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1 Introduction

When two hitherto separate economic or social systems are merged to become

one, all previous outcomes are still feasible. Therefore, the integrated system can,

in principle, achieve better or at least equally good outcomes. This optimistic

outlook is correct from a social planner’s perspective. Yet, some individuals can

be worse off after integration when the outcome is determined in a competitive or

strategic equilibrium.

Both theory and casual empiricism suggest that economic integration can have

beneficial effects on some economic agents and detrimental effects on others. In

this paper, we make some simple comparisons how integration in three well under-

stood equilibrium models produces gainers and losers: competitive pure exchange

economies, two-sided pairwise matching and strategic network formation.

We first consider pure exchange economies in the sense of Arrow-Debreu, that

is economies as described in Debreu (1959). It is well understood that economic

integration can harm some economic agents, in particular some consumers. To

quote Samuelson (1962, p. 823): “Practical men and economic theorists have

always known that trade may help some people and hurt others. Our problem

is to show that trade lovers are theoretically able to compensate trade haters

for the harm done them, thereby making everyone better off.” Samuelson (1962),

Kemp (1962), Dixit and Norman (1986), among others examine various ways to

achieve such a compensation. Under certain conditions, there exists a best-case

scenario where everybody benefits from economic integration. Here we are mostly

concerned with the question how many losers there could be in the worst case and

how this compares to integration in other markets.

Second, we consider two-sided pairwise matching studied by Gale and Shapley
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(1962) and Roth and Sotomayor (1990), with stable matching as the solution

concept. Crawford (1991), among others, studies the comparative statics of adding

agents to matching markets. He finds that adding an agent to one side of the

market weakens the competitive positions of the other agents on that side and

strengthens the competitive positions of the agents on the other side.1 In a similar

vein, Sprumont (1990) obtains that every assignment game with at least two sellers

and two buyers where every seller-buyer pair derives positive gains from trade, does

not admit a population monotonic allocation scheme in the sense of Sprumont.

Crawford’s result is also consistent with our findings: Suppose a woman is added

to the marriage market. Then the only agents who can lose are the women who

were matched with a man before. But the number of previously matched women

does not exceed the number of men plus the number of women who previously

remained single. Hence the original agents who lose from entry consist of at most

half of the original population as predicted by Proposition 3.

Finally, we consider strategic network formation. A number of recent contri-

butions have treated social and economic networks as the outcome of a network

formation game. The players of the game constitute the nodes of the network

to be formed. In the purely noncooperative approach of Bala and Goyal (2000)

adopted here, addition and deletion of links are unilateral decisions of the player

from whom the respective links originate.2 The player’s strategy is a specification

of the set of agents with whom he forms links. The costs of link formation are

incurred only by the player who initiates the link. The formed links define the

network.

Our investigation is focused on the gainers and losers from integration and,

1See also Theorem 2.26 in Roth and Sotomayor (1990).
2Pairwise stability à la Jackson and Wolinsky (1996) treats addition of a link as a bilateral

decision by the two players involved, whereas severance of a link constitutes a unilateral decision.
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more precisely, their relative numbers. In the pure exchange context, almost all

but not all consumers can lose. In the matching context, less than half of the

members of each group can be losers. In the strategic network formation setting,

integration of two groups causes at most half the members plus one in one group

to be losers and nobody to lose in the other group. We shall comment on these

results in Section 5 and relate them to enduring debates about gainers and losers

from market integration in the literature.

The next three sections are devoted to the three different integration scenarios.

2 Pure Exchange Economies

Pure exchange economies belong to the canon of contemporary microeconomic

theory. Therefore, we confine their formal description to the bare minimum.

2.1 Brief Outline of the Model

A finite pure exchange economy is specified by a tuple E = (Xi,%i, ωi)i∈I . The

economy consists of a finite set I of consumers. There exist a finite number of com-

modities l = 1, . . . , `. Each consumer has consumption set Xi = R`
+. Superscripts

denote commodities. We denote by xli the quantity of commodity l consumed by

i ∈ I. Consumer i’s consumption bundles thus assume the form xi = (x1i , . . . , x
`
i).

In our general theory, ` can be any finite number. In the numerical examples,

` = 2. Consumer i has complete and transitive preferences on Xi, represented

by the binary relation %i. Finally, each consumer is endowed with a commodity

bundle ωi ∈ Xi.

The following definitions apply to the economy E at large:
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Feasible Allocations: A feasible allocation is a vector

x = (xi)i∈I ∈ X ≡ Πi∈IXi such that∑
i∈I xi =

∑
i∈I ωi.

Pareto Optima: A feasible allocation x = (xi)i∈I is

Pareto optimal if there is no feasible allocation

(x′i)i∈I such that x′i �i xi for some i ∈ I and

x′i %i xi for all i ∈ I.

Weak Pareto Optima: A feasible allocation x = (xi)i∈I is weakly

Pareto optimal if there is no feasible allocation

(x′i)i∈I such that x′i �i xi for all i ∈ I.

Competitive Equilibrium: A competitive equilibrium is a pair (x∗, p∗)

where x∗ = (x∗i )i∈I is a feasible allocation,

p∗ ∈ R`
+ is a price system, and for each consumer

i ∈ I:

p∗x∗i ≤ p∗ωi and xi ∈ Xi, xi �i x
∗
i implies p∗xi > p∗ωi.

x∗ is called an equilibrium allocation. p∗ is called

an equilibrium or market clearing price system.

We shall invoke the following version of the first welfare theorem.

Proposition 1 (First Welfare Theorem).

(a) Equilibrium allocations are weakly Pareto optimal.

