
DISCUSSION PAPER SERIES

 

DP16091
 

Equilibrium Securitization with Diverse
Beliefs

Andrew Ellis, Michele Piccione and Shengxing Zhang

FINANCIAL ECONOMICS



ISSN 0265-8003

Equilibrium Securitization with Diverse Beliefs
Andrew Ellis, Michele Piccione and Shengxing Zhang

Discussion Paper DP16091
  Published 30 April 2021
  Submitted 29 April 2021

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Financial Economics

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Andrew Ellis, Michele Piccione and Shengxing Zhang



Equilibrium Securitization with Diverse Beliefs
 

Abstract

We study the effects of diverse beliefs on equilibrium securitization under risk neutrality. We
provide a simple characterization of the optimal securities. Pooling and tranching of assets
emerges in equilibrium as a consequence of the traders’ diverse beliefs about asset returns. The
issuer of securities tranches the asset pool, and traders sort among the tranches according to their
beliefs. We show how the traders’ disagreement about the correlation of asset returns is a key
factor in determining which assets are pooled.

JEL Classification: D53, G20

Keywords: Securitization, heterogeneous beliefs, Collateral, tranching, pooling

Andrew Ellis - a.ellis@lse.ac.uk
Department of Economics, London School of Economics

Michele Piccione - M.Piccione@lse.ac.uk
Department of Economics, London School of Economics

Shengxing Zhang - s.zhang31@lse.ac.uk
Department of Economics, London School of Economics and CEPR

Powered by TCPDF (www.tcpdf.org)



EQUILIBRIUM SECURITIZATION WITH DIVERSE BELIEFS

ANDREW ELLIS, MICHELE PICCIONE AND SHENGXING ZHANG

Abstract. We study the effects of diverse beliefs on equilibrium securitization under risk

neutrality. We provide a simple characterization of the optimal securities. Pooling and

tranching of assets emerges in equilibrium as a consequence of the traders’ diverse beliefs

about asset returns. The issuer of securities tranches the asset pool, and traders sort among

the tranches according to their beliefs. We show how the traders’ disagreement about the

correlation of asset returns is a key factor in determining which assets are pooled.

Keywords: securitization, heterogeneous beliefs, collateral, tranching, pooling

JEL code: D53, G20

1. Introduction

This paper investigates the implications of heterogeneous beliefs for the design of asset-

backed securities and, in particular, the selection of the pool of assets backing them. We

show that disagreement about the return of an asset provides an incentive to securitize that

asset, and that disagreement about correlation between assets provides an incentive to pool

them together. Disagreement about correlation has been pointed to by a number of authors,

including Brunnermeier [2009], Coval et al. [2009], Hellwig [2009], Tett [2009] and Lewis

[2010], as one of the main causes of the mispricing of securities in the run-up to the 2007-08

financial crisis.

We begin by investigating security design in an economy that contains a safe asset and a

single risky financial asset. The latter can be interpreted as an already formed pool of assets.

Date: March, 2021.
Department of Economics, London School of Economics and Political Science. We would like to thank Matt
Darst, Darrell Duffie, Erik Eyster, Ana Fostel, Douglas Gale, John Geanakoplos, Filip Matejka, Balazs
Szentes, Anton Tsoy, and conference/seminar participants at CERGE-EI, the Cowles Conference on Gen-
eral Equilibrium and its Applications, EUI, the EuroFIT workshop, the Hitotsubashi Summer Workshop,
Manchester, Southampton, and Yale for helpful comments and discussion.
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EQUILIBRIUM SECURITIZATION WITH DIVERSE BELIEFS 2

A competitive issuer purchases units of the risky asset, and creates and sells asset-backed

securities: promises to pay contingent on its return. The issuer can sell any securities that

are increasing in the risky asset’s return, provided that its holdings are sufficient to cover all

payments. Risk-neutral traders allocate their wealth between the safe asset, the risky asset,

and securities; short-selling is prohibited.

We characterize a tight, central link between equilibrium securities and the traders’ beliefs.

The issuer tailors the securities to maximize disagreement about returns. Even if traders

are not inherently optimistic or pessimistic about the risky asset’s return, they may be so

about particular securities. For instance, a low-variance trader is optimistic about debt but

pessimistic about equity, and vice versa for a high-variance one. Because the issuer sells

each security to the trader most optimistic about its return, creating disagreement increases

revenue. We provide a straightforward yet powerful method to determine the optimal security

design, and show how one can illustrate asset and security pricing, which securities are issued,

and how the securities are allocated in a single, simple graph.

We embed our approach to security design into a general equilibrium model that permits

the study of the interaction between the initial endowment distribution, the speculation that

arises from heterogeneous beliefs, and asset prices. The equilibrium security design affects

the trader’s marginal utility of wealth and the value of her endowment, which in turn affects

her willingness to pay for any given security. When the safe asset is scarce, these general

equilibrium effects gain prominence, and the initial allocation of assets affects securitization

and asset prices. We show that an equilibrium exists and that the consumption allocation

is essentially unique. The issuer sells securities resembling tranches, each designed to appeal

to a particular trader.

Next, we extend the model by endogenizing the issuer’s asset pooling decision. There are

two or more risky assets, and traders have diverse beliefs about the joint returns of these

assets. The issuer purchases assets, allocates its purchases to pools, and then sells increasing

securities, each based on the return of an individual pool.1

1Traders observe the content of the pools perfectly and know which pool backs each security.
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EQUILIBRIUM SECURITIZATION WITH DIVERSE BELIEFS 3

We define correlation agreement and disagreement in our model in terms of copulas.

Traders agree about the correlation when they agree on the copula that maps the mar-

ginal distributions of assets into a joint distribution, and they disagree otherwise. This

distinction is critical for the generation of asset pools in our model. The issuer benefits from

pooling and tranching whenever traders disagree about the correlation, even if they agree

on the individual return of every asset. In contrast, if traders disagree about the returns of

individual assets but agree on their correlation, then pooling the assets is never profitable for

the issuer. Intuitively, pooling assets increases disagreement when traders disagree about the

correlation, but decreases it when they agree. As tranching exploits disagreement, pooling

allows the issuer to profit from diverse beliefs about correlation.

These results emphasize correlation disagreement as a channel through which pooling can

affect optimal security design. In contrast, most previous work focuses on pooling’s ability

to diversify away idiosyncratic risk and produce safe securities. This effect is absent in our

model because of risk-neutrality. Turning off the diversification channel allows us to isolate

the effect of correlation disagreement on securitization. In the presence of other motives,

incentives to exploit correlation disagreement by pooling-and-tranching would still exist,

though tempered by other considerations.

Belief diversity, and particularly correlation disagreement, is central to our analysis. As

noted, correlation disagreement features prominently in the discussion of the role of securi-

tization in the 2007-08 financial crisis. Griffin et al. (2013, p. 2272-3) show that “there is

considerable disagreement between Moody’s and S&P on the key assumptions—probabilities

of default differ on average by 30% on the same [CDO] deal and default correlations [amongst

assets in a given deal] differ by 57.2%.” More generally, the quality of statistical risk models

used by financial intermediaries is varied and much lower than often assumed (Danielsson

2008).

Evidence of correlation misperception, particularly neglect, has been found in several ex-

perimental studies, including Eyster and Weizsäcker [2010], Enke and Zimmermann [2017],

and Rubinstein and Salant [2015]. A recent literature studies the effects of correlation mis-

perception, including DeMarzo et al. [2003], Ortoleva and Snowberg [2015], Levy and Razin
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EQUILIBRIUM SECURITIZATION WITH DIVERSE BELIEFS 4

[2015], and Ellis and Piccione [2017]. Recent research has provided strong evidence for belief

disagreement in financial markets more broadly. Greenwood and Shleifer [2014], Meeuwis

et al. [2018], and Egan et al. [2020] all provide empirical evidence for belief heterogeneity

across investors, and argue for its importance.

Our approach to equilibrium security design is more general than previous work. We do

not restrict the number of securities or the types of beliefs (other than no atoms). Our

characterization of the relationship between diverse beliefs and the endogenous emergence

of tranches is related to the literature on collateralized lending with heterogeneous beliefs,

which includes Geanakoplos [2001], Fostel and Geanakoplos [2012, 2015], Simsek [2013a],

Geerolf [2015], and Gong and Phelan [2016] among others. While we put no restrictions on

the number of monotone asset-backed securities and allow broad belief heterogeneity, the

majority of these papers assume that securitization takes the form of collateralized debt (a

senior tranche) and focus primarily on beliefs ranked by optimism and pessimism.

Our analysis of the incentives of issuers to select, prior to tranching, an asset pool when

traders disagree about correlation is new. This topic has been overlooked in the recent

literature, where most work addressing pooling, such as Broer [2018], compares equilibria

when the pooling and tranching is taken as given. Notable exceptions include Bianchi and

Jehiel [2018] and DeMarzo [2005]. The former proposes a behavioral model where incorrect

extrapolation from limited sampling gives an incentive to pool high and low quality assets

together. The latter shows that selling debt, i.e. a senior tranche, backed by a pool of

independent assets can be the optimal security because it lessens adverse selection. In

contrast, we show that tranching is the optimal securitization for inducing speculation on

the correlation of the pool.

We contribute a simple yet general solution to the security design problem under diverse

beliefs. Seminal work on optimal security design is due to Allen and Gale [1988], who do

not focus on heterogeneous beliefs. However, diverse beliefs do feature in several recent

papers on optimal security design. Garmaise [2001] studies optimal security design when

securities are to be sold at auction, contrasting the equilibrium under “rational beliefs” with

rational expectations. Simsek [2013b] considers the optimal creation of new assets for both
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EQUILIBRIUM SECURITIZATION WITH DIVERSE BELIEFS 5

speculation and risk-sharing purposes in a CARA-Normal general equilibrium model. Unlike

our model, there are no collateral requirements for the designed securities, which must be

linear combinations of random variables. Ortner and Schmalz [2016] study optimal security

design by a strategic, optimistic issuer and a passive market with different beliefs about the

return of a project. We restrict attention to increasing securities (unlike Allen and Gale

[1988], Garmaise [2001], and Simsek [2013a]), and our analysis is general equilibrium (unlike

Garmaise [2001] and Ortner and Schmalz [2016]).

