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The Great COVID-19 Vaccine Rollout: Behavioral
and Policy Responses

1 Introduction.

Widespread vaccination against the virus that causes COVID-19 disease began in December, 2020, and

as of the end of March, 2021, almost 600 million doses had been distributed.1 Concerns have been

raised that as vaccinations progress, people will reduce their social distancing, blunting the efficacy of

vaccination in reducing the spread of the disease (for example, Galanti et al. 2021). To the best of

our knowledge, this is the first paper attempting to estimate the effects of vaccinating a population on

social distancing.2

Vaccinations against COVID-19 disease have been shown to substantially reduce the probability

that a vaccinated person will become infected.3 Holding behavior constant, epidemiological models of

disease spread predict that more vaccinations must, then, reduce new infections. However, economic

models predict that both vaccinated and unvaccinated people will change their risky behaviors as the

proportion of the population which is vaccinated increases (Chen and Toxvaerd, 2014). Depending on

their pattern, these behavioral responses may act to reinforce the protective effects of vaccination, or

may reduce the efficacy of vaccination in reducing new infections. Determining their net effect is an

empirical problem.

We estimate the effects of an increase in vaccinations per capita on various behavioral measures

drawn from Google Mobility reports at the country level, exploiting data on the outcomes of 112

countries across the world. These data are limited in the sense that we only observe country-level
1Authors’ calculation from Our World in Data dataset described in section 3.
2Several studies use simulations and data from one country to estimate the effect of vaccinations on disease dynamics,

taking behavior as invariant to own–vaccination status and population vaccination rates: see e.g. Cook and Roberts
(2021); De-Leon et al. (2021); Public Health England (2021a).

3Evidence on effectiveness compiled as of March 2021 is presented in Public Health England (2021b). See also Forni
and Mantovani (2021) for a review of the development and biological efficacy of COVID-19 vaccines.
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averages, so that, among other aggregation issues, we cannot distinguish between changes in average

behavior resulting from changes in the behaviors of vaccinated and unvaccinated people. However,

global data are inherently interesting in the sense that we are able to quantify outcomes for the majority

of the world’s population, and the staggered rollout of vaccinations across countries allows us to estimate

the effects of vaccination by comparing countries which initiated vaccinations sooner and more intensely

to those that vaccinated later or less intensely.

The most challenging econometric issue arises because vaccinations were not randomly assigned

across countries. To the extent that countries which vaccinated sooner did so because they were

experiencing more severe COVID-19 epidemics—or, even more problematically, were expecting more

severe epidemics in the future when vaccine contracts were written in the Fall of 2020—statistical

models may mistake vaccinations as a cause of behavior with vaccinations as a consequence of behavior.

That is, we may observe that there are more vaccinations in countries with more severe epidemics

because the world successfully triaged vaccinations, not because vaccinations caused disease. Lacking

randomization in vaccinations, we cannot fully resolve this issue. We specify panel data models which

mitigate these concerns with various fixed effects and other panel data strategies, consider a variety of

specifications of these models to assess robustness, and present estimates of the determinants of the

rollout of vaccinations across countries in an effort to assess how the pattern of vaccination rollouts

across countries was related to the severity of their epidemics.

We find that countries which vaccinated more of their populations earlier did tend, unconditionally, to

be countries experiencing more severe epidemics in late 2020. But, this association essentially disappears

once income is held constant: each doubling of GDP per capita was associated with approximately six

more vaccinations per capita by the end of our sampling window (March 19, 2021), whereas measures of

the severity of the epidemic as of or up until the end of November 2020, no longer have any substantial

nor statistical ability to predict the vaccination rollout. At least initially, vaccines tended to be rolled

out faster in richer, not sicker, countries. It is disturbing that countries in which the most lives could

have been saved by vaccination did not, it appears, tend to receive vaccinations first, but these results

do lend credibility to estimates of the effects of vaccination on behavior: factors other than the state of

the pandemic primarily drove the initial vaccination patterns.
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Our major results include: some measures of social distancing, notably retail visits, fell in quickly-

vaccinating countries relative to statistically comparable countries which were not able to vaccinate as

quickly, but at the same time new cases fell in relatively quickly vaccinating countries. We also find

evidence that restrictions intended to increase social distancing were relaxed, relatively, in countries in

which vaccines were rolled out quickly, suggesting that policy makers view vaccinations and restrictions

as substitutes. We conclude by discussing important limitations to these results.

2 Analytical framework.

Conventional epidemiological models do not feature endogenous behavioral responses to the risk of

infection. Hence, a standard model of the effect of vaccinating some fraction of the population against

COVID-19 either would not consider behavioral responses, or would impose behavioral response in an

ad hoc fashion.4 In contrast, economic epidemiological models focus on how endogenous changes in

behavior alter spread of disease and the impact of interventions designed to limit spread.5

A long-standing concern in the economic epidemiology literature revolves around the possibility

that vaccinations will cause offsetting behavioral responses which reduce the efficacy of the vaccine in

reducing infections or, if behavioral responses are large enough, even perversely cause more infections.6.

This literature focuses on the case in which an imperfect prophylactic vaccine reduces a vaccinated

person’s incentive to reduce costly efforts to avoid infection. People who are not vaccinated, however,

may also change their behavior in response to an increase in the proportion of people around them who

are vaccinated.

To fix ideas, consider a very simple, static rational choice model in which a susceptible agent chooses
4Examples include Ferguson et al. (2020) and Iboi et al. (2020).
5See Philipson (2000) for a survey of the early literature in economic epidemiology which arose largely as an attempt

to understand aspects of the HIV/AIDS epidemic. Fenichel et al. (2011) provides an overview of the literature on multiple
diseases up to that time. McAdams (2020) discusses some of the contributions from economic epidemiology to the study
of COVID-19. Toxvaerd and Rowthorn (2020) contrast the economic approach to vaccination to the traditional public
health approach, whereas Makris and Toxvaerd (2020) consider how the anticipated arrival of vaccines alters incentives to
engage in social distancing.

6See for example Auld (2003); Geoffard and Philipson (1997); Talamas and Vohra (2018); Toxvaerd (2019).

3



a contact rate c to maximize

U(c) =B(c) −γRc−p(c,I,V, V̄ )L(V̄ ), (1)

where U(c) denotes the utility function, B(c) denotes the benefits the agent obtains from a contact

rate of c, R denotes a measure of the stringency of governmental restrictions on social interactions, p(·)

denotes the perceived probability of infection which depends on the contact rate, the proportion of the

population that is infected, I, the agent’s own vaccination status denoted by an indicator V (which

we treat as exogenous) and the proportion vaccinated V̄ , and L denotes the loss, in units of utility, of

becoming infected. To make the model as simple as possible, assume the functional forms for B(·), L(·)

and p(·) that permit us to write,

U(c) = log(c) − [γR− (βI−αV − δV̄ )(π0 −π1V̄ )]c, (2)

where all parameters are positive. Here, β is a transmission coefficient which depends on biology and

social structure, α represents how the individual perceives that her own vaccination status affects her

probability of infection, δ how she perceives population vaccination levels to affect her own probability

of becoming infected, and π0 represents the loss due to infection for a narrowly self-interested agent.