(b) If preferences are locally non-satiated, then equilibrium allocations are Pareto

optimal.

Notice that (a) holds without any assumption on preferences whereas (b) holds

for locally non-satiated and transitive but not necessarily complete preferences.

By Proposition 11.C.1 of Mas-Colell, Whinston and Green (1995), a finite pure

exchange economy E = (Xi,%i, ωi)i∈I has a competitive equilibrium if
∑

i∈I ωi � 0
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and every consumer has continuous, strictly convex and strongly monotone pref-

erences. These sufficient conditions are not necessary. In particular, a competitive

equilibrium exists if all consumers have Cobb-Douglas preferences. However, non-

existence may occur if the sufficient conditions are violated. Of special interest to

us is the case where each of two separate pure exchange economies has a competi-

tive equilibrium, but there is no competitive equilibrium of the integrated economy.

This means that market integration can have a destabilizing effect. Such a case

will be presented in 2.4. We first consider a simple example to illustrate how

integration generates gainers and losers.

2.2 A First Example

We consider the separate economies of Aland and Eland and then the economy

after integration of the two. The economy of Aland consists of three consumers,

Anna, Bart, and Carl, labeled a, b and c, respectively. Let IA = {a, b, c} denote

the set of these consumers. There are two commodities (` = 2). Each i ∈ IA has

an endowment ωi = (1, 1) and consumption set Xi = IR2
+. Preferences are given

by the utility functions

Ua(x
1
a, x

2
a) = x1a(x

2
a)

3 for Anna;

Ub(x
1
b , x

2
b) = x1bx

2
b for Bart;

Uc(x
1
c , x

2
c) = min{x1c , x2c} for Carl.

Up to price normalization, this economy has a unique competitive equilibrium

(x∗A, p
∗
A) given as p∗A = (1, 5/3), x∗A = (x∗a, x

∗
b , x
∗
c), x

∗
a = (2/3, 6/5), x∗b = (4/3, 4/5), x∗c =

(1, 1), Ua(x
∗
a) = 144/125, Ub(x

∗
b) = 16/15, Uc(x

∗
c) = 1.

The economy of Eland consists of two consumers, Dennis and Esther, labeled

d, and e, respectively. Let IE = {d, e} denote the set of these consumers. Each
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i ∈ IE has an endowment ωi = (1, 1) and consumption set Xi = IR2
+. Preferences

are given by the utility functions

Ud(x
1
d, x

2
d) = (x1d)

3x2d for Dennis;

Ue(x
1
e, x

2
e) = x1ex

2
e for Esther.

Up to price normalization, this economy has a unique competitive equilibrium

(x∗E, p
∗
E) given as p∗E = (1, 3/5), x∗E = (x∗d, x

∗
e), x

∗
d = (6/5, 2/3), x∗e = (4/5, 4/3),

Ud(x
∗
d) = 144/125, , Ue(x

∗
e) = 16/15.

In the integrated economy with consumers in I = IA ∪ IE, the unique equilib-

rium (up to price normalization) is (x̂, p̂) with p̂ = (1, 1), x̂ = (x̂a, x̂b, x̂c, x̂d, x̂e),

x̂a = (1/2, 3/2), x̂b = (1, 1), x̂c = (1, 1), x̂d = (3/2, 1/2), x̂e = (1, 1), Ua(x̂a) =

27/16, Ub(x̂b) = 1, Uc(x̂c) = 1, Ud(x̂d) = 27/16, Ue(x̂e) = 1. It follows that Anna

and Dennis are gainers from integration, Bart and Esther are losers, and Carl is un-

affected by integration. In this particular example, Bart and Esther actively trade

in the respective equilibria before integration and do not trade after integration.

More commonly, a consumer might trade before and after market integration, but

nevertheless lose from integration.

Further notice that the allocation x∗ = (x∗i )i∈I is of course feasible in the

integrated economiy, but not weakly Pareto optimal. It is strictly dominated by

some feasible allocation x′. For instance, x′b = x′e = (16/15 − ε, 15/16 − ε), x′a =

(2/3 + ε, 6/5 + ε), x′c = (1 + ε, 1 + ε), x′d = (6/5 + ε, 2/3 + ε) with sufficiently small

ε > 0 will do. However, x∗ is not dominated by x̂.
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2.3 More General Analysis

We consider two countries whose economies are initially separated and compare

original equilibrium outcomes with equilibrium allocations after market integra-

tion. As a consequence of the first welfare theorem, we obtain

Proposition 2.

(a) Not all consumers can be losers from market integration.

(b) In case preferences are locally non-satiated, if there exists a loser, then there

also exists a gainer from market integration.

proof. Let the two countries A andB have respective sets of consumers IA and

IB. Set I = IA ∪ IB. Before integration, let (p∗A, x
∗
A) be a competitive equilibrium

for A’s economy, with x∗A = (x∗i )i∈IA , and (p∗B, x
∗
B) be a competitive equilibrium for

B’s economy, with x∗B = (x∗i )i∈IB . Furthermore, consider a competitive equilibrium

(x̂, p̂) of the integrated economy, with x̂ = (x̂i)i∈I . Finally, define x∗ = (x∗i )i∈I , a

feasible allocation of the integrated economy.

(a) Suppose all consumers are losers from market integration, that is, x∗i �i x̂i

for all i ∈ I. Then x̂ is not weakly Pareto optimal, contradicting part (a) of

Proposition 1. Hence to the contrary, not all consumers can be losers.

(b) Suppose that there are some losers from market integration and no gainers.

