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1 Introduction

Climate change is one of our major challenges directly linking long-term economic

activity with the need for regulation. The World Economic Forum’s (2019) Global

Risk Report places climate risks at the top of the list. Understanding optimal policy

requires long-term structural analysis. The present paper builds on the Analytic

Climate Economy (ACE) to examine the relation between climate risks and optimal

climate policy. In doing so it combines quantitative and analytic results.

ACE is an integrated assessment model of climate change (IAM) that is on a par

with the typical numeric IAMs used in policy advising, relying on a state of the art

climate dynamics representation (Traeger 2021a). It endorses a general production

system relying on a variety of renewable and (potentially scarce) non-renewable en-

ergy inputs that are of limited and time-changing substitutability. In contrast to

other models of similar complexity and descriptive power, ACE solves a general IAM

in closed form. The present analysis takes this model into a stochastic setting, ac-

knowledging a set of crucial real world uncertainties and risks. It solves for today’s

optimal policy in a forward looking infinite horizon stochastic fixed-point problem

that describes the complex interaction of economic activity and climate change. The

main rigidity of the deterministic ACE is an assumption of log-utility. Maintaining

a unit elasticity of intertemporal substitution, I solve the model for arbitrary levels

of relative Arrow-Pratt risk aversion in a framework disentangling risk aversion from

the desire to smooth consumption over time (Epstein-Zin preferences).

Nordhaus’s (2017) “Nobel-awarded” DICE model recommends slightly more than

a doubling of atmospheric carbon dioxide (CO2) concentrations w.r.t. preindustrial

levels along an optimal trajectory. The warming resulting from a doubling of at-

mospheric CO2 is known as the climate sensitivity. Its best guess is a 3◦C (degree

Celsius) warming. Yet, the latest assessment report by the Intergovernmental Panel

on Climate Change eliminates this best guess and merely states that climate sen-

sitivity lies with 66% confidence between 1.5◦C and 4.5◦C, and with a probability

of up to 10% above 6◦C (IPCC 2013). Already a 1.5◦C warming takes us beyond

the temperature range that our planet experienced over the past 100 000 years. A

warming above 3◦C moves us beyond the range experienced over the past million

years. As a result, it is unsurprising that current estimates of the damages caused

by future climate change at such a level of warming vary widely with, e.g., both 2%

(Nordhaus 2017) and 10% (Howard & Sterner 2017, Pindyck 2020) of world output
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being somewhat popular estimates. I let ACE tackle these uncertainties explicitly.

As a result, I derive the benchmark policy where every policy maker anticipates the

vast set of possible futures and future responses.

ACE is the first analytic IAM that models carbon and temperature dynamics

explicitly. As Traeger (2021a) demonstrates, under certainty, the carbon cycle delivers

the main carbon tax multiplier whereas temperature dynamics slightly reduces the

tax because of ocean cooling and a resulting warming delay. The present paper

shows that uncertainty over carbon flows has only a minor impact on the optimal tax

level. In contrast, uncertainty about the temperature feedbacks causes a major “risk

premium”. The reason lies in the non-linearity of the greenhouse effect that governs

the relation between atmospheric CO2 and the resulting temperature increase. The

direct greenhouse effect (radiative forcing) is logarithmic in the carbon concentration.

This concavity reduces the impact of the uncertainty governing emission flows, but

does not affect the impact of the uncertainty governing temperature feedbacks.

Weitzman (2009) demonstrates in a simple, stylized, and widely cited model that

uncertainty potentially has a huge impact on the SCC, and he suggests that uncer-

tainty can render redundant the notorious debate over time preference. ACE takes the

structure and timing of the economy-climate interaction seriously, requiring a some-

what more complex and calibrated model. As a result, I find that (i) the uncertainty

contribution adds about 50% to the deterministic SCC under standard calibration

procedures, (ii) this risk premium is convex in almost all SCC components, (iii) time

preference is particularly crucial to the relevance of the risk premium, (iv) fat-tails do

not make time preference less, but rather more important; the sensitivity to pure time

preference grows in the order of the moments of the uncertainty contributions. In

contrast to Weitzman’s (2009) hope, the latter finding makes the calibration of time

preference even more relevant under uncertainty than it already is under certainty. A

standard IAM calibration procedure suggests an annual rate of 1.4%. In contrast, a

recent expert survey finds that over 50% of the experts recommend a rate less than

half this number (Drupp et al. 2018). Cutting the time preference by half to ρ = 0.7%

increases the SCC under uncertainty from almost 150USD
tCO2

to over 600USD
tCO2

; here, the

risk premium makes up close to three quarters of this total value.

Climate change is an uncertain long-run problem. Guided by the long-run risk

literature in asset pricing, ACE disentangles risk aversion from consumption smooth-

ing, so as to separately calibrate the risk-free discount rate and risk premia. Models

lacking this feature either discount the future too highly, or disregard the risk premia
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(equity premium and risk-free rate puzzles). Jensen & Traeger (2014) introduced a

simplified model of long-run growth risk based on Bansal & Yaron (2004) and Croce

(2014) into the IAM literature, recently also adopted and recalibrated by Cai &

Lontzek (2019). The long-run risk literature is typically concerned with asset valu-

ation, where the risk is exogenous to the individual decision maker. By contrast, I

focus on climate uncertainty and climate policy where the risk is endogenous, and I

extend the long-run risk model to endogenous climate change risk.

I find that uncertainty in the present model always raises the optimal carbon

tax. I explain that such positive risk premia result from the interaction of the risk’s

endogeneity with the temperature non-linearity and (intrinsic) risk aversion. A tem-

perature non-linearity (or risk aversion) by itself causes a risk premium that reduces

welfare. Yet, a welfare loss does not necessarily affect policy. The policy ’s risk pre-

mium is generated by the following mechanism. As we emit more CO2, uncertainty

about the future climate increases. This increase in uncertainty increases the welfare

loss and implies an additional incentive to strengthen the mitigation policy. I show

how different risks are mutually aggravating in their policy impact. The formulas

reveal that, compared to the deterministic SCC, the risk premium increases much

more strongly in the factors characterizing climate change, e.g., the (semi-) elasticity

of production to global warming (“damage parameter”) and the climate related mul-

tipliers. Thus, if the climate problem becomes or is judged more severe, then also the

importance of incorporating uncertainty becomes more serious.

For a wide class of stochastic processes and production models, Lemma 1 breaks

the “curse of dimensionality”, translating a high-dimensional dynamic programming

problem that is difficult or impossible to solve on a computer into a simple system of

nonlinear equations. I achieve this result by moving from the state space, describing

the physical characteristics of the system, to the space of shadow values describ-

ing their marginal values (for a set of affine stochastic processes). I then analyze a

subspace of solutions in closed-form. An accompanying paper discusses the conse-

quences of the present changes in the SCC for the optimal CO2 emissions in IAMs

(Traeger 2021b).

Literature. A first generation of analytic integrated assessment models (AIAMs)

examines uncertainty in the context of climate policy instrument choice (Hoel &

Karp 2002, Newell & Pizer 2003, Karp & Zhang 2006, Karp & Zhang 2012). These

papers use a linear quadratic model where welfare responds to uncertainty, but policy

remains unaffected by risk (weak certainty equivalence). An early exception to this
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weak equivalence is Hoel & Karp (2001) who use multiplicative instead of additive

shocks. More recently, Valentini & Vitale (2019) use a linear-quadratic Gaussian

control model to re-examine the shape of the “mitigation ramp” under risk sensitive

preferences. Karydas & Xepapadeas (2019) connect the framework to asset markets

and show that climate change should reduce the holding of carbon intensive portfolios.

A disadvantage of these linear quadratic approaches is the highly stylized represen-

tation of the economy and the climate system. In particular, these models have no

production or energy sector.

Golosov et al. (2014) sparked a second generation of integrated assessment mod-

els by amending the log-utility and full-depreciation version of Brock & Mirman’s

(1972) stochastic growth model with an explicit energy sector producing CO2 emis-

sions. Applications include multi-regional settings (Hassler & Krusell 2012, Hassler

et al. 2018), non-constant discounting (Gerlagh & Liski 2018b, Iverson & Karp 2017),

intergenerational games (Karp 2017), and regime shifts (Gerlagh & Liski 2018a).

Gerlagh & Liski (2018b) add the empirically important delay between emission ac-

cumulation and damages and the accompanying Traeger (2021a) builds an explicit

model of temperature dynamics and introduces the non-linear greenhouse effect into

the ACE model adopted here. Golosov et al. (2014) framework imposes strong cer-

tainty equivalence: not even welfare responds to uncertainty. I show that this feature

arises from the absence of the non-linearities in the climate system and from simul-

taneously setting the intertemporal elasticity of substitution and Arrow–Pratt risk

aversion to unity. Whereas unity might be a somewhat reasonable estimate of the

intertemporal elasticity of substitution, Arrow–Pratt risk aversion is ubiquitously es-

timated higher. I solve ACE for a flexible degree of (disentangled) Arrow–Pratt risk

aversion, accommodating for one of the most prominent criticisms of the model. Con-

stant relative Arrow–Pratt risk aversion implies a decreasing coefficient of absolute

risk aversion. This stylized fact is widely believed to hold, and contrasts with linear

quadratic AIAMs that capture increasing absolute Arrow–Pratt risk aversion or risk

neutrality.

Karp (2017) explains that Golosov et al.’s (2014) model solves analytically be-

cause it can be transformed to a system that is linear in the states’ equations of

motion. The endogenous uncertainty in the present paper no longer follows this lin-

earity in the states and merges the original approach with affine stochastic processes

developed for asset pricing (Gourieroux & Jasiak 2006, Le et al. 2010). The present

paper breaks with both strong and weak certainty equivalence, while maintaining von
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Neumann & Morgenstern’s (1944) classic axioms for choice under uncertainty, which

are often considered desirable for rational, normative, or policy choice. Alternatively,

Li et al. (2016), Anderson et al. (2014), and von zur Muehlen (2018) depart from the

world of von Neumann & Morgenstern’s (1944) axioms and introduce a preference

for robustness, also leaving behind the strong certainty equivalence of Golosov et al.’s

(2014) framework.

In more stylized climate economic settings, Ha-Duong & Treich (2004) disentan-

gle risk aversion from intertemporal substitutability in climate change evaluation,

using a simple two-period model. Traeger (2014) analyzes the role of baseline and

payoff uncertainty of mitigation and adaptation projects and their (potentially am-

biguous) correlation through the lens of the discount rate. Bansal et al. (2019) enrich

the consumption-based long-run-risk asset pricing model by temperature-triggered

catastrophes, estimating the SCC from the capital market’s response to temperature

fluctuations. Lemoine (2021) analyzes climate uncertainties and the roles of insurance

versus precautionary motives in a related setting without decision makers. Dietz et al.

(2018) and van den Bremer & van der Ploeg (2018) translate these reasonings into

integrated assessment models defining “climate betas”. Dietz et al. (2018) use a sim-

ple two-period model in combination with a DICE-based Monte-Carlo simulation and

van den Bremer & van der Ploeg (2018) derive an approximate analytic perturbation

solution. With their more stylized AK-based IAM, van den Bremer & van der Ploeg

(2018) also complement the present analysis by providing approximate solutions for

the SCC in a setting where the elasticity of intertemporal solution differs from unity.

Hambel et al. (2018a) develop a simple analytic continuous time IAM, which they

employ for a regional game showing that trade induces countries to incorporate some

of the emission externalities they impose on other regions.

Kelly & Kolstad’s (1999) and Pizer (1999) build stochastic implementations of

Nordhaus’ DICE model, pioneering the field of numeric stochastic integrated assess-

ment. Pizer (1999) log-linearizes DICE to find optimal CO2 abatement under a

variety of stochastic (“one-shot”) realizations of economic, climate, and preference

parameters. Kelly & Kolstad’s (1999) introduce Bayesian learning over the climate’s

sensitivity into a recursive stochastic dynamic programming implementation of DICE.

The paper focuses on the speed of learning rather than optimal climate policy. Leach

(2007) shows in a closely related IAM that learning the true climate sensitivity is

even slower if the persistence of climate dynamics is also unknown. Crost & Traeger

(2014) use a simplified recursive stochastic version of DICE to analyze the implica-
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tions of stochastic damages under Epstein-Zin preferences. Given their shocks are

not persistent (long-run), they only have a minor impact on optimal climate policy.

Most closely related to the present paper, Jensen & Traeger (2013) and Kelly &

Tan (2015) analyze climate sensitivity uncertainty in a simplified DICE model and

find an increase of the optimal carbon tax in response to temperature uncertainty sim-

ilar to that of my base calibration. Kelly & Tan (2015) also show that “learning away”

fat tails is faster than the learning about the mean climate sensitivity. Daniel et al.

(2019) find in a discretized finite horizon implementation of DICE with uncertainty

over climate sensitivity that Epstein-Zin preferences can lead to a decreasing rather

than increasing tax trajectory. Like the DICE-based Jensen & Traeger’s (2014), also

the present ACE-based analysis cannot confirm such a finding in the infinite time-

horizon setting. Rudik & Lemoine (2017) use a numeric approximation (Smolyak

grid) to analyze the policy response to climate sensitivity in the full DICE and find

a substantially lower risk premium. Their paper provides an excellent survey over

the literature of numeric stochastic integrated assessment modeling. Hambel et al.

(2018b) build their own numeric stochastic AK-based IAM featuring a more stylized

climate system and analyze the SCC under a variety of uncertainties and damage

functions. Rudik (2020) introduces learning and robust control into a DICE model

with stochastic damages; the paper confirms that the shock’s persistence generated

by learning proves crucial to generate risk premia. Barnett et al. (2020) develop a

continuous time reduced-form integrated assessment model with closed-form solution

and explore a variety of different decision criteria including disentanglement between

risk aversion and intertemporal substitution, ambiguity aversion, and preferences for

robustness.

Keller et al. (2004) introduce an uncertain climate threshold into the DICE model,

which potentially triggers large damages. Lemoine & Traeger (2014, 2016) analyze

the implications of a variety of such thresholds and their possible interactions in

a recursive stochastic implementation of DICE with Bayesian updating. Lontzek

et al. (2015), Cai et al. (2015), Cai et al. (2016), and Cai & Lontzek (2019) analyze

optimal policy in DICE when rising temperatures increase the probability of triggering

regime shifts in the damage function and Van der Ploeg & de Zeeuw (2018) discuss

precautionary savings in the context of such a climate tipping point. Golub et al.

(2014), Heal & Millner (2014), Brock & Hansen (2018), and Berger & Marinacci

(2020) survey climate uncertainties and possible decision criteria. Kotlikoff et al.

(2021) analyze intergenerational financing constraints of optimal climate policy in a
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stochastic overlapping generations integrated assessment model.

2 Model and General Solution

This section summarizes the deterministic “base ACE”, introduces a wide class of

generic stochastic processes, explains the Bellman equation, and shows how to trans-

late the complex stochastic dynamic programming problem into a set of simple alge-

braic equations.

2.1 Summary of the Deterministic Base Model

ACE’s structure follows (and generalizes) that of most IAMs, see Figure 1. This sec-

tion summarizes the “base ACE” or Deterministic ACE. For a detailed discussion of

the corresponding equations, interpretations, calibration and for various extensions I

refer to Traeger (2021a), henceforth DACE. As I show in DACE, population weight-

ing, a distinction between investment and consumption goods, and a combination of

log-utility with CES preferences over a variety of goods slightly modify the formula

for the optimal tax under certainty stated here (Section 2.5). Yet, they generally do

not affect the relation between the stochastic SCC and the deterministic SCC derived

in the present paper. Thus, the model below is a bare bones version of a larger class

of models to which the results derived in the present paper apply.

Technology, capital, labor, and energy produce (gross) output Yt that is either

consumed or invested. The only requirement on the production function F (·) is

homogeneity in capital, i.e., the existence of κ such that

Yt = F (At,Nt,Kt,Et) with (1)

F (At,Nt, γKt,Et) = γκF (At,Nt,Kt,Et) ∀γ ∈ IR+.

and that the resulting optimization problem is well-defined. The technology vector

At ∈ IRI evolves exogenously, and total labor Nt and capital Kt are optimally dis-

tributed across the different sectors at the beginning of the period, giving rise to the

vectors Nt,Kt ∈ IRI characterizing this sectoral distribution. I define the normal-

ized capital distribution over sectors by the vector Kt ≡ Kt

Kt
. See DACE for specific

production examples. The first Id energy sources E1, ..., EId are fossil fuels and mea-

sured by their CO2 content so that CO2 emissions from production are
∑Id

i=1 Ei,t. If

essential for production, fossil resources can be scarce and the model endogenously
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Figure 1: The structure of ACE and most IAMs. In red intrinsically stochastic variables
that drive the uncertainty (all future outcomes are stochastic). Solid boxes characterize the
model’s state variables, dashed boxes are flows, and dashed arrows mark choice variables.

implies a scarcity rent following Hotelling’s rule. The level of fossil resources in the

ground is summarized by the vector Rt ∈ IRId . It evolve as

Rt+1 = Rt −Ed
t (2)

and has to remain non-negative. In addition, land conversion, forestry, and agriculture

emit smaller quantities of CO2, labeled Eexo
t , that ACE treats as exogenous. Emissions

accumulate in the atmosphere following a standard carbon cycle model

Mt+1 = ΦMt + e1(
∑Id

i=1 Ei,t + Eexo
t ) (3)

where M1,t denotes atmospheric CO2 and M2,t, ...,Mm,t, m ∈ N, denote the carbon

content of other reservoirs such as the oceans, plant-matter, and soils, and the first

unit vector e1 reflects that we emit CO2 into the atmosphere. For a quantification

I will use the DICE 2013 carbon cycle; it uses two carbon reservoirs besides the

atmosphere: M2,t captures the combined carbon content of the upper ocean and the

biosphere (mostly plants and soil) and M3,t captures the carbon content of the deep

ocean.1 Atmospheric CO2, together with other (exogenous) greenhouse gases Gt,

causes a greenhouse effect referred to as anthropogenic radiative forcing

Ft = η
log M1,t+Gt

Mpre

log 2
. (4)

1Van der Ploeg et al. (2020) show that DICE’s 2013 carbon cycle performs better than the 2016
vintage for calculating the SCC. DACE shows that it gives almost the same results as using Joos
et al.’s (2013) frequently promoted model employed, e.g., in IPCC (2013).
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I emphasize the concavity of the greenhouse effect in atmospheric CO2 because of a

“saturation”.

The planet’s long-term atmospheric temperature increase T1,eq is proportional to

the radiative forcing Feq. However, temperatures respond with a delay to the green-

house effect because the oceans keep cooling us for a while. Let Ti,t, i ∈ {2, ..., l},
denote the temperature in different ocean layers. DACE shows that the climate’s

temperature dynamics can be approximated using a non-linear temperature “diffu-

sion” model. Defining transformed temperatures τi,t = exp(ξ1Ti,t), i ∈ {1, ..., l}, and
stacking them into the vector τt, the transformed diffusion model becomes linear and

the corresponding equation of motion is

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 , (5)

where the matrix σ specifies the heat transfer coefficients and σforc characterizes the

responsiveness to radiative forcing.

