcherbakov and Shum, 2019), quality is
a product characteristic that firms can directly control. However, in the context of mobile
telecommunications, a challenge for accurately modeling quality of service is the simultaneous
determination of download speeds and demand for data.

Consumer demand for a network operator’s services depends on its quality of service, and
its quality of service depends on consumer demand due to congestion externalities.10 Most
demand models for mobile services do not model the simultaneous determination of demand
and quality of service (including Bourreau, Sun and Verboven (2021), Cullen, Schutz and
Shcherbakov (2020), Fan and Yang (2020), Nevo, Turner and Williams (2016), Sinkinson
(2020), Sun (2015)). Only El Azouzi, Altman and Wynter (2003) and Lhost, Pinto and
Sibley (2015) model the simultaneous determination of service quality and choice of service
provider using queuing theory like we do. Our study builds on these by incorporating path loss
(and therefore economies of density) and by estimating a product-level demand model using
detailed consumption and quality data (therefore allowing us to tackle questions of market
power). Meanwhile, in the engineering literature, Hua, Liu and Panwar (2012) examine
how integrating network resources benefits both from economies of density and pooling, but
without an economic equilibrium framework that endogenizes consumers’ choices and firms’
investments.

10Congestion externalities are negative network externalities. Related challenges arises in markets with
positive network externalities; e.g., Lee (2013).
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Outline The remainder of this paper is organized as follows. Section 2 presents the data
along with some descriptive statistics on usage and quality of mobile data. Section 3 presents
the model of demand and infrastructural investment. Section 4 presents the estimation strat-
egy, and section 5 presents the results. Section 6 presents some counterfactual analyses.

2 Data and Background

2.1 Firms

We focus on the French telecommunications market in October 2015. During the period we
study, the French mobile industry comprised four mobile network operators (MNOs): Orange
(ORG), SFR-Numericable (SFR), Bouygues Telecom (BYT) and Free Mobile (FREE).

MNOs own and operate their network infrastructure (with some network sharing, which we
will describe in section 3.3). In contrast, mobile virtual network operators (MVNOs) sell plans
to customers without owning their own network resources; instead, they rent access to MNOs’
networks. Providing network access to MVNOs is mandatory and enforced by regulation, but
the access charge is freely negotiated with the MNO. MVNOs accounted for 10.6% of the
mobile contracts in late 2015 (ARCEP, 2016).

2.2 Products and Characteristics

We collect data on mobile phone plan terms (including monthly prices, data limits, voice
limits) from online quarterly catalogs of offers proposed by the four MNOs and the largest
MVNO. Here we describe how we interpret this catalog data at a high level; further details
are available in Appendix C.1.

Table 1 describes our choice set. We aggregate phone plans by data limit category (less than
500 MB, 500–3 000 MB, 3 000–7 000 MB, and more than 7 000 MB.) and whether they include
unlimited voice services. For each plan grouping and each firm, we choose a representative
plan to include in our choice set. For MVNOs, our choice set includes one representative
plan for each category; that is, we effectively assume there is one representative MVNO firm.
Monthly data limits are “soft,” in the sense that customers can still use data services once
the limit is exceeded, but download speeds will be throttled significantly.11

We model only plans for wireless services. All MNOs offer various bundles involving fixed
broadband, fixed telephony, and television services. The representative plans in our choice set
are all mobile-only plans, and when we interpret the demand data described below, whenever

11The data allowances we measure are the baseline allowances associated with phone plans. We ignore add-on
options.
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we observed a consumer choosing a bundle with wireless services, we count them as having
chosen the most similar representative (wireless-only) plan.

By 2015, wireless plans were largely differentiated based on data, with more expensive plans
coming with larger data allowances. Most plans featured unlimited voice allowances; only some
low-end plans with zero or low data allowances had limited voice minutes. Furthermore, while
data consumption was still growing rapidly through 2015, voice and text message consumption
had stabilized.12

The representative phone plans in our model’s choice set have the characteristics of plans
actually available in the market. The only characteristic that is adjusted is the monthly
price. When a representative contract is associated with a handset subsidy, the monthly price
is adjusted to reflect the value of that handset subsidy. See Appendix C.1.1 for details. Each
actual plan is then associated with a representative plan, and our estimation method takes
the market shares of the representative plans to be the aggregate market share of all the
actual products associated with them. For instance, our empirical model features one high-
data-limit plan for Orange. We treat the price of this plan as 38.74 AC. This price corresponds
to an observed price of 54.99 AC for this plan and an adjustment of 16.25 AC for the value of
the associated handset subsidy. We measure the market share of this representative plan,
however, as the sum of market shares of eleven high-data-limit contracts offered by Orange
that are associated with various home internet and television bundles.

We do not explicitly distinguish between pre- and postpaid phone plans. Most consumers
subscribe to postpaid plans, which account for 83% of plans in late 2015 (ARCEP, 2016).
While postpaid plans require consumers to pay for their consumption during a monthly billing
period, prepaid customers require customers to pay as they go. Prepaid contracts generally
involve low data limits and limited voice allowances.

2.3 Demand Data

Our main demand data source is a proprietary data set of 15 million residential mobile cus-
tomers of one operator, Orange Mobile, in October 2015. This data set includes information
on the phone plan subscribed to and the usage of mobile voice and data services. Note
that we focus only on the residential market for mobile services, ignoring business customers.
Residential customers represented 89% of the mobile market in 2015 (ARCEP, 2016).

The customer data set is complemented by data on the quality of mobile data services, as
measured by download speeds. Due to congestion, delivered download speeds are not merely

12Source: Séries chronologiques annuelles (1998-2015) data released by ARCEP. Obtained from
http://www.arcep.fr/fileadmin/reprise/observatoire/serie-chrono/series-chrono-annuelles-1998-2015p.xlsx
September 23, 2022.
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Table 1: The Choice Set

Data Min Max Min Max
Price Limit Unlimited Plans Price Price Limit Limit

Operator (AC) (MB) Voice Represented (AC) (AC) (MB) (MB)
Orange 12.07 50 No 11 4.99 30.99 0 50
Orange 14.99 1000 No 4 14.99 14.99 1 000 1 000
Orange 22.91 1000 Yes 2 22.91 24.99 1 000 1 000
Orange 30.91 4000 Yes 5 19.99 48.99 3 000 5 000
Orange 38.74 8000 Yes 11 38.74 165.99 8 000 20 000
Bouygues 8.07 0 No 6 3.99 11.32 0 20
Bouygues 14.99 1000 No 3 14.99 14.99 1 000 1 000
Bouygues 20.91 3000 Yes 4 19.99 29.99 3 000 5 000
Bouygues 33.74 10000 Yes 4 32.70 72.70 10 000 20 000
Free Mobile 2.00 50 No 1 2.00 2.00 50 50
Free Mobile 19.99 3000 Yes 1 19.99 19.99 3 000 3 000
SFR 12.07 100 No 5 5.99 14.99 100 200
SFR 14.99 1000 No 3 14.99 19.99 1 000 1 000
SFR 22.91 1000 Yes 3 22.91 29.99 1 000 1 000
SFR 31.91 5000 Yes 5 19.99 43.99 3 000 5 000
SFR 37.74 10000 Yes 9 36.70 149.99 10 000 20 000
MVNO 7.99 0 No 13 7.99 18.99 0 200
MVNO 17.99 1000 No 5 9.99 17.99 500 1 000
MVNO 19.99 500 Yes 10 19.99 35.99 500 2 000
MVNO 42.99 5000 Yes 13 12.99 61.99 3 000 5 000
MVNO 64.99 10000 Yes 4 64.99 76.99 10 000 10 000

Each row corresponds to an object in the choice set, i.e., a representative product. The minimum and
maximum prices and data limits are over the set of contracts represented by each representative product

in the choice set.

a function of infrastructure and geographic characteristics. Congestion arises because the
available bandwidth is shared among users and, as a result, the greater the number of users,
the lower the quality (as measured by download speed). At the same time, the number of users
(and therefore the demand for data) on a network depends on quality. In our counterfactuals,
we employ a model in which demand and quality of service are simultaneously determined,
but for the purpose of estimation, we rely on a direct measure of download speeds as our
measure of quality. Speedtest is a service offered by the firm Ookla that allows users to check
their download and upload internet speeds. We use data from these speed tests that include
measured download speed, the time of the test, the location of the user, and the mobile
network operator. We use a proprietary data set provided by Ookla on over one million
speed tests in France in the fourth quarter of 2015 to construct a measure of experienced
download speeds for each mobile network operator in each municipality. Section C.3 in the
data appendix explains the construction of this quality measure in detail.

Markets are defined as municipalities (French communes), and we limit our analysis to rela-
tively populous markets, defined as those with a population greater than 10 000, for a total of
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589 markets.13 Municipality-level market size is defined as the population age 12 and older,
obtained from the French Bureau of Statistics, INSEE.

For network operators other than Orange, we have only market shares at the national level
from GSMA Intelligence. Table 2 presents the market shares for each firm in October 2015.

Table 2: Aggregate Market Shares of Alternatives

Market Size (millions) ORG SFR BYT FREE MVNO Non-users

56.5 29.4% 13.4% 17.2% 21.5% 10.6% 8.0%
Data reported by the regulator (ARCEP, 2016) provides the relative share of MVNOs and MNOs. Relative

shares within MNOs obtained from GSMA Intelligence. Shares are adjusted to allow for 8% outside option

share, consistent with CREDOC (2015).

We also construct a “Rest of France” municipality which aggregates the population and income
distribution from all communes not included in our estimation sample. As we explain below,
the Rest of France municipality plays a very limited role in the estimation; we include it
primarily so that we can calculate aggregate market shares that can be compared to the
national market shares in Table 2. Download speeds in the Rest of France municipality are
computed as the average download speeds in all municipalities outside the 589 municipalities
in our estimation sample. The Rest of France municipality is not involved in simulations or
in estimating infrastructure costs, so we need not construct the infrastructure measurements
described below for it. We also omit the Rest of France municipality from descriptive statistics
presented below.

2.4 Infrastructure Data

Finally, we obtain detailed data on infrastructure from the national radio communications
regulator (ANFR). These data describe the locations of all mobile telecom base stations,
along with the number of antennas and frequencies operated by each network operator.14

Ultimately, we want to quantify the typical cell for each municipality, characterized by the area
served by base stations and the bandwidth operated. For bandwidth, we simply compute the
mean bandwidth operated across all base stations for each operator and each municipality.

13We limit ourselves to populous markets because active network sharing (where network operators share the
transmitting components of their infrastructure) is relatively common in rural areas but not practiced in urban
areas. Thus, for our sample, we are comfortable associating a firm’s measured download speeds with that firm’s
own infrastructural investments. There are 592 municipalities with a population greater than 10 000, and we
drop three of those municipalities due to insufficient download speed tests to construct quality measures. This
yields a total of 589 markets in our sample.

14This database is publicly accessible at https://www.cartoradio.fr/.
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To measure the area of the typical cell, dividing municipality area by the number of base
stations could be misleading. The concentration of base stations within uninhabited areas is
typically low, but such areas have few users and low data demand. Thus, it could paint a
misleading picture of the intensity of investment if we simply divided municipality area by
the number of base stations, particularly in municipalities with large, uninhabited areas. We
instead consider a measure of the “adjusted area” of a commune. To this end, we compute
the contraharmonic mean of population density across space (equivalently, the population
density integrating across persons rather than space).15 The adjusted area is defined as the
municipality’s population divided by the contraharmonic mean population density. We then
measure the object of interest, the area served by a typical base station, as the adjusted area
divided by number of base stations.16

In addition to infrastructure data from ANFR, we use traffic data from OSIRIS, which is an
internal database provided by Orange. OSIRIS provides the total downlink volume of data
traffic per network cell over time. We use these volumes to calculate data demand rates,
which we then use to calibrate parameters of the data transmission model.

2.5 Descriptive statistics

Table 3 provides summary statistics for variables of interest.

Measured quality (download speeds) varies substantially both across and within markets.
Across markets, the average standard deviation for an operator is 9.56 Mbps, and across
operators, the average standard deviation for a market is 7.92 Mbps. Figure 1 displays
histograms of measured quality across markets for each mobile network operator.17

Data usage is positively correlated with measured quality. Figure 2 plots the relationship
across markets between Orange download speeds and the observed average data usage for
three different data limits.18 Few consumers actually reach their data limit in a given month,

15The data we use for this is the Gridded Population of the World, v4, available from https://sedac.ciesin.
columbia.edu/data/collection/gpw-v4.

16For example, Fontainbleau is a relatively populous commune consisting of a town surrounded by a forest.
While the population density in the town is relatively high, the population density of the commune appears
low if we divide by the commune’s total area. Our measure of adjusted area for Fontainbleau is 69.6 square
kilometers, while the raw municipality has an area of 172 square kilometers.

17There is a potential selection concern in these measures of download speeds. Because they come
from voluntary speed tests, it may be the case that measurements tend to happen when consumers
experience slow downloads. However, the levels of download speeds reported in Table 3 are consis-
tent in the aggregate with the levels coming from other sources. We note that for Orange, Bouygues,
and SFR, our average download speeds lie within the values reported by ARCEP for intermediate
and urban density areas (the densities of areas in our sample). For Free, the 23 Mbps average down-
load speed is actually higher than the 19 Mbps number reported by ARCEP. See https://www.arcep.
fr/cartes-et-donnees/nos-publications-chiffrees/couverture-et-qualite-de-service-mobile-2g-3g-4g-5g/
couverture-et-qualite-des-services-mobiles-juillet-2016.html (accessed November 7, 2022).

18The correlations for data limits 1 000 MB, 4 000 MB, and 8 000 MB are, respectively, 0.147, 0.270, 0.246.
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Table 3: Summary Statistics

Mean Std. Dev. Min. Max.
Customer data (Orange)
Market average usage (MB) 1 044 194 555 1 702
Fraction users in market above data limit 0.18 0.03 0.10 0.28
Number of customers 4 425 831
Quality and market data
Quality Orange (Mbps) 32.82 11.11 3.97 84.98
Quality Bouygues (Mbps) 23.70 9.65 0.60 72.97
Quality Free (Mbps) 23.15 11.03 1.56 56.74
Quality SFR (Mbps) 17.57 8.58 0.39 52.30
Quality MVNO (Mbps) 24.70 7.04 5.13 48.87
Median income (Euros) 13 035 3 177 5 152 31 320
Number of markets 589
Tariff data
Price 23.47 14.22 2.00 64.99
Price (Orange) 23.92 9.90 12.07 38.74
Price (Others) 23.33 15.32 2.00 64.99
Data limit 3 081 3 484 0 10 000
Number of phone plans 22
Infrastructure data
Bandwidth per firm (MHz) 70.69 30.42 0.00 140.20
Number of base stations 7.47 21.47 0 511
Effective cell radius (km) 1.44 0.93 0.26 7.64

Customer, quality, market, and infrastructure data summary statistics are (unweighted) across markets.
Tariff data summary statistics are across mobile phone plans.

and the average fraction of the data limit that is consumed is decreasing in the size of the data
limit, as demonstrated in figure 3, which plots the histograms of average data consumption
for three different data limits.19

19For the data limits 1 000 MB, 4 000 MB, and 8 000 MB, the fraction of the data limit that is consumed is,
respectively, on average, 0.656, 0.578, and 0.534.
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Figure 1: Histograms of qualities by operator
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Figure 2: Average data usage vs. measured quality across markets
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Figure 3: Average data usage across markets
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Figure 4 plots the relationship between the median incomes in each market and the market
shares of the expensive phone plans. Each subplot corresponds to the market share of one
of the three most expensive phone plans offered by Orange (which are the same three plans
depicted in figures 2 and 3). Median incomes are positively correlated with the market shares
of each of the most expensive plans.20 For each of the same Orange phone plans, figure 5
plots median income against average data consumption of the consumers subscribing to that
phone plan. Median incomes are negatively correlated with data consumption.21

Figure 4: Median income vs. expensive contract market shares
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20Correlation coefficients for median incomes and market shares are, following the order of the graphs, 0.445,
0.522, 0.278.