That means x∗i �i x̂i for some i ∈ I and x∗i �i x̂i for all i ∈ I. Therefore, x̂ is not

Pareto optimal. But if preferences are locally non-satiated, then by part (b) of

Proposition 1, the equilibrium allocation x̂ is Pareto optimal. Thus a contradiction

results. Hence to the contrary, if there are some losers, there has to exist a gainer

as well. �
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Remarks

1.) The proposition does not rule out the possibility that almost all consumers

lose. Consider, for example, consumer populations IA = {1, . . . , n} and IB =

{n + 1} with n ≥ 2. Let the commodity space be R2 and each consumer i’s

consumption set be Xi = R2
+. All consumers have Cobb-Douglas preferences

represented by ui(x
1
i , x

2
i ) = x1ix

2
i for (x1i , x

2
i ) ∈ R2

+. Consumer 1 has endowment

bundle ω1 = (1, 1) whereas consumers i = 2, . . . , n + 1 have endowment bundle

ωi = (1, 2). Then consumers 1 and n + 1 gain from economic integration and all

other consumers lose. This example exhibits the maximal number of losers in each

of the groups IA and IB. Namely, invoking core inclusion (Proposition 18.B.1 of

Mas-Colell et al. (1995)) instead of the first welfare theorem, one can show

Corollary 1. (a) IA and IB each contain a non-loser from integration.

(b) If K ≥ 2 originally separate economies are merged, then each of these

economies contains a non-loser from integration.

This result explains that there are no losers from economic integration when the

consumption sector of each country is represented by a representative consumer,

as is the case in many macroeconomic and international trade models. It takes

heterogeneous consumers in a country to observe losers from market integration

or trade liberalization.

2.) It is possible that all consumers benefit from market integration. For exam-

ple, assume that all consumers have the endowment bundle (1, 1), all consumers

within IA have identical Cobb-Douglas preferences, all consumers within IB have

identical Cobb-Douglas preferences, but preferences in IA differ from those in IB.
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3.) It is also possible that the welfare of consumers in country B, say, is

unaffected by economic integration, but merely their presence in the integrated

economy affects the consumers in country A. For example, let A’s economy consist

of consumers 1 and 2, both with endowment bundle (1, 1). Consumer 1 has lexico-

graphic preferences: (x11, x
2
1) �1 (y11, y

2
1) if x11 > y11 or x11 = y11 & x21 > y21. Consumer

2 only cares for commodity 2, hence has utility representation U2(x
1
2, x

2
2) = x22. Up

to price normalization, A’s economy has a unique competitive equilibrium (x∗A, p
∗
A)

with p∗A = (1, 1), x∗A = (x∗1, x
∗
2) = ((2, 0), (0, 2)). Country B consists of consumer

3 with endowment bundle ω3 = (1, 1) and utility function U3(x
1
3, x

2
3) = x13 + 2x23.

Up to price normalization, this economy has a unique competitive equilibrium

(x∗B, p
∗
B) with p∗B = (1, 2) and x∗B = x∗3 = ω3 = (1, 1). Up to price normalization,

the integrated economy has a unique competitive equilibrium (x̂, p̂) with p̂ = (1, 2)

and x̂ = (x̂1, x̂2, x̂3) = ((3, 0), (0, 1.5), (0, 1.5)).

4.) Like in the proof of Proposition 2, let x∗ = (x∗i )i∈I be a competitive equilib-

rium allocation achieved before integration. If after integration, consumers re-trade

from endowments x∗i , i ∈ I, then nobody loses from integration. This follows from

individual rationality of competitive equilibrium allocations. In contrast, losers

can occur if trade in the integrated economy takes place from initial endowments

ωi, i ∈ I.

5.) Chambers and Hayashi (2019) also consider integration of pairs of pure

exchange economies with ` ≥ 2 commodities. They examine the response of allo-

cation mechanisms (given by a social choice function) to such a merger. They find

that there is no Pareto efficient allocation rule that always encourages economic

integration. Up to one third of the consumers involved may be hurt if in addition,
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the rule satisfies equal treatment of equals in welfare terms. Several qualifying

comments are indicated:

5.1. Chambers and Hayashi (2019) postulate on the outset that all consumers

have strictly positive endowment bundles and preference relations drawn from the

set R of strictly convex, strongly monotone and weak orders. Yet the analysis

demonstrating their main results, Theorems 1 and 2, rests on an example with

three consumers having Cobb-Douglas preferences — which are not strictly con-

vex and strongly monotone. But their conclusions still hold if R is replaced by any

set of preferences that contains the particular Cobb-Douglas preferences. More-

over, their analysis can be redone with an example of three consumers having

preferences in R. Take ` = 2 and three consumers with utility representation

u(x1, x2) =
√
x1 +

√
x2. Let country A’s economy consist of consumers 1 and

2 with respective endowment bundles ω1 = (5, 1) and ω2 = (1, 5). Let country

B’s economy consist of consumer 3 with endowment bundle ω3 = (30, 3). Then

consumers 2 and 3 gain from market integration while consumer 1 loses. The ex-

tension to arbitrary efficient social choice functions obtains as in their paper.

5.2. Our above example (in Remark 3).) with n− 2 losers and 2 gainers from

integration can also be used to perform the Chambers & Hayashi analysis and

yields

Corollary 2. For any n ≥ 2, the fraction of losers from integration is (n−1)/(n+

1) = 1− 2/(n+ 1) in some instances.

Following Chambers and Hayashi, this result can be extended to any efficient

social choice function.3

3Indeed, their Theorem 2 is an immediate corollary of the proof of their Theorem 1.
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5.3. While Chambers and Hayashi (2019) are primarily concerned with the

possibility of losers, our main focus lies on comparing the upper bounds on the

number of losers from integration in three different market scenarios.