The loss due to infection decreases at rate π1 as population vaccinations increase, reflecting altruism:

particularly since countries tended to prioritize the most vulnerable in distributing vaccines, the agent

may perceive that the cost to becoming infected is lower as vaccinations are rolled out because they are

less likely to infect and harm or kill other people through their own behavior.

Assuming the agent ignores any effect her own outcomes have on the population vaccination or

infection rates, the model predicts that she will choose contact rate

c∗(I,V, V̄ ) = 1
γR+ (βI−αV − δV̄ )(π0 −π1V̄ )

. (3)

Assume that parameters, vaccination rates, and infection rates are such that each term in parentheses in

the denominator on the right–hand side is positive. Then it is easy to show that the model predicts that,
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other things being equal, more stringent restrictions, higher disease prevalence, a higher transmission

probability, the agent herself not being vaccinated, or a higher overall loss to infection (π0) reduce risky

behavior. The effect of the agent’s vaccination status on her probability of becoming infected, though,

is ambiguous: if she selects a sufficiently higher contact rate in response to her own vaccination, the

total effect will be an increase in her chances of infection.7 Vaccinating more of the population around

this individual also unambiguously increases her risky behavior: this effect occurs both because she

perceives her own risk to be lower at the margin, and because the costs of becoming infected decrease.

Integrating such behavioral responses into models of disease propagation shows that they will generally

spur the epidemic relative to models in which behavior is fixed, although not necessarily in models with

heterogeneity or at very high levels of risk (Kremer, 1996).

With these behavioral considerations in mind, we consider an econometric implementation of this

simple model in Section 4.

3 Data.

3.1 Google Mobility reports.

Our main measures of social distancing behavior are drawn from Google Mobility data. These data and

more detail on their construction can be found at: https://www.google.com/covid19/mobility/. The

version of these data we use for analyses was downloaded April 12, 2021. Using Google Maps searches,

these data track visits and lengths of stay to locations categorized as Retail and Recreation, Grocery

and Pharmacy, Parks, Transit stations, Workplaces, and Residential places.

We consider all five of these categories as measures of social mobility: Retail and Recreation provides

a measure of visits to restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie

theaters. Workplaces data provide information on visits to places of work. Transit stations measures

use of public transport hubs such as subway, bus, and train stations. Parks tracks visits to “places like

local parks, national parks, public beaches, marinas, dog parks, plazas, and public gardens.” Finally,

Residential data provide information on visits to places of residence; we sometimes refer to this outcome
7That is, if response is sufficiently elastic, then p(c∗(I,V = 1, V̄ ), I,V = 1, V̄ ) > p(c∗(I,V = 0, V̄ ), I,V = 0, V̄ ).
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as “time at home.” We interpret increases in all of these except residential visits as decreases in social

distancing, and increases in residential visits as an increase in social distancing.

According to Google, the location accuracy in these data varies by country, but the country fixed

effects we include in all models should mitigate this concern. Google reports these data as changes

relative to the 5-week period from January 3 to February 6, 2020. We reconstruct the absolute variables

up to a constant by calculating one plus the log of the value reported by Google.

3.2 Vaccinations and measures of epidemic progress.

To the best of our knowledge, the only comprehensive international data on vaccinations have been

compiled by the Our World in Data team.8 We use the smoothed data on new vaccinations; the version

of the these data we use in the analyses was downloaded on April 11, 2021. These data were constructed

from a wide variety of official sources, most commonly the Ministry of Health or similar government

entity. They do not include vaccinations given during clinical trials. Note that we select number of

vaccinations given as our the covariate of interest in all analyses rather than the proportion vaccinated

or fully vaccinated: we measure the effect of an additional vaccination, regardless of whether the arm

into which it is injected has already received at least one vaccination. We choose this outcome because

the data on the number of people vaccinated contain more missing observations; for a substantial

proportion of the sample, the time series on number of shots given inconsistently starts before the series

on number of people vaccinated.

We also use daily new COVID-19 cases and deaths per capita attributed to COVID-19 as compiled

from official sources and reported and smoothed by Our World in Data.

3.3 Other data.

The Oxford COVID-19 Government Response Tracker (OxCGRT) policy stringency index is used as

a composite measure of policy responses intended to reduce COVID-19 infections. This index can

in principle vary between zero and one, and is constructed as a simple average of dummy variables
8The data, a variety of descriptive statistics, and more information on the construction of the data can be found at:

https://ourworldindata.org/covid-vaccinations.
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indicating a variety of restrictions imposed with the intention of increasing social distancing, such as

school closures and restrictions on gatherings. See Hale et al. (2021) for further information on the

construction of this index.

We obtain information on temperature and humidity from the Air Quality Open Data Platform

Worldwide COVID-19 dataset, and take the arithmetic average of readings from multiple stations within

a country on a given day.9 The version of these data we use in the analysis was downloaded April 11,

2021. These data do not provide comprehensive global coverage. As we demonstrate below, including

weather in our models has essentially no effect on the estimates, so we do not include weather in most

of our analysis so as to retain as large a sample as possible.

Data on GDP per capita were drawn from the Our World in Data dataset.

3.4 Sample selection.

We face a tradeoff in determining the date on which to begin the estimation sample. The vaccination

rollout begins in December, 2020. Using data from before the rollout provides more information to

estimate the parameters other than vaccination effects, and provides a pre-“treatment” period which in

effect generates more control groups, but as we shift the first date in our analyses backwards in time we

also implicitly impose more assumptions on the temporal stability of the parameters we estimate, and

we place more weight on pre-treatment outcomes as controls. We choose December 1, 2020 to begin

the estimation sample; the estimates are not sensitive to small changes in this date. The last date we

use in the estimation is March 19, 2021, as, due to reporting delays, missing data starts to become a

substantial concern after this date. We, then, have 109 days in our estimation sample.

We do not include countries which have no data on vaccinations. These may be countries for which

vaccination has occurred but the data are not yet reported, or they may be countries which have not

begun vaccinations. In either case, they provide a dubious control group for vaccinating countries.

We also exclude countries with no Google Mobility data. After these exclusions, we are left with an

estimation sample of 112 countries in the main analyses. We list these countries along with means of

selected outcomes in Appendix Table A3. Notably, we cannot use China or India in our analyses due to
9These data and more information about them are available from: https://aqicn.org/data-platform/covid19/.
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missing data, so a substantial fraction of the world’s population is missing.