An increase in atmospheric temperature causes economic damages

D(T1,t) = 1− exp(−ξ0 exp[ξ1T1,t] + ξ0) (6)

that specify a percentage loss of world output in double-exponential form. The generic

capital stock follows the equation of motion

Kt+1 = Yt[1−Dt(T1,t)]
︸ ︷︷ ︸

≡Y net
t

(1− xt)

[
1 + gk,t

δk + gk,t

]

, (7)

where xt =
Ct

Y net
t

is the endogenous consumption rate, δk the rate of capital depreci-

ation, and gk,t is an exogenous approximation of the growth rate of capital. DACE

shows that equation (7) coincides with the standard equation for capital accumula-

tion Kt+1 = Yt[1 − Dt(T1,t)] − Ct + (1 − δk)Kt if the exogenously calibrated capital

growth rate is correct, gk,t =
Kt+1

Kt
− 1, or if δk = 1 (full depreciation). Based on the

Penn World tables, the correction factor is
[

1+gk,t
δk+gk,t

]

≈ 1.8 for a decadal time step and

allows ACE to match observed capital dynamics and the capital-output ratio. The

model will be solved using log-capital kt ≡ logKt.

2.2 General Uncertainty

I focus on the uncertainty generated by the evolution of carbon, temperature, and

damages (including uncertainty over potential adaptation). This uncertainty turns
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(all) the equations of motion stochastic. Formally, the state variables become func-

tions on a probability space, whose filtration F is generated by the stochastic climate

and damage evolution (my notation will suppress this dependence). Scenarios with

persistent shocks or structural learning require additional informational state vari-

ables that I denote by the vector It ∈ IRn, itself an endogenous stochastic process

with one-step-ahead uncertainty, and like all processes adapted to the filtration F :

we can learn only from what we have already observed.

Different sections of the paper will make different assumptions regarding the spe-

cific processes governing the uncertain future. They all have in common that they

assume affine stochastic processes. Let Xt denote the 1 + l + m + n dimensional

state vector stacking the state vectors kt, τt, Mt, and It.
2 The stochastic process

governing the state vector Xt is affine if its conditional cumulant generating func-

tion is linear in the state. The cumulant-generating function is the logarithm of the

moment-generating function. In detail, there has to exist an IR-valued function a(·)
and a IR1+l+m+n-valued function b⊤(·) such that

log
[
E
(
exp(z⊤Xt+1)|Xt

)]
= a(z,At,Nt,Kt,Et, xt) + b⊤(z)Xt, (8)

for all z ∈ G ⊂ IR1+l+m+n. The ⊤ denotes transposition. So far, equation (8) merely

defines a generic structure of a stochastic process. Lemma 1 will show how ACE

solves for this class of stochastic processes. When solving the model, z will relate

closely to the the state’s shadow values, and equation (8) will have to hold on a domain

incorporating the relevant state space and shadow-value domains. Both functions a(·)
and b⊤(·) depend on the model’s parametrization and the functional forms chosen for

a particular specification, e.g., those of Section 3.

Equation (8) implies that the cumulant generating function is separable between

the stochastic states and the labor and capital distributions, energy inputs, emissions,

and consumption rate. The right side of equation (8) resembles the assumption

that the equations of motion are linear in the state variables, governing the AIAMs

building on Golosov et al. (2014). However, here, the condition is imposed on the

cumulant generating function, not on the equation of motion. Most of my stochastic

specifications will have equations of motion that are non-linear in the states.

2The resources state vector Rt is not part of Xt. Xt will contain states that are one-step-ahead
stochastic (generating the uncertainty); including the resources state would complicate dealing with
the non-negativity constraint of a resource.
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2.3 Objective Function

Utility governing deterministic outcomes is logarithmic in consumption Ct and the

social planner’s time horizon is infinite with discount factor β < 1. I assume a stable

population normalized to unity, but the approach generalizes to a population-weighted

sum of logarithmic per capita consumption with population growth (see DACE). Log-

arithmic utility provides a reasonable description of intertemporal substitutability.

However, the assumption performs poorly in capturing risk attitude. The long-run

risk literature estimates the coefficient of relative risk aversion of a representative

household closer to 10 than to unity (Vissing-Jørgensen & Attanasio 2003, Bansal

& Yaron 2004, Bansal et al. 2010, Chen et al. 2013, Bansal et al. 2012, Bansal

et al. 2014, Collin-Dufresne et al. 2016, Nakamura et al. 2017).3 Merely increas-

ing the utility function’s curvature would result in high risk-free discount rates that

cannot be reconciled with market observation (risk-free rate puzzle) and would un-

warrantedly discount away concerns about the future climate. Moreover, the market

rejects the assumption that the intertemporal elasticity of substitution fully deter-

mines risk attitude, which is an assumption built into the intertemporally additive

expected utility (standard) model, but which is not implied by the von Neumann &

Morgenstern (1944) axioms.

I address these issues following the asset pricing literature, an increasing strand

of macroeconomic literature, and some recent numeric approaches to climate change

assessment by using Epstein–Zin–Weil preferences. This approach accommodates

a realistic coefficient of risk aversion and disentangles it from the unit elasticity of

intertemporal substitution.4 Then, the Bellman equation is

V (kt, τt,Mt,Rt, It, t) = max
xt,Nt,Kt,Et

logCt (9)

+
β

α
log
(

Et exp
[
α V (kt+1, τt+1,Mt+1,Rt+1, It+1, t)

])

.

Expectations Et are conditional on time t information (Et(·) ≡ E(·| F t)). The Bell-

man equation uses a generalized expectation with the nonlinear weighting function

exp(α ·). A positive parameter α characterizes intrinsic risk loving, and a negative

parameter characterizes intrinsic risk aversion. I use this sign convention because the

3Nakamura et al. (2013) obtain one of the lowest estimates by combining the long-run risk model
and the Barro–Riesz model, still resulting in a coefficient of relative risk aversion of 6.4.

4The unit elasticity version of the Epstein–Zin–Weil preferences was first employed by Tallarini
(2000), see Traeger (2012) for an axiomatization of this special case.
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risk attitude parameter will act on negative shadow values ϕ and the positive terms

αϕ > 0 will correspond to risk-aversion-weighted shadow costs.

The parameter α characterizes risk attitude above and beyond the desire to smooth

consumption over time. It will mostly be this parameter rather than Arrow–Pratt

risk aversion that drives the risk premia. Traeger (2019) provides a direct axiomatic

foundation of −α as a measure of intrinsic risk aversion. Figure 4 in Appendix B

characterizes the total aversion deriving from the curvature of utility and the intrinsic

risk attitude α for a simple coin-toss consumption lottery. For example, an agent with

log-utility and no intrinsic risk aversion (α = 0) will be indifferent between a lottery

where she loses 5% of consumption if heads comes up, or gains 5.26% if tails comes

up. Assume she consumes the equivalent of USD 1000 over some period. Then, a fifty

percent probability loss of USD 50 will be compensated for by a fifty percent probably

gain of USD 52.60. A calibration procedure described in Appendix B translates the

asset pricing literature’s estimates of Epstein & Zin’s (1991) Arrow–Pratt risk aversion

measure in the range of [6, 10] into the range α ∈ [−1.2,−0.7]. I pick the baseline

value α = −1 and present sensitivity variations for the values α = −1.25 and α = −.5.

In the lottery described above, the baseline choice of α increases the compensating

gain to USD 55.60; the high and low sensitivity variations change this compensating

gain to USD 56.30 and 54.10, respectively.

2.4 General Solution of the Stochastic ACE

The stochastic ACE is characterized by the production equation (1), the equations

of motion for the resources (2) and the other states (8), the Bellman equation (9)

and the constraints on labor, capital, and the resources.5 The equation of motion (8)

is generic, but the lemma below establishes that the deterministic ACE presented in

equations (1-7) is a special case. As a result, Lemma 1 establishes how to extend the

deterministic ACE to a large class of stochastic problems, some of which I will explore

in the subsequent sections. ACE contains a large (possibly infinite, see Appendix A

where information is captured by a series of moments) set of state variables, which

makes it hard to impossible to solve the model numerically.6 Lemma 1 transforms

5I also assume that the stochastically extended damage function keeps using the semi-elasticity
of damages ξ0 from equation (6), see e.g. the stochastic extension in equation (23). Otherwise, the
final term in equation (10) would have to be adapted.

6Currently, Cai & Lontzek (2019) is probably the largest IAM solved numerically under uncer-
tainty. It has substantially fewer states than even the least-states-version of the stochastic ACE.
There are several approaches emerging in the context of machine learning that promise the ability to
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this high dimensional stochastic dynamic programming problem on the state space

into a simple root-finding problem for the shadow values, which solves either in closed

form or easily on any computer.

Lemma 1 Let the resources vector follow equation (2). Let the state vector Xt com-

prising the remaining states follow an affine stochastic process of the form stated in

equation (8).

1) The deterministic ACE summarized in Section 2.1 satisfies these assumptions (as

a degenerate stochastic process).

2) An affine value function solves the stochastic ACE if the shadow value vector

ϕ⊤
X = (ϕk,ϕ

⊤
τ ,ϕ

⊤
M ,ϕ⊤

I ) solves the algebraic system of equations

ϕ⊤
X =

β

α
b⊤(αϕX) + κe⊤

1 − ξ0e
⊤
2 (10)

where e⊤
1
and e⊤

2
denote the first and the second unit vectors (corresponding to the

capital and the atmospheric temperature entries). The shadow value ϕM,1 determines

the optimal carbon tax.

Appendix C.1 provides the proof. The set of affine stochastic processes is large

and includes the autoregressive shock model with almost arbitrary distributions, the

normal-normal Bayesian learning model, the Gaussian square root process, and the

autoregressive gamma model (Gourieroux & Jasiak 2006, Le et al. 2010), all of which

will be explored in different sections (including the Appendix). The present paper fo-

cuses on closed-form solutions. More generally, equation (10) permits simple numeric

solutions to an even wider class of stochastic integrated assessment models.

Lemma 1 has another general insight to offer. The affine stochastic processes in

equation (8) are characterized by two functions, a(·) and b⊤(·). The lemma shows

that only the part characterized by b⊤(·) enters the social shadow cost of carbon de-

termining the optimal tax. As the proof points out, the part of the stochastic process

entering a(·) only affects welfare but not optimal policy. The uncertainty conveyed

by a(·) can generate large welfare losses and, yet, have no impact on the optimal

policy. The specific formulations explored in subsequent sections will illustrate this

point and emphasize that the risk premium on optimal policy is mostly driven by the

interaction between the classical risk premia affecting welfare and the endogeneity of

uncertainty, an interaction that operates through the function b⊤(·).
solve models with much larger dimensionality, e.g., Brumm & Scheidegger (2017). I hope ACE can
eventually serve as a benchmark for those approaches offering an exact solution of the base model.
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2.5 The SCC in a Deterministic World

The SCC is defined as the money-measured present value welfare loss from releasing

a ton of CO2 into the atmosphere. ACE has a unique SCC that corresponds to the

optimal Pigovian carbon tax. In a deterministic world, DACE derives

SCCdet
t =

βY net
t

Mpre

ξ0
[
(1− βσ)−1

]

1,1
σforc

[
(1− βΦ)−1

]

1,1
, (11)

where [·]1,1 denotes the first element of the inverted matrix in square brackets. The

“static base” of the tax multiplies discounted net production per unit of preindustrial

carbon with the semi-elasticity ξ0 of output w.r.t. an exponential temperature increase

τ1 = exp(ξ1T1). These terms already carry the proper units of USD per ton of

CO2 emitted. This base value substantially increases as a result of a carbon cycle

based multiplier [(1− βσ)−1]1,1 and slightly decreases as a result of the temperature

dynamics multipliers σforc and [(1− βΦ)−1]1,1 (see DACE for a quantification).

The transition matrix Φ reflects that carbon does not decay but merely changes

reservoirs. This stylized fact about the carbon cycle will be mirrored in the impact

of carbon flows uncertainty on the SCC. Anticipating the result, it is worthwhile

to follow DACE in interpreting the carbon multiplier in more detail. A Neumann

series expansion of βΦ delivers the identity (1 − βΦ)−1 =
∑∞

i=0 β
iΦi . Taking the

ith power of the transition matrix, the element [Φi]j,1 characterizes how much of the

carbon in the atmosphere (reservoir 1) travels into reservoir j after i time steps. E.g.,

[Φ2]1,1 =
∑

j Φ1,jΦj,1 characterizes the fraction of carbon leaving the atmosphere for

layers j ∈ {1, ...,m} in the first time step and arriving back to (or staying in) the

atmosphere in the second time step. Thus, the term

carb1 ≡
[
(1I−βΦ)−1

]

1,1

represents a closed-form expression for the discounted sum of CO2 persisting in and

returning to the atmosphere over the course of an infinite future. The discount factor

accounts for the delay between the act of emitting CO2 and the resulting impact on

temperature forcing (the greenhouse effect). Similarly, carb2 ≡ [(1− βΦ)−1]1,2 char-

acterizes the long-term greenhouse effect contribution from CO2 that is currently in

the second reservoir, e.g., the shallow ocean and biosphere. Given major uncertainties

regarding the flow between the atmosphere and its adjacent reservoirs, the difference

∆carb ≡ carb1 − carb2 =
[
(1I−βΦ)−1

]

1,1
−
[
(1I−βΦ)−1

]

1,2
(12)
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will play a role in quantifying the SCC under uncertainty over carbon flows; the term

will account for the fact that carbon is conserved and merely changes reservoirs.

3 Climate Change and Uncertainty

In the stochastic setting, the SCC is the welfare loss from releasing a ton of CO2

anticipating all possible future scenarios and consequences. These consequences in-

clude the possibility that current emissions change the probabilities of different future

scenarios. The present section analyzes the SCC under a stochastic evolution of car-

bon, temperature, and damages. I start with a brief introduction of the long-run risk

model, a wide-spread tool in asset pricing, motivated in the context of climate change.

The climate change application borrows heavily from the asset pricing literature. Yet,

climate change requires a few extensions including functional forms of the stochastic

processes and, most importantly, endogenizing uncertainty. Whereas the individual

investor does not affect the market risk, global climate policy directly affects future

climate and economic risk. The subsequent section will tackle one uncertainty at a

time. They build on the deterministic ACE model summarized in Section 2.1, replac-

ing the corresponding equations governing carbon flows, temperature dynamics, and

damages by a set of (affine) stochastic processes.

3.1 Long-Run Risk and Climate Change

The causal origin of the greenhouse effect can be measured in the laboratory; car-

bon dioxide absorbs the planet’s outgoing radiation. Yet, quantifying the warming

resulting from a given CO2 trajectory is difficult, and results in a relatively highly

uncertain temperature response. First, over 10% of the annual flow of anthropogenic

carbon emissions leave the atmosphere into an unidentified sink. Our lack of under-

standing current carbon flows implies major uncertainties in predicting future carbon

concentrations. Second, the paper’s introduction emphasized that, even if we knew

future atmospheric carbon concentrations, we would remain highly uncertain about

the implied warming (climate sensitivity). Finally, given we have not experienced

the resulting temperature levels in the past hundreds of thousands of years, we are

hugely uncertain about the implied damages. This section integrates carbon flow,

temperature, and damage uncertainty into the ACE model. Given climate change is

about the long-term damages of current actions, it is important to carefully model

15



long-run uncertainties. For this purpose, I build on insights and advances from the

asset pricing literature.

One of the most popular (and descriptively successful) asset pricing models is the

so-called long-run risk model based on Bansal & Yaron (2004). It combines the risk

aversion generated by Epstein-Zin-Weil preferences with small but highly persistent

(long-run risk) shocks. In the asset pricing literature, these shocks directly govern the

consumption process. Croce (2014) generates the consumption process from shocks

to factor productivity in a macroeconomic model. Jensen & Traeger (2014) introduce

such a long-run risk model to the numeric integrated assessment of climate change.7

Their long-run risk governs the exogenous growth of the economy, questioning that

future generations are certainly much richer than present generations. This exoge-

nous economic risk is limited to shocks to the expected mean, whereas asset pricing

applications of the long-run risk model also rely crucially on stochastic volatility.

ACE applies the long-run risk framework to climate risk, and employs affine pro-

cesses to obtain closed-form solutions. Asset pricing models are generally concerned

with the valuation of assets under exogenous risk. By contrast, optimally controlling

the climate must acknowledge the endogeneity of climate risk: the more we perturb

the climate system with our CO2 emissions, the higher the uncertainty about the fu-

ture climate, and the higher the risk premium for the SCC. The next section explains

the standard long-run risk model, applies it to climate, and extends it to endogenous

risk. I start with uncertainty about future carbon flows, which permits building on

the canonical long-run risk framework. The second section develops a novel version

of the long-run risk process that permits a reasonable application to temperature,

where the canonical model fails. The final section discusses damage uncertainty.

3.2 Uncertainty about Carbon Flows

The long-run risk model adds two stochastic processes to the equation of motion,

here equation (3) governing carbon flows. The first process characterizes the long-

term risk about the level of – here – carbon removal, whereas the second process

governs the long-term risk about period-to-period volatility of these carbon flows.

Formally, the first process xM
t governs the conditional expectations, i.e., one-step-

7Jensen & Traeger (2014) use a simplified climate model to derive both approximate analytic
and numeric solutions. Cai & Lontzek (2019) recently redo their numeric analysis with additional
climate states and higher uncertainty of the consumption process. For this purpose, Cai & Lontzek
(2019) tame the tail-risk in Jensen & Traeger’s (2014) infinite time horizon stochastic fixed-point
problem by using a discrete Markov chain (and a finite time horizon).
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ahead expectations given the current state of the system. The second process σM
t

governs the conditional volatility of carbon flows. Importantly, both processes are

highly persistent and thus describe long-run uncertainty. The resulting equation for

the carbon stock, replacing equation (3) of the “base ACE”, becomes

Mt+1 = ΦMt + (
∑Id

i=1 Ei,t + Eexo
t )e1 + xM

t + σM
t µM

t (13)

where µM
t ∼ N(0, 1) is a serially uncorrelated white noise, implying that σM

t indeed

characterizes the conditional variance of carbon flows. Because carbon does not decay,

conditional expectation and variance have to be vectors balancing the flow between

the different reservoirs. The vector xM
t = (1,−1, 0)⊤ xM

t redirects xM
t tons of carbon

from the shallow oceans and biosphere into the atmosphere – where it enhances the

greenhouse effect. A negative realization of xM
t is associated with a better-than-

expected carbon removal from the atmosphere into the other reservoirs. Similarly

σM
t = (1,−1, 0)⊤ σM

t characterizes the one-step-ahead stochasticity of carbon flows

between the atmosphere and its neighboring reservoir.8 The stochastic processes

governing conditional expectations and variance are

xM
t+1 = γxxM

t + δMx
√

M1,t

Mpre
− ηM χM

t + δσx σM
t ωM

t (14)

σM
t+1

2
= γσσM

t

2
+ δMσ

(
M1,t

Mpre
− ηM

)

+ σ̄MνM
t . (15)

The γ-parameters characterize the persistence of the shocks to the mean (first equa-

tion) and the volatility process (second equation) and satisfy γx, γσ < 1. As I show

in Appendix A, epistemological uncertainty corresponds to a high persistence. Epis-

temological uncertainty expresses the “ignorance” of the modeler and, here, the sci-

entific community. In the canonical long-run risk model, the overall risk is exogenous

to the decision maker.

In climate change, the risk is endogenous to our decision problem. The more we

perturb the climate system, the higher the uncertainty about its future evolution.