6.) Kumar et al. (2020) show that in a housing market à la Shapley and

Scarf (1974), there can be at most N − K losers when K separate markets are

integrated and the entire population I has size N = |I|. They further show the

upper bound is attained in some example. These results parallel our findings in

Corollary 1(b) and the surrounding discussion. Notice that the housing market

model constitutes an instance of an exchange economy with discrete objects. Both

proofs of the upper bound result stem from the fact that the pertinent outcomes

of the integrated market are core allocations.4 Kumar et al. (2020) focus on the

unique core allocation, which is the outcome of the top trading cycle algorithm.

We resort to the core inclusion theorem.

2.4 Destabilizing Effect of Integration

This example relies on non-convex preferences of the consumers in country A. Let

country A consist of two consumers 1 and 2, each with endowment bundle ωi =

(1, 1) and utility function Ui(x
1
i , x

2
i ) = (x1i )

2 + (x2i )
2. Up to price normalization,

this economy has two equilibria with price system p∗A = (1, 1) where one consumer

chooses consumption bundle (2, 0) and the other consumer chooses consumption

bundle (0, 2).

Let country B consist of consumer 3 with endowment bundle ω3 = (1, 1) and

4Since in the housing market, individuals are matched with discrete objects, the model is
often viewed as a particular matching model.
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utility function U3(x
1
3, x

2
3) = x13 + 2x23. Up to price normalization, this economy

has a unique competitive equilibrium (p∗B, x
∗
B) with p∗B = (1, 2) and x∗B = x∗3 =

ω3 = (1, 1).

Now consider the integrated economy. Because of monotonicity of preferences,

an equilibrium price system p has to satisfy p = (p1, p2) � (0, 0). Let us take

commodity 1 as numéraire so that p1 = 1. We can distinguish several cases

depending on the size of p2. If p2 < 1, then consumers 1 and 2 each demand more

than 2 units of good 2; hence there is positive excess demand for good 2. If p2 = 1

then there are three subcases: In case both consumers in A demand two units of

good 2, there is positive excess demand for good 2. In case one of the consumers

in A demands 2 units of good 1 and the other demands 2 units of good 2, there is

still positive excess demand for good 2, since consumer 3 will demand 2 units of

that good. In case both consumers in A demand two units of good 1, then there is

excess demand for good 1. If p2 > 1, then consumers 1 and 2 each demand more

than 2 units of good 1 and there is positive excess demand for good 1. Thus there

are no relative prices at which the market in the integrated economy is cleared.

This shows that market integration can have a destabilizing effect.

We should add that market integration can have a stabilizing effect as well. A

trivial example obtains when every consumer i has endowment bundle ωi = (1, 1)

and utility representation Ui(x
1
i , x

2
i ) = (x1i )

2 + (x2i )
2 and each country’s economy

consists of an odd number of consumers. Another example is given by ` = 2,

IA = {1}, IB = {2}, U1(x
1
1, x

2
1) = x11 +

√
x21, ω1 = (1, 0), U2(x

1
2, x

2
2) =

√
x12 + x22,

ω2 = (0, 1).
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3 Pairwise Two-sided Matching

Our focus lies on two-sided pairwise matching as in the seminal contribution of

Gale and Shapley (1962). In the marriage market interpretation, the population

consists of men and women. A matching selects heterosexual couples such that

each individual is matched with exactly one partner of the other sex or remains

unmatched. Stability requires that no matched person prefers to be single and no

pair consisting of a man and a woman prefers being a couple to the status quo.

This presupposes that individuals have preferences over partners, including having

no partner. In the standard setting of two-sided matching, in principle, a man can

be matched with any woman and vice versa — if one disregards preferences.

We observe that a stable matching exists in any matching market where all

individuals have complete and transitive preferences (Gale and Shapley 1962). We

will establish as a general result that with strict preferences, the number of losers

from integration cannot exceed the number of gainers. More precisely, if two or

more separate groups are merged into one, then within each group, at most half

of the members are losers from integration.

3.1 Basic Model

Some of the notation and terminology is adopted from Roth and Sotomayor (1990).

There is a finite population I that is partitioned into a non-empty male subpopula-

tion M = {m1, . . . ,mk} and a non-empty female subpopulation W = {w1, . . . , w`}.

A bipartite graph or bigraph based on the given partition is an undirected graph

whose edges are of the form {m,w} for some m ∈M and some w ∈ W .

Matching. A matching is a bigraphM based on the given partition such that

no two of its edges share an element: {m,w} ∩ {m′, w′} = ∅ if {m,w}, {m′, w′} ∈
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M, {m,w} 6= {m′, w′}. Elements of M are called matches. A matching M can

be identified with a bijection µ : I → I with the properties that (a) µ−1 = µ; (b)

µ(m) ∈ W ∪ {m} for all m ∈M ; (c) µ(w) ∈M ∪ {w} for all w ∈ W .

Preferences. Individuals have preferences for partners, including the pos-

sibility of not having a partner. Each m ∈ M has complete and transitive prefer-

ences on W ∪ {m}, represented by an ordered list P (m). For example

P (m) = w1, w2,m,w3, . . . , w`

means that m’s first choice is to be married to woman w1, his second choice is to

be married to woman w2, and his third choice is to remain single. Women w3 to

w` are not acceptable to m. He would rather be single than be married to one of

them. An abbreviated list contains only the acceptable women:

P (m) = w1, w2.