Three countries (Angola, Honduras, Uganda) have a total of four missing observations on the Google

Mobility Data during the sampling window, and there are a total of 19 observations with zero reported

daily new cases. Since we model the logarithm of new cases, we drop these observations. The number

of observations included in the models then varies slightly (between 12,185 and 12,204) depending on

whether lagged variables are included and on whether the dependent variable is new cases or one of the

Google Mobility outcomes.

Appendix Table A1 presents descriptive statistics for the key outcomes in our analyses.

4 Econometric methods.

4.1 Main models.

Consider estimating the simple model of behavior above, equation (3), which says that a person’s

behavior is a function of their own vaccination status, population vaccinations, and disease prevalence.

Aggregating across people, the model implies that changes in vaccination rates across populations will

affect average behavior for several reasons: people may change their behavior when they are vaccinated,

they may respond to population vaccination rates given their own status for altruistic reasons, and

vaccination affects epidemic dynamics which in turn affect behavior. We take this model to the data by

deploying standard panel econometric models for various behavioral outcomes. Our least restrictive

specification takes the form,

yit = β0 +β1Vi,t−14 +β2yi,t−14 +Xitγ+αi+φt+λit+uit, (4)

where i indexes countries and t indexes time in days: yit denotes a behavioral outcome or new cases of

disease, Vit denotes vaccinations per capita, Xit is a vector of controls, including policy stringency and

in some models weather conditions, αi are country effects, φt are day effects, λit are country-specific

linear trends, and uit is a disturbance term.

The effects of vaccinations on various behaviors, the parameters β1, are identified in this model by
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variation in the timing of the rollout of vaccinations across countries. The country fixed effects remove

all variation in both behaviors and vaccination patterns that can be attributed to time-invariant or

predetermined outcomes, such as the severity of the epidemic up to the beginning of the vaccine rollout

and socioeconomic development. The inclusion of a complete set of day effects sweeps out common time

trends without imposing any functional form assumptions, and subsume seasonal effects, day of the

week effects, and holiday effects. Controlling for weather, as measured by temperature and humidity,

removes the concern that we may mistake changes in behavior and vaccinations that both result from,

for example, a particularly inclement day with an effect of vaccinations on behavior.10 Including a

lagged value of the dependent variable flexibly controls for nonlinear trends in the dependent variable

and, in models in which disease incidence is the outcome, helps reduce bias resulting from countries

increasing vaccinations in response to worsening COVID-19 conditions.

The effects of policies designed to reduce social interaction on disease spread are the subject of

considerable research.11 Controlling for policy stringency implies that we estimate the effects of

vaccinations which do not result from changes in policies which themselves are caused by, or correlated

with, the vaccination rollout. We assess possible problems with estimating and intepreting the causal

effect of vaccinations if policy stringency is also affected by vaccinations below. As the focus of this

paper is not to measure the effects of policy on behavior, we do not attempt to estimate the distinct

effects of each of the policy responses from which this index was constructed, but since these estimates

may themselves be of interest, we report them along with the estimated effects of vaccinations.

Finally, the country-specific linear trends relax the conditionally parallel trends assumption on

which identification would otherwise rest. Much like previous research in other contexts (e.g., Lee and

Solon 2011; Rambachan and Roth 2019), we find that the estimates are sensitive to this assumption;

standard two-way fixed models in some cases lead to different qualitative conclusions than models

with country-specific trends. Since identification in the models without trends is based on the more

restrictive and more implausible assumption that behavioral outcomes across the world would have

trended identically if not for the vaccination rollout, we prefer the model with trends.
10See Mecenas et al. (2020) for a survey of research on COVID-19 and weather.
11See for example Berry et al. (2021); Chen et al. (2020); Goolsbee and Syverson (2021); Wright et al. (2020); Yan et al.

(2021), among many others.
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In models with a lag of the dependent variable, we ignore the endogeneity of this variable due to

our relative large–T sample of 109 days. In some models we also lag the covariate of most interest,

vaccinations, and the policy stringency index, by 14 days. We do so to modestly mitigate concerns of

simultaneity bias, allow time for vaccinations to be effective, and to allow time for both policies and

vaccinations to affect behavioral outcomes, particularly reported new cases.12

We estimate standard errors and other measures of sampling variability using the method of Driscoll

and Kraay (1998), with up to seven days serial dependence (the estimates are not sensitive to this

choice of lag). Inference is then robust to general forms of heteroskedasticity, serial correlation, and

cross–sectional dependence, mitigating concerns that spatial or temporal dependence bias our standard

errors.

In a variety of robustness checks we assess the sensitivity of these results to various assumptions.

Note, however, that our two-way fixed models with many time periods and staggered interventions

are subject, even with arbitrary country trends, to the criticism levelled by Goodman-Bacon (2018),

Callaway and Sant’Anna (2020), and other recent papers that such models implicitly use inappropriate

control groups and recover at best variance-weighted averages of heterogeneous treatment effects.

However, to our knowledge, methods to circumvent these issues when the treatment is continuous have

not yet been developed. Restricting our sample to countries which have started vaccinations by the end

of our sampling period may reduce this bias.

4.2 Determinants of vaccinations and simultaneity bias.

Note that we do not control for time-varying measures of epidemic severity due to the potential of

simultaneity bias. The estimates of the effects of vaccines should then be considered reduced forms that

reflect both the direct effects of vaccination and indirect effects occurring due to changes in disease

spread. The same concern applies to vaccination rates, and our estimates of the effects of vaccination

rates are biased to the extent that governments procured more vaccinations during the initial rollout

if they anticipated a worsening of the epidemic at the same time. Such a mechanism implies that
12See Bellemare et al. (2017) for a discussion of the limitations of lagging the covariates as general solution to simultaneity

concerns.
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vaccinations are endogenous in model (4) due to simultaneity, that is, that vaccinations may “reverse

cause” behavior and disease incidence. Howevever, as discussed in section 5.1, the pattern of the initial

rollout was largely determined by contracts written months earlier, suggesting that this may not be a

major concern.

To provide suggestive evidence on the extent to which the pattern of rollouts reflected disease

severity, we present estimates of models investigating the determinants of the rollout of vaccinations

across countries. We construct a cross-sectional dataset of country characteristics and two measures

of epidemic severity as of early December 2020, immediately preceding the initiation of vaccinations:

the total of number of COVID-19 deaths (per capita) up to that time, and the mean number of new

cases per day (per capita) during November, 2020. We use total COVID-19 deaths per capita up until

December 1, 2020 as a measure of the cumulative effects of the epidemic on the country up to that

date, and the number of new cases per day as a measure of the severity of the epidemic immediately

prior to the initial rollout of vaccines in the following month. Standard errors in these cross-sectional

models are robust only to heteroskedasticity.