To capture this crucial endogeneity of the risk, I introduce the second terms on

the right. Their component M1,t

Mpre
− ηM grows as we deviate further from the pre-

industrial level where the climate was relatively stable; ηM < 1 is a free calibration

parameter. The δ-parameters in these second terms characterize the strength of the

8I focus on the exchange of atmospheric carbon, which determines the greenhouse effect, with
the land sinks and sources and the shallow ocean. Using the DICE model’s carbon cycle, both of
these adjacent sinks and sources are combined into the second reservoir.
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endogenous contribution to climate risk. For the stochastic volatility (equation 15),

the last term on the right specifies the exogenous uncertainty, where νM
t ∼ N(0, 1)

implies that σ̄M characterize the corresponding variance. Finally, the parameter δσx in

equation (14) enables coupling the stochastic volatility to the conditional expectations

process, where ωM
t ∼ N(0, 1) is once again serially uncorrelated white noise. This

common third channel in long-run risk models enables long-run uncertainty about

the volatility of carbon flows to affect the movement of conditional expectations.

Proposition 1 The stochastic processes (13-15) governing carbon flows, replacing

the deterministic equation (3), change the deterministic SCCdet stated in equation (11)

to

SCCt = SCCdet
t

(

1 + θM(θ∗M)
)

≈ SCCdet

1− θ∗M
(16)

with the uncertainty contributions θM(θ∗M) =
1−
√

1−4θ∗
M

1+
√

1−4θ∗
M

> 0 and

θ∗M =
α

2

βϕdet
M,1

Mpre

[

AM�x2 + AM�σ + AM�σAσ�x2
](∆carb)2

carb1
(17)

where AM�x = δMxβ

1−γxβ
, AM�σ = δMσβ

1−γσβ
and Aσ�x = δσxβ

1−γxβ
characterize the individ-

ual risk channels and ϕdet
M,1 denotes the shadow value of atmospheric carbon under

certainty.9 The uncertainty contribution θM(θ∗M) is convex in θ∗M .10

Risk attitude and the relative importance of uncertainty. Equation (16) ex-

presses the SCC’s premium for carbon flow uncertainty as a proportionality factor to

the deterministic SCC. It always increases the SCC and is convex in the contributions

characterized by equation (17) as θ∗M . The basic intuition is the following. Risk causes

a welfare loss as a result of risk aversion (and the difference in damage caused by CO2

in the atmosphere versus the ocean). Because the risk is endogenous, more emissions

raise this risk and the corresponding welfare loss, which increases the optimal pol-

icy incentive to reduce emissions. This contribution is proportional to intrinsic risk

aversion α and the discounted shadow value of atmospheric carbon under certainty.

Thus, it is the extent to which Arrow–Pratt risk aversion exceeds the (unit-) desire

to smooth consumption over time that drives the SCC; α measures this difference

9That is the SCC expressed in utils: ϕdet
M,1 = − SCCt

(1−βκ)Y net
t

. Recall that α < 0, so that αϕdet
M,1 > 0.

10The solution is well-defined for θ∗M < 1
4 (it solves a quadratic equation), which is met for all

quantitative results in this paper.
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and characterizes intrinsic aversion to risk, see section 2.3 and Appendix B. The

proposition implies that the uncertainty share of the overall SCC (and thereby also
SCCt

SCCdet
t

) increases convexly in its deterministic base value SCCdet
t because the shadow

value of atmospheric carbon is itself proportional to SCCdet. The more serious the

climate problem, the larger the relative importance of uncertainty.

The long-run risk channels. The three risk channels abbreviated AM�x, AM�σ,

and Aσ�x disentangle the contributions from the different aspects of long-run risk.

The quantification of these channels in Section 4.3 will clarify whether the uncertainty

about flow levels (AM�x), flow volatility (AM�σ), or their interaction (Aσ�x) are most

relevant in the context of climate change (see Table in Figure 3). Each of these

channels increases in the strength of the endogenous climate risk characterized by

the δ-parameters. In addition, each channel’s contribution increases in the shock

persistence characterized by the γ-parameters. The formula shows that we do not

have to worry about serially uncorrelated short-term fluctuations in the mean or

volatility of carbon flows. If uncertainty matters, then it is because of persistent

long-run risk.11

Endogenous risk. All three risk channels are proportional to the δ-parameters,

which scale the endogenous contribution of climate risk. Thus, the proposition shows

that only the endogenous uncertainty, resulting from our climate perturbation, affects

the optimal policy. The variance of the exogenous risk, e.g. σ̄M , has no impact on

the optimal carbon price. As Appendix A shows, such exogenous risk reduces the

welfare. Yet, to matter for the SCC, the risk has to interact with the carbon stock;

the damaging impact of uncertainty has to increase when releasing an additional ton

of CO2. The proposition demonstrates that it is crucial how uncertainty enters the

equations. In particular, the standard long-run risk model, featuring only exogenous

risk, would miss this policy premium to the carbon tax. Lemma 1 shows this result

more generally by stating that the affine components of the risk process (the a(·)
function), here the risk independent of the carbon stock, do not affect the shadow

values and thus optimal policy. The result is also a warning to be careful when

11The long-term uncertainty about expected carbon flows contributes quadratically (conditional
expectations channel AM�x). The stochastic volatility channel AM�σ enters twice; it reflects the
harm imposed by an increase in future volatility that results from a perturbation of the climate
system. Its first appearance in equation (17) captures long-run uncertainty about the volatility
of carbon flows. Its second appearance, when turning on the interaction δ σx, captures stochastic
volatility governing the long-run level of carbon flows (volatility of long-term conditional expecta-

tions); here the combined channel AM�σAσ�x2 reflects the fact that an increase in carbon increases
stochastic volatility, which in turn increases the uncertainty over long-run expectations.
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using (overly) simple cost-benefit analysis to assess the impact of climate change

uncertainty. By Lemma 1 and Proposition 1, an affine stochastic process (8) can have

an affine term a(·), here e.g. σ̄MνM
t , that takes the welfare loss to infinity without

affecting b(·) and, thus, optimal climate policy.

Carbon reservoirs and driving force. Finally, the uncertainty contribution

is convex in its driving force. The model acknowledges that released CO2 emissions

do not simply decay (or multiply), but that carbon only moves between different

sinks. Carbon in the atmosphere is more harmful than carbon in the adjacent sinks.

It is this difference in harmfulness, ∆carb defined in equation (12), that drives the

uncertainty contribution. It enters relative to the value contribution of atmospheric

carbon carb1 that is responsible for the deterministic SCC. These two terms interact

carbon cycle characteristics and time preference with the long-run risk.

In summary, the optimal tax on CO2 increases in the endogenous risk over

carbon flows that derives from perturbing the climate system. This contribution

is convex in all of relevant parameters. The uncertainty contribution grows faster

than the deterministic contribution as climate change becomes (or is judged) more

severe. Proposition 1 characterizes the contributions of the different risk channels

corresponding to the extended long-run risk model and, in particular, shows that all

channels increase in a product of patience and uncertainty persistence.

3.3 Temperature Uncertainty

The Gaussian model of the previous section cannot adequately represent temperature

uncertainty. First, the temperature distribution governing the future global warming

is right skewed. Second, temperature Ti,t =
1
ξi
log(τi,t) is a logarithmic transformation

of the state τi,t. The expected temperature has to approximate the deterministic

temperature dynamics. Therefore, the state τ1,t has to be governed by an (even more)

positively skewed distribution with a suitable lower bound.12 For this purpose, I use

12Otherwise, we would discuss the policy impact of changes in expected temperature dynamics,
rather than the impact of uncertainty. In addition, negative realizations of generalized temperature
τi,t imply nonsensical realizations of real temperature. The long-run risk model in asset pricing
can give rise to some nonsensical negative realizations of the variance. This fact is well known, yet
the model is widely used as an approximate model with a closed-form solution, assuming that the
actual calibration of the model makes these realizations of second-order importance. The issue with
temperature is more serious. To keep temperature expectations (log expectations of τi,t) close to
the deterministic evolution, the model has to be de-biased. Yet, any realization of τi,t = 0 would
cause an infinitely negative expectation. Therefore, the Gaussian model cannot be de-biased in a
meaningful way.
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the autoregressive gamma process introduced by Gourieroux & Jasiak (2006), which

has been applied to the long-run risk literature in asset pricing by Le et al. (2010)

and Creal (2017). The one-step-ahead state in the autoregressive gamma process is

governed by a gamma distribution whose shape parameter is modulated by a Poisson

distribution. I extend the model to capture the endogeneity of climate risk and modify

the state dependence.13 I refer to Appendix C.2 for details. The canonical Gaussian

model separates the long-run risk governing conditional expectations and stochastic

volatility. The present model merges these two long-run uncertainties into a single

process.

I model long-run temperature risk by the autoregressive gamma process yt, which I

shift by a deterministic process yot to adjust expectations. The equation of motion (5)

changes to

τt+1 = στt +

(

σforcM1,t +Gt

Mpre

+ h(yt+1 − yot+1
︸ ︷︷ ︸

≡ zt+1

)

)

e1. (18)

The parameter h scales the uncertainty relative to the deterministic contribution, and

the first unit vector e1 ensures that the feedback drives atmospheric temperature.14

The relevant information about the process zt is summarized in the conditional ex-

pectation and variance

Et zt+1 = γzzt + ǫ(c)
(

M1,t+Gt

Mpre
− ητ

)

(19)

Vart zt+1 = Vart yt+1 = c
[

2γzyt +
(

M1,t+Gt

Mpre
− ητ

) ]

. (20)

Equation (20) governs the conditional uncertainty of atmospheric temperature. As

in the previous section, it grows in the perturbation of the climate system captured

by M1,t+Gt

Mpre
− ητ and it is autoregressive. The calibration parameter c scales the

variance. Equation (19) characterizes the conditional expectations of atmospheric

temperature. It is autoregressive with persistence γz < 1 and a high persistence will

once again capture long-run risk mimicking epistemological uncertainty. In contrast

to the earlier model, expectations are biased upwards by a term proportional to ǫ(c)

13In contrast to the above-mentioned applications, the model below makes both autoregression
and the shape parameter of the underlying gamma distribution state dependent. I thereby use the
fact that the underlying cumulant-generating function is linear not only in last period’s state, but
also in the shape parameter.

14In contrast to the earlier carbon flow model, I use the long-run risk process in period t + 1 on
the right side of equation (18). As a result, the single process governs both conditional expectations
of τt+1 and the one-step-ahead conditional volatility.
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and the deviation from the pre-industrial equilibrium. This upward bias adjusts the

temperature expectations T1,t =
1
ξ1
log(τ1,t) to their deterministic trajectory.15

In summary, temperature uncertainty is governed by a skewed stochastic long-run

risk process that will deliver a reasonable fit to scientific data about temperature

uncertainty. The parameter γz captures the persistence of the uncertainty, and the

parameter c scales its variance. Uncertainty increases endogenously with the pertur-

bation of the climate system. The term ǫ(c) reflects the non-linearity of the temper-

ature process and adjusts the expected temperature to the deterministic evolution.

Proposition 2 The stochastic process (18) governing temperature dynamics, replac-

ing the deterministic equation (5), changes the deterministic SCCdet stated in equa-

tion (11) to

SCCunc = SCCdet
(

1 + θτ (F )
)

with

θτ (F ) =
h

σforc

ǫ(c) + θ∗τ (F )

1− βγz
≈ h

σforc

1

1− βγz

(

ǫ(c) +
1

2

1 + βγz

1− βγz
F

)

(21)

and F = αϕdet
τ,1

ch
1−βγz . Here, ϕ

det
τ,1 is the shadow value of τ1,t under certainty.

16 For the

exact solution17

θ∗τ (F ) =
− log

(
1−F (1+θ

†
τ (F ))

)

F
− 1 with θ†τ (F ) = βγz

1+F−
√

(1−F )2−4F βγz

1−βγz

1−F+
√

(1−F )2−4F βγz

1−βγz

. (22)

The uncertainty premium from temperature risk is composed of the two terms ǫ(c)

and θ∗τ (equation 21).

Temperature non-linearity. The first contribution ǫ(c) results from the non-

linearity of the temperature impact. This contribution arises even in the absence of

intrinsic risk aversion. Such an (intrinsic) risk-aversion-independent contribution was

15Temperature is a concave transformation of the state τ . Thus, a mean-zero shock to τ1,t+1 would
reduce the expectation of T1,t+1 below its deterministic value. The higher the uncertainty, the higher

the bias. Therefore, the de-biasing increases proportionally to
M1,t+Gt

Mpre
− ητ , which increases the

variance of the process as a consequence of perturbing the climate system. In addition, the exogenous
parameter c scales the variance and I write ǫ(c) to render explicit that a different calibration of c also
changes the calibration of ǫ, achieving an approximate de-biasing of the temperature expectations.

16It is ϕdet
τ,1 = − ξ0

1−βκ
[(1− βσ)−1]1,1. Note that αϕdet

τ,1 > because α < 0.
17The solution is well-defined for F (1 + θ†τ ) < 1 and (1 − F )2 > 4F βγz

1−βγz . A sufficient but not

necessary condition for these inequalities to hold is F < 1
3 and βγz <

(1−F )2

(1−F )2+4F . This condition is

met for all quantitative applications in this paper.
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absent in the case of carbon dynamics. This absence was caused by the logarithm

in the greenhouse effect (radiative forcing equation 4), which effectively offsets the

relevant damage convexity. The contribution ǫ(c) increases in the uncertainty level

c, where both c and ǫ will be calibrated to scientific data. The second core contribu-

tion θ∗τ results from the interactions of risk and risk aversion (see next paragraph).

Both contributions are multiplied by the factor h
σforc weighing the stochastic forcing

contribution relative to the deterministic contribution. And both contributions are

amplified by the persistence of uncertainty γz, and more so for a patient decision

maker ( 1
1−βγz ).

Risk aversion, time preference, and the low-level drivers. The r.h.s. of

equation (21) presents the approximate composition of the risk aversion based con-

tribution θ∗τ . At the heart of the contribution lies the term F = αϕdet
τ,1

ch
1−βγz , which is

driven by the risk-aversion-weighted shadow value of atmospheric temperature under

certainty. Again, the relevant risk-aversion is captured by |α|, reflecting the extent to

which Arrow–Pratt risk aversion exceeds the unit desire to smooth consumption over

time. As in the case of carbon risk, the temperature-based uncertainty contribution

grows faster than the deterministic SCC in all contributing factors (
SCCunc

t

SCCdet
t

increases in

ϕdet
τ,1). An additional dependence on the discount-factor-weighted persistence empha-

sizes that this contribution will be highly sensitive to the combination of the decision

maker’s patience and the long-run risk’s persistence. The contribution increases in

the variance-scaling parameter c and the scaling parameter of the stochastic feedback

h, making the contribution convex in h (because h already appears in equation 21).

The left graph in Figure 3 in the next section shows that the exact solution for θ∗τ ,

equation (22), turns convex also in F , in particular, for patient decision makers.

3.4 Damage Uncertainty and Adaptation

The other major uncertainty surrounding climate change governs the temperature’s

impact on the economy. The damage functions of IAMs assume some degree of

adaptation (often implicitly so as in DICE). Both the temperature impact and the

effectiveness of adaptation measures are uncertain. The present section incorporates

a stochastic component of the damage function, as well as adaptation with stochastic

payoffs. For this purpose, I modify the damage function from equation (6) to the

form

D(τ1,t) = 1− exp[ξ0(1− τ1,t + πt)] (23)
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where the new term πt introduces a stochastic damage-adaptation level. Letting

π0 = 0, it is a stochastic process that captures the deviations from our current best

guess damages and evolves as

πt+1 = dt
√

τ1,t − ηd + ht(it) + γdπt. (24)

The first entry dt
√
τ1,t − ηd is a stochastic damage component with the coefficient

dt ∼ N(0, σ2
d) so that E dt

√
τ1,t − ηd = 0; ξ0 already captures our best guess, and the

expectation of the stochastic damage component is zero. The parameter 0 < ηd < 1

is once again a degree of freedom in calibrating the increase in risk with a deviation

from the pre-industrial climate. The process πt also permits active investment in

adaptation; I denote such investment in period t by it. This investment trades off

with other production, thus changing the production function from equation (1) to

the form

Yt = F (At,Nt,Kt,Et, it) with (25)

F (At,Nt, γKt,Et, it) = γκF (At,Nt,Kt,Et, it) ∀γ ∈ IR+.

The adaptation investment’s damage reduction payoff ht(it) in equation (24) is gen-

erally stochastic. For consistency with adaptation inclusive damage estimates for ξ0,

I require that Et ht(it) = 0 along the expected trajectory. Moreover, I assume that

the functions ht(·) and F (·) deliver a well-defined optimization problem for the adap-

tation investment. The adaption process’ persistence γd renders damages and the

adapation level a slow-moving uncertain process, introducing long-run risk as a proxy

for epistemological uncertainty as well as stochastic adaptation.

Proposition 3 Let damages and production be extended to the forms in equations (23)

and (25). The stochastic damage-adaptation process (24) changes the deterministic

SCCdet stated in equation (11) to

SCCunc = SCCdet
(

1 + θd

)

with θd = ξ0β
−ασ2

d

2(1− βγd)2
x∗ . (26)

Damage uncertainty further increases the optimal carbon tax, noting that α is nega-

tive for the risk averse decision maker.

The drivers. Equation (26) identifies the drivers of the carbon tax contribution

from damage uncertainty. They scale the relative SCC increase θd proportional to the
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base damage level ξ0, the decision maker’s patience β, his or her (intrinsic) risk aver-

sion −α > 0, and the long-run damage uncertainty, which increases in the variance σ2
d

and the time preference weighted persistence γd. The uncertainty contribution also

increases in the consumption rate x∗. The stochastic and costly adaptation invest-

ment itself only affects welfare and the evolution of net production (and thereby the

future SCC). Somewhat similar to the earlier uncertainties, damage uncertainty turns

the SCC convex in the expected damage level ξ0 (semi-elasticity of production) be-

cause it appears in both the SCCdet and the damage multiplier. If expected damages

are worse, then also the uncertainty contribution gains relative to the deterministic

contribution.

4 Joint Uncertainty & Quantification

4.1 Joint Uncertainty & Interactions

Proposition 4 Let damages and production be extended to the forms in equations

(23) and (25). The stochastic processes (13-15) governing carbon flows, (18) govern-

ing temperature dynamics, and (24) governing damages and adaptation change the

deterministic SCCdet stated in equation (11) to

SCCunc = SCCdet ·
(

1 + θd

)

·
(

1 + θτ
(
F · (1 + θd)

))

·
(

1 + θM

(

θ∗M ·
(

1 + θτ
(
F · (1 + θd)

)))
)

(27)

where the functions θM(·) and θτ (·) are defined in Propositions 1 and 2, and the terms

θ∗M , F and θd are defined in Propositions 1 and 2 and 3, respectively.

The risks are mutually aggravating. The long-run risks over carbon flow, tem-

perature, and damages interact and reinforce each other in two qualitatively different

ways. The first reinforcement is asymmetric and corresponds to a causal chain of

events causing damages.18 Damage uncertainty directly amplifies the other uncer-

tainty multipliers because uncertain damages make fluctuations in temperature more

costly θτ
(
F · (1 + θd)

)
and, similarly, temperature uncertainty makes carbon flow

18The multipliers affect each other in what might be considered “inverse causality”. Physically,
carbon flow affects temperatures and temperatures affect damages. But we are interested in the
shadow values. The carbon’s shadow value is amplified by the additional fluctuation of temperatures
and damages before affecting consumption and production.
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fluctuations more costly θM
(
...θτ (...θd)

)
. Thus, even a moderate damage uncertainty

multiplier θd can substantially raise the overall risk premium. The second reinforce-

ment is symmetric and merely a consequence of having damage multipliers that – as

the name suggests – interact multiplicatively rather than additively. If each uncer-

tainty multiplier adds 10% to the SCC, then the total risk premium would be 33%.