Similarly, each w ∈ W has complete and transitive preferences on M ∪ {w},

represented by an ordered list P (w). If a person is indifferent between several

possible mates, then those are put in square brackets in the preference list:

P (w) = m2, [m3,m4, w],m1

means that m2 is w’s first choice; to be married to m3, to be married to m4 and

being single tie for second choice while m1 is her third choice. The abbreviated

list is P (w) = m2, [m3,m4, w].

P = (P (m1), . . . , P (mk), P (w1), . . . , P (w`)) denotes a preference profile, that

is a collection of lists, one for each individual. Then a particular marriage market

is specified by a triple (M,W ; P). The notation w >m w′ means that m prefers

woman w to woman w′ and w ≥m w′ means that m likes w at least as much

as w′. m >w m′ and m ≥w m′ are defined in an analogous way. Woman w is

14



acceptable to man m if he likes her at least as much as remaining single, i.e.,

w ≥m m. Analogously, m is acceptable to w if m ≥w w. An individual is said to

have strict preferences if he or she is not indifferent between any two acceptable

alternatives.

Stable Matching. Formally, we consider matchings that are stable according

to the following

Definition 1. A matchingM (or, equivalently, µ) in the marriage market (M,W ; P)

is stable if:

1. For any m ∈M, w ∈ W who are matched inM, neither partner wants to go

single. That is, {m,w} ∈ M (or, equivalently m = µ(w)) implies w ≥m m

and m ≥w w.

2. There is no pair (m,w) ∈M×W who can get married to each other and who

prefer this marriage to the status quo. That is, µ(m) ≥m w or µ(w) ≥w m.

In particular, a stable matching µ is individually rational, that is µ(i) ≥i i

for all i ∈ I. If a pair {m,w} renders a potential matching unstable, we say that

{m,w} blocks or destabilizes the particular matching. That is, {m,w} blocks

the matching µ if w >m µ(m) and m >w µ(w). This is the strong version of

blocking. In the weak version of blocking, the pair {m,w} blocks the matching

µ if w >m µ(m), m ≥w µ(w) or if w ≥m µ(m), m >w µ(w). The two notions of

blocking coincide in the case of strict preferences. Gale and Shapley (1962) show

existence of stable matchings in the case of strict preferences. Their method of

proof can be extended to the case of preferences with possible ties. See Theorem

2.8 in Roth and Sotomayor (1990). If the weak version of blocking is employed

and ties are possible, then the corresponding set of “strongly stable” matchings

may be empty, as a simple example in Irving (1994) demonstrates.
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3.2 Desegregation of Marriage Markets

Segregation of various sorts, be it racial, religious or political, restricts the marriage

market. As an actual example for the latter, consider the case of South and North

Korea or former West and East Germany. How would desegregation affect the

marriage market? We are going to study this question first in a simple example.

More specifically, we consider the case where the population I is segregated into

two sub-populations I1 = M1 ∪W1 and I2 = M2 ∪W2, with Mi = M ∩ Ii and

Wi = W ∩ Ii. Marriages are only possible within I1 and within I2.

Example 1 (Effect of desegregation). Let k = ` = 8 and

P (m) = w1, w2, . . . , wk for all m ∈M ;

P (w) = m1,m2, . . . ,mk for all w ∈ W .

Suppose the population I = M ∪W is segregated into two parts I1 = M1 ∪W1

and I2 = M2 ∪W2 where M1 = {m1,m2,m3,m4},M2 = {m5,m6,m7,m8},W1 =

{w2, w3, w4, w5},W2 = {w1, w6, w7, w8}. Marriages are only possible within I1 and

within I2. Let P1 denote the restriction of the preference profile P to members

of I1 and P2 denote the restriction of the preference profile P to members of I2.

Then:

Under segregation, there exists a unique stable matching µ given by

µ(m1) = w2, µ(m2) = w3, µ(m3) = w4, µ(m4) = w5 for members of I1,

µ(m5) = w1, µ(m6) = w6, µ(m7) = w7, µ(m8) = w8 for members of I2.

After desegregation, there exists a unique stable matching µ′ given by

µ′(mi) = wi for i = 1, . . . , 8.

Men m1,m2,m3,m4 and woman w1 gain from desegregation whereas male m5 and

females w2, w3, w4, w5 lose. ��
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In the example, there are equal numbers of losers and gainers in I, and also in

each of the subpopulations I1 and I2. This observation generalizes as follows:

Proposition 3. Suppose the population is segregated into K ≥ 2 non-empty sub-

populations I1, . . . , IK. Let µ be any matching under segregation and µ′ be a stable

matching after desegregation. Then

|{i ∈ Ik : µ′(i) <i µ(i)}| ≤ |Ik|/2 for k = 1, . . . , K.

proof. Suppose that |{i ∈ Ik : µ′(i) <i µ(i)}| > |Ik|/2 for some k ∈

{1, . . . , K}. µ′(i) <i µ(i) implies µ(i) 6= i for i ∈ Ik. That is, all members of

Jk ≡ {i ∈ Ik : µ′(i) <i µ(i)} were matched under µ. Since |Jk| > |Ik|/2, there exist

two members of Jk who were matched with each other under µ. Therefore, they

can block µ′, contradicting the assumed stability of µ′. Hence to the contrary, the

assertion of the proposition has to hold. �

This results has been first reported as Proposition 8 in our working paper

version Gersbach and Haller (2015). The proposition says that in each group Ik,

there are weakly more gainers than losers. As a corollary of our result, we obtain

a result by Ortega (2018): In the grand economy, there are weakly more winners

than losers, too. It is possible that, indeed, half of the people in each group are

losers. It is also possible that there are no losers at all.