5 Results.

5.1 The rollout of vaccinations across nations.

Why did some nations rollout vaccinations faster than others? The panel data models we present below

hinge on the assumption that the variation remaining in the speed of the vaccination rollout, after

sweeping out fixed effects and covariates, is exogenous. That is, that some nations distributed more

vaccinations than others for reasons unrelated to those affecting how risky behaviors would have evolved

in the absence of a vaccine rollout. In this section we present some suggestive evidence that at least the

initial rollout of vaccines was largely unrelated to the severity of the epidemic in each country, which

in turn suggests that the regression–adjusted correlations we present between vaccinations and the

outcomes we consider largely reflect the consequences of vaccinations, not the causes of vaccinations.

The institutional background is consistent with the proposition that the world largely failed to

triage vaccinations. Vaccinations began to be distributed in December 2020 based on contracts between
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manufacturers and governments signed months earlier, which implies that subsequent changes in the

severity of a country’s epidemic likely had little or no effect on the magnitude of its rollout. Media

reports suggest the rollout was largely determined by income, by political savvy and idiosyncratic

pharmaceutical approval processes, and by the happenstance of the locations of manufacturers. For

example, the New York Times reported on December 15, the week of the initial rollout, that “rich

countries have ‘cleared the shelves’” of vaccines” (Twohey et al., 2020). After noting that India had

secured a relatively large number of doses from Novavax, the Times article quotes the CEO of that

company explaining why that occurred: “India gets priority because it’s my home country.”

The lag between government contracts for vaccine purchases and delivery also suggests that the

global pattern of the vaccine rollout could not have been largely determined by variation in epidemic

severity in late 2020 and early 2021. Even by the end of August 2020, government contracts for more

than one billion doses had been signed, and by December 2020 developed countries had preordered about

10 billion doses more.13 Governments and charitable organizations have, however, also contracted with

manufacturers in an effort to provide more timely access to vaccinations, notably through COVID-19

Vaccines Global Access (COVAX). But, this initiative had not, by the end of our estimation window

(March 19, 2021), provided a substantial number of doses, and aims to reach only about 3.3% of the

total population of each participating country by the end of the first half of 2021 (Gavi: The Vaccine

Alliance, 2021).

Consider first the correlates of the timing and intensity of the rollout of vaccinations across nations.

In Table 1 we present estimates of a variety of models of total vaccinations by March 19, 2021.

Column (1) of Table 1 presents estimates of the simplest specification including only our measure

of epidemic severity immediately prior to the beginning of the vaccine rollout, mean cases per day

during November, 2020. The statistically significant estimate (t=3.8) suggests that, unconditionally,

countries with more severe epidemic tended to distribute more vaccinations during the initial rollout,

although the effect is quite small: each doubling of new cases in November is associated with about

(0.013)(0.69) ≈ 0.01 more vaccinations per capita, that is, one more vaccination per hundred people.
13Authors’ calculation from contract listing provided by the UNICEF COVID-19 Vaccination Market Dashboard,

available from https://www.unicef.org/supply/covid-19-vaccine-market-dashboard. See also So and Woo (2020) for an
analysis of purchase commitments as of mid–November 2002.
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Column (2) of Table 1 adds income as a control. The unconditional association between vaccinations

and epidemic severity essentially disappears after controlling for income, as the estimated coefficient

falls to only 0.003 with an associated t-statistic of 0.7. But income strongly predicts vaccinations: the

point estimate suggests each doubling of GDP per capita is associated with about (0.05)(log2) ≈ 0.04,

or four more vaccinations per hundred people. Put another way, the results suggest that if country A’s

epidemic was worse than country B’s immediately prior to the rollout, country A did tend to vaccinate

faster than B, but if country A and B have the same average income and country A’s epidemic was

worse than B’s, they vaccinated at similar rates. It is income, not disease severity, which drove the

initial rollout pattern, according to these estimates.

Column (3) adds continent effects to the model, thereby comparing countries only to their continental

neighbours. Using only within–continent variation has little effect on the results. The point estimate on

income increases in magnitude modestly to 0.06 and remains highly statistically significant, whereas the

estimated coefficient on new cases in November remains small and statistically insignificant. We report

the estimated continent effects since they may be of interest: there is little evidence that, conditional

on income and epidemic severity, countries on different continents vaccinated at substantially different

rates.

Finally, in column (4) we add an additional measure of COVID-19’s damage: total deaths attributed

to COVID-19 as of December 1, 2020. The point estimate is a little less than 0.4, suggesting a moderately

strong relationship between deaths and vaccinations, but it is very statistically insignificant (t=0.86,

p=0.39). Hence, neither deaths to date, nor the contemporaneous severity of the epidemic as measured

by new cases, predict the rollout of vaccinations.

Taken together, these results suggest that the rollout of vaccinations across nations favoured the

richest countries, not the countries experiencing the most severe epidemics given their incomes. However,

the lack of association between the state of the epidemic and the rollout of vaccines does lend some

suggestive credibility to the estimates to follow of the effects of vaccinations on behavior, as they do not

suggest that the pattern of vaccinations is consistent with vaccinations being triaged to the hardest-hit

populations.
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5.2 Effects of vaccinations on behaviors and disease incidence.

We vary the specification of the model across the panels of Table 2 to assess sensitivity. In all models,

the outcomes are in logs, vaccinations are per capita, and the policy stringency index is bound on the

unit interval. An estimated coefficient on vaccinations, then, can be interpreted as the predicted effect of

increasing vaccinations from zero to a number equal to the entire population (which, since we measure

vaccinations rather than people vaccinated, does not mean the entire population is vaccinated), whereas

the coefficient on policy stringency can be interpreted as the predicted effect of a country “switching on”

all policies tracked by OxCGRT.

First consider Panel A, which presents two-way fixed effects estimates of day t vaccinations and policy

stringency on day t outcomes. The estimates suggest policy stringency is highly contemporaneously

correlated with more social distancing: that is, fewer visits to workplaces, retail, transit, and parks, but

more residential visits. These estimates are all substantively large and highly statistically significant.

However, policy stringency is strongly contemporaneously associated with more new cases, which likely

reflects causation from new cases to policy stringency rather than a perverse effect of policy. Vaccinations

in this model are statistically significantly associated with more transit and parks visits, but also more

residential visits, and not associated statistically nor substantially with new cases. These estimates,

however, assume that effects of policy occur instantly, which is particularly implausible for new cases

which take time to incubate and detect. Further, these estimates are identified off the assumption that

all countries’ outcomes would trend in parallel if it were not for changes in the covariates.

We begin to relax these assumptions in the estimates presented in Panel B of Table 2, which also

deploys two-way fixed effects, but lags both vaccinations and policy stringency by two weeks. The

estimates are sensitive to this change: the estimated effects of policy stringency on the Google Mobility

behaviors both increase and decrease across outcomes, and particularly of note, the positive association

between new cases and policy stringency disappears: the point estimate flips sign and is not statistically

significant. We interpret this result as confirmation that the apparently perverse effect reported in

Panel A does reflect the endogeneity of policy to disease spread. The effects of vaccinations in this

models are similar to those in panel A.