This interaction effect is negligible for small uncertainty premia but can become quite

large whenever the individual multipliers are large; for mere illustration think of the

case where each uncertainty adds 100% to the SCC, then the total uncertainty pre-

mium would be 23 − 1 = 700%.

4.2 Summary of the Calibration

Traeger (2021a) discusses the calibration of the base model. The temperature system

is calibrated to MAGICC6.0, a model by Meinshausen et al. (2011) used to emulate

the big atmosphere-ocean general circulation models (AOGCMs) and employed abun-

dantly in various IPCC assessment reports. The carbon cycle is taken from DICE

2013, which Traeger (2021a) shows to deliver SCC results very close to those when

combining ACE with more recently promoted scientific models. Otherwise, the model

uses a capital share κ = 0.3 borrowed from DICE and calibrates to 2020 IMF data

including an investment rate of 26% and annual world output of approximately 130

trillion USD in PPP (IMF 2020). The calibration implies a rate of pure time prefer-

ence of ρ = 1.4%. I now summarize the calibration of the stochastic processes, which

Appendix D spells out in detail.

The left graph in Figure 2 closely resembles the probability distributions and

statistical information about the transient climate response (TCR) provided by the

IPCC (2013). The TCR more accurately characterizes the climate response for the

coming century than does the climate sensitivity, which characterizes the medium-to-

long-term response over a few centuries. Good probabilistic information on carbon

flow uncertainty is scarce and the calibration is rule of thumb using Joos et al.’s (2013)

study subjecting 18 different carbon cycle models to a 5000Gt carbon pulse as a point

of reference. The right graph in Figure 2 translates the calibration into the resulting

uncertainty over atmospheric carbon dioxide concentrations along the DICE 2013

business-as-usual scenario. Damage uncertainty σd might be the hardest to calibrate.

Traeger (2021a) presents results based on two different damage calibrations. The first

is based on the various DICE vintages that produce damages just above 2% of world

output at a 3C warming. The second is based on a recent meta-analysis by Howard
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Figure 2: The left panel gives the probability distribution of the transient climate response
(TCR) in ACE and compares its mean (“x”) and 66% probability interval to the IPCC
(2013) data. The parameters are γz = 0.95, h = 0.23, η = 0.8, c = 0.21, and ǫ = 0.05,
and the resulting TCR distribution exhibits the typical moderate positive skew. The right
panel shows atmospheric carbon under DICE’s business-as-usual scenario given carbon-flow
uncertainty (δ σx = 1, δMx = δMσ = 25, γx = γσ = 0.95, ηM = 0.8). The deterministic
DICE evolution (5-year time steps, “Data”), the deterministic ACE evolution (10-year time
steps), and the mean and median of 1000 uncertain trajectories are barely distinguishable.

& Sterner (2017) as well as a survey by Pindyck (2020) both suggesting damages of

almost 10% of global output at a 3C warming. I call this second damage scenario

HSP and interpret the Nordhaus and HSP scenario as covering opposite ends of a

broad interval of reasonably likely scenarios. I pick the expected semi-elasticity of

production ξ0 as an average of the Nordhaus and the HSP scenarios and calibrate

the uncertainty using a scenario that increases temperatures to 3C by 2100. I then

calibrate the 2100 damages at a 3C warming so that the 10th percentile of the damage

distribution implies a 2.0% loss of world output and the 90st percentile implies a 10.0%

loss. This calibration implies a one sigma interval of damages of [3.0%, 9.1%], which

seems somewhat reasonable given the widely different damage estimates and the fact

that most of the more recent findings suggest that damages are rather a bit higher

than assumed in DICE.

The information laid out above is not sufficient to fix the γ-parameters specifying

persistence of the uncertainty nor the η-parameters specifying how steeply uncertainty

increases in the deviation from preindustrial. Appendix A discusses the meaning of

the autoregressive persistence parameters (γ ≡ γx = γσ = γz = γd) in view of

epistemological uncertainty and learning shocks. This discussion motivates a choice

of γ ≈ 0.9, and variations of the baseline scenario will increase the shock persistence to

γ = 0.95 and reduce it to γ = 0.8. Moreover, it seems fair to assume that the described
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uncertainties are mostly born out of deviations from the preindustrial equilibrium,

suggesting a choice of η ≡ ηM = ητ = ηd closer to unity than to zero. I pick a

somewhat conservative value of η = 2
3
for the baseline scenario and offer a variation

that pins uncertainty more sharply onto the deviation from preindustrial (η = 0.9).

Note that η itself does not show in the SCC formula. However, its choice affects how

steeply the endogenous uncertainty increases with deviations from the preindustrial

equilibrium and, thereby, affects the calibration of the relevant uncertainty parameters

entering the SCC’s risk premium. Given the baseline choices and stated variations of γ

and η, the calibration approaches of the previous paragraph pin down the parameters

governing temperature, carbon flow, and damage uncertainty.

4.3 Quantitative Insights

Carbon-flow uncertainty. The table in Figure 3 presents the SCC’s risk premium

from carbon flow uncertainty and analyzes the corresponding long-run risk chan-

nels for both the baseline specification and a scenario cutting the pure rate of time

preference by half. The subsequent Table 1 offers additional variations (risk aver-

sion, persistence γ, steepness of the endogenous risk increase η). All scenarios show

that the risk premium caused by carbon flow uncertainty is negligibly small. The

largest premium arises under the reduced time preference and is 10USD
tCO2

or a good 2%

if I incorporate the amplifications from temperature and damage uncertainty using

θM(...θτ (...θd)) as done in the table of Figure 3. It is even less in a model with only

carbon flow uncertainty (first column of Table 1). Thus, the first interesting result

is that carbon flow uncertainty hardly contributes to the SCC, which stands in stark

contrast to the finding that the deterministic carbon multiplier [(1− βΦ)−1]1,1 in

equation (11) delivers a huge multplier of 4.3 in the baseline (Traeger 2021a). The

reason for this small impact of carbon flow uncertainty is the highly concave trans-

formation of atmospheric carbon dioxide (4) into warming expressed in the radiative

forcing equation (4). It is essentially a saturation effect because an additional ton of

CO2 at high concentrations does not trap as much of the outgoing energy as done by

the first ton of CO2 (eventually most of the outgoing energy in the spectrum where

CO2 traps outgoing radiation is already trapped). This concavity in translating CO2

into warming mostly neutralizes the convexity of damages.19

19The well-established logarithm in radiative forcing effectively neutralizes the second exponential
function in the damage equation (6). The functions cannot be literally canceled with each other
because the dynamic equations governing (stochastic) temperature stand between radiative forcing
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Scenario
RP Channel contribution in %
USD M→x M→σ M �σ�x

Base 0.7 90 % 1 % 9 %
δMx ↑ 0.8 99.8 % 0.0 % 0.2 %
δMσ ↑ 0.3 0.1 % 5.8 % 94.0 %
δσx ↑ 0.4 0.1% 0.0% 99.9%
ρ = 0.7% 9.5 87% 0.4% 12.6%
δMx ↑ 11 99.7 % 0.0 % 0.3 %
δMσ ↑ 4.8 0.1 % 2.9 % 97.0 %
δσx ↑ 6.5 0.1% 0.0% 99.9%

Figure 3: Left: risk averse θ∗τ -contribution to the temperature SCC premium for base sce-
nario (ρ = 1.4%, blue) and low discounting (ρ = 0.7%, red) as a function of F , defined in
Proposition 2, which is proportional to the damage semi-elasticity ξ0, risk aversion, and the
climate multipliers in equation (11). Right: relative contributions of long-run risk channels
to the carbon SCC risk premia (RP) in the base and low discounting scenarios. M → x:
conditional expectations, M → σ: stochastic volatility, M � σ � x: stochastic volatility in
conditional expectations. The variation δMx ↑ pushes the uncertainty onto the conditional
expectation channel, the variation δMσ ↑ pushes the uncertainty onto the stochastic volati-
tlity channel, and the variation δ σx ↑ pushes the uncertainty into the interaction between
stochastic volatility and conditional expectations.

The carbon flow uncertainty permits a disentanglement of the different long run

risk channels. The table in Figure 3 breaks up the risk premium into the contributing

channels. In the baseline, the uncertainty about expected flows (conditional expec-

tations, M → x) clearly dominates the other contributions. Stochastic volatility of

carbon flows (M → σ) is negligible relative to the other contributions. The scenarios

δMx ↑, δMσ ↑, and δσx ↑ change the uncertainty calibration by pushing most of the

uncertainty into one of the channels, δMx ↑ pushes almost all the carbon flow uncer-

tainty into conditional expectations, δMσ ↑ pushes almost all the uncertainty into the

stochastic volatility channel, and δσx ↑ pushes almost all the uncertainty into the in-

teraction channel where stochastic volatility directly affects the long-run conditional

expectations.20 When pushing most of the uncertainty onto the stochastic volatil-

and damages. In the absence of (intrinsic) risk aversion, the other exponential function in the damage
equation would neutralize the logarithmic utility; note the opposite roles of curvature in this second
reasoning, absent the minus sign these are benefits not damages. This second exponential function
normalizes damages so that they cannot exceed total output; this normalization offsets the aversion
from log-utility. This reasoning covers only the first part of the intuition, the welfare loss under
uncertainty. Interacting this welfare loss with the endogeneity of uncertainty closes the argument.

20These different scenarios maintain a comparable overall uncertainty in the sense described above
by calibrating to Joos et al.’s (2013) study. See Appendix D for details.
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Scenario

Uncertainty Carbon Temperature RP deriving from Damages Joint

USD RP USD RP ǫ θ∗T USD RP USD RP

Certain 97 - 97 - - - 97 - 97 -

Base unc 98 0.5% 132 35% 10% 25% 103 6% 143 46%

RA high 98 0.7% 140 44% 10% 34% 105 8% 156 60%

RA low 98 0.3% 118 21% 10% 11% 100 3% 122 25%

γ = 0.95, η ↑ 98 0.8% 170 75% 12% 62% 107 9% 201 106%

γ = 0.95, Var ↓ 98 0.3% 157 61% 12% 49% 105 7% 176 80%

γ = 0.8, Var ↑ 98 0.7% 113 16% 7% 9% 102 4% 120 23%

η = 0.9, Var ↑ 98 0.6% 147 51% 12% 39% 105 8% 165 70%

ρ = 0.7% - cert 181 - 181 - - - 181 - 181 -

ρ = 0.7% - unc 185 1.7% 416 129 % 13% 116% 204 12% 602 232%

Table 1: Optimal tax in USD/tCO2 and risk premium (RP) for base calibration and several
variations. The columns Carbon, Temperature, and Damages report the results if only that
particular uncertainty prevails. RA low and high vary intrinsic risk aversion |α| from 1
to 0.5 and 1.25. The subsequent three scenarios vary the long-run risk persistence of 0.9
in the baseline and either recalibrate η or the corresponding shock’s variance accordingly.
The scenario η = 0.9 makes the risk more sensitive to deviations from the preindustrial
equilibrium (recalibrating the shock’s variance). The final scenario cuts pure time preference
from 1.4% to half.

ity channel, the overall premium falls substantially and the dominating channel is

(still) not the stochastic volatility channel itself, but its interaction with conditional

expectations. Consistently, when pushing most of the uncertainty onto the inter-

action channel, it remains the dominant channel. Pushing the uncertainty into the

conditional expectations channel delivers the largest premium. None of these results

change when I cut the time preference into half, the scenario that causes the biggest

quantitative changes of the premia in Table 1. It is safe to conclude that, in contrast

to many asset pricing contexts, it is the long-run expectations that matter much more

than uncertainty about future volatility.

Temperature uncertainty. In the baseline, temperature uncertainty adds a risk

premium of 35% (Table 1). 25% of this premium rely on the interaction with intrinsic

risk aversion (the term θ∗T in equation 21). The remaining 10% would also prevail in

a model with simple log-utility (no Epstein-Zin preferences) as a result of the damage

convexity’s interaction with the endogeneity of the uncertainty. Risk aversion at the

high end of the estimates raises this premium by another 10 percentage points and

estimates at the low end lower it by 15 percentage points. Rows five and six of Table 1

raise the shock persistence of the long-run risk from γ = 0.9 to γ = 0.95. Raising
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the persistence reflects more persistent shocks or slower learning and approximately

doubles the risk premium. Such an increase of persistence requires a recalibration of

temperature uncertainty explained in Appendix D. The first row (more than doubling

the premium) recalibrates η from 2
3
to 0.8, pinning uncertainty more steeply on devi-

ations from the preindustrial equilibrium (reducing the “base uncertainty” prevailing

already in equilibrium). The second row instead recalibrates the shock’s variance by

reducing c from 0.21 to 0.18. Then, the impact of the increase in persistence γ is

partially compensated by a reduction in variance and the risk premium slightly less

than doubles, still confirming the premium’s high sensitivity to the persistence of the

long-run risk. Reducing the persistence to γ = 0.8 corresponds to less persistent long-

run risk and mimics faster learning. It is not possible to recalibrate the TCR with a

reasonable choice of η; therefore I only present the scenario increasing the variance

to compensate for the reduced shock persistence.21 The temperature risk premium

drops to 16%, less than half of its original value.

The scenario “η = 0.9, Var ↑” in row 8 pins uncertainty most sharply onto de-

viations from the preindustrial equilibrium. Leaving the persistence unchanged, it

recalibrates the TCR by increasing the long-run risk’s shock variance c (from 0.21 to

0.29).22 Temperature risk alone contributes a premium of 50%, an increase that is

substantial, but far less than the increase resulting from an increase in persistence.

In all scenarios, the temperature risk premium deriving from the interaction with

intrinsic risk aversion is larger and more sensitive to the parameter variations than

the part prevailing also in the absence of intrinsic aversion to risk (no Epstein-Zin

preferences). The graph on the left of Figure 3 shows the increase of this risk-sensitive

contribution in F , defined in Proposition 2, which is proportional to the damage semi-

elasticity ξ0, risk aversion, and the climate multipliers of equation (11). The blue line

representing the base calibration characterizes an almost linear increase, underlying

the approximation in equation (21), which helps to interpret the formula. The red

line shows that the premium turns much more convex in these contributions under a

reduction of pure time preference, where the full formula is essential for a quantitative

assessment.

21Merely reducing persistence to γ = 0.8 without increasing the shock variance results in a quite
similar SCC, implying a risk premium of 7% + 8% = 15% for the temperature premium and 19%
for the joint risk premium.

22The substantial increase in the variance also requires a recalibration of the mean adjustment ǫ,
which increases from 0.05 in the other scenarios to 0.06. As a result, the risk premium unrelated
to intrinsic risk aversion increases to 12%, which is similar to the impact observed under increasing
the long-run risk’s persistence.
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Damage uncertainty. The uncertain evolution of damages and adaptation cre-

ate a risk premium that is notable but smaller than the one resulting from temperature

uncertainty. Table 1 shows a direct risk premium of 6% in the baseline ±3 percentage

points for the variations (not touching time preference)6. Qualitatively, the premium

responds to the different parameter variations in the same way as the temperature-

based premium. It is slightly less sensitive to the variations in both persistence and

pure time preference, which confirms a higher sensitivity of the premium to higher

moments of the uncertainty distribution: Given good knowledge of the distribution,

ACE’s temperature uncertainty replicates the skewness in the data; in the absence of

similar knowledge, ACE’s damage uncertainty evolves according to a normal distri-

bution. In addition to the direct impact specified in Proposition 3, uncertainty over

the resulting damages also amplifies the contributions of carbon and temperature

uncertainty (see Proposition 4). As a result, the total impact of damage uncertainty

on the joint uncertainty premium is larger and amounts to 10% in the baseline and

even 29% in the scenario “γ = 0.95, η ↑” with slow learning and pinning uncertainty

more steeply onto deviations from the preindustrial equilibrium.

Joint uncertainty. In the baseline, the joint uncertainty premium on the SCC

is 45USD
tCO2

or 46%. The variations that leave time preference untouched change the

total risk premium between 20USD
tCO2

and over 100USD
tCO2

. In the baseline, the interaction

between the different uncertainties plays a somewhat minor role, making up 5USD
tCO2

of

the total risk premium. The interaction effect becomes more pronounced under an

increase in the long-run risks’ persistence or for a more patient decision maker. In the

high persistence scenario “γ = 0.95, η ↑,” the joint uncertainty premium exceeds the

sum of the individual premia by over 20 percentage points. Proposition 4 identifies

two qualitatively different interaction channels causing this mutual aggravation of

risks. First, damage uncertainty directly increases all uncertainty multipliers because

it amplifies the impact of carbon flow and temperature variations, and temperature

uncertainty similarly increases the premium on carbon flow uncertainty. In the high

persistence scenario, this direct interaction doubles the carbon premium from 0.8% to

1.6% and increase the temperature premium from 75% to 85% causing a good 10 per-

centage point increase of the joint risk premium relative to the sum of the individual

premia. Second, the three uncertainty multipliers in equation (27) interact – as the

name suggests – multiplicatively rather than additively. This second interaction effect

adds the other 10 percentage points to the joint uncertainty premium. Also these un-

certainty interaction effects are highly sensitive to the uncertainty’s persistence and
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to time preference. In the baseline, the direct effect and the multiplier effect each

increase the premium by 2 percentage points; in the high persistence scenario just

discussed, each adds 10 percentage points; and in the low discounting scenario, the

direct interaction effect adds 55 percentage points and the multiplier effect another

34 percentage points.23

Time preference. The propositions in Section 3 establish a high sensitivity of

the SCC’s risk premium to (persistence weighted) time preference. The magnitude

of the impact demonstrated by Table 1 might still surprise. The joint risk premium

(more than) quadruples when cutting the rate of pure time preference by half. In

contrast, the deterministic SCC (less than) doubles. This finding forcefully illustrates

the theoretic findings that (i) the uncertainty premium increases more strongly than

the deterministic SCC in the factors making climate change judged more severe and

(ii) that the uncertainty premium is even more sensitive to time preference than the

already sensitive deterministic SCC. Appendix A demonstrates that the sensitivity to

(persistence weighted) time preferences increases with the moment of the distribution.

Given that the TCR distribution governing temperatures exhibits both skew and

some kurtosis, the temperature premium is the most sensitive to the reduction in

time preference and its direct premium quadruples. The direct damage risk premium

only doubles, but its particularly strong interaction with the other uncertainties make

it almost as potent a contributor to the overall quadrupling of the premium.

Traeger (2021a) shows that the value of abatement relative to other consump-

tion and, thus, the SCC goes to infinity as pure time preference goes to zero; the

present study shows that this sensitivity even increases under uncertainty. Thus,

the sensitivity to a given reduction in time preference should be much higher for an

already patient planner. Indeed, a reduction of pure time preference from the cali-

brated baseline value of 1.4% to 1% increases the joint risk premium from 46% to 87%

(SCCdet ≈ 130USD
tCO2

and RP = 115USD
tCO2

). This 0.4% reduction of pure time preference

has a much more moderate impact than the subsequent 0.3% reduction boosting the

risk premium all the way to 230% and the SCC to over 600USD
tCO2

. Is such a low rate of

pure time preference reasonable? The median of Drupp et al.’s (2018) recent expert

survey on discounting suggests an even lower rate of time preference of 0.5% (and

23Figure 3 reports the carbon risk premium under joint uncertainty whereas Table 1 shows the
premia under carbon uncertainty only. In the low discounting scenario, the premium under carbon
flow uncertainty is boosted from 4 USD

tCO2

to 10 USD
tCO2

in a model with joint uncertainty or, in percent,
from 2% to 5%. In the same low discounting scenario, the temperature uncertainty premium is
boosted from 129% to 181%.
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logarithmic utility). Traeger (2021a) discusses the calibration of time preference in

IAMs in much more detail and surveys arguments that imply even lower rates based

on ethical grounds, overlapping generations, and the long-run risk model in asset pric-

ing. Yet, once we reach optimal carbon prices exceeding 400 or even 600USD
tCO2

direct

carbon capture will become an attractive technology and interact with the climate

risks in ways not easily incorporated into the present model. I would phrase the prac-

tical implication of the high SCC values as follows. The most stringent policies in a

few countries and sectors currently correspond to prices of 150-200USD
tCO2

. In economic

models, these values have generally been motivated based on low rates of pure time

preference. The present results tell us that, under uncertainty, we do not need Stern

(2007)-type rates of 0.1% to rationalize such stringent mitigation efforts, but much

more moderate rates of time preference already call for substantially stronger efforts.