Ortega (2019) measures individual gains from integration as the difference in

spouse ranking before and after integration. For instance, an agent’s gain is +3 if

the agent obtains his 5th best partner before integration and his 2nd best partner

after integration; the agent’s gain is -2 if he gets his best partner before integration

and his third best partner after integration. Ortega finds that the sum of individual
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gains from integration can be quite negative. Aue et al. (2020) show that in

pairwise two-sided matching, none of the agents on one side of the market may

gain from integration. In their Example 1 (in our terminology), two of the three

men lose from integration and one is unaffected by integration where the male-

optimal stable matchings are chosen before and after integration. But the choice

of stable matchings matters in the example: If the matchings before integration

are female-optimal and the matching after integration is male-optimal, then there

are no gainers or losers.

4 Strategic Network Formation

To our knowledge, integration of networking markets has not been investigated

before. Our analysis of strategic network formation games is going to be two-

fold. First we will demonstrate, by means of an elaborate example with a het-

erogeneous player population, that integration can cause isolation of a previously

central player. Second, we study the effects of integrating two groups where all

individuals are homogeneous and linkage costs are small. We show that from an

ex ante point of view, integration always proves desirable with a homogeneous

player population (and small linkage costs). While ex post losers cannot be ruled

out, we find striking restrictions on their numbers. As a rule, the upper bound on

the number of losers from integration of two networking groups is less than the

corresponding upper bound when two matching markets are integrated.

4.1 Basic Model

Our basic model is the two-way flow connections model à la Galeotti, Goyal, and

Kamphorst (2006) that incorporates cost and value heterogeneity. We adopt the
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notation of Haller, Kamphorst and Sarangi (2007) for the case of perfectly reliable

links.

Let n ≥ 3. N = {1, . . . , n} denotes the set of players with generic elements

i, j, k. N also constitutes the set of nodes of the network to be formed. For ordered

pairs (i, j) ∈ N ×N , the shorthand notation ij or i,j is used and for non-ordered

pairs {i, j} ⊂ N the shorthand [ij] is used. The model is specified by two families

of parameters, indexed by ij, with i 6= j:

• Cost parameters cij > 0.

• Value parameters Vij > 0.

In case cij 6= ckl (Vij 6= Vkl) for some ij 6= kl, the model exhibits cost (value)

heterogeneity; otherwise, it exhibits cost (value) homogeneity.

We only consider pure strategies. A pure strategy for player i is a vector

gi = (gi1, . . . , gii−1, gii+1, . . . , gin) ∈ {0, 1}N\{i}. The set of all pure strategies of

agent i is denoted by Gi. It consists of 2n−1 elements. The joint strategy space is

given by G = G1 × · · · × Gn.

There is a one-to-one correspondence between the set of joint strategies G and

the set of all directed graphs or networks with vertex set N . Namely, to a strategy

profile g = (g1, . . . , gn) ∈ G corresponds the graph (N,E(g)) with edge or node set

E(g) = {(i, j) ∈ N × N | i 6= j, gij = 1}. In the sequel, we shall identify a joint

strategy g and the corresponding graph and use the terminology directed graph

or directed network g. Since our aim is to model network formation, gij = 1

is interpreted as a direct link between i and j is initiated by player i (edge ij is

formed by i) whereas gij = 0 means that i does not initiate the link (ij is not

formed). Regardless of what player i does, player j can set gji = 1, i.e., initiate a
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link with i, or set gji = 0, i.e., not initiate a link with i.

Benefits. A link between agents i and j potentially allows for two-way (sym-

metric) flow of information. Accordingly, the benefits from network g are de-

rived from its closure g ∈ G, defined by gij := max {gij, gji} for i 6= j. Moreover, a

player receives information from others not only through direct links, but also via

indirect links. To be precise, information flows from player j to player i, if i and

j are linked by means of a path in g from i to j. A path of length m in f ∈ G

from player i to player j 6= i, is a finite sequence i0, i1, . . . , im of pairwise distinct

players such that i0 = i, im = j, and fikik+1
= 1 for k = 0, . . . ,m − 1. Let us

denote

Ni(f) = {j ∈ N | j 6= i, there exists a path in f from i to j},

the set of other players whom player i can access or “observe” in the network

f . Information received from player j is worth Vij to player i. Therefore, player

i’s benefit from a network g with perfectly reliable links and two-way flow of

information is (as in Galeotti, Goyal, and Kamphorst (2006)):

Bi(g) = Bi(g) =
∑

j ∈ Ni(g)

Vij.

Notice that g belongs to the set H = {h ∈ G|hij = hji for i 6= j}. In turn, there

is a one-to-one correspondence between the elements of H and the non-directed

networks (graphs) with node set N . Namely, for h ∈ H and i 6= j, [ij] is an edge

of the corresponding non-directed network if and only if hij = hji = 1.

Costs. Player i incurs the cost cij when she initiates the direct link ij, i.e., if
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gij = 1. Hence when the network g is formed, i incurs the total costs

Ci(g) =
∑
j 6=i

gijcij.

Payoffs. Player i’s payoff from the strategy profile g is the net benefit

Πi(g) = Bi(g)− Ci(g). (1)

Nash Networks. Given a network g ∈ G, let g−i denote the network that

remains when all of agent i’s links have been removed so that g−i ∈ G−i ≡
∏

j 6=i Gi.

Clearly g = gi ⊕ g−i where the symbol ⊕ indicates that g is formed by the union

of links in gi and g−i. A strategy gi is a best response of agent i to g−i if

Πi(gi ⊕ g−i) ≥ Πi(g
′
i ⊕ g−i) for all g′i ∈ Gi.