21Correlation coefficients for median incomes and average data consumption are, following the order of the
graphs, -0.410, -0.445, and -0.568.
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Figure 5: Median income vs. mean data consumption
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3 Model

In this section we describe a formal model of consumer choice, how download speeds are
determined, and firm competition. These components jointly provide a model of the mobile
telecommunications industry that can capture how changes to market structure impact prices,
quality of service, and welfare. We present each component in turn. The first component (Sec-
tion 3.1), which captures how consumers choose mobile phone plans and how much data to
consume, takes prices and download speeds as given. The second component (Section 3.2)
maps consumer demand and infrastructure into download speeds, taking prices and infras-
tructural investments as given. The final component (Section 3.3) captures how firms choose
the prices of mobile phone plans and the level of investment in infrastructure.

Before presenting each of these model components, we introduce some notation that is common
to each of these components. There exist a set of mobile phone plans, J , indexed by j. Each
plan j belongs to a particular firm, f (j), and the set of plans provided by a firm is given by Jf .
Consumers belong to different geographic markets, indexed by m, which vary by demographics
and geography (the latter matters for the efficiency of data transmission). Table 15 in the
Appendix provides a list of all parameters used in the model and their definitions.

3.1 Demand Model

Consumers make decisions about to which mobile phone plan (if any) they subscribe and how
much data to consume using that plan. Each mobile phone plan j in a market m is character-
ized by the download speed available in that market, Qf(j),m;22 the price of that phone plan,

22While consumers may be mobile, we assume that their choices depend on the network quality in their
municipality of residence.
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pj ; and a data consumption limit, d̄j . Note that download speeds are common across plans
offered by the same firm, as firms do not discriminate across plans in the download speeds
they offer. Note also that prices and data limits do not depend on the market. In France,
mobile phone plan prices and characteristics (except download speeds) are set nationally.

A consumer’s indirect utility for a plan j depends on the utility that they derive from con-
suming x megabytes of data and the product characteristics. This indirect utility is given
by

ujm

(
x, Qf(j),m, Pj ; θi, ϑi, εij

)
= wj

(
x, Qf(j),m; ϑi, θi

)
+ θvvj − θpiPj + ξjm + εij , (1)

where wj(·) maps the plan j, data consumption x, and data quality Qf(j),m into the utility
from consumption of mobile services. Other plan characteristics that enter the consumer’s
utility include the price, Pj ; whether the plan has an unlimited voice allowance, captured
by vj (equal to 1 if plan j has an unlimited voice allowance, 0 otherwise); ξjm, the product-
market-specific demand shock; and idiosyncratic tastes, εij . The parameters θ and ϑ describe
preferences. The preference parameter ϑi specifically captures how much consumer i values
consuming data, described in detail in the following section.

3.1.1 Mobile Data Consumption

Subscribing to a particular plan j, a consumer chooses how much data to consume given the
plan’s data consumption limit, download speed, and the consumer’s value of data consump-
tion. They choose their level of consumption to maximize the utility from data consumption,
wj (·). To rationalize finite data consumption even when additional data consumption entails
no monetary cost, our functional form of wj (·) includes a term which corresponds to the disu-
tility of download times. This disutility is proportional to the amount of data downloaded
and inversely proportional to the download speed. It can be thought of as the opportunity
cost of time spent downloading. Consumers will consume data until the marginal utility of
extra data corresponds to the disutility of additional download time.

A consumer’s utility of data consumption is given by the following functional form:

wj (x, Q; ϑi, θi) = ϑi log (1 + x) − cj (x, Q; θi) . (2)

The first term captures the utility the consumer derives from consuming data. It exhibits
decreasing marginal returns and depends on the parameter capturing how much the consumer
values data consumed, ϑi. The second term, cj(·), is the opportunity cost of the time spent
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downloading. It is given by the following formula:

cj (x, Q; θi) =


θc

x
Q if x ≤ d̄j

θc

(
d̄j

Q + x−d̄j

QL

)
if x > d̄j ,

(3)

where θc is a preference parameter capturing how much the consumer dislikes waiting.

There is a discontinuity in download speeds when a consumer reaches their monthly data
limit, d̄j , captured by the two cases in equation 3. Data consumed after reaching the data
limit downloads at a throttled speed QL ≪ Q, where Q is download speeds stacked across
firms and markets.23

This discontinuity in download speeds creates a discontinuity in the marginal cost of data
consumption. We let x∗

jm (·) denote the consumer’s optimal data consumption:

x∗
jm

(
Qf(j),m; ϑi, θc

)
= arg max

x∈R+

{
wj

(
x, Qf(j),m; ϑi, θi

)}
.

The first order condition and the structure of the marginal cost of data consumption yield
four possible cases that determine the optimal data consumption:24

x∗
jm

(
Qf(j),m; ϑi, θi

)
=



0 if ϑi ≤ θc
Qf(j),m

ϑi
θc/Qf(j),m

− 1 if θc
Qf(j),m

≤ ϑi <
(

θc
Qf(j)

) (
d̄j + 1

)
d̄j if θc

Qf(j),m

(
d̄j + 1

)
≤ ϑi < θc

QL

(
d̄j + 1

)
ϑi

θc/QL − 1 if ϑi ≥ θc

QL

(
d̄j + 1

)
.

(4)

The first case captures consumer types that would not consume any data.25 The second case
captures consumer types that consume less than d̄j even without throttling. The third case
captures consumer types that would consume greater than d̄j if download speeds were not
throttled, but under throttling, the marginal cost of an additional unit of data is greater
than the marginal benefit, so they consume exactly the data limit. The final case captures
consumer types that would consume greater than d̄j even under throttled download speeds.26

23MNOs in France typically use a throttled speed of 128 Kbps (see sectionC.1.2 in the appendix for more
information about throttled download speeds). We use this value for throttled speeds in our estimation of
demand and cost parameters as well as in our counterfactuals.

24We are using here the assumption that QL ≪ Q, which holds in our data.
25We interpret such consumers as those that do not need their mobile plan (e.g., they went out of the country

for the month). In the data, we observe a point mass of consumers that consume zero data—even among those
that adopt high data limit plans.

26Small data limit plans have hard data limits (i.e., there is no throttling). We therefore impose that all
contracts with data limits less than 500 MB cannot consume greater than the associated data limit.
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3.1.2 Mobile Phone Plan Decision

A consumer i chooses the mobile phone plan that maximizes their expected utility. The
expectation is with respect to the data consumption utility parameter ϑi, which is a random
variable that we assume is distributed

ϑi ∼ Exponential (θdi) .

That consumers do not know the realization of their ϑi prior to choosing a plan reflects that
consumers may be unable to perfectly forecast their utility for data when choosing a phone
plan. While consumers do not know their ϑi ex ante, they do know their θdi.

Each market has an outside option, which is not subscribing to a phone plan. This option is
represented by j = 0 and has indirect utility normalized to εi0.

Unlike with respect to the data consumption utility parameter ϑi, consumers do observe the
realization of their vector of idiosyncratic taste shocks, εi, prior to choosing a phone plan.
We assume a nested structure on the idiosyncratic shocks. Specifically,

εij = ζig(j) + (1 − σ) ηij ,

where ηij is i.i.d. extreme value and ζig has the distribution such that εij is extreme value.
The value σ ∈ [0, 1) is the nesting parameter.27 All phone plans (but not the outside option)
belong to a single nest. The addition of a nest for all plans except the outside option allows
for more flexible substitution patterns to the outside option.

Observing the utility parameter θi and idiosyncratic taste shocks εi, consumer i chooses the
phone plan that maximizes their utility, taking an expectation over their data consumption
(i.e., their realization of ϑi). Their choice of phone plan j∗

im is therefore given by:

j∗
im (Qm, P; θi, εi) = arg max

j∈J ∪{0}

{
E
[
ujm

(
x∗

j

(
Qf(j),m; ϑi, θi

)
, Qf(j),m, Pj ; θi, ϑi, εij

)]}
, (5)

where the expectation is over ϑi.28

Integrating over idiosyncratic taste shocks, we obtain market shares for each mobile phone
plan conditional on consumer type θi, given by

sijm (Qm, P; θi) =
∫
1 {j = j∗

im (Qm, P; θi, εi)} dF (εi) , (6)

27Note that if σ = 0, the model is equivalent to a random coefficients model without nesting.
28The expected value of utility from data consumption, E [wj (x∗ (Q; θi) , Q)], is feasible to derive analytically

but extremely cumbersome to write. It is therefore omitted from the draft but may be found in our code.
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and integrating over consumer types we get market shares:

sjm (Qm, P) =
∫

sijm

(
Qf(j),m, Pj ; θi

)
dFm (θi) . (7)

These market shares, along with data consumption, given by equation 4, yields the average
data consumed in a market m by consumers subscribed to a phone plan j:29

x̄jm (Qm, P) =
∫ ∫

sijm (Qm, P; θi)
sjm (Qm, P) x∗

jm

(
Qf(j),m; ϑi, θi

)
dF (ϑi|θi) dFm (θi) . (8)

3.2 Data Transmission Model

In this section, we describe a formal model of how download speeds are jointly determined
by bandwidth allocations, infrastructural investment decisions, and the load imposed on a
network by consumers. The first two components—bandwidth and infrastructure—are taken
as given, and the final component—network load—comes from the demand model in the
previous section. We rely on standard telecommunications engineering models to determine
how these components map to experienced download speeds and are particularly indebted to
Błaszczyszyn, Jovanovicy and Karray (2014).

In this model, firms own and operate their own networks with no sharing of infrastructure.
While passive network sharing (the sharing of the physical structure of base stations and the
cost of electric power) is common, our cost function specification is in a sense robust to it, as
we discuss below. During 2015, active network sharing (which occurs when equipment that
transmits data is shared) occurred primarily in areas with low population density. Because
we want to associate each firm’s quality of service with the firm’s own investment decisions,
we ultimately focus on the higher-density areas of France in our analysis. See Appendix C.4
for further discussion.

3.2.1 Base Station Infrastructure and Data Transmission

For each mobile network operator f and municipality m, we assume that each municipality
has homogeneous population density and that the full land area is divided into equally-sized
hexagonal cells, so each cell is identical for a given operator and municipality.30 We assume
that each cell is served by a single base station transmitting an omni-directional signal at the
maximum signal strength allowed by regulation. One important network variable is owned
spectrum or bandwidth, Bfm. Bandwidth is not a choice variable in our model, but it is an

29An analytic expression for x̄jm (Qm, P) exists and may be found in our code.
30We use the terminology “network operator” in this subsection since mobile virtual network operators do

not own their own network resources, as explained in Section 2.1. All network operators are a firm (and
therefore denoted by f), but not all firms are mobile network operators.
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aspect of market structure we vary in our counterfactual analysis.

The size of network operator f ’s cells in market m is characterized by Rfm, which is the cell
radius (more precisely, a hexagonal cell’s maximal radius, which is equal to its side length).
In this section we take cell size as given and consider how firms choose the sizes of their
cells in the next section. We could also think of this choice variable of the firms’ as being the
number of base stations in a given municipality, Nfm. We assume the area served by each cell is
Am/Nfm = 3

√
3R2

fm/2, where Am is municipality m’s effective land area.31 Note that we take
for granted that firms will serve the full municipality area. This is standard practice in recent
engineering-based studies of mobile service provision in developed countries, reflecting the idea
that quality, not coverage, is the relevant non-price characteristic that network operators now
compete on in developed countries. We assume that the municipality’s area can be divided
into equally-sized hexagons, effectively ignoring municipality geometry and other spatially
explicit details.32

For a given consumer i, the theoretical maximum download speed q (ri) achieved by a unit of
bandwidth depends on the consumer’s distance ri from the base station. Given the Shannon-
Hartley theorem (Shannon, 1948), download speeds scale linearly with bandwidth, so if a
consumer is allocated bi units of bandwidth, their theoretical maximum download speed will
be biq (ri). We introduce the precise q (·) function later, but for now what is important is that
q (·) is decreasing, reflecting path loss (i.e., signals lose power as they travel across space).

To aggregate download speeds over consumers, it would not be correct to compute the ordinary
mean of q (r) because users who receive a lower quality signal require more resources for a
given download. That is, for a download of a given size, they will either tie up the base
station’s capacity for longer or they will require a relatively larger fraction of the bandwidth
to receive the same download speed as consumers closer to the antenna. Consequently, average
download speeds should be derived from harmonic means.

For the sake of exposition, consider a unit mass of users, each of whom has one unit of
demand for data and are guaranteed the same download speed, Q̄. For now we ignore queuing
issues and assume constant aggregate demand, which we will relax later. Then, a user at
distance r from the base station will require bandwidth Q̄/q (r). Assuming users are uniformly
distributed over the cell, the total bandwidth required to serve the cell is

Bfm = G (Rfm)−1
∫ Rfm

0

Q̄

q (r)g (r) dr,

31When implementing the model empirically, we use an adjusted measure of land area because the raw land
area may overstate the area that operators need to cover (at least with high quality) when large unpopulated
areas are present. See Section 2.4 above for details.

32Heterogeneity in municipality topography and other features that affect radio transmission can be captured
in a municipality-level spectral efficiency parameter, introduced later in this section.
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where Rfm is the radius of the cell, and g (r) and G (Rfm) reflect its geometry (e.g., g (r) = 2πr

and G (Rfm) = πR2
fm with circular cells, but we use hexagonal cells, which tessellate).33

Rearranging the above equation to solve for the average download speed that can be sustained
by a given bandwidth, we have

Q̄fm (Rfm, Bfm) = Bfm

G (Rfm)−1 ∫ Rfm

0
g(r)
q(r)dr

. (9)

The above equation expresses channel capacity, describing how feasible download speeds are
influenced by the firm’s choice of cell radius Rfm and its bandwidth Bfm.34 We have assumed
there is a unit density of users. If the density of users is Dm, then the channel capacity
per consumer would be equal to Q̄fm (Rfm, Bfm) /Dm. Intuitively, feasible download speeds
depend on the level of demand. Later, we consider more precisely how demand affects delivered
download speeds using queuing theory. We also consider how the demand level depends on
delivered download speed, since consumers presumably are more likely to subscribe to a firm
and download more data when a firm offers better download speeds, as captured by x∗

jm (·),
defined in equation 4. Thus, in equilibrium, demand and download speeds are simultaneously
determined.