4.4 Related Findings

Jensen & Traeger (2013) find a climate-sensitivity risk premium of just over 20% for a

pure rate of time preference of 1.5%. The authors explicitly model Bayesian learning,

but do not use Epstein-Zin preferences. Their Arrow-Pratt risk aversion is 2, so that

I would indeed expect results closer to my low risk aversion scenario.24 Kelly & Tan

(2015) find a risk premium of 24% using a rate of time preference of 5% in combination

with fat tails, using a joint coefficient of 1.5 for relative risk aversion and aversion

to intertemporal substitution. Kelly & Tan (2015) find that, in the presence of fat

tails, the ability to learn can matter substantially for the SCC, and the risk premium

can be up to 60% in scenarios without learning. In contrast, Jensen & Traeger

(2013) find that anticipated learning, in their model without fat tails, has no impact

on the present SCC. Both models use a simplified climate model including a carbon

decay approximation to the carbon cycle, in order to save numerically expensive state

variables. Rudik & Lemoine (2017) find a risk premium of 10% using a numerically

less expensive Smolyak grid in an implementation without state-space reduction, also

using a time preference of 1.5%. In their setting, learning drops this premium to

1%. See Appendix A for a simple but instructive analytic discussion of the effects of

24The authors also look at a scenario with smooth ambiguity aversion. While related to Epstein-
Zin preferences, the higher coefficient of (ambiguity) aversion only affects part of the distribution.
As a result, ambiguity aversion implies a much more moderate increase of the premium than my
increase of relative risk aversion. A revision of the paper will include a scenario with Epstein-Zin
preferences, still yielding a slightly lower premium than the present paper, and add an analytic
discussion of the drivers of risk premia in slightly less complex IAM.
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learning.

Lemoine & Traeger (2016) find that a combination of climate and economic tip-

ping points can double the SCC, but point out that merely doubling the expected

damage coefficient as done by Nordhaus to adjust the DICE model for missing tip-

ping points has almost the same effect on the present SCC. Cai & Lontzek (2019)

find the same doubling of the SCC under tipping points in a slightly different setting

where damage can move up irreversibly in different tipping regimes. Tipping points

operate mostly through increasing expected damages and are, therefore, of a different

nature than the present uncertainty analysis. Cai & Lontzek (2019) also introduce

growth uncertainty, which reduces the SCC (Jensen & Traeger 2014). What further

increases the SCC in Cai & Lontzek (2019) under Epstein-Zin preferences is a (de-

terministic) calibration effect resulting from the lower risk-free rate, first quantified

in DICE by Crost & Traeger (2014), analyzing stochastic damages. The SCC impact

of the magnitude of damage stochasticity in Crost & Traeger (2014) is negligibly

small because the authors only model stochastic shocks without long-run risk persis-

tence. Recently, Rudik (2020) adds persistence (learning) to this stochastic damage

analysis and finds a risk premium of 3-4% from damage uncertainty;25 again using

the full DICE specification under a Smolyak grid approximation. Rudik (2020) also

finds a slightly larger premium for a robust control specification. All of the above

papers are based on Nordhaus’ DICE model. While somewhat comparable in relative

terms, ACE’s base SCC and risk premia are substantially larger in absolute terms for

three reasons. First, I cut the excessive delays of the DICE model (Van der Ploeg

et al. 2020), which holds partly as well for Jensen & Traeger (2014) and Kelly & Tan

(2015). Second, I use updated purchasing power parity weights in calculating world

output as compared to the DICE model underlying the other studies, which increases

the SCC by over 40%. Third, and maybe most importantly, I use higher expected

damages than the DICE model as discussed in Section 4.2.

The recent study by van den Bremer & van der Ploeg (2018) finds an approxi-

mate analytic solution to a more stylized integrated assessment model and, like ACE,

addresses several uncertainties jointly. It confirms ACE’s results that carbon uncer-

tainty adds a negligible premium and finds risk premia of about 40% for both damage

25The 3-4% is a guesstimate based on the learning premium graph in Figure 7(a) for 2020 relative
to the base value taken from Figure 5(a). The most important difference between the graph labeled
“uncertainty” and “learning” is that those labeled uncertainty have no shock persistence as in Crost
& Traeger (2014) (and consequently no premium) whereas the learning model introduces shock
persistence.
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and temperature uncertainty in their corresponding calibration.26 In a related con-

tinuous time AK model with emissions and temperature Hambel et al. (2021) find

much more moderate risk premia for smooth temperature risk (diffusion process) but

huge premia for jump risk (which also raises the expected damage). For smooth risk,

which is more comparable to the present study, the temperature risk premium is ap-

proximately 4% under DICE damages but increases to 18% when combining more

extreme “Weitzman-type” risk with growth rather than level impacts. The authors

use log-utility in combination with a (disentangled) Arrow-Pratt risk aversion similar

to my “high RA” scenario and a pure time preference of 1.5%. In a stylized model

without decision maker, Lemoine (2021) simulates the SCC under uncertainty finding

risk premia of about 3% for temperature uncertainty and 50% for damage uncertainty

under the same time preference.

5 Conclusions

The paper discusses the impact of long-run climate and damage risks on the opti-

mal carbon policy. Quantitatively, the temperature feedback uncertainty delivers the

largest risk premium to the SCC, whereas uncertain carbon uptake by the oceans

and biosphere results in a negligible risk premium. Damage uncertainty contributes

a notable risk premium by itself, and it increases the contributions of all other risks.

The SCC’s risk premium is almost 50% in the baseline. This value is particularly

sensitive to the persistence of the long-run risk, doubling under an increase in the

risk’s persistence and falling to half for a reduction. The premium quadruples when

cutting pure time preference from its base value of 1.4% into half, a value still ex-

ceeding the median of a recent expert elicitation. In the base calibration, the mutual

reinforcement of the different risks is moderate; merely adding risk premia across

26I am referring to their “ethics-based calibration”, which uses a 1.5% rate of pure time preference
close to the present analysis and most of the papers cited above. Their alternative specification uses
a rate of 5.8% cutting the temperature risk premium to 9% and the damage risk premium to 18%.
The study also uses Epstein-Zin preferences and their dominating risk premium is that of growth
uncertainty causing a (positive) 160% risk premium. I purposefully avoid growth uncertainty in the
present study and focus on climate and damage uncertainties because (i) the growth uncertainty
premium most crucially depends on the log-assumption and (ii) deviating from it the way van den
Bremer & van der Ploeg (2018) calibrate to macroeconomic observation (elasticity of intertemporal
substitution EIS < 1) causes a huge positive risk premium whereas calibrating the model relative to
the asset pricing literature (IES > 1) causes a huge negative risk premium (Jensen & Traeger 2014).
See Traeger (2019) for an explanation of this conflict when calibrating Epstein-Zin preferences; a
good solution to this conflict has yet to be developed.
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different models would result in a good approximation. In more severe scenarios, the

mutual aggravation of the risks becomes a substantial part of the overall premium.

The optimal carbon tax under certainty is linear in a variety of factors including

the damage semi-elasticity and a set of climate multipliers. Uncertainty turns the

SCC convex in all of these contributions including the expected damage level. As a

result, the risk premium grows much faster than the deterministic SCC in the relevant

contributions; the more serious the climate change problem, the larger the relative

importance of uncertainty.

It is well-established that climatic change causes a positively skewed probability

distribution over future temperatures. This skew (and higher order moments) make

temperature uncertainty particularly important for the risk premium. The paper

develops a novel implementation of the autoregressive gamma process to adequately

capture this skew and the transient climate response in an analytic integrated assess-

ment model quantifying its impact on the optimal carbon tax. In a simplified model, I

explain how the sensitivity to time preference, (intrinsic) risk aversion, and shock per-

sistence increases in the moments of the uncertainty distribution. In particular, the

stochastic model is more sensitive to time preference than the deterministic model,

and skewed uncertainty (or a distribution with kurtosis) has a more time preference

and risk aversion sensitive impact than normally distributed uncertainty. Intrinsic

risk aversion is crucial for the magnitude of the risk premia. It captures by how much

(disentangled) Arrow-Pratt risk aversion exceeds the unit aversion to intertemporal

change. Mere log-utility would result in risk premia of only 10%.

The low impact of carbon flow uncertainty on the optimal carbon tax results from

“saturation effects” in the atmosphere. The first unit of atmospheric CO2 causes

substantially more warming than the current unit. Thus, despite of the convexity

of climate damages, a higher realization of atmospheric carbon does not necessarily

cause more damage than a low realization alleviates. This finding emphasizes the

importance of distinguishing temperature dynamics from carbon dynamics, which is

usually neglected in the analytic literature. Moreover, the long-run risk model for

carbon flows demonstrates that, in contrast to a generic asset pricing application, the

climate planner should be more concerned about future expected levels than about

possible stochastic volatility. This finding is convenient because it is currently still

– or “even more” – unclear whether or how climate change will cause changes in

volatility.

Finally, the paper explains that risk aversion and uncertainty by themselves reduce
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expected welfare but do not necessarily affect the optimal policy level. The present

framework focuses on the interaction of risk aversion and non-linearities in climate

dynamics with the endogeneity of climate risk. We are uncertain about the future

precisely because we are perturbing the climate system. Thus, by reducing emissions,

we can reduce the uncertainty and increase our welfare. Therefore the optimal carbon

tax always increases under uncertainty in the present setting.

It should be needless to say that, despite major advances in developing and cali-

brating the underlying model and stochastic processes, the model is far from perfect.

There are many non-linearities and potential extensions that the model cannot handle

and that eventually will have to be analyzed numerically, likely soon given the current

advances of numeric methods and computing power. In particular, more thorough

assessments of the role of learning would be valuable. At present, the model pushes

the envelope of quantitative assessments of the SCC under various interacting uncer-

tainties. As – or maybe most – importantly, the model permits insights, some easy

and some more intricate, into the workings of uncertainty in a complex integrated

assessment model. I hope that the model can serve as a benchmark for a rich set of

variations analyzing how and why different variations affect optimal climate policy

or, more generally, economic policy in macro models of ACE’s complexity.
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Appendix

A Welfare, Uncertainty, Learning, and Sensitivity

to the Distributional Moments

The section discusses the relation between two different conceptualizations of uncer-

tainty. First, nature’s stochastic physical processes lead to an uncertain evolution

of the future climate. Second, epistemological uncertainty reflects the limited un-

derstanding of natural processes by the scientific community. The most important

difference is that epistemological uncertainty can potentially be reduced over time as

scientists gain a better understanding. The section also fleshes out an analytic for-

mula for the welfare loss, showing a discounting sensitivity that increases in the power

of the moments of the uncertainty distribution (variance, skewness, kurtosis,...).

For a simpler closed-form tractability, this section simplifies the stochastic evolu-

tion of the climate variables and assumes that the damage function is known

Mt+1 = ΦMt + (
∑Id

i=1 Ei,t + Eexo
t )e1 + ǫMt + νM

t (A.1)

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 + ǫτt + ντ
t . (A.2)

The vectors ǫMt and ǫτt reflect uncertainty, the vectors ν
M
t and ντ

t reflect measurement

error and are non-zero only in the Bayesian learning model, where they determine

the speed of learning. Henceforth, the climate state j will label any of the carbon

reservoirs or temperature layers M1, ..Mm, τ1, ...τl.

I compare the uncertainty dynamics of an autoregressive shock process to that

of a Bayesian learning model. To ease the comparison, I write these processes in a

slightly unusual way. A first-order autoregressive shock introduces one-step-ahead

uncertainty for the random variable ǫ
j
t . The mean of ǫ

j
t , denoted µ

j
t , follows the

equation of motion

µ
j
t+1 = γjµ

j
t + χ

j
t , (A.3)

where 0 ≤ γ ≤ 1 and χ
j
t is a sequence of iid mean-zero shocks. The one-step-ahead

variance of ǫjt is given by the variance of χj
t (and similarly for higher moments).

A Bayesian learning model with normally distributed measurement error ν
j
t ∼

N(0, σ2
ν) (likelihood) and prior ǫ

j
t ∼ N(µj

t , σ
2
ǫ,t) gives rise to the following dynamics
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of the mean27

µ
j
t+1 = µ

j
t + χ

j
t with χ

j
t ∼ N

(

0,
σ4
ǫ,t

σ2
ǫ,t+σ2

ν,t

)

. (A.4)

Writing the updating equation in the form of equation (A.4) emphasizes the close

similarity between learning and a (persistent) AR(1) shock. The important concep-

tual difference from the autoregressive model is that the variance of ǫjt does not vanish

with period t information: σ
j
ǫ,t ≡ Var[ǫjt |It] > 0. Yet, what matters to the decision

maker is the one-step-ahead forecast uncertainty, which is similar for both settings.

The only difference between equations (A.3) and (A.4) is that the conditional expec-

tation of the Bayesian model exhibits full persistence and a prescribed evolution of

the shock variance that falls over time, σ2
ǫ,t+1 =

σ2
ν,tσ

2
ǫ,t

σ2
ν,t+σ2

ǫ,t
.28

Proposition 5 Let uncertainty in equations (A.1-A.2) affect state j.

(1) A normally distributed first-order autoregressive process ǫt with one-step-ahead

variance σ2 implies the welfare loss

∆WAR
normal =

∑∞

t=0 β
t+1
(

β

1−γjβ

)2

αϕ2
j

σ2

2
= β

1−β

(
β

1−γjβ

)2

αϕ2
j
σ2

2
.

(2) A Bayesian learning model with normally distributed prior ǫt ∼ N(µǫ,t, σ
2
ǫ,t) and

measurement error νt ∼ N(0, σ2
ν,t) implies the welfare loss

∆WBayes =
∑∞

t=0 β
t+1
(

Ωt

1−β

)2

αϕ2
j

σ2
ǫ,t+σ2

ν,t

2

with Ωt ≡ σ2
ǫ,t

σ2
ν,t+σ2

ǫ,t
+ (1−β)

σ2
ν,t

σ2
ν,t+σ2

ǫ,t
.

(3) A first-order autoregressive process ǫt with arbitrarily29 distributed iid shocks χt

implies the welfare loss

∆WAR
general =

β

1−β
1
α
Gχ

(
β

1−γjβ
αϕj

)
= β

1−β
1
α

∑∞

l=1 κl
1
l!

(
β

1−γjβ
αϕj

)l

, (A.5)

27The standard way of writing the Bayesian updating equation for the mean is

µ
j
t+1 =

σ2

ǫ,t

σ2

ǫ,t+σ2

ν,t

µ
j
t +

σ2

ν,t

σ2

ǫ,t+σ2

ν,t

zt with observation z ∼ N(µǫ,t, σ
2
ǫ,t + σ2

ν,t). Defining χ
j
1,t =

σ2

ν,t

σ2

ǫ,t+σ2

ν,t

(zt − µǫ,t) delivers equation (A.4). Note that the observational variable z is defined in

equations (A.1-A.2). For example, in the case of uncertain atmospheric carbon content, the obser-

vation z is Mt+1 −Φ1,·Mt − (
∑Id

i=1 Ei,t + Eexo
t ).

28Kelly & Kolstad (1999) and Karp & Zhang (2006) employ such a simple Bayesian learning model
for the assessment of climate change feedbacks and damages. Kelly & Tan (2015) analyze learning
speed when climate sensitivity is fat tailed.

29I assume that the shock χt has a finite cumulant-generating function.
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where κl are the cumulants of the iid shock χt.

In both models (i) and (ii), the welfare loss is proportional to (intrinsic) risk attitude

α and the square of the state’s shadow value under certainty, e.g., ϕj = ϕτ,1 if

uncertainty governs atmospheric temperature.30 The welfare loss is also proportional

to the variance. Assumed constant in the AR model, this variance falls over time in

the Bayesian learning model, where it is the sum of measurement error and Bayesian

prior. In the AR model, the assumption of constant variance collapses the infinite

sum into a factor (1 − β)−1, yielding a sensitivity to time preference similar to the

one observed for the carbon tax under certainty. In addition, the welfare loss is

proportional to the factor (1− γβ)−2: a high uncertainty persistence γ makes the

result even more sensitive to the choice of pure time preference.

The Bayesian learning model swaps this factor31 against the factor
(

Ωt

1−β

)2

= (1 − β)−2
(

σ2
ǫ,t

σ2
ν,t+σ2

ǫ,t
+ (1−β)

σ2
ν,t

σ2
ν,t+σ2

ǫ,t

)2

. The term Ωt is a weighted mean of unity

(weighted by prior uncertainty) and 1− β (weighted by the measurement error). Ini-

tially, when the prior uncertainty is large (σǫ,t ≫ σν,t), the time preference sensitivity

is that of a fully persistent AR shock with γ = 1: every update implies a revision of

the long-run future. If the decision maker is patient, this long-term update moves her

welfare substantially. As she becomes more assertive of her environment, uncertainty

reduces to the prior and, once σǫ,t ≪ σν,t, the term Ωt cancels the time sensitivity

1− β: post-learning the iid error σ2
ν has no more long-term repercussions.

This comparison between an autoregressive uncertainty model and a Bayesian

learning model is helpful to gauge the γ−parameters specifying uncertainty persis-

tence in the models of Section 3. Merely comparing the two squared weighting factors

would, however, be misleading. Initially, the prior uncertainty is much larger than

the shock’s uncertainty. For a back of the envelope calibration of γ, I take the follow-

ing values. I assume that in the first few decades, the predictive distribution of the

Bayesian learning model has a variance σ2
ν,t + σ2

ǫ,t that is about four times as large as

30For uncertainty over carbon flows, keep in mind that carbon does not decay; it merely travels
between different reservoirs. Therefore, we cannot look at independent individual shocks across
states. The stochastic carbon flow between the atmosphere and a sink is a perfectly negatively
correlated shock to adjacent layers. Such uncertainty gives rise to the formula in Proposition 5 with
the shadow value ϕj = ϕM,1−ϕM,2 (see the proof of the proposition for details).

31More precisely, it swaps the factor times β2(1− γβ)−2 against
(

Ωt

1−β

)2

, in a comparison where

β is close to unity dropping this factor is of minor relevance.
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the variance of the shocks in the AR(1) process σ2.32 I also assume that the (decadal)

measurement error, σν,t, is about 10% of the prior’s standard deviation σǫ,t, so that
σν,t

σǫ,t
= 10%. Using the baseline’s discount factor, I find

(
β

1− γβ

)2

σ2 !
=

(
Ωt

1− β

)2

(σ2
ν,t + σ2

ǫ,t) ⇒ γ ≈ 0.89.