We then relax the parallel trends assumption in Panel C by including country-specific secular trends,
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such that identification is achieved by estimating deviations around these trends as the vaccination

rollout occurred. The inclusion of these trends has substantial effects on the estimates. Policy stringency

statistically significantly increases residential visits, although the effect is rather small in magnitude:

a 0.1 increase in policy stringency increases residential visits by 0.3% (t=2.9). The point estimates

on the other Google Mobility outcomes also suggest stringency increases social distancing, although

they are not statistically significant. The estimated effect of stringency on new cases suggests policies

are effective at reducing disease spread: a 0.1 increase in the stringency index causes about 5% lower

incidence (t=2.6).

The estimates of vaccinations in Panel C also differ markedly from the more restrictive estimates in

Panels A and B. These estimates strongly suggest people responded to the rollout of vaccinations by

reducing social distancing: distributing vaccinations equal to 10% of a country’s population leads to: a

0.9% decrease in residential visits (t=2.4), a 13.5% increase in retail visits (t=6.1), a 5.7% increase in

transit visits (t=3.0), and a 11.2% increase in visits to parks (t=6.4). Finally, more vaccinations lead to

diminished disease spread: distributing vaccinations equal to 10% of a country’s population reduces

new cases by a very large 26% (t=3.5), according to this model.

Panel D presents the results of the least restrictive of our specifications, which includes both country-

specific trends and a two-week lag of the dependent variable. Here, interpretation of the estimates

becomes more difficult as the point estimates reflect short–run effects, whereas long–run effects can be

calculated by plugging the estimating coefficients into β1
1−β2

, in the notation of equation (4), that is, the

estimated effect over one minus the estimated coefficient on the lag of the dependent variable. These

long-run effects, with inference based on the Delta method, are also displayed in the table, but as we

do not think that the epidemic can reasonably be modelled as fluctuating around a long-run steady

state equilibrium, we interpret them with skepticism. Qualitatively, the results in Panel D for both

vaccinations and policy stringency are very similar to those in Panel C.

5.3 Parameter stability over time.

The concern that our estimates are biased by vaccinations being routed to countries in which they are

most needed may become more compelling as time passes. Vaccinations rerouted to areas with epidemic
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flare-ups bias our estimates: this mechanism will make it appear that vaccinations cause new cases (or

are less effective than they are at reducing new cases) and, given that people respond to outbreaks

by increasing social distancing, make it appear that vaccinations increase social distancing (or reduce

social distancing less than they actually are). Further, the linear trends assumption which helps identify

our models becomes more tenuous as the sampling window increases.

To investigate the stability of our estimates over time, we estimated rolling regressions. Always

starting December 1, 2020, we estimate the the model in Table 2 Panel C (with day and country effects

and country-specific trends), ending the sample on February 1, then, separately, on February 2, and

so on, until March 19. We note that changes in the estimates as we increase the sample size do not

necessarily indicate that the causal effect of vaccinations is itself changing over time, as we would expect

estimates to change with sample size due to sampling variability.14 But if we interpret estimates only

using earlier data as less biased than those also using later data, then we wish to assess whether we

would draw qualitatively different conclusions depending on when we end the sampling window.

The rolling regression results are displayed in Figure 1. Many of the results change little as we

increase the sampling window: the estimated effect on workplace visits diminishes in magnitude but

is never statistically significant, whereas the effects on retail and transit visits change little. However,

the effect of vaccinations on residential visits is initially very small and positive, but switches sign and

increases in magnitude as the sampling window increases, only obtaining statistical significance when

we use almost the entire sample. For all outcomes except new cases, the qualitative results are largely

unaltered by varying the sampling window.

The effect of vaccinations on new cases is sensitive to when we end the sampling window. Vaccinations

appear to have a very large effect on new cases during the early rollout, but this effect diminishes

markedly in magnitude over time. A researcher using data from December 1 through February 1 would

conclude that a 10 percentage point increase in vaccinations per capita decreases new cases by 60%

(t=4.4). Conversely, a researcher using data from December 1 through March 19 would draw the

conclusion we present in Table 2 panel C: this effect falls in magnitude to -26% (t=3.5). Figure 1

demonstrates that this decline in magnitude is monotonic as the sampling window is increased. This
14See for example Zanin and Marra (2012) on the interpretation of rolling regression estimates.
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result is consistent with increasing simultaneity bias resulting from increasingly successful vaccine

triage, or with a declining causal effect of vaccinations. A declining effect may in turn result from

successful within–country allocation of vaccines to people more likely to become infected, such that as

an increasing proportion of the population is vaccinated, the marginal vaccinated person’s reduction in

infection probability decreases.

5.4 Heterogeneous effects.

In Table 3 we investigate whether the effects of vaccinations differed with observed country characteristics,

simply by interacting vaccinations with our measures of policy stringency and GDP per capita. For

ease of interpretation, the continuous covariates are first demeaned, such that the coefficients on the

main effects should be interpreted as the effect at the global mean of each continuous covariate, and

the coefficients on interactions should be interpreted as how this effect itself varies with the interacted

regressor.

Evaluated at sample means, the estimates in Table 3 display a similar pattern as the main estimates

discussed above: vaccinations decrease both social distancing and new cases, although the effect on

new cases is not statistically significant. There is little evidence that vaccinations are more or less

effective in changing behavior or new cases in countries with more stringent policies, as none of the

interactions between policy and vaccinations are statistically significant. Similarly, only one of the

interactions between vaccination and income are statistically significant: column (6) in Table 3 suggests

that vaccinations are more effective in reducing new cases in richer counties. An increase in GDP

per capita of $1,000 USD decreases the estimated effect of vaccination by 0.14 units (t=3.1), relative

to the estimated effect at the mean of -1.06 units. That is, in wealthy countries, a given increase in

vaccinations per capita decreased new infections more than in poorer countries.

5.5 Robustness.

We further investigate the robustness of these results by varying the lag length on vaccinations. Instead

of somewhat arbitrarily choosing two weeks, we vary the lag length from one to 30 days, and estimate

the dynamic model with country-specific trends for each outcome at each lag length. The resulting
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180 regression coefficients are presented in graphical form in Appendix Figure A1. The results of

this exercise indicate that the major results discussed above are reasonably robust to lag length. The

estimates of the effect of vaccination on workplace visits never obtain statistical significance, and we

would draw the same qualitative conclusions over the effects of vaccinations on the remaining outcomes

of interest regardless of lag length. That said, the magnitude of the effect of vaccination on residential

visits increases as we consider longer lags, whereas the magnitude of the effect on new cases is largest

for lags of between about 10 and 20 days.