Next, we consider the individual download speed function q (·). The Shannon-Hartley theorem
provides the theoretical upper bound to download speed (per Hertz of bandwidth) (Shannon,
1948):

q (r) = log2 (1 + SINR (r)) , (10)

where SINR (r) is the signal-to-noise-and-interference ratio, and q(r) is measured in bits per
second. This ratio is given by the ratio of signal power to the sum of noise and interference
power:

SINR (r) = S (r)
N + I(r) , (11)

where S (r) is signal power, N is noise power, and I(r) is interference power. We now consider
each of these three objects in turn.

33The area of a hexagon is given by G(Rfm) = 3
√

3
2 R2

fm, where Rfm is the hexagon’s side length. When
we actually integrate over hexagonal cells, we do not actually use a formula for g(r). Instead, we compute a
double integral, integrating over the hexagon’s apothem and perpendicular to the apothem.

34We need not assume that everybody gets the same download speed to derive this formula for channel
capacity. We could also suppose everybody is allocated the same bandwidth in which case a consumer at
distance r’s time spent downloading is proportional to the inverse of Bfmq (r). Then, total data downloaded
dividing by total time spent downloading is

G (Rfm)−1 ∫ g (r) dr

G (Rfm)−1 ∫ g(r)
Bf q(r) dr

= Bf

G (Rfm)−1 ∫ g(r)
q(r) dr

,

or the same formula for channel capacity as equation 9.
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As the signal travels, its power diminishes (path loss). We take this into account by using
the Hata model of path loss (Hata, 1980). We assume that the signal power is equal to (in
milliwatts):

S (r) = exp (−18.012) r−3.522. (12)

An explanation of how we obtain these numbers is provided in Section A.1.1 of the Appendix.

Noise power N is set equal to Johnson-Nyquist noise, −107.01 dBm per 5 MHz of bandwidth.
Interference power is set equal to 30% of the signal power from the six adjacent cells.35 The
30% number follows Błaszczyszyn, Jovanovicy and Karray (2014) and reflects that adjacent
cells won’t always be in use, and modern systems use directional signals to limit interference.

In practice, the efficiency of data transmission is affected by topography and the presence of
buildings. This means that the efficiency of data transmission may vary by market, so we
introduce a market-level subscript and spectral efficiency parameter into our download speed
function:

qm (r) = γmq (r) . (13)

We discuss the calibration of this spectral efficiency parameter in section 4.3.

This spectral efficiency parameter can absorb many aspects of the data transmission technol-
ogy, and in particular, anything that affects the level of download speeds without affecting
the path loss exponent or the model of congestion. For instance, one might be concerned that
our measure of spectrum reflects all the frequencies owned by an operator, and therefore the
frequencies used for both downloads as well as uploads by mobile customers, but we’re using
this measure of bandwidth to model only download speeds. Operators could manage outgo-
ing transmissions (downloads) and incoming transmissions (uploads) by using half of their
spectrum for each (in practice, they have more sophisticated strategies). In this case, the
relevant measure of spectrum for determining download speeds would be half of the spectrum
owned by each operator; therefore, we would want to rescale our measure of bandwidth by a
factor of .5. By calibrating our spectral efficiency parameter to observed download speeds, we
implicitly achieve such a rescaling, because the spectral efficiency parameter, like bandwidth,
is linearly proportional to delivered download speeds.

3.2.2 Queuing

Consumers’ download requests do not arrive uniformly over time. This means that Qfm de-
rived above will not represent the actual delivered download speed in practice but a theoretical
upper bound referred to as channel capacity.

35When we perform the integration above, we compute each point’s distance from the centroids of the six
adjacent cells to calculate interference power. See Appendix A.1.2 for a more detailed description.
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To derive a relationship between channel capacity and average delivered download speed,
we follow Błaszczyszyn, Jovanovicy and Karray (2014) and assume that download requests
arrive according to a Poisson process and that download requests are served through a M/M/1
queue (a queuing system in which a single server serves jobs on a first-come, first-served basis).
Then, the average download speed, Qfm, will be

Qfm = Qfm − QD
fm, (14)

where QD
fm is the arrival rate of download requests. It comes from the demand model and

is provided explicitly later. Each of the terms in equation 14 should be understood as rates,
e.g., as values measured in Megabits per second.36

3.2.3 Transmission Equilibrium

We now consider how the engineering relationships described above come together with de-
mand to determine delivered download speeds in equilibrium. To be clear, at this point we
are considering equilibrium in terms of download speeds and consumer demand, taking prices
and infrastructure as given. Formally, the equilibrium we now consider is conditional on a
vector of prices of mobile phone plans P and infrastructure variables (Rm, Bm), where Rm

and Bm are the stacked cell radii and bandwidths of the network operators.

The total demand for downloads on network operator f ’s network over a month can be broken
down into the product of three terms, which come from the demand component of our model:

Xfm (Qfm, Pf , Q−f,m, P−f ) = popm×sfm (Qfm, Pf , Q−f,m, P−f )×x̄fm (Qfm, Pf , Q−f,m, P−f ) ,

(15)
where popm is the number of potential consumers in the market, and the market share and
data consumption functions, sfm (·) and x̄fm (·), come from the phone plan-level analogues in
Section 3.1, summed across the phone plans offered by network operator f .37

The demand rate for downloads on network operator f ’s network is the total downloads
serviced by operator f over a month, Xfm (·), distributed across time and across base stations.
This rate is given by:

QD
fm (Rfm, Qfm, Pf , Q−f,m, P−f ) = Xfm (Qfm, Pf , Q−f,m, P−f )

H × Nfm (Rfm) , (16)

36For a derivation of this formula, see Taylor, Karlin and Taylor (1998), pp. 548-549.
37MVNOs use MNOs’ infrastructure for their own plans. Therefore, in our empirical analysis, we incorporate

the load that results from the plans offered by the MVNOs on the MNOs’ networks. ORG, BYG, and SFR all
allow MVNOs to use their infrastructure, and (lacking data on these relationships) we assume MVNO load is
distributed equally among these three MNOs.
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where H is the number of seconds in a month and Nfm (·) is the number of base stations
network operator f has in market m.38

Combining equations 9, 14, and 16, we have

∀f = 1, . . . , F : Qfm = Bfm

[
G(Rfm)−1

∫ Rfm

0

g(r)
qm (r)dr

]−1

−QD
fm (Rfm, Qfm, Pf , Q−f,m, P−f ) .

(17)
Given prices and infrastructure variables, the vector of equilibrium download speeds Q∗

m is
defined as the vector of values of Qfm that solves equation 17.

We have now defined the transmission equilibrium as a function of prices and infrastructure,
Q∗

m (P, Rm, Bm).

3.2.4 Economies of Scale

Our model allows for two sources of scale efficiencies: economies of pooling and economies of
density.

Economies of Pooling It has long been recognized in the economics literature that “there
are economies of scale in servicing a stochastic market” (Carlton, 1978).39 In operations
management, the same phenomenon has been referred to as the “Pooling Principle” (Cattani
and Schmidt, 2005). Thus, we use “economies of pooling” to describe economies of scale
coming from consolidating bandwidth.

It is easy to see how economies of scale result from our queuing theory model. Equation
14 holds that the average delivered download speed corresponds to the difference between
channel capacity and the download demand rate. Crucially, channel capacity is linear in
bandwidth. Thus, if two identical firms combine their bandwidth and their customer bases
(holding the download demand rate per customer fixed), then both terms on the right-hand
side of equation 14 would double. Consequently, download speeds (the left-hand side) would
also double.

Economies of Density Due to path loss, captured by the function q(·), the closer users
are to a base station, the more efficiently that station can serve them. Thus, if we increase
the density of users served by a firm while keeping constant the number of users per base

38In our empirical application and counterfactuals, we use H = 31 × 8 × 3600. That is, we try to capture
download speeds during peak hours when most of the downloads occur, and we assume that days effectively
consist of eight peak hours.

39Robinson (1948) was perhaps the first to describe the phenomenon, under the heading of “the economy
of the large machine.” De Vany (1976) was an early application using queuing theory to derive economies of
scale. Mulligan (1983) shows formally how economies of scale result from queuing theory.
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station, users will be closer to base stations serving them on average, improving download
speeds. If two network operators were to combine their user bases, the consolidated entity
would effectively serve a higher population density of users. This creates the opportunity for
the consolidated firm to deliver higher download speeds to its customers with the same total
investment level of the separate firms, which we refer to as “economies of density.”40

We can quantify these economies of density by comparing the channel capacities that result
from the case of two network operators to that of one network operator with an equivalent
number of stations as the two combined. The single network operator would have an effective
radius of R/

√
2, which is the radius that yields the same number of stations as two operators

each with a radius of R. The difference in channel capacities depends substantially on the
size of the radius. If the two-operator case has a radius R = 1 km, then the single operator
with the same number of base stations has a channel capacity (per unit of bandwidth) that
is just 0.1% larger. If R = 5 km, however, the single operator would have a channel capacity
that is 19.4% larger. In our infrastructure data, the effective cell radii cover a range of values
that includes both 1 km and 5 km (see Table 3), but they tend to be much closer to 1 km.
This foreshadows one message in our counterfactual results: while economies of density can
matter in principle, they have little impact for the typical cell sizes in our data. We revisit
this discussion in section 6.5, where we simulate equilibria for different population densities.

3.3 Firm Competition

In this section we present how firms choose prices of the phone plans they offer and infras-
tructural investment levels to maximize profits. We can understand the network equilibrium
model in the previous section as holding at the market level m with potentially different
infrastructural variables in each market, (Rm, Bm). However, prices are set nationally, so
we will not introduce subscripts on the price vectors. From now on, when the infrastructure
variables appear without market subscripts, they refer to the stacked vector of infrastructure
variables for all markets.

Firms set prices and infrastructure simultaneously in all markets in a static game. We consider
the first-order conditions with respect to each competitive variable in turn.

40Here we ignore the dynamics of merging two firms and integrating their existing infrastructure; we are
making statements about what would happen with a given level of investment spread across two firms in
comparison to what one integrated firm would achieve with the same level of total investment.
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3.3.1 Price Competition

Variable profits are given by(
Pf − cu

f

)
·
∑
m

popmS∗
fm (P, Rm, Bm) , (18)

where cu is the variable cost per customer, popm is the size of market m, and S∗
mf (·) denotes

the vector of product-level shares for phone plans offered by firm f in market m. This market
share function is derived from the demand system and the transmission equilibrium function
as follows:

S∗
fm (P, Rm, Bm) = sfm

(
Q∗

mf (P, Rm, Bm) , Q∗
m,−f (P, Rm, Bm) , Pf , P−f

)
,

where the sfm (·) corresponds to the stacked vector of firm f ’s phone plan-level market shares
given by equation 7.

We assume that firms choose prices to maximize the variable profits expressed in 18. Note
that equilibrium download speeds depend on price, so the first-order condition for optimal
price-setting must not only take into account the direct effect of lowering price on consumer
demand, but also the indirect effect of endogenous download speeds. The indirect effect
lowers price elasticities because as demand for firm f falls, its download speeds increase due
to reduced network load, which has a positive effect on demand, thereby dampening the
demand reduction. We discuss demand elasticities further in section 6.

3.3.2 Costs and Infrastructure Competition

Firms also decide on their infrastructural investments in each market, measured by Rfm.
Infrastructure costs in market m are given by the following function:

Cfm (Rfm, Bfm) = cs
fm

Am

G (Rfm)Bfm, (19)

where Am is the land area of market m, and cs
fm captures costs per base station and unit of

bandwidth (which may vary by network operator and by market), and G (R) = 3
√

3R2/2 is
the area of a hexagonal cell with radius R.

This cost function reflects the idea that the main costs associated with a base station are the
electricity costs, the cost of installing antennas, and other costs that are proportional to the
bandwidth being operated. An advantage of this cost function is that, if we suppose that
all firms operate at the same base station locations, then redistributing bandwidth among
firms and/or changing the number of firms does not change the total costs incurred within
the industry. Thus, this cost function shuts down a potential source of economies of scale
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associated with the duplication of fixed costs.41

This cost function also rules out any gains from passive network sharing. Because costs are
proportional to bandwidth, firms would not change their total costs by combining their net-
work resources at a given location. While our analysis does not explicitly incorporate passive
network sharing, this does not lead us to overstate the case for consolidation. That is, one
might worry that some of the predicted counterfactual efficiency gains from consolidation will
be overstated because those efficiency gains can be realized among firms without consolidat-
ing. Because this source of cost savings does not exist in our baseline model, this is not a
concern when interpreting our main counterfactuals.

That said, it is natural to think that there are some fixed costs associated with operating a base
station, such as rents or setup costs, that don’t scale with the bandwidth being operated. We
conduct robustness exercises with an alternative cost function that treats all infrastructure
costs as fixed costs per base station (that is, dropping the Bfm term from equation 19).
Appendix D includes results for this alternative cost function.

We can define market-level profits as follows:

Πfm (P , Rm, Bm) =
(
P f − cu

f

)
·
∑
m

popmS∗
fm (P , Rm, Bm) − Cfm (Rfm, Bfm) . (20)

Finally, we can define the national profit function for each firm f :

Πf (P , R, B) =
∑
m

Πmf (P , Rm, Bm) . (21)

Equation 21 defines the profit function for each firm, and we assume that each firm unilaterally
and simultaneously chooses a (national) price vector P f and a vector of cell radii (a cell
radius for each municipality) Rf to maximize their profits, taking other firms’ price and
infrastructure choices as given.

4 Estimation

In this section we describe our method of estimating the parameters of model described in
section 3. We first describe how we estimate the demand model using a modified version
of Berry, Levinsohn and Pakes (1995), described below. After estimating demand, we infer
firm’s costs based on the assumption that firms set prices and invest in quality optimally.

41See Peha (2017) for an analysis of economies of scale in mobile services coming from fixed costs per base
station (without the economies of density and economies of pooling we consider).
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Finally, we describe how we use the data transmission model to calibrate spectral efficiency
parameters.

4.1 Demand Estimation

We seek to estimate the distribution of consumer parameters θi. Specifically, we have the
following parameters

θi = [θpi, θc, θdi, θv]′ .

Note that we have two heterogeneous parameters that we allow to vary by income. Specifically,
we assume (

log (θpi)
log (θdi)

)
=
(

θp0

θd0

)
+
(

θpz

θdz

)
zi, (22)

where zi is the consumer’s income.

4.1.1 Unobserved Demand Component

As is standard in the demand estimation literature, we use market shares to back out the
unobserved demand components ξ. We observe the set of products (in our setting, phone
plans) offered by all firms, but we only observe detailed market share data at the plan-market-
level for Orange. For plans offered by other firms, we observe market shares at an aggregate
firm-level. The standard BLP contraction mapping used to solve for ξ cannot recover the
unobserved demand components with market shares at different levels of aggregation. We
therefore use a modified technique (similar to Chu (2010)) that is able to handle market
shares at different levels of aggregation.