A significant portion of the literature on securitization focuses on the role of asymmetric

information. For instance, DeMarzo and Duffie [1999], DeMarzo [2005], Farhi and Tirole

[2015] study optimal security design in an environment with asymmetric information about

the asset quality and heterogeneity in traders’ valuations. Under adverse selection, pool-

ing and tranching produce liquidity that would be otherwise unavailable. In our model,

traders have no private information. Pooling and tranching together create first moment

disagreement even when none exists about individual assets in isolation.

The rest of the paper is organized as follows. Section 2 and 3 present the benchmark model

with a single risky asset and solve for the optimal security design. Section 4 explores the

general equilibrium security design. Section 5 studies equilibrium with endogenous pooling

of multiple risky assets.

2. Model

We consider an economy with one physical commodity, the consumption good, N types of

traders, labeled i = 1, ..., N , and one representative firm, the issuer of asset-backed securities.

There is a continuum of each type of trader having total measure one.2 The economy contains

a risky asset, a unit of which delivers a random amount of the consumption good, and a

safe asset, a unit of which delivers one unit of the consumption good. Trader i is endowed

with eic > 0 units of the safe asset, eia ≥ 0 units of the risky asset, and a share θi ≥ 0 of

the firm. We assume ∑N
i=1 e

i
a = ea > 0, and that the shares in the firm sum to one, i.e.∑N

i=1 θ
i = 1. The risky asset delivers s ∈ S ≡ [0, s̄], s̄ > 0, units of the consumption good.3

2The measure assigned to any type of trader is inessential.
3The set S is endowed with the Borel σ-algebra.

Electronic copy available at: https://ssrn.com/abstract=3833985



EQUILIBRIUM SECURITIZATION WITH DIVERSE BELIEFS 6

Trader i’s beliefs about s are described by a non-atomic, cumulative distribution function

(CDF), F i(·), or equivalently, the complementary CDF, F̃ i(·) ≡ 1 − F i(·), with support

contained in S. For a real-valued measurable function g : S → R, let Ei[g] denote Trader i’s

expectation
´
gdF i. For notational simplicity, s̄ is set to be the smallest state at which all

complementary CDFs vanish. Each trader is risk neutral.4

The issuer can create financial contracts, or securities, backed by the asset. For standard

reasons related to moral hazard (Innes 1990), we restrict attention to increasing securities.

Formally, the issuer can sell any security in the set

Σ = {φ : S → R+|φ is increasing},

endowed with the supnorm. Denote the set of finite Borel measures on Σ byM(Σ).

Remark 1. State s is the return of a risky asset that is potentially an already-formed asset

pool. Any additional aggregate state is integrated out for simplicity, although the model

easily extends to incorporate this additional uncertainty explicitly. While s is potentially

correlated with the aggregate state of the economy, it is still easily manipulable as long as

the correlation is not perfect, at least within a small interval. By restricting securities to

be increasing, any such manipulation is unprofitable; see Innes [1990], Nachman and Noe

[1994], DeMarzo and Duffie [1999], and Biais and Mariotti [2005].

The issuer and all traders are price takers. Normalizing the price of the safe asset to unity,

the risky asset sells at the price p and each security φ ∈ Σ at the price q(φ). The security

price function q : Σ → R+ is bounded and measurable with respect to the Borel σ-algebra

on Σ. Short selling is ruled out.

The issuer maximizes its profit, buying the assets and selling securities. Since securities

must be increasing, there is no incentive for the issuer to back securities with the safe asset

in addition to the risky asset. Thus, the issuer purchases an amount a0 ≥ 0 of the risky

asset and supplies securities according to a measure µ0 ∈M(Σ). Its objective is to maximize

4In an earlier version of this paper, Ellis et al. [2019], we allow for risk-aversion. We can alternatively interpret
the CDF as the “risk-neutral CDF” that reflects both a trader’s belief and exogenous state-dependent
marginal utility.
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profits

(1)
ˆ

Σ
qdµ0 − pa0

subject to the securities being feasible:

(2)
ˆ

Σ
φ(s)dµ0 ≤ sa0 for all s ∈ S.

Note that the securities produced must be fully backed by the asset. The issuer’s profits are

denoted by Π.

Remark 2. The assumption that the issuer attaches no value to any unsold portion of the

assets, and thus has no belief of her own to value it, is not essential. If one allows for unsold

portions of the assets and, for the same moral hazard reasons as for securities, imposes that

the issuer’s retained claims must be increasing, then the retained claims can be thought of as

a security which should be traded on the market. That is, the trader who values the retained

claims the most would want to purchase ownership of the firm to obtain them, which would

fetch the same price as the corresponding security. Similarly, we could do away with the

issuer entirely and allow traders to issue securities under these same restrictions without

altering our analysis, though the issuer interpretation is more natural.

Trader i maximizes her expected utility by purchasing an amount ai ≥ 0 of the risky

asset, holding an amount ci ≥ 0 of the safe asset, and purchasing securities.5 Her demand

for securities is given by a measure µi ∈M(Σ). Thus, she maximizes

(3) Ei
[
sai +

ˆ
Σ
φ(s)dµi + ci

]
,

subject to the budget constraint

pai +
ˆ

Σ
qdµi + ci ≤ eic + peia + θiΠ.(4)

5We denote safe asset holdings by ci since it delivers a unit of consumption in every state.
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EQUILIBRIUM SECURITIZATION WITH DIVERSE BELIEFS 8

An allocation
(
a0, µ0; (ai, ci, µi)Ni=1

)
is attainable if a0 ≥ 0, ai, ci ≥ 0, i = 1, ..., N , Equation

(2) holds, and

N∑
i=1

µi = µ0,(5)

N∑
i=0

ai =
N∑
i=1

eia,(6)

N∑
i=1

ci =
N∑
i=1

eic.(7)

The definition of competitive equilibrium is standard.

Definition 1. A competitive equilibrium is an attainable allocation
(
â0, µ̂0; (âi, ĉi, µ̂i)Ni=1

)
and non-negative prices (p̂, q̂) such that:

(1) (â0, µ̂0) maximizes (1) subject to (2); and

(2) (âi, ĉi, µ̂i) maximizes (3) subject to (4) for each i = 1, ..., N .

A competitive equilibrium links the initial endowment distribution, the speculation that

arises from heterogeneous beliefs, and asset prices. In the following sections, we establish

that an equilibrium exists and analyze its properties.

3. Security Design

We first analyze the revenue maximization problem of the issuer. The issuer chooses

optimally the set of securities taking as given security prices. Formally, the issuer with a

unit of the risky asset chooses µ0 ∈M(Σ) to maximize the revenue

(8)
ˆ

Σ
q(φ)dµ0,

subject to the feasibility constraint

(9)
ˆ

Σ
φ(s)dµ0 ≤ s for all s.

We call the above optimization problem the issuer’s problem.

Lemma 1, in Appendix A, characterizes the equilibrium security price function in terms of

an endogenous return vector v = (v1, . . . , vN) ∈ [1,∞)N . The ith component of the return
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vector vi plays the role of the Lagrangian multiplier on the budget constraint of Trader i for

prices p and q. It reflects the marginal return of slackening the budget constraint. From the

next section onward, the equilibrium determines the return vector. In the analysis of this

section, we take it as given.

The lemma shows that the equilibrium security price function can be written as

(10) q̂(φ) = max
i

1
v̂i

ˆ
S

φ(s)dF i(s)

for each security φ that is produced, where v̂ is the equilibrium return vector. Intuitively, if

φ is produced, then some trader, say Trader i, purchases it. Equation (10) sets her marginal

utility from an extra unit of φ equal to her expected rate of return, v̂i. If Equation (10) holds

for every security, and not just the ones that trade, then we call q̂ a canonical security price

function for v̂.6

Theorem 1 relates the maximum revenue to beliefs.

Theorem 1. When q is a canonical security price function for a given return vector v, a

solution to the issuer’s problem exists and obtains revenue equal to

(11) r(v) =
ˆ
S

max
k

(vk)−1F̃ k(x)dx.

A formal proof is provided in Appendix A.2. An outline of the main arguments follows.

For an interval (a, b), a security that pays zero for s < a, has a slope of 1 on (a, b), and

pays b− a for s > b is known to practitioners as a tranche; three are depicted in Figure 1B.

The bounds are called attachment points. Trader i values a tranche with attachment points

a < b as
´ b
a
F̃ i(x)dx, and since she has an opportunity cost of vi per unit of wealth, her

willingness to pay for it is (vi)−1 ´ b
a
F̃ i(x)dx.

Consider a candidate allocation of tranches. Suppose that two tranches in that alloca-

tion meet at s, the more senior is purchased by Trader 1, and the more junior by Trader

2. The willingness to pay of Trader 1 for changing the attachment point to s + ε is ap-

proximately ε(v1)−1F̃ 1(s), and the willingness to pay of Trader 2 for the same change is

−ε(v2)−1F̃ 2(s). Hence, the net effect on revenue of this change is the difference of the two,
6Any equilibrium remains so when replacing the security price function with the canonical one.
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Figure 1. Illustration of the Solution to the Issuer’s Problem
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ε
[
(v1)−1F̃ 1(s)− (v2)−1F̃ 2(s)

]
, and the issuer should increase (decrease) s whenever this ex-

pression is positive (negative) until it equals zero.

Based on this, we can determine the revenue-maximizing allocation of tranches. To do so

graphically, we plot the complementary CDF of Trader i weighted by (vi)−1, i.e. (vi)−1F̃ i(x),

for each i (illustrated in Figure 1A).7 As noted above, optimality requires that the attachment

points occur where the lines cross. Hence, we create a tranche to be allocated to Trader i

(illustrated in Figure 1B) for each interval where (vi)−1F̃ i(x) exceeds all others. The revenue

from this allocation of tranches is r(v), which corresponds to the area under the upper-

envelope of these plots. We complete the proof by establishing that r(v) is an upper-bound

on the revenue of the issuer for any increasing and feasible securities, not just tranches.

This graphical procedure explicitly links the revenue and securities to beliefs and dis-

agreement. Each of the plots represents a trader’s beliefs, adjusted for her required return.