As another robustness check, we consider whether controlling for weather conditions would affect

our results. Weather may affect both disease transmission directly, may affect vaccinations, and may

affect social distancing, so omitting weather may lead to a spurious relationship between behavior

and vaccinations. We do not include weather as a covariate in all models because of missing data. In

Appendix Table A2 we estimate the specification with country–specific trends and a lag of the dependent

variable on the subset of 79 countries for which we have weather (as measured by temperature and

humidity) data. We restrict attention to residential visits and new cases as key behavioral outcomes. In

columns (1) and (3) we estimate models including weather controls, and in columns (2) and (4) we

present versions of the models presented in Table 2 but restricted to the sample for which we have

weather data. The results clearly show that the weather outcomes statistically significantly predict both

behavior and new cases, controlling for weather has essentially no effect on the estimated coefficients on

vaccinations, which change only in the third decimal place.

5.6 Effect of vaccinations on policy stringency.

Do policy–makers relax restrictions as more vaccinations occur? We estimate equation (4) with policy

stringency as the outcome of interest to investigate this question. As with the models of behavioral

outcomes, we include complete sets of country and day effects, and we include country–specific time

trends. We consider two specifications, one including a two-week lag of the dependent variable, and one

without this lag.

Table 4 presents the results. The estimate in column (1) suggests that there is a large and highly

statistically significant effect of vaccinations on policy stringency. The point estimate means that
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distributing a number of vaccines equal to 10% of a country’s population decreases policy stringency

by about 0.06 units (t=7.7). Put another way, the descriptive statistics displayed in Appendix Table

2 show that the average stringency observed globally over our sampling window was about 0.62 and

ranged between 0.12 and 0.94. The estimate in column (1) of Table 4 suggests that, if the most severely

restrictive country distributed a number of vaccinations equal to its population, then its policy makers

could be expected to decrease stringency to 0.34 (0.94-0.6), decreasing its stringency from the most

severe to one of the least severe. Column (2) of Table 4 adds lagged stringency as a control, but the

results are very similar.

These effects are both substantively and statistically significant and comprise suggestive evidence

that the rollout of vaccinations would have had larger effects on disease transmission if policy stringency

had not (relatively) declined in quickly–vaccinating countries. That policy stringency responds to the

timing of the vaccination rollout also presents a potential problem for our main estimates presented in

Table 4: if policy stringency is on the causal path from vaccinations to behavioral outcomes and disease

incidence, “collider bias” may afflict our estimates of the effects of vaccination (see e.g. Pearl 2013). We

assessed the sensitivity of the estimates presented in Table 2 to this mechanism by re–estimating each

model without including policy stringency as a covariate. The estimates on the effects of vaccination

change little, suggesting that this form of bias is not a serious concern.

6 Conclusions.

We conclude by summarizing the main results and discussing their limitations. The evidence suggests

that the rollout of vaccinations across nations resulted in:

1. A decrease in average social distancing, particularly so for visits to retail establishments.

2. Decreased new COVID-19 cases, perhaps particularly so during the earliest stages of the rollout

and in relatively high-income countries.

3. Relaxation of government social distancing restrictions.

However, these results are subject to a number of important limitations.
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First, while we present suggestive evidence that the rollout cannot be predicted by COVID-19

vaccinations in the month preceding the beginning of the rollout once income is held constant, and

we deploy a battery of fixed effects and other panel data approaches to minimize concerns over

endogeneity and uncontrolled common causes of disease spread and vaccination response, our estimates

are nonetheless biased to the extent that the vaccination rollout responded to rapidly changing epidemic

conditions across countries. In particular, to the extent that vaccinations are a response to changes in

disease rather than a cause, our estimates will be biased in the direction of finding that population

vaccination is less effective than it actually is in reducing disease spread. We find that the apparent effect

of vaccinations falls as we increase the end of the sampling window from the beginning of February to late

March, which, among other possible explanations, is consistent with increasing bias from increasingly

successful vaccine triage across nations.

Second, we are only able to observe country–level averages, which presents a number of challenges.

We cannot distinguish between the behavioral effects of vaccination on the vaccinated, and effects

of population vaccination on a given person conditional on that person’s vaccination status. So, for

example, we have no way of disentangling a decrease in social distancing in response to more rapid

vaccine distribution resulting from altruistic or narrowly self–interested motives. Moreover, since we

observe only average behavior, we cannot estimate any effects on the distribution of behavior within

countries, such as an increase in the dispersion of social distancing.

Third, we found that our estimates are sensitive to the specification of our models. Models with only

contemporaneous outcomes lead to quite different conclusions than those relating current behavior or

disease incidence to policies and vaccination two weeks prior. Models with only country–specific linear

trends sometimes lead to different conclusions than models without these trends. We focus attention on

models preferred for theoretical reasons, that is, models with lags of the covariates and which relax the

parallel trends assumption, but highlight that these choices matter.

We conclude that overall there is some evidence in the country–level data that countries which

successfully vaccinated more quickly experienced both less social distancing and diminished spread of

disease as a result of these vaccinations. We suggest future research using microdata, when they become

available, which may be able to shed more light on these questions.
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Figure 1: Rolling regression estimates. Figure shows each model estimated in Table 3, Panel C (models include
country–specific time trends along with complete sets of day and country effects) estimated from the beginning
of the sampling window (December 1, 2020) to the date shown on the x-axis. Note the scale of the y-axis
varies across subfigures. The dashed blue lines are 95% confidence intervals.



Table 1: Correlates of vaccinations across countries.

(1) (2) (3) (4)
log(new cases during November) 0.013∗∗∗ 0.003 0.006 0.007

(3.76) (0.69) (1.11) (1.37)

log(GDP per capita) 0.053∗∗∗ 0.063∗∗ 0.047∗∗∗
(4.40) (3.23) (3.89)

log(deaths by Dec 1) 0.384
(0.86)

Asia -0.027 0.015
(-0.58) (0.62)

Europe -0.064 -0.023
(-1.02) (-0.49)

North America -0.048 -0.013
(-0.95) (-0.34)

Oceania -0.102 -0.050
(-1.44) (-1.25)

South America -0.061 -0.039
(-1.19) (-0.97)

N 145 139 145 145

Notes. OLS estimates using country-level cross-section. The dependent variable is
vaccinations per capita as of March 19, 2021. The omitted continent is Africa. New cases
in are expressed as a mean per 100 capita per day and deaths as total deaths to date per
million capita. Parentheses report t-statistics based on robust standard errors. Asterisks
denote statistical significance at the 0.05, 0.01, and 0.001 levels.



Table 2: Estimates of panel data models of behaviors and new cases

(1) (2) (3) (4) (5) (6)
Workplaces Residential Retail Transit Parks New cases

Panel A: Contemporaneous two-way fixed effects.

Vaccinations 0.064 0.069∗∗∗ 0.099 0.194∗∗ 0.452∗∗∗ 0.143
(0.95) (5.60) (1.39) (3.04) (7.33) (0.44)

Stringency Index -0.575∗∗∗ 0.170∗∗∗ -0.937∗∗∗ -0.802∗∗∗ -0.501∗∗∗ 2.321∗∗∗
(-13.22) (21.33) (-20.28) (-19.53) (-12.56) (11.20)

N 12,204 12,204 12,204 12,204 12,204 12,189

Panel B: Covariates lagged 14 days.