Our modified estimation technique rationalizes plan-level market shares for Orange plans and
only the firm-level aggregate market shares for the other firms. Formally, we assume

∀j ∈ J−O, ∀m : ξjm = ξf(j),

where J−O is the set of non-Orange plans, and f(j) is the firm that corresponds to plan j.42

Appendix B.1 describes a modified version of the BLP contraction mapping that is capable
of solving for the unique vector ξ under the above assumption.

42This is where we use the Rest of France municipality. When we find a value of the national shock ξf(j) to
rationalize the national market shares for a firm other than Orange, the data we use are the national market
shares described in Table 2. Therefore, when computing national market shares predicted by the model, we
want to sum over all of France, rather than summing over the 589 urban and suburban municipalities that we
focus on for the purposes of understanding the infrastructural investment game.
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4.1.2 Elasticity and Nesting Parameter Imputations

Prices are set nation-wide and do not vary by market. Moreover, prices varied very little over
time around our sample period.43 See Figure 6 for prices over the two years prior to our sample
period. Prices of Orange phone plans are in blue, and the prices of other operator plans are
in light gray. Given the lack of price variation, it is difficult to identify price elasticities from
the data.

Figure 6: Prices of Orange contracts over two years
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We therefore take an approach where we impute price elasticities over a wide range of possible
elasticities. For each elasticity considered, we impose that the price elasticity of Orange
products corresponds to the imposed elasticity. Formally, we calculate the implied Orange
products price elasticity in market m, defined as follows:

eO
m(θ) = sO,m(1.01P O, P −O, Qm; θ) − sO,m(P O, P −O, Qm; θ)

0.01sO,m(P O, P −O, Qm; θ) ,

where sO,m(·) is the vector of market shares of phone plans offered by Orange, as defined by
equation 7, and PO and P−O represent the prices of plans offered, respectively, by Orange
and by the other firms.

For a range of price elasticities E ∈ E , we require that

E
[
eO

m(θ) − E
]

= 0
43Note that Bourreau, Sun and Verboven (2021) consider a time period that includes the entry of Free Mobile

in 2012. Following this entry, there were substantial price changes as the incumbent MNOs reacted to the new
low-cost competitor. In contrast, during the two years leading up to our sample period, price variation was
quite limited.
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as a moment in our estimation procedure, described below.

Our reference point for these imputations is Bourreau, Sun and Verboven (2021), who study
the French market around the entry of Free Mobile, a few years earlier than our sample
period. Free’s entry was disruptive, resulting in considerable price and choice set variation,
but prices settled down before the period covered by our data. Bourreau, Sun and Verboven
(2021) estimate E

[
eO

m(θ)
]

to be approximately -2.5; we will treat this value as our baseline
imputation, and we will also consider imputations of -1.8 and -3.2 as robustness checks.

We also impute values for the nesting parameter, σ. Lack of variation in the set of phone plans
available prevents us from being able to feasibly estimate this parameter. For a given own-
price elasticity imputation, the nesting parameter effectively controls how much substitution
goes to the outside option. As the imputed σ approaches one, there is effectively no outside
option. At the opposite extreme, σ = 0 yields a mixed logit model with no nesting.

While these imputations represent strong assumptions, note that there are still important
aspects of consumer demand to be estimated, particularly how consumers trade off prices and
download speeds (and how consumers differ in such preferences). In this paper, we present
estimates as well as counterfactual results for a range of elasticity and nesting parameter
imputations. These results are located in Appendix D.

4.1.3 Identification

Data utility parameters θd0, θdz, and θc are identified, in part, by matching predicted data
consumption with observed data consumption. Formally, from the data we construct x̄jm,
which is the average data consumption across consumers using phone plan j in market m.
Given θ, we can construct the predicted mean data consumption across consumers in market
m that choose phone plan j using equation 8.

Matching observed and predicted data consumption effectively identifies the average θdi con-
ditional on θc. The covariance across markets between the median income in the market and
the average data consumption helps to identify how θdi varies by income. We therefore use
a moment interacting the difference between predicted and observed data consumption and
median market income.

Simply matching data consumption does not separately identify consumption behavior from
the level of the utility derived from consuming data, however. We need additional moments
to be able to jointly identify θd0, θdz, and θc. Data consumption limits and download speeds
change the costs of consuming data, so variation in these two phone plan characteristics
creates variation in the utility coming from data consumption. We use moments interacting
demand shocks with data limits and an instrument for download speeds. Download speeds

29



require an instrument because they may be correlated with demand shocks since network
operators choose infrastructural investment levels. We instrument download speeds with
(log) population densities, which influence experienced download speeds by changing the level
of path loss. Another reason for using an instrument is attenuation bias. Our measures
of download speeds are based on limited sample sizes (see Appendix C.3 for details), and
therefore there is a degree of measurement error in the variable we use. Our use of an
instrument that is based on unrelated measurements alleviates concerns about attenuation
bias.

Parameters associated with other plan characteristics are identified in a straightforward way.
The imputed elasticity moment effectively identifies the average θpi. Variation in median
incomes across markets helps to identify how this parameter varies by income. We assume
that the demand shocks ξ are uncorrelated with median incomes. Voice allowances are also
assumed to be uncorrelated with the demand shocks.

In summary, we have the following moments that we use to identify the distribution of prefer-
ence parameters θ. Note that the moments are only imposed for Orange plans since we only
observe data consumption and plan-market shares for Orange.

Moments
E
[
eO

m(θ) − E
]

= 0
E
[
ξjm(θ)incmed

m

]
= 0

E [x̄jm(θ) − x̄jm] = 0
E
[
(x̄jm(θ) − x̄jm) incmed

m

]
= 0

E [ξjm (θ) log (pop_densitym)] = 0
E
[
ξjm(θ)d̄j

]
= 0

E [ξjm(θ)vj ] = 0

We use two-stage efficient GMM to estimate θ, searching for θ in an outer loop and solving
for ξ(θ) in an inner loop using the modified contraction mapping described in Appendix B.1.
Further details regarding our estimation procedure can be found in Appendix B.2.

4.2 Cost Estimation

There are two types of cost parameters to be estimated: cu
j , the cost per user of phone plan

j, and cs
fm, the cost per base station in market m for network operator f .
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4.2.1 Costs per User

From equation 18, the first-order condition from the price setting game is

∑
m

NmS∗
mf (P , Rm, Bm) +

(∑
m

NmJf S∗
mf (P , Rm, Bm)

)(
P f − cu

f

)
= 0, (23)

where Jf represents the Jacobian operator with respect to P f .

Therefore, an estimate of per user marginal costs is given by

ĉu
f = P f +

(∑
m

NmJf S∗
mf (P , Rm, Bm)

)−1∑
m

NmS∗
mf (P , Rm, Bm) . (24)

4.2.2 Infrastructure Costs

Given the demand estimates and the model of how the infrastructure variables (R, B) map
into delivered quality, we can simulate how equilibrium revenues change as the infrastructure
is changed. Intuitively, we can measure the marginal revenue of infrastructure, and this allows
us to infer the marginal cost of infrastructure.

Formally, we approximate the marginal operating income with respect to cell radius using
numerical differentiation from each market based on a 0.01 km change in cell radius:

MRR
fm (Rm, Bm) = Πfm (P , (Rfm + 0.01, R−f,m) , Bm) − Πfm (P , (Rfm − 0.01, R−f,m) , Bm)

0.02 .

(25)
Note that these profit functions are defined in terms of the equilibrium download speeds
that result from the infrastructural investment and prices. Thus, the above expressions for
marginal operating income should be understood as implicitly taking into account how quality
changes as infrastructural investment is changed. Furthermore, note that profits Πfm include
per-user costs; hence our use of “operating income” rather than “revenue.”

Next, assuming that infrastructure investments are chosen to maximize profits, we can use
the marginal operating income above to recover the remaining cost function parameters.
Specifically, the marginal cost of increasing Rfm is obtained by differentiating the cost function
in equation 19. For each firm and municipality, our estimated cost parameter cs

fm sets this
marginal cost equal to the marginal operating income in equation 25.

4.3 Spectral Efficiency Calibration

We calibrate the spectral efficiency parameter γm using delivered download speed data for
each municipality. This is done by solving for the value of γm that makes equation 17 hold
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for Orange (we do not have usage data for other operators). In this calibration, the average
experienced download speed Qfm is the average download speed in Mbps in the delivered
download speed data obtained from Ookla. QD comes from the OSIRIS infrastructure usage
data. For each market, we determine QD by calculating the amount of data requested of
Orange per second between noon and 1 pm and dividing by the number of Orange base
stations in that market. Solving for the γ that makes equation 17 hold yields a market-
specific spectral efficiency, γ̂m, for each market.44

5 Results

5.1 Demand Estimates

Demand parameter estimates are listed in table 9 in Appendix D.1 for a range of imputed price
elasticities and imputed nesting parameters. The price elasticity implied by Bourreau, Sun and
Verboven (2021) is approximately -2.5, the middle imputed price elasticity, which we regard as
our preferred specification. For all imputations, price sensitivity is decreasing in income. The
data utility parameter is increasing in income, which implies an inverse relationship between
income and the value of data consumption, suggesting a higher opportunity cost of time spent
downloading for higher income individuals. The variance parameter is increasing in income.
While signs are consistent across elasticities, the parameter estimates appear to be sensitive to
the price elasticity chosen, especially price, voice allowance, and Orange dummy coefficients.

To help interpret the results above, Tables 10–12 in Appendix D.1 convert the parameter
estimates into willingness to pay for certain contract characteristics across income percentiles.
Figure 7 considers how well our model predicts actual data consumption by plotting predicted
and actual average data consumption across markets for three Orange contracts with different
data limits.45 The diagonal line is a 45-degree line. Markets in which predicted average
consumption equals observed average consumption will lie upon the line. Our estimated model
correctly predicts the average level, even though this level is not a constant fraction of the data
limit. While it predicts across-market heterogeneity less well, it does weakly predict high data
consumption for markets with high observed data consumption and low data consumption for

44Some frequencies are used for 3G technology, while others are used for 4G. We account for these technology
differences by calculating the channel capacity for each technology separately (i.e., Q̄(R, B3G) and Q̄(R, B4G)).
We then adjust the 3G channel capacity to its 4G-equivalent by using the ratio of 3G-to-4G maximum link
spectral efficiencies (respectively, 2.5 and 4.08 (Kim, 2015)). Therefore, in determining γ̂m in each market, we
use for the channel capacity

Q̄fm

(
Rfm, B3G

fm, B4G
fm

)
= 2.5

4.08 Q̄fm

(
Rfm, B3G

fm

)
+ Q̄fm

(
Rfm, B4G

fm

)
.

45The predicted average data consumption is based on parameter estimates for the imputed elasticity -2.5
and a nesting parameter of 0.75.
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markets with low observed data consumption. The correlation coefficients between actual and
predicted consumption for the three contracts across markets are, respectively, 0.304, 0.384,
and 0.404.

Figure 7: Predicted vs. actual average data consumption
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5.2 Cost Estimates

Estimated costs for our elasticity and nesting parameter imputations are given in table 13
(per user costs) and table 14 (infrastructure costs) in Appendix D.2.

6 Counterfactual Simulations

Our framework can address questions of market structure, both in terms of traditional an-
titrust questions as well as questions related to the management of the electromagnetic spec-
trum. In section 6.1, we consider the optimal number of firms and the trade-off between
market power and scale economies. Then, in section 6.2, we consider the marginal value of
spectrum allocated to mobile telecommunications and find that the marginal contribution to
consumer surplus far exceeds firms’ willingness to pay. In section 6.3 we consider two dif-
ferent ways of allocating new spectrum in the industry: sponsoring the entry of a new firm,
or allocating it among existing firms. In section 6.4 we take a short-run focus, considering a
change in the number of firms while holding infrastructure fixed. Finally, in section 6.5 we
consider how differences in population density impact equilibrium prices, quality of service,
and the optimal number of firms.

For each of the counterfactuals that we consider, we solve for the equilibrium for a represen-
tative commune in which each firm offers two mobile phone plans: one with a moderately low
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data limit of 1 GB and one with a very high data limit (in 2015) of 10 GB, which is the largest
of the representative contracts. The representative commune that we construct has an income
distribution matching the overall income distribution in our sample, population density equal
to the contraharmonic mean density in France (2 792 people / km2), available bandwidth
equal to the population-weighted mean of the sum of frequencies operated in each market,
a spectral efficiency parameter equal to the population-weighted mean in the calibration de-
scribed in section 4.3, and cost parameters equal to the mean estimated with equation 19.46

Both phone plans have an unlimited voice allowance, demand shocks equal to the average of
those estimated for the Orange phone plans,47 and per-user costs equal to the average of the
estimated per-user costs for similar phone plans (those with d̄j < 5 GB for the low data limit
plan and those with d̄j ≥ 5 GB for the high data limit one).

One might worry about whether the focus on a representative commune yields results that
hold for France when considered as a whole. In particular, does the representative commune,
with its moderate population density, yield the same optimal number of firms that we would
find for France, which comprises a mixture of high and low population-density areas? In
Section 6.5, we find that the optimal number of firms is basically invariant to population
density. Since the optimal number of firms for the representative commune is also optimal for
high- and low-density areas, the optimum for the representative commune will also correspond
to France in the aggregate.

While we compute the counterfactual equilibria for a wide range of imputed elasticities and
nesting parameters (see Section 4.1.2 for the details regarding these imputations), we present
results in this section for a single choice of these values: an overall price elasticity of -2.5 for
Orange and a nesting parameter of 0.75. Results for other possible elasticities and nesting
parameters are located in Appendix D.3. This price elasticity for Orange is approximately the
same value as the price elasticity for Orange implied by Bourreau, Sun and Verboven (2021).48

Our reason for preferring a high value of the nesting parameter is that substitution to the
outside option is a relatively unimportant phenomenon in the industry. Almost all adults
own a mobile phone (in France in 2015, 92% of residents age 12 and up had a mobile phone),
and anecdotally, few people even consider not having a phone or using a second. Table 4
presents the rate at which customers would substitute to the outside option in response to a

46We average per-base station costs for ORG, SFR, and BYG. We do not use the estimates for FREE
because, due to agreements with the French regulator ARCEP facilitating FREE’s entry, FREE uses ORG’s
3G infrastructure.

47Specifically, we set ξj,m = θO, where θO is described in Appendix B.2.
48Bourreau, Sun, and Verboven report an own-price elasticity of -2.9 for Orange’s postpaid contracts. While

postpaid contracts represent the majority of Orange’s mobile contract sales, we are interested in the elasticity
of overall demand for Orange’s products with respect to a price change for all their products. Using the market
shares, diversion ratios, and elasticities reported by Bourreau, Sun, and Verboven, we compute Orange’s overall
price elasticity to be -2.4.

34



10% increase in all mobile plan prices. Note that a nesting parameter of σ = 0 (equivalent
to multinomial logit with no nesting) features 3.29% of consumers switching to the outside
option, and for a nesting parameter of σ = 0.5, we still get more than half of this rate of
outside option substitution. Nesting parameters of σ = 0.75 or σ = 0.85 entail considerably
less outside option substitution. We present in this section the nesting parameter σ = 0.75,
which yields 0.95% of consumers switching to the outside option after a 10% increase in prices.