Increasing disagreement corresponds to increasing the gap between the weighted complemen-

tary CDFs. Thus, disagreement is a driving force behind securitization with heterogeneous

beliefs.

7In the figure, Trader κ thinks s ∼ U [0, 2] , Trader ι thinks s is the independent sum of two U [0, 1] random
variables, vκ = 1, and vι > 1.
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This procedure also reveals which traders hold the safest and riskiest securities. The senior

tranche, the safest security, is held by the trader with the highest (vi)−1F̃ i(0). Similarly, the

equity tranche, the riskiest security, is held by the trader with the highest (vi)−1F̃ i(x) in a

neighborhood of s̄. If, and only if, the maximal complementary CDF switches exactly once

is a debt-equity split optimal.

4. Equilibrium

This section shows existence of a competitive equilibrium and illustrates some of its prop-

erties. Equilibrium allocation and design of securities with heterogeneous beliefs typically

leads to tranching and sorting (Corollary 1). As a consequence, equilibrium pricing can lead

to overpricing of the underlying asset (Corollary 2).

4.1. Existence. Using the observations in the previous section, we can now establish the

existence of a competitive equilibrium.

Theorem 2. A competitive equilibrium exists. The equilibrium utility of each agent and the

price of the risky asset are unique.

Our approach to proving existence reduces the problem to finding an equilibrium return

vector v̂ via a fixed point argument. From the above analysis, this vector determines the

prices of securities, which securities trade in equilibrium, and the issuer’s per unit revenue

r(v̂) (which must in turn equal the price of the risky asset). We illustrate the main arguments.

For simplicity, set the total supply of the risky asset to unity and the number of traders

to 2. Consider a candidate return vector v and its corresponding to the canonical security

price function q(φ) = maxi(vi)−1Ei (φ).8 Then, v is an equilibrium return vector if we can

find a vector of securities (φ1, φ2) that solves the Issuer’s problem for q with the following

three properties. First, each Trader i maximizes utility by purchasing a single unit of φi
and investing the remainder in the safe asset. Second, whenever peia + eic ≤ Ei (φi), Trader i

8A security φ that does not trade may not have uniquely determined prices. In equilibrium, we know from
Lemma 1 that q(φ) ≥ maxk(vk)−1Ek[φ], but q(φ) cannot exceed maxk(vk)−1Ek[φ] by “too much” or the
issuer would want sell φ (requiring that q(φ) = maxk(vk)−1Ek[φ]).
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holds no safe asset and

vi = Ei (φi)
(
peia + eic

)−1
≥ 1.

This ensures that purchasing one unit of φi is exactly affordable for Trader i. Third, whenever

peia + eic > Ei (φi), we have vi = 1 and, since q (φi) < peia + eic, Trader i holds a positive

amount of the safe asset. This ensures that for Trader i, investing a unit of wealth in φi

yields the same expected return as a unit of the safe asset.

The proof’s main technical contribution develops a method for showing the existence of

such a return vector. We define a correspondence with fixed points satisfying the above

equilibrium conditions. The main difficulty is that standard fixed point theorems do not

apply as the correspondence may not be convex-valued. Since at least one trader holds the

safe asset, vi = 1 for some i. However, there may be vectors v∗ and v∗∗ satisfying this

property while convex combinations do not, for instance when v∗1 > 1 and v∗∗2 > 1. We

develop a novel fixed point theorem, based on the Approximate Selection Theorem, that

establishes existence of an equilibrium return vector. All details are in the appendix.

4.2. Equilibrium properties. We now analyze some properties of equilibrium securiti-

zation. The following condition on beliefs will be useful and nests a number of common

assumptions in the literature.

Assumption 1 (Finite Crossing). Each complementary CDF F̃ i is strictly decreasing on

(0, s), and for any distinct Traders i, j and any k > 0, there are finitely many points x ∈ [0, s]

for which F̃ i(x) = kF̃ j(x).

Finite Crossing is satisfied for the beliefs depicted in Figure 1. It guarantees that the

inverse CDFs cross at most a finite number of times for any return vector. Since F̃ i is

strictly decreasing, each trader’s beliefs have full support. The remainder of the assumption

is implied by the finite crossing of hazard rates, by the (strict) monotone likelihood ratio

property, by A2 of Simsek [2013a], or by all of the complementary CDFs being smooth on

(0, s̄) and distinct.
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Corollary 1. Under Assumption 1, each trader’s equilibrium consumption is unique in every

state, and an equilibrium exists where each security sold is a tranche, the intervals on which

each tranche increases are disjoint, and each tranche is purchased by exactly one trader.

The corollary shows that under Finite Crossing, consumption is unique and there is an

equilibrium with two salient properties. First, each security sold is a tranche. Second, each

tranche is purchased only by a single trader. That is, the tranches sort the traders according

to their beliefs. Moreover, unless one trader’s beliefs first order stochastically dominate all

other’s, there is no equilibrium where no securities are issued.

We contrast this allocation with that arising from homogeneous beliefs with heterogeneous

risk aversion. Consider the case where each Trader i has a CARA utility index, ui(x) =

− exp (−αix) with αi > 0 and common beliefs. With sufficiently large endowments of the

safe asset, one can verify that Trader i purchasing βi ≡ ᾱ (αi)−1 units of the risky asset for

ᾱ ≡
[∑N

k=1

(
αk
)−1

]−1
and no securities being issued is an equilibrium.9

Predictably, securitization can increase the price of the risky asset. The price is above

every trader’s willingness to pay. When Finite Crossing holds and traders have the same

expectation for the return, the asset price necessarily exceeds the common expected return.

Corollary 2. If Ei[s] = m for i = 1, ..., N , then in any equilibrium, p̂ ≥ m, with strict

inequality whenever Assumption 1 holds.

Equilibrium securitization allocates tranches to traders who value them most, and thus

increases the price of the risky asset above every trader’s expectation. A graphical intuition

for the result can be gained by inspecting Figure 1. Recall that the risky asset’s price is the

area under the upper-envelope of (vι)−1 F̃ ι and F̃ κ. Since Eκ[s] =
´
S
F̃ κ(x)dx = m is the

area under F̃ κ, the price strictly exceeds the expected return.

This result extends beyond the case of equal means. Even the most optimistic trader

can think that the price of the risky asset is overvalued. A sufficient condition, in addition

to Assumption 1, is that her endowment is large enough and her beliefs do not first-order

dominate every other trader’s.
9See Ellis et al. [2019] for details, as well as the general case of risk-aversion.
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Similar results appear in Harrison and Kreps [1978] and Fostel and Geanakoplos [2012].

The latter is closest to our setting. They show the price of the risky asset can exceed

its maximum return in a two state environment with Arrow securities backed only by the

risky asset and a continuum of traders ranked by optimism. In Harrison and Kreps [1978],

overpricing occurs because a trader expects to be able to resell the risky asset in future states

where other traders overvalue it.

By studying security design in a general equilibrium framework, one can identify linkages

between endowments, pricing, and the allocation of securities. For instance, it can be easily

seen that, apart from knife-edge cases, the trader who holds the senior tranche also holds

the safe asset. Intuitively, each trader’s willingness to pay for a tranche is her expectation

of the tranche’s return times the inverse of her equilibrium rate of return. Since F̃ i(0) = 1

for every Trader i, Trader j has the highest willingness to pay for the senior tranche only if

v̂j = 1. That is, the trader who buys the senior tranche is indifferent between buying it and

holding the safe asset. Consequently, the equilibrium entails an endogenous concentration

of safe assets, even though all traders are risk-neutral.

In more specialized environments, these linkages can lead to more interpretable compara-

tive statics. For instance, Theorem 4 of Simsek [2013a] relies on a general equilibrium effect

through an assumption on the endowment distribution. In a dynamic setting, these links are

central to understanding speculation and financial fluctuations, as studied by Caballero and

Simsek [2019] and Martin and Papadimitriou [2019]. General equilibrium effects would thus

be essential for understanding financial stability with dynamics and securitization. While a

full derivation is left to future research, our results lay the theoretical basis for a dynamic

model.

5. Pooling

We have so far focused on the securitization of a single risky asset. In practice, issuers select

a group of assets, pool them together, and then securitize the resulting pool. The standard

rationale for this activity is diversification: while the pool is subject to aggregate risk, the

idiosyncratic risks affecting individual assets are mitigated. We focus on an orthogonal
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rationale, namely that pooling may increase disagreement, and so create additional channels

for screening beliefs via tranches targeted at particular traders.

In this section, we extend our baseline model to allow the securitization of multiple risky

assets. The issuer purchases assets, creates one or more pools, and then sells securities

backed by either one of the pools or by one of the assets. Traders accurately perceive the

composition of the pool, but may disagree about the distribution of the aggregate return of

the pool, or the distribution of the returns of the individual assets, or both. We focus on an

under-explored dimension of securitization: the selection of which assets to include in each

pool. We note that if diversification is the only motivation for pooling, then the optimal

pool includes all assets with idiosyncratic returns.

Disagreement about the correlation between assets in the pool implies disagreement about

the return of the pool itself, even when traders agree about the returns of individual assets.10

We define correlation disagreement by decomposing beliefs about the joint returns into their

marginal distributions and a copula.11 Traders disagree about the correlation when they have

different copulas. While copulas are a common tool in structural finance, to our knowledge

this definition is new.

We show that when traders agree about the correlation between assets, pooling does not

benefit the issuer. In contrast, when they agree about the marginal distribution of each

asset but disagree about their correlation, both pooling and tranching occur in equilibrium.

Intuitively, with correlation agreement, traders disagree less about the sum of the assets

than the assets individually. Conversely, with correlation disagreement, they disagree more

about the sum of the assets. Tranching the pool allows the issuer to exploit the increased

disagreement to raise revenue, leading to higher prices for the component assets.

In addition to the ample experimental evidence showing varying degrees of correlation ne-

glect, evidence suggests correlation disagreement among sophisticated financial institutions.