This equation and value allow me to root the autoregression factor in the underlying

epistemologic nature of the uncertainty. That said, it is but a back of the envelope

reasoning how to calibrate a shock-based model to a learning-based model and by no

means is meant to replace models that thoroughly analyze and incorporate learning

into the contexts of the present paper’s SCC analysis. In the truly long-run, the shock

model will always exaggerate the uncertainty and the corresponding gamma would

be smaller.33

The general autoregressive shock model in case (iii) of Proposition 5 shows that

higher-order moments of the uncertainty contribute proportionally to higher orders

of the risk-aversion-weighted shadow value of the state. It also shows that for high

uncertainty persistence, the sensitivity to time preference of the welfare loss increases

in the power of the contributing moment: the contribution of the kurtosis is more

sensitive to time preference and (intrinsic) risk aversion than the contribution of

skewness, which is more sensitive than the contribution of the variance, which is more

sensitive than the contribution of the mean. In the colloquial use of “fat tailedness”

prevalent in the climate change debate, equation (A.5) suggests that the fatter the

tail the more relevant the calibration of time preference.

B Equivalence to Epstein-Zin-Weil Utility and Il-

lustration of Risk Aversion

This section presents a quantitative illustration of the adopted risk aversion and

derives the equivalence to Epstein-Zin-Weil preferencs. I start by showing the equiv-

32The outcome of the calibration below results in γ ≈ 0.89, which in turn implies that a simple
AR(1) process’ unconditional variance is (1−γ2)−1 ≈ 4.8 times the shock’s variance. If we associate
the first period’s prior with the unconditional variance, the initial prior would be almost five times
the shock’s variance but falling over time.

33As an illustration, say at some point when most of the uncertainty has been learned, it holds

that σν,t ≈ σǫ,t ≈ σ, then
σν,t

σǫ,t
= 1 and σ2

σν,t+σǫ,t
= 1

2 and the equation gives γ = 0.82 close to the

low persistence scenario.
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alence of the Bellman equation (9) to the wide-spread formulation of recursive utility

going back to Epstein & Zin (1991) and Weil (1990). Keeping isoelastic risk aggre-

gation and using the logarithmic special case for intertemporal aggregation reflecting

ACE’s intertemporal elasticity of unity, the usual formulation reads

V ∗
t = exp

(

(1− β) log ct + β log
[
Et V

∗
t+1

α∗] 1

α∗

)

. (B.1)

Defining Vt =
log V ∗

t

1−β
and rearranging equation (B.1) delivers

Vt = log ct +
β

1− β
log
[

Et exp
(
(1− β)Vt+1

)α∗
] 1

α∗

. (B.2)

Defining α = (1− β)α∗ and pulling the risk aversion coefficient α∗ of the Epstein-Zin

setting to the front of the logarithm and into the exponential yields equation (9)

stated in the text.

The renormalization of the Bellman equation from equation (B.1) to equations

(B.2) and (9) renormalizes utility such that marginal utility in the present is invariant

to the choice of discount factor. This insight underlies the interpretation of the welfare

losses in section (A). This renormalization and equation (9) suggest the natural

measure of relative risk aversion RRA= 1 − α, which differs from the normalization

suggested by Epstein & Zin (1991) leading to RRA∗ = 1 − α∗ = 1 − α
1−β

. Only

the measure RRA= 1− α is normalized so that RRA= 0 indeed corresponds to risk

neutrality.34 As importantly, the risk aversion measure RRA= 1−α is time preference

invariant in that the lottery choice depicted in Figure 4, which I will use to illustrate

the strength of a given risk aversion, depends only on the choice of risk aversion and

not on time preference.

Figure 4 illustrates in a simple lottery the strength of risk aversion implied by

the numeric choices of the parameters α and RRA= 1 − α. In the baseline, an

agent consumes a constant level c̄ in perpetuity. Now I offer the agent a lottery

where she either loses 5% of her baseline consumption c̄ in the upcoming decade

or gains the fraction z of consumption, each with probability one half. The graph

presents, as a function of her risk aversion RRA, the percentage gain z that leaves

the agent indifferent between the lottery and the baseline. Note that these losses

34The reader can convince herself of this statement by either substituting Vt+1 recursively into
equations (B.1) or (9), or by looking at Figure 4 for the special case of the lottery that I will
introduce below. See Traeger (2019) for more on the normalization of risk aversion measures in the
Epstein-Zin-Weil setting.
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Figure 4: The graphs shows the compensating risk premium that an agent requires with
probability one half to compensate a 5% loss occurring as well with probability one half.
The intertemporally additive expected utility (IAEU) model corresponds to α = 0 (no risk
aversion beyond the desire to smooth consumption over time) and to a risk aversion of
unity. The base calibration in ACE corresponds to α = −1, and a total risk aversion of 2
(see text for normalization of the risk measure).

and gains are direct consumption changes.35 The asset pricing literature usually

finds RRA∗ = 1 − α∗ ∈ [6, 10]. In ACE’s baseline calibration, these values translate

approximately into the range α ∈ [−1.2,−0.7] and I pick α = −1 as the baseline

(RRA= 2), also presenting results for α = −1.25 and α = −.5 (RRA= 1.5 and

RRA= 2.25) just outside of these bounds as a sensitivity range.

35The underlying calculation comes down to comparing the welfare for the deterministic path
exp

(
α
[
log c̄+β

∑ ·
])

with that for the lottery 1
2 exp

(
α
[
log(1−5%)+log c̄+β

∑ ·
])
+ 1

2 exp
(
α
[
log(1+

z) + log c̄ + β
∑ ·
)]
, where

∑ · is the coinciding future utility from future consumption. Equating
the welfare resulting from the deterministic path and the lottery implies the formula z = (2− (1−
5%)α)

1

α − 1 depicted in the figure. Note that the Bellman formulation of welfare in equation (9)
assesses uncertainty only in the next period. One can either use the terms subsequent to β in
equation (9) to evaluate an immediate lottery, or one can interpret the lottery as taking place over
next period’s consumption level where current period consumption is at the deterministic level c̄.
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Online Appendix

C Proofs

C.1 Proof of Lemma 1

1) Under certainty, equation (8) requires the existence of functions a(·) and b(·) such
that

z⊤Xt+1 = a(z,At,Nt,Kt,Et, xt) + b(z)Xt,

which is merely a requirement that the equations of motions are linear in the states

and separable between the states and the variables At,Nt,Kt,Et and xt. Moreover,

the deterministic model has no additional informational vectors. Thus, the condition

is satisfied for Xt if each of the equations of motion for Mt+1, τt+1, and kt+1 satisfy

such linearity and separability. The equations of motion of the carbon cycle (3) are

linear in the states and satisfy the separation condition – the control Et is additively

separated from the states. The equation of motion (5) governing temperature dy-

namics was already introduced in its transformed form, also satisfying the separation

requirement (see DACE for underlying calibrated temperature system and its trans-

formation). The capital stock’s equation of motion (7) transforms into log-capital

(see DACE) as

kt+1 = κkt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0 + log(1−xt)

+ log[1 + gk,t]− log[δk + gk,t]

also satisfying the requirement.

2) First, I express a period’s welfare u(Ct) = log(Ct) in terms of the transformed

variables as (see DACE)

u(xt) = log xt + κ logKt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0.

yielding the Bellman equation in terms of the transformed state variables

V (kt, τt,Mt,Rt, It, t) = max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et) (C.1)

−ξ0τ1,t + ξ0 +
β

α
log
(

Et exp
[
α V (kt+1, τt+1,Mt+1,Rt+1, It+1, t)

])

.

1



which is subject to the underlying constraints

∑I

i=0 Ni,t = 1, Ni,t ≥ 0,
∑IK

i=1 Ki,t = 1, Ki,t ≥ 0, Rt ≥ 0,

the initial states, and the equations of motion (2) for the resource and (8) for the

combined state vector Xt. Using the affine trial solution

V (Xt,Rt, t) = V (kt, τt,Mt, It,Rt, t) = ϕ⊤
XXt +ϕ⊤

R,tRt + ϕt

and adding the constraints binding in every period with a Lagrange multiplier delivers

the Bellman equation

ϕ⊤
XXt +ϕ⊤

R,tRt + ϕt =

max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0

+λN
t

(
1−∑IN

i=1 Ni,t

)
+ λK

t

(
1−∑IK

i=1 Ki,t

)

+
β

α
log
(

Et exp
[

α
(

ϕ⊤
XXt

)])

+ βϕ⊤
R,t+1

(
Rt −Ed

t

)
+ βϕt+1.

Employing equation (8) with z = αϕX delivers

ϕ⊤
XXt +ϕ⊤

R,tRt + ϕt =

max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0

+λN
t

(
1−∑IN

i=1 Ni,t

)
+ λK

t

(
1−∑IK

i=1 Ki,t

)
+ βϕt+1

+
β

α

[
a(αϕX ,At,Nt,Kt,Et, xt) + b⊤(αϕX)Xt

]
+ βϕ⊤

R,t+1

(
Rt −Ed

t

)
.

Let e⊤
1 denote the first (row-)unit vector, corresponding to the capital entry of Xt,

and let e⊤
2 denote the second (row-)unit vector, corresponding to the atmospheric

temperature entry. I rearrange the Bellman equation to bring all state-dependent

terms to the left

(
ϕX

⊤ − β

α
b⊤(αϕX)−κe⊤

1 + ξ0e
⊤
2

)
Xt +

(
ϕ⊤

R,t − βϕ⊤
R,t+1

)
Rt + ϕt − βϕt+1 =

max
xt,Nt,Kt,Et

log xt + logF (At,Nt,Kt,Et) + ξ0 + λN
t

(
1−∑IN

i=1 Ni,t

)

+
β

α
a(αϕX ,At,Nt,Kt,Et, xt)− βϕ⊤

R,t+1E
d
t + λK

t

(
1−∑IK

i=1 Ki,t

)
.
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This Bellman equation has to hold for all feasible states (a continuum) in any feasible

combination (independently). Thus, a necessary condition is that the coefficients of

the states vanish, i.e.,

ϕ⊤
X =

β

α
b⊤(αϕX) + κe⊤

1 − ξ0e
⊤
2 (C.2)

ϕ⊤
R,t = βϕ⊤

R,t+1. (C.3)

Let ϕX
∗ denote the solution to equation (C.2). Equation (C.3) merely produces a set

of Hotelling equations ϕ⊤
R,t+1 = β−1ϕ⊤

R,t implying that the (utility measured) shadow

value of each resource stock has to increase at the (utility) discount rate, which is

easily satisfied. For resources that are not scarce, the shadow value is simply zero

in all periods. For resources that are scarce, the initial shadow value ϕR,0 has to

be found ex-post by solving the problem below as a function (or for a sequence) of

ϕR,0 until the boundary solution is satisfied. Given these shadow values, the Bellman

equation is satisfied if (and only if) in addition

ϕt − βϕt+1 = max
xt,Nt,Kt,Et

log xt + logF (At,Nt,Kt,Et) + ξ0 + λN
t

(
1−∑IN

i=1 Ni,t

)
(C.4)

+
β

α
a(αϕ∗

X ,At,Nt,Kt,Et, xt)− βϕ⊤
R,t+1E

d
t + λK

t

(
1−

∑IK
i=1 Ki,t

)
.

I have assumed that the problem is well-defined in that the optimizaton problem on

the right has a well-defined solution. Therefore, for any ϕt, equation (C.4) merely

defines a ϕt+1 and there exists a sequence ϕ0, ϕ1, ϕ2, ... such that equation (C.4)

and the Bellman equation are satisfied (assuming equation (C.2) has a solution).

The apparent degree of freedom in choosing ϕ0 is pinned down by requiring that

the solution to the dynamic programming problem coincides with the underlying

optimization of the sum of utility over time. Precisely, the condition limt→∞ βtV (·) =
0 ⇒ limt→∞ βtϕt = 0 pins down this initial value ϕ0 ensuring that the value function is

normalized just as the infinite sum of optimized utility (Stokey & Lucas 1989, chapter

4.1). Only the absolute welfare level depends on the sequence ϕ0, ϕ1, ϕ2, ϕ3, ..., not

the optimal policy. �

Note 1 (SCC): The social cost of carbon is the (negative of the) shadow value of

atmospheric carbon ϕM,1 translated from utils into consumption equivalents (mea-

sured, e.g., in USD). Given logarithmic utility, this conversion uses dut =
1
Ct
dCt ⇒

dCt = Ctdut = xtYtdut so that SCC = −CtϕM,1 = xtYtdut. In some instances, the

3



optimal consumption rate is xt = 1−βκ, a constant which can cancel a corresponding

occurrence of 1− βκ in ϕM,1, making the SCC directly proportional to output.

C.2 Proof of Propositions 1 and 2

To avoid repetition, I derive the SCC under joint uncertainty about carbon flows

and temperature feedbacks. Propositions 1 and 2 are then summarized as the special

cases where only one of the uncertainties is active. The shocks and, thus, one-step-

ahead uncertainties in the carbon uncertainty model are all independently normally

distributed. The cumulant generating function of a normally distributed variable

x ∼ N(µ, σ2) is log [E exp(ux)] = µu+ u2σ2

2
.

The autoregressive gamma process by Gourieroux & Jasiak (2006) used in the

temperature uncertainty model is as a Poisson mixture of gamma distributions,

Xt+1

c
|(Z,Xt) ∼ gamma(νt + Z), where Z|Xt ∼ Poisson

(
γXt

c

)

for c, γ, νt > 0 in all periods. Here the light Xt refers to a generic state and not the

bold state vectorXt. The random variable Z is drawn from a Poisson distribution and

modulates the shape parameter of the standard gamma distribution (with scale c).

The expectation and variance of this process are

Et(Xi,t+1|Xt) = νtc+ γXt

Vart(Xi,t+1|Xt) = νtc
2 + 2cγXt.

and the cumulant generating function is

GXt+1
(u) = log [E (exp(uXt+1)|Xt)] = −νt log(1− uc) + u

1−uc
γXt .

Applying the model to the temperature-carbon feedback, I specify the gamma au-

toregressive process yt choosing

νt =
1

c

(
M1,t+Gt

Mpre
− ητ

)

,

which results in the expectation and variance

E yt+1 = γzyt +
(

M1,t+Gt

Mpre
− ητ

)

Var yt+1 = c
[

2γzyt +
(

M1,t+Gt

Mpre
− ητ

) ]

.
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I define the deterministic process neutralizing the temperature expectations to those

of the deterministic model36 as

yot+1 = γzyot+ (1− ǫ(c))
(

M1,t+Gt

Mpre
− ητ

)

.

Then the expectation adjusted process zt ≡ yt − yot has the expectation and variance

stated as equations (19) and (20) in the main text. To apply Lemma 1, I calculate

(one over α times) the cumulant generation function of Xt = (kt, τt,Mt, It) with

It = (xM
t , σM

t , yt, y
o
t ) and z = αϕ⊤; I only keep track of the terms proportional to the

states ignoring those (“...”) that make up the function a(·) and that are not needed

to calculate the shadow values:

1

α
log
(
E exp(αϕ⊤Xt+1)|Xt

)
= ϕk(κkt − ξ0τ1,t) (C.5)

+ϕ⊤
MΦMt + ...+ (ϕM,1 − ϕM,2)x

M
t +

α

2
(ϕM1 − ϕM2)

2σM
t

2

+ϕ⊤
τ στt +

σforc

Mpre

ϕτ,1M1,t − hϕτ,1γ
zyot − hϕτ,1(1− ǫ(c))M1,t

Mpre
+ ...

+ϕM
x γxxM

t +
α

2
ϕM
x

2
δMx2 M1,t

Mpre

+
α

2
ϕM
x

2
δσx

2
σM
t

2

+ϕM
σ γσσM

t

2
+ ...+ ϕM

σ δMσ M1,t

Mpre

− 1
αc

M1,t

Mpre
log(1− α[ϕτ

y + hϕτ,1]c) +
ϕτ
y+hϕτ,1

1−α[ϕτ
y+hϕτ,1]c

γzyt

+ϕτ
yoγ

zyot + ϕτ
yo(1− ǫ(c))M1,t

Mpre
+ ...

The right hand side identifies Lemma 1’s function b(·). Sorting by states, equa-

36When combining carbon flow uncertainty with temperature uncertainty, yot also becomes stochas-
tic, but accounts only for the stochastic evolution of carbon, not for the persistent shocks to the
temperature response to CO2 concentrations.
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tion (10) delivers the equations for the shadow values

ϕk = (1 + βϕk)κ ⇒ ϕk =
κ

1− βκ
(C.6)

ϕ⊤
τ = βϕ⊤

τ σ − (1 + βϕk)ξ0e
⊤
1 (C.7)

ϕ⊤
M = βϕ⊤

MΦ+β
(

σforc

Mpre
ϕτ,1+

α
2
δMx2

Mpre
ϕM
x

2
+ δMσ

Mpre
ϕM
σ + 1

Mpre
(ϕτ

yo−hϕτ,1)(1−ǫ(c))

− 1
Mpre

log(1−αc(ϕτ
y+hϕτ,1)

αc

)

e⊤
1 (C.8)

ϕτ
yo = β(ϕτ

yo − hϕτ,1)γ
z (C.9)

ϕτ
y = β

ϕτ
y+hϕτ,1

1−αc(ϕτ
y+hϕτ,1)

γz (C.10)

ϕM
x = β(ϕM,1 − ϕM,2) + βϕM

x γx (C.11)

ϕM
σ = β

α

2

(

(ϕM,1 − ϕM,2)
2 + δσx

2
ϕM
x

2
)

+ βϕM
σ γσ. (C.12)

Ultimately, I am interested in the shadow value of atmospheric carbon. This shadow

value depends on all the other shadow values above and I am going to solve the

expressions successively. Before doing so, I note that under certainty – see DACE or

work out the special case of the equations above – it is

ϕ⊤

M

det − βϕ⊤
MΦ− βϕτ,1

σforc

Mpre

e⊤
1 = 0 ⇒ ϕ⊤

M

det
=

βϕτ,1σ
forc

Mpre

e⊤
1 (1− βΦ)−1 (C.13)

ϕ⊤
τ

det
=−ξ0(1+βϕk)e

⊤
1 (1− βσ)−1 ⇒ ϕdet

τ,1 =−ξ0(1+βϕk)[1− βσ)−1]1,1 (C.14)

which together with equation (C.6) above delivers

ϕdet
M,1 = −ξ0

(

1+β
κ

1− βκ

)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1
.

The subsequent proof relates this shadow value under certainty to the general shadow

value of atmospheric carbon under uncertainty.

Note 2: Some of the extended ACE versions in Traeger (2021a) affect the shadow

value of capital and the transformation of ϕdet
M,1 from utils into consumption equiv-

alents (i.e., the conversion in Note 1). The expressions about to be derived for the

stochastic shadow value only rely on the relation between the expression ϕM,1 and its

deterministic counterpart. These relations hold for the base ACE just as well as for

the extensions derived in Traeger (2021a).

6



Temperature related shadow values:

The temperature’s shadow value solves equation (C.7) to the form

ϕ⊤
τ = −(1 + βϕk)ξ0e

⊤
1 (1I−βσ)−1.