Table 4: Proportion of consumers who switch to outside option after a 10% overall price increase

Elasticity σ = 0.0 σ = 0.5 σ = 0.75 σ = 0.85
−3.2 3.90% 2.32% 1.21% 0.73%
−2.5 3.29% 1.86% 0.95% 0.68%
−1.8 2.58% 1.39% 0.69% 0.45%

Displayed are proportions of consumers with a phone plan who would switch from a phone plan to the
outside option after a 10% increase in the prices of all plans. We hold download speeds fixed at the values

observed in the data. The row in bold corresponds to the imputed elasticity and nesting parameter we
present in this section.

6.1 Market Power and Scale Efficiencies

In this section, we explore the trade-off between market power and economies of scale by
considering the optimal number of firms in a static equilibrium. Fewer firms gives each firm
more market power but results in a higher density of consumers (lowering average path loss)
and more pooling of consumers (reducing congestion at a base station). Given the gradual
nature of network deployment in the industry, this exercise cannot hope to capture the short-
run impacts of a potential merger; instead, we aim to capture the long-run trade-offs associated
with consolidation.

The optimal number of firms depends on how equilibrium prices, investment, and download
speeds vary based on the number of firms. Figure 8 displays these endogenous variables
for symmetric equilibria with between one and six firms. Total bandwidth available to the
industry is divided equally among the firms, which optimally set prices and investment levels.
That is, each firm owns and operates spectrum Bfm = B0/n, where B0 is the total bandwidth
available to the industry, and n is the number of firms.

Equilibrium prices are declining in the number of firms but remain well above per-user
marginal costs, which are 7.93 AC and 18.18 AC for the low and high data limit plans, re-
spectively. Prices determine to which plan consumers subscribe and therefore the amount of
data consumed. As a firm lowers its price, it attracts more customers, causing the load on its
network to increase, lowering download speeds. Lower download speeds dampen the appeal of
the lowered price. The relevant elasticity for the purposes of setting optimal prices, therefore,
involves a full derivative that takes into account this indirect effect of changing prices on
download speeds. Figure 9 displays how this indirect effect from download speeds influences
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Figure 8: Counterfactual prices and qualities
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optimal price setting behavior by displaying two elasticities: partial price elasticities and full
price elasticities. Partial price elasticities are the price elasticities holding the quality of ser-
vice fixed, evaluated at equilibrium prices. Full price elasticities allow quality of service to
adjust with the price. They decline less with the number of firms than the partial elasticities.
The reason for the divergence between the full and partial price elasticities is the worsening of
the indirect quality effect as the number of firms grows. When there are many firms, a firm’s
own capacity is small relative to the number of consumers that they can potentially attract
from other firms, making quality of service degrade more for a given price increase.

Investment patterns display a non-monotonic relationship in the number of firms. For a small
number of firms, the number of base stations each firm builds is increasing in the number
of the firms (alternatively, the cell radius characterizing each base station is decreasing).
Increasing the number of firms beyond 2, however, decreases investment at the firm level: for
each increase in the number of firms, each firm builds fewer base stations (increases the cell
radius).

Despite this non-monotonicity in investment, download speeds are always decreasing in the
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number of firms. Comparing the monopoly case to the duopoly one, despite fewer base stations
for the monopolist, we observe higher download speeds, reflecting economies of scale.

Closer inspection reveals that these economies of scale are driven largely by economies of
pooling, rather than economies of density. Path loss will reduce channel capacity per unit of
bandwidth, and when firms invest in more base stations, those base stations will serve closer
customers, reducing path loss. As expected, channel capacity per unit of bandwidth follows
the same shape as the number of base stations per firm, but note the scale of the graph for
channel capacity per unit of bandwidth; the differences are trivial. In other words, firms are
not seeing significant gains in data transmission by avoiding path loss here.

In contrast, economies of pooling have a large impact. We see that channel capacity is roughly
inversely proportional to the number of firms, which is driven by channel capacity’s propor-
tionality to bandwidth operated (see equation 9 and the fact that total available bandwidth
is being spread across the firms, i.e., Bfm = B0/n).

Figure 9: Full and partial price elasticities
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Note: Partial elasticities are derivatives in which download speeds are held fixed. Full elasticities
take into account how download speeds change endogenously as prices are changed. Price elasticities

are evaluated at the equilibrium prices and quantities.

With both prices and quality declining in the number of firms, the optimal number depends on
the trade-off between price and quality. Figure 10 considers welfare compared to the monopoly
case as the number of firms is varied. For our preferred demand specification (elasticity of
-2.5 and nesting parameter of 0.75), the optimal number of firms is three in terms of total
surplus, and six in terms of consumer surplus.

As Figure 11 illustrates, however, consumers do not agree on the optimal number of firms.
We plot welfare for various income deciles against the number of firms for our preferred
specification. While consumer surplus is increasing in the number of firms for most consumers
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Figure 10: Counterfactual welfare
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(up to six or seven firms), the optimal number of firms for high-income consumers is four. In
all our simulations, we have observed that the optimal number of firms is (weakly) decreasing
with income.

Figure 11: Counterfactual welfare by income level
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We note that Appendix D.3 indicates that the optimal number of firms is sensitive to the
elasticity imputation (and considerably less sensitive to the nesting parameter). This points
to the importance of careful demand analysis in future work, particularly in contexts where
the estimates of Bourreau, Sun and Verboven (2021) may not apply.

38



6.2 Allocating Spectrum to the Industry

Regulators such as the FCC in the US and ARCEP and ANFR in France are tasked with
bandwidth allocation, determining which industries (and firms) are allowed to operate which
frequencies of electromagnetic spectrum and for what purposes. It is therefore crucial for
such agencies to understand how allocating bandwidth to mobile telecommunications will
affect social welfare.49

In this section, we quantify how allocating more bandwidth to the telecommunications indus-
try affects firm profits, consumer welfare, and total surplus.

First, let’s consider how a firm’s profit changes when just that firm receives a larger bandwidth
allocation. The derivative

∂Πf (R∗ (Bf , B−f ) , (Bf , B−f ))
∂Bf

(26)

captures an individual firm’s willingness to pay for more bandwidth at the margin.

Next,
∂Πf (R∗ (B1) , B1)

∂B
(27)

captures how the equilibrium profit of an individual firm changes when all firms are allocated
more bandwidth.

Finally, we can consider how consumer surplus changes as all firms are allocated more band-
width

∂CS (R∗ (B1) , B1)
∂B

. (28)

In a simple spectrum auction, the firms’ bids will be related to expression 26. However, the
regulator’s spectrum decision should be based on comparing expression 27 and expression 28
to the marginal social value of allocating spectrum to other industries and purposes.

As Figure 12 shows, with four firms, the firm’s willingness to pay for additional bandwidth
(the left panel) is about nine times less than a unit of bandwidth allocated to the industry
would add to consumer surplus (the right panel). This reflects the importance of using a
structural model such as ours to quantify the social value of bandwith. While auctions may
allow us to observe signals of operators’ willingness to pay for spectrum, such measures may
be far lower than the social value of spectrum.50

49The FCC’s mandate is explicitly in “the public interest.” To allocate spectrum optimally among different
industries—or to allocate the optimal amount of spectrum to mobile telecommunications—one would need to
quantify the social opportunity cost of spectrum, which is beyond our scope.

50Of course, a regulator seeking to maximize total surplus would also need to consider the middle panel,
but these values are small relative to the right one since firms compete away the surplus from additional
bandwidth, so the point that the value of additional bandwidth is many times larger than that captured by
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Figure 12: Bandwidth derivatives
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6.3 Allocating Spectrum within the Industry

Spectrum allocation questions go well beyond the question of how much spectrum to allocate
to each industry. In particular, how should spectrum be allocated among firms? In this
section, we consider two ways of allocating new spectrum to the mobile telecommunications
industry. First, the regulator could distribute the new spectrum among existing operators.
Alternatively, it could sponsor the entry of a new operator, as happened in France with Free
Mobile, which received regulatory approval to become France’s fourth MNO in 2009 and
launched in 2012.

To study how spectrum should be allocated among firms, we consider two different ways of
increasing the total amount of spectrum in the industry by 33.3%. Our baseline equilibrium
is the symmetric equilibrium with three firms from section 6.1. We compare this baseline
to the equilibria resulting from two alternative ways of distributing extra bandwidth. The
first equilibrium we consider increases each existing firm’s bandwidth holdings by 33.3%. The
second we consider is adding another firm, so that there are four firms total, with the new
entrant having the same amount of bandwidth as the three individually do in the baseline
(thus increasing total industry bandwidth by the same amount as in the first equilibrium).

Figure 13 illustrates how various endogenous variables change with the additional bandwidth
compared to the baseline equilibrium. Unsurprisingly, introducing a new firm leads to lower
prices than increasing bandwidth per firm. However, download speeds benefit considerably

spectrum auctions still stands.
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more when bandwdith per firm is increased and actually decrease when a fourth firm is added.

Figure 13: Counterfactual prices and qualities
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Figure 14 considers the overall effects on welfare and presents an interesting tension. Increas-
ing the number of firms is better for consumer surplus (and consumers of all income deciles
prefer that allocation to the one with more bandwidth per firm). Increasing bandwidth per
firm is better for total surplus, however.

6.4 Short-Run Analysis

The comparative statics exercise with respect to the number of firms in section 6.1 should be
interpreted with caution when extrapolating to merger analysis. Because those counterfactuals
involve static equilibria, they certainly cannot capture the short-run impacts of mergers, for
infrastructure cannot be rearranged instantaneously and costlessly in response to a change in
the number of firms.

In this section, we consider the impact of consolidation in the short-run. That is, we change
the number of firms and recompute an equilibrium without allowing infrastructure to adjust.

Tables 5 and 6 describe how outcomes change when we move from the four-firm equilibrium
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Figure 14: Counterfactual welfare
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of section 6.1 to an equilibrium with three firms with the base station radius fixed at the equi-
librium radius from the original four-firm equilibrium. That is, we are crudely approximating
a symmetric four-to-three merger in the short run in which infrastructure is fixed but prices
can freely adjust.

To be clear, bandwidth is redistributed, so that each firm in the three-firm equilibrium has
33.3% more bandwidth than each firm in the four-firm equilibrium. Furthermore, we impose
that each firm’s base station radius (or cell size) is the same in the three-firm and four-firm
equilibrium. What we imagine is that all firms are sharing passive infrastructure, meaning
they all have base stations located at the same places, and they each operate their own
antennas on shared physical structures. When we consolidate to three firms, the antennas
(and bandwidth) are simply consolidated, and each of the three operators now owns one third
of the network infrastructure at each base station site rather than one quarter.

Table 5 shows that phone plan prices increase relative to the four-firm equilibrium in both the
short-run and the long-run equilibrium (which corresponds to the equilibrium presented in
section 6.1). Prices of both the low- and high-end phone plans increase more in the short-run
equilibrium.

In section 6.1, there was a higher number of base stations per firm with three firms than with
four firms. In this short-run equilibrium, we have fixed the number of base stations per firm,
so the four-to-three comparison involves a more modest gain in download speeds here, where
the gains in quality of service are driven entirely by consolidation of bandwidth and higher
equilibrium prices (which increase download speeds by reducing congestion).
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Table 5: Three firms with four-firm base station density: endogenous variables

∆ 1 000 MB plan ∆ 10 000 MB plan ∆ download
prices (in AC) prices (in AC) speeds (in Mbps)

short-run 0.712 (0.258) 0.652 (0.245) 2.237 (0.640)
long-run 0.704 (0.256) 0.618 (0.235) 2.838 (0.521)
difference 0.008 (0.256) 0.034 (0.235) −0.601 (0.521)

Table 6 shows that relative to the four-firm equilibrium, consumer surplus declines and pro-
ducer and total surplus improve. The decline in consumer surplus is larger in the short-run
equilibrium, reflecting the higher prices and slower download speeds. Producers gain more in
the short-run, as they do not compete with each other to increase the density of cells. The
increase in total surplus is smaller in the short-run than the long-run, though the difference
is quite small.

Table 6: Three firms with four-firm base station density: welfare

∆ CS ∆ PS ∆ TS
short-run −0.575 (0.176) 0.631 (0.168) 0.055 (0.028)
long-run −0.478 (0.198) 0.541 (0.214) 0.064 (0.032)
difference −0.097 (0.198) 0.089 (0.214) −0.008 (0.032)

Welfare measured in euros per capita per month.

6.5 Impact of Population Density

Thus far, our counterfactuals have focused on a market with the contraharmonic mean popu-
lation density in France, i.e., the mean population density when the mean is taken over people,
rather than space. This density of 2 792 persons / km2 roughly corresponds to a high-density
suburb.

A natural question is whether the population density affects the trade-off between market
power and scale efficiencies, perhaps changing the optimal number of firms. We first note
that, with no path loss, the equilibrium comparative statics with respect to population density
would be very straightforward.

No Path Loss Without path loss, channel capacity is fixed by the bandwidth owned and
operated by the firm. The cell radius will not affect channel capacity. The decision of cell
radius amounts to a decision of how many customers to serve with each base station, with
the firm effectively choosing the optimal level of congestion. The population density will
not affect this choice,when we think about it in terms of the optimal number of consumers
per base station (or the optimal level of congestion). As population density increases, the
optimal number of consumers per station remains constant, implying base station area will be
inversely proportional to population density. Equilibrium outcomes like prices and delivered
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download speeds remain the same. See section A.2 for a more formal account.

In addition to France’s contraharmonic mean population density (2 792 people/km2), we con-
sider three alternative population densities: the raw population densities of the continental
USA (43.1) and France (123.9)—note that these are both quite low densities as both countries
involve large unpopulated areas—and the population density of Paris (20 588).

Figures 15 and 16 illustrate how equilibrium outcomes for these different population densities.
Certain outcomes are indeed affected by population density. Naturally, path loss is more
severe when serving a less dense market, demonstrated by lower channel capacities per unit
of bandwidth in Figure 15 (despite higher levels of investment per person).

Otherwise, the comparative statics with respect to population density are very similar to what
we would expect without path loss. In other words, we do not see substantial economies of
density. Notably, the optimal number of firms (for consumer or total surplus) is quite robust
to the population density. Equilibrium outcomes like prices and delivered download speeds
are extremely similar for different population densities.

7 Conclusion

The regulation of the mobile telecommunications industry, including antitrust policy and
spectrum allocation, calls for an understanding of scale efficiencies as well as market power.
Our approach has effectively been an interdisciplinary one, drawing from tools in empirical
industrial organization to understand market power, and from wireless engineering to under-
stand scale efficiencies. Our simulations show how our framework can shed light on many
issues related to industry structure, including the optimal number of firms, across-industry
spectrum allocation, and within-industry spectrum allocation.
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Figure 15: Counterfactual prices and qualities by density
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Figure 16: Counterfactual welfare by density
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A Technical Appendix (for online publication)

A.1 Data Transmission Details

A.1.1 Signal Power

Equation 12 in Section 3.2 provides the formula we use for signal power. It is based on the
Hata model of path loss (Hata, 1980). We use the Hata model for urban environments since
we focus our analysis on urbanized areas. This model provides us with the following formula
for path loss:

L (r) = 68.75 + 27.72 log10 (f) − 13.82 log10 (h) + (44.9 − 6.55 log10 (h)) log10 (r) ,

where L (r) is in decibels, r is the distance from the antenna (in km), f is the frequency (in
MHz), and h is the height of the base station antenna (in m).