As mentioned in the introduction, Griffin et al. [2013] show disagreement amongst ratings

10With some abuse of terminology, we sometimes use “correlation” in place of the more appropriate “joint
distribution” of returns.
11A copula is the unique mapping from the marginal distributions to the joint distribution; see below for a
formal definition.
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agencies. Nickerson and Griffin [2017] argue that both S&P and Moody’s understate the cor-

relation parameter by a factor of four on average, even post-crisis. Their Table 1 indicates

that the two agencies have different distributions of default correlations over a given set of

deals, again suggesting disagreement about correlation. It appears that ratings agencies base

their models on rudimentary assumptions about correlation with which one can quibble. For

instance, while S&P’s baseline model includes the assumption that “correlation is likely to

remain constant over time” [S&P, 2015, p. 18], constant default intensity, even conditional

on observables, is unlikely to hold (Duffie et al. 2009). Valuations of tranches from the same

pool of assets also indicate either model misspecification or heterogeneous beliefs. In Duffie

(2008, Table 4), the inferred correlation parameter for each tranche of a fixed asset pool

varies dramatically across tranches.

5.1. Model. Consider an economy as in Section 2, but with J risky assets, in which Trader

i is endowed with eij ≥ 0 units of asset j. Uncertainty consists of a set of states SJ = [0, s̄]J .

Trader i has beliefs about the state that can be described by a non-atomic joint CDF,

F i : SJ → [0, 1], with F i (s1, . . . , sJ) denoting the joint probability that risky asset j’s return

is less than or equal to sj for every j = 1, . . . , J . We also assume that all J-order partial

derivatives exist for each F i(·), and write F i
j (·) for Trader i’s (marginal) CDF of asset j’s

return sj.

The issuer can sell any monotone securities based on each risky asset or one of several

pools of assets it constructs. We normalize the set of potential pools so that a unit of each

pool belongs to the unit simplex

Π =

z ∈ RJ
+ :

J∑
j=1

zj = 1

 .
The issuer can create as many units of as many pools as it would like. However, as we shall

see, there is an equilibrium where the issuer creates no more than J pools. Thus, to simplify

exposition, we allow the issuer to create exactly J pools, πk ∈ Π for k = J + 1, . . . , 2J ,

where the indices start at J to avoid confusion with the individual assets.12 Pool πk has πkj
units of asset j, and the issuer backs the corresponding securities with a0

k units of the pool.
12We index pools by superscript with subscripts indicating the amount of each asset in each pool.
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Hence, the issuer purchases a0
j units of asset j to back the securities based only on asset j

and πkj a0
k units to back the securities based on pool k. Its total demand for asset j is then

a0
j +∑2J

k=J+1 π
k
j a

0
k.

The securities issued for each pool or each asset belong to Σ. We set the security price

function to be q : Π ∪ {1, . . . , J} × Σ → R+ where q(π, φ) indicates the price of a security

φ based on a pool π, and q(j, φ) the price of φ based on asset j. We denote the securities

issued based on asset j by a positive measure µ0
j ∈ M(Σ) and those based on pool k by

µ0
k ∈M(Σ). We require that (µ0

1, . . . , µ
0
2J) maximizes

J∑
j=1

ˆ
Σ
q(φ, j)dµ0

j +
2J∑

k=J+1

ˆ
Σ
q(φ, πk)dµ0

k −
J∑
j=1

pj

a0
j +

 2J∑
k=J+1

πkj a
0
k


subject to

ˆ
Σ
φ(sj)dµ0

j ≤ a0
jsj for all sj ∈ S and j ≤ J

ˆ
Σ
φ
(
s · πk

)
dµ0

k ≤ a0
kπ

k · s for all s ∈ SJand k > J.

We denote by F i(·; πk) the CDF describing Trader i’s belief about the distribution of s · πk.

As above, F̃ i(·; πk) denotes its complementary CDF.

Following our earlier analysis, if the return vector is v, then the price of a security φ ∈ Σ

based on a pool characterized by πk is set to

(12) q(πk, φ) =
ˆ
S

max
i

(vi)−1F̃ i(·; πk)dφ(x).

To simplify the analysis, we assume throughout this section, and without further mention,

that eic is sufficiently large for each i so that each trader can afford to purchase as many

units of any security as would be supplied in equilibrium and therefore that (vi)−1 = 1 for

each i. All definitions are extensions from Section 2; see Appendix B for details and proofs.

We call such an economy a pooling economy.

5.2. Equilibrium pools. First, we show that an equilibrium exists.

Theorem 3. A competitive equilibrium exists for any pooling economy.
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The main complication in the proof is that the revenue from optimally tranching a pool

of assets is not a concave function of the pool’s composition. As we shall see, combining

two pools into a single pool may either increase or decrease the revenue from securitization.

Allowing the issuer to form multiple pools in varying proportions convexifies its problem.

We are interested in when pooling occurs in equilibrium.

Definition 2. A pool is proper if it contains positive amounts of at least two assets. A

proper pool circulates in an equilibrium if securities based on a proper pool are sold.

A proper pool circulates if the issuer has a strict incentive to pool assets together. This

rules out trivial cases where “pools” containing only a single asset suffice for profit maxi-

mization.

Now, we turn to the properties of equilibria. First, we decompose each trader’s beliefs

over the assets’ returns into the marginal CDF of each asset and a copula that aggregates

them. A copula is a joint CDF on [0, 1]J where each dimension has a uniform marginal

distribution on [0, 1]. Formally, Sklar’s Theorem (2.10.9 of Nelson [2006]) guarantees that

for each Trader i, there is a (unique) copula Ci : [0, 1]J → [0, 1] so that

F i(s1, ..., sJ) = Ci(F i
1(s1), ..., F i

J(sJ)).

We will define correlation agreement and disagreement in terms of the copula.

Copulas are a common tool in econometrics and structural finance. Econometrically,

they allow for separate estimation of the marginal distribution and joint distribution. If,

as is common, the copula is known or assumed to belong to a parametric family, then that

parameter can be estimated and interpreted. Pricing derived securities is then done via the

estimated copula.

5.2.1. Correlation agreement. We say that traders agree on the correlation if they have the

same copula: Ci = C for all i = 1, ...., N . In this case, they aggregate the marginal distri-

butions in the same way. Traders must disagree on the correlation for pooling to play a role

in our model.
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We also say that there is undominated disagreement about asset j if the traders’ beliefs

about sj satisfy Assumption 1, and no trader’s beliefs about that asset first-order dominate

every other’s. In this case, no trader is more optimistic about asset j than all the others,

and the traders’ marginal CDFs are not too similar. Undominated disagreement rules out

inessential pooling of assets. For instance, if Trader i has beliefs about assets j and k that

first-order dominate all the others, then she may purchase all the securities backed by a

proper pool containing the two assets.

Theorem 4. If traders agree on the correlation, then there is an equilibrium where no proper

pool circulates.

Moreover, if the common copula admits a strictly positive density and there is undominated

disagreement about asset j, then there is no equilibrium where a proper pool containing asset

j circulates.

When traders disagree about individual assets but agree on the correlation, pooling assets

together causes them to disagree less. We illustrate this with an extreme case where pool-

ing leads to agreement, even though traders disagree about individual assets. Suppose that

Traders 1 and 2 agree that assets 1 and 2 are independent, and that F 1
1 (x) = F 2

2 (x) = F (x)

and F 1
2 (x) = F 2

1 (x) = G(x). That is, the traders agree that one asset has marginal distribu-

tion F and the other G, but disagree as to which. Then, they agree about the distribution

of a pool with an equal share of each asset – specifically, F i
(
x;
(

1
2 ,

1
2

))
=
´ s̄

0 F (2x−y)g(y)dy

for i = 1, 2 where g is the density of G. Hence, the revenue of securitizing the pool is
1
2E

1[s1 + s2] = 1
2E

2[s1 + s2]. By Corollary 2, the sum of the revenues from securitizing each

asset individually strictly exceeds this whenever F and G satisfy Assumption 1. The above

theorem extends the logic behind this observation to every pool, all marginal distributions,

and every common copula.

5.2.2. Correlation disagreement. We now turn to the pooling decision when traders disagree

about correlation. We restrict attention to the special case where traders have the same

marginal beliefs about each asset’s return. However, traders may disagree on the correlation,
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i.e. have different copulas. We show that pooling and tranching allows the issuer to exploit

the disagreement to increase its revenue.

We say that traders agree on the marginals if there exists CDFs (F1, . . . , FJ) so that

each trader believes that the marginal return of asset j is described by Fj. Under this

assumption, if securities can only be backed by a single asset, then every trader agrees on

the return of each security, and the issuer cannot increase its revenue beyond the expected

value of assets themselves. However, if at least two traders have differing copulas, pooling

occurs in equilibrium.

Theorem 5. If traders agree on the marginals, then there is an equilibrium where at least one

proper pool circulate. Moreover, if there exist assets j, j′ and Traders i, i′ so that Ei[sj|sj′ =

x] 6= Ei′ [sj|sj′ = x] for some x ∈ (0, s̄), then a proper pool circulates in every equilibrium.

When traders agree about individual assets but disagree on their correlation, then pooling

assets together causes them to disagree more. To illustrate, suppose Trader 1 thinks that

the two assets are perfectly correlated while Trader 2 thinks they are independent, but that

they agree that both assets have return distributed uniformly on [0, 1]. Since traders agree

on the marginal distributions, they also agree on the value of any security backed by a single

asset. Hence the maximal revenue from tranching an individual asset is its expectation.

Similarly, they agree on the expected value of an entire pool. However, they may disagree

on the probability that the pool yields an extreme return. For instance, Trader 1 thinks

that the value of a senior tranche of the pool (1
2 ,

1
2) with attachment point y ≤ 1

2 is y while

Trader 2 thinks it is 2y2.

Pooling causes an increase in disagreement whenever the copulas are sufficiently different.

A sufficient condition is given in the above theorem: Ei[sj|sj′ = x] 6= Ei′ [sj|sj′ = x]. Note

that this condition is necessary for Traders i and i′ to disagree on the correlation coefficient

between sj and sj′ , since Ei[sjsj′ ] = Ei[Ei[sj|sj′ ]sj′ ]. Intuitively, Trader i’s conditional expec-

tation about asset j’s return is different from that of Trader i′. This weak condition suffices

for pooling to increase disagreement strictly.