Vaccinations 0.119 0.045∗∗ 0.294∗∗ 0.316∗∗∗ 0.601∗∗∗ -0.296
(1.39) (2.71) (3.11) (3.77) (7.70) (-0.72)

Stringency index -0.097∗ 0.069∗∗∗ -0.284∗∗∗ -0.207∗∗∗ -0.101∗ -0.106
(-2.05) (7.57) (-5.41) (-4.46) (-2.33) (-0.47)

N 12,200 12,200 12,200 12,200 12,200 12,185

Panel C: Addition of country–specific linear trends.

Vaccinations 0.123 -0.089∗ 1.350∗∗∗ 0.571∗∗ 1.118∗∗∗ -2.591∗∗∗
(0.59) (-2.38) (6.08) (2.99) (6.43) (-3.54)

Stringency index -0.001 0.030∗∗ -0.039 -0.089 -0.022 -0.502∗∗
(-0.02) (2.93) (-0.64) (-1.72) (-0.46) (-2.61)

N 12,200 12,200 12,200 12,200 12,200 12,185

Panel D. Addition of lagged dependent variable.

Vaccinations 0.112 -0.118∗∗ 1.091∗∗∗ 0.383∗ 0.725∗∗∗ -2.035∗∗
(0.53) (-3.21) (4.88) (2.02) (4.07) (-3.26)

Long-run effect 0.128 -0.183 1.566 0.548 1.001 -4.175∗∗∗
β̂1/(1 − β̂2) (0.169) (-0.194) (2.306)∗∗ (0.751) (1.327) (14.522)

Stringency index 0.051 -0.021∗ 0.208∗∗∗ 0.114∗ 0.084 -1.437∗∗∗
(0.89) (-2.13) (3.40) (2.20) (1.73) (-8.57)

N 12,200 12,200 12,200 12,200 12,200 12,173

Notes. All outcomes are in logs. Vaccinations are per capita and the policy stringency index is bound on
the unit interval. Each panel reports a separate specification. The panel consists of 112 countries and 109
days, with some missingness. Complete sets of day and country effects are included in all models; panel titles
note additional structure. Parentheses report t-statistics based on Driscoll-Kraay standard errors robust to
arbitrary serial and spatial correlation. Asterisks denote statistical significance at the 0.05, 0.01, and 0.001
levels.



Table 3: Heterogeneity across policy stringency and income

(1) (2) (3) (4) (5) (6)
Workplaces Residential Retail Transit Parks New cases

Vaccinations 0.250 -0.100∗ 1.185∗∗∗ 0.635∗∗ 1.015∗∗∗ -1.072
(1.00) (-2.23) (4.44) (2.77) (4.86) (-1.22)

Stringency index -0.000 0.030∗∗ -0.049 -0.095 -0.031 -0.487∗
(-0.00) (2.93) (-0.80) (-1.81) (-0.63) (-2.50)

Vaccinations × Stringency index 0.101 -0.041 0.438 0.425 0.382 0.829
(0.19) (-0.42) (0.75) (0.86) (0.84) (0.45)

Vaccinations × GDP per capita -0.012 0.001 0.016 -0.006 0.010 -0.141∗∗
(-0.91) (0.44) (1.13) (-0.47) (0.91) (-3.11)

N 12,200 12,200 12,200 12,200 12,200 12,185

Notes. OLS estimates of models of Google Mobility behavioral outcomes and new COVID-19 cases. All outcomes are in
logs and covariates are lagged 14 days. Complete sets of day and country effects and country-specific linear time trends
are included in all models. Parentheses report t-statistics based on Driscoll-Kraay standard errors robust to arbitrary
serial and spatial correlation. Asterisks denote statistical significance at the 0.05, 0.01, and 0.001 levels.



Table 4: Effect of vaccinations on policy stringency

(1) (2)
Stringency index Stringency index

Vaccinations -0.619∗∗∗ -0.530∗∗∗
(-7.73) (-6.75)

Stringency index (lagged 14 days) 0.219∗∗∗
(10.54)

N 12,200 12,200

Notes. The dependent variable is the policy stringency index, on the unit scale. Complete
sets of day and country effects are included in all models, along with country-specific
linear trends. Parentheses report t–statistics based on Driscoll-Kraay standard errors
robust to arbitrary serial and spatial correlation. Asterisks denote statistical significance
at the 0.05, 0.01, and 0.001 levels.
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Figure A1: Sensitivity of estimates to lag length. Figure shows each model estimated in Table 2 Panel C, varying
the lag of vaccinations per capita between one and 30. Note the scale of the y-axis varies across subfigures.
The dashed blue lines are 95% confidence intervals.



Table A1: Descriptive Statistics

Mean Std. Dev. Min Max N

Disease, vaccination, and policy outcomes
New cases 0.015 0.020 0 0.132 12,204
Deaths 0.046 0.048 0 0.227 12,076
OxCGRT Stringency index 0.618 0.157 0.120 0.935 12,204
Vaccinations per capita 0.020 0.068 0 1.102 12,204

Behavioral outcomes
Retail -25.081 20.707 -97 59 12,204
Residential 8.060 7.108 -14 55 12,204
Parks -11.718 23.472 -89 134 12,204
Transit -26.884 22.123 -98 59 12,204
Workplaces -22.801 16.873 -94 74 12,204

Other variables
GDP per capita 23.040 20.552 1.136 116.936 12,204
Temperature 0.110 0.114 -0.360 0.330 7,834
Humidity 0.734 0.147 0.110 1 7,834

Notes. Behavioral outcomes from Google Mobility represent percentage changes relative to
a baseline period in February, 2020. GDP per capita is in thousands of 2019 U.S. dollars.



Table A2: Assessing effect of controlling for weather

(1) (2) (3) (4)
Residential Residential New cases New cases

Stringency index 0.022∗∗∗ 0.021∗∗∗ -0.146∗∗∗ -0.149∗∗∗
(3.48) (3.37) (-5.98) (-6.07)

Vaccinations -0.061∗∗ -0.062∗∗ -0.164∗ -0.160∗
(-3.10) (-3.18) (-2.07) (-2.02)

Temperature -0.036∗∗∗ 0.132∗∗∗
(-3.59) (3.51)

Humidity 0.020∗∗∗ 0.020
(5.69) (1.53)

N 7,760 7,760 7,752 7,752

Notes. Estimates of residential visits and new cases, where both outcomes are
in logs. In all models the sample is restricted to observations with weather data
available. Country-specific linear trends and complete sets of day and country effects
are included in all models. Parentheses report t-statistics based on Driscoll-Kraay
standard errors with up to one week arbitrary serial correlation. Asterisks denote
statistical significance at the 0.05, 0.01, and 0.001 levels.



Table A3: Countries in estimation sample with selected summary statistics.