The specific values in our path loss equation can be derived as follows. We assume a base
station height of 30 m and a signal frequency of 1900 MHz, which is approximately the median
operated frequency in France in 2015. These values yield

L (r) = 139.2232 + 35.2249 log10 (r) .

The signal power in dBm at a distance r from the antenna is

A − L(r),

where A is the transmitted power. We assume a signal power of 61 dBm (or 1259 W) per 5
MHz of bandwidth at the base station, which corresponds to the regulated limit on effective
isotropic radiated power for the 2600 band (ARCEP, 2011a); similar limits apply for lower
frequencies (ARCEP, 2011b).

Converting the units to milliwatts, this yields the following formula for signal power:

S (r) = exp (−18.012) r−3.522,

which is the formula provided in equation 12. These values correspond to a path loss exponent
of approximately 3.522. Most engineering studies use a path loss exponent between 3.5 and
4.51 In contrast, signal strength in a vacuum would have a path loss exponent of 2, but signals
decay more quickly on the Earth’s surface.

51For instance, Błaszczyszyn, Jovanovicy and Karray (2014) assume a path loss exponent of 3.8.
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A.1.2 Interference

To calculate the interference from neighboring cells, we consider the six cells adjacent to a
particular cell, pictured in Figure 17. For a given point in the center cell, we compute the
distances between that point and the centroids of the adjacent cells, which is the location of
the antennas corresponding to each cell.

Figure 17: A hexagonal cell and its six adjacent cells

Note: The figure depicts the distance between an individual at a random location in the center cell and the
base stations that correspond to the six adjacent cells. In determining the channel capacity of the cell, we

integrate over the entire area of the center cell, taking into account this interference at each point.

The signal power from each of the adjacent cells incorporates the path loss (equation 12)
implied by the distance between the given point and the cell’s centroid. To determine the
overall interference power, we follow Błaszczyszyn, Jovanovicy and Karray (2014) and set
interference power to 30% of the signal power from the six adjacent cells and sum over the
cells.

A.2 Equilibrium without Path Loss

Here we show that in symmetric equilibria the optimal number of base stations per consumer
is constant when there is no path loss or interference.

Let Nfm represent the number of base stations operated by operator f in municipality m. The
number of consumers within each cell is given by dmAm

Nmf
, where dm is the poulation density

and Am is the municipality’s area. We now rewrite equation 16 as

Qfm = Qfm − dmAm

Nmf
qD
(
P fm, Qfm, P −fm, Q−fm

)
, (29)

where qD
(
P fm, Qfm, P −fm, Q−fm

)
represents equilibrium data consumption per capita.

Note that channel capacity per base station Qfm is exogenous without path loss and interfer-
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ence. Bandwidth is endowed, so there are no choice variables to influence channel capacity.
The firm’s only infrastructure choice here is effectively how many consumers they want to
serve with each base station.

Consider firm f ’s variable profit function, equation 18, now written in per-consumer terms
and as a function of quality:

ΠV
fm

(
P f , Qfm

)
≡
(
P f − cu

f

)
· sf

(
P fm, Qfm, P −fm, Q−fm

)
.

Let λfm = dm
Nfm

, and note that λfm can represent the firm’s infrastructure choice variable.
Rewrite variable profits as

ΠV
fm (P f , λfm) ≡

(
P f − cu

f

)
· sf (P fm, λfm, P −fm, λ−fm) ,

noting that the share function can be expressed as a function of λfm since delivered down-
load speeds are determined by the congestion equation 29, and here λfm = dm

Nfm
defines the

congestion equation above.

Given the cost function expressed in equation 19, infrastructure costs are cs
fmBfmNfm, and

costs per capita can be expressed as

cs
fmBfm

Nfm

dmAm
= cs

fmBfmλ−1
fmA−1

m .

Both variable profits and infrastructure costs depend on population density dm and the num-
ber of base stations Nfm only through their ratio λfm = dm

Nfm
. Therefore, the firm’s optimum

and the equilibrium level of investment entail a value for λ, or a number of base stations per
consumer. Therefore, when we do comparative statics with respect to population density, the
equilibrium number of base stations will be proportional to population density.

B Demand Estimation Details (for online publication)

B.1 Contraction Mapping

Here we consider an alternative version of the Berry, Levinsohn and Pakes (1995) (BLP)
contraction mapping in which we observe market shares at the product-market level for Orange
products but only aggregate firm-level market shares for the other products. We first show
in section B.1.2 that if we observe market shares at the firm-market level, the problem can
be rewritten in such a way that the BLP contraction mapping proof holds. In section B.1.3
we extend this result to the nested logit setting. Finally, in section B.1.4 we show that if we
observe some firm market shares only at the aggregate level (as is our case), the problem can
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still be rewritten to fit into the BLP contraction mapping proof setup.

B.1.1 Standard BLP Contraction Mapping Setup

We will start with the standard BLP setting in order to introduce notation. In this setting,
there are products j ∈ J = {1, . . . , J}, and we observe market shares ςjm for each product.
We can express an individual’s utility for a product as uijm = δjm + µijm + εijm, which yields
the type-specific market shares

sijm = exp (δjm + µijm)∑
j′ exp

(
δj′m + µij′m

) .
Aggregate market shares are given by

sjm (δ) =
∫ exp (δjm + µijm)∑

j′ exp
(
δj′m + µij′m

)dF (µm) .

The existence of the contraction mapping implies that there is a unique vector δ such that
sm (δ) = ςm for any observed vector of shares ςm.

B.1.2 Grouped Products Extension

Our setting is one in which market shares are observed only for certain groupings of products.
That is, let J be partitioned into subsets Jf with f ∈ F = {1, 2, . . . F}. For each f , we
observe only the market share ςft for all the products within Jf . The subsets Jf may include
individual products (i.e., in our application each Orange product would have its own Jf set)
or several products (i.e., each non-Orange firm has one Jf group that includes all that firm’s
products).

Providing a parametric form, let δjm = θ1xjm + ξjm, where θ1 would capture what is often
referred to as “linear parameters,” i.e., parameters that can typically be estimated outside
of the contraction mapping because they only shift the mean utility component δjm that the
contraction mapping aims to recover. In this extension, the θ1 parameters must be included
in the contraction mapping.

We cannot recover δjm (or ξjm) separately for different j ∈ Jf . We assume ξjm = ξfm for all
j ∈ Jf for each f .

Let x̄fm be the mean value of xfm for those products within Jf . Then, we have δjm = θ1x̄fm+
θ1xd

jm+ξfm, where xd
jm := xjm−x̄fm. We define δ̃fm = θ1x̄fm+ξfm, and µ̃ijm = θ1xd

jm+µijm.
This very nearly allows us to re-define the model in terms where we could apply the original
BLP proof strategy to establish the contraction mapping. The only problem is that µ̃ijm is
defined over j, where we would need it to be defined over f in order to apply the same proof
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strategy. Let’s consider the aggregation over j to f :

sifm

(
δ̃
)

=
∑

j∈Jf

exp
(
δ̃fm + µ̃ijm

)
∑

j′∈J exp
(
δ̃f(j′)m + µ̃ij′m

) ,

where f (j′) refers to the f associated with product j′.

Defining µ̃ifm = log
(∑

j∈Jf
exp (µ̃ijm)

)
, it follows that

∑
j∈Jf

exp
(
δ̃fm + µ̃ijm

)
= exp

(
δ̃fm + µ̃ifm

)
,

and therefore

sifm

(
δ̃
)

=
∑

j∈Jf

exp
(
δ̃fm + µ̃ifm

)
∑

f ′ exp
(
δ̃f ′m + µ̃if ′m

) .

We can then aggregate up to market-level shares sfm by integrating over the µ̃ifm, and we
have rewritten our extended setting in a way that allows us to apply the BLP proof strategy.

B.1.3 Grouped Products Extension with Nested Logit

In the more general random coefficients nested logit (RCNL) model introduced by Grigolon
and Verboven (2014) (henceforth, GV), we can construct analogous formulas that will allow
us to recover group-specific mean demands δ̃.

In the RCNL model, type-specific market shares are as follows:

sijm =
exp

(
δjm+µijm

1−σ

)
exp

(
Iig(j)
1−σ

) exp
(
Iig(j)

)
exp (Ii)

,

where σ ∈ [0, 1) is the nesting parameter, g (j) return the nest to which j belongs,52 and

Iig = (1 − σ) log
(∑

j∈Jg
exp

(
δjm+µijm

1−σ

))
,

Ii = log
(
1 +

∑
g∈G exp (Iig)

)
.

In this extension, we redefine δ̃fm and µ̃ifm to incorporate σ. Let δ̃fm = θ1x̄fm+ξfm

1−σ , µ̃ijm =
52We will assume that products produced by the same firm belong to the same group. Formally, for each f ,

g (j) = gf for all j ∈ Jf .
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θ1xd
jm+µijm

1−σ , and µ̃ifm = log
(∑

j∈Jf
exp (µ̃ijm)

)
. Then

sifm =
exp

(
δ̃fm + µ̃ifm

)
exp

(
Iig(f)
1−σ

) exp
(
Iig(f)

)
exp (Ii)

where Iig = (1 − σ) log
(∑

f∈Fg
exp

(
δ̃fm + µ̃ifm

))
and Fg = {f ∈ F : g (f) = g}.

GV note that, substituting in our notation,

f
(
δ̃
)

= δ̃ + log (ς) − log
(
s
(
δ̃
))

is a contraction mapping if
1 − 1

sf

∂sf

∂δ̃f

≥ 0.

Unlike in GV, this holds in our case. Explicitly,

∂sf

∂δ̃f

=
(

1 − σ

1 − σ
sf |g − sf

)
sf ,

and so
1 − 1

sf

∂sf

∂δ̃f

= σ

1 − σ
sf |g + sf ≥ 0 ⇔ σsf |g + (1 − σ) sf ≥ 0.

This condition holds for all σ ∈ [0, 1).

B.1.4 Market Aggregation Extension

In our setting we observe market shares only at the aggregate level for some firms. We assume
in this extension ξjm = ξf(j) for all j, m and recover ξf for each f . We will proceed in this
section using the non-nested setting introduced in section B.1.2, but the results hold using
the analogues to the RCNL expressions introduced in section B.1.3.

Analogous to the previous setup, let x̄f be the mean value of xjm across products j ∈ Jf and
markets m, x̄f = 1

MJf

∑
m

∑
j∈Jf

xjm. Then, δjm = θ1x̄f(j) + θ1xd
jm + ξf(j). where we now

define xd
jm := xjm − x̄f(j). Analogously defining δ̃f = θ1x̄f + ξf , µ̃ijm = θ1xd

jm + µijm, and
µ̃ifm := log

(∑
j∈Jf

exp (µ̃ijm)
)
, then

s̄if (δ̃) =
∑
m

w(m)
exp

(
δ̃f + µ̃ifm

)
∑

f ′ exp
(
δ̃′

f + µ̃if ′m

) .
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We can aggregate up to aggregate firm shares s̄f by integrating over µ̃ifm:

s̄f =
∫ ∑

m

w(m)
exp

(
δ̃f + µ̃ifm

)
∑

f ′ exp
(
δ̃f ′ + µ̃if ′m

)dF (µ̃ifm) =
∫ exp

(
δ̃f + µ̃ifm

)
∑

f ′ exp
(
δ̃f ′ + µ̃if ′m

)dG(µ̃ifm).

The final expression makes clear that the BLP contraction mapping proof strategy still holds
in this aggregate setting.

When coding the contraction mapping, we follow Conlon and Gortmaker (2020) in imple-
menting the SQUAREM algorithm (Varadhan and Roland, 2008).

B.2 Implementation Details

The setup outlined in section B.1.4 is more restrictive than is necessary given our data. We
observe product-level market shares for every market for Orange products. We therefore allow
ξjm to differ by product and market for all j ∈ JO, where O denotes Orange.

The moments used in our GMM estimation procedure, listed in Section 4.1.3, are imposed
only for Orange products. To center Orange demand shocks, we add an Orange dummy
variable Oj defined as follows

Oj =
{

1 if f(j) = Orange
0 otherwise,

and Oj enters utility additively so that Equation 1 becomes

v (j, x, m; θi, ϑi, εi) ≡ uj

(
x, Qm,f(j); ϑi, θi

)
+ θvvj − θpipj + θOOj + ξjm + εij .

The inclusion of the term θOOj allows Orange products to differ in a systematic way from
the products offered by other firms, restoring the validity of moments of the form presented
in Section 4.1.3. To identify the parameter θO, we impose the following additional moment

E [ξjm (θ) Oj ] = 0.

To ensure the correct sign for θc (which must be positive) while searching over the space of
demand parameters, we search for log (θc) rather than θc directly.53

Incomes are in units of 10 000 AC. Data limits are in GB and quality measures are in GBps.54

53The value reported in the demand estimates, table 9 in Appendix D.1 is therefore the estimate of log (θc).
54Note that quality measures are in Gigabytes per second (GBps), not Gigabits per second (Gbps). This

conversion is needed so that the second term in Equation 3 has the interpretation of seconds spent downloading
data.
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C Data Appendix (for online publication)

This appendix provides additional description of our main datasets and variables. Section
C.1 presents the characteristics of mobile tariffs and the tariff dataset. Section C.2 describes
the Orange customer dataset and socioeconomic characteristics. Section C.3 describes the
measurement of the quality of mobile data.

C.1 Product Data

C.1.1 Product Characteristics

We collect data on mobile phone plans released between November 2013 and October 2015,
along with their characteristics, from operators’ quarterly catalogs. It includes postpaid plans
from the four MNOs and the largest MVNO (EI Telecom) as well as their prepaid plans.55

Promotional plans, typically released during summer and Christmas, are not included in the
dataset.

Plan characteristics include tariff, voice and data limits, international voice or data roaming,
handset subsidy, length of commitment, and whether or not plans were bundled with fixed
services. As described in section 2.2, we choose representative mobile-only plans for each firm
and adjust monthly prices based on contract duration and handset subsidies.

Catalogs include over 1 700 contracts, and we use these to construct 21 representative products
in our model’s choice set. We define categories of plans according to their level of data limits:
less than 500 MB, 500–3 000 MB, 3 000–7 000 MB and more than 7 000 MB. These thresholds
are chosen following discussions with industry experts and the statistical distribution of chosen
plans. The second data limit category—that is, contracts with 500–3 000 MB—we have further
split according to their voice allowances: unlimited or not, making a total of five categories of
phone plans. Low data limit plans typically do not have unlimited voice, and high data limit
contracts typically come with unlimited voice allowance, so we do not split these categories
by the voice limit. We exclude plans bundled with fixed broadband or television.