We can also characterize the equilibrium pools and tie them to the endowments in more

specialized examples. For instance, consider an economy with two assets and two traders.
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Suppose that Trader i believes that the correlation between the two risky assets is ρi, but

both think that each asset has the same marginal distribution. In particular, Trader i

believes the risky assets’ returns are independent with probability ρi and otherwise perfectly

correlated.13 Each asset’s marginal density is f , where f is differentiable, log-concave, and

symmetric about its mean m =
´
S
xf(x)dx.14

There is a unique equilibrium with a single pool in this example.15 All risky assets are

pooled: the equilibrium pool that circulates is π∗ for π∗1 =
∑N

i=1 e
i
1∑N

i=1 e
i
1+
∑N

i=1 e
i
2
. Letting R(π) be

the revenue from optimally securitizing a pool π ∈ Π, the prices of the risky assets are

p̂1 = R (π∗) + π∗2

[
∂

∂π1
R (π∗)− ∂

∂π2
R (π∗)

]

p̂2 = R (π∗)− π∗1
[
∂

∂π1
R (π∗)− ∂

∂π2
R (π∗)

]
.

The revenue R is strictly concave and inverse-U shaped in π1, and p̂j ≥ m for each j.16 The

optimal securitization is a junior tranche with attachment point at the mean and a senior

tranche that pays the remainder.

5.2.3. Wrap up. With general belief disagreement and two assets, incentives to create pools

depend on the revenue from optimally securitizing a pool π ∈ Π:

R(π) =
ˆ
S

{
max
i
F̃ i(x; π)

}
dx

=
ˆ
S

{
max
i

[
1−
ˆ
S

∂2C
i
(
F i

1

(
(π1)−1 (x− π2y2)

)
, F i

2(y2)
)
f i2(y2)dy

]}
dx.

A proper pool circulates in equilibrium whenever R(π) > π1R((1, 0)) +π2R((0, 1)) for some

proper π.17 Similarly, no proper pool circulates when R(π) < π1R((1, 0)) + π2R((0, 1)) for

every proper π. When R is strictly concave, as in the example above, then there exists an

equilibrium with a single pool containing all assets (regardless of the number of assets).
13The copula is Ci(x, y) = ρixy + (1− ρi) min {x, y}.
14The uniform, normal, logistic and truncated normal distributions, among others, are log-concave and
symmetric.
15In fact, all equilibria are essentially equivalent to this one. There may be multiple pools but each has the
same fraction of each of the assets.
16See Ellis et al. [2019] for details.
17See the proof of Theorems 4 and 5 for the formula for more than two assets.
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Theorems 4 and 5 provide sharp and easily interpretable conditions for the inequalities to

hold. Pooling in the general case depends on the extent of both marginal belief disagreement

and correlation disagreement. A complete characterization is left for future research.

Appendix A. Details from Proofs from Sections 3 and 4

A.1. Expository Lemmas. We begin by offering two expository lemmas. Lemma 1 estab-

lishes what prices must look like in any equilibrium, motivating our definition of q in the

Issuer’s Problem below. Lemma 1 establishes that the revenue in the Issuer’s Problem must

equal the price of the risky asset in equilibrium.

Lemma 1. For any equilibrium allocation
(
â0, µ̂0; (âi, ĉi, µ̂i)Ni=1

)
and prices (p̂, q̂),

(13) q̂(φ) ≥ max
k

(v̂k)−1Ek[φ]

for all φ ∈ Σ, with equality µ̂0-a.e., where

v̂k = max

1,
´ [´

Σ φ(s)dµ̂k
]
dF k´

Σ q̂dµ̂
k


is the equilibrium return vector. Furthermore, for every Trader i q̂(φ) = (v̂i)−1Ei[φ] for

µ̂i-a.e. φ ∈ Σ.

Proof. Let (p̂, q̂) be equilibrium prices, and suppose for contradiction that there exists a secu-

rity φ∗ such that q̂(φ∗) < (v̂k)−1Ek[φ] for some Trader k. Consider the following alternative

portfolios. If ĉk > 0, then consider the allocation c = ĉk − q(φ∗)ε and µ = µ̂k + εδ{φ∗}. Then,

her utility changes by

ε

ˆ
S

(φ∗(s)− q(φ∗)) dF k > 0,

contradicting utility maximization. Similarly, if ĉk = 0, then
´
q̂dµ̂i > 0 and let w =

´
φdµ̂k.

Consider µ = µ̂k(1 − q(φ∗)´
q̂dµ̂k ε) + εδ{φ∗} and c = 0. Then, her utility from µ differs from her

utility from µ̂k by

ε

ˆ
S

(
φ∗(s)− w(s) q̂(φ

∗)´
q̂dµ̂k

)
dF k ≥ ε

ˆ
S

(
φ∗(s)− (v̂k)q̂(φ)

)
dF k > 0,

again contradicting utility maximization.
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Now, define B = {φ ∈ Σ : q̂(φ) > maxk(v̂k)−1 ´ φ(s)dF k}, and, noting B is Borel, suppose

that µ̂0(B) > 0. Since q̂(φ) > 0 for all φ ∈ B, attainability requires that there exists a Trader

i such that µ̂i(B) > 0. But then reducing µ̂i(B) and increasing ci is affordable and increases

utility by the same arguments as above. This observation concludes the proof. �

Remark 3. One consequence of the Lemma is that ĉi > 0 only if v̂i = 1. Intuitively, v̂i is the

highest marginal utility per unit of wealth, in terms of the safe asset (the numeraire), that

can be obtained from any security. If v̂i > 1, then some security offers a better marginal

return than the safe asset.

Lemma 2. In any equilibrium allocation
(
â0, µ̂0; (âi, ĉi, µ̂i)Ni=1

)
with prices (p̂, q̂), equilibrium

return vector v̂, p̂ equals the maximum revenue to the issuer per unit securitized and the

issuer’s profits are equal to zero.

Proof. Let r̂ be the maximal revenue per unit of risky asset given equilibrium security prices

q̂. Then, profit equals (r̂ − p̂) â0 since selling securities that obtain less than r̂ contradicts

profit maximization. If p̂ < r̂, then no maximum profit exists. If p̂ > r̂, then â0 = 0. By

Lemma 1, r̂ ≥ 1
v̂iEi[s] for all i, so âi = 0. Then, traders sell their endowment of the risky

asset and hold only the safe asset, a contradiction to feasibility of the allocation. Conclude

p̂ = r̂ and so profit is zero. �

A.2. Proof of Theorem 1. Throughout, we let λ be the Lebesgue measure restricted to

S.

Lemma 3. Given a return vector v, suppose that q(φ) = maxi(vi)−1Ei[φ] for any φ ∈ B.

For any µ ∈ M(B), there are (ψ1, ..., ψN) ∈ ΣN such that each ψi is right-continuous and∑N
i=1 ψi(s) ≤ s such that ∑ q(ψi) =

´
qdµ.

Proof. Fix any µ ∈M(Σ). Then, the set

Bi(v) =
{
φ ∈ Σ : q(φ) = (vi)−1Ei[φ(s)] and k ≥ iwhenever q(φ) = (vk)−1Ek[φ(s)]

}
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is a Borel set and the collection {Bi(v)}Ni=1 is a partition of Σ. Define the securities ψi,

i = 1, ..., N , as

ψi(s) = inf
x>s

ˆ

Bi(v)

φ(s)dµ

Since securities are non-decreasing, ψi is right-continuous and

ψi(s) =
ˆ

Bi(v)

φ(s)dµ

almost surely. By Fubini’s Theorem and the definition of q we have for each i that

q(ψi) = max
k

(vk)−1Ek[ψi(s)] = (vi)−1Ei[ψi(s)] =
ˆ
Bi(v)

q(φ)dµ.

It follows from the definition of {Bi(v)}Ni=1 that
´
q(φ)dµ′ = ∑N

i=1 q(ψi) =
´
q(φ)dµ. �

Thus, in the issuer’s problem for v it is without loss to restrict the choice to vectors of

securities (φ1, ..., φN) that are right continuous and satisfy ∑N
i=1 φi(s) ≤ s. Let γi be the

Lebsegue-Stieltjes measure for φi, i.e. the Borel measure so that for every half-open interval

(x, y], γi((x, y]) = φi(y) − φi(x). Observe ψi(s) = γi([0, s]) =
´
S
χ[x,s̄](s)γi(dx) for all s.

Then, for any i, j ∈ {1, ..., N}

Ei[φ] = Ei
[ˆ

S

χ[x,s̄]dγj

]
=
ˆ
S

Ei
[
χ[x,s̄]

]
dγj =

ˆ
S

(1− F i(x))dγj.

Therefore, we can restate the issuer’s problem as the choice of measures (γ1, ..., γN) to max-

imize
N∑
i=1

(vi)−1
ˆ
S

(
1− F i(x)

)
γi(dx)

s.t.
N∑
i=1

γi([0, s]) ≤ s for all s

For each i = 1, ..., N , define the sets

Mi(v) = {x ∈ [0, s̄] : (vi)−1[1− F i(x)] = max
k

(vk)−1[1− F k(x)]}
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and

M∗
i = Mi(v) \

⋃
j<i

Mj(v)


and consider the measures γ∗i such that γ∗i (B) = λ(B ∩M∗
i ) for all Borel sets B.

Let G∗(x) = maxi(vi)−1F̃ i(x). Then, the issuer’s revenue for a vector of securities

(ψ∗1, ..., ψ∗N) where each ψ∗i is derived from γ∗i is

N∑
i=1

ˆ
M∗i

G∗(x)γ∗i (dx) =
ˆ
S

G∗(x)dx = r(v)

For any feasible measures (γ1, ..., γN), we have

N∑
i=1

(vi)−1
ˆ
S

(
1− F i(x)

)
γi(dx)(14)

=
N∑
i=1

N∑
k=1

(vi)−1
ˆ
M∗

k

(
1− F i(x)

)
γi(dx)

≤
N∑
i=1

ˆ
S

G∗(x)γi(dx) =
ˆ
S

G∗(x)
[
N∑
i=1

γi

]
(dx)

≤
ˆ
S

G∗(x)dx

where the last inequality follows from ∑N
i=1 γi first-order stochastically dominating λ and

G∗(x) decreasing.18 Hence, the securities (ψ∗1, ..., ψ∗N) maximize revenue and obtain r(v),

completing the proof.