Let BRi(g−i) denote the set of agent i’s best responses to g−i. A network g =

(g1, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each i, that is if g

is a Nash equilibrium of the strategic game with normal form (N, (Gi)i∈N , (Πi)i∈N).

Efficient Networks. Let W : G → IR be defined as W (g) =
∑n

i=1 Πi(g). A

network ĝ is efficient (in the narrow traditional sense) if W (ĝ) ≥ W (g) for

all g ∈ G. Efficiency is a major performance criterion for network designers or plan-

ners and plays a prominent role in the traditional network literature. It is most

attractive for cost-benefit analysis when payoffs are monetary and side-payments

between players are feasible. Efficiency constitutes an important benchmark for

network performance even when network formation is decentralized and structured

as a strategic game. In economics, the term “efficiency” is often used in a broader

sense, as a synonym for Pareto optimality.
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Some Graph-theoretic Concepts. We now introduce some definitions of

a more graph-theoretic nature. The network with no links is called the empty

network and will be denoted e. A network g is said to be connected if there is

a path in g between any two agents i and j. A connected network g is minimally

connected, if it is no longer connected after the deletion of any link.

4.2 Isolation Caused by Integration

Let A = {a0, a1, . . . , am} with m ≥ 1 and B = {b0, b1, . . . , bn} with n ≥ 2 be two

groups of players. We assume Vja0 = 0 for all j 6= a0 and Vij = 1 otherwise.

Costs can take three possible values: m+n+2, cA, cB with m−2 < cA < m−1

and cB < 1. Costs are realized as follows: cak,a0 = cA for k = 1, . . . ,m; cak,b0 = cB

for k = 1, . . . ,m; cb`,b0 = cB for ` = 1, . . . , n; and cij = m+ n+ 2 otherwise.

Thus in equilibrium, a0 will not form any links and value-wise is worthless by

himself. Still, his serving as an intermediary can benefit the other players and

himself. Indeed, when network formation is confined to group A, then the empty

network is Nash and the only non-empty Nash network is the periphery-sponsored

star SA with a0 as center. Similarly, when network formation is confined to group

B, the periphery-sponsored star SB with b0 at the center is the only Nash network

— while the empty network is not Nash.

After the two groups are integrated, the star SB persists as an equilibrium

subnetwork. Moreover, in equilibrium at least one link ak,b0 is formed, say a1,b0.

First of all, there cannot be a Nash equilibrium where all links in SA and SB

plus the link a1,b0 exist. Namely, if link a2,b0 does not exist, then player a2 is

better off severing link a2,a0 and forming link a2,b0 and if link a2,b0 does exist,
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then player a2 is better off severing link a2,a0 and keeping link a2,b0. Hence in

Nash equilibrium, some link ak,b0, say a1,b0, and all links in SB, but not all links

in SA are formed. Let link a`,a0 be one of the links in SA that are no longer

formed. Then the link a`,b0 exists in equilibrium. Now let h 6= 0, `. If both ah,a0

and ah,b0 exist, then ah’s payoff is at most m + n − 1 − (cA + cB). When ah

severs the link ah,a0, then the payoff is at least n + 1 − cB = n − 1 − cB + 2 =

m+n−1− cB + 2−m = m+n−1− cB− (m−2) > m+n−1− (cB + cA). Hence

ah prefers severing that link. If only ah,a0 exists, then ah is better off severing

that link and forming ah,b0. If only ah,b0 exists, then ah does not want to change

his strategy. It follows that in Nash equilibrium, all links in SB and all links ak,b0

exist and none of the links in SA. Consequently, a0 is isolated now.

There are two possible scenarios. First, the empty network A may be group

A’s equilibrium network. Then all players benefit from integration except a0 who

remains isolated. Second, the star SA may be group A’s equilibrium network.

Then again all players benefit from integration except a0 who loses the privileged

intermediary status and becomes isolated. The case m = n = 3 is depicted in the

following diagram.
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4.3 Effects of Integration in Homogeneous Populations

Next let us consider the homogeneous model with Vij = V and cij = c for all ij.

We focus on the low cost case where c < V . Without loss of generality, we may

proceed with V = 1 and c < 1. For that case, Bala and Goyal (2000, p. 1202)

show that the Nash networks are all the minimally connected networks.5 Starting

with two separate groups A and B with |A| = m > 1 and |B| = n ≥ 1, take any

Nash network gA in A and any Nash network gB in B. Then the aggregate welfare

in group A is m(m−1)−(m−1)c and the per capita welfare is m−1−(1−1/m)c.

The latter is also a player’s ex ante expected payoff if all Nash networks have an

equal chance of being formed. As a consequence, we obtain the first assertion of

the next proposition.

Proposition 4. In the homogeneous model of network formation with V = 1 and

c < 1, the following assertions hold:

(a) Ex ante, all players benefit from integration.

(b) Ex post, a player may lose.

(c) Ex post, at least one player gains.

(d) Ex post, all players may gain.

proof. (a) The ex ante expected payoff is increasing in the number of players.

(b) Suppose B = {b}. The periphery-sponsored star SA with center a ∈ A is

a Nash network in A. The center-sponsored star SA∪B with center a is a Nash

network after integration. Thus a remains the intermediary, but instead of getting

5Haller, Kamphorst and Sarangi (2007) show that Nash networks do not exist in some het-
erogeneous models.
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a free ride, he shoulders all the costs in the larger network. Player a obtains payoffs

Πa(SA) = m− 1 and Πa(SA∪B) = m−mc. Hence in case c > 1/m, he is worse off

after integration.