We choose the least expensive plan in each category as the category’s representative plan.
Some customers keep old plans that are no longer available, so we fill these missing data by
using the most similar representative plan. While some plans with handset subsidies have
corresponding standalone versions, some do not. We adjust the prices of these latter plans
using data on the price of handsets and the upfront payment required by Orange. We collect
these data for both iPhone and Samsung, the two most popular handsets. We then distribute
the handset cost over 24 months and update the monthly plan price by subtracting off the

55ORG’s contracts include not only those that are sold through its main brand, but also others sold under
alternative brands such as SOSH, BNP Paribas Mobile, FNAC Mobile, Click Mobile, Carrefour Mobile, etc.
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monthly cost of the handset. In addition, we assume that Orange’s handset subsidies apply
to other operators’ subsidized contracts because we do not observed their upfront costs.

C.1.2 Soft Data Limits

For plans with data limits, the download speed is reduced for usage above allowance if no add-
on is purchased. The maximal download speed under throttling is typically 128 Kbps. With
this download speed, it would take over half-an-hour to download a 30 MB file, compared to 2
minutes under a theoretical unthrottled speed of 2 Mbps in a 3G network, and 24 seconds given
a moderate 4G download speed of 10 Mbps. Basically, only emails and light web pages can
be opened under throttling. As presented in table 7 below, this download speed is not always
specified by operators in their contracts. When it is, it may depend on the location of the
usage (local or abroad). The actual download speed experienced by customers is a function of
the number of simultaneous users, its location and handset. In our demand model, however,
we assume that any data consumption over the data limit yields a speed of exactly 128 Kbps.

Table 7: Maximal download speed under throttling (Kbps)

Operator National Roaming

ORG 128* ns
SFR ns ns
BYT 128 32
FREE ns ns

*:except video streaming.

ns ≡ not specified.

Source: operators’ contracts

C.2 Consumer Data

C.2.1 Mean Data Consumption

We use the Orange customer data to construct market-level measures of mean data consump-
tion for each Orange phone plan. Note that because we only observe data consumption for
consumers of Orange plans, we cannot construct these measures for plans of other firms. Plans
are aggregated based on the associated data limit and whether or not the voice allowance is
unlimited, as detailed in section 3.1. Constructing market-plan-level measures of mean data
consumption is complicated by the fact that the aggregated plans in the choice set incorporate
plans with different data limits. For example, the Orange 4 000 MB data limit plan in the
choice set incorporates plans in the customer data with data limits ranging from 3 000 MB to
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7 000 MB.

Since we use the mean data consumption in the data to discipline the predicted data con-
sumption in our demand model, which is based on the data limit from the choice set, simply
averaging the data consumption observed in the customer data could lead to biased estimates
in the data consumption coefficients. For example, using the same 4 000 MB aggregated plan
as before, if many customers in this category have plans with data limits above 4 000 MB,
they may consume well above 4 000 MB without hitting their data limit. Simply averag-
ing data consumption for this category might give mean data consumption above 4 000 MB,
which our demand estimation would interpret as either being insensitive to download speeds
(because they are willing to consume even at the very slow throttled speed) or heavily weight
the amount of data consumed (because they are consuming large amounts of data despite the
slow throttled speed). In fact, it might be that neither of those conclusions is consistent with
consumers’ data consumption decisions under their actual data limit.

In order to account for the fact that realized data consumption decisions reflect heterogeneous
data limits within a single data limit category, we define (adjusted) mean data consumption
as follows:56

x̄jm = 1
|Ijm|

∑
i∈Ij

min
{

xi

x̄i
, 1
}

x̄j + max {0, xi − x̄i} ,

where Ijm is the set of consumers with plans that aggregate to j in market m, xi is consumer
i’s data consumption, and x̄i is the data limit of their plan. The value x̄j is the data limit
associated with the representative plan j. We separate these two terms rather than simply
using the fraction of the data limit consumed times the representative plan’s data limit be-
cause, conditional on bypassing the data limit, the data limit is irrelevant for further data
consumption.

C.2.2 Socioeconomic Data

Socioeconomic characteristics are generated from the 2011 population census conducted by
the French office of statistics (INSEE). These statistics include the deciles of income at the
municipality level. Income is measured as the fiscal revenue of households living in a given
municipality in 2011.

56For contracts belonging to the group characterized by data limits of less than 500 MB, we impose that
consumption cannot be greater than the data limit. For this category of contracts, add-on data packages are
a common way of increasing one’s data limit. Since we do not observe data package purchases, we simply
assume that any consumer that consumed above the data limit did so with a purchased data package and that
without one, she would have consumed as much as the data limit allowed. Our demand model reflects this,
imposing that contracts in this category cannot consume above the data limit at a reduced speed (as they are
able to do for high data limit contracts).
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C.3 Quality Data

Quality measures are constructed using download speed test results provided by Ookla. Test
results come from users who use Ookla’s free Internet speed test, called “Speedtest,” using a
web browser or within an app. Using speed tests in France in the fourth quarter of 2015 yields
1 056 285 individual speed tests. Each speed test records the download speed, mobile network
operator, and the user’s location. We aggregate speed tests by averaging measured download
speeds over tests for a given operator and geographic market, yielding an operator-market
quality measure. An operator-market quality measure is, on average, an average of 284 test
results. Note that our estimates rely on an instrument for these quality measures (see Section
4.1.3), alleviating concerns about attenuation bias.

C.4 Network Sharing

Network sharing occurs when a network operator shares a part or the whole of its network
resources with a retail competitor. These resources can be passive network elements, such as
antenna supports, masts, or active network elements, such as frequency bandwidths. Passive
network sharing affects coverage differentiation but not necessarily quality differentiation. It
typically consists of operators sharing the same tower and potentially the cost of electricity.
In general, it is any agreement between MNOs that do not involve the sharing of available
frequency bandwidths.

In contrast, under active network sharing (Radio Access Network-Sharing), operators cannot
differentiate in terms of quality, defined as the frequency bandwidth available per customer.
Typically, it consists of the sharing of frequency bands and the network elements involved
in data transmission. Roaming agreements, whereby an operator’s customers rely on the
network of a host operator to communicate, is the highest level of active network sharing. It
does not offer any possibility for quality or coverage differentiation.

Table 8 below presents the network sharing agreements reached between 2012 and 2015. These
agreements apply to two types of areas according to their population density. “White Areas”
or “Zones Blanches” correspond to areas where population density is so low that network
deployment by several operators is not profitable. These areas, which are typically rural,
are designated by the regulator and represent roughly 1% of the population and 10% of the
national surface. Only ORG, SFR and BYT have invested in these areas.

The most widespread network technologies in the White Areas are 2G, EDGE and GPRS. 57

However, 3G technology has been recently deployed. As of the end of December 2015, half
of ORG and BYT’s networks in these areas were covered by 3G, compared to 35% for SFR.

57EDGE and GPRS are suitable for low speed mobile data services.
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In general, only one operator invests in a given White Area, and 64% of antennas in these
areas are involved in a roaming agreement. Rival operators roam over the network of the
only operator that invests in the area. As a result, there is no quality differentiation. For the
remaining 36% of antennas, operators share passive network elements.

At the national level, FREE’s customers can roam over ORG’s 2G and 3G networks as long
as there is no FREE antenna nearby. As a result, FREE cannot differentiate from ORG on
2G and 3G technologies, except when a FREE antenna is nearby its customer. In addition,
FREE does not have access to networks in ZBs where BYT or SFR is the leader. MVNOs have
roaming agreements with their hosts and therefore cannot differentiate in terms of quality or
coverage.

Our model focuses on high-density areas to avoid the need to explicitly model network sharing.
During our period of study, the only active network sharing in such areas would have involved
FREE’s customers receiving data from 2G and 3G infrastructure owned and operated by
ORG. Meanwhile, ORG and FREE each owned and operated their own distinct 4G network
infrastructure.

Table 8: Network sharing agreements 2012-2015

FREE ORG SFR BYT

Zone Blanche Roaming: 64% of 2G & 3G antenna ↔
Passive sharing: 36% of antenna ↔

Low Density 2G and 3G RAN-Sharing ✗ ✗ ↔
4G Roaming ✗ ✗ →

High Density ✗ ✗ ✗ ✗

National Passive sharing ↔
2G and 3G Roaming → ✗ ✗

Source: Summary from discussions with ORG’s experts.

Note: ↔: two-way (reciprocal) sharing, A → B one-way sharing hosted by operator B.

D Supplementary Results (for online publication)

D.1 Demand Estimation Results

Demand parameter estimates are listed in table 9 for a range of imputed price elasticities and
nesting parameters. To interpret these estimates, we convert the parameter estimates into
willingness to pay for certain contract characteristics. Consumers’ willingness to pay varies
considerably across income levels, as we allow the price and data consumption parameters (θp
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Table 9: Demand Parameter Estimates

Nesting
Elasticity Parameter θ̂p0 θ̂pz θ̂v θ̂O θ̂d0 θ̂dz

̂log (θc)
−3.2 0.0 −0.343 −0.707 1.75 3.819 −1.308 0.311 −6.756

(0.393) (0.167) (0.056) (0.554) (0.09) (0.053) (0.097)
0.5 −1.081 −0.689 0.872 2.881 −0.602 0.306 −7.445

(0.463) (0.21) (0.064) (0.399) (0.091) (0.053) (0.151)
0.75 −1.809 −0.674 0.435 2.581 0.093 0.303 −8.128

(0.661) (0.325) (0.097) (0.298) (0.095) (0.063) (0.23)
0.85 −2.326 −0.673 0.261 2.508 0.602 0.303 −8.635

(0.97) (0.502) (0.115) (0.257) (0.097) (0.083) (0.325)
−2.5 0.0 −0.549 −0.767 1.505 3.019 −0.741 0.312 −7.313

(0.462) (0.209) (0.043) (0.506) (0.106) (0.052) (0.168)
0.5 −1.269 −0.758 0.755 2.542 −0.039 0.308 −8.003

(0.553) (0.267) (0.064) (0.37) (0.142) (0.055) (0.246)
0.75 −1.976 −0.753 0.378 2.435 0.653 0.307 −8.687

(0.822) (0.423) (0.098) (0.291) (0.172) (0.067) (0.349)
0.85 −1.357 −1.331 0.281 2.783 1.452 0.338 −9.621

(0.969) (0.406) (0.043) (0.367) (0.096) (0.053) (0.095)
−1.8 0.0 −0.756 −0.89 1.274 2.318 0.57 0.314 −8.616

(0.605) (0.3) (0.032) (0.471) (0.512) (0.053) (0.621)
0.5 −1.452 −0.894 0.643 2.241 1.275 0.312 −9.313

(0.719) (0.375) (0.061) (0.349) (0.673) (0.057) (0.806)
0.75 −2.158 −0.891 0.322 2.295 1.945 0.311 −9.978

(1.054) (0.579) (0.094) (0.272) (0.805) (0.072) (1.007)
0.85 −1.925 −1.305 0.217 2.493 3.418 0.335 −11.541

(1.295) (0.605) (0.064) (0.315) (0.639) (0.06) (0.772)
The row in bold corresponds to the imputed elasticity and nesting parameter presented in the main text.

and θd, respectively) to vary by income, so we present these results across income percentiles.58

We present tables capturing consumers’ willingness to pay for higher data limits (table 10),
for an unlimited voice allowance (table 11), and for higher download speeds (table 12).

Table 10 presents consumers’ willingness to pay for an increase from a 1 000 MB plan to a 4 000
MB plan, with quality equal to the median download speed observed in our data (24.3 Mbps).
Higher income consumers are willing to pay considerably more for this upgrade than are lower
income consumers. From the estimates corresponding to our preferred imputation (the row
in bold), a consumer with an income equal to the 90th percentile would be willing to pay
5.21 AC for the upgrade, while a consumer with an income equal to the 10th percentile would
only be willing to pay 2.74 AC. These differences reflect that the estimated price parameter
is decreasing in magnitude in income while the data consumption parameter is increasing.
Estimates of willingness to pay are pretty stable across choices of the nesting parameter,

58Each percentile corresponds to the estimated willingness to pay for an individual with an income that is
the average of that percentile across all markets in our sample. Specifically, the 10th percentile is 3 759 AC,
the 30th percentile is 8 705 AC, the 50th percentile is 13 015 AC, the 70th percentile is 18 101 AC, and the 90th
percentile is 28 096 AC.
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Table 10: Willingness to pay to go from 1 000 MB data plan to 4 000 MB plan

Nesting
Elasticity Parameter 10th %ile 30th %ile 50th %ile 70th %ile 90th %ile

−3.2 0.0 3.77 AC 4.34 AC 4.81 AC 5.36 AC 6.40 AC
0.5 3.86 AC 4.40 AC 4.86 AC 5.39 AC 6.38 AC
0.75 3.95 AC 4.49 AC 4.93 AC 5.44 AC 6.38 AC
0.85 3.98 AC 4.51 AC 4.95 AC 5.46 AC 6.38 AC

−2.5 0.0 2.67 AC 3.16 AC 3.59 AC 4.11 AC 5.17 AC
0.5 2.70 AC 3.19 AC 3.62 AC 4.13 AC 5.18 AC

0.75 2.74 AC 3.23 AC 3.65 AC 4.17 AC 5.21 AC
0.85 0.84 AC 1.31 AC 1.85 AC 2.71 AC 5.54 AC

−1.8 0.0 0.92 AC 1.16 AC 1.38 AC 1.67 AC 2.33 AC
0.5 0.91 AC 1.15 AC 1.38 AC 1.67 AC 2.35 AC
0.75 0.94 AC 1.19 AC 1.42 AC 1.72 AC 2.42 AC
0.85 0.20 AC 0.31 AC 0.44 AC 0.63 AC 1.26 AC

Table 11: Willingness to pay for unlimited voice allowance

Nesting
Elasticity Parameter 10th %ile 30th %ile 50th %ile 70th %ile 90th %ile

−3.2 0.0 3.16 AC 4.53 AC 6.05 AC 8.39 AC 15.97 AC
0.5 3.27 AC 4.65 AC 6.16 AC 8.48 AC 15.87 AC
0.75 3.35 AC 4.74 AC 6.24 AC 8.53 AC 15.78 AC
0.85 3.38 AC 4.77 AC 6.27 AC 8.57 AC 15.81 AC

−2.5 0.0 3.40 AC 5.04 AC 6.89 AC 9.84 AC 19.79 AC
0.5 3.49 AC 5.15 AC 7.02 AC 9.97 AC 19.89 AC

0.75 3.55 AC 5.22 AC 7.10 AC 10.07 AC 20.01 AC
0.85 1.73 AC 3.43 AC 5.91 AC 10.95 AC 36.82 AC

−1.8 0.0 3.70 AC 5.83 AC 8.38 AC 12.66 AC 28.49 AC
0.5 3.75 AC 5.93 AC 8.54 AC 12.92 AC 29.19 AC
0.75 3.80 AC 6.00 AC 8.64 AC 13.05 AC 29.38 AC
0.85 2.34 AC 4.58 AC 7.79 AC 14.27 AC 46.87 AC

Table 12: Willingness to pay for increase from 10 Mbps to 20 Mbps

Nesting
Elasticity Parameter 10th %ile 30th %ile 50th %ile 70th %ile 90th %ile

−3.2 0.0 2.90 AC 3.59 AC 4.20 AC 4.97 AC 6.67 AC
0.5 2.98 AC 3.66 AC 4.27 AC 5.02 AC 6.65 AC
0.75 3.07 AC 3.75 AC 4.34 AC 5.08 AC 6.66 AC
0.85 3.10 AC 3.77 AC 4.37 AC 5.10 AC 6.67 AC

−2.5 0.0 2.06 AC 2.63 AC 3.15 AC 3.83 AC 5.41 AC
0.5 2.10 AC 2.66 AC 3.19 AC 3.86 AC 5.43 AC

0.75 2.13 AC 2.70 AC 3.23 AC 3.90 AC 5.47 AC
0.85 0.61 AC 1.04 AC 1.57 AC 2.46 AC 5.70 AC

−1.8 0.0 0.71 AC 0.97 AC 1.22 AC 1.56 AC 2.45 AC
0.5 0.71 AC 0.96 AC 1.22 AC 1.57 AC 2.48 AC
0.75 0.74 AC 1.00 AC 1.26 AC 1.62 AC 2.55 AC
0.85 0.15 AC 0.25 AC 0.38 AC 0.58 AC 1.31 AC
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while unsurprisingly vary in levels across imputed price elasticities. Patterns across income
levels are broadly consistent across imputed parameters, however.