The feedback operates through the carbon’s shadow value and through the persistent

shock shadow value ϕτ
y for which equation (C.10) delivers the quadratic equation

ϕτ
y − αcϕτ

y

2 − αchϕτ,1ϕ
τ
y = βϕτ

yγ
z + βhϕτ,1γ

z

⇔ αc
︸︷︷︸

≡ã

ϕτ
y

2
+ (βγz + αchϕτ,1 − 1)
︸ ︷︷ ︸

≡b̃

ϕτ
y + βhϕτ,1γ

z

︸ ︷︷ ︸

≡c̃

= 0. (C.15)

Instead of using the common abc-formula I use the solution arrived at by Mullers

method, which solves ãx2 + b̃x + c̃ = 0 by the roots x = −2c̃

b̃±
√

b̃2−4ãc̃
. The solution is

advantageous because it yields a valid root for the case ã = 0, which corresponds to

the deterministic case.37 Then

ϕτ
y =

−2c̃

b̃±
√

b̃2 − 4ãc̃

= ϕτ,1
2βhγz

(1− βγz − αchϕτ,1)±
√

(1− βγz − αchϕτ,1)2 − 4αchϕτ,1βγz

=
βγz

1− βγz

2

1− αchϕτ,1

1−βγz ±
√
(

1− αchϕτ,1

1−βγz

)2

− 4αchϕτ,1

1−βγz

βγz

1−βγz

︸ ︷︷ ︸

≡T

hϕτ,1 (C.16)

To identify the economically meaningful root, I take c → 0. The negative root diverges

and identifies the positive root as the correct root (the root with +
√

). The correct

deterministic limit delivers ϕτ
y → ϕτ,1

βhγz

(1−βγz)
for c → 0. The shadow value in the

deterministic limit coincides with the (negative of the) shadow value ϕτ
yo that results

from equation (C.10) as

ϕτ
yo = − βhγz

1− βγz
ϕτ,1.

Carbon-flow uncertainty:

37The common abc-formula yields a fraction 0
0 for ã = 0. Having a well-defined root for the

deterministic special case permits connecting the uncertain SCC directly to the deterministic SCC.
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Equation (C.8) delivers the shadow value vector equation

ϕ⊤
M = β

(
σforc

Mpre

ϕτ,1 +
α

2

δMx2

Mpre

ϕM
x

2
+

δMσ

Mpre

ϕM
σ +

1

Mpre

(ϕτ
yo − hϕτ,1)(1− ǫ(c))

− 1

Mpre

log(1− αc(ϕτ
y + hϕτ,1)

αc

)
[
(1I−βΦ)−1

]

1,·
. (C.17)

Dividing the second through the first shadow value entry I obtain

ϕM,2 =
[(1I−βΦ)−1]1,2
[(1I−βΦ)−1]1,1
︸ ︷︷ ︸

≡r

ϕM,1 . (C.18)

Equation (C.11) delivers the shadow value

ϕM
x =

β

1− γxβ
(ϕM,1 − ϕM,2) =

β

1− γxβ
(1− r)

︸ ︷︷ ︸

≡A

ϕM,1 , (C.19)

where the second equality uses equation (C.18). Substituting these results into equa-

tion (C.12) delivers

ϕM
σ = β

α

2

(ϕM,1 − ϕM,2)
2 + δσx

2
ϕM
x

2

1− γσβ
= β

α

2

(1− r)2 + δσx
2
A2

1− γσβ
︸ ︷︷ ︸

≡B

ϕM,1
2. (C.20)

Inserting equation (C.19) and (C.20) into the atmospheric shadow value component

of equation (C.17) results in the quadratic equation

ϕM,1 = β

(
α

2

δMx2

Mpre

ϕM
x

2
+

δMσ

Mpre

ϕM
σ

)
[
(1I−βΦ)−1

]

1,1
+

β

Mpre

(

σforcϕτ,1

+(ϕτ
yo − hϕτ,1)(1− ǫ(c))−

log(1− αc(ϕτ
y + hϕτ,1)

αc

)
[
(1I−βΦ)−1

]

1,1

= β

(
α

2

δMx2

Mpre

A2 +
δMσ

Mpre

B

)
[
(1I−βΦ)−1

]

1,1

︸ ︷︷ ︸

≡â

ϕM,1
2 + (C.21)

β

Mpre

(

σforcϕτ,1+(ϕτ
yo−hϕτ,1)(δτ−ǫ(c))−

log(1− αc(ϕτ
y + hϕτ,1)

αc

)
[
(1I−βΦ)−1

]

1,1

︸ ︷︷ ︸

≡ĉ

.
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Using once more the quadratic formula deriving from Muller’s method I obtain the

solution

ϕM,1 =
2ĉ

1±
√
1− 4âĉ

and once again the positive root is the one that is economically meaningful as it

converges for â = 0 to the correct solution (including the deterministic special case if

all uncertainty is absent). I transform the expression for ϕM,1 and, in the last step,

do a first order Taylor approximation in both numerator and denominator

ϕM,1 =
2ĉ

1 +
√
1− 4âĉ

= ĉ

(

1 +
1−

√
1− 4âĉ

1 +
√
1− 4âĉ

︸ ︷︷ ︸

≡θM

)

≈ ĉ

(

1 +
âĉ

1− âĉ

)

, (C.22)

where the approximation is first order around âĉ = 0 in both numerator and denom-

inator. The term â is

â = β

(
α

2

δMx2

Mpre

A2 +
δMσ

Mpre

B

)
[
(1I−βΦ)−1

]

1,1

= β
α

2

1

Mpre

[( βδMx

1− γxβ

)2

(1− r)2

+
βδMσ

1− γσβ

(

(1− r)2 +
( βδσx

1− γxβ

)2

(1− r)2
)]
[
(1I−βΦ)−1

]

1,1

=
α

2

β

Mpre

[

AM�x2 + AM�σAσ�x2 + AM�σ
]

(1− r)2
[
(1I−βΦ)−1

]

1,1

=
α

2

β

Mpre

[

AM�x2 + AM�σAσ�x2 + AM�σ
]
(

[(1I−βΦ)−1]
1,1

−[(1I−βΦ)−1]
1,2

)2

[(1I−βΦ)−1]
1,1

(C.23)

with AM�x =
δMxβ

1− γxβ
, AM�σ =

δMσβ

1− γσβ
, Aσ�x =

δσxβ

1− γxβ
.

Temperature-carbon feedback:

Evaluating the term ĉ requires the evaluation of

ϕτ
yo − hϕτ,1 = −

(
βγz

1− βγz
+ 1

)

hϕτ,1 = − h

1− βγz
ϕτ,1 = −h̄ϕτ,1,

9



where I defined h̄ = h
1−βγz , and, using equation (C.16), the evaluation of

ϕτ
y + hϕτ,1 =

(
βγz

1− βγz
T + 1

)

hϕτ,1 =
1 + βγz(T − 1)

1− βγz
hϕτ,1

=
(

1 + βγz(T − 1)
)

h̄ϕτ,1.

Using the definition F ≡ αc h
1−βγzϕτ,1 = αch̄ϕτ,1 and recalling the abbreviation T

from equation (C.16), I define the expression

θ†τ ≡ βγz(T − 1) = βγz




2

1− F +
√

(1− F )2 − 4F βγz

1−βγz

− 1





= βγz
1 + F −

√

(1− F )2 − 4F βγz

1−βγz

1− F +
√

(1− F )2 − 4F βγz

1−βγz

≈ βγzF

1− βγz − F
(C.24)

Using this definition (in the second step) and denoting the shadow value of atmo-

spheric carbon under certainty by ϕdet
M,1 (see equation C.13), the term ĉ defined in

equation (C.21) becomes

ĉ =
βσforcϕτ,1

Mpre

[
(1I−βΦ)−1

]

1,1

(

1 +
h̄

σforc

(

− 1

− log(1− αc
(
1 + βγz(T − 1)

)
h̄ϕτ,1

αch̄ϕτ,1

+ ǫ(c)

))

= ϕdet
M,1

(

1 +
h̄

σforc

(− log
(
1− αch̄ϕτ,1(1 + θ†τ )

)

αch̄ϕτ,1

− 1 + ǫ(c)

))

= ϕdet
M,1

(

1 +
h̄

σforc

(− log
(
1− F (1 + θ†τ )

)

F
− 1 + ǫ(c)

))

. (C.25)

The joint first order approximation in θ†τ and F (first approximation), and a first

order approximation in F using the definition of θ†τ (second approximation) deliver

θ∗τ ≡ − log
(
1− F (1 + θ†τ )

)

F
− 1 ≈ θ†τ +

1

2
F ≈ 1

2

1 + βγz

1− βγz
F. (C.26)

Summarizing the case of joint carbon flow and temperature uncertainty:

I define θ∗M = âĉ. The main text uses the definitions carb1 and ∆carb defined on
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page 14 simplifying the representation of â in equation (C.23). Moreover, equations

(C.25) and (C.26) imply

ĉ = ϕdet
M,1

(

1 +
h̄

σforc

(

θ∗τ + ǫ(c)

))

with θ∗τ as in equation (C.26).

Equation (C.22) delivers ϕM,1 = ĉ
(
1 + θM

)
with

θM =
1−

√
1− 4θ∗M

1 +
√
1− 4θ∗M

≈ θ∗M
1− θ∗M

. (C.27)

Therefore, ϕM,1 = ϕdet
M,1

(
1+θM

)(

1+ h̄
σforc

(
θ∗τ+ǫ(c)

))

and, transformed to consumption

units, I have

SCCt = SCCdet
t

(
1 + θM

)
(

1 +
h̄

σforc

(

θ∗τ + ǫ(c)
))

. (C.28)

Summarizing Result for Proposition 1:

In the case of Proposition 1, h̄ = 0 so that the second bracket in equation (C.28)

is unity. The approximation in equation (C.27) delivers the approximation in equa-

tion (16) of the proposition.

The convexity of θM in θ∗M follows from equation (C.27):

θM(θ∗M) =
1− (1− 4θ∗M).5

1 + (1− 4θ∗M).5

θ′M(θ∗M) = 2(1− 4θ∗M)−.51 + (1− 4θ∗M).5 + 1− (1− 4θ∗M).5

(1 + (1− 4θ∗M).5)2
= 4

(1− 4θ∗M)−.5

(1 + (1− 4θ∗M).5)2

θ′′M(θ∗M) = 8
(1− 4θ∗M)−1.5(1 + (1− 4θ∗M).5)2 + 2(1− 4θ∗M)−1(1 + (1− 4θ∗M).5)

(1 + (1− 4θ∗M).5)4

which is positive for 1 − 4θ∗M > 0 ⇔ θ∗M < 1
4
, a condition that has to hold for the

solution to be well-defined in the first place (see below).

Summarizing Results for Proposition 2:

In the absence of uncertainty over carbon flow also the endogenous carbon flow un-

certainty vanishes and

δMσ = δσx = δMx = 0 ⇒ â = 0 ⇒ θ∗M = 0 ⇒ θM = 0.

Thus, the result is stated by equation (C.28) where the first multiplier of the deter-

ministic SCC is unity. The expressions h̄ = h
1−βγz and F = αch̄ϕτ,1 are as defined in

11



the text above. The expression for θ∗τ is stated in equation (C.26) and equation (C.24)

defines θ†τ . The approximation in equation (21) follows from the approximation in

equation (C.26).

Well-definedness (domains of the propositions):

The solution to the quadratic equation (C.21) for carbon flow uncertainty is well-

defined for θ∗M ≡ âĉ < 1
4
. The solution to the quadratic equation (C.15) is well-defined

for b̃2 > 4ãc̃ ⇔ (1− F )2 > 4F βγz

1−βγz as best observed from the transformed equations

(C.16) or (C.24). This inequality is equivalent to βγz <
(1−F )2

(1−F )2+4F
. Moreover, the

cumulative generating functions of the autoregressive gamma process first observed

in equation (C.5) requires that the argument of the logarithm remains positive. After

solving for the shadow values, this logarithm reappears in equation (C.25) and requires

F (1 + θ†τ ) < 1. A sufficient but not necessary condition for this inequality to hold is

F < 1
3
; using the definition of θ†τ in equation (C.24) find that F (1+θ†τ ) < F

(
1+1+F

1−F

)
<

1
3

(
1 + 2

4

)
= 1.

C.3 Proof of Propositions 3 and 4

Damage uncertainty moves slightly beyond Lemma 1, but in a somewhat trivial sense.

First, the formulation of the stochastic damage-adaptation process introduces an

additional control variale, it, and changes the production function from the form

F (At,Nt,Kt,Et) to the form F (At,Nt,Kt,Et, it). Second, the damage-adaptation

state πt directly affects consumption in a given period and, therefore, not only affects

the next period state but also the expression for the current period’s welfare. As a

result, I restate the Bellman equation (C.1) in the slightly extended form

V (kt, τt,Mt,Rt, It, t) = max
xt,Nt,Kt,Et,it

log xt + κkt + logF (At,Nt,Kt,Et, it) (C.29)

−ξ0τ1,t + ξ0 + ξ0πt +
β

α
log
(

Et exp
[
α V (kt+1, τt+1,Mt+1,Rt+1, It+1, t)

])

.

The informational state vector It now contains the additional component πt. Employ-

ing the affine value function, the expectation on the right of equation (C.29) yields

12



the novel terms

β

α
log
(

Et exp
(

αϕπ

(
− d
√
τ1,t − ηd + h(i) + γdπt

)
+ αϕkξ0πt

))

(C.30)

= βαϕ2
π

σ2
d

2
(τ1,t − ηd) + β

1

α
log
(
Et exp

(
αϕπh(i)

))

︸ ︷︷ ︸

≡h̃(α,ϕπ ,η)

+βγdπt + βϕkξ0πt

deriving form the damage-adaption process’ equation of motion (24) and the damage

equation (23)’s direct impact on next period’s capital stock.

First, I obtain a new coefficient matching condition for the new state πt. Collecting

the terms proportional to Πt in equation (C.29), equation (C.30), and from the l.h.s.

value function delivers the condition for the new shadow value

ϕπ = βϕπγd + (1 + βϕk)ξ0

⇒ ϕπ =
(1 + βϕk)ξ0
1− βγd

=
ξ0

(1− βγd)x∗
.

Second, the term h̃(α, ϕπ, η) in equation (C.30) only affects the optimization problem

and welfare, but not the shadow value of carbon. Third, the remaining term in

equation (C.30) affects the equation for the atmospheric temperature’s shadow value,

turning equation (C.7) in the proof in Section C.2 into

ϕ⊤
τ = βϕ⊤

τ σ − (1 + βϕk)ξ0e
⊤
1 + βαϕ2

π

σ2
d

2
τ1,t

⇒ ϕ⊤
τ =

(

−(1 + βϕk)ξ0 + βαϕ2
π

σ2
d

2

)

e⊤
1 (1I−βσ)−1

⇒ ϕ⊤
τ = −(1 + βϕk)ξ0

(

1 + +
β(−α)

ξ0

(
(1 + βϕk)ξ0
1− βγd

)2 σ2
d

2

1 + βϕk

)

e⊤
1 (1I−βσ)−1

⇒ ϕ⊤
τ = −(1 + βϕk)ξ0

(

1 + β(−α)
ξ0

(1− βγd)2
σ2
d

2
︸ ︷︷ ︸

≡θd

)

e⊤
1 (1I−βσ)−1 = (1 + θd)ϕ

det
τ,1

⇒ ϕτ,1 = (1 + θd)ϕ
det
τ,1 ,

where ϕdet
τ,1 refers to the deterministic shadow value defined in equation (C.14), co-

inciding with the earlier result under uncertainty that only affected ϕM . Thus, the

shadow value ϕτ,1 picks up the new factor (1+ θd) as compared to the settings, either

certainty or joint uncertainty over carbon flow and temperature.
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For the proof of Proposition 3, the shadow value of atmospheric carbon, equation

(C.13), is proportional to ϕτ,1 and, thus, ϕM,1 and the SCC merely get multiplied by

(1 + θd) with θd = β(−α) ξ0
(1−βγd)2

σ2
d

2
define in the equation above.

For the proof of Proposition 4, I have to identify multiple occurrences of the

shadow value ϕτ,1. First, it is part of the term F ≡ αc h
1−βγzϕτ,1 and, second, it is

part of ĉ defined in equation (C.15). The first dependence adds the (1 + θd) to the

new factor F new = F orig(1+ θd) as stated in the proposition. The second dependence

adds the factor (1 + θd) to equation (C.25) and, therefore, equation (C.28) defining

the total uncertainty multiplier to the SCC.

C.4 Proof of Proposition 5

Let ǫjt be distributed with existing cumulant generating function, and let νt,j be iid

white noise (and let other shocks be zero for the moment). Making use of Proposition

1, the informational state variable is the current realization of the autoregressive shock

µ
j
t , which is known at time t. Then, the Bellman equation (9), using once again an

affine trial solution, becomes

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt + ϕj

µµ
j
t = max

xt,Nt,Kt,Et

log xt + βϕk log(1−xt)

+ (1+βϕk)κkt + (1+βϕk) logF (At,Nt,Kt,Et)

− (1+βϕk)ξ0τ1,t + (1+βϕk)ξ0 +λN
t

(
1−∑IN

i=1 Ni,t

)

+ βϕk(log[1 + gk,t]− log[δk + gk,t]) + λK
t

(
1−∑IK

i=1 Ki,t

)

+ βϕ⊤
R,t+1

(
Rt −Ed

t (At,Nt)
)
+ βϕt+1







≡ A(·)

+
β

α
log
(

Et exp
[

α
(

ϕ⊤
MMt+1 +ϕ⊤

τ τt+1 + ϕj
µµ

j
t+1

)])

⇔ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt + ϕj

µµ
j
t = max

xt,Nt,Kt,Et

log xt + βϕk log(1−xt)

+A(·) + βϕ⊤
M

(

ΦMt +
(∑Id

i=1 Ei,t(At,Nt) + Eexo
t

)
e1

)

+βϕ⊤
τ

(

στt + σforcM1,t +Gt

Mpre

e1

)

+
β

α
log
(

Et exp
[

α
(

ϕjǫ
j
t + ϕjν

j
t + ϕj

µµ
j
t+1

)])

. (C.31)

In the autoregressive shock model, ǫjt is known to be µ
j
t in period t and µ

j
t+1 =

γjµ
j
t + χ

j
t . Moreover, νj

t = 0 (by assumption). Therefore, in the autoregressive shock
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model, I obtain the Bellman equation

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt + ϕj

µµ
j
t = max

xt,Nt,Kt,Et

log xt + βϕk log(1−xt)

+A(·) + βϕ⊤
M

(

ΦMt +
(∑Id

i=1 Ei,t(At,Nt) + Eexo
t

)
e1

)

+βϕ⊤
τ

(

στt + σforcM1,t +Gt

Mpre

e1

)

+βϕjµ
j
t + βϕj

µγ
jµ

j
t +

β

α
log
(

Et exp
[

αϕj
µχ

j
t

])

.

Moreover

log
(

Et exp
[

αϕj
µχ

j
t

])

= Gχ

(
αϕj

µχ
j
t

)
=

∞∑

l=1

(αϕj
µ)

l

l!
κl .

Sorting coefficients in the Bellman equation by states gives

(
ϕ⊤

M − βϕ⊤
MΦ− βϕτ,1

σforc

Mpre

e⊤
1

)
Mt +

(
ϕ⊤

τ − βϕ⊤
τ σ + (1+βϕk)ξ0e

⊤
1

)
τt

(
ϕk − (1+βϕk)κ

)
kt +

(
ϕ⊤

R,t − βϕ⊤
R,t+1

)
Rt

+
(

ϕj
µ − β(ϕj + γjϕj

µ)
)

µ
j
t

(C.32)

+ϕt = βϕt+1

+ log x∗
t (ϕk ) + βϕk log(1−x∗

t (ϕk )) + (Nt + βϕk)ξ0

+ (1+βϕk)κkt + (1+βϕk) logF (At,N
∗
t ,K

∗
t ,E

∗
t )

+ βϕk(log[1 + gk,t]− log[δk + gk,t])− βϕ⊤
R,t+1E

d
t

∗







≡ B(·)

+ βϕM,1

(
∑Id

i=1 E
∗
i,t + Eexo

t

)

+ βϕτ,1
σforc

MpreGt,+
β

α

∑∞

l=1
(αϕj

µ)
l

l!
κl .