(c) A minimally connected network of m + n players has m + n − 1 links.

Hence ex post, at least one player does not form a link and gains from integration.

Namely, the player’s benefits increase without a cost increase.

(d) If one labels i = 1, . . . ,m the players in A and i = m + 1, . . . ,m + n the

players in B, then the network consisting of the links i,i+1 for i = 1, . . . ,m+n−1 is

minimally connected and hence a Nash network after integration. In that network,

each player forms at most one link and, therefore, gains from integration. �

Proposition 5. In every Nash equilibrium after integration of the homogeneous

model of network formation with V = 1 and c < 1, there are either no losers in

group A and at most 1 + (n− 1)/m losers in group B or no losers in group B and

at most 1 + (m− 1)/n losers in group A.

proof. A member of A enjoys the added benefit n from integration. In order

to be a loser, the player has to form more than n/c links. Similarly, a loser in B

has to form more than m/c links. Let LA denote the number of losers in A and

LB denote the number of losers in B. Then all losers combined form more than

LA · nc + LB · mc links. Since the total number of links is m+ n− 1 in equilibrium,

LA ·
n

c
+ LB ·

m

c
< m+ n− 1

has to hold. This implies

LA · n+ LB ·m < m+ n− 1

because of c < 1. If there is at least one user in each group, then LA ·n+LB ·m ≥
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m + n, a contradiction. Thus there is no loser in one of the groups, say group A.

In the latter case, LB ·m < m + n− 1 or LB < 1 + (n− 1)/m. In case there are

no losers in B, then LA < 1 + (m− 1)/n. �

The proposition implies that if the two groups have equal even numbers of

members, then at most 25% of all players lose from integration and all belong to

one group. For instance, LA < 1+(m−1)/n and n ≥ 2 imply LA < 1+(m−1)/2 =

(m+ 1)/2 and LA ≤ m/2 = |A|/2.

Inspection of the proof shows that the assertion of the proposition can be

slightly sharpened by considering non-gainers instead of losers. Hence if the two

groups have equal even numbers of members, then at least 75% of all players gain

from integration and one of the groups consists only of gainers. Further inspection

shows that a member of A is either a gainer or a loser if n/c is not a natural

number — and a member of B is either a gainer or a loser if m/c is not a natural

number. Therefore,

Corollary 3. For generic cost parameters, including irrational c, ex post every

player is either a gainer or a loser from integration.

We also obtain

Corollary 4. If c < k ·min{m,n}/(n+m− 1), then there are less than k losers.

Ramifications

Suppose that we start with K > 2 mutually disjoint and non-empty groups of

players Gk, k = 1, . . . , K. Each group Gk has size nk = |Gk| ≥ 1. We assume

nk > 1 for at least one k. Then the assertion and proof of Proposition 4 generalize.

The rationale behind Proposition 5 generalizes as well. In particular, the ex post

losers from integration belong all to just one group.
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5 Concluding Remarks

We have seen that the integration of commodity markets, matching or marriage

markets, or networking markets can have both gainers and losers. Losers can be

prevalent when commodity markets are integrated. The relative numbers of losers

tend to be smallest when networking markets are merged. It turns out that the rel-

ative number of losers declines when social or economic interaction becomes more

intense. In the case of competitive pure exchange economies, consumers interact

anonymously with the market, not one-on-one. A change in the composition of

the consumer population can alter the terms of trade to the disadvantage of most

consumers. In the marriage or matching market, an agent is directly affected by

the choice of partner, but not the identity of others. In the case of networking

markets, the welfare of an agent is affected by direct links as well as indirect ones.

One would expect occurrence of some losers from integration when network ex-

ternalities are negative, like in the coauthor model. In contrast, the benchmark

model underlying our analysis exhibits positive network externalities: A player

benefits or at least is not harmed when someone else forms a link. Therefore, to

have losers from market integration is not that plausible. Still, there can be some

losers, though not very many. To be a loser, a player has to create many links.

Then others get away with few links. In turn, the loser has an incentive to form

the large number of links. In a sense, a loser gets boxed in at equilibrium.

We have limited ourselves to some simple comparisons regarding gainers and

losers of integration of economic, matching and networking markets. There are

entire branches in economics that deal with gainers and losers in the context of

production. The famous 1941 Stolper-Samuelson result showed that for a two-

goods, two-markets economy, market integration with a labor-abundant economy
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can yield lower real wages and thus hurt workers.6. Since 1941, the literature

has repeatedly dealt with potential and actual negative consequences of market

integration or “globalization” on subgroups and small regions within the economy,

coexisting with positive aggregate effects (see Autor et al. (2013, 2015), Feenstra

and Sasahara (2018), Krugman (2019)). Similarly, reducing obstacles to labor

mobility and thus achieving more integration in the labor market has been the

topic of much political debate and empirical analysis. Hammond and Sempere

(2006) consider potential gains from free migration in addition to or in lieu of free

trade. Finally, there is an extended literature on how firms (and managers) are

affected by market integration—with conclusions depending on market structures

and the nature of competition.7 Our study is complementary to the literature, as

we focus on comparisons of relative gainers and losers across three different types

of markets.

Let us conclude with two more observations. Our analysis also applies to

secession or market segregation if one reads the results in reverse. And there may

be other reasons than purely economic ones why a country wants to join or leave

a group like the European Union. Gainers and losers from politically motivated

integration are an important area for thorough future analysis.

6Stolper and Samuelson (1941)
7See, e.g., Gersbach and Schmutzler (2014) for the integration of Cournot markets, Eaton et

al. (2011) for empirical evidence of a differential impact of international trade on French firms.
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