Table 11 presents willingness to pay for an unlimited voice allowance. From the estimates
corresponding to our preferred imputation (the row in bold), a consumer with an income
equal to the median would be willing to pay 7.10 AC. Across imputed parameters, as with the
increase in the data limit, higher income consumers are willing to pay much higher prices for
unlimited voice allowances than are lower income consumers.

Table 12 presents willingness to pay for an increase in download speeds from 10 Mbps to
20 Mbps on a 10 000 MB plan. Results are similar to the estimated willingness to pay for
an increase in the data limit from 1 000 MB to 4 000 MB (table 10). Using the preferred
imputations (the row in bold), a consumer with an income equal to the 90th percentile would
be willing to pay 5.47 AC for the faster download speed, while a consumer with an income
equal to the 10th percentile would only be willing to pay 2.13 AC.

D.2 Cost Estimation Results

Tables 13 and 14 present per-user and per-tower cost estimates, respectively, across a range of
imputed price elasticities and nesting parameters. These estimates are recovered by inverting
prices and radii, as described in Section 4.2 in the main text. Table 13 presents the esti-
mated per-user costs, averaged across products with similar data limits, and table 14 presents
estimated costs per tower for each MNO, averaged across markets.

Estimated per-user costs increase considerably in the size of the data limit. For our preferred
elasticity and nesting parameter, for example, small data limit plans (those with data limits
less than 1 000 MB) have an average per-user cost of 5.50 AC, medium-sized data limit plans
(between 1 000 and 5 000 MB) an average of 9.56 AC, and large data limit plans (over 5 000
MB) an average of 18.18 AC. These patterns hold across different imputations of the elasticity
and nesting parameter.

Estimated per-base station costs are similar among Orange, SFR, and Bouygues, but smaller
for low-cost Free. Converting monthly estimates to the sunk cost of investment (see the
footnote attached to table 14 for details), the estimated cost per base station for Orange
for our preferred imputations is 142 000 AC. Per-base station costs vary substantially across
markets. For Orange, the estimated standard deviation in the cost per base station across
markets is 43 000 AC, reflecting differences in land acquisition costs, labor costs, etc.
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Table 13: Per-user cost estimates

Nesting d̄ < 1 000 1 000 ≤ d̄ < 5 000 d̄ ≥ 5 000
Elasticity Parameter (in AC) (in AC) (in AC)

−3.2 0.0 6.77 9.11 15.47
(0.33) (0.81) (1.68)

0.5 6.71 9.11 15.49
(0.28) (1.07) (2.18)

0.75 6.71 9.16 15.63
(0.35) (1.57) (3.29)

0.85 6.73 9.20 15.75
(1.12) (2.82) (4.89)

−2.5 0.0 5.52 9.40 18.03
(0.57) (0.72) (1.68)

0.5 5.48 9.47 18.06
(0.57) (0.89) (2.11)

0.75 5.50 9.56 18.18
(0.84) (1.27) (3.37)

0.85 6.25 10.21 12.88
(0.75) (0.92) (4.43)

−1.8 0.0 3.32 8.44 18.75
(1.23) (0.89) (2.50)

0.5 3.32 8.54 18.68
(1.39) (1.10) (3.33)

0.75 3.35 8.64 18.80
(2.12) (1.69) (5.75)

0.85 4.34 8.85 14.48
(1.77) (1.45) (6.57)

Values are the estimated average per-user cost, where the average is taken across all products in the data
limit range of the corresponding column. Values in parentheses are the average standard errors. The row in

bold corresponds to the imputed elasticity and nesting parameter presented in the main text.

D.3 Counterfactual Results

This section considers the robustness of our counterfactual results to different price elasticities
and nesting parameters. In this section, we present results for different counterfactual exercises
described in section 6 in the main text for the same range of elasticities and nesting parameters
as those used in sections D.1 and D.2 above.

Endogenous variables such as prices, investment, and download speeds are broadly quite
similar across elasticities and nesting parameters. Figure 18 plots these endogenous variables
in the four-firm symmetric equilibrium for different imputations. Prices for the high data
limit plan increase with a less elastic imputed elasticity (the price is 21.54 AC for E = −3.2
and 31.28 AC for E = −1.8 for σ = 0.75), but prices for the low data limit plan are nearly
the same across elasticities (12.83 AC versus 14.52 AC for the same elasticities). Investment and
download speeds follow a similar pattern to that of the prices for the low data limit, increasing
only a little as we impute a less elastic elasticity.
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Table 14: Per-base station cost estimates

Nesting Orange SFR Free Bouygues
Elasticity Parameter (in AC) (in AC) (in AC) (in AC)

−3.2 0.0 188 178 193 489 93 316 198 135
(61 226) (96 829) (32 217) (128 672)

0.5 187 778 191 189 90 781 196 409
(60 696) (94 367) (31 202) (125 669)

0.75 187 827 190 831 91 594 195 306
(60 285) (92 785) (31 714) (122 239)

0.85 187 749 190 337 90 847 194 639
(60 040) (91 936) (31 576) (120 431)

−2.5 0.0 142 056 128 481 73 641 144 146
(43 521) (56 121) (23 091) (85 424)

0.5 141 679 125 923 69 720 142 668
(43 145) (54 354) (21 801) (83 568)

0.75 141 699 124 602 67 790 141 751
(42 908) (53 195) (21 266) (81 778)

0.85 105 883 58 358 6 487 105 132
(33 190) (29 136) (2 540) (71 471)

−1.8 0.0 54 852 43 392 28 942 53 874
(16 747) (16 972) (8 683) (29 336)

0.5 54 281 41 823 26 533 52 879
(16 518) (16 254) (7 967) (28 616)

0.75 55 272 42 036 26 292 53 491
(16 759) (16 221) (7 926) (28 641)

0.85 20 852 12 582 3 116 20 127
(6 452) (5 319) (976) (11 828)

We estimate base station costs using monthly profits. Estimates presented here are in per base station terms
rather than per base station-units of bandwidth terms. To recover the cost of long-lived base stations, we
assume the static game is infinitely repeated with a monthly discount rate of 0.5%. The above results are

therefore 1
1−0.995 = 200 times the per-base station costs we recover. Values in parentheses are standard

deviations of the distribution of estimated costs across markets (not standard errors in the estimates). The
row in bold corresponds to the imputed elasticity and nesting parameter presented in the main text.

The relationship between the number of symmetric firms and welfare, however, displays a
pattern that is more dependent on the imputed elasticity. Figure 19 plots the relationship
between the number of symmetric firms and consumer, producer, and total surplus for different
elasticities (rows) and nesting parameters (individual lines). The optimal number of firms
from the perspective of consumer or total surplus varies considerably based on the imputed
elasticity. The number of symmetric firms that maximizes consumer surplus at σ = 0.75 is
2 for E = −3.2, 6 for E = −2.5, and 9 for E = −1.8, and the number that maximizes total
surplus follows a similar pattern (2, 3, and 9, respectively).59 The nesting parameter does not
appear to have as much of an impact on the optimal number. While these results are quite
sensitive to the choice of the imputed elasticity, Bourreau, Sun and Verboven (2021), also

59Note that 9 firms is the miaxmum number that we simulate, but the maximum may actually occur at a
higher number.
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Figure 18: Counterfactual prices and qualities across imputations
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Each subplot corresponds to a particular variable in the four symmetric firm-equilibrium. Along the x-axis of
each subplot, the bottom row corresponds to an imputed price elasticity, and the top row corresponds to an
imputed nesting parameter. The imputations in bold correspond to those presented in the main text. Error

bars represent 95% confidence intervals.

studying the French mobile telecommunications industry, finds an elasticity that corresponds
to about -2.5, making it a sensible baseline.

Bandwidth derivatives, which capture the value of marginal bandwidth (see Section 6.2), are
responsive to both the elasticity imputed and the specification of the cost function. Figure 20
presents bandwidth derivatives (analogous to figure 12) for four ex ante symmetric firms. The
columns correspond to either a fixed or a bandwidth cost function specification (columns).
The fixed cost specification assumes that base station costs are fixed and do not vary by the
amount of bandwidth operated, while the bandwidth cost specification assumes that base
station costs scale with bandwidth (as in equation 19 and the results presented in the main
text). Within each subplot is the estimated derivative for a range of elasticity and nesting
parameter imputations. For each derivative and cost function, the magnitude of the derivative
is decreasing as we make the imputed elasticity less elastic.
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The value of most interest, the ratio of marginal own-profits and marginal consumer surplus,
however, is less sensitive to the imputed price elasticity. Using σ = 0.75, for the bandwidth
cost specification, the ratio ∂CS

∂b /
∂Πf

∂bf
is, from most elastic to least, 8.0, 9.1, and 10.3. This

value does, however, vary in levels depending on which cost specification we use. The same
value as before but for the fixed cost specification yields smaller ratios of, again from most
elastic to least, 5.3, 5.8, and 6.4.

Welfare differences between allocating spectrum to a new firm versus existing firms is some-
what sensitive to the imputed price elasticity but not so sensitive to the imputed nesting
parameter or cost specification. Figure 21 presents the impact on consumer, producer, and
total surplus relative to the three-firm, original amount of bandwidth equilibrium for differ-
ent imputed price elasticities (rows), cost specifications (columns), and nesting parameters
(groups of bars within subplots). Which equilibrium (allocating to incumbent firms, denoted
“3” in the graph, or allocating to an entrant, denoted “4”) maximizes a welfare measure is
robust to both cost specifications and to all of the nesting parameters we consider. It does,
however, change based on whether we use an elastic or inelastic imputed elasticity. For the
most elastic one that we consider, allocating new spectrum to incumbent firms is better from
both a consumer surplus perspective and a total surplus one. For the least elastic one, the
reverse is true; allocating to an entrant is better from both perspectives. For our baseline
elasticity, we get the tension presented in the main text; allocating to an entrant is better for
consumer surplus while to incumbents is better for total surplus.

68



Figure 19: Welfare by number of firms across imputations

1 2 3 4 5 6 7 8 9
number of firms

consumer surplus

E = -3.2

= 0.0
= 0.5
= 0.75
= 0.85

1 2 3 4 5 6 7 8 9
number of firms

producer surplus
= 0.0
= 0.5
= 0.75
= 0.85

1 2 3 4 5 6 7 8 9
number of firms

total surplus
= 0.0
= 0.5
= 0.75
= 0.85

1 2 3 4 5 6 7 8 9
number of firms

E = -2.5

= 0.0
= 0.5
= 0.75
= 0.85

1 2 3 4 5 6 7 8 9
number of firms

= 0.0
= 0.5
= 0.75
= 0.85

1 2 3 4 5 6 7 8 9
number of firms

= 0.0
= 0.5
= 0.75
= 0.85

1 2 3 4 5 6 7 8 9
number of firms

E = -1.8

= 0.0
= 0.5
= 0.75
= 0.85

1 2 3 4 5 6 7 8 9
number of firms

= 0.0
= 0.5
= 0.75
= 0.85

1 2 3 4 5 6 7 8 9
number of firms

= 0.0
= 0.5
= 0.75
= 0.85

Columns correspond to consumer, producer, and total surplus, and rows correspond to an imputed price
elasticity. The x-axis of each subplot represents the number of symmetric firms in the simulated market, and

within each subplot, each line corresponds to an imputed nesting parameter. Dashed lines represent the
number of symmetric firms that maximizes the welfare measure in the corresponding column. The

imputations in bold correspond to those presented in the main text.
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Figure 20: Bandwidth derivatives across imputations
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Figure 21: Welfare impact of allocating spectrum within the industry across imputations
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Columns correspond to the changes in consumer, producer, and total surplus that result from allocating additional bandwidth to the market relative to
the three symmetric firm-equilibrium without the additional bandwidth. Rows correspond to imputed price elasticities. Within each column capturing a

change in surplus, sub-columns correspond to a cost specification in which the cost comes from the number of base stations (“fixed cost”) and one in
which the cost comes from the amount of bandwidth operated (“bandwidth cost”). Along the x-axis of each subplot, the bottom row corresponds to an
imputed nesting parameter, and the top row corresponds to an allocation of the additional bandwidth, either allocating 33% more to each firm (“3”) or

adding an additional firm with the same amount of bandwidth (“4”). The imputations in bold correspond to those presented in the main text. Error bars
represent 95% confidence intervals.
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Table 15: Notation

Symbol Description
f indexes firms
F used for CDFs
i indexes consumers
j indexes mobile phone plans
J set of mobile phone plans
m indexes markets
Pj price of phone plan j

Qfm download speed (in Mbits/second)
dj data consumption limit of phone plan j
u utility of a phone plan
w utility from data consumption over course of month
x monthly data consumption

εij idiosyncratic, consumer-plan-level demand shock
θ demand parameters
σ nesting parameter

θpi price coefficient
θp0 parameter controlling the mean of the price coefficient
θpz parameter controlling the heterogeneity in the price coefficient
θv coefficient on dummy for unlimited voice
θO coefficient on dummy for Orange plans
θc opportunity cost of time spent downloading data coefficient
θdi parameter of exponential distribution that defines distribution

from which a consumer’s utility of data consumption is drawn
θd0 parameter controlling the mean of θdi

θdz parameter controlling the heterogeneity in θdi

ϑi random shock to consumer’s utility of data consumption,
distributed exponentially with parameter θdi

ξjm market-level demand shock
sjm market share
s vector of market shares

Bfm bandwidth (in Hertz)
g (·) density of consumers at given radius

qm (·) data transmission speed as function of distance (in Mbits/second)
γm data transmission efficiency in market m

Qfm channel capacity (in Mbits/second)
QL throttled download speed (in Mbits/second)

QD
fm demand requests (in Mbits/second)
r distance from antenna (in km)

Rfm radius of area served by one base station (in km)
cu

j cost per user
cs

fm cost per base station and unit of bandwidth
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