A.3. Proof of Theorem 2. We know from Theorem 1 that the constraint (2) binds and it

is without loss to consider only N securities. Let

Σ∗ =
{

(φ1, ..., φN) ∈ ΣN :
N∑
i=1

φi(s) = s for any s ∈ [0, s̄]
}

be the set of securities that the issuer may choose. Observe that if (φ1, ..., φN) ∈ Σ∗, then

each φi has the property that |φi(s) − φi(s′)| ≤ |s − s′| for all s, s′. Also, the set of vectors

(φ1, ..., φN) such that ∑φi(s) = s for all s is closed in the supnorm. Hence, Σ∗ is a compact

set by Arzelà’s theorem.

18Possibly after adding an atom at zero and normalizing to make both probability measures.
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Lemma 4. In any equilibrium, p̂ = r(v̂) and the issuer’s profits are equal to zero.

Proof. That profits are equal to zero is standard. Let r̂ be the maximal revenue per unit of

asset given equilibrium security prices q̂. Then, p̂ ≥ r̂. By Lemma 1 q̂(φ) ≥ maxk(v̂k)−1Ek[φ],

and thus r̂≥ r(v̂) by Theorem 1. Since q̂(φ) = maxk(v̂k)−1Ek[φ]µ̂0-a.e.,

â0r̂ =
ˆ
B

max
i

(vi)−1Ei[φ]µ̂0(dφ) ≤ â0r(v̂).

We conclude that r̂ = r(v̂) if â0 > 0. Now if p̂ > r(v̂), p̂ > (v̂k)−1Ek[s] for any k. An

argument similar to the one in Lemma 1 establishes that no trader will demand the asset.

Since by the previous argument â0 > 0 implies that p̂ > r̂, â0 must also be equal to zero. A

contradiction is then obtained by Walras law. �

Define the aggregate endowment ea = ∑N
i=1 e

i
a, and for any vector v ∈ [1,∞)N , let

(15) Mi(v) = {x ∈ [0, s̄] : (vi)−1[1− F i(x)] = max
k

(vk)−1[1− F k(x)]}

and let

C(v) =
{

(φ1, .., φN) ∈ Σ∗ :
ˆ
Mi(v)c

1dφi = 0, for all i
}

where
´
gdh represents the integral of g w.r.t. the Lebesgue-Stieltjes measure for h.19 The

set C(v) is clearly convex and is compact as a closed subset of Σ∗.

Given a return vector v and Φ = (φ1, .., φN) ∈ Σ∗, define

gi(v,Φ) = ea

´
[1− F i(x)]dφi
eic + r(v)eia

,

where r(v) is the Issuer’s revenue given v. Note there exists v̄ such that gi(v,Φ) ∈ [0, v̄] for

every i and Φ ∈ C(v).20 Define a function G from [1, v̄]N to [0, v̄]N by

G = (v,Φ) 7→ (g1(v,Φ), ..., gN(v,Φ))

and a function

H = (v1, ..., vN) 7→ (max{v1, 1}, ...,max{vN , 1}).

19For a set E, Ec is its complement.
20One such upper bound is maxi

[(
ec + ea

´ s̄
0
[
1− F i(x)

]
dx
)
/
(
eic
)]
.
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The function H projects [0, v̄]N onto [1, v̄]N .

Lemma 5. Any v̂ ∈ [1, v̄]N and Φ̂ ∈ C(v̂) such that v̂ = H ◦G(v̂, Φ̂) defines an equilibrium.

Proof. Consider v̂ ∈ [1, v̄]N and Φ̂ ∈ C(v̂) such that v̂ = H(g(v̂, Φ̂)). Let

q̂(φ) = max
k

(v̂k)−1Ek[φ]

for all φ ∈ B and

p̂ = r(v̂) =
N∑
i=1

(v̂i)−1
ˆ
S

(1− F i(x))dφ̂i.

For each i,

v̂i = 1 > gi(v̂, Φ̂) =⇒ eic + p̂eia > ea

ˆ
[1− F i(x)]dφ̂i = eaq̂(φ̂i)

v̂i = gi(v̂, Φ̂) =⇒ eic + p̂eia = ea(v̂i)−1
ˆ

[1− F i(x)]dφ̂i = eaq̂(φ̂i).

We must have v̂i = 1 for some i, or else
N∑
i=1

(eic + p̂eia) =
∑
i∈I

q̂(φ̂i)ea = p̂
N∑
i=1

eia,

a contradiction. Thus markets clear when µ̂0 = ∑
eaδφ̂i

, µ̂i = eaδφ̂i
, â0 = ea, ĉi = eic + p̂eia −

q̂(φ̂i) and âi = 0, where δx is the Dirac measure on {x}. We now show these are also optimal

for q̂(·) and p̂. By Theorem 1, the Issuer’s maximal revenue is r(v̂), so it is optimal for the

Issuer to produce ea units each of securities φi using ea units of the asset. Now consider ai,

ci, and a measure µi over Σ that satisfy Trader i’s budget constraint. Then

Ei[s]ai +
ˆ
B
Ek[φ]dµi(φ) + ci

≤v̂ip̂ai + v̂i
ˆ
q̂(φi)dµi(φ) + ci

≤v̂i(eic + p̂eia) = ĉi + eaEi[φ̂i],

and thus (ĉi, âi, µ̂i) maximizes utility given p̂ and q̂(·). �
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We now establish such a fixed point exists. Observe that the usual fixed point theorems do

not apply since the set {H ◦G(v,Φ) : Φ ∈ C(v)} may not be convex. The following lemma

is key.

Lemma 6. Consider compact, convex, non-empty subsets X, Y of normed linear spaces and

a correspondence K : X ⇒ X. If there exist a convex, compact and non-empty valued

correspondence K̃ : X ⇒ Y with a closed graph and a continuous function H : X × Y → X

such that K(x) =
{
H(x, y) : y ∈ K̃(x)

}
for each x ∈ X, then there exists x∗ ∈ X such that

x∗ ∈ K(x∗).

Proof. Since the correspondence K̃(·) satisfies the assumptions of the Approximate Selection

Theorem (Theorem 6.5 of Shapiro [2016]), for any m > 0, there exists a continuous function

γm : X → Y

such that graph(γm) ⊂ ⋃
(x,y)∈graph(G) B1/m(x, y), where B1/m(x, y) is an the open ball with

diameter 1/m centered on (x, y). The function hm = x 7→ H(x, γm(x)) is a continuous

functions from X to X. Then for each m ∈ N, hm has a fixed point xm by Schauder’s Fixed

Point Theorem (Theorem 7.1 of Shapiro [2016]).

Let ym = γm(xm). Since X × Y is compact, the sequence (xm, ym) converges to some

(x, y) ∈ X × Y , perhaps after taking a subsequence. By standard arguments,

(x, y) ∈ graph(K̃)

for some y ∈ Y . And so

(xm, xm) = (xm, H (xm, ym))→ (x,H (x, y)) ,

which implies x ∈ K (x), completing the proof. �

To show existence of an equilibrium, it only remains to show that G is a convex, compact,

closed correspondence, which follows immediately from the following.

Lemma 7. The correspondence C(v) has closed graph.
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Proof. Consider a sequence (vm,Φm) for which Φm ∈ C(vm) and (vm,Φm) → (v,Φ). We

claim that
´
Mi(v)c dφi = 0. For any positive integer k, set

Ok =
⋃
j 6=i
{x : (vj)−1[1− F j(x)]− (vi)−1[1− F i(x)] > 1/k}.

When m is sufficiently large, Ok ⊆ Mi(vm)c as, otherwise, the closure of Ok and Mi(v) has

a non-empty intersection. Hence,
´
Ok

1dφmi = 0 for m sufficiently large and thus,
´
Ok

1dφi =

0.21 Since Ok ↑Mi(v)c, the Monotone Convergence Theorem implies
´
Mi(v)c dφi = 0. �

Thus an equilibrium exists.

Lemma 8. With risk neutrality, the equilibrium asset prices and utility of each agent are

unique.

Proof. Consider equilibrium allocations
(
âj,0, µ̂j,0; (âj,i, ĉj,i, µ̂j,i)Ni=1

)
at prices (pj, qj) for j =

1, 2 with return vectors v1 =
(
v1,1, ..., v1,N

)
and v2 =

(
v2,1, ..., v2,N

)
respectively.22 We can

assume without loss that âj,i = 0 for i = 1, ..., N , that âj,0 = ea for j = 1, 2, and that each

security purchased is right-continuous. If the result is false, then v1 6= v2; otherwise, the

price and utility are equal by Lemmas 1 and 2. Let ηi and ζ i be the Lesbesgue-Stieltjes

measures of
´

Σ φdµ̂
1,i and

´
Σ φdµ̂

2,i for each i = 1, . . . , N .

Let c = maxi{v1,i/v2,i} > 1. Note that cv2,i ≥ v1,i for each i and that r(·) is homogeneous

of degree −1. For each i and all vectors of N increasing, right-continuous functions γ and

z ∈ [1,∞)N , define

gi(z, γ) =
´
S
F̃ i(x)dγi

eic + r(z)eia
and let g∗i (z, γ) = max{gi(z, γ), 1}. In equilibrium, we must have v1,i = g∗i (v1, η) and

v2,i = g∗i (v2, ζ) for all i as above.

For any d > 1, any z ∈ [1,∞)N , and any Trader i, we have

1
d
gi(dz, η) =

´
S
F̃ i(x)dηi

deic + dr(dz)eia
=
´
S
F̃ i(x)dηi

deic + r(z)eia
< gi(z, η)

21Since ψmi → ψ pointwise everywhere, it follows that ψmi converges weakly to ψ as a distribution by Ash
and Doleans, Theorem 2.8.4 (b). Since Ok is open, the claim follows by Ash and Doleans, Theorem 2.8.1
(d).
22Note the first superscript denotes which equilibrium and the second the identity of the trader.
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and so 1
d
g∗i (dz, η) = max{1

d
, 1
d
gi(dz, η)} < max{1, gi(z, η)} = g∗i (z, η) for all i and all d > 1.

Thus for each Trader i,

v2,i = g∗i (v2, ζ) > c−1g∗i (cv2, ζ).