Apart from the coefficients related to the new state, this equation mostly resembles the

equation of the deterministic base model (see DACE). As before, also the coefficient

on the new state µt has to vanish implying

ϕj
µ =

β

1− γjβ
ϕj . (C.33)

In the present proposition, I am interested in welfare differences. Thus, I also (and

in particular) need to keep track of the affine terms of the value function. For the

deterministic case, DACE derives

ϕdet
t = βϕdet

t+1 + B(·) + βϕM,1

(
∑Id

i=1 E
∗
i,t + Eexo

t

)

+ βϕτ,1
σforc

MpreGt.
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The value function difference between the deterministic and the autoregressive shock

model is determined by the contribution from the informational state and the con-

tribution of the affine parts of the value function. The informational state is zero in

the present by assumption ϕj
µµ

j
0 = 0 (same expected motion as under certainty). By

equation (C.32) the affine part of the value function evolves as

ϕAR
t = βϕAR

t+1 + B(·) + βϕM,1

(
∑Id

i=1 E
∗
i,t + Eexo

t

)

+βϕτ,1
σforc

MpreGt+
β

α

∑∞

l=1
(αϕj

µ)
l

l!
κl

in the autoregressive shock model. Therefore, the value function difference is

∆WAR
general = V AR − V det = ϕj

µµ
j
0 + ϕunc

0 − ϕdet
0

= 0 + β(ϕAR
1 − ϕdet

1 ) +
β

α

∞∑

l=1

(αϕj
µ)

l

l!
κl

= β(ϕAR
2 − ϕdet

2 ) +
2∑

p=1

βp

α

∞∑

l=1

(αϕj
µ)

l

l!
κl

= lim
t→∞

β(ϕAR
t − ϕdet

t ) + lim
t→∞

t∑

p=1

βp

α

∞∑

l=1

(αϕj
µ)

l

l!
κl

= lim
t→∞

β(ϕAR
t − ϕdet

t ) +

(
1

1− β
− 1

)
1

α

∞∑

l=1

(αϕj
µ)

l

l!
κl

=
∞∑

l=1

β

1− β

1

α

(αϕj
µ)

l

l!
κl =

β

1− β

1

α
Gχ

(
αϕj

µ

)
,

which, together with equation (C.33) delivers the result stated in part (3) of the

proposition. For a normally distributed mean-zero shock χ
j
t the first cumulant (ex-

pectation) is zero and only the second cumulant contributes (all others being zero),

delivering part (1) of the proposition.

In the case of anticipated learning, the informational state evolves as µ
j
t+1 =

σ2
ǫ,tz̃+σ2

ν,tµ
j
t

σ2
ǫ,t+σ

2
ν,t

, where z̃ is the observation, which is distributed as the sum of measurement

error and Bayesian prior z ∼ N(µj
t , σ

2
ǫ,t+σ2

ν,t) (see as well footnote 27). The variance

of the normal-normal Bayesian learning model evolves deterministically as σ2
ǫ,t+1 =
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σ2
ν,tσ

2
ǫ,t

σ2
ν,t+σ2

ǫ,t
. Therefore, the Bellman equation (C.31) becomes

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt + ϕj

µµ
j
t = max

xt,Nt,Kt,Et

log xt + βϕk log(1−xt)

+A(·) + βϕ⊤
M

(

ΦMt +
(∑Id

i=1 Ei,t(At,Nt) + Eexo
t

)
e1

)

+βϕ⊤
τ

(

στt + σforcM1,t +Gt

Mpre

e1

)

+
β

α
log
(

Et exp
[

α
(

ϕj(ǫ
j
t + ν

j
t ) + ϕj

µ

σ2
ǫ,tz̃ + σ2

ν,tµ
j
t

σ2
ǫ,t+σ2

ν,t

)])

,

Moreover

log
(

Et exp
[

α
(

ϕj(ǫ
j
t + ν

j
t ) + ϕj

µ

σ2
ǫ,tz̃ + σ2

ν,tµ
j
t

σ2
ǫ,t+σ2

ν,t

)])

= ϕj
µ

σ2
ν,tµ

j
t

σ2
ǫ,t+σ2

ν,t

+ log
(

Et exp
[

α
(

ϕj + ϕj
µ

σ2
ǫ,t

σ2
ǫ,t+σ2

ν,t

)

(ǫjt + ν
j
t )
])

= ϕj
µ

σ2
ν,tµ

j
t

σ2
ǫ,t+σ2

ν,t

+ α
(

ϕj + ϕj
µ

σ2
ǫ,t

σ2
ǫ,t+σ2

ν,t
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µ
j
t + α2

(

ϕj + ϕj
µ

σ2
ǫ,t

σ2
ǫ,t+σ2

ν,t

)2 σ2
ǫ,t + σ2
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2

Then, the Bellman equation delivers in close analogy to above and the deterministic

setting

(
ϕ⊤

M − βϕ⊤
MΦ− βϕτ,1

σforc

Mpre

e⊤
1

)
Mt +

(
ϕ⊤

τ − βϕ⊤
τ σ + (1+βϕk)ξ0e

⊤
1

)
τt

(
ϕk − (1+βϕk)κ

)
kt +

(
ϕ⊤

R,t − βϕ⊤
R,t+1
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Rt
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ϕj
µ − βϕj

µ

σ2
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ǫ,t+σ2

ν,t
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ϕj + ϕj
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µ
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t

+ϕt = βϕt+1

B(·) + βϕM,1

(
∑Id

i=1 E
∗
i,t + Eexo
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+ βϕτ,1
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(

ϕj + ϕj
µ

σ2
ǫ,t
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2
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)2 σ2
ǫ,t+σ2
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2

where the coefficient on the informational state µt has to vanish implying

ϕj
µ

(

1− β
( σ2

ν,t

σ2
ǫ,t+σ2

ν,t

+
σ2
ǫ,t

σ2
ǫ,t+σ2

ν,t

)

︸ ︷︷ ︸

=1

)

= βϕj

⇔ ϕj
µ =

β

1− β
ϕj . (C.34)
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Analogously to the autoregressive model, the value function difference between the

deterministic and the Bayesian learning model is determined by the contribution

from the informational state, which is zero in the present by assumption (or rather

calibration), and the contribution of the affine parts of the value function. Here, the

affine part of the Bayesian learning model is

ϕ
Bayes
t = βϕ

Bayes
t+1 + B(·) + βϕM,1

(
∑Id

i=1 E
∗
i,t + Eexo

t

)

+ βϕτ,1
σforc

MpreGt

+αβ
(

ϕj + ϕj
µ

σ2
ǫ,t

σ2
ǫ,t+σ2

ν,t

)2σ2
ǫ,t + σ2

ν,t

2

where the last term is new with respect to the deterministic equation. Therefore, the

value function difference is

∆WBayes = V Bayes − V det = ϕj
µµ

j
0 + ϕunc

0 − ϕdet
0

= 0 + β(ϕBayes
1 − ϕdet

1 ) + αβ
(
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σ2
ǫ,0

σ2
ǫ,0+σ2

ν,0

)2σ2
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ν,0

2
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2 ) +
1∑
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ǫ,τ
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2

= lim
t→∞

β(ϕAR
t − ϕdet

t ) + lim
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1− β
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σ2
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σ2
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)2σ2
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,

where the last line uses equation (C.34). Moreover, the term in brackets is equivalent

to

ϕj

(1− β)(σ2
ǫ,τ+σ2

ν,τ ) + βσ2
ǫ,τ

(1− β)(σ2
ǫ,τ+σ2

ν,τ )
= ϕj

σ2
ǫ,τ + (1− β)σ2

ν,τ

(1− β)(σ2
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=
ϕj
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( σ2
ǫ,τ
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ν,τ

+ (1− β)
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ν,τ
︸ ︷︷ ︸

≡Ωt

)
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delivering

∞∑

τ=0

αβτ+1ϕ2
j

( Ωt

1− β

)2σ2
ǫ,τ + σ2

ν,τ

2
,

as stated in part (2) of the proposition.

D Calibration of the stochastic processes

At the outset of the calibration, I pick a common long-run risk persistence γ ≡ γx =

γσ = γz = γd for all stochastic processes for the baseline, and I pick a high and

low variation. As explained in Appendix A, the autoregressive constants are a proxy

for the speed of learning under epistemological uncertainty. The best researched

and quantitatively most important uncertainty governs the climate sensitivity. Our

progress in narrowing down this uncertainty over the course of three decades of re-

search and two decades of IPCC reports is sobering if not deflating as the confidence

interval hardly moved at all. We probably have not been much better when it came

to carbon flow uncertainty and damages. In fact, the more recent high end damages

might have actually increased the confidence interval again. Such highly persistent

uncertainty motivates my pick of γ = 0.9 for the baseline. Appendix A motivates

γ ≈ 0.9 somewhat more formally comparing a simple autoregressive shock model to a

Bayesian learning model. The autoregression coefficient of a Bayesian learning model

would fall over time and my base choice will be a bit too low in the near future and

too high in the further future. I will therefore add sensitivity scenarios with γ = 0.8

and γ = 0.95.

The parameters η ≡ ηM = ητ = ηd characterize how steeply uncertainty increases

when deviating from the preindustrial equilibrium versus how much uncertainty al-

ready prevails in equilibrium. While η does not directly affect the SCC, it indirectly

affects the SCC through the calibration. A higher value of η ∈ (0, 1) implies that more

of the uncertainty is causal to the antropogenic perturbation of the climate system

and the corresponding feedbacks as opposed to already present independently. For the

baseline, I pick η = 2
3
, which might be a more conservative assignment of uncertainty

to our perturbations and climate feedbacks. Therefore, I will also present results for

a scenario with η = 0.9, which pins uncertainty more sharply on the deviation from

preindustrial.

The climate sensitivity measures the medium to long-term response of global
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warming to a doubling of the carbon dioxide concentrations. Because this medium to

long-term response takes a few centuries, integrated assessment modelers increasingly

calibrate their models to the transient climate response (TCR). TCR measures the

warming response to a scenario that increases atmospheric CO2 concentrations from

preindustrial levels by one percent yearly until concentrations double w.r.t. prein-

dustrial (7 decades), keeping concentrations constant afterwards. TCR measures the

average temperature increase during the two decades centered at the year when con-

centrations double. Given ACE’s decadal time step, I simply average the values of

the decade before and after doubling of the carbon concentration. TFE.6 Figure 2

IPCC (2013) shows a set of different probabilistic TCR distributions that share the

slight positive skewness of ACE’s TCR depicted in Figure 2. The IPCC (2013) sum-

marizes the mean TCR prediction of 30 models (CMIP5) as 1.8◦C and reports the

66% probability interval of TCR as 1◦C to 2.5◦C, see black “x” and black bars in

the right panel of Figure 2. The parameters of this baseline calibration are γ = 0.9,

h = 0.23, η = 0.8, c = 0.21, and ǫ = 0.05. The parameters and graphs for the scenario

variations of Table 1 are presented in Figure 6.

It proves more difficult to find good probabilistic information governing carbon

dynamics. Joos et al. (2013) provide a useful benchmark against which to calibrate

and, in particular, recalibrate carbon flow uncertainty across different scenarios. Joos

et al. (2013) subject 18 different carbon cycle models to a 5000Gt carbon pulse. The

study calculates the variance of the pulse evolution across models. The base calibra-

tion opens the interaction channel between conditional expectations and conditional

volatility by setting δσx = 1. I set the exogenous uncertainty, which has no im-

pact on the SCC, to a nominal value of σ̄ = 0.1%.38 I then simultaneously vary

δMx = δMσ until I approximately match the uncertainty suggested by the model com-

parison study, which is the case for δMx = δMσ = 40 in the baseline calibration. ACE

is a single stochastic model rather than a set of different deterministic models. Thus,

not only the evolution of the pulse will be uncertain, but so is the baseline evolution

of atmospheric carbon dioxide. For my order of magnitude comparison, I calculate

the overall uncertainty in ACE as well as a measure of the uncertainty governing the

mere pulse.39 The upper left panel of Figure 5 presents the result. Overall, the mag-

38Given the already small impact of carbon uncertainty on the SCC, I rather err on the side of
exaggerating the endogeneity of the uncertainty.

39To obtain a measure of the uncertainty adhering to the pulse itself in an overall stochastic
scenario, I draw 2000 paths for the random variables and simulate the model with and without the
carbon pulse. I then calculate the variance in the difference of the carbon evolution with and without
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Figure 5: Carbon flow uncertainty compared to Joos et al. (2013). Black dashed: Un-
certainty (variance) across 18 deterministic carbon cycle models responding to a 5000Gt
carbon pulse as reported by Joos et al. (2013). After year 500 several models leave the
ensemble causing a discontinuity in the variance. Blue: Overall uncertainty (variance) in
ACE when subjected to the same pulse. Red: Variance measure of uncertainty attributable
to the carbon pulse itself.
Upper left: Baseline. Upper right: Scenario δMx ↑ pushing uncertainty onto conditional
expectations. Lower left: Scenario δMσ ↑ pushing uncertainty onto stochastic volatility.
Lower right: Scenario δ σx ↑ pushing uncertainty onto the interaction of stochastic volatility
and conditional expectations.

nitude of the uncertainty is fairly close. The parameters and graphs for the scenario

variations of Table 1 are presented in Figure 6. The right panel of Figure 2 illustrates

the implications of this uncertainty calibration in a more meaningful scenario. It uses

the DICE 2013 business as usual scenario and depicts the original DICE evolution of

atmospheric CO2 (“data”), the evolution in the deterministic ACE model (using a 10

year rather than 5 year time step), and the evolution of the mean CO2 concentration,

all of which are basically indistinguishable. The figure then depicts the 90% simulated

confidence intervals, the median which lies slightly below the mean, and a set of 100

random paths (yellow). The graph illustrates that the uncertainty about the future

the pulse, taking differences between the paths with coinciding draws of the shock.
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carbon evolution resulting from my calibration is substantial.

The calibration above merely assumed δMx = δMσ and there is no data to mean-

ingfully tell the different sources of uncertainty apart. Similarly, I merely assumed

that the stochastic volatility enters the conditional expectations with equal magnitude

(δσx = 1). Therefore, I introduce three additional scenarios, each of which fixes all

but one of these parameters to unity, increasing the free parameter to approximately

match the overall uncertainty suggested by my comparison with Joos et al. (2013).

The remaining panels in Figure 5 shows the calibration results of the corresponding

scenarios. Increasing the uncertainty over the conditional expectations while fixing

δMσ = δσx = 1 delivers an increase of δMx = 50 (upper right panel, scenario δMx ↑).
Increasing the uncertainty over the stochastic volatility while fixing δMx = δσx = 1

delivers an increase of δMσ = 165 (lower left panel, δMσ ↑). Note that this value is

much higher because the scenario essentially tries to match an overall uncertainty

over levels by merely increasing stochastic volatility. And yet the SCC impact will

turn out very small. Increasing the interaction channel while fixing δMx = δMσ = 1

delivers a multiplier of the stochastic volatility in the conditional expectations channel

of δσx = 12 (lower right panel, δσx ↑).
When it comes to damages, we even lack any consensus governing a best guess

estimate. The DICE model in its various vintages suggests a good 2% damage at a

3C warming,40 whereas a recent meta-analysis by Howard & Sterner (2017) as well

as a survey by Pindyck (2020) suggest damages closer to 10% of global output at a

similar warming.41 See Traeger (2021a) for an extended discussion as well as plots of

these various damages functions (Figure 2). That paper presents results based on two

damage functions, one calibrated to DICE and a scenario labeled “HSP” calibrated

to Howard & Sterner (2017) and Pindyck’s (2020). Here, I essentially average the cor-

responding semi-elasticities of production ξ0 across the two scenario for my expected

damage level and then use their difference to inform the damage variance. In more

detail, the “preferred estimate” of Howard & Sterner (2017) uses a quadratic dam-

40The DICE 2013 and 2016 models assumem damage of 2.35% and 2.08% based on the functional
form 1− 1

1+a∗T 2 with a = 0.00267 and a = 0.00236, respectively. Note that usage of this functional
form is not fully consistent across texts and model implementations and sometimes the implemen-
tations employ the non-normalized damage function a ∗ T 2 instead, which results in slightly higher
damages.

41Whereas Howard & Sterner (2017) use a similar quadratic damage function over temperature as
Nordhaus (2017), Pindyck’s (2020) asks for damage estimates based on a business as usual emission
scenario 50 years into the future. Using the IPCC’s RCP 8.5 scenario, the information translates to
a similar 10% loss at a 3C warming as Howard & Sterner (2017).
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age function without normalization and damages will eventually outgrow production

and even the capital stock. By construction, ACE assumes that damages cannot ex-

ceed production. Therefore, Traeger (2021a) renormalizes Howard & Sterner’s (2017)

damage function and decides to match the renormalized function at a 3C warming

(xHSP
0 = 0.10). Alternatively, the paper also shows the damage curve when matches

the non-normalized damage curve at a 3C warming (xHSP ∗

0 = 0.11). Given the present

analysis explicitly introduces uncertainty, I will average the two values before taking

the average with ξDICE
0 = 0.022. As a result, I find ξ0 = 0.063. I then use the fol-

lowing scenario to calibrate damage uncertainty. I let temperature increase linearly

from today’s 1C warming to an end of the century warming of 3C. This temperature

increase is deterministic. I then calibrate the 2100 damages at a 3C warming so that

the 10th percentile of the damage distribution implies a 2.0% loss of world output

and the 90st percentile implies a 10.0% loss. This calibration implies σd = 0.26 and

a one sigma interval of damages of [3.0%, 9.1%], which seems somewhat reasonable

given the widely different damage estimates and the fact that most of the more recent

findings suggest that damages are rather a bit higher than assumed in DICE.42 The

variations for the scenario variations of Table 1 all recalibrate the σd to imply the

same 10th and 90st percentiles.43

42By proposition 3, uncertainty over the function h(·) will not affect the optimal carbon tax and,
thus, I do not calibrate h for the present paper. However, making h stochastic affects the cited
simulation results informing σd. A stochastic h increases the variance and confidence intervals.
Bearing this in mind, a stochastic h would slightly enlarge those uncertainty intervals going along
with the cited presentation, just as a higher ηd would slightly reduce those uncertainty intervals. I
note that there is a (very) small downward bias in the expected damages under uncertainty, where
the mean damage of 6.034 lies slightly below the deterministic simulation outcome at expected
damages of 6.087% (based on a simulation with 10 million draws). This miniscule difference could
in principle be offset by an ever so slight adjustment of the the zero expectation of h.

43In the scenario γ = 0.95, η ↑ I find ηd = 0.88, in the scenario γ = 0.95, Var ↓ I find σd = 0.23,
in the scenario γ = 0.8, Var ↑ I find σd = 0.313, and in the scenario η = 0.9, Var ↑ I find σd = 0.295.
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Scenario: γ = 0.95, η ↑ (ητ = 0.8, ηM = 0.9)
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Scenario: γ = 0.95, Var ↓ (c = 0.18, δMx = δMσ = 25)
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Scenario: γ = 0.8, Var ↑ (c = 0.25, δMx = δMσ = 67)
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Scenario: η = 0.8, Var ↑ (c = 0.29 (and ǫ = 0.06), δMx = δMσ = 42)
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Figure 6: Calibrations of TCR distribution (left) and carbon flow uncertainty (right) for
the the alternative scenarios of Table 1. Panels are the analogues to Figure 2 on the left
and to Figure 5, which show the baseline calibration.
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