Vaccinations New cases Deaths GDP
Afghanistan 0.0001 0.0003 5.7 1.8
Angola 0.0001 0.0002 1.3 5.8
Argentina 0.0096 0.0166 101.0 18.9
Australia 0.0006 0.0000 3.6 44.6
Austria 0.0281 0.0288 71.4 45.4
Bahamas 0.0004 0.0034 44.0 27.7
Bahrain 0.1000 0.0228 22.5 43.3
Bangladesh 0.0048 0.0007 4.7 3.5
Barbados 0.0319 0.0089 5.5 17.0
Belarus 0.0012 0.0165 16.7 17.2
Belgium 0.0268 0.0207 171.1 42.7
Belize 0.0015 0.0159 63.5 7.8
Bolivia 0.0013 0.0081 86.4 6.9
Bosnia and Herzegovina 0.0004 0.0195 127.0 11.7
Botswana 0.0000 0.0091 6.1 15.8
Brazil 0.0124 0.0221 100.8 14.1
Bulgaria 0.0097 0.0231 112.6 18.6
Cambodia 0.0019 0.0001 0.0 3.6
Canada 0.0203 0.0136 46.5 44.0
Cape Verde 0.0000 0.0095 22.5 6.2
Chile 0.0601 0.0157 93.3 22.8
Colombia 0.0014 0.0180 95.3 13.3
Costa Rica 0.0108 0.0142 45.9 15.5
Cote d’Ivoire 0.0000 0.0005 0.6 3.6
Croatia 0.0180 0.0349 99.1 22.7
Czech Republic 0.0246 0.0732 134.4 32.6
Denmark 0.0411 0.0227 28.6 46.7
Dominican Republic 0.0054 0.0085 24.3 14.6
Ecuador 0.0009 0.0058 82.6 10.6
Egypt 0.0002 0.0006 8.4 10.6
El Salvador 0.0007 0.0033 23.0 7.3
Estonia 0.0306 0.0490 26.3 29.5
Finland 0.0279 0.0072 10.8 40.6
France 0.0238 0.0266 103.4 38.6
Gabon 0.0000 0.0029 3.2 16.6
Georgia 0.0000 0.0419 65.7 9.7
Germany 0.0287 0.0178 53.8 45.2
Ghana 0.0013 0.0010 1.4 4.2
Greece 0.0289 0.0124 47.3 24.6
Guatemala 0.0002 0.0032 29.5 7.4
Honduras 0.0001 0.0063 35.0 4.5
Hungary 0.0343 0.0336 110.5 26.8

Continued.



Vaccinations New cases Deaths GDP
India 0.0040 0.0016 10.8 6.4
Indonesia 0.0035 0.0029 9.7 11.2
Iraq 0.0000 0.0052 32.1 15.7
Ireland 0.0325 0.0262 60.9 67.3
Israel 0.3911 0.0463 48.7 33.1
Italy 0.0284 0.0295 131.3 35.2
Jamaica 0.0004 0.0060 11.4 8.2
Japan 0.0002 0.0021 3.9 39.0
Jordan 0.0048 0.0290 38.6 8.3
Kazakhstan 0.0007 0.0051 15.2 24.1
Kenya 0.0000 0.0007 3.1 3.0
Kuwait 0.0222 0.0147 22.8 65.5
Kyrgyz Republic 0.0000 0.0028 21.1 3.4
Latvia 0.0083 0.0364 49.8 25.1
Lebanon 0.0018 0.0381 38.1 13.4
Lithuania 0.0340 0.0522 78.4 29.5
Luxembourg 0.0204 0.0434 81.6 94.3
Malaysia 0.0008 0.0070 2.1 26.8
Mali 0.0000 0.0002 1.4 2.0
Malta 0.0545 0.0353 53.5 36.5
Mauritius 0.0008 0.0002 0.8 20.3
Mexico 0.0061 0.0074 112.4 17.3
Moldova 0.0001 0.0243 79.3 5.2
Mongolia 0.0021 0.0010 0.1 11.8
Morocco 0.0286 0.0047 20.4 7.5
Mozambique 0.0001 0.0013 1.1 1.1
Myanmar 0.0043 0.0011 5.0 5.6
Namibia 0.0000 0.0089 11.3 9.5
Nepal 0.0086 0.0020 6.9 2.4
Netherlands 0.0232 0.0351 74.3 48.5
New Zealand 0.0005 0.0001 0.5 36.1
Nigeria 0.0000 0.0004 0.7 5.3
Norway 0.0312 0.0083 9.1 64.8
Oman 0.0063 0.0045 29.5 38.0
Pakistan 0.0002 0.0010 4.9 5.0
Panama 0.0084 0.0383 106.0 22.3
Papua New Guinea 0.0000 0.0002 0.1 3.8
Paraguay 0.0001 0.0129 35.2 8.8
Peru 0.0033 0.0121 122.6 12.2
Philippines 0.0001 0.0017 9.3 7.6
Poland 0.0311 0.0280 84.4 27.2
Portugal 0.0301 0.0488 98.9 27.9
Qatar 0.0313 0.0101 8.6 116.9
Romania 0.0295 0.0226 85.9 23.3
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Vaccinations New cases Deaths GDP
Russia 0.0150 0.0139 43.6 24.8
Rwanda 0.0023 0.0009 1.2 1.9
Saudi Arabia 0.0105 0.0007 17.9 49.0
Senegal 0.0008 0.0010 3.4 2.5
Singapore 0.0294 0.0003 0.5 85.5
Slovak Republic 0.0302 0.0382 70.3 30.2
Slovenia 0.0324 0.0588 138.5 31.4
South Africa 0.0003 0.0106 61.1 12.3
South Korea 0.0011 0.0011 2.2 35.9
Spain 0.0313 0.0313 120.4 34.3
Sri Lanka 0.0077 0.0027 1.3 11.7
Sweden 0.0298 0.0445 99.3 46.9
Switzerland 0.0233 0.0309 92.0 57.4
Thailand 0.0001 0.0003 0.1 16.3
Togo 0.0001 0.0006 0.9 1.4
Trinidad and Tobago 0.0002 0.0011 9.3 28.8
Turkey 0.0347 0.0160 26.5 25.1
Uganda 0.0000 0.0005 0.6 1.7
Ukraine 0.0001 0.0188 48.1 7.9
United Kingdom 0.1072 0.0355 133.6 39.8
United States 0.0819 0.0460 120.7 54.2
Uruguay 0.0055 0.0162 9.7 20.6
Venezuela 0.0001 0.0014 4.0 16.7
Vietnam 0.0000 0.0000 0.0 6.2
Yugoslavia 0.0680 0.0536 49.1 14.0
Zimbabwe 0.0003 0.0015 5.6 1.9

Notes. Table lists each country in the estimation sample along with vaccinations and mean new cases and total vaccinations
per hundred capita per day, and total deaths to date per million capita. GDP is expressed in thousands of 2019 U.S. dollars.