Define Mi(·) as in Eq. (15). Since Mi(cv2) = Mi(v2) for every i ∈ I,
´
Mi(cv2)c dη

i = 0. Let

I ′ be the set {i : v1,i = cv2,i} and note that I ′ 6= ∅ by construction and I ′ 6= {1, . . . , N}

since v1,j = 1 for some Trader j. Consider x ∈ Mi(v1) ∩ [0, s), i ∈ I ′, and k /∈ I ′. Since

x ∈Mi(v1) ∩ [0, s), F̃ i(x) > 0 and when F̃ k(x) > 0
(
cv2,k

)−1
F̃ k(x) <

(
v1,k

)−1
F̃ k(x) ≤

(
v1,i

)−1
F̃ i(x) =

(
cv2,i

)−1
F̃ i(x).

When F̃ k(x) = 0 obviously
(
cv2,k

)−1
F̃ k(x) < (cv2,i)−1

F̃ i(x) and so x /∈ Mk(cv2) and´
Mi(v1) dζ

k = 0. Moreover, if x ∈Mi(v1), then x ∈Mi(cv2). Since∑N
i=1
´
E
dηi = ∑N

i=1
´
E
dζ i =

λ(E) for all Borel E ⊂ S, when E = ⋃
i∈I′Mi(v1) we have

∑
i′∈I′

ˆ
E

(
v1,i′

)−1
F̃ i′dηi

′ ≤
∑
i′∈I′

ˆ
E

(
cv2,i′

)−1
F̃ i′(x)dζ i′

∑
i′∈I′

ˆ
Ec

(
v1,i′

)−1
F̃ i′dηi

′ = 0 ≤
∑
i′∈I′

ˆ
Ec

(
cv2,i′

)−1
F̃ i′(x)dζi′ .

Conclude ∑
i∈I′

ˆ
S

F̃ i(x)dζ i ≥
∑
i∈I′

ˆ
S

F̃ i(x)dηi

and so for some i∗ ∈ I ′, we must have
ˆ
S

F̃ i∗(x)dζ i∗ ≥
ˆ
S

F̃ i∗(x)dηi∗ .

Since cv2 ≥ v1 implies r(cv2) ≤ r(v1), we have g∗i∗(cv2, ζ) ≥ g∗i∗(v1, η) and thus

v2,i∗ > c−1g∗i∗
(
cv2; ζ

)
≥ c−1g∗i∗(v1, η) = c−1v1,i∗ = v2,i∗ ,

a contradiction. �

A.4. Other proofs.

Proof of Corollary 1. Consider an equilibrium allocation
(
â0, µ̂0; (âi, ĉi, µ̂i)Ni=1

)
with return

vector v̂ and ŵ = s 7→
(
âis+ ĉi +

´
φdµ̂i

)N
i=1

. Normalize ea = 1 for simplicity. As above, we
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can assume without loss that âi = 0 for i = 1, ..., N and â0 = ea. By Theorem 2, utility is

unique so the return vector is the same in any equilibrium. So too are the sets

M◦
i =

{
x ∈ S : (v̂i)−1F̃ i(x) > (v̂k)−1F̃ k(x)∀k 6= i

}
for i = 1, . . . , N . Observe that for any (a, b) ⊆M◦

i , ŵi(b)− ŵi(a) = b−a. Under Assumption

1, ⋃Ni=1M
◦
i contains all but finitely many points in S, and each M◦

i is a finite collection of

intervals. Feasibility of securities then implies that ŵi must also be unique, since a jump at

any of the points not in one of the M◦
i ’s necessarily decreases revenue.

Define Φ̂ =
(
φ̂1, .., φ̂N

)
so that φ̂i =

´
Σ φdµ̂

i. Now, there exist K intervals {(bj, bj+1)}Kj=1

with b1 = 0, bK = s̄ and bj+1 > bj such that for every j = 1, . . . , K there exist i ∈ {1, . . . , N}

so that (bj, bj+1) ⊂M◦
i andM◦

i

⋂ [(bj−1, bj)
⋃(bj+1, bj+2)] = ∅. Since φ̂i is continuous, φ̂i(0) =

0 for every i = 1, ..., N , and φ̂I increases only on M◦
i , we can take µ0 = a0∑K

j=1 δ
{
φ[bj ,bj+1]

}
and µi = a0∑

(bj ,bj+1)⊂M◦i δ
{
φ[bj ,bj+1]

} to obtain an equivalent equilibrium that is tranching

and sorting. �

Proof of Corollary 2. Consider an equilibrium return vector v̂ and an equilibrium allocation

(â0, µ̂0; (âi, µ̂i, ĉi)). First, we claim that v̂i = 1 for at least one i. If v̂i > 1 for all i, then

(v̂i)−1Ei[
´
φdµ̂i]ea = eic + p̂eia for all i. Recall p̂ = ∑N

i=1(v̂i)−1Ei[
´
φdµ̂i]. Summing across

i, we have p̂ea = ∑
i e
i
c + p̂ea, a contradiction. Thus there exists i∗ with v̂i

∗ = 1. Then

p̂ =
´

maxk(vk)−1F̃ k(x)dx ≥
´

(v̂i∗)−1F̃ i∗(x)dx = m.

Now, suppose Assumption 1 holds. If
´
qdµj = 0 for all j 6= i∗, then (vj)−1 = 1 for

all j; all agents have positive wealth and so must be purchasing the safe asset. Then,

λ
({
x : F̃ j(x) > F̃ i(x)

})
> 0 since otherwise

´
F̃ j(x)dx =

´
F̃ i(x)dx implies F̃ j(x) = F̃ i(x)

for almost all x, contradicting Assumption 1. Hence,
´
qdµi∗ ,

´
qdµj > 0 for some distinct

j, i∗ ∈ {1, . . . , N}. Then, the set {x : (vj)−1F̃ j(x) ≥ F̃ i∗(x)} has positive measure, and by

Assumption 1, so does B = {x : (vj)−1F̃ j(x) > F̃ i∗(x)}. Conclude p̂ ≥
´
B

(vj)−1F̃ j(x)dx +´
Bc F̃

i(x)dx > m. �
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Appendix B. Details and Proofs from Section 5

B.1. Definition of pooling equilibrium. Trader i’s purchases of securities backed by

asset j is described by µij ∈ M(Σ), of securities backed by pool πk by µik ∈ M(Σ), and of

asset j by aij. Then trader i’s expected utility V i(ci, ai, µi) is

ci + Ei[ai · s] +
J∑
j=1

ˆ
Σ

ˆ
S

φ(sj)dF i
j (sj)dµij(φ) +

∑
k>J

ˆ
Σ

ˆ
S

φ(x)dF i(x; πk)dµik(φ).

The purchases (ci, ai, µi) maximize utility for prices (p, q) and wealth w(p, q) = p · ei + eic if

V i(ci, ai, µi) = max
j,φ,π

{
w(p, q), w(p, q)

q(φ, {j})

ˆ
S

φ(sj)dF i
j (sj),

w(p, q)
q(φ, π)

ˆ
S

φ(x)dF i(x; π)
}
.

An allocation
(
(â0, µ̂0); (ĉi, âi, µ̂i)Ni=1

)
is an equilibrium for (p̂, q̂), if (â0, µ̂0) maximizes profit

for (p̂, q̂), (âi, µ̂i) maximizes utility for (p̂, q̂) for each i, and is attainable:

N∑
i=0

âij =
N∑
i=1

eij ∀j = 1, . . . , J

µ̂0
j =

∑
i

µ̂ij∀j = 1, . . . , 2J

N∑
i=1

ĉi =
N∑
i=1

eic.

Remark 4. We note that the distinction between securities based on individual assets and

those based on pools is redundant. We can replicate any single asset securities by those

based on a pool containing only that asset. The distinction is maintained for expositional

clarity of the scope of options available to the issuer.

B.2. Proofs.
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B.2.1. Proof of Theorem 3. Let ∆(Π) be the set of Borel probability measures on Π, with

the weak*-topology. Define

R(π) =
ˆ s̄

0
max
i
F̃ i(x; π)dx,

Γ (p) = arg max
z∈∆(Π)

ˆ
[R (π)− π · p]dz(π)

p̄j =
ˆ
S

max
i
F̃ i
j (x)dx

where p̄ = (p̄1, . . . , p̄J) is the revenue from optimally securitizing each asset individually. The

set Γ (p) is the set of distributions over the normalized pools that achieve maximum profits.

The correspondence Γ (p) is non-empty and convex valued and has a closed graph since ∆Π

is weak*-compact.

Given z ∈ ∆(Π), define

β(z) = min
j

ej´
πjdz(π) ,

P =

p ∈ RJ
+ : p̄ ≤ p ≤

max
π

R(π)
J∑
j=1

ej

(e−1
1 , e−1

2 , . . . , e−1
J

)
and

Φ(z) =


{p̄} if

´
(R(π)− p̄ · π)dz(π) ≤ 0{

q ≥ p̄ : 0 =
´

(R(π)− q · π)dz(π) & qj = p̄j if ej > β(z)
´
πjdz

}
otherwise

.

Note that Φ(z) is a non-empty, convex subset of P , and that Φ has a closed graph. The

convexity of Φ(z) for any z ∈ ∆(Π) is obvious. To see that Φ(z) is non-empty, suppose that´
(R(π) − p̄ · π)dz(π) > 0. Since ej = β(z)

´
πjdz for some j by construction, q ∈ RJ

+ such

that qk = p̄k for j 6= k and

qj =
ˆ (R(π)−

∑
k 6=j

p̄kπk)dz(π)
(ˆ πjdz(π)

)−1

is such that qj ≥ p̄j. Hence, q ∈ φ(z).
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To see that Φ(z) ⊂ P , if q ∈ Φ(z) and qj > p̄j, then ej = β(z)αj where α =
´
πdz(π).

Since for all k ∈ J , ek ≥ β(z)αk,

αj = β(z)αj∑J
k=1 β(z)αk

≥ ej∑J
k=1 ek

and thus,

qj ≤
´
R(π)dz(π)

αj
≤
ˆ
R(π)dz(π)

(
J∑
k=1

ek

)
e−1
j .

It is straightforward to show that Φ has a closed graph.

By the Kakutani-Fan-Glicksburg Theorem there exists (p, z) such that (p, z) ∈ Φ(z)×Γ(p).

At this fixed point R(π) = π · p for z-a.e. π since, letting Rj denote R(π) when πj = 1 and

πk = 0 for all other k we have Rj − p̄j = 0. Moreover, selling β(z)z(π) units of each π

achieves this profit, and does not exceed the total endowment. Whenever
´
β(z)πjz(π) < ej,

the firm does not use all of asset j in pooling, and the traders hold securities based on the

remaining units. This also achieves zero profit since p̄j = pj is the revenue from optimally

securitizing one unit of asset j.

Finally, note that
´
πdz ∈ co (arg maxπ R (π)− π · p). Since Π has dimension J − 1, there

are πJ+1, . . . , π2J ∈ arg maxπ R (π)−π·p and γJ+1, · · · , γ2J ≥ 0 so that∑2J
k=J+1 γ

kπk =
´
πdz

and ∑2J
k=J+1 γ

k = 1 by Caratheodory’s Theorem. Since (z, p) ∈ Φ(z)×Γ(p), each πk obtains

zero profit and no other pool obtains positive profit. The issuer securitizes a0
k = γkβ(z)

for k > J units of pool k, and the residual asset of j is securitized on its own: a0
j =

ej − β(z)
´
πjdz. This maximizes profit subject to the constraints. �

B.2.2. Proof of Theorem 4. For s ∈ RJ , we follow standard notational conventions by de-

noting s−i for the element of RJ−1 that drops the ith coordinate. We can write the CDF

F i(·; π) as

F i(z; π) =
ˆ
RJ−1

C−k

F i
k

π−1
k

z −∑
j 6=k

πjsj

 ;
(
F i
j (sj)

)
j 6=k

∏
j 6=k

f ij(sj)ds−k

where C−k(xk;x−k) = ∂J−1C(x1,...,xJ )∏
j 6=k

∂xj
for any k = 1, . . . , J . Obviously, Fm

j (x) = mini F i
j (x) is a

well defined CDF and has a density fmj almost everywhere for each j. Since ∂JC(x1,...,xJ )∏J

j=1 ∂xj
C(x) ≥
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0,

F i(z; π) ≥
ˆ
RJ−1

C−1

Fm
1

π−1
1

z −∑
j 6=1

πjsj

 ;
(
F i
j (sj)

)∏
j>1

f ij(sj)ds−1

=
ˆ
RJ−1

C−2

F i
2

π−1
2

z −∑
j 6=2

πjsj

 ;Fm
1 (s1),

(
F i
j (sj)

)
j>2

 fm1 (s1)
∏
j>2

f ij(sj)ds−2

≥
ˆ
RJ−1

C−2

Fm
2

π−1
2

z −∑
j 6=2

πjsj

 ;Fm
1 (s1),

(
F i
j (sj)

)
j>2

 fm1 (s1)
∏
j>2

f ij(sj)ds−2

≥ · · · ≥
ˆ
RJ−1

C−J

Fm
J

π−1
J

z −∑
j<J

πjsj

 ;
(
Fm
j (sj)

)
j<J

 ∏
j<J

fmj (sj)ds−J

where the subsequent inequalities are obtained repeating the steps above for assets 3, ..., J .

It follows that the CDF Fm(·; π) first-order stochastically dominates each F i(·; π) for i =

1, ..., N . Since the expected value of the sum of random variables is the sum of their expected

values, ˆ ∞
0

F̃m(z; π)dz =
J∑
j=1

πj

ˆ ∞
0

F̃m
j (z)dz =

J∑
j=1

πj
ˆ ∞

0
max
i
F̃ i
j (z)dz.

Thus, by the definition of q(φ, π) the revenue for any securitization of the pool π is bounded

by the revenue from the optimal securitization of individual assets.

Now, assume that traders’ beliefs about sj satisfy the finite crossing condition and F i
j 6= Fm

j

for every i. We show that there is no equilibrium where πkj ∈ (0, 1) and a0
k > 0. Relabel so

that j = 1.

Consider traders i 6= i′, x ∈ (0, s̄), and ε > 0 so that F i
1(y) = Fm

1 (y) for y ∈ (x− ε, x) and

F 1
i′(y) = Fm

1 (y) for y ∈ (x, x + ε). Such an x exists because F i
1 6= Fm

1 for each i. By finite

crossing, F 1
i′(y) = Fm

1 (y) ≤ F 1
k (y) for y ∈ (x, x+ ε) when k 6= i′and F 1

k (y) ≥ F i
1(y) = Fm

1 (y)

for y ∈ (x− ε, x) when k 6= i. For any π with π1 ∈ (0, 1),
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F i′′(x; π) =
ˆ{

s−1:
∑

j 6=1 πjsj∈(x,x+ε)
}C−1

F i′′

1

π−1
1

x−∑
j 6=1

πjsj

 ;
(
F i′′

j (sj)
)
j>1

∏
j>1

f i
′′

j (sj)ds−1

+
ˆ{

s−1:
∑

j 6=1 πjsj∈(x−ε,x)
}C−1

F i′′

1

π−1
1

x−∑
j 6=1

πjsj

 ;
(
F i′′

j (sj)
)
j>1

∏
j>1

f i
′′

j (sj)ds−1

+
ˆ{

s−1:
∑

j 6=1 πjsj /∈(x−ε,x+ε)
}C−1

F i′′

1

π−1
1

x−∑
j 6=1

πjsj

 ;
(
F i′′

j (sj)
)
j>1

∏
j>1

f i
′′

j (sj)ds−1

and as above
ˆ
E

C−1

F i′′

1

π−1
1

x−∑
j 6=1

πjsj

 ;
(
F i′′

j (sj)
)
j>1

∏
j>1

f i
′′

j (sj)ds−1

≥
ˆ
E

C−1

Fm
1

π−1
1

z −∑
j 6=1

πjsj

 ;
(
F i′′

j (sj)
)
j>1

∏
j>1

f i
′′

j (sj)ds−1

for any measurable E ⊂ SJ−1. Moreover, If i′′ 6= i, then
ˆ{

s−1:
∑

j 6=1 πjsj∈(x−ε,x)
}C−1

F i′′

1

π−1
1

x−∑
j 6=1

πjsj

 ;
(
F i′′

j (sj)
)
j>1

∏
j>1

f i
′′

j (sj)ds−1

>

ˆ{
s−1:

∑
j 6=1 πjsj∈(x−ε,x)

}C−1

Fm
1

π−1
1

z −∑
j 6=1

πjsj

 ;
(
F i′′

j (sj)
)
j>1

∏
j>1

f i
′′

j (sj)ds−1.

since ∂
∂x1
C−1(x) > 0 and Fm

1 (y) < F i′′
1 (y) for y ∈ (x− ε, x). Similarly, if i′′ 6= i′, then

ˆ{
s−1:

∑
j 6=1 πjsj∈(x,x+ε)

}C−1

F i′′

1

π−1
1

x−∑
j 6=1

πjsj

 ;
(
F i′′

j (sj)
)
j>1

∏
j>1

f i
′′

j (sj)ds−1

>

ˆ{
s−1:

∑
j 6=1 πjsj∈(x−ε,x)

}C−1

Fm
1

π−1
1

z −∑
j 6=1

πjsj

 ;
(
F i′′

j (sj)
)
j>1

∏
j>1

f i
′′

j (sj)ds−1.

Since i′ 6= i, we have strict inequality in the first step of the above sequence of inequalities.

Conclude that the CDF Fm(·; π) strictly first-order stochastically dominates each F i(·; π)

for i = 1, ..., N . As above, integrating the former obtains the revenue from individually

securitizing the assets in π individually. �
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B.2.3. Proof of Theorem 5. Relabel so that j = 1 and j′ = 2. Consider the pool πk =

(π, (1− π), 0, ...). Then, as π → 0 we have

d

dπ
F̃ i(x; πk)

=−
ˆ s̄

0

d

dπ

∂

∂x1
Ci
(
F1(y), F2

(
x− πy
1− π

)
, 1, . . .

)
f1(y)dy

=−
ˆ s̄

0

∂2

∂x1∂x2
Ci
(
F1(y), F2

(
x− πy
1− π

)
, 1, . . .

)
f1(y)f2

(
x− πy
1− π

)
x− y

(1− π)2dy

→−
ˆ s̄

0

∂2

∂x1∂x2
Ci (F1(y), F2(x), 1, . . . ) f2(x)f1(y)(x− y)dy

=− f2(x)
ˆ s̄

0

∂2

∂x1∂x2
Ci (F1(y), F2(x), 1, . . . ) f1(y)(x− y)dy

=− f2(x)
[
x− Ei[s1|s2 = x]

]
since for a.e. x ∈ S,

Ei[s1|s2 = x] =
ˆ s̄

0
y

∂2

∂x1∂x2
Ci (F1(y), F2 (x) , 1, . . . ) f1(y)dy

is Trader i’s conditional expectation of s1 given s2 = x. If Ei′ [s1|s2 = x] > Ei[s1|s2 = x] for

some Traders i, i′ and x ∈ (0, s̄), then there is a neighborhood O 3 x so that Ei′ [s1|s2 = x] >

Ei[s1|s2 = x] for all x′ ∈ O. For π sufficiently close to 0, F̃ i′(x; πk) − F̃ i(x; πk) > 0 for all

x ∈ O and hence
ˆ s̄

0
max
i′′

F̃ i′′(x; πk)dx =
ˆ s̄

0
F̃ i(x; πk)dx+

ˆ s̄

0
max
i′′

{
F̃ i′′(x; πk)− F̃ i(x; πk)

}
dx

≥
ˆ s̄

0
F̃ i(x; πk)dx+

ˆ s̄

0
max

{
F̃ i′(x; πk)− F̃ i(x; πk), 0

}
dx

≥
ˆ s̄

0
F̃ i(x; πk)dx+

ˆ
O

[
F̃ i′(x; πk)− F̃ i(x; πk)

]
dx

>

ˆ s̄

0
F̃ i(x; πk)dx = πE[s1] + (1− π)E[s2].

Hence there exists a pool π with
´ s̄

0 maxi F̃ i(x; π)dx > πE[s1] + (1 − π)E[s2]. Since the

equilibrium is Pareto optimal, some proper pool circulates in any equilibrium. �
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